- moved flash erase_check target code to target.c
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   This program is free software; you can redistribute it and/or modify  *
6  *   it under the terms of the GNU General Public License as published by  *
7  *   the Free Software Foundation; either version 2 of the License, or     *
8  *   (at your option) any later version.                                   *
9  *                                                                         *
10  *   This program is distributed in the hope that it will be useful,       *
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
13  *   GNU General Public License for more details.                          *
14  *                                                                         *
15  *   You should have received a copy of the GNU General Public License     *
16  *   along with this program; if not, write to the                         *
17  *   Free Software Foundation, Inc.,                                       *
18  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
19  ***************************************************************************/
20 #ifdef HAVE_CONFIG_H
21 #include "config.h"
22 #endif
23
24 #include "replacements.h"
25 #include "target.h"
26 #include "target_request.h"
27
28 #include "log.h"
29 #include "configuration.h"
30 #include "binarybuffer.h"
31 #include "jtag.h"
32
33 #include <string.h>
34 #include <stdlib.h>
35 #include <inttypes.h>
36
37 #include <sys/types.h>
38 #include <sys/stat.h>
39 #include <unistd.h>
40 #include <errno.h>
41
42 #include <sys/time.h>
43 #include <time.h>
44
45 #include <time_support.h>
46
47 #include <fileio.h>
48 #include <image.h>
49
50 int cli_target_callback_event_handler(struct target_s *target, enum target_event event, void *priv);
51
52
53 int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
54 int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
55
56 int handle_target_script_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
57 int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
58 int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
59
60 int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
61 int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
62 int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
63 int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
64 int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
65 int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
66 int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
67 int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
68 int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
69 int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
70 int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
71 int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
72 int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
73 int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
74 int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
75 int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
76 int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
77 int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc);
78 int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
79
80 /* targets
81  */
82 extern target_type_t arm7tdmi_target;
83 extern target_type_t arm720t_target;
84 extern target_type_t arm9tdmi_target;
85 extern target_type_t arm920t_target;
86 extern target_type_t arm966e_target;
87 extern target_type_t arm926ejs_target;
88 extern target_type_t feroceon_target;
89 extern target_type_t xscale_target;
90 extern target_type_t cortexm3_target;
91 extern target_type_t arm11_target;
92
93 target_type_t *target_types[] =
94 {
95         &arm7tdmi_target,
96         &arm9tdmi_target,
97         &arm920t_target,
98         &arm720t_target,
99         &arm966e_target,
100         &arm926ejs_target,
101         &feroceon_target,
102         &xscale_target,
103         &cortexm3_target,
104         &arm11_target,
105         NULL,
106 };
107
108 target_t *targets = NULL;
109 target_event_callback_t *target_event_callbacks = NULL;
110 target_timer_callback_t *target_timer_callbacks = NULL;
111
112 char *target_state_strings[] =
113 {
114         "unknown",
115         "running",
116         "halted",
117         "reset",
118         "debug_running",
119 };
120
121 char *target_debug_reason_strings[] =
122 {
123         "debug request", "breakpoint", "watchpoint",
124         "watchpoint and breakpoint", "single step",
125         "target not halted", "undefined"
126 };
127
128 char *target_endianess_strings[] =
129 {
130         "big endian",
131         "little endian",
132 };
133
134 static int target_continous_poll = 1;
135
136 /* read a u32 from a buffer in target memory endianness */
137 u32 target_buffer_get_u32(target_t *target, u8 *buffer)
138 {
139         if (target->endianness == TARGET_LITTLE_ENDIAN)
140                 return le_to_h_u32(buffer);
141         else
142                 return be_to_h_u32(buffer);
143 }
144
145 /* read a u16 from a buffer in target memory endianness */
146 u16 target_buffer_get_u16(target_t *target, u8 *buffer)
147 {
148         if (target->endianness == TARGET_LITTLE_ENDIAN)
149                 return le_to_h_u16(buffer);
150         else
151                 return be_to_h_u16(buffer);
152 }
153
154 /* write a u32 to a buffer in target memory endianness */
155 void target_buffer_set_u32(target_t *target, u8 *buffer, u32 value)
156 {
157         if (target->endianness == TARGET_LITTLE_ENDIAN)
158                 h_u32_to_le(buffer, value);
159         else
160                 h_u32_to_be(buffer, value);
161 }
162
163 /* write a u16 to a buffer in target memory endianness */
164 void target_buffer_set_u16(target_t *target, u8 *buffer, u16 value)
165 {
166         if (target->endianness == TARGET_LITTLE_ENDIAN)
167                 h_u16_to_le(buffer, value);
168         else
169                 h_u16_to_be(buffer, value);
170 }
171
172 /* returns a pointer to the n-th configured target */
173 target_t* get_target_by_num(int num)
174 {
175         target_t *target = targets;
176         int i = 0;
177
178         while (target)
179         {
180                 if (num == i)
181                         return target;
182                 target = target->next;
183                 i++;
184         }
185
186         return NULL;
187 }
188
189 int get_num_by_target(target_t *query_target)
190 {
191         target_t *target = targets;
192         int i = 0;      
193         
194         while (target)
195         {
196                 if (target == query_target)
197                         return i;
198                 target = target->next;
199                 i++;
200         }
201         
202         return -1;
203 }
204
205 target_t* get_current_target(command_context_t *cmd_ctx)
206 {
207         target_t *target = get_target_by_num(cmd_ctx->current_target);
208         
209         if (target == NULL)
210         {
211                 LOG_ERROR("BUG: current_target out of bounds");
212                 exit(-1);
213         }
214         
215         return target;
216 }
217
218 /* Process target initialization, when target entered debug out of reset
219  * the handler is unregistered at the end of this function, so it's only called once
220  */
221 int target_init_handler(struct target_s *target, enum target_event event, void *priv)
222 {
223         FILE *script;
224         struct command_context_s *cmd_ctx = priv;
225         
226         if ((event == TARGET_EVENT_HALTED) && (target->reset_script))
227         {
228                 target_unregister_event_callback(target_init_handler, priv);
229
230                 script = open_file_from_path(target->reset_script, "r");
231                 if (!script)
232                 {
233                         LOG_ERROR("couldn't open script file %s", target->reset_script);
234                                 return ERROR_OK;
235                 }
236
237                 LOG_INFO("executing reset script '%s'", target->reset_script);
238                 command_run_file(cmd_ctx, script, COMMAND_EXEC);
239                 fclose(script);
240
241                 jtag_execute_queue();
242         }
243         
244         return ERROR_OK;
245 }
246
247 int target_run_and_halt_handler(void *priv)
248 {
249         target_t *target = priv;
250         
251         target_halt(target);
252         
253         return ERROR_OK;
254 }
255
256 int target_poll(struct target_s *target)
257 {
258         /* We can't poll until after examine */
259         if (!target->type->examined)
260         {
261                 /* Fail silently lest we pollute the log */
262                 return ERROR_FAIL;
263         }
264         return target->type->poll(target);
265 }
266
267 int target_halt(struct target_s *target)
268 {
269         /* We can't poll until after examine */
270         if (!target->type->examined)
271         {
272                 LOG_ERROR("Target not examined yet");
273                 return ERROR_FAIL;
274         }
275         return target->type->halt(target);
276 }
277
278 int target_resume(struct target_s *target, int current, u32 address, int handle_breakpoints, int debug_execution)
279 {
280         /* We can't poll until after examine */
281         if (!target->type->examined)
282         {
283                 LOG_ERROR("Target not examined yet");
284                 return ERROR_FAIL;
285         }
286         return target->type->resume(target, current, address, handle_breakpoints, debug_execution);
287 }
288
289
290 int target_process_reset(struct command_context_s *cmd_ctx)
291 {
292         int retval = ERROR_OK;
293         target_t *target;
294         struct timeval timeout, now;
295
296         jtag->speed(jtag_speed);
297
298         if ((retval = jtag_init_reset(cmd_ctx)) != ERROR_OK)
299                 return retval;
300         
301         /* First time this is executed after launching OpenOCD, it will read out 
302          * the type of CPU, etc. and init Embedded ICE registers in host
303          * memory. 
304          * 
305          * It will also set up ICE registers in the target.
306          * 
307          * However, if we assert TRST later, we need to set up the registers again. 
308          * 
309          * For the "reset halt/init" case we must only set up the registers here.
310          */
311         if ((retval = target_examine(cmd_ctx)) != ERROR_OK)
312                 return retval;
313         
314         /* prepare reset_halt where necessary */
315         target = targets;
316         while (target)
317         {
318                 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
319                 {
320                         switch (target->reset_mode)
321                         {
322                                 case RESET_HALT:
323                                         command_print(cmd_ctx, "nSRST pulls nTRST, falling back to \"reset run_and_halt\"");
324                                         target->reset_mode = RESET_RUN_AND_HALT;
325                                         break;
326                                 case RESET_INIT:
327                                         command_print(cmd_ctx, "nSRST pulls nTRST, falling back to \"reset run_and_init\"");
328                                         target->reset_mode = RESET_RUN_AND_INIT;
329                                         break;
330                                 default:
331                                         break;
332                         } 
333                 }
334                 target = target->next;
335         }
336         
337         target = targets;
338         while (target)
339         {
340                 /* we have no idea what state the target is in, so we
341                  * have to drop working areas
342                  */
343                 target_free_all_working_areas_restore(target, 0);
344                 target->type->assert_reset(target);
345                 target = target->next;
346         }
347         if ((retval = jtag_execute_queue()) != ERROR_OK)
348         {
349                 LOG_WARNING("JTAG communication failed asserting reset.");
350                 retval = ERROR_OK;
351         }
352         
353         /* request target halt if necessary, and schedule further action */
354         target = targets;
355         while (target)
356         {
357                 switch (target->reset_mode)
358                 {
359                         case RESET_RUN:
360                                 /* nothing to do if target just wants to be run */
361                                 break;
362                         case RESET_RUN_AND_HALT:
363                                 /* schedule halt */
364                                 target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target);
365                                 break;
366                         case RESET_RUN_AND_INIT:
367                                 /* schedule halt */
368                                 target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target);
369                                 target_register_event_callback(target_init_handler, cmd_ctx);
370                                 break;
371                         case RESET_HALT:
372                                 target_halt(target);
373                                 break;
374                         case RESET_INIT:
375                                 target_halt(target);
376                                 target_register_event_callback(target_init_handler, cmd_ctx);
377                                 break;
378                         default:
379                                 LOG_ERROR("BUG: unknown target->reset_mode");
380                 }
381                 target = target->next;
382         }
383         
384         if ((retval = jtag_execute_queue()) != ERROR_OK)
385         {
386                 LOG_WARNING("JTAG communication failed while reset was asserted. Consider using srst_only for reset_config.");
387                 retval = ERROR_OK;              
388         }
389         
390         target = targets;
391         while (target)
392         {
393                 target->type->deassert_reset(target);
394                 target = target->next;
395         }
396         
397         if ((retval = jtag_execute_queue()) != ERROR_OK)
398         {
399                 LOG_WARNING("JTAG communication failed while deasserting reset.");
400                 retval = ERROR_OK;
401         }
402
403         if (jtag_reset_config & RESET_SRST_PULLS_TRST)
404         {
405                 /* If TRST was asserted we need to set up registers again */
406                 if ((retval = target_examine(cmd_ctx)) != ERROR_OK)
407                         return retval;
408         }               
409         
410         
411         LOG_DEBUG("Waiting for halted stated as approperiate");
412         
413         /* Wait for reset to complete, maximum 5 seconds. */    
414         gettimeofday(&timeout, NULL);
415         timeval_add_time(&timeout, 5, 0);
416         for(;;)
417         {
418                 gettimeofday(&now, NULL);
419                 
420                 target_call_timer_callbacks_now();
421                 
422                 target = targets;
423                 while (target)
424                 {
425                         LOG_DEBUG("Polling target");
426                         target_poll(target);
427                         if ((target->reset_mode == RESET_RUN_AND_INIT) || 
428                                         (target->reset_mode == RESET_RUN_AND_HALT) ||
429                                         (target->reset_mode == RESET_HALT) ||
430                                         (target->reset_mode == RESET_INIT))
431                         {
432                                 if (target->state != TARGET_HALTED)
433                                 {
434                                         if ((now.tv_sec > timeout.tv_sec) || ((now.tv_sec == timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
435                                         {
436                                                 LOG_USER("Timed out waiting for halt after reset");
437                                                 goto done;
438                                         }
439                                         /* this will send alive messages on e.g. GDB remote protocol. */
440                                         usleep(500*1000); 
441                                         LOG_USER_N("%s", ""); /* avoid warning about zero length formatting message*/ 
442                                         goto again;
443                                 }
444                         }
445                         target = target->next;
446                 }
447                 /* All targets we're waiting for are halted */
448                 break;
449                 
450                 again:;
451         }
452         done:
453         
454         
455         /* We want any events to be processed before the prompt */
456         target_call_timer_callbacks_now();
457
458         /* if we timed out we need to unregister these handlers */
459         target = targets;
460         while (target)
461         {
462                 target_unregister_timer_callback(target_run_and_halt_handler, target);
463                 target = target->next;
464         }
465         target_unregister_event_callback(target_init_handler, cmd_ctx);
466                                 
467         
468         jtag->speed(jtag_speed_post_reset);
469         
470         return retval;
471 }
472
473 static int default_virt2phys(struct target_s *target, u32 virtual, u32 *physical)
474 {
475         *physical = virtual;
476         return ERROR_OK;
477 }
478
479 static int default_mmu(struct target_s *target, int *enabled)
480 {
481         *enabled = 0;
482         return ERROR_OK;
483 }
484
485 static int default_examine(struct command_context_s *cmd_ctx, struct target_s *target)
486 {
487         target->type->examined = 1;
488         return ERROR_OK;
489 }
490
491
492 /* Targets that correctly implement init+examine, i.e.
493  * no communication with target during init:
494  * 
495  * XScale 
496  */
497 int target_examine(struct command_context_s *cmd_ctx)
498 {
499         int retval = ERROR_OK;
500         target_t *target = targets;
501         while (target)
502         {
503                 if ((retval = target->type->examine(cmd_ctx, target))!=ERROR_OK)
504                         return retval;
505                 target = target->next;
506         }
507         return retval;
508 }
509
510 static int target_write_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
511 {
512         if (!target->type->examined)
513         {
514                 LOG_ERROR("Target not examined yet");
515                 return ERROR_FAIL;
516         }
517         return target->type->write_memory_imp(target, address, size, count, buffer);
518 }
519
520 static int target_read_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
521 {
522         if (!target->type->examined)
523         {
524                 LOG_ERROR("Target not examined yet");
525                 return ERROR_FAIL;
526         }
527         return target->type->read_memory_imp(target, address, size, count, buffer);
528 }
529
530 static int target_soft_reset_halt_imp(struct target_s *target)
531 {
532         if (!target->type->examined)
533         {
534                 LOG_ERROR("Target not examined yet");
535                 return ERROR_FAIL;
536         }
537         return target->type->soft_reset_halt_imp(target);
538 }
539
540 static int target_run_algorithm_imp(struct target_s *target, int num_mem_params, mem_param_t *mem_params, int num_reg_params, reg_param_t *reg_param, u32 entry_point, u32 exit_point, int timeout_ms, void *arch_info)
541 {
542         if (!target->type->examined)
543         {
544                 LOG_ERROR("Target not examined yet");
545                 return ERROR_FAIL;
546         }
547         return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
548 }
549
550 int target_init(struct command_context_s *cmd_ctx)
551 {
552         target_t *target = targets;
553         
554         while (target)
555         {
556                 target->type->examined = 0;
557                 if (target->type->examine == NULL)
558                 {
559                         target->type->examine = default_examine;
560                 }
561                 
562                 if (target->type->init_target(cmd_ctx, target) != ERROR_OK)
563                 {
564                         LOG_ERROR("target '%s' init failed", target->type->name);
565                         exit(-1);
566                 }
567                 
568                 /* Set up default functions if none are provided by target */
569                 if (target->type->virt2phys == NULL)
570                 {
571                         target->type->virt2phys = default_virt2phys;
572                 }
573                 target->type->virt2phys = default_virt2phys;
574                 /* a non-invasive way(in terms of patches) to add some code that
575                  * runs before the type->write/read_memory implementation
576                  */
577                 target->type->write_memory_imp = target->type->write_memory;
578                 target->type->write_memory = target_write_memory_imp;
579                 target->type->read_memory_imp = target->type->read_memory;
580                 target->type->read_memory = target_read_memory_imp;
581                 target->type->soft_reset_halt_imp = target->type->soft_reset_halt;
582                 target->type->soft_reset_halt = target_soft_reset_halt_imp;
583                 target->type->run_algorithm_imp = target->type->run_algorithm;
584                 target->type->run_algorithm = target_run_algorithm_imp;
585
586                 
587                 if (target->type->mmu == NULL)
588                 {
589                         target->type->mmu = default_mmu;
590                 }
591                 target = target->next;
592         }
593         
594         if (targets)
595         {
596                 target_register_user_commands(cmd_ctx);
597                 target_register_timer_callback(handle_target, 100, 1, NULL);
598         }
599                 
600         return ERROR_OK;
601 }
602
603 int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
604 {
605         target_event_callback_t **callbacks_p = &target_event_callbacks;
606         
607         if (callback == NULL)
608         {
609                 return ERROR_INVALID_ARGUMENTS;
610         }
611         
612         if (*callbacks_p)
613         {
614                 while ((*callbacks_p)->next)
615                         callbacks_p = &((*callbacks_p)->next);
616                 callbacks_p = &((*callbacks_p)->next);
617         }
618         
619         (*callbacks_p) = malloc(sizeof(target_event_callback_t));
620         (*callbacks_p)->callback = callback;
621         (*callbacks_p)->priv = priv;
622         (*callbacks_p)->next = NULL;
623         
624         return ERROR_OK;
625 }
626
627 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
628 {
629         target_timer_callback_t **callbacks_p = &target_timer_callbacks;
630         struct timeval now;
631         
632         if (callback == NULL)
633         {
634                 return ERROR_INVALID_ARGUMENTS;
635         }
636         
637         if (*callbacks_p)
638         {
639                 while ((*callbacks_p)->next)
640                         callbacks_p = &((*callbacks_p)->next);
641                 callbacks_p = &((*callbacks_p)->next);
642         }
643         
644         (*callbacks_p) = malloc(sizeof(target_timer_callback_t));
645         (*callbacks_p)->callback = callback;
646         (*callbacks_p)->periodic = periodic;
647         (*callbacks_p)->time_ms = time_ms;
648         
649         gettimeofday(&now, NULL);
650         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
651         time_ms -= (time_ms % 1000);
652         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
653         if ((*callbacks_p)->when.tv_usec > 1000000)
654         {
655                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
656                 (*callbacks_p)->when.tv_sec += 1;
657         }
658         
659         (*callbacks_p)->priv = priv;
660         (*callbacks_p)->next = NULL;
661         
662         return ERROR_OK;
663 }
664
665 int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
666 {
667         target_event_callback_t **p = &target_event_callbacks;
668         target_event_callback_t *c = target_event_callbacks;
669         
670         if (callback == NULL)
671         {
672                 return ERROR_INVALID_ARGUMENTS;
673         }
674                 
675         while (c)
676         {
677                 target_event_callback_t *next = c->next;
678                 if ((c->callback == callback) && (c->priv == priv))
679                 {
680                         *p = next;
681                         free(c);
682                         return ERROR_OK;
683                 }
684                 else
685                         p = &(c->next);
686                 c = next;
687         }
688         
689         return ERROR_OK;
690 }
691
692 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
693 {
694         target_timer_callback_t **p = &target_timer_callbacks;
695         target_timer_callback_t *c = target_timer_callbacks;
696         
697         if (callback == NULL)
698         {
699                 return ERROR_INVALID_ARGUMENTS;
700         }
701                 
702         while (c)
703         {
704                 target_timer_callback_t *next = c->next;
705                 if ((c->callback == callback) && (c->priv == priv))
706                 {
707                         *p = next;
708                         free(c);
709                         return ERROR_OK;
710                 }
711                 else
712                         p = &(c->next);
713                 c = next;
714         }
715         
716         return ERROR_OK;
717 }
718
719 int target_call_event_callbacks(target_t *target, enum target_event event)
720 {
721         target_event_callback_t *callback = target_event_callbacks;
722         target_event_callback_t *next_callback;
723         
724         LOG_DEBUG("target event %i", event);
725         
726         while (callback)
727         {
728                 next_callback = callback->next;
729                 callback->callback(target, event, callback->priv);
730                 callback = next_callback;
731         }
732         
733         return ERROR_OK;
734 }
735
736 static int target_call_timer_callbacks_check_time(int checktime)
737 {
738         target_timer_callback_t *callback = target_timer_callbacks;
739         target_timer_callback_t *next_callback;
740         struct timeval now;
741
742         gettimeofday(&now, NULL);
743         
744         while (callback)
745         {
746                 next_callback = callback->next;
747                 
748                 if ((!checktime&&callback->periodic)||
749                                 (((now.tv_sec >= callback->when.tv_sec) && (now.tv_usec >= callback->when.tv_usec))
750                                                 || (now.tv_sec > callback->when.tv_sec)))
751                 {
752                         if(callback->callback != NULL)
753                         {
754                                 callback->callback(callback->priv);
755                                 if (callback->periodic)
756                                 {
757                                         int time_ms = callback->time_ms;
758                                         callback->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
759                                         time_ms -= (time_ms % 1000);
760                                         callback->when.tv_sec = now.tv_sec + time_ms / 1000;
761                                         if (callback->when.tv_usec > 1000000)
762                                         {
763                                                 callback->when.tv_usec = callback->when.tv_usec - 1000000;
764                                                 callback->when.tv_sec += 1;
765                                         }
766                                 }
767                                 else
768                                         target_unregister_timer_callback(callback->callback, callback->priv);
769                         }
770                 }
771                         
772                 callback = next_callback;
773         }
774         
775         return ERROR_OK;
776 }
777
778 int target_call_timer_callbacks()
779 {
780         return target_call_timer_callbacks_check_time(1);
781 }
782
783 /* invoke periodic callbacks immediately */
784 int target_call_timer_callbacks_now()
785 {
786         return target_call_timer_callbacks(0);
787 }
788
789
790 int target_alloc_working_area(struct target_s *target, u32 size, working_area_t **area)
791 {
792         working_area_t *c = target->working_areas;
793         working_area_t *new_wa = NULL;
794         
795         /* Reevaluate working area address based on MMU state*/
796         if (target->working_areas == NULL)
797         {
798                 int retval;
799                 int enabled;
800                 retval = target->type->mmu(target, &enabled);
801                 if (retval != ERROR_OK)
802                 {
803                         return retval;
804                 }
805                 if (enabled)
806                 {
807                         target->working_area = target->working_area_virt;
808                 }
809                 else
810                 {
811                         target->working_area = target->working_area_phys;
812                 }
813         }
814         
815         /* only allocate multiples of 4 byte */
816         if (size % 4)
817         {
818                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes, padding");
819                 size = CEIL(size, 4);
820         }
821         
822         /* see if there's already a matching working area */
823         while (c)
824         {
825                 if ((c->free) && (c->size == size))
826                 {
827                         new_wa = c;
828                         break;
829                 }
830                 c = c->next;
831         }
832         
833         /* if not, allocate a new one */
834         if (!new_wa)
835         {
836                 working_area_t **p = &target->working_areas;
837                 u32 first_free = target->working_area;
838                 u32 free_size = target->working_area_size;
839                 
840                 LOG_DEBUG("allocating new working area");
841                 
842                 c = target->working_areas;
843                 while (c)
844                 {
845                         first_free += c->size;
846                         free_size -= c->size;
847                         p = &c->next;
848                         c = c->next;
849                 }
850                 
851                 if (free_size < size)
852                 {
853                         LOG_WARNING("not enough working area available(requested %d, free %d)", size, free_size);
854                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
855                 }
856                 
857                 new_wa = malloc(sizeof(working_area_t));
858                 new_wa->next = NULL;
859                 new_wa->size = size;
860                 new_wa->address = first_free;
861                 
862                 if (target->backup_working_area)
863                 {
864                         new_wa->backup = malloc(new_wa->size);
865                         target->type->read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup);
866                 }
867                 else
868                 {
869                         new_wa->backup = NULL;
870                 }
871                 
872                 /* put new entry in list */
873                 *p = new_wa;
874         }
875         
876         /* mark as used, and return the new (reused) area */
877         new_wa->free = 0;
878         *area = new_wa;
879         
880         /* user pointer */
881         new_wa->user = area;
882         
883         return ERROR_OK;
884 }
885
886 int target_free_working_area_restore(struct target_s *target, working_area_t *area, int restore)
887 {
888         if (area->free)
889                 return ERROR_OK;
890         
891         if (restore&&target->backup_working_area)
892                 target->type->write_memory(target, area->address, 4, area->size / 4, area->backup);
893         
894         area->free = 1;
895         
896         /* mark user pointer invalid */
897         *area->user = NULL;
898         area->user = NULL;
899         
900         return ERROR_OK;
901 }
902
903 int target_free_working_area(struct target_s *target, working_area_t *area)
904 {
905         return target_free_working_area_restore(target, area, 1);
906 }
907
908 int target_free_all_working_areas_restore(struct target_s *target, int restore)
909 {
910         working_area_t *c = target->working_areas;
911
912         while (c)
913         {
914                 working_area_t *next = c->next;
915                 target_free_working_area_restore(target, c, restore);
916                 
917                 if (c->backup)
918                         free(c->backup);
919                 
920                 free(c);
921                 
922                 c = next;
923         }
924         
925         target->working_areas = NULL;
926         
927         return ERROR_OK;
928 }
929
930 int target_free_all_working_areas(struct target_s *target)
931 {
932         return target_free_all_working_areas_restore(target, 1); 
933 }
934
935 int target_register_commands(struct command_context_s *cmd_ctx)
936 {
937         register_command(cmd_ctx, NULL, "target", handle_target_command, COMMAND_CONFIG, "target <cpu> [reset_init default - DEPRECATED] <chainpos> <endianness> <variant> [cpu type specifc args]");
938         register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, NULL);
939         register_command(cmd_ctx, NULL, "target_script", handle_target_script_command, COMMAND_CONFIG, NULL);
940         register_command(cmd_ctx, NULL, "run_and_halt_time", handle_run_and_halt_time_command, COMMAND_CONFIG, "<target> <run time ms>");
941         register_command(cmd_ctx, NULL, "working_area", handle_working_area_command, COMMAND_ANY, "working_area <target#> <address> <size> <'backup'|'nobackup'> [virtual address]");
942         register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "virt2phys <virtual address>");
943         register_command(cmd_ctx, NULL, "profile", handle_profile_command, COMMAND_EXEC, "PRELIMINARY! - profile <seconds> <gmon.out>");
944
945         return ERROR_OK;
946 }
947
948 int target_arch_state(struct target_s *target)
949 {
950         int retval;
951         if (target==NULL)
952         {
953                 LOG_USER("No target has been configured");
954                 return ERROR_OK;
955         }
956         
957         LOG_USER("target state: %s", target_state_strings[target->state]);
958         
959         if (target->state!=TARGET_HALTED)
960                 return ERROR_OK;
961         
962         retval=target->type->arch_state(target);
963         return retval;
964 }
965
966 /* Single aligned words are guaranteed to use 16 or 32 bit access 
967  * mode respectively, otherwise data is handled as quickly as 
968  * possible
969  */
970 int target_write_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
971 {
972         int retval;
973         if (!target->type->examined)
974         {
975                 LOG_ERROR("Target not examined yet");
976                 return ERROR_FAIL;
977         }
978         
979         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x", size, address);
980         
981         if (((address % 2) == 0) && (size == 2))
982         {
983                 return target->type->write_memory(target, address, 2, 1, buffer);
984         }
985         
986         /* handle unaligned head bytes */
987         if (address % 4)
988         {
989                 int unaligned = 4 - (address % 4);
990                 
991                 if (unaligned > size)
992                         unaligned = size;
993
994                 if ((retval = target->type->write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
995                         return retval;
996                 
997                 buffer += unaligned;
998                 address += unaligned;
999                 size -= unaligned;
1000         }
1001                 
1002         /* handle aligned words */
1003         if (size >= 4)
1004         {
1005                 int aligned = size - (size % 4);
1006         
1007                 /* use bulk writes above a certain limit. This may have to be changed */
1008                 if (aligned > 128)
1009                 {
1010                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1011                                 return retval;
1012                 }
1013                 else
1014                 {
1015                         if ((retval = target->type->write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1016                                 return retval;
1017                 }
1018                 
1019                 buffer += aligned;
1020                 address += aligned;
1021                 size -= aligned;
1022         }
1023         
1024         /* handle tail writes of less than 4 bytes */
1025         if (size > 0)
1026         {
1027                 if ((retval = target->type->write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1028                         return retval;
1029         }
1030         
1031         return ERROR_OK;
1032 }
1033
1034
1035 /* Single aligned words are guaranteed to use 16 or 32 bit access 
1036  * mode respectively, otherwise data is handled as quickly as 
1037  * possible
1038  */
1039 int target_read_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
1040 {
1041         int retval;
1042         if (!target->type->examined)
1043         {
1044                 LOG_ERROR("Target not examined yet");
1045                 return ERROR_FAIL;
1046         }
1047
1048         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x", size, address);
1049         
1050         if (((address % 2) == 0) && (size == 2))
1051         {
1052                 return target->type->read_memory(target, address, 2, 1, buffer);
1053         }
1054         
1055         /* handle unaligned head bytes */
1056         if (address % 4)
1057         {
1058                 int unaligned = 4 - (address % 4);
1059                 
1060                 if (unaligned > size)
1061                         unaligned = size;
1062
1063                 if ((retval = target->type->read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1064                         return retval;
1065                 
1066                 buffer += unaligned;
1067                 address += unaligned;
1068                 size -= unaligned;
1069         }
1070                 
1071         /* handle aligned words */
1072         if (size >= 4)
1073         {
1074                 int aligned = size - (size % 4);
1075         
1076                 if ((retval = target->type->read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1077                         return retval;
1078                 
1079                 buffer += aligned;
1080                 address += aligned;
1081                 size -= aligned;
1082         }
1083         
1084         /* handle tail writes of less than 4 bytes */
1085         if (size > 0)
1086         {
1087                 if ((retval = target->type->read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1088                         return retval;
1089         }
1090         
1091         return ERROR_OK;
1092 }
1093
1094 int target_checksum_memory(struct target_s *target, u32 address, u32 size, u32* crc)
1095 {
1096         u8 *buffer;
1097         int retval;
1098         int i;
1099         u32 checksum = 0;
1100         if (!target->type->examined)
1101         {
1102                 LOG_ERROR("Target not examined yet");
1103                 return ERROR_FAIL;
1104         }
1105         
1106         if ((retval = target->type->checksum_memory(target, address,
1107                 size, &checksum)) == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1108         {
1109                 buffer = malloc(size);
1110                 if (buffer == NULL)
1111                 {
1112                         LOG_ERROR("error allocating buffer for section (%d bytes)", size);
1113                         return ERROR_INVALID_ARGUMENTS;
1114                 }
1115                 retval = target_read_buffer(target, address, size, buffer);
1116                 if (retval != ERROR_OK)
1117                 {
1118                         free(buffer);
1119                         return retval;
1120                 }
1121
1122                 /* convert to target endianess */
1123                 for (i = 0; i < (size/sizeof(u32)); i++)
1124                 {
1125                         u32 target_data;
1126                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(u32)]);
1127                         target_buffer_set_u32(target, &buffer[i*sizeof(u32)], target_data);
1128                 }
1129
1130                 retval = image_calculate_checksum( buffer, size, &checksum );
1131                 free(buffer);
1132         }
1133         
1134         *crc = checksum;
1135         
1136         return retval;
1137 }
1138
1139 int target_blank_check_memory(struct target_s *target, u32 address, u32 size, u32* blank)
1140 {
1141         int retval;
1142         if (!target->type->examined)
1143         {
1144                 LOG_ERROR("Target not examined yet");
1145                 return ERROR_FAIL;
1146         }
1147         
1148         if (target->type->blank_check_memory == 0)
1149                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1150         
1151         retval = target->type->blank_check_memory(target, address, size, blank);
1152                         
1153         return retval;
1154 }
1155
1156 int target_read_u32(struct target_s *target, u32 address, u32 *value)
1157 {
1158         u8 value_buf[4];
1159         if (!target->type->examined)
1160         {
1161                 LOG_ERROR("Target not examined yet");
1162                 return ERROR_FAIL;
1163         }
1164
1165         int retval = target->type->read_memory(target, address, 4, 1, value_buf);
1166         
1167         if (retval == ERROR_OK)
1168         {
1169                 *value = target_buffer_get_u32(target, value_buf);
1170                 LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, *value);
1171         }
1172         else
1173         {
1174                 *value = 0x0;
1175                 LOG_DEBUG("address: 0x%8.8x failed", address);
1176         }
1177         
1178         return retval;
1179 }
1180
1181 int target_read_u16(struct target_s *target, u32 address, u16 *value)
1182 {
1183         u8 value_buf[2];
1184         if (!target->type->examined)
1185         {
1186                 LOG_ERROR("Target not examined yet");
1187                 return ERROR_FAIL;
1188         }
1189
1190         int retval = target->type->read_memory(target, address, 2, 1, value_buf);
1191         
1192         if (retval == ERROR_OK)
1193         {
1194                 *value = target_buffer_get_u16(target, value_buf);
1195                 LOG_DEBUG("address: 0x%8.8x, value: 0x%4.4x", address, *value);
1196         }
1197         else
1198         {
1199                 *value = 0x0;
1200                 LOG_DEBUG("address: 0x%8.8x failed", address);
1201         }
1202         
1203         return retval;
1204 }
1205
1206 int target_read_u8(struct target_s *target, u32 address, u8 *value)
1207 {
1208         int retval = target->type->read_memory(target, address, 1, 1, value);
1209         if (!target->type->examined)
1210         {
1211                 LOG_ERROR("Target not examined yet");
1212                 return ERROR_FAIL;
1213         }
1214
1215         if (retval == ERROR_OK)
1216         {
1217                 LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, *value);
1218         }
1219         else
1220         {
1221                 *value = 0x0;
1222                 LOG_DEBUG("address: 0x%8.8x failed", address);
1223         }
1224         
1225         return retval;
1226 }
1227
1228 int target_write_u32(struct target_s *target, u32 address, u32 value)
1229 {
1230         int retval;
1231         u8 value_buf[4];
1232         if (!target->type->examined)
1233         {
1234                 LOG_ERROR("Target not examined yet");
1235                 return ERROR_FAIL;
1236         }
1237
1238         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1239
1240         target_buffer_set_u32(target, value_buf, value);        
1241         if ((retval = target->type->write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1242         {
1243                 LOG_DEBUG("failed: %i", retval);
1244         }
1245         
1246         return retval;
1247 }
1248
1249 int target_write_u16(struct target_s *target, u32 address, u16 value)
1250 {
1251         int retval;
1252         u8 value_buf[2];
1253         if (!target->type->examined)
1254         {
1255                 LOG_ERROR("Target not examined yet");
1256                 return ERROR_FAIL;
1257         }
1258
1259         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1260
1261         target_buffer_set_u16(target, value_buf, value);        
1262         if ((retval = target->type->write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1263         {
1264                 LOG_DEBUG("failed: %i", retval);
1265         }
1266         
1267         return retval;
1268 }
1269
1270 int target_write_u8(struct target_s *target, u32 address, u8 value)
1271 {
1272         int retval;
1273         if (!target->type->examined)
1274         {
1275                 LOG_ERROR("Target not examined yet");
1276                 return ERROR_FAIL;
1277         }
1278
1279         LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, value);
1280
1281         if ((retval = target->type->read_memory(target, address, 1, 1, &value)) != ERROR_OK)
1282         {
1283                 LOG_DEBUG("failed: %i", retval);
1284         }
1285         
1286         return retval;
1287 }
1288
1289 int target_register_user_commands(struct command_context_s *cmd_ctx)
1290 {
1291         register_command(cmd_ctx,  NULL, "reg", handle_reg_command, COMMAND_EXEC, NULL);
1292         register_command(cmd_ctx,  NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state");
1293         register_command(cmd_ctx,  NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]");
1294         register_command(cmd_ctx,  NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target");
1295         register_command(cmd_ctx,  NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]");
1296         register_command(cmd_ctx,  NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]");
1297         register_command(cmd_ctx,  NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run|halt|init|run_and_halt|run_and_init]");
1298         register_command(cmd_ctx,  NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset");
1299
1300         register_command(cmd_ctx,  NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words <addr> [count]");
1301         register_command(cmd_ctx,  NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words <addr> [count]");
1302         register_command(cmd_ctx,  NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes <addr> [count]");
1303         
1304         register_command(cmd_ctx,  NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word <addr> <value> [count]");
1305         register_command(cmd_ctx,  NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word <addr> <value> [count]");
1306         register_command(cmd_ctx,  NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte <addr> <value> [count]");
1307         
1308         register_command(cmd_ctx,  NULL, "bp", handle_bp_command, COMMAND_EXEC, "set breakpoint <address> <length> [hw]");      
1309         register_command(cmd_ctx,  NULL, "rbp", handle_rbp_command, COMMAND_EXEC, "remove breakpoint <adress>");
1310         register_command(cmd_ctx,  NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint <address> <length> <r/w/a> [value] [mask]");    
1311         register_command(cmd_ctx,  NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint <adress>");
1312         
1313         register_command(cmd_ctx,  NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> ['bin'|'ihex'|'elf'|'s19']");
1314         register_command(cmd_ctx,  NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>");
1315         register_command(cmd_ctx,  NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image <file> [offset] [type]");
1316         register_command(cmd_ctx,  NULL, "load_binary", handle_load_image_command, COMMAND_EXEC, "[DEPRECATED] load_binary <file> <address>");
1317         register_command(cmd_ctx,  NULL, "dump_binary", handle_dump_image_command, COMMAND_EXEC, "[DEPRECATED] dump_binary <file> <address> <size>");
1318         
1319         target_request_register_commands(cmd_ctx);
1320         trace_register_commands(cmd_ctx);
1321         
1322         return ERROR_OK;
1323 }
1324
1325 int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1326 {
1327         target_t *target = targets;
1328         int count = 0;
1329         
1330         if (argc == 1)
1331         {
1332                 int num = strtoul(args[0], NULL, 0);
1333                 
1334                 while (target)
1335                 {
1336                         count++;
1337                         target = target->next;
1338                 }
1339                 
1340                 if (num < count)
1341                         cmd_ctx->current_target = num;
1342                 else
1343                         command_print(cmd_ctx, "%i is out of bounds, only %i targets are configured", num, count);
1344                         
1345                 return ERROR_OK;
1346         }
1347                 
1348         while (target)
1349         {
1350                 command_print(cmd_ctx, "%i: %s (%s), state: %s", count++, target->type->name, target_endianess_strings[target->endianness], target_state_strings[target->state]);
1351                 target = target->next;
1352         }
1353         
1354         return ERROR_OK;
1355 }
1356
1357 int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1358 {
1359         int i;
1360         int found = 0;
1361         
1362         if (argc < 3)
1363         {
1364                 return ERROR_COMMAND_SYNTAX_ERROR;
1365         }
1366         
1367         /* search for the specified target */
1368         if (args[0] && (args[0][0] != 0))
1369         {
1370                 for (i = 0; target_types[i]; i++)
1371                 {
1372                         if (strcmp(args[0], target_types[i]->name) == 0)
1373                         {
1374                                 target_t **last_target_p = &targets;
1375                                 
1376                                 /* register target specific commands */
1377                                 if (target_types[i]->register_commands(cmd_ctx) != ERROR_OK)
1378                                 {
1379                                         LOG_ERROR("couldn't register '%s' commands", args[0]);
1380                                         exit(-1);
1381                                 }
1382
1383                                 if (*last_target_p)
1384                                 {
1385                                         while ((*last_target_p)->next)
1386                                                 last_target_p = &((*last_target_p)->next);
1387                                         last_target_p = &((*last_target_p)->next);
1388                                 }
1389
1390                                 *last_target_p = malloc(sizeof(target_t));
1391                                 
1392                                 (*last_target_p)->type = target_types[i];
1393                                 
1394                                 if (strcmp(args[1], "big") == 0)
1395                                         (*last_target_p)->endianness = TARGET_BIG_ENDIAN;
1396                                 else if (strcmp(args[1], "little") == 0)
1397                                         (*last_target_p)->endianness = TARGET_LITTLE_ENDIAN;
1398                                 else
1399                                 {
1400                                         LOG_ERROR("endianness must be either 'little' or 'big', not '%s'", args[1]);
1401                                         return ERROR_COMMAND_SYNTAX_ERROR;
1402                                 }
1403                                 
1404                                 /* what to do on a target reset */
1405                                 (*last_target_p)->reset_mode = RESET_INIT; /* default */
1406                                 if (strcmp(args[2], "reset_halt") == 0)
1407                                         (*last_target_p)->reset_mode = RESET_HALT;
1408                                 else if (strcmp(args[2], "reset_run") == 0)
1409                                         (*last_target_p)->reset_mode = RESET_RUN;
1410                                 else if (strcmp(args[2], "reset_init") == 0)
1411                                         (*last_target_p)->reset_mode = RESET_INIT;
1412                                 else if (strcmp(args[2], "run_and_halt") == 0)
1413                                         (*last_target_p)->reset_mode = RESET_RUN_AND_HALT;
1414                                 else if (strcmp(args[2], "run_and_init") == 0)
1415                                         (*last_target_p)->reset_mode = RESET_RUN_AND_INIT;
1416                                 else
1417                                 {
1418                                         /* Kludge! we want to make this reset arg optional while remaining compatible! */
1419                                         args--;
1420                                         argc++;
1421                                 }
1422                                 (*last_target_p)->run_and_halt_time = 1000; /* default 1s */
1423                                 
1424                                 (*last_target_p)->reset_script = NULL;
1425                                 (*last_target_p)->post_halt_script = NULL;
1426                                 (*last_target_p)->pre_resume_script = NULL;
1427                                 (*last_target_p)->gdb_program_script = NULL;
1428                                 
1429                                 (*last_target_p)->working_area = 0x0;
1430                                 (*last_target_p)->working_area_size = 0x0;
1431                                 (*last_target_p)->working_areas = NULL;
1432                                 (*last_target_p)->backup_working_area = 0;
1433                                 
1434                                 (*last_target_p)->state = TARGET_UNKNOWN;
1435                                 (*last_target_p)->debug_reason = DBG_REASON_UNDEFINED;
1436                                 (*last_target_p)->reg_cache = NULL;
1437                                 (*last_target_p)->breakpoints = NULL;
1438                                 (*last_target_p)->watchpoints = NULL;
1439                                 (*last_target_p)->next = NULL;
1440                                 (*last_target_p)->arch_info = NULL;
1441                                 
1442                                 /* initialize trace information */
1443                                 (*last_target_p)->trace_info = malloc(sizeof(trace_t));
1444                                 (*last_target_p)->trace_info->num_trace_points = 0;
1445                                 (*last_target_p)->trace_info->trace_points_size = 0;
1446                                 (*last_target_p)->trace_info->trace_points = NULL;
1447                                 (*last_target_p)->trace_info->trace_history_size = 0;
1448                                 (*last_target_p)->trace_info->trace_history = NULL;
1449                                 (*last_target_p)->trace_info->trace_history_pos = 0;
1450                                 (*last_target_p)->trace_info->trace_history_overflowed = 0;
1451                                 
1452                                 (*last_target_p)->dbgmsg = NULL;
1453                                 (*last_target_p)->dbg_msg_enabled = 0;
1454                                                                 
1455                                 (*last_target_p)->type->target_command(cmd_ctx, cmd, args, argc, *last_target_p);
1456                                 
1457                                 found = 1;
1458                                 break;
1459                         }
1460                 }
1461         }
1462         
1463         /* no matching target found */
1464         if (!found)
1465         {
1466                 LOG_ERROR("target '%s' not found", args[0]);
1467                 return ERROR_COMMAND_SYNTAX_ERROR;
1468         }
1469
1470         return ERROR_OK;
1471 }
1472
1473 /* usage: target_script <target#> <event> <script_file> */
1474 int handle_target_script_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1475 {
1476         target_t *target = NULL;
1477         
1478         if (argc < 3)
1479         {
1480                 LOG_ERROR("incomplete target_script command");
1481                 return ERROR_COMMAND_SYNTAX_ERROR;
1482         }
1483         
1484         target = get_target_by_num(strtoul(args[0], NULL, 0));
1485         
1486         if (!target)
1487         {
1488                 return ERROR_COMMAND_SYNTAX_ERROR;
1489         }
1490         
1491         if (strcmp(args[1], "reset") == 0)
1492         {
1493                 if (target->reset_script)
1494                         free(target->reset_script);
1495                 target->reset_script = strdup(args[2]);
1496         }
1497         else if (strcmp(args[1], "post_halt") == 0)
1498         {
1499                 if (target->post_halt_script)
1500                         free(target->post_halt_script);
1501                 target->post_halt_script = strdup(args[2]);
1502         }
1503         else if (strcmp(args[1], "pre_resume") == 0)
1504         {
1505                 if (target->pre_resume_script)
1506                         free(target->pre_resume_script);
1507                 target->pre_resume_script = strdup(args[2]);
1508         }
1509         else if (strcmp(args[1], "gdb_program_config") == 0)
1510         {
1511                 if (target->gdb_program_script)
1512                         free(target->gdb_program_script);
1513                 target->gdb_program_script = strdup(args[2]);
1514         }
1515         else
1516         {
1517                 LOG_ERROR("unknown event type: '%s", args[1]);
1518                 return ERROR_COMMAND_SYNTAX_ERROR;
1519         }
1520         
1521         return ERROR_OK;
1522 }
1523
1524 int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1525 {
1526         target_t *target = NULL;
1527         
1528         if (argc < 2)
1529         {
1530                 return ERROR_COMMAND_SYNTAX_ERROR;
1531         }
1532         
1533         target = get_target_by_num(strtoul(args[0], NULL, 0));
1534         if (!target)
1535         {
1536                 return ERROR_COMMAND_SYNTAX_ERROR;
1537         }
1538         
1539         target->run_and_halt_time = strtoul(args[1], NULL, 0);
1540         
1541         return ERROR_OK;
1542 }
1543
1544 int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1545 {
1546         target_t *target = NULL;
1547         
1548         if ((argc < 4) || (argc > 5))
1549         {
1550                 return ERROR_COMMAND_SYNTAX_ERROR;
1551         }
1552         
1553         target = get_target_by_num(strtoul(args[0], NULL, 0));
1554         if (!target)
1555         {
1556                 return ERROR_COMMAND_SYNTAX_ERROR;
1557         }
1558         target_free_all_working_areas(target);
1559         
1560         target->working_area_phys = target->working_area_virt = strtoul(args[1], NULL, 0);
1561         if (argc == 5)
1562         {
1563                 target->working_area_virt = strtoul(args[4], NULL, 0);
1564         }
1565         target->working_area_size = strtoul(args[2], NULL, 0);
1566         
1567         if (strcmp(args[3], "backup") == 0)
1568         {
1569                 target->backup_working_area = 1;
1570         }
1571         else if (strcmp(args[3], "nobackup") == 0)
1572         {
1573                 target->backup_working_area = 0;
1574         }
1575         else
1576         {
1577                 LOG_ERROR("unrecognized <backup|nobackup> argument (%s)", args[3]);
1578                 return ERROR_COMMAND_SYNTAX_ERROR;
1579         }
1580         
1581         return ERROR_OK;
1582 }
1583
1584
1585 /* process target state changes */
1586 int handle_target(void *priv)
1587 {
1588         target_t *target = targets;
1589         
1590         while (target)
1591         {
1592                 if (target_continous_poll)
1593                 {
1594                         /* polling may fail silently until the target has been examined */
1595                         target_poll(target);
1596                 }
1597         
1598                 target = target->next;
1599         }
1600         
1601         return ERROR_OK;
1602 }
1603
1604 int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1605 {
1606         target_t *target;
1607         reg_t *reg = NULL;
1608         int count = 0;
1609         char *value;
1610         
1611         LOG_DEBUG("-");
1612         
1613         target = get_current_target(cmd_ctx);
1614         
1615         /* list all available registers for the current target */
1616         if (argc == 0)
1617         {
1618                 reg_cache_t *cache = target->reg_cache;
1619                 
1620                 count = 0;
1621                 while(cache)
1622                 {
1623                         int i;
1624                         for (i = 0; i < cache->num_regs; i++)
1625                         {
1626                                 value = buf_to_str(cache->reg_list[i].value, cache->reg_list[i].size, 16);
1627                                 command_print(cmd_ctx, "(%i) %s (/%i): 0x%s (dirty: %i, valid: %i)", count++, cache->reg_list[i].name, cache->reg_list[i].size, value, cache->reg_list[i].dirty, cache->reg_list[i].valid);
1628                                 free(value);
1629                         }
1630                         cache = cache->next;
1631                 }
1632                 
1633                 return ERROR_OK;
1634         }
1635         
1636         /* access a single register by its ordinal number */
1637         if ((args[0][0] >= '0') && (args[0][0] <= '9'))
1638         {
1639                 int num = strtoul(args[0], NULL, 0);
1640                 reg_cache_t *cache = target->reg_cache;
1641                 
1642                 count = 0;
1643                 while(cache)
1644                 {
1645                         int i;
1646                         for (i = 0; i < cache->num_regs; i++)
1647                         {
1648                                 if (count++ == num)
1649                                 {
1650                                         reg = &cache->reg_list[i];
1651                                         break;
1652                                 }
1653                         }
1654                         if (reg)
1655                                 break;
1656                         cache = cache->next;
1657                 }
1658                 
1659                 if (!reg)
1660                 {
1661                         command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1662                         return ERROR_OK;
1663                 }
1664         } else /* access a single register by its name */
1665         {
1666                 reg = register_get_by_name(target->reg_cache, args[0], 1);
1667                 
1668                 if (!reg)
1669                 {
1670                         command_print(cmd_ctx, "register %s not found in current target", args[0]);
1671                         return ERROR_OK;
1672                 }
1673         }
1674
1675         /* display a register */
1676         if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
1677         {
1678                 if ((argc == 2) && (strcmp(args[1], "force") == 0))
1679                         reg->valid = 0;
1680                 
1681                 if (reg->valid == 0)
1682                 {
1683                         reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1684                         if (arch_type == NULL)
1685                         {
1686                                 LOG_ERROR("BUG: encountered unregistered arch type");
1687                                 return ERROR_OK;
1688                         }
1689                         arch_type->get(reg);
1690                 }
1691                 value = buf_to_str(reg->value, reg->size, 16);
1692                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1693                 free(value);
1694                 return ERROR_OK;
1695         }
1696         
1697         /* set register value */
1698         if (argc == 2)
1699         {
1700                 u8 *buf = malloc(CEIL(reg->size, 8));
1701                 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
1702
1703                 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1704                 if (arch_type == NULL)
1705                 {
1706                         LOG_ERROR("BUG: encountered unregistered arch type");
1707                         return ERROR_OK;
1708                 }
1709                 
1710                 arch_type->set(reg, buf);
1711                 
1712                 value = buf_to_str(reg->value, reg->size, 16);
1713                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1714                 free(value);
1715                 
1716                 free(buf);
1717                 
1718                 return ERROR_OK;
1719         }
1720         
1721         command_print(cmd_ctx, "usage: reg <#|name> [value]");
1722         
1723         return ERROR_OK;
1724 }
1725
1726 static int wait_state(struct command_context_s *cmd_ctx, char *cmd, enum target_state state, int ms);
1727
1728 int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1729 {
1730         target_t *target = get_current_target(cmd_ctx);
1731
1732         if (argc == 0)
1733         {
1734                 target_poll(target);
1735                 target_arch_state(target);
1736         }
1737         else
1738         {
1739                 if (strcmp(args[0], "on") == 0)
1740                 {
1741                         target_continous_poll = 1;
1742                 }
1743                 else if (strcmp(args[0], "off") == 0)
1744                 {
1745                         target_continous_poll = 0;
1746                 }
1747                 else
1748                 {
1749                         command_print(cmd_ctx, "arg is \"on\" or \"off\"");
1750                 }
1751         }
1752         
1753         
1754         return ERROR_OK;
1755 }
1756
1757 int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1758 {
1759         int ms = 5000;
1760         
1761         if (argc > 0)
1762         {
1763                 char *end;
1764
1765                 ms = strtoul(args[0], &end, 0) * 1000;
1766                 if (*end)
1767                 {
1768                         command_print(cmd_ctx, "usage: %s [seconds]", cmd);
1769                         return ERROR_OK;
1770                 }
1771         }
1772
1773         return wait_state(cmd_ctx, cmd, TARGET_HALTED, ms); 
1774 }
1775
1776 static void target_process_events(struct command_context_s *cmd_ctx)
1777 {
1778         target_t *target = get_current_target(cmd_ctx);
1779         target_poll(target);
1780         target_call_timer_callbacks_now();
1781 }
1782
1783 static int wait_state(struct command_context_s *cmd_ctx, char *cmd, enum target_state state, int ms)
1784 {
1785         int retval;
1786         struct timeval timeout, now;
1787         int once=1;
1788         gettimeofday(&timeout, NULL);
1789         timeval_add_time(&timeout, 0, ms * 1000);
1790         
1791         target_t *target = get_current_target(cmd_ctx);
1792         for (;;)
1793         {
1794                 if ((retval=target_poll(target))!=ERROR_OK)
1795                         return retval;
1796                 target_call_timer_callbacks_now();
1797                 if (target->state == state)
1798                 {
1799                         break;
1800                 }
1801                 if (once)
1802                 {
1803                         once=0;
1804                         command_print(cmd_ctx, "waiting for target %s...", target_state_strings[state]);
1805                 }
1806                 
1807                 gettimeofday(&now, NULL);
1808                 if ((now.tv_sec > timeout.tv_sec) || ((now.tv_sec == timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
1809                 {
1810                         LOG_ERROR("timed out while waiting for target %s", target_state_strings[state]);
1811                         break;
1812                 }
1813         }
1814         
1815         return ERROR_OK;
1816 }
1817
1818 int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1819 {
1820         int retval;
1821         target_t *target = get_current_target(cmd_ctx);
1822
1823         LOG_DEBUG("-");
1824
1825         if ((retval = target_halt(target)) != ERROR_OK)
1826         {
1827                 return retval;
1828         }
1829         
1830         return handle_wait_halt_command(cmd_ctx, cmd, args, argc);
1831 }
1832
1833                 
1834 int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1835 {
1836         target_t *target = get_current_target(cmd_ctx);
1837         
1838         LOG_USER("requesting target halt and executing a soft reset");
1839         
1840         target->type->soft_reset_halt(target);
1841         
1842         return ERROR_OK;
1843 }
1844
1845 int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1846 {
1847         target_t *target = get_current_target(cmd_ctx);
1848         enum target_reset_mode reset_mode = target->reset_mode;
1849         enum target_reset_mode save = target->reset_mode;
1850         
1851         LOG_DEBUG("-");
1852         
1853         if (argc >= 1)
1854         {
1855                 if (strcmp("run", args[0]) == 0)
1856                         reset_mode = RESET_RUN;
1857                 else if (strcmp("halt", args[0]) == 0)
1858                         reset_mode = RESET_HALT;
1859                 else if (strcmp("init", args[0]) == 0)
1860                         reset_mode = RESET_INIT;
1861                 else if (strcmp("run_and_halt", args[0]) == 0)
1862                 {
1863                         reset_mode = RESET_RUN_AND_HALT;
1864                         if (argc >= 2)
1865                         {
1866                                 target->run_and_halt_time = strtoul(args[1], NULL, 0);
1867                         }
1868                 }
1869                 else if (strcmp("run_and_init", args[0]) == 0)
1870                 {
1871                         reset_mode = RESET_RUN_AND_INIT;
1872                         if (argc >= 2)
1873                         {
1874                                 target->run_and_halt_time = strtoul(args[1], NULL, 0);
1875                         }
1876                 }
1877                 else
1878                 {
1879                         command_print(cmd_ctx, "usage: reset ['run', 'halt', 'init', 'run_and_halt', 'run_and_init]");
1880                         return ERROR_OK;
1881                 }
1882         }
1883         
1884         /* temporarily modify mode of current reset target */
1885         target->reset_mode = reset_mode;
1886
1887         /* reset *all* targets */
1888         target_process_reset(cmd_ctx);
1889         
1890         /* Restore default reset mode for this target */
1891     target->reset_mode = save;
1892         
1893         return ERROR_OK;
1894 }
1895
1896 int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1897 {
1898         int retval;
1899         target_t *target = get_current_target(cmd_ctx);
1900         
1901         if (argc == 0)
1902                 retval = target_resume(target, 1, 0, 1, 0); /* current pc, addr = 0, handle breakpoints, not debugging */
1903         else if (argc == 1)
1904                 retval = target_resume(target, 0, strtoul(args[0], NULL, 0), 1, 0); /* addr = args[0], handle breakpoints, not debugging */
1905         else
1906         {
1907                 return ERROR_COMMAND_SYNTAX_ERROR;
1908         }
1909
1910         target_process_events(cmd_ctx);
1911         
1912         return retval;
1913 }
1914
1915 int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1916 {
1917         target_t *target = get_current_target(cmd_ctx);
1918         
1919         LOG_DEBUG("-");
1920         
1921         if (argc == 0)
1922                 target->type->step(target, 1, 0, 1); /* current pc, addr = 0, handle breakpoints */
1923
1924         if (argc == 1)
1925                 target->type->step(target, 0, strtoul(args[0], NULL, 0), 1); /* addr = args[0], handle breakpoints */
1926         
1927         return ERROR_OK;
1928 }
1929
1930 int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1931 {
1932         const int line_bytecnt = 32;
1933         int count = 1;
1934         int size = 4;
1935         u32 address = 0;
1936         int line_modulo;
1937         int i;
1938
1939         char output[128];
1940         int output_len;
1941
1942         int retval;
1943
1944         u8 *buffer;
1945         target_t *target = get_current_target(cmd_ctx);
1946
1947         if (argc < 1)
1948                 return ERROR_OK;
1949
1950         if (argc == 2)
1951                 count = strtoul(args[1], NULL, 0);
1952
1953         address = strtoul(args[0], NULL, 0);
1954         
1955
1956         switch (cmd[2])
1957         {
1958                 case 'w':
1959                         size = 4; line_modulo = line_bytecnt / 4;
1960                         break;
1961                 case 'h':
1962                         size = 2; line_modulo = line_bytecnt / 2;
1963                         break;
1964                 case 'b':
1965                         size = 1; line_modulo = line_bytecnt / 1;
1966                         break;
1967                 default:
1968                         return ERROR_OK;
1969         }
1970
1971         buffer = calloc(count, size);
1972         retval  = target->type->read_memory(target, address, size, count, buffer);
1973         if (retval == ERROR_OK)
1974         {
1975                 output_len = 0;
1976         
1977                 for (i = 0; i < count; i++)
1978                 {
1979                         if (i%line_modulo == 0)
1980                                 output_len += snprintf(output + output_len, 128 - output_len, "0x%8.8x: ", address + (i*size));
1981                         
1982                         switch (size)
1983                         {
1984                                 case 4:
1985                                         output_len += snprintf(output + output_len, 128 - output_len, "%8.8x ", target_buffer_get_u32(target, &buffer[i*4]));
1986                                         break;
1987                                 case 2:
1988                                         output_len += snprintf(output + output_len, 128 - output_len, "%4.4x ", target_buffer_get_u16(target, &buffer[i*2]));
1989                                         break;
1990                                 case 1:
1991                                         output_len += snprintf(output + output_len, 128 - output_len, "%2.2x ", buffer[i*1]);
1992                                         break;
1993                         }
1994         
1995                         if ((i%line_modulo == line_modulo-1) || (i == count - 1))
1996                         {
1997                                 command_print(cmd_ctx, output);
1998                                 output_len = 0;
1999                         }
2000                 }
2001         } else
2002         {
2003                 LOG_ERROR("Failure examining memory");
2004         }
2005
2006         free(buffer);
2007         
2008         return ERROR_OK;
2009 }
2010
2011 int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2012 {
2013         u32 address = 0;
2014         u32 value = 0;
2015         int count = 1;
2016         int i;
2017         int wordsize;
2018         target_t *target = get_current_target(cmd_ctx);
2019         u8 value_buf[4];
2020
2021          if ((argc < 2) || (argc > 3))
2022                 return ERROR_COMMAND_SYNTAX_ERROR;
2023
2024         address = strtoul(args[0], NULL, 0);
2025         value = strtoul(args[1], NULL, 0);
2026         if (argc == 3)
2027                 count = strtoul(args[2], NULL, 0);
2028
2029
2030         switch (cmd[2])
2031         {
2032                 case 'w':
2033                         wordsize = 4;
2034                         target_buffer_set_u32(target, value_buf, value);
2035                         break;
2036                 case 'h':
2037                         wordsize = 2;
2038                         target_buffer_set_u16(target, value_buf, value);
2039                         break;
2040                 case 'b':
2041                         wordsize = 1;
2042                         value_buf[0] = value;
2043                         break;
2044                 default:
2045                         return ERROR_COMMAND_SYNTAX_ERROR;
2046         }
2047         for (i=0; i<count; i++)
2048         {
2049                 int retval;
2050                 switch (wordsize)
2051                 {
2052                         case 4:
2053                                 retval = target->type->write_memory(target, address + i*wordsize, 4, 1, value_buf);
2054                                 break;
2055                         case 2:
2056                                 retval = target->type->write_memory(target, address + i*wordsize, 2, 1, value_buf);
2057                                 break;
2058                         case 1:
2059                                 retval = target->type->write_memory(target, address + i*wordsize, 1, 1, value_buf);
2060                         break;
2061                         default:
2062                         return ERROR_OK;
2063                 }
2064                 if (retval!=ERROR_OK)
2065                 {
2066                         return retval;
2067                 }
2068         }
2069
2070         return ERROR_OK;
2071
2072 }
2073
2074 int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2075 {
2076         u8 *buffer;
2077         u32 buf_cnt;
2078         u32 image_size;
2079         int i;
2080         int retval;
2081
2082         image_t image;  
2083         
2084         duration_t duration;
2085         char *duration_text;
2086         
2087         target_t *target = get_current_target(cmd_ctx);
2088
2089         if (argc < 1)
2090         {
2091                 command_print(cmd_ctx, "usage: load_image <filename> [address] [type]");
2092                 return ERROR_OK;
2093         }
2094         
2095         /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
2096         if (argc >= 2)
2097         {
2098                 image.base_address_set = 1;
2099                 image.base_address = strtoul(args[1], NULL, 0);
2100         }
2101         else
2102         {
2103                 image.base_address_set = 0;
2104         }
2105         
2106         image.start_address_set = 0;
2107
2108         duration_start_measure(&duration);
2109         
2110         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
2111         {
2112                 return ERROR_OK;
2113         }
2114         
2115         image_size = 0x0;
2116         retval = ERROR_OK;
2117         for (i = 0; i < image.num_sections; i++)
2118         {
2119                 buffer = malloc(image.sections[i].size);
2120                 if (buffer == NULL)
2121                 {
2122                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2123                         break;
2124                 }
2125                 
2126                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2127                 {
2128                         free(buffer);
2129                         break;
2130                 }
2131                 if ((retval = target_write_buffer(target, image.sections[i].base_address, buf_cnt, buffer)) != ERROR_OK)
2132                 {
2133                         free(buffer);
2134                         break;
2135                 }
2136                 image_size += buf_cnt;
2137                 command_print(cmd_ctx, "%u byte written at address 0x%8.8x", buf_cnt, image.sections[i].base_address);
2138                 
2139                 free(buffer);
2140         }
2141
2142         duration_stop_measure(&duration, &duration_text);
2143         if (retval==ERROR_OK)
2144         {
2145                 command_print(cmd_ctx, "downloaded %u byte in %s", image_size, duration_text);
2146         }
2147         free(duration_text);
2148         
2149         image_close(&image);
2150
2151         return retval;
2152
2153 }
2154
2155 int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2156 {
2157         fileio_t fileio;
2158         
2159         u32 address;
2160         u32 size;
2161         u8 buffer[560];
2162         int retval=ERROR_OK;
2163         
2164         duration_t duration;
2165         char *duration_text;
2166         
2167         target_t *target = get_current_target(cmd_ctx);
2168
2169         if (argc != 3)
2170         {
2171                 command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
2172                 return ERROR_OK;
2173         }
2174
2175         address = strtoul(args[1], NULL, 0);
2176         size = strtoul(args[2], NULL, 0);
2177
2178         if ((address & 3) || (size & 3))
2179         {
2180                 command_print(cmd_ctx, "only 32-bit aligned address and size are supported");
2181                 return ERROR_OK;
2182         }
2183         
2184         if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2185         {
2186                 return ERROR_OK;
2187         }
2188         
2189         duration_start_measure(&duration);
2190         
2191         while (size > 0)
2192         {
2193                 u32 size_written;
2194                 u32 this_run_size = (size > 560) ? 560 : size;
2195                 
2196                 retval = target->type->read_memory(target, address, 4, this_run_size / 4, buffer);
2197                 if (retval != ERROR_OK)
2198                 {
2199                         break;
2200                 }
2201                 
2202                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2203                 if (retval != ERROR_OK)
2204                 {
2205                         break;
2206                 }
2207                 
2208                 size -= this_run_size;
2209                 address += this_run_size;
2210         }
2211
2212         fileio_close(&fileio);
2213
2214         duration_stop_measure(&duration, &duration_text);
2215         if (retval==ERROR_OK)
2216         {
2217                 command_print(cmd_ctx, "dumped %"PRIi64" byte in %s", fileio.size, duration_text);
2218         }
2219         free(duration_text);
2220         
2221         return ERROR_OK;
2222 }
2223
2224 int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2225 {
2226         u8 *buffer;
2227         u32 buf_cnt;
2228         u32 image_size;
2229         int i;
2230         int retval;
2231         u32 checksum = 0;
2232         u32 mem_checksum = 0;
2233
2234         image_t image;  
2235         
2236         duration_t duration;
2237         char *duration_text;
2238         
2239         target_t *target = get_current_target(cmd_ctx);
2240         
2241         if (argc < 1)
2242         {
2243                 return ERROR_COMMAND_SYNTAX_ERROR;
2244         }
2245         
2246         if (!target)
2247         {
2248                 LOG_ERROR("no target selected");
2249                 return ERROR_FAIL;
2250         }
2251         
2252         duration_start_measure(&duration);
2253         
2254         if (argc >= 2)
2255         {
2256                 image.base_address_set = 1;
2257                 image.base_address = strtoul(args[1], NULL, 0);
2258         }
2259         else
2260         {
2261                 image.base_address_set = 0;
2262                 image.base_address = 0x0;
2263         }
2264
2265         image.start_address_set = 0;
2266
2267         if ((retval=image_open(&image, args[0], (argc == 3) ? args[2] : NULL)) != ERROR_OK)
2268         {
2269                 return retval;
2270         }
2271         
2272         image_size = 0x0;
2273         retval=ERROR_OK;
2274         for (i = 0; i < image.num_sections; i++)
2275         {
2276                 buffer = malloc(image.sections[i].size);
2277                 if (buffer == NULL)
2278                 {
2279                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2280                         break;
2281                 }
2282                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2283                 {
2284                         free(buffer);
2285                         break;
2286                 }
2287                 
2288                 /* calculate checksum of image */
2289                 image_calculate_checksum( buffer, buf_cnt, &checksum );
2290                 
2291                 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2292                 if( retval != ERROR_OK )
2293                 {
2294                         free(buffer);
2295                         break;
2296                 }
2297                 
2298                 if( checksum != mem_checksum )
2299                 {
2300                         /* failed crc checksum, fall back to a binary compare */
2301                         u8 *data;
2302                         
2303                         command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
2304                         
2305                         data = (u8*)malloc(buf_cnt);
2306                         
2307                         /* Can we use 32bit word accesses? */
2308                         int size = 1;
2309                         int count = buf_cnt;
2310                         if ((count % 4) == 0)
2311                         {
2312                                 size *= 4;
2313                                 count /= 4;
2314                         }
2315                         retval = target->type->read_memory(target, image.sections[i].base_address, size, count, data);
2316                         if (retval == ERROR_OK)
2317                         {
2318                                 int t;
2319                                 for (t = 0; t < buf_cnt; t++)
2320                                 {
2321                                         if (data[t] != buffer[t])
2322                                         {
2323                                                 command_print(cmd_ctx, "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n", t + image.sections[i].base_address, data[t], buffer[t]);
2324                                                 free(data);
2325                                                 free(buffer);
2326                                                 retval=ERROR_FAIL;
2327                                                 goto done;
2328                                         }
2329                                 }
2330                         }
2331                         
2332                         free(data);
2333                 }
2334                 
2335                 free(buffer);
2336                 image_size += buf_cnt;
2337         }
2338 done:   
2339         duration_stop_measure(&duration, &duration_text);
2340         if (retval==ERROR_OK)
2341         {
2342                 command_print(cmd_ctx, "verified %u bytes in %s", image_size, duration_text);
2343         }
2344         free(duration_text);
2345         
2346         image_close(&image);
2347         
2348         return retval;
2349 }
2350
2351 int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2352 {
2353         int retval;
2354         target_t *target = get_current_target(cmd_ctx);
2355
2356         if (argc == 0)
2357         {
2358                 breakpoint_t *breakpoint = target->breakpoints;
2359
2360                 while (breakpoint)
2361                 {
2362                         if (breakpoint->type == BKPT_SOFT)
2363                         {
2364                                 char* buf = buf_to_str(breakpoint->orig_instr, breakpoint->length, 16);
2365                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i, 0x%s", breakpoint->address, breakpoint->length, breakpoint->set, buf);
2366                                 free(buf);
2367                         }
2368                         else
2369                         {
2370                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i", breakpoint->address, breakpoint->length, breakpoint->set);
2371                         }
2372                         breakpoint = breakpoint->next;
2373                 }
2374         }
2375         else if (argc >= 2)
2376         {
2377                 int hw = BKPT_SOFT;
2378                 u32 length = 0;
2379
2380                 length = strtoul(args[1], NULL, 0);
2381                 
2382                 if (argc >= 3)
2383                         if (strcmp(args[2], "hw") == 0)
2384                                 hw = BKPT_HARD;
2385
2386                 if ((retval = breakpoint_add(target, strtoul(args[0], NULL, 0), length, hw)) != ERROR_OK)
2387                 {
2388                         LOG_ERROR("Failure setting breakpoints");
2389                 }
2390                 else
2391                 {
2392                         command_print(cmd_ctx, "breakpoint added at address 0x%8.8x", strtoul(args[0], NULL, 0));
2393                 }
2394         }
2395         else
2396         {
2397                 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
2398         }
2399
2400         return ERROR_OK;
2401 }
2402
2403 int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2404 {
2405         target_t *target = get_current_target(cmd_ctx);
2406
2407         if (argc > 0)
2408                 breakpoint_remove(target, strtoul(args[0], NULL, 0));
2409
2410         return ERROR_OK;
2411 }
2412
2413 int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2414 {
2415         target_t *target = get_current_target(cmd_ctx);
2416         int retval;
2417
2418         if (argc == 0)
2419         {
2420                 watchpoint_t *watchpoint = target->watchpoints;
2421
2422                 while (watchpoint)
2423                 {
2424                         command_print(cmd_ctx, "address: 0x%8.8x, len: 0x%8.8x, r/w/a: %i, value: 0x%8.8x, mask: 0x%8.8x", watchpoint->address, watchpoint->length, watchpoint->rw, watchpoint->value, watchpoint->mask);
2425                         watchpoint = watchpoint->next;
2426                 }
2427         } 
2428         else if (argc >= 2)
2429         {
2430                 enum watchpoint_rw type = WPT_ACCESS;
2431                 u32 data_value = 0x0;
2432                 u32 data_mask = 0xffffffff;
2433                 
2434                 if (argc >= 3)
2435                 {
2436                         switch(args[2][0])
2437                         {
2438                                 case 'r':
2439                                         type = WPT_READ;
2440                                         break;
2441                                 case 'w':
2442                                         type = WPT_WRITE;
2443                                         break;
2444                                 case 'a':
2445                                         type = WPT_ACCESS;
2446                                         break;
2447                                 default:
2448                                         command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2449                                         return ERROR_OK;
2450                         }
2451                 }
2452                 if (argc >= 4)
2453                 {
2454                         data_value = strtoul(args[3], NULL, 0);
2455                 }
2456                 if (argc >= 5)
2457                 {
2458                         data_mask = strtoul(args[4], NULL, 0);
2459                 }
2460                 
2461                 if ((retval = watchpoint_add(target, strtoul(args[0], NULL, 0),
2462                                 strtoul(args[1], NULL, 0), type, data_value, data_mask)) != ERROR_OK)
2463                 {
2464                         LOG_ERROR("Failure setting breakpoints");
2465                 }
2466         }
2467         else
2468         {
2469                 command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2470         }
2471                 
2472         return ERROR_OK;
2473 }
2474
2475 int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2476 {
2477         target_t *target = get_current_target(cmd_ctx);
2478
2479         if (argc > 0)
2480                 watchpoint_remove(target, strtoul(args[0], NULL, 0));
2481         
2482         return ERROR_OK;
2483 }
2484
2485 int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc)
2486 {
2487         int retval;
2488         target_t *target = get_current_target(cmd_ctx);
2489         u32 va;
2490         u32 pa;
2491
2492         if (argc != 1)
2493         {
2494                 return ERROR_COMMAND_SYNTAX_ERROR;
2495         }
2496         va = strtoul(args[0], NULL, 0);
2497
2498         retval = target->type->virt2phys(target, va, &pa);
2499         if (retval == ERROR_OK)
2500         {
2501                 command_print(cmd_ctx, "Physical address 0x%08x", pa);
2502         }
2503         else
2504         {
2505                 /* lower levels will have logged a detailed error which is 
2506                  * forwarded to telnet/GDB session.  
2507                  */
2508         }
2509         return retval;
2510 }
2511 static void writeLong(FILE *f, int l)
2512 {
2513         int i;
2514         for (i=0; i<4; i++)
2515         {
2516                 char c=(l>>(i*8))&0xff;
2517                 fwrite(&c, 1, 1, f); 
2518         }
2519         
2520 }
2521 static void writeString(FILE *f, char *s)
2522 {
2523         fwrite(s, 1, strlen(s), f); 
2524 }
2525
2526
2527
2528 // Dump a gmon.out histogram file.
2529 static void writeGmon(u32 *samples, int sampleNum, char *filename)
2530 {
2531         int i;
2532         FILE *f=fopen(filename, "w");
2533         if (f==NULL)
2534                 return;
2535         fwrite("gmon", 1, 4, f);
2536         writeLong(f, 0x00000001); // Version
2537         writeLong(f, 0); // padding
2538         writeLong(f, 0); // padding
2539         writeLong(f, 0); // padding
2540                                 
2541         fwrite("", 1, 1, f);  // GMON_TAG_TIME_HIST 
2542
2543         // figure out bucket size
2544         u32 min=samples[0];
2545         u32 max=samples[0];
2546         for (i=0; i<sampleNum; i++)
2547         {
2548                 if (min>samples[i])
2549                 {
2550                         min=samples[i];
2551                 }
2552                 if (max<samples[i])
2553                 {
2554                         max=samples[i];
2555                 }
2556         }
2557
2558         int addressSpace=(max-min+1);
2559         
2560         static int const maxBuckets=256*1024; // maximum buckets.
2561         int length=addressSpace;
2562         if (length > maxBuckets)
2563         {
2564                 length=maxBuckets; 
2565         }
2566         int *buckets=malloc(sizeof(int)*length);
2567         if (buckets==NULL)
2568         {
2569                 fclose(f);
2570                 return;
2571         }
2572         memset(buckets, 0, sizeof(int)*length);
2573         for (i=0; i<sampleNum;i++)
2574         {
2575                 u32 address=samples[i];
2576                 long long a=address-min;
2577                 long long b=length-1;
2578                 long long c=addressSpace-1;
2579                 int index=(a*b)/c; // danger!!!! int32 overflows 
2580                 buckets[index]++;
2581         }
2582         
2583         //                         append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr))
2584         writeLong(f, min);                                      // low_pc
2585         writeLong(f, max);              // high_pc
2586         writeLong(f, length);           // # of samples
2587         writeLong(f, 64000000);                         // 64MHz
2588         writeString(f, "seconds");
2589         for (i=0; i<(15-strlen("seconds")); i++)
2590         {
2591                 fwrite("", 1, 1, f);  // padding
2592         }
2593         writeString(f, "s");
2594                 
2595 //                         append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size)
2596         
2597         char *data=malloc(2*length);
2598         if (data!=NULL)
2599         {
2600                 for (i=0; i<length;i++)
2601                 {
2602                         int val;
2603                         val=buckets[i];
2604                         if (val>65535)
2605                         {
2606                                 val=65535;
2607                         }
2608                         data[i*2]=val&0xff;
2609                         data[i*2+1]=(val>>8)&0xff;
2610                 }
2611                 free(buckets);
2612                 fwrite(data, 1, length*2, f);
2613                 free(data);
2614         } else
2615         {
2616                 free(buckets);
2617         }
2618
2619         fclose(f);
2620 }
2621
2622 /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
2623 int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2624 {
2625         target_t *target = get_current_target(cmd_ctx);
2626         struct timeval timeout, now;
2627         
2628         gettimeofday(&timeout, NULL);
2629         if (argc!=2)
2630         {
2631                 return ERROR_COMMAND_SYNTAX_ERROR;
2632         }
2633         char *end;
2634         timeval_add_time(&timeout, strtoul(args[0], &end, 0), 0);
2635         if (*end) 
2636         {
2637                 return ERROR_OK;
2638         }
2639         
2640         command_print(cmd_ctx, "Starting profiling. Halting and resuming the target as often as we can...");
2641
2642         static const int maxSample=10000;
2643         u32 *samples=malloc(sizeof(u32)*maxSample);
2644         if (samples==NULL)
2645                 return ERROR_OK;
2646         
2647         int numSamples=0;
2648         int retval=ERROR_OK;
2649         // hopefully it is safe to cache! We want to stop/restart as quickly as possible.
2650         reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1);
2651         
2652         for (;;)
2653         {
2654                 target_poll(target);
2655                 if (target->state == TARGET_HALTED)
2656                 {
2657                         u32 t=*((u32 *)reg->value);
2658                         samples[numSamples++]=t;
2659                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2660                         target_poll(target);
2661                         usleep(10*1000); // sleep 10ms, i.e. <100 samples/second.
2662                 } else if (target->state == TARGET_RUNNING)
2663                 {
2664                         // We want to quickly sample the PC.
2665                         target_halt(target);
2666                 } else
2667                 {
2668                         command_print(cmd_ctx, "Target not halted or running");
2669                         retval=ERROR_OK;
2670                         break;
2671                 }
2672                 if (retval!=ERROR_OK)
2673                 {
2674                         break;
2675                 }
2676                 
2677                 gettimeofday(&now, NULL);
2678                 if ((numSamples>=maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
2679                 {
2680                         command_print(cmd_ctx, "Profiling completed. %d samples.", numSamples);
2681                         target_poll(target);
2682                         if (target->state == TARGET_HALTED)
2683                         {
2684                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2685                         }
2686                         target_poll(target);
2687                         writeGmon(samples, numSamples, args[1]);
2688                         command_print(cmd_ctx, "Wrote %s", args[1]);
2689                         break;
2690                 }
2691         }
2692         free(samples);
2693         
2694         return ERROR_OK;
2695 }
2696