Factor target_timer_callbacks_check_time into pieces:
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007,2008 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   This program is free software; you can redistribute it and/or modify  *
18  *   it under the terms of the GNU General Public License as published by  *
19  *   the Free Software Foundation; either version 2 of the License, or     *
20  *   (at your option) any later version.                                   *
21  *                                                                         *
22  *   This program is distributed in the hope that it will be useful,       *
23  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
24  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
25  *   GNU General Public License for more details.                          *
26  *                                                                         *
27  *   You should have received a copy of the GNU General Public License     *
28  *   along with this program; if not, write to the                         *
29  *   Free Software Foundation, Inc.,                                       *
30  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "target.h"
37 #include "target_type.h"
38 #include "target_request.h"
39 #include "time_support.h"
40 #include "register.h"
41 #include "trace.h"
42 #include "image.h"
43 #include "jtag.h"
44
45
46 static int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
47
48 static int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
49 static int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
50 static int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
51 static int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
52 static int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
53 static int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
54 static int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
55 static int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
56 static int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
57 static int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
58 static int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
59 static int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
60 static int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
61 static int handle_test_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
62 static int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
63 static int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
64 static int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
65 static int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
66 static int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc);
67 static int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
68 static int handle_fast_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
69 static int handle_fast_load_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
70
71 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
72 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
73 static int jim_target( Jim_Interp *interp, int argc, Jim_Obj *const *argv);
74
75 static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv);
76 static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv);
77
78 /* targets */
79 extern target_type_t arm7tdmi_target;
80 extern target_type_t arm720t_target;
81 extern target_type_t arm9tdmi_target;
82 extern target_type_t arm920t_target;
83 extern target_type_t arm966e_target;
84 extern target_type_t arm926ejs_target;
85 extern target_type_t feroceon_target;
86 extern target_type_t xscale_target;
87 extern target_type_t cortexm3_target;
88 extern target_type_t cortexa8_target;
89 extern target_type_t arm11_target;
90 extern target_type_t mips_m4k_target;
91 extern target_type_t avr_target;
92
93 target_type_t *target_types[] =
94 {
95         &arm7tdmi_target,
96         &arm9tdmi_target,
97         &arm920t_target,
98         &arm720t_target,
99         &arm966e_target,
100         &arm926ejs_target,
101         &feroceon_target,
102         &xscale_target,
103         &cortexm3_target,
104         &cortexa8_target,
105         &arm11_target,
106         &mips_m4k_target,
107         &avr_target,
108         NULL,
109 };
110
111 target_t *all_targets = NULL;
112 target_event_callback_t *target_event_callbacks = NULL;
113 target_timer_callback_t *target_timer_callbacks = NULL;
114
115 const Jim_Nvp nvp_assert[] = {
116         { .name = "assert", NVP_ASSERT },
117         { .name = "deassert", NVP_DEASSERT },
118         { .name = "T", NVP_ASSERT },
119         { .name = "F", NVP_DEASSERT },
120         { .name = "t", NVP_ASSERT },
121         { .name = "f", NVP_DEASSERT },
122         { .name = NULL, .value = -1 }
123 };
124
125 const Jim_Nvp nvp_error_target[] = {
126         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
127         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
128         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
129         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
130         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
131         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
132         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
133         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
134         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
135         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
136         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
137         { .value = -1, .name = NULL }
138 };
139
140 const char *target_strerror_safe( int err )
141 {
142         const Jim_Nvp *n;
143
144         n = Jim_Nvp_value2name_simple( nvp_error_target, err );
145         if( n->name == NULL ){
146                 return "unknown";
147         } else {
148                 return n->name;
149         }
150 }
151
152 static const Jim_Nvp nvp_target_event[] = {
153         { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
154         { .value = TARGET_EVENT_OLD_pre_resume         , .name = "old-pre_resume" },
155
156         { .value = TARGET_EVENT_EARLY_HALTED, .name = "early-halted" },
157         { .value = TARGET_EVENT_HALTED, .name = "halted" },
158         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
159         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
160         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
161
162         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
163         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
164
165         /* historical name */
166
167         { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
168
169         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
170         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
171         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
172         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
173         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
174         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
175         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
176         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
177         { .value = TARGET_EVENT_RESET_INIT , .name = "reset-init" },
178         { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
179
180         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
181         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
182
183         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
184         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
185
186         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
187         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
188
189         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
190         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
191
192         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
193         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
194
195         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
196         { .value = TARGET_EVENT_RESUMED     , .name = "resume-ok" },
197         { .value = TARGET_EVENT_RESUME_END  , .name = "resume-end" },
198
199         { .name = NULL, .value = -1 }
200 };
201
202 const Jim_Nvp nvp_target_state[] = {
203         { .name = "unknown", .value = TARGET_UNKNOWN },
204         { .name = "running", .value = TARGET_RUNNING },
205         { .name = "halted",  .value = TARGET_HALTED },
206         { .name = "reset",   .value = TARGET_RESET },
207         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
208         { .name = NULL, .value = -1 },
209 };
210
211 const Jim_Nvp nvp_target_debug_reason [] = {
212         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
213         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
214         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
215         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
216         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
217         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
218         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
219         { .name = NULL, .value = -1 },
220 };
221
222 const Jim_Nvp nvp_target_endian[] = {
223         { .name = "big",    .value = TARGET_BIG_ENDIAN },
224         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
225         { .name = "be",     .value = TARGET_BIG_ENDIAN },
226         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
227         { .name = NULL,     .value = -1 },
228 };
229
230 const Jim_Nvp nvp_reset_modes[] = {
231         { .name = "unknown", .value = RESET_UNKNOWN },
232         { .name = "run"    , .value = RESET_RUN },
233         { .name = "halt"   , .value = RESET_HALT },
234         { .name = "init"   , .value = RESET_INIT },
235         { .name = NULL     , .value = -1 },
236 };
237
238 static int max_target_number(void)
239 {
240         target_t *t;
241         int x;
242
243         x = -1;
244         t = all_targets;
245         while( t ){
246                 if( x < t->target_number ){
247                         x = (t->target_number)+1;
248                 }
249                 t = t->next;
250         }
251         return x;
252 }
253
254 /* determine the number of the new target */
255 static int new_target_number(void)
256 {
257         target_t *t;
258         int x;
259
260         /* number is 0 based */
261         x = -1;
262         t = all_targets;
263         while(t){
264                 if( x < t->target_number ){
265                         x = t->target_number;
266                 }
267                 t = t->next;
268         }
269         return x+1;
270 }
271
272 static int target_continous_poll = 1;
273
274 /* read a u32 from a buffer in target memory endianness */
275 u32 target_buffer_get_u32(target_t *target, const u8 *buffer)
276 {
277         if (target->endianness == TARGET_LITTLE_ENDIAN)
278                 return le_to_h_u32(buffer);
279         else
280                 return be_to_h_u32(buffer);
281 }
282
283 /* read a u16 from a buffer in target memory endianness */
284 u16 target_buffer_get_u16(target_t *target, const u8 *buffer)
285 {
286         if (target->endianness == TARGET_LITTLE_ENDIAN)
287                 return le_to_h_u16(buffer);
288         else
289                 return be_to_h_u16(buffer);
290 }
291
292 /* read a u8 from a buffer in target memory endianness */
293 u8 target_buffer_get_u8(target_t *target, const u8 *buffer)
294 {
295         return *buffer & 0x0ff;
296 }
297
298 /* write a u32 to a buffer in target memory endianness */
299 void target_buffer_set_u32(target_t *target, u8 *buffer, u32 value)
300 {
301         if (target->endianness == TARGET_LITTLE_ENDIAN)
302                 h_u32_to_le(buffer, value);
303         else
304                 h_u32_to_be(buffer, value);
305 }
306
307 /* write a u16 to a buffer in target memory endianness */
308 void target_buffer_set_u16(target_t *target, u8 *buffer, u16 value)
309 {
310         if (target->endianness == TARGET_LITTLE_ENDIAN)
311                 h_u16_to_le(buffer, value);
312         else
313                 h_u16_to_be(buffer, value);
314 }
315
316 /* write a u8 to a buffer in target memory endianness */
317 void target_buffer_set_u8(target_t *target, u8 *buffer, u8 value)
318 {
319         *buffer = value;
320 }
321
322 /* return a pointer to a configured target; id is name or number */
323 target_t *get_target(const char *id)
324 {
325         target_t *target;
326         char *endptr;
327         int num;
328
329         /* try as tcltarget name */
330         for (target = all_targets; target; target = target->next) {
331                 if (target->cmd_name == NULL)
332                         continue;
333                 if (strcmp(id, target->cmd_name) == 0)
334                         return target;
335         }
336
337         /* no match, try as number */
338         num = strtoul(id, &endptr, 0);
339         if (*endptr != 0)
340                 return NULL;
341
342         for (target = all_targets; target; target = target->next) {
343                 if (target->target_number == num)
344                         return target;
345         }
346
347         return NULL;
348 }
349
350 /* returns a pointer to the n-th configured target */
351 static target_t *get_target_by_num(int num)
352 {
353         target_t *target = all_targets;
354
355         while (target){
356                 if( target->target_number == num ){
357                         return target;
358                 }
359                 target = target->next;
360         }
361
362         return NULL;
363 }
364
365 int get_num_by_target(target_t *query_target)
366 {
367         return query_target->target_number;
368 }
369
370 target_t* get_current_target(command_context_t *cmd_ctx)
371 {
372         target_t *target = get_target_by_num(cmd_ctx->current_target);
373
374         if (target == NULL)
375         {
376                 LOG_ERROR("BUG: current_target out of bounds");
377                 exit(-1);
378         }
379
380         return target;
381 }
382
383 int target_poll(struct target_s *target)
384 {
385         /* We can't poll until after examine */
386         if (!target_was_examined(target))
387         {
388                 /* Fail silently lest we pollute the log */
389                 return ERROR_FAIL;
390         }
391         return target->type->poll(target);
392 }
393
394 int target_halt(struct target_s *target)
395 {
396         /* We can't poll until after examine */
397         if (!target_was_examined(target))
398         {
399                 LOG_ERROR("Target not examined yet");
400                 return ERROR_FAIL;
401         }
402         return target->type->halt(target);
403 }
404
405 int target_resume(struct target_s *target, int current, u32 address, int handle_breakpoints, int debug_execution)
406 {
407         int retval;
408
409         /* We can't poll until after examine */
410         if (!target_was_examined(target))
411         {
412                 LOG_ERROR("Target not examined yet");
413                 return ERROR_FAIL;
414         }
415
416         /* note that resume *must* be asynchronous. The CPU can halt before we poll. The CPU can
417          * even halt at the current PC as a result of a software breakpoint being inserted by (a bug?)
418          * the application.
419          */
420         if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
421                 return retval;
422
423         return retval;
424 }
425
426 int target_process_reset(struct command_context_s *cmd_ctx, enum target_reset_mode reset_mode)
427 {
428         char buf[100];
429         int retval;
430         Jim_Nvp *n;
431         n = Jim_Nvp_value2name_simple( nvp_reset_modes, reset_mode );
432         if( n->name == NULL ){
433                 LOG_ERROR("invalid reset mode");
434                 return ERROR_FAIL;
435         }
436
437         /* disable polling during reset to make reset event scripts
438          * more predictable, i.e. dr/irscan & pathmove in events will
439          * not have JTAG operations injected into the middle of a sequence.
440          */
441         int save_poll = target_continous_poll;
442         target_continous_poll = 0;
443
444         sprintf( buf, "ocd_process_reset %s", n->name );
445         retval = Jim_Eval( interp, buf );
446
447         target_continous_poll = save_poll;
448
449         if(retval != JIM_OK) {
450                 Jim_PrintErrorMessage(interp);
451                 return ERROR_FAIL;
452         }
453
454         /* We want any events to be processed before the prompt */
455         retval = target_call_timer_callbacks_now();
456
457         return retval;
458 }
459
460 static int default_virt2phys(struct target_s *target, u32 virtual, u32 *physical)
461 {
462         *physical = virtual;
463         return ERROR_OK;
464 }
465
466 static int default_mmu(struct target_s *target, int *enabled)
467 {
468         *enabled = 0;
469         return ERROR_OK;
470 }
471
472 static int default_examine(struct target_s *target)
473 {
474         target_set_examined(target);
475         return ERROR_OK;
476 }
477
478 int target_examine_one(struct target_s *target)
479 {
480         return target->type->examine(target);
481 }
482
483 /* Targets that correctly implement init+examine, i.e.
484  * no communication with target during init:
485  *
486  * XScale
487  */
488 int target_examine(void)
489 {
490         int retval = ERROR_OK;
491         target_t *target;
492
493         for (target = all_targets; target; target = target->next)
494         {
495                 if (!target->tap->enabled)
496                         continue;
497                 if ((retval = target_examine_one(target)) != ERROR_OK)
498                         return retval;
499         }
500         return retval;
501 }
502 const char *target_get_name(struct target_s *target)
503 {
504         return target->type->name;
505 }
506
507 static int target_write_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
508 {
509         if (!target_was_examined(target))
510         {
511                 LOG_ERROR("Target not examined yet");
512                 return ERROR_FAIL;
513         }
514         return target->type->write_memory_imp(target, address, size, count, buffer);
515 }
516
517 static int target_read_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
518 {
519         if (!target_was_examined(target))
520         {
521                 LOG_ERROR("Target not examined yet");
522                 return ERROR_FAIL;
523         }
524         return target->type->read_memory_imp(target, address, size, count, buffer);
525 }
526
527 static int target_soft_reset_halt_imp(struct target_s *target)
528 {
529         if (!target_was_examined(target))
530         {
531                 LOG_ERROR("Target not examined yet");
532                 return ERROR_FAIL;
533         }
534         return target->type->soft_reset_halt_imp(target);
535 }
536
537 static int target_run_algorithm_imp(struct target_s *target, int num_mem_params, mem_param_t *mem_params, int num_reg_params, reg_param_t *reg_param, u32 entry_point, u32 exit_point, int timeout_ms, void *arch_info)
538 {
539         if (!target_was_examined(target))
540         {
541                 LOG_ERROR("Target not examined yet");
542                 return ERROR_FAIL;
543         }
544         return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
545 }
546
547 int target_read_memory(struct target_s *target,
548                 u32 address, u32 size, u32 count, u8 *buffer)
549 {
550         return target->type->read_memory(target, address, size, count, buffer);
551 }
552
553 int target_write_memory(struct target_s *target,
554                 u32 address, u32 size, u32 count, u8 *buffer)
555 {
556         return target->type->write_memory(target, address, size, count, buffer);
557 }
558 int target_bulk_write_memory(struct target_s *target,
559                 u32 address, u32 count, u8 *buffer)
560 {
561         return target->type->bulk_write_memory(target, address, count, buffer);
562 }
563
564 int target_add_breakpoint(struct target_s *target,
565                 struct breakpoint_s *breakpoint)
566 {
567         return target->type->add_breakpoint(target, breakpoint);
568 }
569 int target_remove_breakpoint(struct target_s *target,
570                 struct breakpoint_s *breakpoint)
571 {
572         return target->type->remove_breakpoint(target, breakpoint);
573 }
574
575 int target_add_watchpoint(struct target_s *target,
576                 struct watchpoint_s *watchpoint)
577 {
578         return target->type->add_watchpoint(target, watchpoint);
579 }
580 int target_remove_watchpoint(struct target_s *target,
581                 struct watchpoint_s *watchpoint)
582 {
583         return target->type->remove_watchpoint(target, watchpoint);
584 }
585
586 int target_get_gdb_reg_list(struct target_s *target,
587                 struct reg_s **reg_list[], int *reg_list_size)
588 {
589         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
590 }
591 int target_step(struct target_s *target,
592                 int current, u32 address, int handle_breakpoints)
593 {
594         return target->type->step(target, current, address, handle_breakpoints);
595 }
596
597
598 int target_run_algorithm(struct target_s *target,
599                 int num_mem_params, mem_param_t *mem_params,
600                 int num_reg_params, reg_param_t *reg_param,
601                 u32 entry_point, u32 exit_point,
602                 int timeout_ms, void *arch_info)
603 {
604         return target->type->run_algorithm(target,
605                         num_mem_params, mem_params, num_reg_params, reg_param,
606                         entry_point, exit_point, timeout_ms, arch_info);
607 }
608
609 /// @returns @c true if the target has been examined.
610 bool target_was_examined(struct target_s *target)
611 {
612         return target->type->examined;
613 }
614 /// Sets the @c examined flag for the given target.
615 void target_set_examined(struct target_s *target)
616 {
617         target->type->examined = true;
618 }
619 // Reset the @c examined flag for the given target.
620 void target_reset_examined(struct target_s *target)
621 {
622         target->type->examined = false;
623 }
624
625
626 int target_init(struct command_context_s *cmd_ctx)
627 {
628         target_t *target = all_targets;
629         int retval;
630
631         while (target)
632         {
633                 target_reset_examined(target);
634                 if (target->type->examine == NULL)
635                 {
636                         target->type->examine = default_examine;
637                 }
638
639                 if ((retval = target->type->init_target(cmd_ctx, target)) != ERROR_OK)
640                 {
641                         LOG_ERROR("target '%s' init failed", target_get_name(target));
642                         return retval;
643                 }
644
645                 /* Set up default functions if none are provided by target */
646                 if (target->type->virt2phys == NULL)
647                 {
648                         target->type->virt2phys = default_virt2phys;
649                 }
650                 target->type->virt2phys = default_virt2phys;
651                 /* a non-invasive way(in terms of patches) to add some code that
652                  * runs before the type->write/read_memory implementation
653                  */
654                 target->type->write_memory_imp = target->type->write_memory;
655                 target->type->write_memory = target_write_memory_imp;
656                 target->type->read_memory_imp = target->type->read_memory;
657                 target->type->read_memory = target_read_memory_imp;
658                 target->type->soft_reset_halt_imp = target->type->soft_reset_halt;
659                 target->type->soft_reset_halt = target_soft_reset_halt_imp;
660                 target->type->run_algorithm_imp = target->type->run_algorithm;
661                 target->type->run_algorithm = target_run_algorithm_imp;
662
663                 if (target->type->mmu == NULL)
664                 {
665                         target->type->mmu = default_mmu;
666                 }
667                 target = target->next;
668         }
669
670         if (all_targets)
671         {
672                 if((retval = target_register_user_commands(cmd_ctx)) != ERROR_OK)
673                         return retval;
674                 if((retval = target_register_timer_callback(handle_target, 100, 1, NULL)) != ERROR_OK)
675                         return retval;
676         }
677
678         return ERROR_OK;
679 }
680
681 int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
682 {
683         target_event_callback_t **callbacks_p = &target_event_callbacks;
684
685         if (callback == NULL)
686         {
687                 return ERROR_INVALID_ARGUMENTS;
688         }
689
690         if (*callbacks_p)
691         {
692                 while ((*callbacks_p)->next)
693                         callbacks_p = &((*callbacks_p)->next);
694                 callbacks_p = &((*callbacks_p)->next);
695         }
696
697         (*callbacks_p) = malloc(sizeof(target_event_callback_t));
698         (*callbacks_p)->callback = callback;
699         (*callbacks_p)->priv = priv;
700         (*callbacks_p)->next = NULL;
701
702         return ERROR_OK;
703 }
704
705 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
706 {
707         target_timer_callback_t **callbacks_p = &target_timer_callbacks;
708         struct timeval now;
709
710         if (callback == NULL)
711         {
712                 return ERROR_INVALID_ARGUMENTS;
713         }
714
715         if (*callbacks_p)
716         {
717                 while ((*callbacks_p)->next)
718                         callbacks_p = &((*callbacks_p)->next);
719                 callbacks_p = &((*callbacks_p)->next);
720         }
721
722         (*callbacks_p) = malloc(sizeof(target_timer_callback_t));
723         (*callbacks_p)->callback = callback;
724         (*callbacks_p)->periodic = periodic;
725         (*callbacks_p)->time_ms = time_ms;
726
727         gettimeofday(&now, NULL);
728         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
729         time_ms -= (time_ms % 1000);
730         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
731         if ((*callbacks_p)->when.tv_usec > 1000000)
732         {
733                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
734                 (*callbacks_p)->when.tv_sec += 1;
735         }
736
737         (*callbacks_p)->priv = priv;
738         (*callbacks_p)->next = NULL;
739
740         return ERROR_OK;
741 }
742
743 int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
744 {
745         target_event_callback_t **p = &target_event_callbacks;
746         target_event_callback_t *c = target_event_callbacks;
747
748         if (callback == NULL)
749         {
750                 return ERROR_INVALID_ARGUMENTS;
751         }
752
753         while (c)
754         {
755                 target_event_callback_t *next = c->next;
756                 if ((c->callback == callback) && (c->priv == priv))
757                 {
758                         *p = next;
759                         free(c);
760                         return ERROR_OK;
761                 }
762                 else
763                         p = &(c->next);
764                 c = next;
765         }
766
767         return ERROR_OK;
768 }
769
770 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
771 {
772         target_timer_callback_t **p = &target_timer_callbacks;
773         target_timer_callback_t *c = target_timer_callbacks;
774
775         if (callback == NULL)
776         {
777                 return ERROR_INVALID_ARGUMENTS;
778         }
779
780         while (c)
781         {
782                 target_timer_callback_t *next = c->next;
783                 if ((c->callback == callback) && (c->priv == priv))
784                 {
785                         *p = next;
786                         free(c);
787                         return ERROR_OK;
788                 }
789                 else
790                         p = &(c->next);
791                 c = next;
792         }
793
794         return ERROR_OK;
795 }
796
797 int target_call_event_callbacks(target_t *target, enum target_event event)
798 {
799         target_event_callback_t *callback = target_event_callbacks;
800         target_event_callback_t *next_callback;
801
802         if (event == TARGET_EVENT_HALTED)
803         {
804                 /* execute early halted first */
805                 target_call_event_callbacks(target, TARGET_EVENT_EARLY_HALTED);
806         }
807
808         LOG_DEBUG("target event %i (%s)",
809                           event,
810                           Jim_Nvp_value2name_simple( nvp_target_event, event )->name );
811
812         target_handle_event( target, event );
813
814         while (callback)
815         {
816                 next_callback = callback->next;
817                 callback->callback(target, event, callback->priv);
818                 callback = next_callback;
819         }
820
821         return ERROR_OK;
822 }
823
824 static int target_timer_callback_periodic_restart(
825                 target_timer_callback_t *cb, struct timeval *now)
826 {
827         int time_ms = cb->time_ms;
828         cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
829         time_ms -= (time_ms % 1000);
830         cb->when.tv_sec = now->tv_sec + time_ms / 1000;
831         if (cb->when.tv_usec > 1000000)
832         {
833                 cb->when.tv_usec = cb->when.tv_usec - 1000000;
834                 cb->when.tv_sec += 1;
835         }
836         return ERROR_OK;
837 }
838
839 static int target_call_timer_callback(target_timer_callback_t *cb,
840                 struct timeval *now)
841 {
842         cb->callback(cb->priv);
843
844         if (cb->periodic)
845                 return target_timer_callback_periodic_restart(cb, now);
846
847         return target_unregister_timer_callback(cb->callback, cb->priv);
848 }
849
850 static int target_call_timer_callbacks_check_time(int checktime)
851 {
852         keep_alive();
853
854         struct timeval now;
855         gettimeofday(&now, NULL);
856
857         target_timer_callback_t *callback = target_timer_callbacks;
858         while (callback)
859         {
860                 // cleaning up may unregister and free this callback
861                 target_timer_callback_t *next_callback = callback->next;
862
863                 bool call_it = callback->callback &&
864                         ((!checktime && callback->periodic) ||
865                           now.tv_sec > callback->when.tv_sec ||
866                          (now.tv_sec == callback->when.tv_sec &&
867                           now.tv_usec >= callback->when.tv_usec));
868
869                 if (call_it)
870                 {
871                         int retval = target_call_timer_callback(callback, &now);
872                         if (retval != ERROR_OK)
873                                 return retval;
874                 }
875
876                 callback = next_callback;
877         }
878
879         return ERROR_OK;
880 }
881
882 int target_call_timer_callbacks(void)
883 {
884         return target_call_timer_callbacks_check_time(1);
885 }
886
887 /* invoke periodic callbacks immediately */
888 int target_call_timer_callbacks_now(void)
889 {
890         return target_call_timer_callbacks_check_time(0);
891 }
892
893 int target_alloc_working_area(struct target_s *target, u32 size, working_area_t **area)
894 {
895         working_area_t *c = target->working_areas;
896         working_area_t *new_wa = NULL;
897
898         /* Reevaluate working area address based on MMU state*/
899         if (target->working_areas == NULL)
900         {
901                 int retval;
902                 int enabled;
903                 retval = target->type->mmu(target, &enabled);
904                 if (retval != ERROR_OK)
905                 {
906                         return retval;
907                 }
908                 if (enabled)
909                 {
910                         target->working_area = target->working_area_virt;
911                 }
912                 else
913                 {
914                         target->working_area = target->working_area_phys;
915                 }
916         }
917
918         /* only allocate multiples of 4 byte */
919         if (size % 4)
920         {
921                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes, padding");
922                 size = CEIL(size, 4);
923         }
924
925         /* see if there's already a matching working area */
926         while (c)
927         {
928                 if ((c->free) && (c->size == size))
929                 {
930                         new_wa = c;
931                         break;
932                 }
933                 c = c->next;
934         }
935
936         /* if not, allocate a new one */
937         if (!new_wa)
938         {
939                 working_area_t **p = &target->working_areas;
940                 u32 first_free = target->working_area;
941                 u32 free_size = target->working_area_size;
942
943                 LOG_DEBUG("allocating new working area");
944
945                 c = target->working_areas;
946                 while (c)
947                 {
948                         first_free += c->size;
949                         free_size -= c->size;
950                         p = &c->next;
951                         c = c->next;
952                 }
953
954                 if (free_size < size)
955                 {
956                         LOG_WARNING("not enough working area available(requested %d, free %d)", size, free_size);
957                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
958                 }
959
960                 new_wa = malloc(sizeof(working_area_t));
961                 new_wa->next = NULL;
962                 new_wa->size = size;
963                 new_wa->address = first_free;
964
965                 if (target->backup_working_area)
966                 {
967                         int retval;
968                         new_wa->backup = malloc(new_wa->size);
969                         if((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
970                         {
971                                 free(new_wa->backup);
972                                 free(new_wa);
973                                 return retval;
974                         }
975                 }
976                 else
977                 {
978                         new_wa->backup = NULL;
979                 }
980
981                 /* put new entry in list */
982                 *p = new_wa;
983         }
984
985         /* mark as used, and return the new (reused) area */
986         new_wa->free = 0;
987         *area = new_wa;
988
989         /* user pointer */
990         new_wa->user = area;
991
992         return ERROR_OK;
993 }
994
995 int target_free_working_area_restore(struct target_s *target, working_area_t *area, int restore)
996 {
997         if (area->free)
998                 return ERROR_OK;
999
1000         if (restore&&target->backup_working_area)
1001         {
1002                 int retval;
1003                 if((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
1004                         return retval;
1005         }
1006
1007         area->free = 1;
1008
1009         /* mark user pointer invalid */
1010         *area->user = NULL;
1011         area->user = NULL;
1012
1013         return ERROR_OK;
1014 }
1015
1016 int target_free_working_area(struct target_s *target, working_area_t *area)
1017 {
1018         return target_free_working_area_restore(target, area, 1);
1019 }
1020
1021 /* free resources and restore memory, if restoring memory fails,
1022  * free up resources anyway
1023  */
1024 void target_free_all_working_areas_restore(struct target_s *target, int restore)
1025 {
1026         working_area_t *c = target->working_areas;
1027
1028         while (c)
1029         {
1030                 working_area_t *next = c->next;
1031                 target_free_working_area_restore(target, c, restore);
1032
1033                 if (c->backup)
1034                         free(c->backup);
1035
1036                 free(c);
1037
1038                 c = next;
1039         }
1040
1041         target->working_areas = NULL;
1042 }
1043
1044 void target_free_all_working_areas(struct target_s *target)
1045 {
1046         target_free_all_working_areas_restore(target, 1);
1047 }
1048
1049 int target_register_commands(struct command_context_s *cmd_ctx)
1050 {
1051
1052         register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, "change the current command line target (one parameter) or lists targets (with no parameter)");
1053
1054
1055
1056
1057         register_jim(cmd_ctx, "target", jim_target, "configure target" );
1058
1059         return ERROR_OK;
1060 }
1061
1062 int target_arch_state(struct target_s *target)
1063 {
1064         int retval;
1065         if (target==NULL)
1066         {
1067                 LOG_USER("No target has been configured");
1068                 return ERROR_OK;
1069         }
1070
1071         LOG_USER("target state: %s",
1072                  Jim_Nvp_value2name_simple(nvp_target_state,target->state)->name);
1073
1074         if (target->state!=TARGET_HALTED)
1075                 return ERROR_OK;
1076
1077         retval=target->type->arch_state(target);
1078         return retval;
1079 }
1080
1081 /* Single aligned words are guaranteed to use 16 or 32 bit access
1082  * mode respectively, otherwise data is handled as quickly as
1083  * possible
1084  */
1085 int target_write_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
1086 {
1087         int retval;
1088         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x", size, address);
1089
1090         if (!target_was_examined(target))
1091         {
1092                 LOG_ERROR("Target not examined yet");
1093                 return ERROR_FAIL;
1094         }
1095
1096         if (size == 0) {
1097                 return ERROR_OK;
1098         }
1099
1100         if ((address + size - 1) < address)
1101         {
1102                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1103                 LOG_ERROR("address+size wrapped(0x%08x, 0x%08x)", address, size);
1104                 return ERROR_FAIL;
1105         }
1106
1107         if (((address % 2) == 0) && (size == 2))
1108         {
1109                 return target_write_memory(target, address, 2, 1, buffer);
1110         }
1111
1112         /* handle unaligned head bytes */
1113         if (address % 4)
1114         {
1115                 u32 unaligned = 4 - (address % 4);
1116
1117                 if (unaligned > size)
1118                         unaligned = size;
1119
1120                 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1121                         return retval;
1122
1123                 buffer += unaligned;
1124                 address += unaligned;
1125                 size -= unaligned;
1126         }
1127
1128         /* handle aligned words */
1129         if (size >= 4)
1130         {
1131                 int aligned = size - (size % 4);
1132
1133                 /* use bulk writes above a certain limit. This may have to be changed */
1134                 if (aligned > 128)
1135                 {
1136                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1137                                 return retval;
1138                 }
1139                 else
1140                 {
1141                         if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1142                                 return retval;
1143                 }
1144
1145                 buffer += aligned;
1146                 address += aligned;
1147                 size -= aligned;
1148         }
1149
1150         /* handle tail writes of less than 4 bytes */
1151         if (size > 0)
1152         {
1153                 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1154                         return retval;
1155         }
1156
1157         return ERROR_OK;
1158 }
1159
1160 /* Single aligned words are guaranteed to use 16 or 32 bit access
1161  * mode respectively, otherwise data is handled as quickly as
1162  * possible
1163  */
1164 int target_read_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
1165 {
1166         int retval;
1167         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x", size, address);
1168
1169         if (!target_was_examined(target))
1170         {
1171                 LOG_ERROR("Target not examined yet");
1172                 return ERROR_FAIL;
1173         }
1174
1175         if (size == 0) {
1176                 return ERROR_OK;
1177         }
1178
1179         if ((address + size - 1) < address)
1180         {
1181                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1182                 LOG_ERROR("address+size wrapped(0x%08x, 0x%08x)", address, size);
1183                 return ERROR_FAIL;
1184         }
1185
1186         if (((address % 2) == 0) && (size == 2))
1187         {
1188                 return target_read_memory(target, address, 2, 1, buffer);
1189         }
1190
1191         /* handle unaligned head bytes */
1192         if (address % 4)
1193         {
1194                 u32 unaligned = 4 - (address % 4);
1195
1196                 if (unaligned > size)
1197                         unaligned = size;
1198
1199                 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1200                         return retval;
1201
1202                 buffer += unaligned;
1203                 address += unaligned;
1204                 size -= unaligned;
1205         }
1206
1207         /* handle aligned words */
1208         if (size >= 4)
1209         {
1210                 int aligned = size - (size % 4);
1211
1212                 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1213                         return retval;
1214
1215                 buffer += aligned;
1216                 address += aligned;
1217                 size -= aligned;
1218         }
1219
1220         /* handle tail writes of less than 4 bytes */
1221         if (size > 0)
1222         {
1223                 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1224                         return retval;
1225         }
1226
1227         return ERROR_OK;
1228 }
1229
1230 int target_checksum_memory(struct target_s *target, u32 address, u32 size, u32* crc)
1231 {
1232         u8 *buffer;
1233         int retval;
1234         u32 i;
1235         u32 checksum = 0;
1236         if (!target_was_examined(target))
1237         {
1238                 LOG_ERROR("Target not examined yet");
1239                 return ERROR_FAIL;
1240         }
1241
1242         if ((retval = target->type->checksum_memory(target, address,
1243                 size, &checksum)) != ERROR_OK)
1244         {
1245                 buffer = malloc(size);
1246                 if (buffer == NULL)
1247                 {
1248                         LOG_ERROR("error allocating buffer for section (%d bytes)", size);
1249                         return ERROR_INVALID_ARGUMENTS;
1250                 }
1251                 retval = target_read_buffer(target, address, size, buffer);
1252                 if (retval != ERROR_OK)
1253                 {
1254                         free(buffer);
1255                         return retval;
1256                 }
1257
1258                 /* convert to target endianess */
1259                 for (i = 0; i < (size/sizeof(u32)); i++)
1260                 {
1261                         u32 target_data;
1262                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(u32)]);
1263                         target_buffer_set_u32(target, &buffer[i*sizeof(u32)], target_data);
1264                 }
1265
1266                 retval = image_calculate_checksum( buffer, size, &checksum );
1267                 free(buffer);
1268         }
1269
1270         *crc = checksum;
1271
1272         return retval;
1273 }
1274
1275 int target_blank_check_memory(struct target_s *target, u32 address, u32 size, u32* blank)
1276 {
1277         int retval;
1278         if (!target_was_examined(target))
1279         {
1280                 LOG_ERROR("Target not examined yet");
1281                 return ERROR_FAIL;
1282         }
1283
1284         if (target->type->blank_check_memory == 0)
1285                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1286
1287         retval = target->type->blank_check_memory(target, address, size, blank);
1288
1289         return retval;
1290 }
1291
1292 int target_read_u32(struct target_s *target, u32 address, u32 *value)
1293 {
1294         u8 value_buf[4];
1295         if (!target_was_examined(target))
1296         {
1297                 LOG_ERROR("Target not examined yet");
1298                 return ERROR_FAIL;
1299         }
1300
1301         int retval = target_read_memory(target, address, 4, 1, value_buf);
1302
1303         if (retval == ERROR_OK)
1304         {
1305                 *value = target_buffer_get_u32(target, value_buf);
1306                 LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, *value);
1307         }
1308         else
1309         {
1310                 *value = 0x0;
1311                 LOG_DEBUG("address: 0x%8.8x failed", address);
1312         }
1313
1314         return retval;
1315 }
1316
1317 int target_read_u16(struct target_s *target, u32 address, u16 *value)
1318 {
1319         u8 value_buf[2];
1320         if (!target_was_examined(target))
1321         {
1322                 LOG_ERROR("Target not examined yet");
1323                 return ERROR_FAIL;
1324         }
1325
1326         int retval = target_read_memory(target, address, 2, 1, value_buf);
1327
1328         if (retval == ERROR_OK)
1329         {
1330                 *value = target_buffer_get_u16(target, value_buf);
1331                 LOG_DEBUG("address: 0x%8.8x, value: 0x%4.4x", address, *value);
1332         }
1333         else
1334         {
1335                 *value = 0x0;
1336                 LOG_DEBUG("address: 0x%8.8x failed", address);
1337         }
1338
1339         return retval;
1340 }
1341
1342 int target_read_u8(struct target_s *target, u32 address, u8 *value)
1343 {
1344         int retval = target_read_memory(target, address, 1, 1, value);
1345         if (!target_was_examined(target))
1346         {
1347                 LOG_ERROR("Target not examined yet");
1348                 return ERROR_FAIL;
1349         }
1350
1351         if (retval == ERROR_OK)
1352         {
1353                 LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, *value);
1354         }
1355         else
1356         {
1357                 *value = 0x0;
1358                 LOG_DEBUG("address: 0x%8.8x failed", address);
1359         }
1360
1361         return retval;
1362 }
1363
1364 int target_write_u32(struct target_s *target, u32 address, u32 value)
1365 {
1366         int retval;
1367         u8 value_buf[4];
1368         if (!target_was_examined(target))
1369         {
1370                 LOG_ERROR("Target not examined yet");
1371                 return ERROR_FAIL;
1372         }
1373
1374         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1375
1376         target_buffer_set_u32(target, value_buf, value);
1377         if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1378         {
1379                 LOG_DEBUG("failed: %i", retval);
1380         }
1381
1382         return retval;
1383 }
1384
1385 int target_write_u16(struct target_s *target, u32 address, u16 value)
1386 {
1387         int retval;
1388         u8 value_buf[2];
1389         if (!target_was_examined(target))
1390         {
1391                 LOG_ERROR("Target not examined yet");
1392                 return ERROR_FAIL;
1393         }
1394
1395         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1396
1397         target_buffer_set_u16(target, value_buf, value);
1398         if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1399         {
1400                 LOG_DEBUG("failed: %i", retval);
1401         }
1402
1403         return retval;
1404 }
1405
1406 int target_write_u8(struct target_s *target, u32 address, u8 value)
1407 {
1408         int retval;
1409         if (!target_was_examined(target))
1410         {
1411                 LOG_ERROR("Target not examined yet");
1412                 return ERROR_FAIL;
1413         }
1414
1415         LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, value);
1416
1417         if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1418         {
1419                 LOG_DEBUG("failed: %i", retval);
1420         }
1421
1422         return retval;
1423 }
1424
1425 int target_register_user_commands(struct command_context_s *cmd_ctx)
1426 {
1427         int retval = ERROR_OK;
1428
1429
1430         /* script procedures */
1431         register_command(cmd_ctx, NULL, "profile", handle_profile_command, COMMAND_EXEC, "profiling samples the CPU PC");
1432         register_jim(cmd_ctx, "ocd_mem2array", jim_mem2array, "read memory and return as a TCL array for script processing <ARRAYNAME> <WIDTH=32/16/8> <ADDRESS> <COUNT>");
1433         register_jim(cmd_ctx, "ocd_array2mem", jim_array2mem, "convert a TCL array to memory locations and write the values  <ARRAYNAME> <WIDTH=32/16/8> <ADDRESS> <COUNT>");
1434
1435         register_command(cmd_ctx, NULL, "fast_load_image", handle_fast_load_image_command, COMMAND_ANY,
1436                         "same args as load_image, image stored in memory - mainly for profiling purposes");
1437
1438         register_command(cmd_ctx, NULL, "fast_load", handle_fast_load_command, COMMAND_ANY,
1439                         "loads active fast load image to current target - mainly for profiling purposes");
1440
1441
1442         register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "translate a virtual address into a physical address");
1443         register_command(cmd_ctx,  NULL, "reg", handle_reg_command, COMMAND_EXEC, "display or set a register");
1444         register_command(cmd_ctx,  NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state");
1445         register_command(cmd_ctx,  NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]");
1446         register_command(cmd_ctx,  NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target");
1447         register_command(cmd_ctx,  NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]");
1448         register_command(cmd_ctx,  NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]");
1449         register_command(cmd_ctx,  NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run|halt|init] - default is run");
1450         register_command(cmd_ctx,  NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset");
1451
1452         register_command(cmd_ctx,  NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words <addr> [count]");
1453         register_command(cmd_ctx,  NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words <addr> [count]");
1454         register_command(cmd_ctx,  NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes <addr> [count]");
1455
1456         register_command(cmd_ctx,  NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word <addr> <value> [count]");
1457         register_command(cmd_ctx,  NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word <addr> <value> [count]");
1458         register_command(cmd_ctx,  NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte <addr> <value> [count]");
1459
1460         register_command(cmd_ctx,  NULL, "bp", handle_bp_command, COMMAND_EXEC, "set breakpoint <address> <length> [hw]");
1461         register_command(cmd_ctx,  NULL, "rbp", handle_rbp_command, COMMAND_EXEC, "remove breakpoint <adress>");
1462         register_command(cmd_ctx,  NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint <address> <length> <r/w/a> [value] [mask]");
1463         register_command(cmd_ctx,  NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint <adress>");
1464
1465         register_command(cmd_ctx,  NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> ['bin'|'ihex'|'elf'|'s19'] [min_address] [max_length]");
1466         register_command(cmd_ctx,  NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>");
1467         register_command(cmd_ctx,  NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image <file> [offset] [type]");
1468         register_command(cmd_ctx,  NULL, "test_image", handle_test_image_command, COMMAND_EXEC, "test_image <file> [offset] [type]");
1469
1470         if((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
1471                 return retval;
1472         if((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
1473                 return retval;
1474
1475         return retval;
1476 }
1477
1478 static int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1479 {
1480         target_t *target = all_targets;
1481
1482         if (argc == 1)
1483         {
1484                 target = get_target(args[0]);
1485                 if (target == NULL) {
1486                         command_print(cmd_ctx,"Target: %s is unknown, try one of:\n", args[0] );
1487                         goto DumpTargets;
1488                 }
1489                 if (!target->tap->enabled) {
1490                         command_print(cmd_ctx,"Target: TAP %s is disabled, "
1491                                         "can't be the current target\n",
1492                                         target->tap->dotted_name);
1493                         return ERROR_FAIL;
1494                 }
1495
1496                 cmd_ctx->current_target = target->target_number;
1497                 return ERROR_OK;
1498         }
1499 DumpTargets:
1500
1501         target = all_targets;
1502         command_print(cmd_ctx, "    TargetName         Type       Endian TapName            State       ");
1503         command_print(cmd_ctx, "--  ------------------ ---------- ------ ------------------ ------------");
1504         while (target)
1505         {
1506                 const char *state;
1507                 char marker = ' ';
1508
1509                 if (target->tap->enabled)
1510                         state = Jim_Nvp_value2name_simple(nvp_target_state,
1511                                         target->state)->name;
1512                 else
1513                         state = "tap-disabled";
1514
1515                 if (cmd_ctx->current_target == target->target_number)
1516                         marker = '*';
1517
1518                 /* keep columns lined up to match the headers above */
1519                 command_print(cmd_ctx, "%2d%c %-18s %-10s %-6s %-18s %s",
1520                                           target->target_number,
1521                                           marker,
1522                                           target->cmd_name,
1523                                           target_get_name(target),
1524                                           Jim_Nvp_value2name_simple(nvp_target_endian,
1525                                                                 target->endianness)->name,
1526                                           target->tap->dotted_name,
1527                                           state);
1528                 target = target->next;
1529         }
1530
1531         return ERROR_OK;
1532 }
1533
1534 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1535
1536 static int powerDropout;
1537 static int srstAsserted;
1538
1539 static int runPowerRestore;
1540 static int runPowerDropout;
1541 static int runSrstAsserted;
1542 static int runSrstDeasserted;
1543
1544 static int sense_handler(void)
1545 {
1546         static int prevSrstAsserted = 0;
1547         static int prevPowerdropout = 0;
1548
1549         int retval;
1550         if ((retval=jtag_power_dropout(&powerDropout))!=ERROR_OK)
1551                 return retval;
1552
1553         int powerRestored;
1554         powerRestored = prevPowerdropout && !powerDropout;
1555         if (powerRestored)
1556         {
1557                 runPowerRestore = 1;
1558         }
1559
1560         long long current = timeval_ms();
1561         static long long lastPower = 0;
1562         int waitMore = lastPower + 2000 > current;
1563         if (powerDropout && !waitMore)
1564         {
1565                 runPowerDropout = 1;
1566                 lastPower = current;
1567         }
1568
1569         if ((retval=jtag_srst_asserted(&srstAsserted))!=ERROR_OK)
1570                 return retval;
1571
1572         int srstDeasserted;
1573         srstDeasserted = prevSrstAsserted && !srstAsserted;
1574
1575         static long long lastSrst = 0;
1576         waitMore = lastSrst + 2000 > current;
1577         if (srstDeasserted && !waitMore)
1578         {
1579                 runSrstDeasserted = 1;
1580                 lastSrst = current;
1581         }
1582
1583         if (!prevSrstAsserted && srstAsserted)
1584         {
1585                 runSrstAsserted = 1;
1586         }
1587
1588         prevSrstAsserted = srstAsserted;
1589         prevPowerdropout = powerDropout;
1590
1591         if (srstDeasserted || powerRestored)
1592         {
1593                 /* Other than logging the event we can't do anything here.
1594                  * Issuing a reset is a particularly bad idea as we might
1595                  * be inside a reset already.
1596                  */
1597         }
1598
1599         return ERROR_OK;
1600 }
1601
1602 /* process target state changes */
1603 int handle_target(void *priv)
1604 {
1605         int retval = ERROR_OK;
1606
1607         /* we do not want to recurse here... */
1608         static int recursive = 0;
1609         if (! recursive)
1610         {
1611                 recursive = 1;
1612                 sense_handler();
1613                 /* danger! running these procedures can trigger srst assertions and power dropouts.
1614                  * We need to avoid an infinite loop/recursion here and we do that by
1615                  * clearing the flags after running these events.
1616                  */
1617                 int did_something = 0;
1618                 if (runSrstAsserted)
1619                 {
1620                         Jim_Eval( interp, "srst_asserted");
1621                         did_something = 1;
1622                 }
1623                 if (runSrstDeasserted)
1624                 {
1625                         Jim_Eval( interp, "srst_deasserted");
1626                         did_something = 1;
1627                 }
1628                 if (runPowerDropout)
1629                 {
1630                         Jim_Eval( interp, "power_dropout");
1631                         did_something = 1;
1632                 }
1633                 if (runPowerRestore)
1634                 {
1635                         Jim_Eval( interp, "power_restore");
1636                         did_something = 1;
1637                 }
1638
1639                 if (did_something)
1640                 {
1641                         /* clear detect flags */
1642                         sense_handler();
1643                 }
1644
1645                 /* clear action flags */
1646
1647                 runSrstAsserted=0;
1648                 runSrstDeasserted=0;
1649                 runPowerRestore=0;
1650                 runPowerDropout=0;
1651
1652                 recursive = 0;
1653         }
1654
1655         target_t *target = all_targets;
1656
1657         while (target)
1658         {
1659
1660                 /* only poll target if we've got power and srst isn't asserted */
1661                 if (target_continous_poll&&!powerDropout&&!srstAsserted)
1662                 {
1663                         /* polling may fail silently until the target has been examined */
1664                         if((retval = target_poll(target)) != ERROR_OK)
1665                                 return retval;
1666                 }
1667
1668                 target = target->next;
1669         }
1670
1671         return retval;
1672 }
1673
1674 static int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1675 {
1676         target_t *target;
1677         reg_t *reg = NULL;
1678         int count = 0;
1679         char *value;
1680
1681         LOG_DEBUG("-");
1682
1683         target = get_current_target(cmd_ctx);
1684
1685         /* list all available registers for the current target */
1686         if (argc == 0)
1687         {
1688                 reg_cache_t *cache = target->reg_cache;
1689
1690                 count = 0;
1691                 while(cache)
1692                 {
1693                         int i;
1694                         for (i = 0; i < cache->num_regs; i++)
1695                         {
1696                                 value = buf_to_str(cache->reg_list[i].value, cache->reg_list[i].size, 16);
1697                                 command_print(cmd_ctx, "(%i) %s (/%i): 0x%s (dirty: %i, valid: %i)", count++, cache->reg_list[i].name, cache->reg_list[i].size, value, cache->reg_list[i].dirty, cache->reg_list[i].valid);
1698                                 free(value);
1699                         }
1700                         cache = cache->next;
1701                 }
1702
1703                 return ERROR_OK;
1704         }
1705
1706         /* access a single register by its ordinal number */
1707         if ((args[0][0] >= '0') && (args[0][0] <= '9'))
1708         {
1709                 int num = strtoul(args[0], NULL, 0);
1710                 reg_cache_t *cache = target->reg_cache;
1711
1712                 count = 0;
1713                 while(cache)
1714                 {
1715                         int i;
1716                         for (i = 0; i < cache->num_regs; i++)
1717                         {
1718                                 if (count++ == num)
1719                                 {
1720                                         reg = &cache->reg_list[i];
1721                                         break;
1722                                 }
1723                         }
1724                         if (reg)
1725                                 break;
1726                         cache = cache->next;
1727                 }
1728
1729                 if (!reg)
1730                 {
1731                         command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1732                         return ERROR_OK;
1733                 }
1734         } else /* access a single register by its name */
1735         {
1736                 reg = register_get_by_name(target->reg_cache, args[0], 1);
1737
1738                 if (!reg)
1739                 {
1740                         command_print(cmd_ctx, "register %s not found in current target", args[0]);
1741                         return ERROR_OK;
1742                 }
1743         }
1744
1745         /* display a register */
1746         if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
1747         {
1748                 if ((argc == 2) && (strcmp(args[1], "force") == 0))
1749                         reg->valid = 0;
1750
1751                 if (reg->valid == 0)
1752                 {
1753                         reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1754                         arch_type->get(reg);
1755                 }
1756                 value = buf_to_str(reg->value, reg->size, 16);
1757                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1758                 free(value);
1759                 return ERROR_OK;
1760         }
1761
1762         /* set register value */
1763         if (argc == 2)
1764         {
1765                 u8 *buf = malloc(CEIL(reg->size, 8));
1766                 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
1767
1768                 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1769                 arch_type->set(reg, buf);
1770
1771                 value = buf_to_str(reg->value, reg->size, 16);
1772                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1773                 free(value);
1774
1775                 free(buf);
1776
1777                 return ERROR_OK;
1778         }
1779
1780         command_print(cmd_ctx, "usage: reg <#|name> [value]");
1781
1782         return ERROR_OK;
1783 }
1784
1785 static int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1786 {
1787         int retval = ERROR_OK;
1788         target_t *target = get_current_target(cmd_ctx);
1789
1790         if (argc == 0)
1791         {
1792                 command_print(cmd_ctx, "background polling: %s",
1793                                 target_continous_poll ?  "on" : "off");
1794                 if ((retval = target_poll(target)) != ERROR_OK)
1795                         return retval;
1796                 if ((retval = target_arch_state(target)) != ERROR_OK)
1797                         return retval;
1798
1799         }
1800         else if (argc==1)
1801         {
1802                 if (strcmp(args[0], "on") == 0)
1803                 {
1804                         target_continous_poll = 1;
1805                 }
1806                 else if (strcmp(args[0], "off") == 0)
1807                 {
1808                         target_continous_poll = 0;
1809                 }
1810                 else
1811                 {
1812                         command_print(cmd_ctx, "arg is \"on\" or \"off\"");
1813                 }
1814         } else
1815         {
1816                 return ERROR_COMMAND_SYNTAX_ERROR;
1817         }
1818
1819         return retval;
1820 }
1821
1822 static int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1823 {
1824         int ms = 5000;
1825
1826         if (argc > 0)
1827         {
1828                 char *end;
1829
1830                 ms = strtoul(args[0], &end, 0) * 1000;
1831                 if (*end)
1832                 {
1833                         command_print(cmd_ctx, "usage: %s [seconds]", cmd);
1834                         return ERROR_OK;
1835                 }
1836         }
1837         target_t *target = get_current_target(cmd_ctx);
1838
1839         return target_wait_state(target, TARGET_HALTED, ms);
1840 }
1841
1842 /* wait for target state to change. The trick here is to have a low
1843  * latency for short waits and not to suck up all the CPU time
1844  * on longer waits.
1845  *
1846  * After 500ms, keep_alive() is invoked
1847  */
1848 int target_wait_state(target_t *target, enum target_state state, int ms)
1849 {
1850         int retval;
1851         long long then=0, cur;
1852         int once=1;
1853
1854         for (;;)
1855         {
1856                 if ((retval=target_poll(target))!=ERROR_OK)
1857                         return retval;
1858                 if (target->state == state)
1859                 {
1860                         break;
1861                 }
1862                 cur = timeval_ms();
1863                 if (once)
1864                 {
1865                         once=0;
1866                         then = timeval_ms();
1867                         LOG_DEBUG("waiting for target %s...",
1868                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
1869                 }
1870
1871                 if (cur-then>500)
1872                 {
1873                         keep_alive();
1874                 }
1875
1876                 if ((cur-then)>ms)
1877                 {
1878                         LOG_ERROR("timed out while waiting for target %s",
1879                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
1880                         return ERROR_FAIL;
1881                 }
1882         }
1883
1884         return ERROR_OK;
1885 }
1886
1887 static int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1888 {
1889         int retval;
1890         target_t *target = get_current_target(cmd_ctx);
1891
1892         LOG_DEBUG("-");
1893
1894         if ((retval = target_halt(target)) != ERROR_OK)
1895         {
1896                 return retval;
1897         }
1898
1899         if (argc == 1)
1900         {
1901                 int wait;
1902                 char *end;
1903
1904                 wait = strtoul(args[0], &end, 0);
1905                 if (!*end && !wait)
1906                         return ERROR_OK;
1907         }
1908
1909         return handle_wait_halt_command(cmd_ctx, cmd, args, argc);
1910 }
1911
1912 static int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1913 {
1914         target_t *target = get_current_target(cmd_ctx);
1915
1916         LOG_USER("requesting target halt and executing a soft reset");
1917
1918         target->type->soft_reset_halt(target);
1919
1920         return ERROR_OK;
1921 }
1922
1923 static int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1924 {
1925         if (argc > 1)
1926                 return ERROR_COMMAND_SYNTAX_ERROR;
1927
1928         enum target_reset_mode reset_mode = RESET_RUN;
1929         if (argc == 1)
1930         {
1931                 const Jim_Nvp *n;
1932                 n = Jim_Nvp_name2value_simple( nvp_reset_modes, args[0] );
1933                 if( (n->name == NULL) || (n->value == RESET_UNKNOWN) ){
1934                         return ERROR_COMMAND_SYNTAX_ERROR;
1935                 }
1936                 reset_mode = n->value;
1937         }
1938
1939         /* reset *all* targets */
1940         return target_process_reset(cmd_ctx, reset_mode);
1941 }
1942
1943
1944 static int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1945 {
1946         if (argc > 1)
1947                 return ERROR_COMMAND_SYNTAX_ERROR;
1948
1949         target_t *target = get_current_target(cmd_ctx);
1950         target_handle_event(target, TARGET_EVENT_OLD_pre_resume);
1951
1952         /* with no args, resume from current pc, addr = 0,
1953          * with one arguments, addr = args[0],
1954          * handle breakpoints, not debugging */
1955         u32 addr = 0;
1956         if (argc == 1)
1957                 addr = strtoul(args[0], NULL, 0);
1958
1959         return target_resume(target, 0, addr, 1, 0);
1960 }
1961
1962 static int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1963 {
1964         if (argc > 1)
1965                 return ERROR_COMMAND_SYNTAX_ERROR;
1966
1967         LOG_DEBUG("-");
1968
1969         /* with no args, step from current pc, addr = 0,
1970          * with one argument addr = args[0],
1971          * handle breakpoints, debugging */
1972         u32 addr = 0;
1973         if (argc == 1)
1974                 addr = strtoul(args[0], NULL, 0);
1975
1976         target_t *target = get_current_target(cmd_ctx);
1977         return target->type->step(target, 0, addr, 1);
1978 }
1979
1980 static void handle_md_output(struct command_context_s *cmd_ctx,
1981                 struct target_s *target, u32 address, unsigned size,
1982                 unsigned count, const u8 *buffer)
1983 {
1984         const unsigned line_bytecnt = 32;
1985         unsigned line_modulo = line_bytecnt / size;
1986
1987         char output[line_bytecnt * 4 + 1];
1988         unsigned output_len = 0;
1989
1990         const char *value_fmt;
1991         switch (size) {
1992         case 4: value_fmt = "%8.8x "; break;
1993         case 2: value_fmt = "%4.2x "; break;
1994         case 1: value_fmt = "%2.2x "; break;
1995         default:
1996                 LOG_ERROR("invalid memory read size: %u", size);
1997                 exit(-1);
1998         }
1999
2000         for (unsigned i = 0; i < count; i++)
2001         {
2002                 if (i % line_modulo == 0)
2003                 {
2004                         output_len += snprintf(output + output_len,
2005                                         sizeof(output) - output_len,
2006                                         "0x%8.8x: ", address + (i*size));
2007                 }
2008
2009                 u32 value=0;
2010                 const u8 *value_ptr = buffer + i * size;
2011                 switch (size) {
2012                 case 4: value = target_buffer_get_u32(target, value_ptr); break;
2013                 case 2: value = target_buffer_get_u16(target, value_ptr); break;
2014                 case 1: value = *value_ptr;
2015                 }
2016                 output_len += snprintf(output + output_len,
2017                                 sizeof(output) - output_len,
2018                                 value_fmt, value);
2019
2020                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
2021                 {
2022                         command_print(cmd_ctx, "%s", output);
2023                         output_len = 0;
2024                 }
2025         }
2026 }
2027
2028 static int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2029 {
2030         if (argc < 1)
2031                 return ERROR_COMMAND_SYNTAX_ERROR;
2032
2033         unsigned size = 0;
2034         switch (cmd[2]) {
2035         case 'w': size = 4; break;
2036         case 'h': size = 2; break;
2037         case 'b': size = 1; break;
2038         default: return ERROR_COMMAND_SYNTAX_ERROR;
2039         }
2040
2041         u32 address = strtoul(args[0], NULL, 0);
2042
2043         unsigned count = 1;
2044         if (argc == 2)
2045                 count = strtoul(args[1], NULL, 0);
2046
2047         u8 *buffer = calloc(count, size);
2048
2049         target_t *target = get_current_target(cmd_ctx);
2050         int retval = target_read_memory(target,
2051                                 address, size, count, buffer);
2052         if (ERROR_OK == retval)
2053                 handle_md_output(cmd_ctx, target, address, size, count, buffer);
2054
2055         free(buffer);
2056
2057         return retval;
2058 }
2059
2060 static int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2061 {
2062         u32 address = 0;
2063         u32 value = 0;
2064         int count = 1;
2065         int i;
2066         int wordsize;
2067         target_t *target = get_current_target(cmd_ctx);
2068         u8 value_buf[4];
2069
2070          if ((argc < 2) || (argc > 3))
2071                 return ERROR_COMMAND_SYNTAX_ERROR;
2072
2073         address = strtoul(args[0], NULL, 0);
2074         value = strtoul(args[1], NULL, 0);
2075         if (argc == 3)
2076                 count = strtoul(args[2], NULL, 0);
2077
2078         switch (cmd[2])
2079         {
2080                 case 'w':
2081                         wordsize = 4;
2082                         target_buffer_set_u32(target, value_buf, value);
2083                         break;
2084                 case 'h':
2085                         wordsize = 2;
2086                         target_buffer_set_u16(target, value_buf, value);
2087                         break;
2088                 case 'b':
2089                         wordsize = 1;
2090                         value_buf[0] = value;
2091                         break;
2092                 default:
2093                         return ERROR_COMMAND_SYNTAX_ERROR;
2094         }
2095         for (i=0; i<count; i++)
2096         {
2097                 int retval = target_write_memory(target,
2098                                 address + i * wordsize, wordsize, 1, value_buf);
2099                 if (ERROR_OK != retval)
2100                         return retval;
2101                 keep_alive();
2102         }
2103
2104         return ERROR_OK;
2105
2106 }
2107
2108 static int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2109 {
2110         u8 *buffer;
2111         u32 buf_cnt;
2112         u32 image_size;
2113         u32 min_address=0;
2114         u32 max_address=0xffffffff;
2115         int i;
2116         int retval, retvaltemp;
2117
2118         image_t image;
2119
2120         duration_t duration;
2121         char *duration_text;
2122
2123         target_t *target = get_current_target(cmd_ctx);
2124
2125         if ((argc < 1)||(argc > 5))
2126         {
2127                 return ERROR_COMMAND_SYNTAX_ERROR;
2128         }
2129
2130         /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
2131         if (argc >= 2)
2132         {
2133                 image.base_address_set = 1;
2134                 image.base_address = strtoul(args[1], NULL, 0);
2135         }
2136         else
2137         {
2138                 image.base_address_set = 0;
2139         }
2140
2141
2142         image.start_address_set = 0;
2143
2144         if (argc>=4)
2145         {
2146                 min_address=strtoul(args[3], NULL, 0);
2147         }
2148         if (argc>=5)
2149         {
2150                 max_address=strtoul(args[4], NULL, 0)+min_address;
2151         }
2152
2153         if (min_address>max_address)
2154         {
2155                 return ERROR_COMMAND_SYNTAX_ERROR;
2156         }
2157
2158         duration_start_measure(&duration);
2159
2160         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
2161         {
2162                 return ERROR_OK;
2163         }
2164
2165         image_size = 0x0;
2166         retval = ERROR_OK;
2167         for (i = 0; i < image.num_sections; i++)
2168         {
2169                 buffer = malloc(image.sections[i].size);
2170                 if (buffer == NULL)
2171                 {
2172                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2173                         break;
2174                 }
2175
2176                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2177                 {
2178                         free(buffer);
2179                         break;
2180                 }
2181
2182                 u32 offset=0;
2183                 u32 length=buf_cnt;
2184
2185                 /* DANGER!!! beware of unsigned comparision here!!! */
2186
2187                 if ((image.sections[i].base_address+buf_cnt>=min_address)&&
2188                                 (image.sections[i].base_address<max_address))
2189                 {
2190                         if (image.sections[i].base_address<min_address)
2191                         {
2192                                 /* clip addresses below */
2193                                 offset+=min_address-image.sections[i].base_address;
2194                                 length-=offset;
2195                         }
2196
2197                         if (image.sections[i].base_address+buf_cnt>max_address)
2198                         {
2199                                 length-=(image.sections[i].base_address+buf_cnt)-max_address;
2200                         }
2201
2202                         if ((retval = target_write_buffer(target, image.sections[i].base_address+offset, length, buffer+offset)) != ERROR_OK)
2203                         {
2204                                 free(buffer);
2205                                 break;
2206                         }
2207                         image_size += length;
2208                         command_print(cmd_ctx, "%u byte written at address 0x%8.8x", length, image.sections[i].base_address+offset);
2209                 }
2210
2211                 free(buffer);
2212         }
2213
2214         if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2215         {
2216                 image_close(&image);
2217                 return retvaltemp;
2218         }
2219
2220         if (retval==ERROR_OK)
2221         {
2222                 command_print(cmd_ctx, "downloaded %u byte in %s", image_size, duration_text);
2223         }
2224         free(duration_text);
2225
2226         image_close(&image);
2227
2228         return retval;
2229
2230 }
2231
2232 static int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2233 {
2234         fileio_t fileio;
2235
2236         u32 address;
2237         u32 size;
2238         u8 buffer[560];
2239         int retval=ERROR_OK, retvaltemp;
2240
2241         duration_t duration;
2242         char *duration_text;
2243
2244         target_t *target = get_current_target(cmd_ctx);
2245
2246         if (argc != 3)
2247         {
2248                 command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
2249                 return ERROR_OK;
2250         }
2251
2252         address = strtoul(args[1], NULL, 0);
2253         size = strtoul(args[2], NULL, 0);
2254
2255         if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2256         {
2257                 return ERROR_OK;
2258         }
2259
2260         duration_start_measure(&duration);
2261
2262         while (size > 0)
2263         {
2264                 u32 size_written;
2265                 u32 this_run_size = (size > 560) ? 560 : size;
2266
2267                 retval = target_read_buffer(target, address, this_run_size, buffer);
2268                 if (retval != ERROR_OK)
2269                 {
2270                         break;
2271                 }
2272
2273                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2274                 if (retval != ERROR_OK)
2275                 {
2276                         break;
2277                 }
2278
2279                 size -= this_run_size;
2280                 address += this_run_size;
2281         }
2282
2283         if((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2284                 return retvaltemp;
2285
2286         if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2287                 return retvaltemp;
2288
2289         if (retval==ERROR_OK)
2290         {
2291                 command_print(cmd_ctx, "dumped %lld byte in %s",
2292                                 fileio.size, duration_text);
2293                 free(duration_text);
2294         }
2295
2296         return retval;
2297 }
2298
2299 static int handle_verify_image_command_internal(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc, int verify)
2300 {
2301         u8 *buffer;
2302         u32 buf_cnt;
2303         u32 image_size;
2304         int i;
2305         int retval, retvaltemp;
2306         u32 checksum = 0;
2307         u32 mem_checksum = 0;
2308
2309         image_t image;
2310
2311         duration_t duration;
2312         char *duration_text;
2313
2314         target_t *target = get_current_target(cmd_ctx);
2315
2316         if (argc < 1)
2317         {
2318                 return ERROR_COMMAND_SYNTAX_ERROR;
2319         }
2320
2321         if (!target)
2322         {
2323                 LOG_ERROR("no target selected");
2324                 return ERROR_FAIL;
2325         }
2326
2327         duration_start_measure(&duration);
2328
2329         if (argc >= 2)
2330         {
2331                 image.base_address_set = 1;
2332                 image.base_address = strtoul(args[1], NULL, 0);
2333         }
2334         else
2335         {
2336                 image.base_address_set = 0;
2337                 image.base_address = 0x0;
2338         }
2339
2340         image.start_address_set = 0;
2341
2342         if ((retval=image_open(&image, args[0], (argc == 3) ? args[2] : NULL)) != ERROR_OK)
2343         {
2344                 return retval;
2345         }
2346
2347         image_size = 0x0;
2348         retval=ERROR_OK;
2349         for (i = 0; i < image.num_sections; i++)
2350         {
2351                 buffer = malloc(image.sections[i].size);
2352                 if (buffer == NULL)
2353                 {
2354                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2355                         break;
2356                 }
2357                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2358                 {
2359                         free(buffer);
2360                         break;
2361                 }
2362
2363                 if (verify)
2364                 {
2365                         /* calculate checksum of image */
2366                         image_calculate_checksum( buffer, buf_cnt, &checksum );
2367
2368                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2369                         if( retval != ERROR_OK )
2370                         {
2371                                 free(buffer);
2372                                 break;
2373                         }
2374
2375                         if( checksum != mem_checksum )
2376                         {
2377                                 /* failed crc checksum, fall back to a binary compare */
2378                                 u8 *data;
2379
2380                                 command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
2381
2382                                 data = (u8*)malloc(buf_cnt);
2383
2384                                 /* Can we use 32bit word accesses? */
2385                                 int size = 1;
2386                                 int count = buf_cnt;
2387                                 if ((count % 4) == 0)
2388                                 {
2389                                         size *= 4;
2390                                         count /= 4;
2391                                 }
2392                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2393                                 if (retval == ERROR_OK)
2394                                 {
2395                                         u32 t;
2396                                         for (t = 0; t < buf_cnt; t++)
2397                                         {
2398                                                 if (data[t] != buffer[t])
2399                                                 {
2400                                                         command_print(cmd_ctx, "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n", t + image.sections[i].base_address, data[t], buffer[t]);
2401                                                         free(data);
2402                                                         free(buffer);
2403                                                         retval=ERROR_FAIL;
2404                                                         goto done;
2405                                                 }
2406                                                 if ((t%16384)==0)
2407                                                 {
2408                                                         keep_alive();
2409                                                 }
2410                                         }
2411                                 }
2412
2413                                 free(data);
2414                         }
2415                 } else
2416                 {
2417                         command_print(cmd_ctx, "address 0x%08x length 0x%08x", image.sections[i].base_address, buf_cnt);
2418                 }
2419
2420                 free(buffer);
2421                 image_size += buf_cnt;
2422         }
2423 done:
2424
2425         if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2426         {
2427                 image_close(&image);
2428                 return retvaltemp;
2429         }
2430
2431         if (retval==ERROR_OK)
2432         {
2433                 command_print(cmd_ctx, "verified %u bytes in %s", image_size, duration_text);
2434         }
2435         free(duration_text);
2436
2437         image_close(&image);
2438
2439         return retval;
2440 }
2441
2442 static int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2443 {
2444         return handle_verify_image_command_internal(cmd_ctx, cmd, args, argc, 1);
2445 }
2446
2447 static int handle_test_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2448 {
2449         return handle_verify_image_command_internal(cmd_ctx, cmd, args, argc, 0);
2450 }
2451
2452 static int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2453 {
2454         int retval;
2455         target_t *target = get_current_target(cmd_ctx);
2456
2457         if (argc == 0)
2458         {
2459                 breakpoint_t *breakpoint = target->breakpoints;
2460
2461                 while (breakpoint)
2462                 {
2463                         if (breakpoint->type == BKPT_SOFT)
2464                         {
2465                                 char* buf = buf_to_str(breakpoint->orig_instr, breakpoint->length, 16);
2466                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i, 0x%s", breakpoint->address, breakpoint->length, breakpoint->set, buf);
2467                                 free(buf);
2468                         }
2469                         else
2470                         {
2471                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i", breakpoint->address, breakpoint->length, breakpoint->set);
2472                         }
2473                         breakpoint = breakpoint->next;
2474                 }
2475         }
2476         else if (argc >= 2)
2477         {
2478                 int hw = BKPT_SOFT;
2479                 u32 length = 0;
2480
2481                 length = strtoul(args[1], NULL, 0);
2482
2483                 if (argc >= 3)
2484                         if (strcmp(args[2], "hw") == 0)
2485                                 hw = BKPT_HARD;
2486
2487                 if ((retval = breakpoint_add(target, strtoul(args[0], NULL, 0), length, hw)) != ERROR_OK)
2488                 {
2489                         LOG_ERROR("Failure setting breakpoints");
2490                 }
2491                 else
2492                 {
2493                         command_print(cmd_ctx, "breakpoint added at address 0x%8.8lx",
2494                                         strtoul(args[0], NULL, 0));
2495                 }
2496         }
2497         else
2498         {
2499                 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
2500         }
2501
2502         return ERROR_OK;
2503 }
2504
2505 static int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2506 {
2507         target_t *target = get_current_target(cmd_ctx);
2508
2509         if (argc > 0)
2510                 breakpoint_remove(target, strtoul(args[0], NULL, 0));
2511
2512         return ERROR_OK;
2513 }
2514
2515 static int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2516 {
2517         target_t *target = get_current_target(cmd_ctx);
2518         int retval;
2519
2520         if (argc == 0)
2521         {
2522                 watchpoint_t *watchpoint = target->watchpoints;
2523
2524                 while (watchpoint)
2525                 {
2526                         command_print(cmd_ctx, "address: 0x%8.8x, len: 0x%8.8x, r/w/a: %i, value: 0x%8.8x, mask: 0x%8.8x", watchpoint->address, watchpoint->length, watchpoint->rw, watchpoint->value, watchpoint->mask);
2527                         watchpoint = watchpoint->next;
2528                 }
2529         }
2530         else if (argc >= 2)
2531         {
2532                 enum watchpoint_rw type = WPT_ACCESS;
2533                 u32 data_value = 0x0;
2534                 u32 data_mask = 0xffffffff;
2535
2536                 if (argc >= 3)
2537                 {
2538                         switch(args[2][0])
2539                         {
2540                                 case 'r':
2541                                         type = WPT_READ;
2542                                         break;
2543                                 case 'w':
2544                                         type = WPT_WRITE;
2545                                         break;
2546                                 case 'a':
2547                                         type = WPT_ACCESS;
2548                                         break;
2549                                 default:
2550                                         command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2551                                         return ERROR_OK;
2552                         }
2553                 }
2554                 if (argc >= 4)
2555                 {
2556                         data_value = strtoul(args[3], NULL, 0);
2557                 }
2558                 if (argc >= 5)
2559                 {
2560                         data_mask = strtoul(args[4], NULL, 0);
2561                 }
2562
2563                 if ((retval = watchpoint_add(target, strtoul(args[0], NULL, 0),
2564                                 strtoul(args[1], NULL, 0), type, data_value, data_mask)) != ERROR_OK)
2565                 {
2566                         LOG_ERROR("Failure setting breakpoints");
2567                 }
2568         }
2569         else
2570         {
2571                 command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2572         }
2573
2574         return ERROR_OK;
2575 }
2576
2577 static int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2578 {
2579         if (argc != 1)
2580                 return ERROR_COMMAND_SYNTAX_ERROR;
2581
2582         target_t *target = get_current_target(cmd_ctx);
2583         watchpoint_remove(target, strtoul(args[0], NULL, 0));
2584
2585         return ERROR_OK;
2586 }
2587
2588
2589 /**
2590  * Translate a virtual address to a physical address.
2591  *
2592  * The low-level target implementation must have logged a detailed error
2593  * which is forwarded to telnet/GDB session.
2594  */
2595 static int handle_virt2phys_command(command_context_t *cmd_ctx,
2596                 char *cmd, char **args, int argc)
2597 {
2598         if (argc != 1)
2599                 return ERROR_COMMAND_SYNTAX_ERROR;
2600
2601         target_t *target = get_current_target(cmd_ctx);
2602         u32 va = strtoul(args[0], NULL, 0);
2603         u32 pa;
2604
2605         int retval = target->type->virt2phys(target, va, &pa);
2606         if (retval == ERROR_OK)
2607                 command_print(cmd_ctx, "Physical address 0x%08x", pa);
2608
2609         return retval;
2610 }
2611
2612 static void writeData(FILE *f, const void *data, size_t len)
2613 {
2614         size_t written = fwrite(data, len, 1, f);
2615         if (written != len)
2616                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
2617 }
2618
2619 static void writeLong(FILE *f, int l)
2620 {
2621         int i;
2622         for (i=0; i<4; i++)
2623         {
2624                 char c=(l>>(i*8))&0xff;
2625                 writeData(f, &c, 1);
2626         }
2627
2628 }
2629
2630 static void writeString(FILE *f, char *s)
2631 {
2632         writeData(f, s, strlen(s));
2633 }
2634
2635 /* Dump a gmon.out histogram file. */
2636 static void writeGmon(u32 *samples, u32 sampleNum, char *filename)
2637 {
2638         u32 i;
2639         FILE *f=fopen(filename, "w");
2640         if (f==NULL)
2641                 return;
2642         writeString(f, "gmon");
2643         writeLong(f, 0x00000001); /* Version */
2644         writeLong(f, 0); /* padding */
2645         writeLong(f, 0); /* padding */
2646         writeLong(f, 0); /* padding */
2647
2648         u8 zero = 0;  /* GMON_TAG_TIME_HIST */
2649         writeData(f, &zero, 1);
2650
2651         /* figure out bucket size */
2652         u32 min=samples[0];
2653         u32 max=samples[0];
2654         for (i=0; i<sampleNum; i++)
2655         {
2656                 if (min>samples[i])
2657                 {
2658                         min=samples[i];
2659                 }
2660                 if (max<samples[i])
2661                 {
2662                         max=samples[i];
2663                 }
2664         }
2665
2666         int addressSpace=(max-min+1);
2667
2668         static const u32 maxBuckets = 256 * 1024; /* maximum buckets. */
2669         u32 length = addressSpace;
2670         if (length > maxBuckets)
2671         {
2672                 length=maxBuckets;
2673         }
2674         int *buckets=malloc(sizeof(int)*length);
2675         if (buckets==NULL)
2676         {
2677                 fclose(f);
2678                 return;
2679         }
2680         memset(buckets, 0, sizeof(int)*length);
2681         for (i=0; i<sampleNum;i++)
2682         {
2683                 u32 address=samples[i];
2684                 long long a=address-min;
2685                 long long b=length-1;
2686                 long long c=addressSpace-1;
2687                 int index=(a*b)/c; /* danger!!!! int32 overflows */
2688                 buckets[index]++;
2689         }
2690
2691         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
2692         writeLong(f, min);                      /* low_pc */
2693         writeLong(f, max);                      /* high_pc */
2694         writeLong(f, length);           /* # of samples */
2695         writeLong(f, 64000000);         /* 64MHz */
2696         writeString(f, "seconds");
2697         for (i=0; i<(15-strlen("seconds")); i++)
2698                 writeData(f, &zero, 1);
2699         writeString(f, "s");
2700
2701         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
2702
2703         char *data=malloc(2*length);
2704         if (data!=NULL)
2705         {
2706                 for (i=0; i<length;i++)
2707                 {
2708                         int val;
2709                         val=buckets[i];
2710                         if (val>65535)
2711                         {
2712                                 val=65535;
2713                         }
2714                         data[i*2]=val&0xff;
2715                         data[i*2+1]=(val>>8)&0xff;
2716                 }
2717                 free(buckets);
2718                 writeData(f, data, length * 2);
2719                 free(data);
2720         } else
2721         {
2722                 free(buckets);
2723         }
2724
2725         fclose(f);
2726 }
2727
2728 /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
2729 static int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2730 {
2731         target_t *target = get_current_target(cmd_ctx);
2732         struct timeval timeout, now;
2733
2734         gettimeofday(&timeout, NULL);
2735         if (argc!=2)
2736         {
2737                 return ERROR_COMMAND_SYNTAX_ERROR;
2738         }
2739         char *end;
2740         timeval_add_time(&timeout, strtoul(args[0], &end, 0), 0);
2741         if (*end)
2742         {
2743                 return ERROR_OK;
2744         }
2745
2746         command_print(cmd_ctx, "Starting profiling. Halting and resuming the target as often as we can...");
2747
2748         static const int maxSample=10000;
2749         u32 *samples=malloc(sizeof(u32)*maxSample);
2750         if (samples==NULL)
2751                 return ERROR_OK;
2752
2753         int numSamples=0;
2754         int retval=ERROR_OK;
2755         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2756         reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1);
2757
2758         for (;;)
2759         {
2760                 target_poll(target);
2761                 if (target->state == TARGET_HALTED)
2762                 {
2763                         u32 t=*((u32 *)reg->value);
2764                         samples[numSamples++]=t;
2765                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2766                         target_poll(target);
2767                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2768                 } else if (target->state == TARGET_RUNNING)
2769                 {
2770                         /* We want to quickly sample the PC. */
2771                         if((retval = target_halt(target)) != ERROR_OK)
2772                         {
2773                                 free(samples);
2774                                 return retval;
2775                         }
2776                 } else
2777                 {
2778                         command_print(cmd_ctx, "Target not halted or running");
2779                         retval=ERROR_OK;
2780                         break;
2781                 }
2782                 if (retval!=ERROR_OK)
2783                 {
2784                         break;
2785                 }
2786
2787                 gettimeofday(&now, NULL);
2788                 if ((numSamples>=maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
2789                 {
2790                         command_print(cmd_ctx, "Profiling completed. %d samples.", numSamples);
2791                         if((retval = target_poll(target)) != ERROR_OK)
2792                         {
2793                                 free(samples);
2794                                 return retval;
2795                         }
2796                         if (target->state == TARGET_HALTED)
2797                         {
2798                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2799                         }
2800                         if((retval = target_poll(target)) != ERROR_OK)
2801                         {
2802                                 free(samples);
2803                                 return retval;
2804                         }
2805                         writeGmon(samples, numSamples, args[1]);
2806                         command_print(cmd_ctx, "Wrote %s", args[1]);
2807                         break;
2808                 }
2809         }
2810         free(samples);
2811
2812         return ERROR_OK;
2813 }
2814
2815 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 val)
2816 {
2817         char *namebuf;
2818         Jim_Obj *nameObjPtr, *valObjPtr;
2819         int result;
2820
2821         namebuf = alloc_printf("%s(%d)", varname, idx);
2822         if (!namebuf)
2823                 return JIM_ERR;
2824
2825         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
2826         valObjPtr = Jim_NewIntObj(interp, val);
2827         if (!nameObjPtr || !valObjPtr)
2828         {
2829                 free(namebuf);
2830                 return JIM_ERR;
2831         }
2832
2833         Jim_IncrRefCount(nameObjPtr);
2834         Jim_IncrRefCount(valObjPtr);
2835         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
2836         Jim_DecrRefCount(interp, nameObjPtr);
2837         Jim_DecrRefCount(interp, valObjPtr);
2838         free(namebuf);
2839         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
2840         return result;
2841 }
2842
2843 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
2844 {
2845         command_context_t *context;
2846         target_t *target;
2847
2848         context = Jim_GetAssocData(interp, "context");
2849         if (context == NULL)
2850         {
2851                 LOG_ERROR("mem2array: no command context");
2852                 return JIM_ERR;
2853         }
2854         target = get_current_target(context);
2855         if (target == NULL)
2856         {
2857                 LOG_ERROR("mem2array: no current target");
2858                 return JIM_ERR;
2859         }
2860
2861         return  target_mem2array(interp, target, argc-1, argv+1);
2862 }
2863
2864 static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv)
2865 {
2866         long l;
2867         u32 width;
2868         int len;
2869         u32 addr;
2870         u32 count;
2871         u32 v;
2872         const char *varname;
2873         u8 buffer[4096];
2874         int  n, e, retval;
2875         u32 i;
2876
2877         /* argv[1] = name of array to receive the data
2878          * argv[2] = desired width
2879          * argv[3] = memory address
2880          * argv[4] = count of times to read
2881          */
2882         if (argc != 4) {
2883                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
2884                 return JIM_ERR;
2885         }
2886         varname = Jim_GetString(argv[0], &len);
2887         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
2888
2889         e = Jim_GetLong(interp, argv[1], &l);
2890         width = l;
2891         if (e != JIM_OK) {
2892                 return e;
2893         }
2894
2895         e = Jim_GetLong(interp, argv[2], &l);
2896         addr = l;
2897         if (e != JIM_OK) {
2898                 return e;
2899         }
2900         e = Jim_GetLong(interp, argv[3], &l);
2901         len = l;
2902         if (e != JIM_OK) {
2903                 return e;
2904         }
2905         switch (width) {
2906                 case 8:
2907                         width = 1;
2908                         break;
2909                 case 16:
2910                         width = 2;
2911                         break;
2912                 case 32:
2913                         width = 4;
2914                         break;
2915                 default:
2916                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2917                         Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
2918                         return JIM_ERR;
2919         }
2920         if (len == 0) {
2921                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2922                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
2923                 return JIM_ERR;
2924         }
2925         if ((addr + (len * width)) < addr) {
2926                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2927                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
2928                 return JIM_ERR;
2929         }
2930         /* absurd transfer size? */
2931         if (len > 65536) {
2932                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2933                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
2934                 return JIM_ERR;
2935         }
2936
2937         if ((width == 1) ||
2938                 ((width == 2) && ((addr & 1) == 0)) ||
2939                 ((width == 4) && ((addr & 3) == 0))) {
2940                 /* all is well */
2941         } else {
2942                 char buf[100];
2943                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2944                 sprintf(buf, "mem2array address: 0x%08x is not aligned for %d byte reads", addr, width);
2945                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
2946                 return JIM_ERR;
2947         }
2948
2949         /* Transfer loop */
2950
2951         /* index counter */
2952         n = 0;
2953         /* assume ok */
2954         e = JIM_OK;
2955         while (len) {
2956                 /* Slurp... in buffer size chunks */
2957
2958                 count = len; /* in objects.. */
2959                 if (count > (sizeof(buffer)/width)) {
2960                         count = (sizeof(buffer)/width);
2961                 }
2962
2963                 retval = target_read_memory( target, addr, width, count, buffer );
2964                 if (retval != ERROR_OK) {
2965                         /* BOO !*/
2966                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
2967                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2968                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
2969                         e = JIM_ERR;
2970                         len = 0;
2971                 } else {
2972                         v = 0; /* shut up gcc */
2973                         for (i = 0 ;i < count ;i++, n++) {
2974                                 switch (width) {
2975                                         case 4:
2976                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
2977                                                 break;
2978                                         case 2:
2979                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
2980                                                 break;
2981                                         case 1:
2982                                                 v = buffer[i] & 0x0ff;
2983                                                 break;
2984                                 }
2985                                 new_int_array_element(interp, varname, n, v);
2986                         }
2987                         len -= count;
2988                 }
2989         }
2990
2991         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2992
2993         return JIM_OK;
2994 }
2995
2996 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 *val)
2997 {
2998         char *namebuf;
2999         Jim_Obj *nameObjPtr, *valObjPtr;
3000         int result;
3001         long l;
3002
3003         namebuf = alloc_printf("%s(%d)", varname, idx);
3004         if (!namebuf)
3005                 return JIM_ERR;
3006
3007         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3008         if (!nameObjPtr)
3009         {
3010                 free(namebuf);
3011                 return JIM_ERR;
3012         }
3013
3014         Jim_IncrRefCount(nameObjPtr);
3015         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3016         Jim_DecrRefCount(interp, nameObjPtr);
3017         free(namebuf);
3018         if (valObjPtr == NULL)
3019                 return JIM_ERR;
3020
3021         result = Jim_GetLong(interp, valObjPtr, &l);
3022         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3023         *val = l;
3024         return result;
3025 }
3026
3027 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3028 {
3029         command_context_t *context;
3030         target_t *target;
3031
3032         context = Jim_GetAssocData(interp, "context");
3033         if (context == NULL){
3034                 LOG_ERROR("array2mem: no command context");
3035                 return JIM_ERR;
3036         }
3037         target = get_current_target(context);
3038         if (target == NULL){
3039                 LOG_ERROR("array2mem: no current target");
3040                 return JIM_ERR;
3041         }
3042
3043         return target_array2mem( interp,target, argc-1, argv+1 );
3044 }
3045
3046 static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv)
3047 {
3048         long l;
3049         u32 width;
3050         int len;
3051         u32 addr;
3052         u32 count;
3053         u32 v;
3054         const char *varname;
3055         u8 buffer[4096];
3056         int  n, e, retval;
3057         u32 i;
3058
3059         /* argv[1] = name of array to get the data
3060          * argv[2] = desired width
3061          * argv[3] = memory address
3062          * argv[4] = count to write
3063          */
3064         if (argc != 4) {
3065                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3066                 return JIM_ERR;
3067         }
3068         varname = Jim_GetString(argv[0], &len);
3069         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3070
3071         e = Jim_GetLong(interp, argv[1], &l);
3072         width = l;
3073         if (e != JIM_OK) {
3074                 return e;
3075         }
3076
3077         e = Jim_GetLong(interp, argv[2], &l);
3078         addr = l;
3079         if (e != JIM_OK) {
3080                 return e;
3081         }
3082         e = Jim_GetLong(interp, argv[3], &l);
3083         len = l;
3084         if (e != JIM_OK) {
3085                 return e;
3086         }
3087         switch (width) {
3088                 case 8:
3089                         width = 1;
3090                         break;
3091                 case 16:
3092                         width = 2;
3093                         break;
3094                 case 32:
3095                         width = 4;
3096                         break;
3097                 default:
3098                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3099                         Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
3100                         return JIM_ERR;
3101         }
3102         if (len == 0) {
3103                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3104                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
3105                 return JIM_ERR;
3106         }
3107         if ((addr + (len * width)) < addr) {
3108                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3109                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
3110                 return JIM_ERR;
3111         }
3112         /* absurd transfer size? */
3113         if (len > 65536) {
3114                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3115                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
3116                 return JIM_ERR;
3117         }
3118
3119         if ((width == 1) ||
3120                 ((width == 2) && ((addr & 1) == 0)) ||
3121                 ((width == 4) && ((addr & 3) == 0))) {
3122                 /* all is well */
3123         } else {
3124                 char buf[100];
3125                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3126                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads", addr, width);
3127                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3128                 return JIM_ERR;
3129         }
3130
3131         /* Transfer loop */
3132
3133         /* index counter */
3134         n = 0;
3135         /* assume ok */
3136         e = JIM_OK;
3137         while (len) {
3138                 /* Slurp... in buffer size chunks */
3139
3140                 count = len; /* in objects.. */
3141                 if (count > (sizeof(buffer)/width)) {
3142                         count = (sizeof(buffer)/width);
3143                 }
3144
3145                 v = 0; /* shut up gcc */
3146                 for (i = 0 ;i < count ;i++, n++) {
3147                         get_int_array_element(interp, varname, n, &v);
3148                         switch (width) {
3149                         case 4:
3150                                 target_buffer_set_u32(target, &buffer[i*width], v);
3151                                 break;
3152                         case 2:
3153                                 target_buffer_set_u16(target, &buffer[i*width], v);
3154                                 break;
3155                         case 1:
3156                                 buffer[i] = v & 0x0ff;
3157                                 break;
3158                         }
3159                 }
3160                 len -= count;
3161
3162                 retval = target_write_memory(target, addr, width, count, buffer);
3163                 if (retval != ERROR_OK) {
3164                         /* BOO !*/
3165                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
3166                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3167                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3168                         e = JIM_ERR;
3169                         len = 0;
3170                 }
3171         }
3172
3173         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3174
3175         return JIM_OK;
3176 }
3177
3178 void target_all_handle_event( enum target_event e )
3179 {
3180         target_t *target;
3181
3182         LOG_DEBUG( "**all*targets: event: %d, %s",
3183                         e,
3184                         Jim_Nvp_value2name_simple( nvp_target_event, e )->name );
3185
3186         target = all_targets;
3187         while (target){
3188                 target_handle_event( target, e );
3189                 target = target->next;
3190         }
3191 }
3192
3193 void target_handle_event( target_t *target, enum target_event e )
3194 {
3195         target_event_action_t *teap;
3196         int done;
3197
3198         teap = target->event_action;
3199
3200         done = 0;
3201         while( teap ){
3202                 if( teap->event == e ){
3203                         done = 1;
3204                         LOG_DEBUG( "target: (%d) %s (%s) event: %d (%s) action: %s\n",
3205                                            target->target_number,
3206                                            target->cmd_name,
3207                                            target_get_name(target),
3208                                            e,
3209                                            Jim_Nvp_value2name_simple( nvp_target_event, e )->name,
3210                                            Jim_GetString( teap->body, NULL ) );
3211                         if (Jim_EvalObj( interp, teap->body )!=JIM_OK)
3212                         {
3213                                 Jim_PrintErrorMessage(interp);
3214                         }
3215                 }
3216                 teap = teap->next;
3217         }
3218         if( !done ){
3219                 LOG_DEBUG( "event: %d %s - no action",
3220                                    e,
3221                                    Jim_Nvp_value2name_simple( nvp_target_event, e )->name );
3222         }
3223 }
3224
3225 enum target_cfg_param {
3226         TCFG_TYPE,
3227         TCFG_EVENT,
3228         TCFG_WORK_AREA_VIRT,
3229         TCFG_WORK_AREA_PHYS,
3230         TCFG_WORK_AREA_SIZE,
3231         TCFG_WORK_AREA_BACKUP,
3232         TCFG_ENDIAN,
3233         TCFG_VARIANT,
3234         TCFG_CHAIN_POSITION,
3235 };
3236
3237 static Jim_Nvp nvp_config_opts[] = {
3238         { .name = "-type",             .value = TCFG_TYPE },
3239         { .name = "-event",            .value = TCFG_EVENT },
3240         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
3241         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
3242         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
3243         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3244         { .name = "-endian" ,          .value = TCFG_ENDIAN },
3245         { .name = "-variant",          .value = TCFG_VARIANT },
3246         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
3247
3248         { .name = NULL, .value = -1 }
3249 };
3250
3251 static int target_configure( Jim_GetOptInfo *goi, target_t *target )
3252 {
3253         Jim_Nvp *n;
3254         Jim_Obj *o;
3255         jim_wide w;
3256         char *cp;
3257         int e;
3258
3259         /* parse config or cget options ... */
3260         while( goi->argc > 0 ){
3261                 Jim_SetEmptyResult( goi->interp );
3262                 /* Jim_GetOpt_Debug( goi ); */
3263
3264                 if( target->type->target_jim_configure ){
3265                         /* target defines a configure function */
3266                         /* target gets first dibs on parameters */
3267                         e = (*(target->type->target_jim_configure))( target, goi );
3268                         if( e == JIM_OK ){
3269                                 /* more? */
3270                                 continue;
3271                         }
3272                         if( e == JIM_ERR ){
3273                                 /* An error */
3274                                 return e;
3275                         }
3276                         /* otherwise we 'continue' below */
3277                 }
3278                 e = Jim_GetOpt_Nvp( goi, nvp_config_opts, &n );
3279                 if( e != JIM_OK ){
3280                         Jim_GetOpt_NvpUnknown( goi, nvp_config_opts, 0 );
3281                         return e;
3282                 }
3283                 switch( n->value ){
3284                 case TCFG_TYPE:
3285                         /* not setable */
3286                         if( goi->isconfigure ){
3287                                 Jim_SetResult_sprintf( goi->interp, "not setable: %s", n->name );
3288                                 return JIM_ERR;
3289                         } else {
3290                         no_params:
3291                                 if( goi->argc != 0 ){
3292                                         Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "NO PARAMS");
3293                                         return JIM_ERR;
3294                                 }
3295                         }
3296                         Jim_SetResultString( goi->interp, target_get_name(target), -1 );
3297                         /* loop for more */
3298                         break;
3299                 case TCFG_EVENT:
3300                         if( goi->argc == 0 ){
3301                                 Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
3302                                 return JIM_ERR;
3303                         }
3304
3305                         e = Jim_GetOpt_Nvp( goi, nvp_target_event, &n );
3306                         if( e != JIM_OK ){
3307                                 Jim_GetOpt_NvpUnknown( goi, nvp_target_event, 1 );
3308                                 return e;
3309                         }
3310
3311                         if( goi->isconfigure ){
3312                                 if( goi->argc != 1 ){
3313                                         Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
3314                                         return JIM_ERR;
3315                                 }
3316                         } else {
3317                                 if( goi->argc != 0 ){
3318                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
3319                                         return JIM_ERR;
3320                                 }
3321                         }
3322
3323                         {
3324                                 target_event_action_t *teap;
3325
3326                                 teap = target->event_action;
3327                                 /* replace existing? */
3328                                 while( teap ){
3329                                         if( teap->event == (enum target_event)n->value ){
3330                                                 break;
3331                                         }
3332                                         teap = teap->next;
3333                                 }
3334
3335                                 if( goi->isconfigure ){
3336                                         if( teap == NULL ){
3337                                                 /* create new */
3338                                                 teap = calloc( 1, sizeof(*teap) );
3339                                         }
3340                                         teap->event = n->value;
3341                                         Jim_GetOpt_Obj( goi, &o );
3342                                         if( teap->body ){
3343                                                 Jim_DecrRefCount( interp, teap->body );
3344                                         }
3345                                         teap->body  = Jim_DuplicateObj( goi->interp, o );
3346                                         /*
3347                                          * FIXME:
3348                                          *     Tcl/TK - "tk events" have a nice feature.
3349                                          *     See the "BIND" command.
3350                                          *    We should support that here.
3351                                          *     You can specify %X and %Y in the event code.
3352                                          *     The idea is: %T - target name.
3353                                          *     The idea is: %N - target number
3354                                          *     The idea is: %E - event name.
3355                                          */
3356                                         Jim_IncrRefCount( teap->body );
3357
3358                                         /* add to head of event list */
3359                                         teap->next = target->event_action;
3360                                         target->event_action = teap;
3361                                         Jim_SetEmptyResult(goi->interp);
3362                                 } else {
3363                                         /* get */
3364                                         if( teap == NULL ){
3365                                                 Jim_SetEmptyResult( goi->interp );
3366                                         } else {
3367                                                 Jim_SetResult( goi->interp, Jim_DuplicateObj( goi->interp, teap->body ) );
3368                                         }
3369                                 }
3370                         }
3371                         /* loop for more */
3372                         break;
3373
3374                 case TCFG_WORK_AREA_VIRT:
3375                         if( goi->isconfigure ){
3376                                 target_free_all_working_areas(target);
3377                                 e = Jim_GetOpt_Wide( goi, &w );
3378                                 if( e != JIM_OK ){
3379                                         return e;
3380                                 }
3381                                 target->working_area_virt = w;
3382                         } else {
3383                                 if( goi->argc != 0 ){
3384                                         goto no_params;
3385                                 }
3386                         }
3387                         Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_virt ) );
3388                         /* loop for more */
3389                         break;
3390
3391                 case TCFG_WORK_AREA_PHYS:
3392                         if( goi->isconfigure ){
3393                                 target_free_all_working_areas(target);
3394                                 e = Jim_GetOpt_Wide( goi, &w );
3395                                 if( e != JIM_OK ){
3396                                         return e;
3397                                 }
3398                                 target->working_area_phys = w;
3399                         } else {
3400                                 if( goi->argc != 0 ){
3401                                         goto no_params;
3402                                 }
3403                         }
3404                         Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_phys ) );
3405                         /* loop for more */
3406                         break;
3407
3408                 case TCFG_WORK_AREA_SIZE:
3409                         if( goi->isconfigure ){
3410                                 target_free_all_working_areas(target);
3411                                 e = Jim_GetOpt_Wide( goi, &w );
3412                                 if( e != JIM_OK ){
3413                                         return e;
3414                                 }
3415                                 target->working_area_size = w;
3416                         } else {
3417                                 if( goi->argc != 0 ){
3418                                         goto no_params;
3419                                 }
3420                         }
3421                         Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_size ) );
3422                         /* loop for more */
3423                         break;
3424
3425                 case TCFG_WORK_AREA_BACKUP:
3426                         if( goi->isconfigure ){
3427                                 target_free_all_working_areas(target);
3428                                 e = Jim_GetOpt_Wide( goi, &w );
3429                                 if( e != JIM_OK ){
3430                                         return e;
3431                                 }
3432                                 /* make this exactly 1 or 0 */
3433                                 target->backup_working_area = (!!w);
3434                         } else {
3435                                 if( goi->argc != 0 ){
3436                                         goto no_params;
3437                                 }
3438                         }
3439                         Jim_SetResult(interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
3440                         /* loop for more e*/
3441                         break;
3442
3443                 case TCFG_ENDIAN:
3444                         if( goi->isconfigure ){
3445                                 e = Jim_GetOpt_Nvp( goi, nvp_target_endian, &n );
3446                                 if( e != JIM_OK ){
3447                                         Jim_GetOpt_NvpUnknown( goi, nvp_target_endian, 1 );
3448                                         return e;
3449                                 }
3450                                 target->endianness = n->value;
3451                         } else {
3452                                 if( goi->argc != 0 ){
3453                                         goto no_params;
3454                                 }
3455                         }
3456                         n = Jim_Nvp_value2name_simple( nvp_target_endian, target->endianness );
3457                         if( n->name == NULL ){
3458                                 target->endianness = TARGET_LITTLE_ENDIAN;
3459                                 n = Jim_Nvp_value2name_simple( nvp_target_endian, target->endianness );
3460                         }
3461                         Jim_SetResultString( goi->interp, n->name, -1 );
3462                         /* loop for more */
3463                         break;
3464
3465                 case TCFG_VARIANT:
3466                         if( goi->isconfigure ){
3467                                 if( goi->argc < 1 ){
3468                                         Jim_SetResult_sprintf( goi->interp,
3469                                                                                    "%s ?STRING?",
3470                                                                                    n->name );
3471                                         return JIM_ERR;
3472                                 }
3473                                 if( target->variant ){
3474                                         free((void *)(target->variant));
3475                                 }
3476                                 e = Jim_GetOpt_String( goi, &cp, NULL );
3477                                 target->variant = strdup(cp);
3478                         } else {
3479                                 if( goi->argc != 0 ){
3480                                         goto no_params;
3481                                 }
3482                         }
3483                         Jim_SetResultString( goi->interp, target->variant,-1 );
3484                         /* loop for more */
3485                         break;
3486                 case TCFG_CHAIN_POSITION:
3487                         if( goi->isconfigure ){
3488                                 Jim_Obj *o;
3489                                 jtag_tap_t *tap;
3490                                 target_free_all_working_areas(target);
3491                                 e = Jim_GetOpt_Obj( goi, &o );
3492                                 if( e != JIM_OK ){
3493                                         return e;
3494                                 }
3495                                 tap = jtag_tap_by_jim_obj( goi->interp, o );
3496                                 if( tap == NULL ){
3497                                         return JIM_ERR;
3498                                 }
3499                                 /* make this exactly 1 or 0 */
3500                                 target->tap = tap;
3501                         } else {
3502                                 if( goi->argc != 0 ){
3503                                         goto no_params;
3504                                 }
3505                         }
3506                         Jim_SetResultString( interp, target->tap->dotted_name, -1 );
3507                         /* loop for more e*/
3508                         break;
3509                 }
3510         } /* while( goi->argc ) */
3511
3512
3513                 /* done - we return */
3514         return JIM_OK;
3515 }
3516
3517 /** this is the 'tcl' handler for the target specific command */
3518 static int tcl_target_func( Jim_Interp *interp, int argc, Jim_Obj *const *argv )
3519 {
3520         Jim_GetOptInfo goi;
3521         jim_wide a,b,c;
3522         int x,y,z;
3523         u8  target_buf[32];
3524         Jim_Nvp *n;
3525         target_t *target;
3526         struct command_context_s *cmd_ctx;
3527         int e;
3528
3529         enum {
3530                 TS_CMD_CONFIGURE,
3531                 TS_CMD_CGET,
3532
3533                 TS_CMD_MWW, TS_CMD_MWH, TS_CMD_MWB,
3534                 TS_CMD_MDW, TS_CMD_MDH, TS_CMD_MDB,
3535                 TS_CMD_MRW, TS_CMD_MRH, TS_CMD_MRB,
3536                 TS_CMD_MEM2ARRAY, TS_CMD_ARRAY2MEM,
3537                 TS_CMD_EXAMINE,
3538                 TS_CMD_POLL,
3539                 TS_CMD_RESET,
3540                 TS_CMD_HALT,
3541                 TS_CMD_WAITSTATE,
3542                 TS_CMD_EVENTLIST,
3543                 TS_CMD_CURSTATE,
3544                 TS_CMD_INVOKE_EVENT,
3545         };
3546
3547         static const Jim_Nvp target_options[] = {
3548                 { .name = "configure", .value = TS_CMD_CONFIGURE },
3549                 { .name = "cget", .value = TS_CMD_CGET },
3550                 { .name = "mww", .value = TS_CMD_MWW },
3551                 { .name = "mwh", .value = TS_CMD_MWH },
3552                 { .name = "mwb", .value = TS_CMD_MWB },
3553                 { .name = "mdw", .value = TS_CMD_MDW },
3554                 { .name = "mdh", .value = TS_CMD_MDH },
3555                 { .name = "mdb", .value = TS_CMD_MDB },
3556                 { .name = "mem2array", .value = TS_CMD_MEM2ARRAY },
3557                 { .name = "array2mem", .value = TS_CMD_ARRAY2MEM },
3558                 { .name = "eventlist", .value = TS_CMD_EVENTLIST },
3559                 { .name = "curstate",  .value = TS_CMD_CURSTATE },
3560
3561                 { .name = "arp_examine", .value = TS_CMD_EXAMINE },
3562                 { .name = "arp_poll", .value = TS_CMD_POLL },
3563                 { .name = "arp_reset", .value = TS_CMD_RESET },
3564                 { .name = "arp_halt", .value = TS_CMD_HALT },
3565                 { .name = "arp_waitstate", .value = TS_CMD_WAITSTATE },
3566                 { .name = "invoke-event", .value = TS_CMD_INVOKE_EVENT },
3567
3568                 { .name = NULL, .value = -1 },
3569         };
3570
3571         /* go past the "command" */
3572         Jim_GetOpt_Setup( &goi, interp, argc-1, argv+1 );
3573
3574         target = Jim_CmdPrivData( goi.interp );
3575         cmd_ctx = Jim_GetAssocData(goi.interp, "context");
3576
3577         /* commands here are in an NVP table */
3578         e = Jim_GetOpt_Nvp( &goi, target_options, &n );
3579         if( e != JIM_OK ){
3580                 Jim_GetOpt_NvpUnknown( &goi, target_options, 0 );
3581                 return e;
3582         }
3583         /* Assume blank result */
3584         Jim_SetEmptyResult( goi.interp );
3585
3586         switch( n->value ){
3587         case TS_CMD_CONFIGURE:
3588                 if( goi.argc < 2 ){
3589                         Jim_WrongNumArgs( goi.interp, goi.argc, goi.argv, "missing: -option VALUE ...");
3590                         return JIM_ERR;
3591                 }
3592                 goi.isconfigure = 1;
3593                 return target_configure( &goi, target );
3594         case TS_CMD_CGET:
3595                 // some things take params
3596                 if( goi.argc < 1 ){
3597                         Jim_WrongNumArgs( goi.interp, 0, goi.argv, "missing: ?-option?");
3598                         return JIM_ERR;
3599                 }
3600                 goi.isconfigure = 0;
3601                 return target_configure( &goi, target );
3602                 break;
3603         case TS_CMD_MWW:
3604         case TS_CMD_MWH:
3605         case TS_CMD_MWB:
3606                 /* argv[0] = cmd
3607                  * argv[1] = address
3608                  * argv[2] = data
3609                  * argv[3] = optional count.
3610                  */
3611
3612                 if( (goi.argc == 3) || (goi.argc == 4) ){
3613                         /* all is well */
3614                 } else {
3615                 mwx_error:
3616                         Jim_SetResult_sprintf( goi.interp, "expected: %s ADDR DATA [COUNT]", n->name );
3617                         return JIM_ERR;
3618                 }
3619
3620                 e = Jim_GetOpt_Wide( &goi, &a );
3621                 if( e != JIM_OK ){
3622                         goto mwx_error;
3623                 }
3624
3625                 e = Jim_GetOpt_Wide( &goi, &b );
3626                 if( e != JIM_OK ){
3627                         goto mwx_error;
3628                 }
3629                 if( goi.argc ){
3630                         e = Jim_GetOpt_Wide( &goi, &c );
3631                         if( e != JIM_OK ){
3632                                 goto mwx_error;
3633                         }
3634                 } else {
3635                         c = 1;
3636                 }
3637
3638                 switch( n->value ){
3639                 case TS_CMD_MWW:
3640                         target_buffer_set_u32( target, target_buf, b );
3641                         b = 4;
3642                         break;
3643                 case TS_CMD_MWH:
3644                         target_buffer_set_u16( target, target_buf, b );
3645                         b = 2;
3646                         break;
3647                 case TS_CMD_MWB:
3648                         target_buffer_set_u8( target, target_buf, b );
3649                         b = 1;
3650                         break;
3651                 }
3652                 for( x = 0 ; x < c ; x++ ){
3653                         e = target_write_memory( target, a, b, 1, target_buf );
3654                         if( e != ERROR_OK ){
3655                                 Jim_SetResult_sprintf( interp, "Error writing @ 0x%08x: %d\n", (int)(a), e );
3656                                 return JIM_ERR;
3657                         }
3658                         /* b = width */
3659                         a = a + b;
3660                 }
3661                 return JIM_OK;
3662                 break;
3663
3664                 /* display */
3665         case TS_CMD_MDW:
3666         case TS_CMD_MDH:
3667         case TS_CMD_MDB:
3668                 /* argv[0] = command
3669                  * argv[1] = address
3670                  * argv[2] = optional count
3671                  */
3672                 if( (goi.argc == 2) || (goi.argc == 3) ){
3673                         Jim_SetResult_sprintf( goi.interp, "expected: %s ADDR [COUNT]", n->name );
3674                         return JIM_ERR;
3675                 }
3676                 e = Jim_GetOpt_Wide( &goi, &a );
3677                 if( e != JIM_OK ){
3678                         return JIM_ERR;
3679                 }
3680                 if( goi.argc ){
3681                         e = Jim_GetOpt_Wide( &goi, &c );
3682                         if( e != JIM_OK ){
3683                                 return JIM_ERR;
3684                         }
3685                 } else {
3686                         c = 1;
3687                 }
3688                 b = 1; /* shut up gcc */
3689                 switch( n->value ){
3690                 case TS_CMD_MDW:
3691                         b =  4;
3692                         break;
3693                 case TS_CMD_MDH:
3694                         b = 2;
3695                         break;
3696                 case TS_CMD_MDB:
3697                         b = 1;
3698                         break;
3699                 }
3700
3701                 /* convert to "bytes" */
3702                 c = c * b;
3703                 /* count is now in 'BYTES' */
3704                 while( c > 0 ){
3705                         y = c;
3706                         if( y > 16 ){
3707                                 y = 16;
3708                         }
3709                         e = target_read_memory( target, a, b, y / b, target_buf );
3710                         if( e != ERROR_OK ){
3711                                 Jim_SetResult_sprintf( interp, "error reading target @ 0x%08lx", (int)(a) );
3712                                 return JIM_ERR;
3713                         }
3714
3715                         Jim_fprintf( interp, interp->cookie_stdout, "0x%08x ", (int)(a) );
3716                         switch( b ){
3717                         case 4:
3718                                 for( x = 0 ; (x < 16) && (x < y) ; x += 4 ){
3719                                         z = target_buffer_get_u32( target, &(target_buf[ x * 4 ]) );
3720                                         Jim_fprintf( interp, interp->cookie_stdout, "%08x ", (int)(z) );
3721                                 }
3722                                 for( ; (x < 16) ; x += 4 ){
3723                                         Jim_fprintf( interp, interp->cookie_stdout, "         " );
3724                                 }
3725                                 break;
3726                         case 2:
3727                                 for( x = 0 ; (x < 16) && (x < y) ; x += 2 ){
3728                                         z = target_buffer_get_u16( target, &(target_buf[ x * 2 ]) );
3729                                         Jim_fprintf( interp, interp->cookie_stdout, "%04x ", (int)(z) );
3730                                 }
3731                                 for( ; (x < 16) ; x += 2 ){
3732                                         Jim_fprintf( interp, interp->cookie_stdout, "     " );
3733                                 }
3734                                 break;
3735                         case 1:
3736                         default:
3737                                 for( x = 0 ; (x < 16) && (x < y) ; x += 1 ){
3738                                         z = target_buffer_get_u8( target, &(target_buf[ x * 4 ]) );
3739                                         Jim_fprintf( interp, interp->cookie_stdout, "%02x ", (int)(z) );
3740                                 }
3741                                 for( ; (x < 16) ; x += 1 ){
3742                                         Jim_fprintf( interp, interp->cookie_stdout, "   " );
3743                                 }
3744                                 break;
3745                         }
3746                         /* ascii-ify the bytes */
3747                         for( x = 0 ; x < y ; x++ ){
3748                                 if( (target_buf[x] >= 0x20) &&
3749                                         (target_buf[x] <= 0x7e) ){
3750                                         /* good */
3751                                 } else {
3752                                         /* smack it */
3753                                         target_buf[x] = '.';
3754                                 }
3755                         }
3756                         /* space pad  */
3757                         while( x < 16 ){
3758                                 target_buf[x] = ' ';
3759                                 x++;
3760                         }
3761                         /* terminate */
3762                         target_buf[16] = 0;
3763                         /* print - with a newline */
3764                         Jim_fprintf( interp, interp->cookie_stdout, "%s\n", target_buf );
3765                         /* NEXT... */
3766                         c -= 16;
3767                         a += 16;
3768                 }
3769                 return JIM_OK;
3770         case TS_CMD_MEM2ARRAY:
3771                 return target_mem2array( goi.interp, target, goi.argc, goi.argv );
3772                 break;
3773         case TS_CMD_ARRAY2MEM:
3774                 return target_array2mem( goi.interp, target, goi.argc, goi.argv );
3775                 break;
3776         case TS_CMD_EXAMINE:
3777                 if( goi.argc ){
3778                         Jim_WrongNumArgs( goi.interp, 2, argv, "[no parameters]");
3779                         return JIM_ERR;
3780                 }
3781                 if (!target->tap->enabled)
3782                         goto err_tap_disabled;
3783                 e = target->type->examine( target );
3784                 if( e != ERROR_OK ){
3785                         Jim_SetResult_sprintf( interp, "examine-fails: %d", e );
3786                         return JIM_ERR;
3787                 }
3788                 return JIM_OK;
3789         case TS_CMD_POLL:
3790                 if( goi.argc ){
3791                         Jim_WrongNumArgs( goi.interp, 2, argv, "[no parameters]");
3792                         return JIM_ERR;
3793                 }
3794                 if (!target->tap->enabled)
3795                         goto err_tap_disabled;
3796                 if( !(target_was_examined(target)) ){
3797                         e = ERROR_TARGET_NOT_EXAMINED;
3798                 } else {
3799                         e = target->type->poll( target );
3800                 }
3801                 if( e != ERROR_OK ){
3802                         Jim_SetResult_sprintf( interp, "poll-fails: %d", e );
3803                         return JIM_ERR;
3804                 } else {
3805                         return JIM_OK;
3806                 }
3807                 break;
3808         case TS_CMD_RESET:
3809                 if( goi.argc != 2 ){
3810                         Jim_WrongNumArgs( interp, 2, argv, "t|f|assert|deassert BOOL");
3811                         return JIM_ERR;
3812                 }
3813                 e = Jim_GetOpt_Nvp( &goi, nvp_assert, &n );
3814                 if( e != JIM_OK ){
3815                         Jim_GetOpt_NvpUnknown( &goi, nvp_assert, 1 );
3816                         return e;
3817                 }
3818                 /* the halt or not param */
3819                 e = Jim_GetOpt_Wide( &goi, &a);
3820                 if( e != JIM_OK ){
3821                         return e;
3822                 }
3823                 if (!target->tap->enabled)
3824                         goto err_tap_disabled;
3825                 /* determine if we should halt or not. */
3826                 target->reset_halt = !!a;
3827                 /* When this happens - all workareas are invalid. */
3828                 target_free_all_working_areas_restore(target, 0);
3829
3830                 /* do the assert */
3831                 if( n->value == NVP_ASSERT ){
3832                         target->type->assert_reset( target );
3833                 } else {
3834                         target->type->deassert_reset( target );
3835                 }
3836                 return JIM_OK;
3837         case TS_CMD_HALT:
3838                 if( goi.argc ){
3839                         Jim_WrongNumArgs( goi.interp, 0, argv, "halt [no parameters]");
3840                         return JIM_ERR;
3841                 }
3842                 if (!target->tap->enabled)
3843                         goto err_tap_disabled;
3844                 target->type->halt( target );
3845                 return JIM_OK;
3846         case TS_CMD_WAITSTATE:
3847                 /* params:  <name>  statename timeoutmsecs */
3848                 if( goi.argc != 2 ){
3849                         Jim_SetResult_sprintf( goi.interp, "%s STATENAME TIMEOUTMSECS", n->name );
3850                         return JIM_ERR;
3851                 }
3852                 e = Jim_GetOpt_Nvp( &goi, nvp_target_state, &n );
3853                 if( e != JIM_OK ){
3854                         Jim_GetOpt_NvpUnknown( &goi, nvp_target_state,1 );
3855                         return e;
3856                 }
3857                 e = Jim_GetOpt_Wide( &goi, &a );
3858                 if( e != JIM_OK ){
3859                         return e;
3860                 }
3861                 if (!target->tap->enabled)
3862                         goto err_tap_disabled;
3863                 e = target_wait_state( target, n->value, a );
3864                 if( e != ERROR_OK ){
3865                         Jim_SetResult_sprintf( goi.interp,
3866                                                                    "target: %s wait %s fails (%d) %s",
3867                                                                    target->cmd_name,
3868                                                                    n->name,
3869                                                                    e, target_strerror_safe(e) );
3870                         return JIM_ERR;
3871                 } else {
3872                         return JIM_OK;
3873                 }
3874         case TS_CMD_EVENTLIST:
3875                 /* List for human, Events defined for this target.
3876                  * scripts/programs should use 'name cget -event NAME'
3877                  */
3878                 {
3879                         target_event_action_t *teap;
3880                         teap = target->event_action;
3881                         command_print( cmd_ctx, "Event actions for target (%d) %s\n",
3882                                                    target->target_number,
3883                                                    target->cmd_name );
3884                         command_print( cmd_ctx, "%-25s | Body", "Event");
3885                         command_print( cmd_ctx, "------------------------- | ----------------------------------------");
3886                         while( teap ){
3887                                 command_print( cmd_ctx,
3888                                                            "%-25s | %s",
3889                                                            Jim_Nvp_value2name_simple( nvp_target_event, teap->event )->name,
3890                                                            Jim_GetString( teap->body, NULL ) );
3891                                 teap = teap->next;
3892                         }
3893                         command_print( cmd_ctx, "***END***");
3894                         return JIM_OK;
3895                 }
3896         case TS_CMD_CURSTATE:
3897                 if( goi.argc != 0 ){
3898                         Jim_WrongNumArgs( goi.interp, 0, argv, "[no parameters]");
3899                         return JIM_ERR;
3900                 }
3901                 Jim_SetResultString( goi.interp,
3902                                                          Jim_Nvp_value2name_simple(nvp_target_state,target->state)->name,-1);
3903                 return JIM_OK;
3904         case TS_CMD_INVOKE_EVENT:
3905                 if( goi.argc != 1 ){
3906                         Jim_SetResult_sprintf( goi.interp, "%s ?EVENTNAME?",n->name);
3907                         return JIM_ERR;
3908                 }
3909                 e = Jim_GetOpt_Nvp( &goi, nvp_target_event, &n );
3910                 if( e != JIM_OK ){
3911                         Jim_GetOpt_NvpUnknown( &goi, nvp_target_event, 1 );
3912                         return e;
3913                 }
3914                 target_handle_event( target, n->value );
3915                 return JIM_OK;
3916         }
3917         return JIM_ERR;
3918
3919 err_tap_disabled:
3920         Jim_SetResult_sprintf(interp, "[TAP is disabled]");
3921         return JIM_ERR;
3922 }
3923
3924 static int target_create( Jim_GetOptInfo *goi )
3925 {
3926         Jim_Obj *new_cmd;
3927         Jim_Cmd *cmd;
3928         const char *cp;
3929         char *cp2;
3930         int e;
3931         int x;
3932         target_t *target;
3933         struct command_context_s *cmd_ctx;
3934
3935         cmd_ctx = Jim_GetAssocData(goi->interp, "context");
3936         if( goi->argc < 3 ){
3937                 Jim_WrongNumArgs( goi->interp, 1, goi->argv, "?name? ?type? ..options...");
3938                 return JIM_ERR;
3939         }
3940
3941         /* COMMAND */
3942         Jim_GetOpt_Obj( goi, &new_cmd );
3943         /* does this command exist? */
3944         cmd = Jim_GetCommand( goi->interp, new_cmd, JIM_ERRMSG );
3945         if( cmd ){
3946                 cp = Jim_GetString( new_cmd, NULL );
3947                 Jim_SetResult_sprintf(goi->interp, "Command/target: %s Exists", cp);
3948                 return JIM_ERR;
3949         }
3950
3951         /* TYPE */
3952         e = Jim_GetOpt_String( goi, &cp2, NULL );
3953         cp = cp2;
3954         /* now does target type exist */
3955         for( x = 0 ; target_types[x] ; x++ ){
3956                 if( 0 == strcmp( cp, target_types[x]->name ) ){
3957                         /* found */
3958                         break;
3959                 }
3960         }
3961         if( target_types[x] == NULL ){
3962                 Jim_SetResult_sprintf( goi->interp, "Unknown target type %s, try one of ", cp );
3963                 for( x = 0 ; target_types[x] ; x++ ){
3964                         if( target_types[x+1] ){
3965                                 Jim_AppendStrings( goi->interp,
3966                                                                    Jim_GetResult(goi->interp),
3967                                                                    target_types[x]->name,
3968                                                                    ", ", NULL);
3969                         } else {
3970                                 Jim_AppendStrings( goi->interp,
3971                                                                    Jim_GetResult(goi->interp),
3972                                                                    " or ",
3973                                                                    target_types[x]->name,NULL );
3974                         }
3975                 }
3976                 return JIM_ERR;
3977         }
3978
3979         /* Create it */
3980         target = calloc(1,sizeof(target_t));
3981         /* set target number */
3982         target->target_number = new_target_number();
3983
3984         /* allocate memory for each unique target type */
3985         target->type = (target_type_t*)calloc(1,sizeof(target_type_t));
3986
3987         memcpy( target->type, target_types[x], sizeof(target_type_t));
3988
3989         /* will be set by "-endian" */
3990         target->endianness = TARGET_ENDIAN_UNKNOWN;
3991
3992         target->working_area        = 0x0;
3993         target->working_area_size   = 0x0;
3994         target->working_areas       = NULL;
3995         target->backup_working_area = 0;
3996
3997         target->state               = TARGET_UNKNOWN;
3998         target->debug_reason        = DBG_REASON_UNDEFINED;
3999         target->reg_cache           = NULL;
4000         target->breakpoints         = NULL;
4001         target->watchpoints         = NULL;
4002         target->next                = NULL;
4003         target->arch_info           = NULL;
4004
4005         target->display             = 1;
4006
4007         /* initialize trace information */
4008         target->trace_info = malloc(sizeof(trace_t));
4009         target->trace_info->num_trace_points         = 0;
4010         target->trace_info->trace_points_size        = 0;
4011         target->trace_info->trace_points             = NULL;
4012         target->trace_info->trace_history_size       = 0;
4013         target->trace_info->trace_history            = NULL;
4014         target->trace_info->trace_history_pos        = 0;
4015         target->trace_info->trace_history_overflowed = 0;
4016
4017         target->dbgmsg          = NULL;
4018         target->dbg_msg_enabled = 0;
4019
4020         target->endianness = TARGET_ENDIAN_UNKNOWN;
4021
4022         /* Do the rest as "configure" options */
4023         goi->isconfigure = 1;
4024         e = target_configure( goi, target);
4025
4026         if (target->tap == NULL)
4027         {
4028                 Jim_SetResultString( interp, "-chain-position required when creating target", -1);
4029                 e=JIM_ERR;
4030         }
4031
4032         if( e != JIM_OK ){
4033                 free( target->type );
4034                 free( target );
4035                 return e;
4036         }
4037
4038         if( target->endianness == TARGET_ENDIAN_UNKNOWN ){
4039                 /* default endian to little if not specified */
4040                 target->endianness = TARGET_LITTLE_ENDIAN;
4041         }
4042
4043         /* incase variant is not set */
4044         if (!target->variant)
4045                 target->variant = strdup("");
4046
4047         /* create the target specific commands */
4048         if( target->type->register_commands ){
4049                 (*(target->type->register_commands))( cmd_ctx );
4050         }
4051         if( target->type->target_create ){
4052                 (*(target->type->target_create))( target, goi->interp );
4053         }
4054
4055         /* append to end of list */
4056         {
4057                 target_t **tpp;
4058                 tpp = &(all_targets);
4059                 while( *tpp ){
4060                         tpp = &( (*tpp)->next );
4061                 }
4062                 *tpp = target;
4063         }
4064
4065         cp = Jim_GetString( new_cmd, NULL );
4066         target->cmd_name = strdup(cp);
4067
4068         /* now - create the new target name command */
4069         e = Jim_CreateCommand( goi->interp,
4070                                                    /* name */
4071                                                    cp,
4072                                                    tcl_target_func, /* C function */
4073                                                    target, /* private data */
4074                                                    NULL ); /* no del proc */
4075
4076         return e;
4077 }
4078
4079 static int jim_target( Jim_Interp *interp, int argc, Jim_Obj *const *argv )
4080 {
4081         int x,r,e;
4082         jim_wide w;
4083         struct command_context_s *cmd_ctx;
4084         target_t *target;
4085         Jim_GetOptInfo goi;
4086         enum tcmd {
4087                 /* TG = target generic */
4088                 TG_CMD_CREATE,
4089                 TG_CMD_TYPES,
4090                 TG_CMD_NAMES,
4091                 TG_CMD_CURRENT,
4092                 TG_CMD_NUMBER,
4093                 TG_CMD_COUNT,
4094         };
4095         const char *target_cmds[] = {
4096                 "create", "types", "names", "current", "number",
4097                 "count",
4098                 NULL /* terminate */
4099         };
4100
4101         LOG_DEBUG("Target command params:");
4102         LOG_DEBUG("%s", Jim_Debug_ArgvString(interp, argc, argv));
4103
4104         cmd_ctx = Jim_GetAssocData( interp, "context" );
4105
4106         Jim_GetOpt_Setup( &goi, interp, argc-1, argv+1 );
4107
4108         if( goi.argc == 0 ){
4109                 Jim_WrongNumArgs(interp, 1, argv, "missing: command ...");
4110                 return JIM_ERR;
4111         }
4112
4113         /* Jim_GetOpt_Debug( &goi ); */
4114         r = Jim_GetOpt_Enum( &goi, target_cmds, &x   );
4115         if( r != JIM_OK ){
4116                 return r;
4117         }
4118
4119         switch(x){
4120         default:
4121                 Jim_Panic(goi.interp,"Why am I here?");
4122                 return JIM_ERR;
4123         case TG_CMD_CURRENT:
4124                 if( goi.argc != 0 ){
4125                         Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters");
4126                         return JIM_ERR;
4127                 }
4128                 Jim_SetResultString( goi.interp, get_current_target( cmd_ctx )->cmd_name, -1 );
4129                 return JIM_OK;
4130         case TG_CMD_TYPES:
4131                 if( goi.argc != 0 ){
4132                         Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters" );
4133                         return JIM_ERR;
4134                 }
4135                 Jim_SetResult( goi.interp, Jim_NewListObj( goi.interp, NULL, 0 ) );
4136                 for( x = 0 ; target_types[x] ; x++ ){
4137                         Jim_ListAppendElement( goi.interp,
4138                                                                    Jim_GetResult(goi.interp),
4139                                                                    Jim_NewStringObj( goi.interp, target_types[x]->name, -1 ) );
4140                 }
4141                 return JIM_OK;
4142         case TG_CMD_NAMES:
4143                 if( goi.argc != 0 ){
4144                         Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters" );
4145                         return JIM_ERR;
4146                 }
4147                 Jim_SetResult( goi.interp, Jim_NewListObj( goi.interp, NULL, 0 ) );
4148                 target = all_targets;
4149                 while( target ){
4150                         Jim_ListAppendElement( goi.interp,
4151                                                                    Jim_GetResult(goi.interp),
4152                                                                    Jim_NewStringObj( goi.interp, target->cmd_name, -1 ) );
4153                         target = target->next;
4154                 }
4155                 return JIM_OK;
4156         case TG_CMD_CREATE:
4157                 if( goi.argc < 3 ){
4158                         Jim_WrongNumArgs( goi.interp, goi.argc, goi.argv, "?name  ... config options ...");
4159                         return JIM_ERR;
4160                 }
4161                 return target_create( &goi );
4162                 break;
4163         case TG_CMD_NUMBER:
4164                 if( goi.argc != 1 ){
4165                         Jim_SetResult_sprintf( goi.interp, "expected: target number ?NUMBER?");
4166                         return JIM_ERR;
4167                 }
4168                 e = Jim_GetOpt_Wide( &goi, &w );
4169                 if( e != JIM_OK ){
4170                         return JIM_ERR;
4171                 }
4172                 {
4173                         target_t *t;
4174                         t = get_target_by_num(w);
4175                         if( t == NULL ){
4176                                 Jim_SetResult_sprintf( goi.interp,"Target: number %d does not exist", (int)(w));
4177                                 return JIM_ERR;
4178                         }
4179                         Jim_SetResultString( goi.interp, t->cmd_name, -1 );
4180                         return JIM_OK;
4181                 }
4182         case TG_CMD_COUNT:
4183                 if( goi.argc != 0 ){
4184                         Jim_WrongNumArgs( goi.interp, 0, goi.argv, "<no parameters>");
4185                         return JIM_ERR;
4186                 }
4187                 Jim_SetResult( goi.interp,
4188                                            Jim_NewIntObj( goi.interp, max_target_number()));
4189                 return JIM_OK;
4190         }
4191
4192         return JIM_ERR;
4193 }
4194
4195
4196 struct FastLoad
4197 {
4198         u32 address;
4199         u8 *data;
4200         int length;
4201
4202 };
4203
4204 static int fastload_num;
4205 static struct FastLoad *fastload;
4206
4207 static void free_fastload(void)
4208 {
4209         if (fastload!=NULL)
4210         {
4211                 int i;
4212                 for (i=0; i<fastload_num; i++)
4213                 {
4214                         if (fastload[i].data)
4215                                 free(fastload[i].data);
4216                 }
4217                 free(fastload);
4218                 fastload=NULL;
4219         }
4220 }
4221
4222
4223
4224
4225 static int handle_fast_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
4226 {
4227         u8 *buffer;
4228         u32 buf_cnt;
4229         u32 image_size;
4230         u32 min_address=0;
4231         u32 max_address=0xffffffff;
4232         int i;
4233         int retval;
4234
4235         image_t image;
4236
4237         duration_t duration;
4238         char *duration_text;
4239
4240         if ((argc < 1)||(argc > 5))
4241         {
4242                 return ERROR_COMMAND_SYNTAX_ERROR;
4243         }
4244
4245         /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
4246         if (argc >= 2)
4247         {
4248                 image.base_address_set = 1;
4249                 image.base_address = strtoul(args[1], NULL, 0);
4250         }
4251         else
4252         {
4253                 image.base_address_set = 0;
4254         }
4255
4256
4257         image.start_address_set = 0;
4258
4259         if (argc>=4)
4260         {
4261                 min_address=strtoul(args[3], NULL, 0);
4262         }
4263         if (argc>=5)
4264         {
4265                 max_address=strtoul(args[4], NULL, 0)+min_address;
4266         }
4267
4268         if (min_address>max_address)
4269         {
4270                 return ERROR_COMMAND_SYNTAX_ERROR;
4271         }
4272
4273         duration_start_measure(&duration);
4274
4275         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
4276         {
4277                 return ERROR_OK;
4278         }
4279
4280         image_size = 0x0;
4281         retval = ERROR_OK;
4282         fastload_num=image.num_sections;
4283         fastload=(struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
4284         if (fastload==NULL)
4285         {
4286                 image_close(&image);
4287                 return ERROR_FAIL;
4288         }
4289         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
4290         for (i = 0; i < image.num_sections; i++)
4291         {
4292                 buffer = malloc(image.sections[i].size);
4293                 if (buffer == NULL)
4294                 {
4295                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
4296                         break;
4297                 }
4298
4299                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
4300                 {
4301                         free(buffer);
4302                         break;
4303                 }
4304
4305                 u32 offset=0;
4306                 u32 length=buf_cnt;
4307
4308
4309                 /* DANGER!!! beware of unsigned comparision here!!! */
4310
4311                 if ((image.sections[i].base_address+buf_cnt>=min_address)&&
4312                                 (image.sections[i].base_address<max_address))
4313                 {
4314                         if (image.sections[i].base_address<min_address)
4315                         {
4316                                 /* clip addresses below */
4317                                 offset+=min_address-image.sections[i].base_address;
4318                                 length-=offset;
4319                         }
4320
4321                         if (image.sections[i].base_address+buf_cnt>max_address)
4322                         {
4323                                 length-=(image.sections[i].base_address+buf_cnt)-max_address;
4324                         }
4325
4326                         fastload[i].address=image.sections[i].base_address+offset;
4327                         fastload[i].data=malloc(length);
4328                         if (fastload[i].data==NULL)
4329                         {
4330                                 free(buffer);
4331                                 break;
4332                         }
4333                         memcpy(fastload[i].data, buffer+offset, length);
4334                         fastload[i].length=length;
4335
4336                         image_size += length;
4337                         command_print(cmd_ctx, "%u byte written at address 0x%8.8x", length, image.sections[i].base_address+offset);
4338                 }
4339
4340                 free(buffer);
4341         }
4342
4343         duration_stop_measure(&duration, &duration_text);
4344         if (retval==ERROR_OK)
4345         {
4346                 command_print(cmd_ctx, "Loaded %u bytes in %s", image_size, duration_text);
4347                 command_print(cmd_ctx, "NB!!! image has not been loaded to target, issue a subsequent 'fast_load' to do so.");
4348         }
4349         free(duration_text);
4350
4351         image_close(&image);
4352
4353         if (retval!=ERROR_OK)
4354         {
4355                 free_fastload();
4356         }
4357
4358         return retval;
4359 }
4360
4361 static int handle_fast_load_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
4362 {
4363         if (argc>0)
4364                 return ERROR_COMMAND_SYNTAX_ERROR;
4365         if (fastload==NULL)
4366         {
4367                 LOG_ERROR("No image in memory");
4368                 return ERROR_FAIL;
4369         }
4370         int i;
4371         int ms=timeval_ms();
4372         int size=0;
4373         int retval=ERROR_OK;
4374         for (i=0; i<fastload_num;i++)
4375         {
4376                 target_t *target = get_current_target(cmd_ctx);
4377                 command_print(cmd_ctx, "Write to 0x%08x, length 0x%08x", fastload[i].address, fastload[i].length);
4378                 if (retval==ERROR_OK)
4379                 {
4380                         retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
4381                 }
4382                 size+=fastload[i].length;
4383         }
4384         int after=timeval_ms();
4385         command_print(cmd_ctx, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
4386         return retval;
4387 }