target: whitespace cleanup
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2010 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   Copyright (C) 2011 by Broadcom Corporation                            *
18  *   Evan Hunter - ehunter@broadcom.com                                    *
19  *                                                                         *
20  *   Copyright (C) ST-Ericsson SA 2011                                     *
21  *   michel.jaouen@stericsson.com : smp minimum support                    *
22  *                                                                         *
23  *   This program is free software; you can redistribute it and/or modify  *
24  *   it under the terms of the GNU General Public License as published by  *
25  *   the Free Software Foundation; either version 2 of the License, or     *
26  *   (at your option) any later version.                                   *
27  *                                                                         *
28  *   This program is distributed in the hope that it will be useful,       *
29  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
30  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
31  *   GNU General Public License for more details.                          *
32  *                                                                         *
33  *   You should have received a copy of the GNU General Public License     *
34  *   along with this program; if not, write to the                         *
35  *   Free Software Foundation, Inc.,                                       *
36  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
37  ***************************************************************************/
38 #ifdef HAVE_CONFIG_H
39 #include "config.h"
40 #endif
41
42 #include <helper/time_support.h>
43 #include <jtag/jtag.h>
44 #include <flash/nor/core.h>
45
46 #include "target.h"
47 #include "target_type.h"
48 #include "target_request.h"
49 #include "breakpoints.h"
50 #include "register.h"
51 #include "trace.h"
52 #include "image.h"
53 #include "rtos/rtos.h"
54
55
56 static int target_read_buffer_default(struct target *target, uint32_t address,
57                 uint32_t size, uint8_t *buffer);
58 static int target_write_buffer_default(struct target *target, uint32_t address,
59                 uint32_t size, const uint8_t *buffer);
60 static int target_array2mem(Jim_Interp *interp, struct target *target,
61                 int argc, Jim_Obj *const *argv);
62 static int target_mem2array(Jim_Interp *interp, struct target *target,
63                 int argc, Jim_Obj *const *argv);
64 static int target_register_user_commands(struct command_context *cmd_ctx);
65
66 /* targets */
67 extern struct target_type arm7tdmi_target;
68 extern struct target_type arm720t_target;
69 extern struct target_type arm9tdmi_target;
70 extern struct target_type arm920t_target;
71 extern struct target_type arm966e_target;
72 extern struct target_type arm946e_target;
73 extern struct target_type arm926ejs_target;
74 extern struct target_type fa526_target;
75 extern struct target_type feroceon_target;
76 extern struct target_type dragonite_target;
77 extern struct target_type xscale_target;
78 extern struct target_type cortexm3_target;
79 extern struct target_type cortexa8_target;
80 extern struct target_type arm11_target;
81 extern struct target_type mips_m4k_target;
82 extern struct target_type avr_target;
83 extern struct target_type dsp563xx_target;
84 extern struct target_type dsp5680xx_target;
85 extern struct target_type testee_target;
86 extern struct target_type avr32_ap7k_target;
87
88 static struct target_type *target_types[] =
89 {
90         &arm7tdmi_target,
91         &arm9tdmi_target,
92         &arm920t_target,
93         &arm720t_target,
94         &arm966e_target,
95         &arm946e_target,
96         &arm926ejs_target,
97         &fa526_target,
98         &feroceon_target,
99         &dragonite_target,
100         &xscale_target,
101         &cortexm3_target,
102         &cortexa8_target,
103         &arm11_target,
104         &mips_m4k_target,
105         &avr_target,
106         &dsp563xx_target,
107         &dsp5680xx_target,
108         &testee_target,
109         &avr32_ap7k_target,
110         NULL,
111 };
112
113 struct target *all_targets = NULL;
114 static struct target_event_callback *target_event_callbacks = NULL;
115 static struct target_timer_callback *target_timer_callbacks = NULL;
116 static const int polling_interval = 100;
117
118 static const Jim_Nvp nvp_assert[] = {
119         { .name = "assert", NVP_ASSERT },
120         { .name = "deassert", NVP_DEASSERT },
121         { .name = "T", NVP_ASSERT },
122         { .name = "F", NVP_DEASSERT },
123         { .name = "t", NVP_ASSERT },
124         { .name = "f", NVP_DEASSERT },
125         { .name = NULL, .value = -1 }
126 };
127
128 static const Jim_Nvp nvp_error_target[] = {
129         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
130         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
131         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
132         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
133         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
134         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
135         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
136         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
137         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
138         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
139         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
140         { .value = -1, .name = NULL }
141 };
142
143 static const char *target_strerror_safe(int err)
144 {
145         const Jim_Nvp *n;
146
147         n = Jim_Nvp_value2name_simple(nvp_error_target, err);
148         if (n->name == NULL) {
149                 return "unknown";
150         } else {
151                 return n->name;
152         }
153 }
154
155 static const Jim_Nvp nvp_target_event[] = {
156         { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
157         { .value = TARGET_EVENT_OLD_pre_resume         , .name = "old-pre_resume" },
158
159         { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
160         { .value = TARGET_EVENT_HALTED, .name = "halted" },
161         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
162         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
163         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
164
165         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
166         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
167
168         /* historical name */
169
170         { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
171
172         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
173         { .value = TARGET_EVENT_RESET_ASSERT,        .name = "reset-assert" },
174         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
175         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
176         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
177         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
178         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
179         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
180         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
181         { .value = TARGET_EVENT_RESET_INIT,          .name = "reset-init" },
182         { .value = TARGET_EVENT_RESET_END,           .name = "reset-end" },
183
184         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
185         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
186
187         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
188         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
189
190         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
191         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
192
193         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
194         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
195
196         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
197         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
198
199         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
200         { .value = TARGET_EVENT_RESUMED     , .name = "resume-ok" },
201         { .value = TARGET_EVENT_RESUME_END  , .name = "resume-end" },
202
203         { .name = NULL, .value = -1 }
204 };
205
206 static const Jim_Nvp nvp_target_state[] = {
207         { .name = "unknown", .value = TARGET_UNKNOWN },
208         { .name = "running", .value = TARGET_RUNNING },
209         { .name = "halted",  .value = TARGET_HALTED },
210         { .name = "reset",   .value = TARGET_RESET },
211         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
212         { .name = NULL, .value = -1 },
213 };
214
215 static const Jim_Nvp nvp_target_debug_reason [] = {
216         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
217         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
218         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
219         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
220         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
221         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
222         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
223         { .name = NULL, .value = -1 },
224 };
225
226 static const Jim_Nvp nvp_target_endian[] = {
227         { .name = "big",    .value = TARGET_BIG_ENDIAN },
228         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
229         { .name = "be",     .value = TARGET_BIG_ENDIAN },
230         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
231         { .name = NULL,     .value = -1 },
232 };
233
234 static const Jim_Nvp nvp_reset_modes[] = {
235         { .name = "unknown", .value = RESET_UNKNOWN },
236         { .name = "run"    , .value = RESET_RUN },
237         { .name = "halt"   , .value = RESET_HALT },
238         { .name = "init"   , .value = RESET_INIT },
239         { .name = NULL     , .value = -1 },
240 };
241
242 const char *debug_reason_name(struct target *t)
243 {
244         const char *cp;
245
246         cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
247                         t->debug_reason)->name;
248         if (!cp) {
249                 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
250                 cp = "(*BUG*unknown*BUG*)";
251         }
252         return cp;
253 }
254
255 const char *
256 target_state_name( struct target *t )
257 {
258         const char *cp;
259         cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
260         if( !cp ){
261                 LOG_ERROR("Invalid target state: %d", (int)(t->state));
262                 cp = "(*BUG*unknown*BUG*)";
263         }
264         return cp;
265 }
266
267 /* determine the number of the new target */
268 static int new_target_number(void)
269 {
270         struct target *t;
271         int x;
272
273         /* number is 0 based */
274         x = -1;
275         t = all_targets;
276         while (t) {
277                 if (x < t->target_number) {
278                         x = t->target_number;
279                 }
280                 t = t->next;
281         }
282         return x + 1;
283 }
284
285 /* read a uint32_t from a buffer in target memory endianness */
286 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
287 {
288         if (target->endianness == TARGET_LITTLE_ENDIAN)
289                 return le_to_h_u32(buffer);
290         else
291                 return be_to_h_u32(buffer);
292 }
293
294 /* read a uint24_t from a buffer in target memory endianness */
295 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
296 {
297         if (target->endianness == TARGET_LITTLE_ENDIAN)
298                 return le_to_h_u24(buffer);
299         else
300                 return be_to_h_u24(buffer);
301 }
302
303 /* read a uint16_t from a buffer in target memory endianness */
304 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
305 {
306         if (target->endianness == TARGET_LITTLE_ENDIAN)
307                 return le_to_h_u16(buffer);
308         else
309                 return be_to_h_u16(buffer);
310 }
311
312 /* read a uint8_t from a buffer in target memory endianness */
313 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
314 {
315         return *buffer & 0x0ff;
316 }
317
318 /* write a uint32_t to a buffer in target memory endianness */
319 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
320 {
321         if (target->endianness == TARGET_LITTLE_ENDIAN)
322                 h_u32_to_le(buffer, value);
323         else
324                 h_u32_to_be(buffer, value);
325 }
326
327 /* write a uint24_t to a buffer in target memory endianness */
328 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
329 {
330         if (target->endianness == TARGET_LITTLE_ENDIAN)
331                 h_u24_to_le(buffer, value);
332         else
333                 h_u24_to_be(buffer, value);
334 }
335
336 /* write a uint16_t to a buffer in target memory endianness */
337 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
338 {
339         if (target->endianness == TARGET_LITTLE_ENDIAN)
340                 h_u16_to_le(buffer, value);
341         else
342                 h_u16_to_be(buffer, value);
343 }
344
345 /* write a uint8_t to a buffer in target memory endianness */
346 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
347 {
348         *buffer = value;
349 }
350
351 /* write a uint32_t array to a buffer in target memory endianness */
352 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
353 {
354         uint32_t i;
355         for(i = 0; i < count; i ++)
356                 dstbuf[i] = target_buffer_get_u32(target,&buffer[i*4]);
357 }
358
359 /* write a uint16_t array to a buffer in target memory endianness */
360 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
361 {
362         uint32_t i;
363         for(i = 0; i < count; i ++)
364                 dstbuf[i] = target_buffer_get_u16(target,&buffer[i*2]);
365 }
366
367 /* write a uint32_t array to a buffer in target memory endianness */
368 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, uint32_t *srcbuf)
369 {
370         uint32_t i;
371         for(i = 0; i < count; i ++)
372                 target_buffer_set_u32(target,&buffer[i*4],srcbuf[i]);
373 }
374
375 /* write a uint16_t array to a buffer in target memory endianness */
376 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, uint16_t *srcbuf)
377 {
378         uint32_t i;
379         for(i = 0; i < count; i ++)
380                 target_buffer_set_u16(target,&buffer[i*2],srcbuf[i]);
381 }
382
383 /* return a pointer to a configured target; id is name or number */
384 struct target *get_target(const char *id)
385 {
386         struct target *target;
387
388         /* try as tcltarget name */
389         for (target = all_targets; target; target = target->next) {
390                 if (target->cmd_name == NULL)
391                         continue;
392                 if (strcmp(id, target->cmd_name) == 0)
393                         return target;
394         }
395
396         /* It's OK to remove this fallback sometime after August 2010 or so */
397
398         /* no match, try as number */
399         unsigned num;
400         if (parse_uint(id, &num) != ERROR_OK)
401                 return NULL;
402
403         for (target = all_targets; target; target = target->next) {
404                 if (target->target_number == (int)num) {
405                         LOG_WARNING("use '%s' as target identifier, not '%u'",
406                                         target->cmd_name, num);
407                         return target;
408                 }
409         }
410
411         return NULL;
412 }
413
414 /* returns a pointer to the n-th configured target */
415 static struct target *get_target_by_num(int num)
416 {
417         struct target *target = all_targets;
418
419         while (target) {
420                 if (target->target_number == num) {
421                         return target;
422                 }
423                 target = target->next;
424         }
425
426         return NULL;
427 }
428
429 struct target* get_current_target(struct command_context *cmd_ctx)
430 {
431         struct target *target = get_target_by_num(cmd_ctx->current_target);
432
433         if (target == NULL)
434         {
435                 LOG_ERROR("BUG: current_target out of bounds");
436                 exit(-1);
437         }
438
439         return target;
440 }
441
442 int target_poll(struct target *target)
443 {
444         int retval;
445
446         /* We can't poll until after examine */
447         if (!target_was_examined(target))
448         {
449                 /* Fail silently lest we pollute the log */
450                 return ERROR_FAIL;
451         }
452
453         retval = target->type->poll(target);
454         if (retval != ERROR_OK)
455                 return retval;
456
457         if (target->halt_issued)
458         {
459                 if (target->state == TARGET_HALTED)
460                 {
461                         target->halt_issued = false;
462                 } else
463                 {
464                         long long t = timeval_ms() - target->halt_issued_time;
465                         if (t>1000)
466                         {
467                                 target->halt_issued = false;
468                                 LOG_INFO("Halt timed out, wake up GDB.");
469                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
470                         }
471                 }
472         }
473
474         return ERROR_OK;
475 }
476
477 int target_halt(struct target *target)
478 {
479         int retval;
480         /* We can't poll until after examine */
481         if (!target_was_examined(target))
482         {
483                 LOG_ERROR("Target not examined yet");
484                 return ERROR_FAIL;
485         }
486
487         retval = target->type->halt(target);
488         if (retval != ERROR_OK)
489                 return retval;
490
491         target->halt_issued = true;
492         target->halt_issued_time = timeval_ms();
493
494         return ERROR_OK;
495 }
496
497 /**
498  * Make the target (re)start executing using its saved execution
499  * context (possibly with some modifications).
500  *
501  * @param target Which target should start executing.
502  * @param current True to use the target's saved program counter instead
503  *      of the address parameter
504  * @param address Optionally used as the program counter.
505  * @param handle_breakpoints True iff breakpoints at the resumption PC
506  *      should be skipped.  (For example, maybe execution was stopped by
507  *      such a breakpoint, in which case it would be counterprodutive to
508  *      let it re-trigger.
509  * @param debug_execution False if all working areas allocated by OpenOCD
510  *      should be released and/or restored to their original contents.
511  *      (This would for example be true to run some downloaded "helper"
512  *      algorithm code, which resides in one such working buffer and uses
513  *      another for data storage.)
514  *
515  * @todo Resolve the ambiguity about what the "debug_execution" flag
516  * signifies.  For example, Target implementations don't agree on how
517  * it relates to invalidation of the register cache, or to whether
518  * breakpoints and watchpoints should be enabled.  (It would seem wrong
519  * to enable breakpoints when running downloaded "helper" algorithms
520  * (debug_execution true), since the breakpoints would be set to match
521  * target firmware being debugged, not the helper algorithm.... and
522  * enabling them could cause such helpers to malfunction (for example,
523  * by overwriting data with a breakpoint instruction.  On the other
524  * hand the infrastructure for running such helpers might use this
525  * procedure but rely on hardware breakpoint to detect termination.)
526  */
527 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
528 {
529         int retval;
530
531         /* We can't poll until after examine */
532         if (!target_was_examined(target))
533         {
534                 LOG_ERROR("Target not examined yet");
535                 return ERROR_FAIL;
536         }
537
538         /* note that resume *must* be asynchronous. The CPU can halt before
539          * we poll. The CPU can even halt at the current PC as a result of
540          * a software breakpoint being inserted by (a bug?) the application.
541          */
542         if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
543                 return retval;
544
545         return retval;
546 }
547
548 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
549 {
550         char buf[100];
551         int retval;
552         Jim_Nvp *n;
553         n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
554         if (n->name == NULL) {
555                 LOG_ERROR("invalid reset mode");
556                 return ERROR_FAIL;
557         }
558
559         /* disable polling during reset to make reset event scripts
560          * more predictable, i.e. dr/irscan & pathmove in events will
561          * not have JTAG operations injected into the middle of a sequence.
562          */
563         bool save_poll = jtag_poll_get_enabled();
564
565         jtag_poll_set_enabled(false);
566
567         sprintf(buf, "ocd_process_reset %s", n->name);
568         retval = Jim_Eval(cmd_ctx->interp, buf);
569
570         jtag_poll_set_enabled(save_poll);
571
572         if (retval != JIM_OK) {
573                 Jim_MakeErrorMessage(cmd_ctx->interp);
574                 command_print(NULL,"%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
575                 return ERROR_FAIL;
576         }
577
578         /* We want any events to be processed before the prompt */
579         retval = target_call_timer_callbacks_now();
580
581         struct target *target;
582         for (target = all_targets; target; target = target->next) {
583                 target->type->check_reset(target);
584         }
585
586         return retval;
587 }
588
589 static int identity_virt2phys(struct target *target,
590                 uint32_t virtual, uint32_t *physical)
591 {
592         *physical = virtual;
593         return ERROR_OK;
594 }
595
596 static int no_mmu(struct target *target, int *enabled)
597 {
598         *enabled = 0;
599         return ERROR_OK;
600 }
601
602 static int default_examine(struct target *target)
603 {
604         target_set_examined(target);
605         return ERROR_OK;
606 }
607
608 /* no check by default */
609 static int default_check_reset(struct target *target)
610 {
611         return ERROR_OK;
612 }
613
614 int target_examine_one(struct target *target)
615 {
616         return target->type->examine(target);
617 }
618
619 static int jtag_enable_callback(enum jtag_event event, void *priv)
620 {
621         struct target *target = priv;
622
623         if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
624                 return ERROR_OK;
625
626         jtag_unregister_event_callback(jtag_enable_callback, target);
627         return target_examine_one(target);
628 }
629
630
631 /* Targets that correctly implement init + examine, i.e.
632  * no communication with target during init:
633  *
634  * XScale
635  */
636 int target_examine(void)
637 {
638         int retval = ERROR_OK;
639         struct target *target;
640
641         for (target = all_targets; target; target = target->next)
642         {
643                 /* defer examination, but don't skip it */
644                 if (!target->tap->enabled) {
645                         jtag_register_event_callback(jtag_enable_callback,
646                                         target);
647                         continue;
648                 }
649                 if ((retval = target_examine_one(target)) != ERROR_OK)
650                         return retval;
651         }
652         return retval;
653 }
654 const char *target_type_name(struct target *target)
655 {
656         return target->type->name;
657 }
658
659 static int target_write_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
660 {
661         if (!target_was_examined(target))
662         {
663                 LOG_ERROR("Target not examined yet");
664                 return ERROR_FAIL;
665         }
666         return target->type->write_memory_imp(target, address, size, count, buffer);
667 }
668
669 static int target_read_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
670 {
671         if (!target_was_examined(target))
672         {
673                 LOG_ERROR("Target not examined yet");
674                 return ERROR_FAIL;
675         }
676         return target->type->read_memory_imp(target, address, size, count, buffer);
677 }
678
679 static int target_soft_reset_halt_imp(struct target *target)
680 {
681         if (!target_was_examined(target))
682         {
683                 LOG_ERROR("Target not examined yet");
684                 return ERROR_FAIL;
685         }
686         if (!target->type->soft_reset_halt_imp) {
687                 LOG_ERROR("Target %s does not support soft_reset_halt",
688                                 target_name(target));
689                 return ERROR_FAIL;
690         }
691         return target->type->soft_reset_halt_imp(target);
692 }
693
694 /**
695  * Downloads a target-specific native code algorithm to the target,
696  * and executes it.  * Note that some targets may need to set up, enable,
697  * and tear down a breakpoint (hard or * soft) to detect algorithm
698  * termination, while others may support  lower overhead schemes where
699  * soft breakpoints embedded in the algorithm automatically terminate the
700  * algorithm.
701  *
702  * @param target used to run the algorithm
703  * @param arch_info target-specific description of the algorithm.
704  */
705 int target_run_algorithm(struct target *target,
706                 int num_mem_params, struct mem_param *mem_params,
707                 int num_reg_params, struct reg_param *reg_param,
708                 uint32_t entry_point, uint32_t exit_point,
709                 int timeout_ms, void *arch_info)
710 {
711         int retval = ERROR_FAIL;
712
713         if (!target_was_examined(target))
714         {
715                 LOG_ERROR("Target not examined yet");
716                 goto done;
717         }
718         if (!target->type->run_algorithm) {
719                 LOG_ERROR("Target type '%s' does not support %s",
720                                 target_type_name(target), __func__);
721                 goto done;
722         }
723
724         target->running_alg = true;
725         retval = target->type->run_algorithm(target,
726                         num_mem_params, mem_params,
727                         num_reg_params, reg_param,
728                         entry_point, exit_point, timeout_ms, arch_info);
729         target->running_alg = false;
730
731 done:
732         return retval;
733 }
734
735 /**
736  * Downloads a target-specific native code algorithm to the target,
737  * executes and leaves it running.
738  *
739  * @param target used to run the algorithm
740  * @param arch_info target-specific description of the algorithm.
741  */
742 int target_start_algorithm(struct target *target,
743                 int num_mem_params, struct mem_param *mem_params,
744                 int num_reg_params, struct reg_param *reg_params,
745                 uint32_t entry_point, uint32_t exit_point,
746                 void *arch_info)
747 {
748         int retval = ERROR_FAIL;
749
750         if (!target_was_examined(target))
751         {
752                 LOG_ERROR("Target not examined yet");
753                 goto done;
754         }
755         if (!target->type->start_algorithm) {
756                 LOG_ERROR("Target type '%s' does not support %s",
757                                 target_type_name(target), __func__);
758                 goto done;
759         }
760         if (target->running_alg) {
761                 LOG_ERROR("Target is already running an algorithm");
762                 goto done;
763         }
764
765         target->running_alg = true;
766         retval = target->type->start_algorithm(target,
767                         num_mem_params, mem_params,
768                         num_reg_params, reg_params,
769                         entry_point, exit_point, arch_info);
770
771 done:
772         return retval;
773 }
774
775 /**
776  * Waits for an algorithm started with target_start_algorithm() to complete.
777  *
778  * @param target used to run the algorithm
779  * @param arch_info target-specific description of the algorithm.
780  */
781 int target_wait_algorithm(struct target *target,
782                 int num_mem_params, struct mem_param *mem_params,
783                 int num_reg_params, struct reg_param *reg_params,
784                 uint32_t exit_point, int timeout_ms,
785                 void *arch_info)
786 {
787         int retval = ERROR_FAIL;
788
789         if (!target->type->wait_algorithm) {
790                 LOG_ERROR("Target type '%s' does not support %s",
791                                 target_type_name(target), __func__);
792                 goto done;
793         }
794         if (!target->running_alg) {
795                 LOG_ERROR("Target is not running an algorithm");
796                 goto done;
797         }
798
799         retval = target->type->wait_algorithm(target,
800                         num_mem_params, mem_params,
801                         num_reg_params, reg_params,
802                         exit_point, timeout_ms, arch_info);
803         if (retval != ERROR_TARGET_TIMEOUT)
804                 target->running_alg = false;
805
806 done:
807         return retval;
808 }
809
810
811 int target_read_memory(struct target *target,
812                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
813 {
814         return target->type->read_memory(target, address, size, count, buffer);
815 }
816
817 static int target_read_phys_memory(struct target *target,
818                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
819 {
820         return target->type->read_phys_memory(target, address, size, count, buffer);
821 }
822
823 int target_write_memory(struct target *target,
824                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
825 {
826         return target->type->write_memory(target, address, size, count, buffer);
827 }
828
829 static int target_write_phys_memory(struct target *target,
830                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
831 {
832         return target->type->write_phys_memory(target, address, size, count, buffer);
833 }
834
835 int target_bulk_write_memory(struct target *target,
836                 uint32_t address, uint32_t count, const uint8_t *buffer)
837 {
838         return target->type->bulk_write_memory(target, address, count, buffer);
839 }
840
841 int target_add_breakpoint(struct target *target,
842                 struct breakpoint *breakpoint)
843 {
844         if ((target->state != TARGET_HALTED)&&(breakpoint->type!=BKPT_HARD)) {
845                 LOG_WARNING("target %s is not halted", target->cmd_name);
846                 return ERROR_TARGET_NOT_HALTED;
847         }
848         return target->type->add_breakpoint(target, breakpoint);
849 }
850
851 int target_add_context_breakpoint(struct target *target,
852                 struct breakpoint *breakpoint)
853 {
854         if (target->state != TARGET_HALTED) {
855                 LOG_WARNING("target %s is not halted", target->cmd_name);
856                 return ERROR_TARGET_NOT_HALTED;
857         }
858         return target->type->add_context_breakpoint(target, breakpoint);
859 }
860
861 int target_add_hybrid_breakpoint(struct target *target,
862                 struct breakpoint *breakpoint)
863 {
864         if (target->state != TARGET_HALTED) {
865                 LOG_WARNING("target %s is not halted", target->cmd_name);
866                 return ERROR_TARGET_NOT_HALTED;
867         }
868         return target->type->add_hybrid_breakpoint(target, breakpoint);
869 }
870
871 int target_remove_breakpoint(struct target *target,
872                 struct breakpoint *breakpoint)
873 {
874         return target->type->remove_breakpoint(target, breakpoint);
875 }
876
877 int target_add_watchpoint(struct target *target,
878                 struct watchpoint *watchpoint)
879 {
880         if (target->state != TARGET_HALTED) {
881                 LOG_WARNING("target %s is not halted", target->cmd_name);
882                 return ERROR_TARGET_NOT_HALTED;
883         }
884         return target->type->add_watchpoint(target, watchpoint);
885 }
886 int target_remove_watchpoint(struct target *target,
887                 struct watchpoint *watchpoint)
888 {
889         return target->type->remove_watchpoint(target, watchpoint);
890 }
891
892 int target_get_gdb_reg_list(struct target *target,
893                 struct reg **reg_list[], int *reg_list_size)
894 {
895         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
896 }
897 int target_step(struct target *target,
898                 int current, uint32_t address, int handle_breakpoints)
899 {
900         return target->type->step(target, current, address, handle_breakpoints);
901 }
902
903
904 /**
905  * Reset the @c examined flag for the given target.
906  * Pure paranoia -- targets are zeroed on allocation.
907  */
908 static void target_reset_examined(struct target *target)
909 {
910         target->examined = false;
911 }
912
913 static int
914 err_read_phys_memory(struct target *target, uint32_t address,
915                 uint32_t size, uint32_t count, uint8_t *buffer)
916 {
917         LOG_ERROR("Not implemented: %s", __func__);
918         return ERROR_FAIL;
919 }
920
921 static int
922 err_write_phys_memory(struct target *target, uint32_t address,
923                 uint32_t size, uint32_t count, const uint8_t *buffer)
924 {
925         LOG_ERROR("Not implemented: %s", __func__);
926         return ERROR_FAIL;
927 }
928
929 static int handle_target(void *priv);
930
931 static int target_init_one(struct command_context *cmd_ctx,
932                 struct target *target)
933 {
934         target_reset_examined(target);
935
936         struct target_type *type = target->type;
937         if (type->examine == NULL)
938                 type->examine = default_examine;
939
940         if (type->check_reset== NULL)
941                 type->check_reset = default_check_reset;
942
943         int retval = type->init_target(cmd_ctx, target);
944         if (ERROR_OK != retval)
945         {
946                 LOG_ERROR("target '%s' init failed", target_name(target));
947                 return retval;
948         }
949
950         /**
951          * @todo get rid of those *memory_imp() methods, now that all
952          * callers are using target_*_memory() accessors ... and make
953          * sure the "physical" paths handle the same issues.
954          */
955         /* a non-invasive way(in terms of patches) to add some code that
956          * runs before the type->write/read_memory implementation
957          */
958         type->write_memory_imp = target->type->write_memory;
959         type->write_memory = target_write_memory_imp;
960
961         type->read_memory_imp = target->type->read_memory;
962         type->read_memory = target_read_memory_imp;
963
964         type->soft_reset_halt_imp = target->type->soft_reset_halt;
965         type->soft_reset_halt = target_soft_reset_halt_imp;
966
967         /* Sanity-check MMU support ... stub in what we must, to help
968          * implement it in stages, but warn if we need to do so.
969          */
970         if (type->mmu)
971         {
972                 if (type->write_phys_memory == NULL)
973                 {
974                         LOG_ERROR("type '%s' is missing write_phys_memory",
975                                         type->name);
976                         type->write_phys_memory = err_write_phys_memory;
977                 }
978                 if (type->read_phys_memory == NULL)
979                 {
980                         LOG_ERROR("type '%s' is missing read_phys_memory",
981                                         type->name);
982                         type->read_phys_memory = err_read_phys_memory;
983                 }
984                 if (type->virt2phys == NULL)
985                 {
986                         LOG_ERROR("type '%s' is missing virt2phys", type->name);
987                         type->virt2phys = identity_virt2phys;
988                 }
989         }
990         else
991         {
992                 /* Make sure no-MMU targets all behave the same:  make no
993                  * distinction between physical and virtual addresses, and
994                  * ensure that virt2phys() is always an identity mapping.
995                  */
996                 if (type->write_phys_memory || type->read_phys_memory
997                                 || type->virt2phys)
998                 {
999                         LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1000                 }
1001
1002                 type->mmu = no_mmu;
1003                 type->write_phys_memory = type->write_memory;
1004                 type->read_phys_memory = type->read_memory;
1005                 type->virt2phys = identity_virt2phys;
1006         }
1007
1008         if (target->type->read_buffer == NULL)
1009                 target->type->read_buffer = target_read_buffer_default;
1010
1011         if (target->type->write_buffer == NULL)
1012                 target->type->write_buffer = target_write_buffer_default;
1013
1014         return ERROR_OK;
1015 }
1016
1017 static int target_init(struct command_context *cmd_ctx)
1018 {
1019         struct target *target;
1020         int retval;
1021
1022         for (target = all_targets; target; target = target->next)
1023         {
1024                 retval = target_init_one(cmd_ctx, target);
1025                 if (ERROR_OK != retval)
1026                         return retval;
1027         }
1028
1029         if (!all_targets)
1030                 return ERROR_OK;
1031
1032         retval = target_register_user_commands(cmd_ctx);
1033         if (ERROR_OK != retval)
1034                 return retval;
1035
1036         retval = target_register_timer_callback(&handle_target,
1037                         polling_interval, 1, cmd_ctx->interp);
1038         if (ERROR_OK != retval)
1039                 return retval;
1040
1041         return ERROR_OK;
1042 }
1043
1044 COMMAND_HANDLER(handle_target_init_command)
1045 {
1046         if (CMD_ARGC != 0)
1047                 return ERROR_COMMAND_SYNTAX_ERROR;
1048
1049         static bool target_initialized = false;
1050         if (target_initialized)
1051         {
1052                 LOG_INFO("'target init' has already been called");
1053                 return ERROR_OK;
1054         }
1055         target_initialized = true;
1056
1057         LOG_DEBUG("Initializing targets...");
1058         return target_init(CMD_CTX);
1059 }
1060
1061 int target_register_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
1062 {
1063         struct target_event_callback **callbacks_p = &target_event_callbacks;
1064
1065         if (callback == NULL)
1066         {
1067                 return ERROR_INVALID_ARGUMENTS;
1068         }
1069
1070         if (*callbacks_p)
1071         {
1072                 while ((*callbacks_p)->next)
1073                         callbacks_p = &((*callbacks_p)->next);
1074                 callbacks_p = &((*callbacks_p)->next);
1075         }
1076
1077         (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1078         (*callbacks_p)->callback = callback;
1079         (*callbacks_p)->priv = priv;
1080         (*callbacks_p)->next = NULL;
1081
1082         return ERROR_OK;
1083 }
1084
1085 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1086 {
1087         struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1088         struct timeval now;
1089
1090         if (callback == NULL)
1091         {
1092                 return ERROR_INVALID_ARGUMENTS;
1093         }
1094
1095         if (*callbacks_p)
1096         {
1097                 while ((*callbacks_p)->next)
1098                         callbacks_p = &((*callbacks_p)->next);
1099                 callbacks_p = &((*callbacks_p)->next);
1100         }
1101
1102         (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1103         (*callbacks_p)->callback = callback;
1104         (*callbacks_p)->periodic = periodic;
1105         (*callbacks_p)->time_ms = time_ms;
1106
1107         gettimeofday(&now, NULL);
1108         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
1109         time_ms -= (time_ms % 1000);
1110         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
1111         if ((*callbacks_p)->when.tv_usec > 1000000)
1112         {
1113                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
1114                 (*callbacks_p)->when.tv_sec += 1;
1115         }
1116
1117         (*callbacks_p)->priv = priv;
1118         (*callbacks_p)->next = NULL;
1119
1120         return ERROR_OK;
1121 }
1122
1123 int target_unregister_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
1124 {
1125         struct target_event_callback **p = &target_event_callbacks;
1126         struct target_event_callback *c = target_event_callbacks;
1127
1128         if (callback == NULL)
1129         {
1130                 return ERROR_INVALID_ARGUMENTS;
1131         }
1132
1133         while (c)
1134         {
1135                 struct target_event_callback *next = c->next;
1136                 if ((c->callback == callback) && (c->priv == priv))
1137                 {
1138                         *p = next;
1139                         free(c);
1140                         return ERROR_OK;
1141                 }
1142                 else
1143                         p = &(c->next);
1144                 c = next;
1145         }
1146
1147         return ERROR_OK;
1148 }
1149
1150 static int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1151 {
1152         struct target_timer_callback **p = &target_timer_callbacks;
1153         struct target_timer_callback *c = target_timer_callbacks;
1154
1155         if (callback == NULL)
1156         {
1157                 return ERROR_INVALID_ARGUMENTS;
1158         }
1159
1160         while (c)
1161         {
1162                 struct target_timer_callback *next = c->next;
1163                 if ((c->callback == callback) && (c->priv == priv))
1164                 {
1165                         *p = next;
1166                         free(c);
1167                         return ERROR_OK;
1168                 }
1169                 else
1170                         p = &(c->next);
1171                 c = next;
1172         }
1173
1174         return ERROR_OK;
1175 }
1176
1177 int target_call_event_callbacks(struct target *target, enum target_event event)
1178 {
1179         struct target_event_callback *callback = target_event_callbacks;
1180         struct target_event_callback *next_callback;
1181
1182         if (event == TARGET_EVENT_HALTED)
1183         {
1184                 /* execute early halted first */
1185                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1186         }
1187
1188         LOG_DEBUG("target event %i (%s)",
1189                           event,
1190                           Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1191
1192         target_handle_event(target, event);
1193
1194         while (callback)
1195         {
1196                 next_callback = callback->next;
1197                 callback->callback(target, event, callback->priv);
1198                 callback = next_callback;
1199         }
1200
1201         return ERROR_OK;
1202 }
1203
1204 static int target_timer_callback_periodic_restart(
1205                 struct target_timer_callback *cb, struct timeval *now)
1206 {
1207         int time_ms = cb->time_ms;
1208         cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1209         time_ms -= (time_ms % 1000);
1210         cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1211         if (cb->when.tv_usec > 1000000)
1212         {
1213                 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1214                 cb->when.tv_sec += 1;
1215         }
1216         return ERROR_OK;
1217 }
1218
1219 static int target_call_timer_callback(struct target_timer_callback *cb,
1220                 struct timeval *now)
1221 {
1222         cb->callback(cb->priv);
1223
1224         if (cb->periodic)
1225                 return target_timer_callback_periodic_restart(cb, now);
1226
1227         return target_unregister_timer_callback(cb->callback, cb->priv);
1228 }
1229
1230 static int target_call_timer_callbacks_check_time(int checktime)
1231 {
1232         keep_alive();
1233
1234         struct timeval now;
1235         gettimeofday(&now, NULL);
1236
1237         struct target_timer_callback *callback = target_timer_callbacks;
1238         while (callback)
1239         {
1240                 // cleaning up may unregister and free this callback
1241                 struct target_timer_callback *next_callback = callback->next;
1242
1243                 bool call_it = callback->callback &&
1244                         ((!checktime && callback->periodic) ||
1245                           now.tv_sec > callback->when.tv_sec ||
1246                          (now.tv_sec == callback->when.tv_sec &&
1247                           now.tv_usec >= callback->when.tv_usec));
1248
1249                 if (call_it)
1250                 {
1251                         int retval = target_call_timer_callback(callback, &now);
1252                         if (retval != ERROR_OK)
1253                                 return retval;
1254                 }
1255
1256                 callback = next_callback;
1257         }
1258
1259         return ERROR_OK;
1260 }
1261
1262 int target_call_timer_callbacks(void)
1263 {
1264         return target_call_timer_callbacks_check_time(1);
1265 }
1266
1267 /* invoke periodic callbacks immediately */
1268 int target_call_timer_callbacks_now(void)
1269 {
1270         return target_call_timer_callbacks_check_time(0);
1271 }
1272
1273 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1274 {
1275         struct working_area *c = target->working_areas;
1276         struct working_area *new_wa = NULL;
1277
1278         /* Reevaluate working area address based on MMU state*/
1279         if (target->working_areas == NULL)
1280         {
1281                 int retval;
1282                 int enabled;
1283
1284                 retval = target->type->mmu(target, &enabled);
1285                 if (retval != ERROR_OK)
1286                 {
1287                         return retval;
1288                 }
1289
1290                 if (!enabled) {
1291                         if (target->working_area_phys_spec) {
1292                                 LOG_DEBUG("MMU disabled, using physical "
1293                                         "address for working memory 0x%08x",
1294                                         (unsigned)target->working_area_phys);
1295                                 target->working_area = target->working_area_phys;
1296                         } else {
1297                                 LOG_ERROR("No working memory available. "
1298                                         "Specify -work-area-phys to target.");
1299                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1300                         }
1301                 } else {
1302                         if (target->working_area_virt_spec) {
1303                                 LOG_DEBUG("MMU enabled, using virtual "
1304                                         "address for working memory 0x%08x",
1305                                         (unsigned)target->working_area_virt);
1306                                 target->working_area = target->working_area_virt;
1307                         } else {
1308                                 LOG_ERROR("No working memory available. "
1309                                         "Specify -work-area-virt to target.");
1310                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1311                         }
1312                 }
1313         }
1314
1315         /* only allocate multiples of 4 byte */
1316         if (size % 4)
1317         {
1318                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes (0x%08x), padding", ((unsigned)(size)));
1319                 size = (size + 3) & (~3);
1320         }
1321
1322         /* see if there's already a matching working area */
1323         while (c)
1324         {
1325                 if ((c->free) && (c->size == size))
1326                 {
1327                         new_wa = c;
1328                         break;
1329                 }
1330                 c = c->next;
1331         }
1332
1333         /* if not, allocate a new one */
1334         if (!new_wa)
1335         {
1336                 struct working_area **p = &target->working_areas;
1337                 uint32_t first_free = target->working_area;
1338                 uint32_t free_size = target->working_area_size;
1339
1340                 c = target->working_areas;
1341                 while (c)
1342                 {
1343                         first_free += c->size;
1344                         free_size -= c->size;
1345                         p = &c->next;
1346                         c = c->next;
1347                 }
1348
1349                 if (free_size < size)
1350                 {
1351                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1352                 }
1353
1354                 LOG_DEBUG("allocated new working area at address 0x%08x", (unsigned)first_free);
1355
1356                 new_wa = malloc(sizeof(struct working_area));
1357                 new_wa->next = NULL;
1358                 new_wa->size = size;
1359                 new_wa->address = first_free;
1360
1361                 if (target->backup_working_area)
1362                 {
1363                         int retval;
1364                         new_wa->backup = malloc(new_wa->size);
1365                         if ((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
1366                         {
1367                                 free(new_wa->backup);
1368                                 free(new_wa);
1369                                 return retval;
1370                         }
1371                 }
1372                 else
1373                 {
1374                         new_wa->backup = NULL;
1375                 }
1376
1377                 /* put new entry in list */
1378                 *p = new_wa;
1379         }
1380
1381         /* mark as used, and return the new (reused) area */
1382         new_wa->free = false;
1383         *area = new_wa;
1384
1385         /* user pointer */
1386         new_wa->user = area;
1387
1388         return ERROR_OK;
1389 }
1390
1391 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1392 {
1393         int retval;
1394
1395         retval = target_alloc_working_area_try(target, size, area);
1396         if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1397         {
1398                 LOG_WARNING("not enough working area available(requested %u)", (unsigned)(size));
1399         }
1400         return retval;
1401
1402 }
1403
1404 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1405 {
1406         if (area->free)
1407                 return ERROR_OK;
1408
1409         if (restore && target->backup_working_area)
1410         {
1411                 int retval;
1412                 if ((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
1413                         return retval;
1414         }
1415
1416         area->free = true;
1417
1418         /* mark user pointer invalid */
1419         *area->user = NULL;
1420         area->user = NULL;
1421
1422         return ERROR_OK;
1423 }
1424
1425 int target_free_working_area(struct target *target, struct working_area *area)
1426 {
1427         return target_free_working_area_restore(target, area, 1);
1428 }
1429
1430 /* free resources and restore memory, if restoring memory fails,
1431  * free up resources anyway
1432  */
1433 static void target_free_all_working_areas_restore(struct target *target, int restore)
1434 {
1435         struct working_area *c = target->working_areas;
1436
1437         while (c)
1438         {
1439                 struct working_area *next = c->next;
1440                 target_free_working_area_restore(target, c, restore);
1441
1442                 if (c->backup)
1443                         free(c->backup);
1444
1445                 free(c);
1446
1447                 c = next;
1448         }
1449
1450         target->working_areas = NULL;
1451 }
1452
1453 void target_free_all_working_areas(struct target *target)
1454 {
1455         target_free_all_working_areas_restore(target, 1);
1456 }
1457
1458 int target_arch_state(struct target *target)
1459 {
1460         int retval;
1461         if (target == NULL)
1462         {
1463                 LOG_USER("No target has been configured");
1464                 return ERROR_OK;
1465         }
1466
1467         LOG_USER("target state: %s", target_state_name( target ));
1468
1469         if (target->state != TARGET_HALTED)
1470                 return ERROR_OK;
1471
1472         retval = target->type->arch_state(target);
1473         return retval;
1474 }
1475
1476 /* Single aligned words are guaranteed to use 16 or 32 bit access
1477  * mode respectively, otherwise data is handled as quickly as
1478  * possible
1479  */
1480 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1481 {
1482         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1483                   (int)size, (unsigned)address);
1484
1485         if (!target_was_examined(target))
1486         {
1487                 LOG_ERROR("Target not examined yet");
1488                 return ERROR_FAIL;
1489         }
1490
1491         if (size == 0) {
1492                 return ERROR_OK;
1493         }
1494
1495         if ((address + size - 1) < address)
1496         {
1497                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1498                 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1499                                   (unsigned)address,
1500                                   (unsigned)size);
1501                 return ERROR_FAIL;
1502         }
1503
1504         return target->type->write_buffer(target, address, size, buffer);
1505 }
1506
1507 static int target_write_buffer_default(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1508 {
1509         int retval = ERROR_OK;
1510
1511         if (((address % 2) == 0) && (size == 2))
1512         {
1513                 return target_write_memory(target, address, 2, 1, buffer);
1514         }
1515
1516         /* handle unaligned head bytes */
1517         if (address % 4)
1518         {
1519                 uint32_t unaligned = 4 - (address % 4);
1520
1521                 if (unaligned > size)
1522                         unaligned = size;
1523
1524                 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1525                         return retval;
1526
1527                 buffer += unaligned;
1528                 address += unaligned;
1529                 size -= unaligned;
1530         }
1531
1532         /* handle aligned words */
1533         if (size >= 4)
1534         {
1535                 int aligned = size - (size % 4);
1536
1537                 /* use bulk writes above a certain limit. This may have to be changed */
1538                 if (aligned > 128)
1539                 {
1540                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1541                                 return retval;
1542                 }
1543                 else
1544                 {
1545                         if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1546                                 return retval;
1547                 }
1548
1549                 buffer += aligned;
1550                 address += aligned;
1551                 size -= aligned;
1552         }
1553
1554         /* handle tail writes of less than 4 bytes */
1555         if (size > 0)
1556         {
1557                 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1558                         return retval;
1559         }
1560
1561         return retval;
1562 }
1563
1564 /* Single aligned words are guaranteed to use 16 or 32 bit access
1565  * mode respectively, otherwise data is handled as quickly as
1566  * possible
1567  */
1568 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1569 {
1570         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1571                           (int)size, (unsigned)address);
1572
1573         if (!target_was_examined(target))
1574         {
1575                 LOG_ERROR("Target not examined yet");
1576                 return ERROR_FAIL;
1577         }
1578
1579         if (size == 0) {
1580                 return ERROR_OK;
1581         }
1582
1583         if ((address + size - 1) < address)
1584         {
1585                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1586                 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1587                                   address,
1588                                   size);
1589                 return ERROR_FAIL;
1590         }
1591
1592         return target->type->read_buffer(target, address, size, buffer);
1593 }
1594
1595 static int target_read_buffer_default(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1596 {
1597         int retval = ERROR_OK;
1598
1599         if (((address % 2) == 0) && (size == 2))
1600         {
1601                 return target_read_memory(target, address, 2, 1, buffer);
1602         }
1603
1604         /* handle unaligned head bytes */
1605         if (address % 4)
1606         {
1607                 uint32_t unaligned = 4 - (address % 4);
1608
1609                 if (unaligned > size)
1610                         unaligned = size;
1611
1612                 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1613                         return retval;
1614
1615                 buffer += unaligned;
1616                 address += unaligned;
1617                 size -= unaligned;
1618         }
1619
1620         /* handle aligned words */
1621         if (size >= 4)
1622         {
1623                 int aligned = size - (size % 4);
1624
1625                 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1626                         return retval;
1627
1628                 buffer += aligned;
1629                 address += aligned;
1630                 size -= aligned;
1631         }
1632
1633         /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1634         if(size >=2)
1635         {
1636                 int aligned = size - (size%2);
1637                 retval = target_read_memory(target, address, 2, aligned / 2, buffer);
1638                 if (retval != ERROR_OK)
1639                         return retval;
1640
1641                 buffer += aligned;
1642                 address += aligned;
1643                 size -= aligned;
1644         }
1645         /* handle tail writes of less than 4 bytes */
1646         if (size > 0)
1647         {
1648                 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1649                         return retval;
1650         }
1651
1652         return ERROR_OK;
1653 }
1654
1655 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1656 {
1657         uint8_t *buffer;
1658         int retval;
1659         uint32_t i;
1660         uint32_t checksum = 0;
1661         if (!target_was_examined(target))
1662         {
1663                 LOG_ERROR("Target not examined yet");
1664                 return ERROR_FAIL;
1665         }
1666
1667         if ((retval = target->type->checksum_memory(target, address,
1668                 size, &checksum)) != ERROR_OK)
1669         {
1670                 buffer = malloc(size);
1671                 if (buffer == NULL)
1672                 {
1673                         LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1674                         return ERROR_INVALID_ARGUMENTS;
1675                 }
1676                 retval = target_read_buffer(target, address, size, buffer);
1677                 if (retval != ERROR_OK)
1678                 {
1679                         free(buffer);
1680                         return retval;
1681                 }
1682
1683                 /* convert to target endianness */
1684                 for (i = 0; i < (size/sizeof(uint32_t)); i++)
1685                 {
1686                         uint32_t target_data;
1687                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1688                         target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1689                 }
1690
1691                 retval = image_calculate_checksum(buffer, size, &checksum);
1692                 free(buffer);
1693         }
1694
1695         *crc = checksum;
1696
1697         return retval;
1698 }
1699
1700 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
1701 {
1702         int retval;
1703         if (!target_was_examined(target))
1704         {
1705                 LOG_ERROR("Target not examined yet");
1706                 return ERROR_FAIL;
1707         }
1708
1709         if (target->type->blank_check_memory == 0)
1710                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1711
1712         retval = target->type->blank_check_memory(target, address, size, blank);
1713
1714         return retval;
1715 }
1716
1717 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
1718 {
1719         uint8_t value_buf[4];
1720         if (!target_was_examined(target))
1721         {
1722                 LOG_ERROR("Target not examined yet");
1723                 return ERROR_FAIL;
1724         }
1725
1726         int retval = target_read_memory(target, address, 4, 1, value_buf);
1727
1728         if (retval == ERROR_OK)
1729         {
1730                 *value = target_buffer_get_u32(target, value_buf);
1731                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1732                                   address,
1733                                   *value);
1734         }
1735         else
1736         {
1737                 *value = 0x0;
1738                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1739                                   address);
1740         }
1741
1742         return retval;
1743 }
1744
1745 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
1746 {
1747         uint8_t value_buf[2];
1748         if (!target_was_examined(target))
1749         {
1750                 LOG_ERROR("Target not examined yet");
1751                 return ERROR_FAIL;
1752         }
1753
1754         int retval = target_read_memory(target, address, 2, 1, value_buf);
1755
1756         if (retval == ERROR_OK)
1757         {
1758                 *value = target_buffer_get_u16(target, value_buf);
1759                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
1760                                   address,
1761                                   *value);
1762         }
1763         else
1764         {
1765                 *value = 0x0;
1766                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1767                                   address);
1768         }
1769
1770         return retval;
1771 }
1772
1773 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
1774 {
1775         int retval = target_read_memory(target, address, 1, 1, value);
1776         if (!target_was_examined(target))
1777         {
1778                 LOG_ERROR("Target not examined yet");
1779                 return ERROR_FAIL;
1780         }
1781
1782         if (retval == ERROR_OK)
1783         {
1784                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1785                                   address,
1786                                   *value);
1787         }
1788         else
1789         {
1790                 *value = 0x0;
1791                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1792                                   address);
1793         }
1794
1795         return retval;
1796 }
1797
1798 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
1799 {
1800         int retval;
1801         uint8_t value_buf[4];
1802         if (!target_was_examined(target))
1803         {
1804                 LOG_ERROR("Target not examined yet");
1805                 return ERROR_FAIL;
1806         }
1807
1808         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1809                           address,
1810                           value);
1811
1812         target_buffer_set_u32(target, value_buf, value);
1813         if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1814         {
1815                 LOG_DEBUG("failed: %i", retval);
1816         }
1817
1818         return retval;
1819 }
1820
1821 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
1822 {
1823         int retval;
1824         uint8_t value_buf[2];
1825         if (!target_was_examined(target))
1826         {
1827                 LOG_ERROR("Target not examined yet");
1828                 return ERROR_FAIL;
1829         }
1830
1831         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
1832                           address,
1833                           value);
1834
1835         target_buffer_set_u16(target, value_buf, value);
1836         if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1837         {
1838                 LOG_DEBUG("failed: %i", retval);
1839         }
1840
1841         return retval;
1842 }
1843
1844 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
1845 {
1846         int retval;
1847         if (!target_was_examined(target))
1848         {
1849                 LOG_ERROR("Target not examined yet");
1850                 return ERROR_FAIL;
1851         }
1852
1853         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1854                           address, value);
1855
1856         if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1857         {
1858                 LOG_DEBUG("failed: %i", retval);
1859         }
1860
1861         return retval;
1862 }
1863
1864 COMMAND_HANDLER(handle_targets_command)
1865 {
1866         struct target *target = all_targets;
1867
1868         if (CMD_ARGC == 1)
1869         {
1870                 target = get_target(CMD_ARGV[0]);
1871                 if (target == NULL) {
1872                         command_print(CMD_CTX,"Target: %s is unknown, try one of:\n", CMD_ARGV[0]);
1873                         goto DumpTargets;
1874                 }
1875                 if (!target->tap->enabled) {
1876                         command_print(CMD_CTX,"Target: TAP %s is disabled, "
1877                                         "can't be the current target\n",
1878                                         target->tap->dotted_name);
1879                         return ERROR_FAIL;
1880                 }
1881
1882                 CMD_CTX->current_target = target->target_number;
1883                 return ERROR_OK;
1884         }
1885 DumpTargets:
1886
1887         target = all_targets;
1888         command_print(CMD_CTX, "    TargetName         Type       Endian TapName            State       ");
1889         command_print(CMD_CTX, "--  ------------------ ---------- ------ ------------------ ------------");
1890         while (target)
1891         {
1892                 const char *state;
1893                 char marker = ' ';
1894
1895                 if (target->tap->enabled)
1896                         state = target_state_name( target );
1897                 else
1898                         state = "tap-disabled";
1899
1900                 if (CMD_CTX->current_target == target->target_number)
1901                         marker = '*';
1902
1903                 /* keep columns lined up to match the headers above */
1904                 command_print(CMD_CTX, "%2d%c %-18s %-10s %-6s %-18s %s",
1905                                           target->target_number,
1906                                           marker,
1907                                           target_name(target),
1908                                           target_type_name(target),
1909                                           Jim_Nvp_value2name_simple(nvp_target_endian,
1910                                                                 target->endianness)->name,
1911                                           target->tap->dotted_name,
1912                                           state);
1913                 target = target->next;
1914         }
1915
1916         return ERROR_OK;
1917 }
1918
1919 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1920
1921 static int powerDropout;
1922 static int srstAsserted;
1923
1924 static int runPowerRestore;
1925 static int runPowerDropout;
1926 static int runSrstAsserted;
1927 static int runSrstDeasserted;
1928
1929 static int sense_handler(void)
1930 {
1931         static int prevSrstAsserted = 0;
1932         static int prevPowerdropout = 0;
1933
1934         int retval;
1935         if ((retval = jtag_power_dropout(&powerDropout)) != ERROR_OK)
1936                 return retval;
1937
1938         int powerRestored;
1939         powerRestored = prevPowerdropout && !powerDropout;
1940         if (powerRestored)
1941         {
1942                 runPowerRestore = 1;
1943         }
1944
1945         long long current = timeval_ms();
1946         static long long lastPower = 0;
1947         int waitMore = lastPower + 2000 > current;
1948         if (powerDropout && !waitMore)
1949         {
1950                 runPowerDropout = 1;
1951                 lastPower = current;
1952         }
1953
1954         if ((retval = jtag_srst_asserted(&srstAsserted)) != ERROR_OK)
1955                 return retval;
1956
1957         int srstDeasserted;
1958         srstDeasserted = prevSrstAsserted && !srstAsserted;
1959
1960         static long long lastSrst = 0;
1961         waitMore = lastSrst + 2000 > current;
1962         if (srstDeasserted && !waitMore)
1963         {
1964                 runSrstDeasserted = 1;
1965                 lastSrst = current;
1966         }
1967
1968         if (!prevSrstAsserted && srstAsserted)
1969         {
1970                 runSrstAsserted = 1;
1971         }
1972
1973         prevSrstAsserted = srstAsserted;
1974         prevPowerdropout = powerDropout;
1975
1976         if (srstDeasserted || powerRestored)
1977         {
1978                 /* Other than logging the event we can't do anything here.
1979                  * Issuing a reset is a particularly bad idea as we might
1980                  * be inside a reset already.
1981                  */
1982         }
1983
1984         return ERROR_OK;
1985 }
1986
1987 static int backoff_times = 0;
1988 static int backoff_count = 0;
1989
1990 /* process target state changes */
1991 static int handle_target(void *priv)
1992 {
1993         Jim_Interp *interp = (Jim_Interp *)priv;
1994         int retval = ERROR_OK;
1995
1996         if (!is_jtag_poll_safe())
1997         {
1998                 /* polling is disabled currently */
1999                 return ERROR_OK;
2000         }
2001
2002         /* we do not want to recurse here... */
2003         static int recursive = 0;
2004         if (! recursive)
2005         {
2006                 recursive = 1;
2007                 sense_handler();
2008                 /* danger! running these procedures can trigger srst assertions and power dropouts.
2009                  * We need to avoid an infinite loop/recursion here and we do that by
2010                  * clearing the flags after running these events.
2011                  */
2012                 int did_something = 0;
2013                 if (runSrstAsserted)
2014                 {
2015                         LOG_INFO("srst asserted detected, running srst_asserted proc.");
2016                         Jim_Eval(interp, "srst_asserted");
2017                         did_something = 1;
2018                 }
2019                 if (runSrstDeasserted)
2020                 {
2021                         Jim_Eval(interp, "srst_deasserted");
2022                         did_something = 1;
2023                 }
2024                 if (runPowerDropout)
2025                 {
2026                         LOG_INFO("Power dropout detected, running power_dropout proc.");
2027                         Jim_Eval(interp, "power_dropout");
2028                         did_something = 1;
2029                 }
2030                 if (runPowerRestore)
2031                 {
2032                         Jim_Eval(interp, "power_restore");
2033                         did_something = 1;
2034                 }
2035
2036                 if (did_something)
2037                 {
2038                         /* clear detect flags */
2039                         sense_handler();
2040                 }
2041
2042                 /* clear action flags */
2043
2044                 runSrstAsserted = 0;
2045                 runSrstDeasserted = 0;
2046                 runPowerRestore = 0;
2047                 runPowerDropout = 0;
2048
2049                 recursive = 0;
2050         }
2051
2052         if (backoff_times > backoff_count)
2053         {
2054                 /* do not poll this time as we failed previously */
2055                 backoff_count++;
2056                 return ERROR_OK;
2057         }
2058         backoff_count = 0;
2059
2060         /* Poll targets for state changes unless that's globally disabled.
2061          * Skip targets that are currently disabled.
2062          */
2063         for (struct target *target = all_targets;
2064                         is_jtag_poll_safe() && target;
2065                         target = target->next)
2066         {
2067                 if (!target->tap->enabled)
2068                         continue;
2069
2070                 /* only poll target if we've got power and srst isn't asserted */
2071                 if (!powerDropout && !srstAsserted)
2072                 {
2073                         /* polling may fail silently until the target has been examined */
2074                         if ((retval = target_poll(target)) != ERROR_OK)
2075                         {
2076                                 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2077                                 if (backoff_times * polling_interval < 5000)
2078                                 {
2079                                         backoff_times *= 2;
2080                                         backoff_times++;
2081                                 }
2082                                 LOG_USER("Polling target failed, GDB will be halted. Polling again in %dms", backoff_times * polling_interval);
2083
2084                                 /* Tell GDB to halt the debugger. This allows the user to
2085                                  * run monitor commands to handle the situation.
2086                                  */
2087                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2088                                 return retval;
2089                         }
2090                         /* Since we succeeded, we reset backoff count */
2091                         if (backoff_times > 0)
2092                         {
2093                                 LOG_USER("Polling succeeded again");
2094                         }
2095                         backoff_times = 0;
2096                 }
2097         }
2098
2099         return retval;
2100 }
2101
2102 COMMAND_HANDLER(handle_reg_command)
2103 {
2104         struct target *target;
2105         struct reg *reg = NULL;
2106         unsigned count = 0;
2107         char *value;
2108
2109         LOG_DEBUG("-");
2110
2111         target = get_current_target(CMD_CTX);
2112
2113         /* list all available registers for the current target */
2114         if (CMD_ARGC == 0)
2115         {
2116                 struct reg_cache *cache = target->reg_cache;
2117
2118                 count = 0;
2119                 while (cache)
2120                 {
2121                         unsigned i;
2122
2123                         command_print(CMD_CTX, "===== %s", cache->name);
2124
2125                         for (i = 0, reg = cache->reg_list;
2126                                         i < cache->num_regs;
2127                                         i++, reg++, count++)
2128                         {
2129                                 /* only print cached values if they are valid */
2130                                 if (reg->valid) {
2131                                         value = buf_to_str(reg->value,
2132                                                         reg->size, 16);
2133                                         command_print(CMD_CTX,
2134                                                         "(%i) %s (/%" PRIu32 "): 0x%s%s",
2135                                                         count, reg->name,
2136                                                         reg->size, value,
2137                                                         reg->dirty
2138                                                                 ? " (dirty)"
2139                                                                 : "");
2140                                         free(value);
2141                                 } else {
2142                                         command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2143                                                           count, reg->name,
2144                                                           reg->size) ;
2145                                 }
2146                         }
2147                         cache = cache->next;
2148                 }
2149
2150                 return ERROR_OK;
2151         }
2152
2153         /* access a single register by its ordinal number */
2154         if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9'))
2155         {
2156                 unsigned num;
2157                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2158
2159                 struct reg_cache *cache = target->reg_cache;
2160                 count = 0;
2161                 while (cache)
2162                 {
2163                         unsigned i;
2164                         for (i = 0; i < cache->num_regs; i++)
2165                         {
2166                                 if (count++ == num)
2167                                 {
2168                                         reg = &cache->reg_list[i];
2169                                         break;
2170                                 }
2171                         }
2172                         if (reg)
2173                                 break;
2174                         cache = cache->next;
2175                 }
2176
2177                 if (!reg)
2178                 {
2179                         command_print(CMD_CTX, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
2180                         return ERROR_OK;
2181                 }
2182         } else /* access a single register by its name */
2183         {
2184                 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2185
2186                 if (!reg)
2187                 {
2188                         command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2189                         return ERROR_OK;
2190                 }
2191         }
2192
2193         /* display a register */
2194         if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0') && (CMD_ARGV[1][0] <= '9'))))
2195         {
2196                 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2197                         reg->valid = 0;
2198
2199                 if (reg->valid == 0)
2200                 {
2201                         reg->type->get(reg);
2202                 }
2203                 value = buf_to_str(reg->value, reg->size, 16);
2204                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2205                 free(value);
2206                 return ERROR_OK;
2207         }
2208
2209         /* set register value */
2210         if (CMD_ARGC == 2)
2211         {
2212                 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2213                 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2214
2215                 reg->type->set(reg, buf);
2216
2217                 value = buf_to_str(reg->value, reg->size, 16);
2218                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2219                 free(value);
2220
2221                 free(buf);
2222
2223                 return ERROR_OK;
2224         }
2225
2226         command_print(CMD_CTX, "usage: reg <#|name> [value]");
2227
2228         return ERROR_OK;
2229 }
2230
2231 COMMAND_HANDLER(handle_poll_command)
2232 {
2233         int retval = ERROR_OK;
2234         struct target *target = get_current_target(CMD_CTX);
2235
2236         if (CMD_ARGC == 0)
2237         {
2238                 command_print(CMD_CTX, "background polling: %s",
2239                                 jtag_poll_get_enabled() ? "on" : "off");
2240                 command_print(CMD_CTX, "TAP: %s (%s)",
2241                                 target->tap->dotted_name,
2242                                 target->tap->enabled ? "enabled" : "disabled");
2243                 if (!target->tap->enabled)
2244                         return ERROR_OK;
2245                 if ((retval = target_poll(target)) != ERROR_OK)
2246                         return retval;
2247                 if ((retval = target_arch_state(target)) != ERROR_OK)
2248                         return retval;
2249         }
2250         else if (CMD_ARGC == 1)
2251         {
2252                 bool enable;
2253                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2254                 jtag_poll_set_enabled(enable);
2255         }
2256         else
2257         {
2258                 return ERROR_COMMAND_SYNTAX_ERROR;
2259         }
2260
2261         return retval;
2262 }
2263
2264 COMMAND_HANDLER(handle_wait_halt_command)
2265 {
2266         if (CMD_ARGC > 1)
2267                 return ERROR_COMMAND_SYNTAX_ERROR;
2268
2269         unsigned ms = 5000;
2270         if (1 == CMD_ARGC)
2271         {
2272                 int retval = parse_uint(CMD_ARGV[0], &ms);
2273                 if (ERROR_OK != retval)
2274                 {
2275                         command_print(CMD_CTX, "usage: %s [seconds]", CMD_NAME);
2276                         return ERROR_COMMAND_SYNTAX_ERROR;
2277                 }
2278                 // convert seconds (given) to milliseconds (needed)
2279                 ms *= 1000;
2280         }
2281
2282         struct target *target = get_current_target(CMD_CTX);
2283         return target_wait_state(target, TARGET_HALTED, ms);
2284 }
2285
2286 /* wait for target state to change. The trick here is to have a low
2287  * latency for short waits and not to suck up all the CPU time
2288  * on longer waits.
2289  *
2290  * After 500ms, keep_alive() is invoked
2291  */
2292 int target_wait_state(struct target *target, enum target_state state, int ms)
2293 {
2294         int retval;
2295         long long then = 0, cur;
2296         int once = 1;
2297
2298         for (;;)
2299         {
2300                 if ((retval = target_poll(target)) != ERROR_OK)
2301                         return retval;
2302                 if (target->state == state)
2303                 {
2304                         break;
2305                 }
2306                 cur = timeval_ms();
2307                 if (once)
2308                 {
2309                         once = 0;
2310                         then = timeval_ms();
2311                         LOG_DEBUG("waiting for target %s...",
2312                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2313                 }
2314
2315                 if (cur-then > 500)
2316                 {
2317                         keep_alive();
2318                 }
2319
2320                 if ((cur-then) > ms)
2321                 {
2322                         LOG_ERROR("timed out while waiting for target %s",
2323                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2324                         return ERROR_FAIL;
2325                 }
2326         }
2327
2328         return ERROR_OK;
2329 }
2330
2331 COMMAND_HANDLER(handle_halt_command)
2332 {
2333         LOG_DEBUG("-");
2334
2335         struct target *target = get_current_target(CMD_CTX);
2336         int retval = target_halt(target);
2337         if (ERROR_OK != retval)
2338                 return retval;
2339
2340         if (CMD_ARGC == 1)
2341         {
2342                 unsigned wait_local;
2343                 retval = parse_uint(CMD_ARGV[0], &wait_local);
2344                 if (ERROR_OK != retval)
2345                         return ERROR_COMMAND_SYNTAX_ERROR;
2346                 if (!wait_local)
2347                         return ERROR_OK;
2348         }
2349
2350         return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2351 }
2352
2353 COMMAND_HANDLER(handle_soft_reset_halt_command)
2354 {
2355         struct target *target = get_current_target(CMD_CTX);
2356
2357         LOG_USER("requesting target halt and executing a soft reset");
2358
2359         target->type->soft_reset_halt(target);
2360
2361         return ERROR_OK;
2362 }
2363
2364 COMMAND_HANDLER(handle_reset_command)
2365 {
2366         if (CMD_ARGC > 1)
2367                 return ERROR_COMMAND_SYNTAX_ERROR;
2368
2369         enum target_reset_mode reset_mode = RESET_RUN;
2370         if (CMD_ARGC == 1)
2371         {
2372                 const Jim_Nvp *n;
2373                 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2374                 if ((n->name == NULL) || (n->value == RESET_UNKNOWN)) {
2375                         return ERROR_COMMAND_SYNTAX_ERROR;
2376                 }
2377                 reset_mode = n->value;
2378         }
2379
2380         /* reset *all* targets */
2381         return target_process_reset(CMD_CTX, reset_mode);
2382 }
2383
2384
2385 COMMAND_HANDLER(handle_resume_command)
2386 {
2387         int current = 1;
2388         if (CMD_ARGC > 1)
2389                 return ERROR_COMMAND_SYNTAX_ERROR;
2390
2391         struct target *target = get_current_target(CMD_CTX);
2392         target_handle_event(target, TARGET_EVENT_OLD_pre_resume);
2393
2394         /* with no CMD_ARGV, resume from current pc, addr = 0,
2395          * with one arguments, addr = CMD_ARGV[0],
2396          * handle breakpoints, not debugging */
2397         uint32_t addr = 0;
2398         if (CMD_ARGC == 1)
2399         {
2400                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2401                 current = 0;
2402         }
2403
2404         return target_resume(target, current, addr, 1, 0);
2405 }
2406
2407 COMMAND_HANDLER(handle_step_command)
2408 {
2409         if (CMD_ARGC > 1)
2410                 return ERROR_COMMAND_SYNTAX_ERROR;
2411
2412         LOG_DEBUG("-");
2413
2414         /* with no CMD_ARGV, step from current pc, addr = 0,
2415          * with one argument addr = CMD_ARGV[0],
2416          * handle breakpoints, debugging */
2417         uint32_t addr = 0;
2418         int current_pc = 1;
2419         if (CMD_ARGC == 1)
2420         {
2421                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2422                 current_pc = 0;
2423         }
2424
2425         struct target *target = get_current_target(CMD_CTX);
2426
2427         return target->type->step(target, current_pc, addr, 1);
2428 }
2429
2430 static void handle_md_output(struct command_context *cmd_ctx,
2431                 struct target *target, uint32_t address, unsigned size,
2432                 unsigned count, const uint8_t *buffer)
2433 {
2434         const unsigned line_bytecnt = 32;
2435         unsigned line_modulo = line_bytecnt / size;
2436
2437         char output[line_bytecnt * 4 + 1];
2438         unsigned output_len = 0;
2439
2440         const char *value_fmt;
2441         switch (size) {
2442         case 4: value_fmt = "%8.8x "; break;
2443         case 2: value_fmt = "%4.4x "; break;
2444         case 1: value_fmt = "%2.2x "; break;
2445         default:
2446                 /* "can't happen", caller checked */
2447                 LOG_ERROR("invalid memory read size: %u", size);
2448                 return;
2449         }
2450
2451         for (unsigned i = 0; i < count; i++)
2452         {
2453                 if (i % line_modulo == 0)
2454                 {
2455                         output_len += snprintf(output + output_len,
2456                                         sizeof(output) - output_len,
2457                                         "0x%8.8x: ",
2458                                         (unsigned)(address + (i*size)));
2459                 }
2460
2461                 uint32_t value = 0;
2462                 const uint8_t *value_ptr = buffer + i * size;
2463                 switch (size) {
2464                 case 4: value = target_buffer_get_u32(target, value_ptr); break;
2465                 case 2: value = target_buffer_get_u16(target, value_ptr); break;
2466                 case 1: value = *value_ptr;
2467                 }
2468                 output_len += snprintf(output + output_len,
2469                                 sizeof(output) - output_len,
2470                                 value_fmt, value);
2471
2472                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
2473                 {
2474                         command_print(cmd_ctx, "%s", output);
2475                         output_len = 0;
2476                 }
2477         }
2478 }
2479
2480 COMMAND_HANDLER(handle_md_command)
2481 {
2482         if (CMD_ARGC < 1)
2483                 return ERROR_COMMAND_SYNTAX_ERROR;
2484
2485         unsigned size = 0;
2486         switch (CMD_NAME[2]) {
2487         case 'w': size = 4; break;
2488         case 'h': size = 2; break;
2489         case 'b': size = 1; break;
2490         default: return ERROR_COMMAND_SYNTAX_ERROR;
2491         }
2492
2493         bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2494         int (*fn)(struct target *target,
2495                         uint32_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
2496         if (physical)
2497         {
2498                 CMD_ARGC--;
2499                 CMD_ARGV++;
2500                 fn=target_read_phys_memory;
2501         } else
2502         {
2503                 fn=target_read_memory;
2504         }
2505         if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2506         {
2507                 return ERROR_COMMAND_SYNTAX_ERROR;
2508         }
2509
2510         uint32_t address;
2511         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2512
2513         unsigned count = 1;
2514         if (CMD_ARGC == 2)
2515                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2516
2517         uint8_t *buffer = calloc(count, size);
2518
2519         struct target *target = get_current_target(CMD_CTX);
2520         int retval = fn(target, address, size, count, buffer);
2521         if (ERROR_OK == retval)
2522                 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2523
2524         free(buffer);
2525
2526         return retval;
2527 }
2528
2529 typedef int (*target_write_fn)(struct target *target,
2530                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
2531
2532 static int target_write_memory_fast(struct target *target,
2533                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
2534 {
2535         return target_write_buffer(target, address, size * count, buffer);
2536 }
2537
2538 static int target_fill_mem(struct target *target,
2539                 uint32_t address,
2540                 target_write_fn fn,
2541                 unsigned data_size,
2542                 /* value */
2543                 uint32_t b,
2544                 /* count */
2545                 unsigned c)
2546 {
2547         /* We have to write in reasonably large chunks to be able
2548          * to fill large memory areas with any sane speed */
2549         const unsigned chunk_size = 16384;
2550         uint8_t *target_buf = malloc(chunk_size * data_size);
2551         if (target_buf == NULL)
2552         {
2553                 LOG_ERROR("Out of memory");
2554                 return ERROR_FAIL;
2555         }
2556
2557         for (unsigned i = 0; i < chunk_size; i ++)
2558         {
2559                 switch (data_size)
2560                 {
2561                 case 4:
2562                         target_buffer_set_u32(target, target_buf + i*data_size, b);
2563                         break;
2564                 case 2:
2565                         target_buffer_set_u16(target, target_buf + i*data_size, b);
2566                         break;
2567                 case 1:
2568                         target_buffer_set_u8(target, target_buf + i*data_size, b);
2569                         break;
2570                 default:
2571                         exit(-1);
2572                 }
2573         }
2574
2575         int retval = ERROR_OK;
2576
2577         for (unsigned x = 0; x < c; x += chunk_size)
2578         {
2579                 unsigned current;
2580                 current = c - x;
2581                 if (current > chunk_size)
2582                 {
2583                         current = chunk_size;
2584                 }
2585                 retval = fn(target, address + x * data_size, data_size, current, target_buf);
2586                 if (retval != ERROR_OK)
2587                 {
2588                         break;
2589                 }
2590                 /* avoid GDB timeouts */
2591                 keep_alive();
2592         }
2593         free(target_buf);
2594
2595         return retval;
2596 }
2597
2598
2599 COMMAND_HANDLER(handle_mw_command)
2600 {
2601         if (CMD_ARGC < 2)
2602         {
2603                 return ERROR_COMMAND_SYNTAX_ERROR;
2604         }
2605         bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2606         target_write_fn fn;
2607         if (physical)
2608         {
2609                 CMD_ARGC--;
2610                 CMD_ARGV++;
2611                 fn=target_write_phys_memory;
2612         } else
2613         {
2614                 fn = target_write_memory_fast;
2615         }
2616         if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2617                 return ERROR_COMMAND_SYNTAX_ERROR;
2618
2619         uint32_t address;
2620         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2621
2622         uint32_t value;
2623         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2624
2625         unsigned count = 1;
2626         if (CMD_ARGC == 3)
2627                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2628
2629         struct target *target = get_current_target(CMD_CTX);
2630         unsigned wordsize;
2631         switch (CMD_NAME[2])
2632         {
2633                 case 'w':
2634                         wordsize = 4;
2635                         break;
2636                 case 'h':
2637                         wordsize = 2;
2638                         break;
2639                 case 'b':
2640                         wordsize = 1;
2641                         break;
2642                 default:
2643                         return ERROR_COMMAND_SYNTAX_ERROR;
2644         }
2645
2646         return target_fill_mem(target, address, fn, wordsize, value, count);
2647 }
2648
2649 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2650                 uint32_t *min_address, uint32_t *max_address)
2651 {
2652         if (CMD_ARGC < 1 || CMD_ARGC > 5)
2653                 return ERROR_COMMAND_SYNTAX_ERROR;
2654
2655         /* a base address isn't always necessary,
2656          * default to 0x0 (i.e. don't relocate) */
2657         if (CMD_ARGC >= 2)
2658         {
2659                 uint32_t addr;
2660                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2661                 image->base_address = addr;
2662                 image->base_address_set = 1;
2663         }
2664         else
2665                 image->base_address_set = 0;
2666
2667         image->start_address_set = 0;
2668
2669         if (CMD_ARGC >= 4)
2670         {
2671                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2672         }
2673         if (CMD_ARGC == 5)
2674         {
2675                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2676                 // use size (given) to find max (required)
2677                 *max_address += *min_address;
2678         }
2679
2680         if (*min_address > *max_address)
2681                 return ERROR_COMMAND_SYNTAX_ERROR;
2682
2683         return ERROR_OK;
2684 }
2685
2686 COMMAND_HANDLER(handle_load_image_command)
2687 {
2688         uint8_t *buffer;
2689         size_t buf_cnt;
2690         uint32_t image_size;
2691         uint32_t min_address = 0;
2692         uint32_t max_address = 0xffffffff;
2693         int i;
2694         struct image image;
2695
2696         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2697                         &image, &min_address, &max_address);
2698         if (ERROR_OK != retval)
2699                 return retval;
2700
2701         struct target *target = get_current_target(CMD_CTX);
2702
2703         struct duration bench;
2704         duration_start(&bench);
2705
2706         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2707         {
2708                 return ERROR_OK;
2709         }
2710
2711         image_size = 0x0;
2712         retval = ERROR_OK;
2713         for (i = 0; i < image.num_sections; i++)
2714         {
2715                 buffer = malloc(image.sections[i].size);
2716                 if (buffer == NULL)
2717                 {
2718                         command_print(CMD_CTX,
2719                                                   "error allocating buffer for section (%d bytes)",
2720                                                   (int)(image.sections[i].size));
2721                         break;
2722                 }
2723
2724                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2725                 {
2726                         free(buffer);
2727                         break;
2728                 }
2729
2730                 uint32_t offset = 0;
2731                 uint32_t length = buf_cnt;
2732
2733                 /* DANGER!!! beware of unsigned comparision here!!! */
2734
2735                 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
2736                                 (image.sections[i].base_address < max_address))
2737                 {
2738                         if (image.sections[i].base_address < min_address)
2739                         {
2740                                 /* clip addresses below */
2741                                 offset += min_address-image.sections[i].base_address;
2742                                 length -= offset;
2743                         }
2744
2745                         if (image.sections[i].base_address + buf_cnt > max_address)
2746                         {
2747                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2748                         }
2749
2750                         if ((retval = target_write_buffer(target, image.sections[i].base_address + offset, length, buffer + offset)) != ERROR_OK)
2751                         {
2752                                 free(buffer);
2753                                 break;
2754                         }
2755                         image_size += length;
2756                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
2757                                                   (unsigned int)length,
2758                                                   image.sections[i].base_address + offset);
2759                 }
2760
2761                 free(buffer);
2762         }
2763
2764         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2765         {
2766                 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
2767                                 "in %fs (%0.3f KiB/s)", image_size,
2768                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2769         }
2770
2771         image_close(&image);
2772
2773         return retval;
2774
2775 }
2776
2777 COMMAND_HANDLER(handle_dump_image_command)
2778 {
2779         struct fileio fileio;
2780         uint8_t buffer[560];
2781         int retval, retvaltemp;
2782         uint32_t address, size;
2783         struct duration bench;
2784         struct target *target = get_current_target(CMD_CTX);
2785
2786         if (CMD_ARGC != 3)
2787                 return ERROR_COMMAND_SYNTAX_ERROR;
2788
2789         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
2790         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
2791
2792         retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
2793         if (retval != ERROR_OK)
2794                 return retval;
2795
2796         duration_start(&bench);
2797
2798         retval = ERROR_OK;
2799         while (size > 0)
2800         {
2801                 size_t size_written;
2802                 uint32_t this_run_size = (size > 560) ? 560 : size;
2803                 retval = target_read_buffer(target, address, this_run_size, buffer);
2804                 if (retval != ERROR_OK)
2805                 {
2806                         break;
2807                 }
2808
2809                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2810                 if (retval != ERROR_OK)
2811                 {
2812                         break;
2813                 }
2814
2815                 size -= this_run_size;
2816                 address += this_run_size;
2817         }
2818
2819         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2820         {
2821                 int filesize;
2822                 retval = fileio_size(&fileio, &filesize);
2823                 if (retval != ERROR_OK)
2824                         return retval;
2825                 command_print(CMD_CTX,
2826                                 "dumped %ld bytes in %fs (%0.3f KiB/s)", (long)filesize,
2827                                 duration_elapsed(&bench), duration_kbps(&bench, filesize));
2828         }
2829
2830         if ((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2831                 return retvaltemp;
2832
2833         return retval;
2834 }
2835
2836 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
2837 {
2838         uint8_t *buffer;
2839         size_t buf_cnt;
2840         uint32_t image_size;
2841         int i;
2842         int retval;
2843         uint32_t checksum = 0;
2844         uint32_t mem_checksum = 0;
2845
2846         struct image image;
2847
2848         struct target *target = get_current_target(CMD_CTX);
2849
2850         if (CMD_ARGC < 1)
2851         {
2852                 return ERROR_COMMAND_SYNTAX_ERROR;
2853         }
2854
2855         if (!target)
2856         {
2857                 LOG_ERROR("no target selected");
2858                 return ERROR_FAIL;
2859         }
2860
2861         struct duration bench;
2862         duration_start(&bench);
2863
2864         if (CMD_ARGC >= 2)
2865         {
2866                 uint32_t addr;
2867                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2868                 image.base_address = addr;
2869                 image.base_address_set = 1;
2870         }
2871         else
2872         {
2873                 image.base_address_set = 0;
2874                 image.base_address = 0x0;
2875         }
2876
2877         image.start_address_set = 0;
2878
2879         if ((retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL)) != ERROR_OK)
2880         {
2881                 return retval;
2882         }
2883
2884         image_size = 0x0;
2885         int diffs = 0;
2886         retval = ERROR_OK;
2887         for (i = 0; i < image.num_sections; i++)
2888         {
2889                 buffer = malloc(image.sections[i].size);
2890                 if (buffer == NULL)
2891                 {
2892                         command_print(CMD_CTX,
2893                                                   "error allocating buffer for section (%d bytes)",
2894                                                   (int)(image.sections[i].size));
2895                         break;
2896                 }
2897                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2898                 {
2899                         free(buffer);
2900                         break;
2901                 }
2902
2903                 if (verify)
2904                 {
2905                         /* calculate checksum of image */
2906                         retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
2907                         if (retval != ERROR_OK)
2908                         {
2909                                 free(buffer);
2910                                 break;
2911                         }
2912
2913                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2914                         if (retval != ERROR_OK)
2915                         {
2916                                 free(buffer);
2917                                 break;
2918                         }
2919
2920                         if (checksum != mem_checksum)
2921                         {
2922                                 /* failed crc checksum, fall back to a binary compare */
2923                                 uint8_t *data;
2924
2925                                 if (diffs == 0)
2926                                 {
2927                                         LOG_ERROR("checksum mismatch - attempting binary compare");
2928                                 }
2929
2930                                 data = (uint8_t*)malloc(buf_cnt);
2931
2932                                 /* Can we use 32bit word accesses? */
2933                                 int size = 1;
2934                                 int count = buf_cnt;
2935                                 if ((count % 4) == 0)
2936                                 {
2937                                         size *= 4;
2938                                         count /= 4;
2939                                 }
2940                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2941                                 if (retval == ERROR_OK)
2942                                 {
2943                                         uint32_t t;
2944                                         for (t = 0; t < buf_cnt; t++)
2945                                         {
2946                                                 if (data[t] != buffer[t])
2947                                                 {
2948                                                         command_print(CMD_CTX,
2949                                                                                   "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
2950                                                                                   diffs,
2951                                                                                   (unsigned)(t + image.sections[i].base_address),
2952                                                                                   data[t],
2953                                                                                   buffer[t]);
2954                                                         if (diffs++ >= 127)
2955                                                         {
2956                                                                 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
2957                                                                 free(data);
2958                                                                 free(buffer);
2959                                                                 goto done;
2960                                                         }
2961                                                 }
2962                                                 keep_alive();
2963                                         }
2964                                 }
2965                                 free(data);
2966                         }
2967                 } else
2968                 {
2969                         command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
2970                                                   image.sections[i].base_address,
2971                                                   buf_cnt);
2972                 }
2973
2974                 free(buffer);
2975                 image_size += buf_cnt;
2976         }
2977         if (diffs > 0)
2978         {
2979                 command_print(CMD_CTX, "No more differences found.");
2980         }
2981 done:
2982         if (diffs > 0)
2983         {
2984                 retval = ERROR_FAIL;
2985         }
2986         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2987         {
2988                 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
2989                                 "in %fs (%0.3f KiB/s)", image_size,
2990                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2991         }
2992
2993         image_close(&image);
2994
2995         return retval;
2996 }
2997
2998 COMMAND_HANDLER(handle_verify_image_command)
2999 {
3000         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
3001 }
3002
3003 COMMAND_HANDLER(handle_test_image_command)
3004 {
3005         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
3006 }
3007
3008 static int handle_bp_command_list(struct command_context *cmd_ctx)
3009 {
3010         struct target *target = get_current_target(cmd_ctx);
3011         struct breakpoint *breakpoint = target->breakpoints;
3012         while (breakpoint)
3013         {
3014                 if (breakpoint->type == BKPT_SOFT)
3015                 {
3016                         char* buf = buf_to_str(breakpoint->orig_instr,
3017                                         breakpoint->length, 16);
3018                         command_print(cmd_ctx, "IVA breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
3019                                         breakpoint->address,
3020                                         breakpoint->length,
3021                                         breakpoint->set, buf);
3022                         free(buf);
3023                 }
3024                 else
3025                 {
3026                         if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3027                                 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3028                                                         breakpoint->asid,
3029                                                         breakpoint->length, breakpoint->set);
3030                         else if ((breakpoint->address != 0) && (breakpoint->asid != 0))
3031                         {
3032                                 command_print(cmd_ctx, "Hybrid breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3033                                                         breakpoint->address,
3034                                                         breakpoint->length, breakpoint->set);
3035                                 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3036                                                         breakpoint->asid);
3037                         }
3038                         else
3039                                 command_print(cmd_ctx, "Breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3040                                                         breakpoint->address,
3041                                                         breakpoint->length, breakpoint->set);
3042                 }
3043
3044                 breakpoint = breakpoint->next;
3045         }
3046         return ERROR_OK;
3047 }
3048
3049 static int handle_bp_command_set(struct command_context *cmd_ctx,
3050                 uint32_t addr, uint32_t asid, uint32_t length, int hw)
3051 {
3052         struct target *target = get_current_target(cmd_ctx);
3053
3054         if (asid == 0)
3055         {
3056                 int retval = breakpoint_add(target, addr, length, hw);
3057                 if (ERROR_OK == retval)
3058                         command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
3059                 else
3060                 {
3061                         LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3062                         return retval;
3063                 }
3064         }
3065         else if (addr == 0)
3066         {
3067                 int retval = context_breakpoint_add(target, asid, length, hw);
3068                 if (ERROR_OK == retval)
3069                         command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3070                 else
3071                 {
3072                         LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3073                         return retval;
3074                 }
3075         }
3076         else
3077         {
3078                 int retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3079                 if(ERROR_OK == retval)
3080                         command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3081                 else
3082                 {
3083                         LOG_ERROR("Failure setting breakpoint, the same address is already used");
3084                         return retval;
3085                 }
3086         }
3087         return ERROR_OK;
3088 }
3089
3090 COMMAND_HANDLER(handle_bp_command)
3091 {
3092         uint32_t addr;
3093         uint32_t asid;
3094         uint32_t length;
3095         int hw = BKPT_SOFT;
3096         switch(CMD_ARGC)
3097         {
3098                 case 0:
3099                         return handle_bp_command_list(CMD_CTX);
3100
3101                 case 2:
3102                         asid = 0;
3103                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3104                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3105                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3106
3107                 case 3:
3108                         if(strcmp(CMD_ARGV[2], "hw") == 0)
3109                         {
3110                                 hw = BKPT_HARD;
3111                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3112
3113                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3114
3115                                 asid = 0;
3116                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3117                         }
3118                         else if(strcmp(CMD_ARGV[2], "hw_ctx") == 0)
3119                         {
3120                                 hw = BKPT_HARD;
3121                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3122                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3123                                 addr = 0;
3124                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3125                         }
3126
3127                 case 4:
3128                         hw = BKPT_HARD;
3129                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3130                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3131                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3132                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3133
3134                 default:
3135                         command_print(CMD_CTX, "usage: bp <address> [<asid>]<length> ['hw'|'hw_ctx']");
3136                         return ERROR_COMMAND_SYNTAX_ERROR;
3137         }
3138 }
3139
3140 COMMAND_HANDLER(handle_rbp_command)
3141 {
3142         if (CMD_ARGC != 1)
3143                 return ERROR_COMMAND_SYNTAX_ERROR;
3144
3145         uint32_t addr;
3146         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3147
3148         struct target *target = get_current_target(CMD_CTX);
3149         breakpoint_remove(target, addr);
3150
3151         return ERROR_OK;
3152 }
3153
3154 COMMAND_HANDLER(handle_wp_command)
3155 {
3156         struct target *target = get_current_target(CMD_CTX);
3157
3158         if (CMD_ARGC == 0)
3159         {
3160                 struct watchpoint *watchpoint = target->watchpoints;
3161
3162                 while (watchpoint)
3163                 {
3164                         command_print(CMD_CTX, "address: 0x%8.8" PRIx32
3165                                         ", len: 0x%8.8" PRIx32
3166                                         ", r/w/a: %i, value: 0x%8.8" PRIx32
3167                                         ", mask: 0x%8.8" PRIx32,
3168                                         watchpoint->address,
3169                                         watchpoint->length,
3170                                         (int)watchpoint->rw,
3171                                         watchpoint->value,
3172                                         watchpoint->mask);
3173                         watchpoint = watchpoint->next;
3174                 }
3175                 return ERROR_OK;
3176         }
3177
3178         enum watchpoint_rw type = WPT_ACCESS;
3179         uint32_t addr = 0;
3180         uint32_t length = 0;
3181         uint32_t data_value = 0x0;
3182         uint32_t data_mask = 0xffffffff;
3183
3184         switch (CMD_ARGC)
3185         {
3186         case 5:
3187                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3188                 // fall through
3189         case 4:
3190                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3191                 // fall through
3192         case 3:
3193                 switch (CMD_ARGV[2][0])
3194                 {
3195                 case 'r':
3196                         type = WPT_READ;
3197                         break;
3198                 case 'w':
3199                         type = WPT_WRITE;
3200                         break;
3201                 case 'a':
3202                         type = WPT_ACCESS;
3203                         break;
3204                 default:
3205                         LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3206                         return ERROR_COMMAND_SYNTAX_ERROR;
3207                 }
3208                 // fall through
3209         case 2:
3210                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3211                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3212                 break;
3213
3214         default:
3215                 command_print(CMD_CTX, "usage: wp [address length "
3216                                 "[(r|w|a) [value [mask]]]]");
3217                 return ERROR_COMMAND_SYNTAX_ERROR;
3218         }
3219
3220         int retval = watchpoint_add(target, addr, length, type,
3221                         data_value, data_mask);
3222         if (ERROR_OK != retval)
3223                 LOG_ERROR("Failure setting watchpoints");
3224
3225         return retval;
3226 }
3227
3228 COMMAND_HANDLER(handle_rwp_command)
3229 {
3230         if (CMD_ARGC != 1)
3231                 return ERROR_COMMAND_SYNTAX_ERROR;
3232
3233         uint32_t addr;
3234         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3235
3236         struct target *target = get_current_target(CMD_CTX);
3237         watchpoint_remove(target, addr);
3238
3239         return ERROR_OK;
3240 }
3241
3242
3243 /**
3244  * Translate a virtual address to a physical address.
3245  *
3246  * The low-level target implementation must have logged a detailed error
3247  * which is forwarded to telnet/GDB session.
3248  */
3249 COMMAND_HANDLER(handle_virt2phys_command)
3250 {
3251         if (CMD_ARGC != 1)
3252                 return ERROR_COMMAND_SYNTAX_ERROR;
3253
3254         uint32_t va;
3255         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
3256         uint32_t pa;
3257
3258         struct target *target = get_current_target(CMD_CTX);
3259         int retval = target->type->virt2phys(target, va, &pa);
3260         if (retval == ERROR_OK)
3261                 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
3262
3263         return retval;
3264 }
3265
3266 static void writeData(FILE *f, const void *data, size_t len)
3267 {
3268         size_t written = fwrite(data, 1, len, f);
3269         if (written != len)
3270                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3271 }
3272
3273 static void writeLong(FILE *f, int l)
3274 {
3275         int i;
3276         for (i = 0; i < 4; i++)
3277         {
3278                 char c = (l >> (i*8))&0xff;
3279                 writeData(f, &c, 1);
3280         }
3281
3282 }
3283
3284 static void writeString(FILE *f, char *s)
3285 {
3286         writeData(f, s, strlen(s));
3287 }
3288
3289 /* Dump a gmon.out histogram file. */
3290 static void writeGmon(uint32_t *samples, uint32_t sampleNum, const char *filename)
3291 {
3292         uint32_t i;
3293         FILE *f = fopen(filename, "w");
3294         if (f == NULL)
3295                 return;
3296         writeString(f, "gmon");
3297         writeLong(f, 0x00000001); /* Version */
3298         writeLong(f, 0); /* padding */
3299         writeLong(f, 0); /* padding */
3300         writeLong(f, 0); /* padding */
3301
3302         uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
3303         writeData(f, &zero, 1);
3304
3305         /* figure out bucket size */
3306         uint32_t min = samples[0];
3307         uint32_t max = samples[0];
3308         for (i = 0; i < sampleNum; i++)
3309         {
3310                 if (min > samples[i])
3311                 {
3312                         min = samples[i];
3313                 }
3314                 if (max < samples[i])
3315                 {
3316                         max = samples[i];
3317                 }
3318         }
3319
3320         int addressSpace = (max-min + 1);
3321
3322         static const uint32_t maxBuckets = 16 * 1024; /* maximum buckets. */
3323         uint32_t length = addressSpace;
3324         if (length > maxBuckets)
3325         {
3326                 length = maxBuckets;
3327         }
3328         int *buckets = malloc(sizeof(int)*length);
3329         if (buckets == NULL)
3330         {
3331                 fclose(f);
3332                 return;
3333         }
3334         memset(buckets, 0, sizeof(int)*length);
3335         for (i = 0; i < sampleNum;i++)
3336         {
3337                 uint32_t address = samples[i];
3338                 long long a = address-min;
3339                 long long b = length-1;
3340                 long long c = addressSpace-1;
3341                 int index_t = (a*b)/c; /* danger!!!! int32 overflows */
3342                 buckets[index_t]++;
3343         }
3344
3345         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3346         writeLong(f, min);                      /* low_pc */
3347         writeLong(f, max);                      /* high_pc */
3348         writeLong(f, length);           /* # of samples */
3349         writeLong(f, 100);                      /* KLUDGE! We lie, ca. 100Hz best case. */
3350         writeString(f, "seconds");
3351         for (i = 0; i < (15-strlen("seconds")); i++)
3352                 writeData(f, &zero, 1);
3353         writeString(f, "s");
3354
3355         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3356
3357         char *data = malloc(2*length);
3358         if (data != NULL)
3359         {
3360                 for (i = 0; i < length;i++)
3361                 {
3362                         int val;
3363                         val = buckets[i];
3364                         if (val > 65535)
3365                         {
3366                                 val = 65535;
3367                         }
3368                         data[i*2]=val&0xff;
3369                         data[i*2 + 1]=(val >> 8)&0xff;
3370                 }
3371                 free(buckets);
3372                 writeData(f, data, length * 2);
3373                 free(data);
3374         } else
3375         {
3376                 free(buckets);
3377         }
3378
3379         fclose(f);
3380 }
3381
3382 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3383  * which will be used as a random sampling of PC */
3384 COMMAND_HANDLER(handle_profile_command)
3385 {
3386         struct target *target = get_current_target(CMD_CTX);
3387         struct timeval timeout, now;
3388
3389         gettimeofday(&timeout, NULL);
3390         if (CMD_ARGC != 2)
3391         {
3392                 return ERROR_COMMAND_SYNTAX_ERROR;
3393         }
3394         unsigned offset;
3395         COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], offset);
3396
3397         timeval_add_time(&timeout, offset, 0);
3398
3399         /**
3400          * @todo: Some cores let us sample the PC without the
3401          * annoying halt/resume step; for example, ARMv7 PCSR.
3402          * Provide a way to use that more efficient mechanism.
3403          */
3404
3405         command_print(CMD_CTX, "Starting profiling. Halting and resuming the target as often as we can...");
3406
3407         static const int maxSample = 10000;
3408         uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
3409         if (samples == NULL)
3410                 return ERROR_OK;
3411
3412         int numSamples = 0;
3413         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
3414         struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
3415
3416         for (;;)
3417         {
3418                 int retval;
3419                 target_poll(target);
3420                 if (target->state == TARGET_HALTED)
3421                 {
3422                         uint32_t t=*((uint32_t *)reg->value);
3423                         samples[numSamples++]=t;
3424                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3425                         target_poll(target);
3426                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
3427                 } else if (target->state == TARGET_RUNNING)
3428                 {
3429                         /* We want to quickly sample the PC. */
3430                         if ((retval = target_halt(target)) != ERROR_OK)
3431                         {
3432                                 free(samples);
3433                                 return retval;
3434                         }
3435                 } else
3436                 {
3437                         command_print(CMD_CTX, "Target not halted or running");
3438                         retval = ERROR_OK;
3439                         break;
3440                 }
3441                 if (retval != ERROR_OK)
3442                 {
3443                         break;
3444                 }
3445
3446                 gettimeofday(&now, NULL);
3447                 if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
3448                 {
3449                         command_print(CMD_CTX, "Profiling completed. %d samples.", numSamples);
3450                         if ((retval = target_poll(target)) != ERROR_OK)
3451                         {
3452                                 free(samples);
3453                                 return retval;
3454                         }
3455                         if (target->state == TARGET_HALTED)
3456                         {
3457                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3458                         }
3459                         if ((retval = target_poll(target)) != ERROR_OK)
3460                         {
3461                                 free(samples);
3462                                 return retval;
3463                         }
3464                         writeGmon(samples, numSamples, CMD_ARGV[1]);
3465                         command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3466                         break;
3467                 }
3468         }
3469         free(samples);
3470
3471         return ERROR_OK;
3472 }
3473
3474 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t val)
3475 {
3476         char *namebuf;
3477         Jim_Obj *nameObjPtr, *valObjPtr;
3478         int result;
3479
3480         namebuf = alloc_printf("%s(%d)", varname, idx);
3481         if (!namebuf)
3482                 return JIM_ERR;
3483
3484         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3485         valObjPtr = Jim_NewIntObj(interp, val);
3486         if (!nameObjPtr || !valObjPtr)
3487         {
3488                 free(namebuf);
3489                 return JIM_ERR;
3490         }
3491
3492         Jim_IncrRefCount(nameObjPtr);
3493         Jim_IncrRefCount(valObjPtr);
3494         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3495         Jim_DecrRefCount(interp, nameObjPtr);
3496         Jim_DecrRefCount(interp, valObjPtr);
3497         free(namebuf);
3498         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3499         return result;
3500 }
3501
3502 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3503 {
3504         struct command_context *context;
3505         struct target *target;
3506
3507         context = current_command_context(interp);
3508         assert (context != NULL);
3509
3510         target = get_current_target(context);
3511         if (target == NULL)
3512         {
3513                 LOG_ERROR("mem2array: no current target");
3514                 return JIM_ERR;
3515         }
3516
3517         return  target_mem2array(interp, target, argc-1, argv + 1);
3518 }
3519
3520 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3521 {
3522         long l;
3523         uint32_t width;
3524         int len;
3525         uint32_t addr;
3526         uint32_t count;
3527         uint32_t v;
3528         const char *varname;
3529         int  n, e, retval;
3530         uint32_t i;
3531
3532         /* argv[1] = name of array to receive the data
3533          * argv[2] = desired width
3534          * argv[3] = memory address
3535          * argv[4] = count of times to read
3536          */
3537         if (argc != 4) {
3538                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3539                 return JIM_ERR;
3540         }
3541         varname = Jim_GetString(argv[0], &len);
3542         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3543
3544         e = Jim_GetLong(interp, argv[1], &l);
3545         width = l;
3546         if (e != JIM_OK) {
3547                 return e;
3548         }
3549
3550         e = Jim_GetLong(interp, argv[2], &l);
3551         addr = l;
3552         if (e != JIM_OK) {
3553                 return e;
3554         }
3555         e = Jim_GetLong(interp, argv[3], &l);
3556         len = l;
3557         if (e != JIM_OK) {
3558                 return e;
3559         }
3560         switch (width) {
3561                 case 8:
3562                         width = 1;
3563                         break;
3564                 case 16:
3565                         width = 2;
3566                         break;
3567                 case 32:
3568                         width = 4;
3569                         break;
3570                 default:
3571                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3572                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3573                         return JIM_ERR;
3574         }
3575         if (len == 0) {
3576                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3577                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3578                 return JIM_ERR;
3579         }
3580         if ((addr + (len * width)) < addr) {
3581                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3582                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3583                 return JIM_ERR;
3584         }
3585         /* absurd transfer size? */
3586         if (len > 65536) {
3587                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3588                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3589                 return JIM_ERR;
3590         }
3591
3592         if ((width == 1) ||
3593                 ((width == 2) && ((addr & 1) == 0)) ||
3594                 ((width == 4) && ((addr & 3) == 0))) {
3595                 /* all is well */
3596         } else {
3597                 char buf[100];
3598                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3599                 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3600                                 addr,
3601                                 width);
3602                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3603                 return JIM_ERR;
3604         }
3605
3606         /* Transfer loop */
3607
3608         /* index counter */
3609         n = 0;
3610
3611         size_t buffersize = 4096;
3612         uint8_t *buffer = malloc(buffersize);
3613         if (buffer == NULL)
3614                 return JIM_ERR;
3615
3616         /* assume ok */
3617         e = JIM_OK;
3618         while (len) {
3619                 /* Slurp... in buffer size chunks */
3620
3621                 count = len; /* in objects.. */
3622                 if (count > (buffersize/width)) {
3623                         count = (buffersize/width);
3624                 }
3625
3626                 retval = target_read_memory(target, addr, width, count, buffer);
3627                 if (retval != ERROR_OK) {
3628                         /* BOO !*/
3629                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3630                                           (unsigned int)addr,
3631                                           (int)width,
3632                                           (int)count);
3633                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3634                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3635                         e = JIM_ERR;
3636                         len = 0;
3637                 } else {
3638                         v = 0; /* shut up gcc */
3639                         for (i = 0 ;i < count ;i++, n++) {
3640                                 switch (width) {
3641                                         case 4:
3642                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
3643                                                 break;
3644                                         case 2:
3645                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
3646                                                 break;
3647                                         case 1:
3648                                                 v = buffer[i] & 0x0ff;
3649                                                 break;
3650                                 }
3651                                 new_int_array_element(interp, varname, n, v);
3652                         }
3653                         len -= count;
3654                 }
3655         }
3656
3657         free(buffer);
3658
3659         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3660
3661         return JIM_OK;
3662 }
3663
3664 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t *val)
3665 {
3666         char *namebuf;
3667         Jim_Obj *nameObjPtr, *valObjPtr;
3668         int result;
3669         long l;
3670
3671         namebuf = alloc_printf("%s(%d)", varname, idx);
3672         if (!namebuf)
3673                 return JIM_ERR;
3674
3675         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3676         if (!nameObjPtr)
3677         {
3678                 free(namebuf);
3679                 return JIM_ERR;
3680         }
3681
3682         Jim_IncrRefCount(nameObjPtr);
3683         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3684         Jim_DecrRefCount(interp, nameObjPtr);
3685         free(namebuf);
3686         if (valObjPtr == NULL)
3687                 return JIM_ERR;
3688
3689         result = Jim_GetLong(interp, valObjPtr, &l);
3690         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3691         *val = l;
3692         return result;
3693 }
3694
3695 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3696 {
3697         struct command_context *context;
3698         struct target *target;
3699
3700         context = current_command_context(interp);
3701         assert (context != NULL);
3702
3703         target = get_current_target(context);
3704         if (target == NULL) {
3705                 LOG_ERROR("array2mem: no current target");
3706                 return JIM_ERR;
3707         }
3708
3709         return target_array2mem(interp,target, argc-1, argv + 1);
3710 }
3711
3712 static int target_array2mem(Jim_Interp *interp, struct target *target,
3713                 int argc, Jim_Obj *const *argv)
3714 {
3715         long l;
3716         uint32_t width;
3717         int len;
3718         uint32_t addr;
3719         uint32_t count;
3720         uint32_t v;
3721         const char *varname;
3722         int  n, e, retval;
3723         uint32_t i;
3724
3725         /* argv[1] = name of array to get the data
3726          * argv[2] = desired width
3727          * argv[3] = memory address
3728          * argv[4] = count to write
3729          */
3730         if (argc != 4) {
3731                 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems");
3732                 return JIM_ERR;
3733         }
3734         varname = Jim_GetString(argv[0], &len);
3735         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3736
3737         e = Jim_GetLong(interp, argv[1], &l);
3738         width = l;
3739         if (e != JIM_OK) {
3740                 return e;
3741         }
3742
3743         e = Jim_GetLong(interp, argv[2], &l);
3744         addr = l;
3745         if (e != JIM_OK) {
3746                 return e;
3747         }
3748         e = Jim_GetLong(interp, argv[3], &l);
3749         len = l;
3750         if (e != JIM_OK) {
3751                 return e;
3752         }
3753         switch (width) {
3754                 case 8:
3755                         width = 1;
3756                         break;
3757                 case 16:
3758                         width = 2;
3759                         break;
3760                 case 32:
3761                         width = 4;
3762                         break;
3763                 default:
3764                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3765                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3766                         return JIM_ERR;
3767         }
3768         if (len == 0) {
3769                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3770                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
3771                 return JIM_ERR;
3772         }
3773         if ((addr + (len * width)) < addr) {
3774                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3775                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
3776                 return JIM_ERR;
3777         }
3778         /* absurd transfer size? */
3779         if (len > 65536) {
3780                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3781                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
3782                 return JIM_ERR;
3783         }
3784
3785         if ((width == 1) ||
3786                 ((width == 2) && ((addr & 1) == 0)) ||
3787                 ((width == 4) && ((addr & 3) == 0))) {
3788                 /* all is well */
3789         } else {
3790                 char buf[100];
3791                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3792                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
3793                                 (unsigned int)addr,
3794                                 (int)width);
3795                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3796                 return JIM_ERR;
3797         }
3798
3799         /* Transfer loop */
3800
3801         /* index counter */
3802         n = 0;
3803         /* assume ok */
3804         e = JIM_OK;
3805
3806         size_t buffersize = 4096;
3807         uint8_t *buffer = malloc(buffersize);
3808         if (buffer == NULL)
3809                 return JIM_ERR;
3810
3811         while (len) {
3812                 /* Slurp... in buffer size chunks */
3813
3814                 count = len; /* in objects.. */
3815                 if (count > (buffersize/width)) {
3816                         count = (buffersize/width);
3817                 }
3818
3819                 v = 0; /* shut up gcc */
3820                 for (i = 0 ;i < count ;i++, n++) {
3821                         get_int_array_element(interp, varname, n, &v);
3822                         switch (width) {
3823                         case 4:
3824                                 target_buffer_set_u32(target, &buffer[i*width], v);
3825                                 break;
3826                         case 2:
3827                                 target_buffer_set_u16(target, &buffer[i*width], v);
3828                                 break;
3829                         case 1:
3830                                 buffer[i] = v & 0x0ff;
3831                                 break;
3832                         }
3833                 }
3834                 len -= count;
3835
3836                 retval = target_write_memory(target, addr, width, count, buffer);
3837                 if (retval != ERROR_OK) {
3838                         /* BOO !*/
3839                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
3840                                           (unsigned int)addr,
3841                                           (int)width,
3842                                           (int)count);
3843                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3844                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3845                         e = JIM_ERR;
3846                         len = 0;
3847                 }
3848         }
3849
3850         free(buffer);
3851
3852         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3853
3854         return JIM_OK;
3855 }
3856
3857 /* FIX? should we propagate errors here rather than printing them
3858  * and continuing?
3859  */
3860 void target_handle_event(struct target *target, enum target_event e)
3861 {
3862         struct target_event_action *teap;
3863
3864         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3865                 if (teap->event == e) {
3866                         LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
3867                                            target->target_number,
3868                                            target_name(target),
3869                                            target_type_name(target),
3870                                            e,
3871                                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
3872                                            Jim_GetString(teap->body, NULL));
3873                         if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK)
3874                         {
3875                                 Jim_MakeErrorMessage(teap->interp);
3876                                 command_print(NULL,"%s\n", Jim_GetString(Jim_GetResult(teap->interp), NULL));
3877                         }
3878                 }
3879         }
3880 }
3881
3882 /**
3883  * Returns true only if the target has a handler for the specified event.
3884  */
3885 bool target_has_event_action(struct target *target, enum target_event event)
3886 {
3887         struct target_event_action *teap;
3888
3889         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3890                 if (teap->event == event)
3891                         return true;
3892         }
3893         return false;
3894 }
3895
3896 enum target_cfg_param {
3897         TCFG_TYPE,
3898         TCFG_EVENT,
3899         TCFG_WORK_AREA_VIRT,
3900         TCFG_WORK_AREA_PHYS,
3901         TCFG_WORK_AREA_SIZE,
3902         TCFG_WORK_AREA_BACKUP,
3903         TCFG_ENDIAN,
3904         TCFG_VARIANT,
3905         TCFG_COREID,
3906         TCFG_CHAIN_POSITION,
3907         TCFG_DBGBASE,
3908         TCFG_RTOS,
3909 };
3910
3911 static Jim_Nvp nvp_config_opts[] = {
3912         { .name = "-type",             .value = TCFG_TYPE },
3913         { .name = "-event",            .value = TCFG_EVENT },
3914         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
3915         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
3916         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
3917         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3918         { .name = "-endian" ,          .value = TCFG_ENDIAN },
3919         { .name = "-variant",          .value = TCFG_VARIANT },
3920         { .name = "-coreid",           .value = TCFG_COREID },
3921         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
3922         { .name = "-dbgbase",          .value = TCFG_DBGBASE },
3923         { .name = "-rtos",             .value = TCFG_RTOS },
3924         { .name = NULL, .value = -1 }
3925 };
3926
3927 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
3928 {
3929         Jim_Nvp *n;
3930         Jim_Obj *o;
3931         jim_wide w;
3932         char *cp;
3933         int e;
3934
3935         /* parse config or cget options ... */
3936         while (goi->argc > 0) {
3937                 Jim_SetEmptyResult(goi->interp);
3938                 /* Jim_GetOpt_Debug(goi); */
3939
3940                 if (target->type->target_jim_configure) {
3941                         /* target defines a configure function */
3942                         /* target gets first dibs on parameters */
3943                         e = (*(target->type->target_jim_configure))(target, goi);
3944                         if (e == JIM_OK) {
3945                                 /* more? */
3946                                 continue;
3947                         }
3948                         if (e == JIM_ERR) {
3949                                 /* An error */
3950                                 return e;
3951                         }
3952                         /* otherwise we 'continue' below */
3953                 }
3954                 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
3955                 if (e != JIM_OK) {
3956                         Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
3957                         return e;
3958                 }
3959                 switch (n->value) {
3960                 case TCFG_TYPE:
3961                         /* not setable */
3962                         if (goi->isconfigure) {
3963                                 Jim_SetResultFormatted(goi->interp,
3964                                                 "not settable: %s", n->name);
3965                                 return JIM_ERR;
3966                         } else {
3967                         no_params:
3968                                 if (goi->argc != 0) {
3969                                         Jim_WrongNumArgs(goi->interp,
3970                                                         goi->argc, goi->argv,
3971                                                         "NO PARAMS");
3972                                         return JIM_ERR;
3973                                 }
3974                         }
3975                         Jim_SetResultString(goi->interp,
3976                                         target_type_name(target), -1);
3977                         /* loop for more */
3978                         break;
3979                 case TCFG_EVENT:
3980                         if (goi->argc == 0) {
3981                                 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
3982                                 return JIM_ERR;
3983                         }
3984
3985                         e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
3986                         if (e != JIM_OK) {
3987                                 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
3988                                 return e;
3989                         }
3990
3991                         if (goi->isconfigure) {
3992                                 if (goi->argc != 1) {
3993                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
3994                                         return JIM_ERR;
3995                                 }
3996                         } else {
3997                                 if (goi->argc != 0) {
3998                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
3999                                         return JIM_ERR;
4000                                 }
4001                         }
4002
4003                         {
4004                                 struct target_event_action *teap;
4005
4006                                 teap = target->event_action;
4007                                 /* replace existing? */
4008                                 while (teap) {
4009                                         if (teap->event == (enum target_event)n->value) {
4010                                                 break;
4011                                         }
4012                                         teap = teap->next;
4013                                 }
4014
4015                                 if (goi->isconfigure) {
4016                                         bool replace = true;
4017                                         if (teap == NULL) {
4018                                                 /* create new */
4019                                                 teap = calloc(1, sizeof(*teap));
4020                                                 replace = false;
4021                                         }
4022                                         teap->event = n->value;
4023                                         teap->interp = goi->interp;
4024                                         Jim_GetOpt_Obj(goi, &o);
4025                                         if (teap->body) {
4026                                                 Jim_DecrRefCount(teap->interp, teap->body);
4027                                         }
4028                                         teap->body  = Jim_DuplicateObj(goi->interp, o);
4029                                         /*
4030                                          * FIXME:
4031                                          *     Tcl/TK - "tk events" have a nice feature.
4032                                          *     See the "BIND" command.
4033                                          *    We should support that here.
4034                                          *     You can specify %X and %Y in the event code.
4035                                          *     The idea is: %T - target name.
4036                                          *     The idea is: %N - target number
4037                                          *     The idea is: %E - event name.
4038                                          */
4039                                         Jim_IncrRefCount(teap->body);
4040
4041                                         if (!replace)
4042                                         {
4043                                                 /* add to head of event list */
4044                                                 teap->next = target->event_action;
4045                                                 target->event_action = teap;
4046                                         }
4047                                         Jim_SetEmptyResult(goi->interp);
4048                                 } else {
4049                                         /* get */
4050                                         if (teap == NULL) {
4051                                                 Jim_SetEmptyResult(goi->interp);
4052                                         } else {
4053                                                 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
4054                                         }
4055                                 }
4056                         }
4057                         /* loop for more */
4058                         break;
4059
4060                 case TCFG_WORK_AREA_VIRT:
4061                         if (goi->isconfigure) {
4062                                 target_free_all_working_areas(target);
4063                                 e = Jim_GetOpt_Wide(goi, &w);
4064                                 if (e != JIM_OK) {
4065                                         return e;
4066                                 }
4067                                 target->working_area_virt = w;
4068                                 target->working_area_virt_spec = true;
4069                         } else {
4070                                 if (goi->argc != 0) {
4071                                         goto no_params;
4072                                 }
4073                         }
4074                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
4075                         /* loop for more */
4076                         break;
4077
4078                 case TCFG_WORK_AREA_PHYS:
4079                         if (goi->isconfigure) {
4080                                 target_free_all_working_areas(target);
4081                                 e = Jim_GetOpt_Wide(goi, &w);
4082                                 if (e != JIM_OK) {
4083                                         return e;
4084                                 }
4085                                 target->working_area_phys = w;
4086                                 target->working_area_phys_spec = true;
4087                         } else {
4088                                 if (goi->argc != 0) {
4089                                         goto no_params;
4090                                 }
4091                         }
4092                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
4093                         /* loop for more */
4094                         break;
4095
4096                 case TCFG_WORK_AREA_SIZE:
4097                         if (goi->isconfigure) {
4098                                 target_free_all_working_areas(target);
4099                                 e = Jim_GetOpt_Wide(goi, &w);
4100                                 if (e != JIM_OK) {
4101                                         return e;
4102                                 }
4103                                 target->working_area_size = w;
4104                         } else {
4105                                 if (goi->argc != 0) {
4106                                         goto no_params;
4107                                 }
4108                         }
4109                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4110                         /* loop for more */
4111                         break;
4112
4113                 case TCFG_WORK_AREA_BACKUP:
4114                         if (goi->isconfigure) {
4115                                 target_free_all_working_areas(target);
4116                                 e = Jim_GetOpt_Wide(goi, &w);
4117                                 if (e != JIM_OK) {
4118                                         return e;
4119                                 }
4120                                 /* make this exactly 1 or 0 */
4121                                 target->backup_working_area = (!!w);
4122                         } else {
4123                                 if (goi->argc != 0) {
4124                                         goto no_params;
4125                                 }
4126                         }
4127                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
4128                         /* loop for more e*/
4129                         break;
4130
4131
4132                 case TCFG_ENDIAN:
4133                         if (goi->isconfigure) {
4134                                 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
4135                                 if (e != JIM_OK) {
4136                                         Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
4137                                         return e;
4138                                 }
4139                                 target->endianness = n->value;
4140                         } else {
4141                                 if (goi->argc != 0) {
4142                                         goto no_params;
4143                                 }
4144                         }
4145                         n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4146                         if (n->name == NULL) {
4147                                 target->endianness = TARGET_LITTLE_ENDIAN;
4148                                 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4149                         }
4150                         Jim_SetResultString(goi->interp, n->name, -1);
4151                         /* loop for more */
4152                         break;
4153
4154                 case TCFG_VARIANT:
4155                         if (goi->isconfigure) {
4156                                 if (goi->argc < 1) {
4157                                         Jim_SetResultFormatted(goi->interp,
4158                                                                                    "%s ?STRING?",
4159                                                                                    n->name);
4160                                         return JIM_ERR;
4161                                 }
4162                                 if (target->variant) {
4163                                         free((void *)(target->variant));
4164                                 }
4165                                 e = Jim_GetOpt_String(goi, &cp, NULL);
4166                                 target->variant = strdup(cp);
4167                         } else {
4168                                 if (goi->argc != 0) {
4169                                         goto no_params;
4170                                 }
4171                         }
4172                         Jim_SetResultString(goi->interp, target->variant,-1);
4173                         /* loop for more */
4174                         break;
4175
4176                 case TCFG_COREID:
4177                         if (goi->isconfigure) {
4178                                 e = Jim_GetOpt_Wide(goi, &w);
4179                                 if (e != JIM_OK) {
4180                                         return e;
4181                                 }
4182                                 target->coreid = (int32_t)w;
4183                         } else {
4184                                 if (goi->argc != 0) {
4185                                         goto no_params;
4186                                 }
4187                         }
4188                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4189                         /* loop for more */
4190                         break;
4191
4192                 case TCFG_CHAIN_POSITION:
4193                         if (goi->isconfigure) {
4194                                 Jim_Obj *o_t;
4195                                 struct jtag_tap *tap;
4196                                 target_free_all_working_areas(target);
4197                                 e = Jim_GetOpt_Obj(goi, &o_t);
4198                                 if (e != JIM_OK) {
4199                                         return e;
4200                                 }
4201                                 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
4202                                 if (tap == NULL) {
4203                                         return JIM_ERR;
4204                                 }
4205                                 /* make this exactly 1 or 0 */
4206                                 target->tap = tap;
4207                         } else {
4208                                 if (goi->argc != 0) {
4209                                         goto no_params;
4210                                 }
4211                         }
4212                         Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
4213                         /* loop for more e*/
4214                         break;
4215                 case TCFG_DBGBASE:
4216                         if (goi->isconfigure) {
4217                                 e = Jim_GetOpt_Wide(goi, &w);
4218                                 if (e != JIM_OK) {
4219                                         return e;
4220                                 }
4221                                 target->dbgbase = (uint32_t)w;
4222                                 target->dbgbase_set = true;
4223                         } else {
4224                                 if (goi->argc != 0) {
4225                                         goto no_params;
4226                                 }
4227                         }
4228                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
4229                         /* loop for more */
4230                         break;
4231
4232                 case TCFG_RTOS:
4233                         /* RTOS */
4234                         {
4235                                 int result = rtos_create( goi, target );
4236                                 if ( result != JIM_OK )
4237                                 {
4238                                         return result;
4239                                 }
4240                         }
4241                         /* loop for more */
4242                         break;
4243                 }
4244         } /* while (goi->argc) */
4245
4246
4247                 /* done - we return */
4248         return JIM_OK;
4249 }
4250
4251 static int
4252 jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4253 {
4254         Jim_GetOptInfo goi;
4255
4256         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4257         goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
4258         int need_args = 1 + goi.isconfigure;
4259         if (goi.argc < need_args)
4260         {
4261                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4262                         goi.isconfigure
4263                                 ? "missing: -option VALUE ..."
4264                                 : "missing: -option ...");
4265                 return JIM_ERR;
4266         }
4267         struct target *target = Jim_CmdPrivData(goi.interp);
4268         return target_configure(&goi, target);
4269 }
4270
4271 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4272 {
4273         const char *cmd_name = Jim_GetString(argv[0], NULL);
4274
4275         Jim_GetOptInfo goi;
4276         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4277
4278         if (goi.argc < 2 || goi.argc > 4)
4279         {
4280                 Jim_SetResultFormatted(goi.interp,
4281                                 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
4282                 return JIM_ERR;
4283         }
4284
4285         target_write_fn fn;
4286         fn = target_write_memory_fast;
4287
4288         int e;
4289         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0)
4290         {
4291                 /* consume it */
4292                 struct Jim_Obj *obj;
4293                 e = Jim_GetOpt_Obj(&goi, &obj);
4294                 if (e != JIM_OK)
4295                         return e;
4296
4297                 fn = target_write_phys_memory;
4298         }
4299
4300         jim_wide a;
4301         e = Jim_GetOpt_Wide(&goi, &a);
4302         if (e != JIM_OK)
4303                 return e;
4304
4305         jim_wide b;
4306         e = Jim_GetOpt_Wide(&goi, &b);
4307         if (e != JIM_OK)
4308                 return e;
4309
4310         jim_wide c = 1;
4311         if (goi.argc == 1)
4312         {
4313                 e = Jim_GetOpt_Wide(&goi, &c);
4314                 if (e != JIM_OK)
4315                         return e;
4316         }
4317
4318         /* all args must be consumed */
4319         if (goi.argc != 0)
4320         {
4321                 return JIM_ERR;
4322         }
4323
4324         struct target *target = Jim_CmdPrivData(goi.interp);
4325         unsigned data_size;
4326         if (strcasecmp(cmd_name, "mww") == 0) {
4327                 data_size = 4;
4328         }
4329         else if (strcasecmp(cmd_name, "mwh") == 0) {
4330                 data_size = 2;
4331         }
4332         else if (strcasecmp(cmd_name, "mwb") == 0) {
4333                 data_size = 1;
4334         } else {
4335                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4336                 return JIM_ERR;
4337         }
4338
4339         return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4340 }
4341
4342 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4343 {
4344         const char *cmd_name = Jim_GetString(argv[0], NULL);
4345
4346         Jim_GetOptInfo goi;
4347         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4348
4349         if ((goi.argc < 1) || (goi.argc > 3))
4350         {
4351                 Jim_SetResultFormatted(goi.interp,
4352                                 "usage: %s [phys] <address> [<count>]", cmd_name);
4353                 return JIM_ERR;
4354         }
4355
4356         int (*fn)(struct target *target,
4357                         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
4358         fn=target_read_memory;
4359
4360         int e;
4361         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0)
4362         {
4363                 /* consume it */
4364                 struct Jim_Obj *obj;
4365                 e = Jim_GetOpt_Obj(&goi, &obj);
4366                 if (e != JIM_OK)
4367                         return e;
4368
4369                 fn=target_read_phys_memory;
4370         }
4371
4372         jim_wide a;
4373         e = Jim_GetOpt_Wide(&goi, &a);
4374         if (e != JIM_OK) {
4375                 return JIM_ERR;
4376         }
4377         jim_wide c;
4378         if (goi.argc == 1) {
4379                 e = Jim_GetOpt_Wide(&goi, &c);
4380                 if (e != JIM_OK) {
4381                         return JIM_ERR;
4382                 }
4383         } else {
4384                 c = 1;
4385         }
4386
4387         /* all args must be consumed */
4388         if (goi.argc != 0)
4389         {
4390                 return JIM_ERR;
4391         }
4392
4393         jim_wide b = 1; /* shut up gcc */
4394         if (strcasecmp(cmd_name, "mdw") == 0)
4395                 b = 4;
4396         else if (strcasecmp(cmd_name, "mdh") == 0)
4397                 b = 2;
4398         else if (strcasecmp(cmd_name, "mdb") == 0)
4399                 b = 1;
4400         else {
4401                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4402                 return JIM_ERR;
4403         }
4404
4405         /* convert count to "bytes" */
4406         c = c * b;
4407
4408         struct target *target = Jim_CmdPrivData(goi.interp);
4409         uint8_t  target_buf[32];
4410         jim_wide x, y, z;
4411         while (c > 0) {
4412                 y = c;
4413                 if (y > 16) {
4414                         y = 16;
4415                 }
4416                 e = fn(target, a, b, y / b, target_buf);
4417                 if (e != ERROR_OK) {
4418                         char tmp[10];
4419                         snprintf(tmp, sizeof(tmp), "%08lx", (long)a);
4420                         Jim_SetResultFormatted(interp, "error reading target @ 0x%s", tmp);
4421                         return JIM_ERR;
4422                 }
4423
4424                 command_print(NULL, "0x%08x ", (int)(a));
4425                 switch (b) {
4426                 case 4:
4427                         for (x = 0; x < 16 && x < y; x += 4)
4428                         {
4429                                 z = target_buffer_get_u32(target, &(target_buf[ x ]));
4430                                 command_print(NULL, "%08x ", (int)(z));
4431                         }
4432                         for (; (x < 16) ; x += 4) {
4433                                 command_print(NULL, "         ");
4434                         }
4435                         break;
4436                 case 2:
4437                         for (x = 0; x < 16 && x < y; x += 2)
4438                         {
4439                                 z = target_buffer_get_u16(target, &(target_buf[ x ]));
4440                                 command_print(NULL, "%04x ", (int)(z));
4441                         }
4442                         for (; (x < 16) ; x += 2) {
4443                                 command_print(NULL, "     ");
4444                         }
4445                         break;
4446                 case 1:
4447                 default:
4448                         for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4449                                 z = target_buffer_get_u8(target, &(target_buf[ x ]));
4450                                 command_print(NULL, "%02x ", (int)(z));
4451                         }
4452                         for (; (x < 16) ; x += 1) {
4453                                 command_print(NULL, "   ");
4454                         }
4455                         break;
4456                 }
4457                 /* ascii-ify the bytes */
4458                 for (x = 0 ; x < y ; x++) {
4459                         if ((target_buf[x] >= 0x20) &&
4460                                 (target_buf[x] <= 0x7e)) {
4461                                 /* good */
4462                         } else {
4463                                 /* smack it */
4464                                 target_buf[x] = '.';
4465                         }
4466                 }
4467                 /* space pad  */
4468                 while (x < 16) {
4469                         target_buf[x] = ' ';
4470                         x++;
4471                 }
4472                 /* terminate */
4473                 target_buf[16] = 0;
4474                 /* print - with a newline */
4475                 command_print(NULL, "%s\n", target_buf);
4476                 /* NEXT... */
4477                 c -= 16;
4478                 a += 16;
4479         }
4480         return JIM_OK;
4481 }
4482
4483 static int jim_target_mem2array(Jim_Interp *interp,
4484                 int argc, Jim_Obj *const *argv)
4485 {
4486         struct target *target = Jim_CmdPrivData(interp);
4487         return target_mem2array(interp, target, argc - 1, argv + 1);
4488 }
4489
4490 static int jim_target_array2mem(Jim_Interp *interp,
4491                 int argc, Jim_Obj *const *argv)
4492 {
4493         struct target *target = Jim_CmdPrivData(interp);
4494         return target_array2mem(interp, target, argc - 1, argv + 1);
4495 }
4496
4497 static int jim_target_tap_disabled(Jim_Interp *interp)
4498 {
4499         Jim_SetResultFormatted(interp, "[TAP is disabled]");
4500         return JIM_ERR;
4501 }
4502
4503 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4504 {
4505         if (argc != 1)
4506         {
4507                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4508                 return JIM_ERR;
4509         }
4510         struct target *target = Jim_CmdPrivData(interp);
4511         if (!target->tap->enabled)
4512                 return jim_target_tap_disabled(interp);
4513
4514         int e = target->type->examine(target);
4515         if (e != ERROR_OK)
4516         {
4517                 return JIM_ERR;
4518         }
4519         return JIM_OK;
4520 }
4521
4522 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4523 {
4524         if (argc != 1)
4525         {
4526                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4527                 return JIM_ERR;
4528         }
4529         struct target *target = Jim_CmdPrivData(interp);
4530
4531         if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
4532                 return JIM_ERR;
4533
4534         return JIM_OK;
4535 }
4536
4537 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4538 {
4539         if (argc != 1)
4540         {
4541                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4542                 return JIM_ERR;
4543         }
4544         struct target *target = Jim_CmdPrivData(interp);
4545         if (!target->tap->enabled)
4546                 return jim_target_tap_disabled(interp);
4547
4548         int e;
4549         if (!(target_was_examined(target))) {
4550                 e = ERROR_TARGET_NOT_EXAMINED;
4551         } else {
4552                 e = target->type->poll(target);
4553         }
4554         if (e != ERROR_OK)
4555         {
4556                 return JIM_ERR;
4557         }
4558         return JIM_OK;
4559 }
4560
4561 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4562 {
4563         Jim_GetOptInfo goi;
4564         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4565
4566         if (goi.argc != 2)
4567         {
4568                 Jim_WrongNumArgs(interp, 0, argv,
4569                                 "([tT]|[fF]|assert|deassert) BOOL");
4570                 return JIM_ERR;
4571         }
4572
4573         Jim_Nvp *n;
4574         int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4575         if (e != JIM_OK)
4576         {
4577                 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4578                 return e;
4579         }
4580         /* the halt or not param */
4581         jim_wide a;
4582         e = Jim_GetOpt_Wide(&goi, &a);
4583         if (e != JIM_OK)
4584                 return e;
4585
4586         struct target *target = Jim_CmdPrivData(goi.interp);
4587         if (!target->tap->enabled)
4588                 return jim_target_tap_disabled(interp);
4589         if (!(target_was_examined(target)))
4590         {
4591                 LOG_ERROR("Target not examined yet");
4592                 return ERROR_TARGET_NOT_EXAMINED;
4593         }
4594         if (!target->type->assert_reset || !target->type->deassert_reset)
4595         {
4596                 Jim_SetResultFormatted(interp,
4597                                 "No target-specific reset for %s",
4598                                 target_name(target));
4599                 return JIM_ERR;
4600         }
4601         /* determine if we should halt or not. */
4602         target->reset_halt = !!a;
4603         /* When this happens - all workareas are invalid. */
4604         target_free_all_working_areas_restore(target, 0);
4605
4606         /* do the assert */
4607         if (n->value == NVP_ASSERT) {
4608                 e = target->type->assert_reset(target);
4609         } else {
4610                 e = target->type->deassert_reset(target);
4611         }
4612         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4613 }
4614
4615 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4616 {
4617         if (argc != 1) {
4618                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4619                 return JIM_ERR;
4620         }
4621         struct target *target = Jim_CmdPrivData(interp);
4622         if (!target->tap->enabled)
4623                 return jim_target_tap_disabled(interp);
4624         int e = target->type->halt(target);
4625         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4626 }
4627
4628 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4629 {
4630         Jim_GetOptInfo goi;
4631         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4632
4633         /* params:  <name>  statename timeoutmsecs */
4634         if (goi.argc != 2)
4635         {
4636                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4637                 Jim_SetResultFormatted(goi.interp,
4638                                 "%s <state_name> <timeout_in_msec>", cmd_name);
4639                 return JIM_ERR;
4640         }
4641
4642         Jim_Nvp *n;
4643         int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4644         if (e != JIM_OK) {
4645                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state,1);
4646                 return e;
4647         }
4648         jim_wide a;
4649         e = Jim_GetOpt_Wide(&goi, &a);
4650         if (e != JIM_OK) {
4651                 return e;
4652         }
4653         struct target *target = Jim_CmdPrivData(interp);
4654         if (!target->tap->enabled)
4655                 return jim_target_tap_disabled(interp);
4656
4657         e = target_wait_state(target, n->value, a);
4658         if (e != ERROR_OK)
4659         {
4660                 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
4661                 Jim_SetResultFormatted(goi.interp,
4662                                 "target: %s wait %s fails (%#s) %s",
4663                                 target_name(target), n->name,
4664                                 eObj, target_strerror_safe(e));
4665                 Jim_FreeNewObj(interp, eObj);
4666                 return JIM_ERR;
4667         }
4668         return JIM_OK;
4669 }
4670 /* List for human, Events defined for this target.
4671  * scripts/programs should use 'name cget -event NAME'
4672  */
4673 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4674 {
4675         struct command_context *cmd_ctx = current_command_context(interp);
4676         assert (cmd_ctx != NULL);
4677
4678         struct target *target = Jim_CmdPrivData(interp);
4679         struct target_event_action *teap = target->event_action;
4680         command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4681                                    target->target_number,
4682                                    target_name(target));
4683         command_print(cmd_ctx, "%-25s | Body", "Event");
4684         command_print(cmd_ctx, "------------------------- | "
4685                         "----------------------------------------");
4686         while (teap)
4687         {
4688                 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
4689                 command_print(cmd_ctx, "%-25s | %s",
4690                                 opt->name, Jim_GetString(teap->body, NULL));
4691                 teap = teap->next;
4692         }
4693         command_print(cmd_ctx, "***END***");
4694         return JIM_OK;
4695 }
4696 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4697 {
4698         if (argc != 1)
4699         {
4700                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4701                 return JIM_ERR;
4702         }
4703         struct target *target = Jim_CmdPrivData(interp);
4704         Jim_SetResultString(interp, target_state_name(target), -1);
4705         return JIM_OK;
4706 }
4707 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4708 {
4709         Jim_GetOptInfo goi;
4710         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4711         if (goi.argc != 1)
4712         {
4713                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4714                 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
4715                 return JIM_ERR;
4716         }
4717         Jim_Nvp *n;
4718         int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4719         if (e != JIM_OK)
4720         {
4721                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4722                 return e;
4723         }
4724         struct target *target = Jim_CmdPrivData(interp);
4725         target_handle_event(target, n->value);
4726         return JIM_OK;
4727 }
4728
4729 static const struct command_registration target_instance_command_handlers[] = {
4730         {
4731                 .name = "configure",
4732                 .mode = COMMAND_CONFIG,
4733                 .jim_handler = jim_target_configure,
4734                 .help  = "configure a new target for use",
4735                 .usage = "[target_attribute ...]",
4736         },
4737         {
4738                 .name = "cget",
4739                 .mode = COMMAND_ANY,
4740                 .jim_handler = jim_target_configure,
4741                 .help  = "returns the specified target attribute",
4742                 .usage = "target_attribute",
4743         },
4744         {
4745                 .name = "mww",
4746                 .mode = COMMAND_EXEC,
4747                 .jim_handler = jim_target_mw,
4748                 .help = "Write 32-bit word(s) to target memory",
4749                 .usage = "address data [count]",
4750         },
4751         {
4752                 .name = "mwh",
4753                 .mode = COMMAND_EXEC,
4754                 .jim_handler = jim_target_mw,
4755                 .help = "Write 16-bit half-word(s) to target memory",
4756                 .usage = "address data [count]",
4757         },
4758         {
4759                 .name = "mwb",
4760                 .mode = COMMAND_EXEC,
4761                 .jim_handler = jim_target_mw,
4762                 .help = "Write byte(s) to target memory",
4763                 .usage = "address data [count]",
4764         },
4765         {
4766                 .name = "mdw",
4767                 .mode = COMMAND_EXEC,
4768                 .jim_handler = jim_target_md,
4769                 .help = "Display target memory as 32-bit words",
4770                 .usage = "address [count]",
4771         },
4772         {
4773                 .name = "mdh",
4774                 .mode = COMMAND_EXEC,
4775                 .jim_handler = jim_target_md,
4776                 .help = "Display target memory as 16-bit half-words",
4777                 .usage = "address [count]",
4778         },
4779         {
4780                 .name = "mdb",
4781                 .mode = COMMAND_EXEC,
4782                 .jim_handler = jim_target_md,
4783                 .help = "Display target memory as 8-bit bytes",
4784                 .usage = "address [count]",
4785         },
4786         {
4787                 .name = "array2mem",
4788                 .mode = COMMAND_EXEC,
4789                 .jim_handler = jim_target_array2mem,
4790                 .help = "Writes Tcl array of 8/16/32 bit numbers "
4791                         "to target memory",
4792                 .usage = "arrayname bitwidth address count",
4793         },
4794         {
4795                 .name = "mem2array",
4796                 .mode = COMMAND_EXEC,
4797                 .jim_handler = jim_target_mem2array,
4798                 .help = "Loads Tcl array of 8/16/32 bit numbers "
4799                         "from target memory",
4800                 .usage = "arrayname bitwidth address count",
4801         },
4802         {
4803                 .name = "eventlist",
4804                 .mode = COMMAND_EXEC,
4805                 .jim_handler = jim_target_event_list,
4806                 .help = "displays a table of events defined for this target",
4807         },
4808         {
4809                 .name = "curstate",
4810                 .mode = COMMAND_EXEC,
4811                 .jim_handler = jim_target_current_state,
4812                 .help = "displays the current state of this target",
4813         },
4814         {
4815                 .name = "arp_examine",
4816                 .mode = COMMAND_EXEC,
4817                 .jim_handler = jim_target_examine,
4818                 .help = "used internally for reset processing",
4819         },
4820         {
4821                 .name = "arp_halt_gdb",
4822                 .mode = COMMAND_EXEC,
4823                 .jim_handler = jim_target_halt_gdb,
4824                 .help = "used internally for reset processing to halt GDB",
4825         },
4826         {
4827                 .name = "arp_poll",
4828                 .mode = COMMAND_EXEC,
4829                 .jim_handler = jim_target_poll,
4830                 .help = "used internally for reset processing",
4831         },
4832         {
4833                 .name = "arp_reset",
4834                 .mode = COMMAND_EXEC,
4835                 .jim_handler = jim_target_reset,
4836                 .help = "used internally for reset processing",
4837         },
4838         {
4839                 .name = "arp_halt",
4840                 .mode = COMMAND_EXEC,
4841                 .jim_handler = jim_target_halt,
4842                 .help = "used internally for reset processing",
4843         },
4844         {
4845                 .name = "arp_waitstate",
4846                 .mode = COMMAND_EXEC,
4847                 .jim_handler = jim_target_wait_state,
4848                 .help = "used internally for reset processing",
4849         },
4850         {
4851                 .name = "invoke-event",
4852                 .mode = COMMAND_EXEC,
4853                 .jim_handler = jim_target_invoke_event,
4854                 .help = "invoke handler for specified event",
4855                 .usage = "event_name",
4856         },
4857         COMMAND_REGISTRATION_DONE
4858 };
4859
4860 static int target_create(Jim_GetOptInfo *goi)
4861 {
4862         Jim_Obj *new_cmd;
4863         Jim_Cmd *cmd;
4864         const char *cp;
4865         char *cp2;
4866         int e;
4867         int x;
4868         struct target *target;
4869         struct command_context *cmd_ctx;
4870
4871         cmd_ctx = current_command_context(goi->interp);
4872         assert (cmd_ctx != NULL);
4873
4874         if (goi->argc < 3) {
4875                 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
4876                 return JIM_ERR;
4877         }
4878
4879         /* COMMAND */
4880         Jim_GetOpt_Obj(goi, &new_cmd);
4881         /* does this command exist? */
4882         cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
4883         if (cmd) {
4884                 cp = Jim_GetString(new_cmd, NULL);
4885                 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
4886                 return JIM_ERR;
4887         }
4888
4889         /* TYPE */
4890         e = Jim_GetOpt_String(goi, &cp2, NULL);
4891         cp = cp2;
4892         /* now does target type exist */
4893         for (x = 0 ; target_types[x] ; x++) {
4894                 if (0 == strcmp(cp, target_types[x]->name)) {
4895                         /* found */
4896                         break;
4897                 }
4898         }
4899         if (target_types[x] == NULL) {
4900                 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
4901                 for (x = 0 ; target_types[x] ; x++) {
4902                         if (target_types[x + 1]) {
4903                                 Jim_AppendStrings(goi->interp,
4904                                                                    Jim_GetResult(goi->interp),
4905                                                                    target_types[x]->name,
4906                                                                    ", ", NULL);
4907                         } else {
4908                                 Jim_AppendStrings(goi->interp,
4909                                                                    Jim_GetResult(goi->interp),
4910                                                                    " or ",
4911                                                                    target_types[x]->name,NULL);
4912                         }
4913                 }
4914                 return JIM_ERR;
4915         }
4916
4917         /* Create it */
4918         target = calloc(1,sizeof(struct target));
4919         /* set target number */
4920         target->target_number = new_target_number();
4921
4922         /* allocate memory for each unique target type */
4923         target->type = (struct target_type*)calloc(1,sizeof(struct target_type));
4924
4925         memcpy(target->type, target_types[x], sizeof(struct target_type));
4926
4927         /* will be set by "-endian" */
4928         target->endianness = TARGET_ENDIAN_UNKNOWN;
4929
4930         /* default to first core, override with -coreid */
4931         target->coreid = 0;
4932
4933         target->working_area        = 0x0;
4934         target->working_area_size   = 0x0;
4935         target->working_areas       = NULL;
4936         target->backup_working_area = 0;
4937
4938         target->state               = TARGET_UNKNOWN;
4939         target->debug_reason        = DBG_REASON_UNDEFINED;
4940         target->reg_cache           = NULL;
4941         target->breakpoints         = NULL;
4942         target->watchpoints         = NULL;
4943         target->next                = NULL;
4944         target->arch_info           = NULL;
4945
4946         target->display             = 1;
4947
4948         target->halt_issued                     = false;
4949
4950         /* initialize trace information */
4951         target->trace_info = malloc(sizeof(struct trace));
4952         target->trace_info->num_trace_points         = 0;
4953         target->trace_info->trace_points_size        = 0;
4954         target->trace_info->trace_points             = NULL;
4955         target->trace_info->trace_history_size       = 0;
4956         target->trace_info->trace_history            = NULL;
4957         target->trace_info->trace_history_pos        = 0;
4958         target->trace_info->trace_history_overflowed = 0;
4959
4960         target->dbgmsg          = NULL;
4961         target->dbg_msg_enabled = 0;
4962
4963         target->endianness = TARGET_ENDIAN_UNKNOWN;
4964
4965         target->rtos = NULL;
4966         target->rtos_auto_detect = false;
4967
4968         /* Do the rest as "configure" options */
4969         goi->isconfigure = 1;
4970         e = target_configure(goi, target);
4971
4972         if (target->tap == NULL)
4973         {
4974                 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
4975                 e = JIM_ERR;
4976         }
4977
4978         if (e != JIM_OK) {
4979                 free(target->type);
4980                 free(target);
4981                 return e;
4982         }
4983
4984         if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
4985                 /* default endian to little if not specified */
4986                 target->endianness = TARGET_LITTLE_ENDIAN;
4987         }
4988
4989         /* incase variant is not set */
4990         if (!target->variant)
4991                 target->variant = strdup("");
4992
4993         cp = Jim_GetString(new_cmd, NULL);
4994         target->cmd_name = strdup(cp);
4995
4996         /* create the target specific commands */
4997         if (target->type->commands) {
4998                 e = register_commands(cmd_ctx, NULL, target->type->commands);
4999                 if (ERROR_OK != e)
5000                         LOG_ERROR("unable to register '%s' commands", cp);
5001         }
5002         if (target->type->target_create) {
5003                 (*(target->type->target_create))(target, goi->interp);
5004         }
5005
5006         /* append to end of list */
5007         {
5008                 struct target **tpp;
5009                 tpp = &(all_targets);
5010                 while (*tpp) {
5011                         tpp = &((*tpp)->next);
5012                 }
5013                 *tpp = target;
5014         }
5015
5016         /* now - create the new target name command */
5017         const const struct command_registration target_subcommands[] = {
5018                 {
5019                         .chain = target_instance_command_handlers,
5020                 },
5021                 {
5022                         .chain = target->type->commands,
5023                 },
5024                 COMMAND_REGISTRATION_DONE
5025         };
5026         const const struct command_registration target_commands[] = {
5027                 {
5028                         .name = cp,
5029                         .mode = COMMAND_ANY,
5030                         .help = "target command group",
5031                         .chain = target_subcommands,
5032                 },
5033                 COMMAND_REGISTRATION_DONE
5034         };
5035         e = register_commands(cmd_ctx, NULL, target_commands);
5036         if (ERROR_OK != e)
5037                 return JIM_ERR;
5038
5039         struct command *c = command_find_in_context(cmd_ctx, cp);
5040         assert(c);
5041         command_set_handler_data(c, target);
5042
5043         return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
5044 }
5045
5046 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5047 {
5048         if (argc != 1)
5049         {
5050                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5051                 return JIM_ERR;
5052         }
5053         struct command_context *cmd_ctx = current_command_context(interp);
5054         assert (cmd_ctx != NULL);
5055
5056         Jim_SetResultString(interp, get_current_target(cmd_ctx)->cmd_name, -1);
5057         return JIM_OK;
5058 }
5059
5060 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5061 {
5062         if (argc != 1)
5063         {
5064                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5065                 return JIM_ERR;
5066         }
5067         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5068         for (unsigned x = 0; NULL != target_types[x]; x++)
5069         {
5070                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5071                         Jim_NewStringObj(interp, target_types[x]->name, -1));
5072         }
5073         return JIM_OK;
5074 }
5075
5076 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5077 {
5078         if (argc != 1)
5079         {
5080                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5081                 return JIM_ERR;
5082         }
5083         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5084         struct target *target = all_targets;
5085         while (target)
5086         {
5087                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5088                         Jim_NewStringObj(interp, target_name(target), -1));
5089                 target = target->next;
5090         }
5091         return JIM_OK;
5092 }
5093
5094 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5095 {
5096         int i;
5097         const char *targetname;
5098         int retval,len;
5099         struct target *target;
5100         struct target_list *head, *curr, *new;
5101     curr = (struct target_list*) NULL;
5102         head = (struct target_list*) NULL;
5103         new = (struct target_list*) NULL;
5104
5105         retval = 0;
5106         LOG_DEBUG("%d",argc);
5107         /* argv[1] = target to associate in smp
5108          * argv[2] = target to assoicate in smp
5109          * argv[3] ...
5110          */
5111
5112         for(i=1;i<argc;i++)
5113         {
5114
5115                 targetname = Jim_GetString(argv[i], &len);
5116                 target = get_target(targetname);
5117                 LOG_DEBUG("%s ",targetname);
5118                 if (target)
5119                 {
5120                         new=malloc(sizeof(struct target_list));
5121                         new->target = target;
5122                         new->next = (struct target_list*)NULL;
5123                         if (head == (struct target_list*)NULL)
5124                         {
5125                                 head = new;
5126                                 curr = head;
5127                         }
5128                         else
5129                         {
5130                                 curr->next = new;
5131                                 curr = new;
5132                         }
5133                 }
5134         }
5135     /*  now parse the list of cpu and put the target in smp mode*/
5136         curr=head;
5137
5138     while(curr!=(struct target_list *)NULL)
5139         {
5140     target=curr->target;
5141         target->smp = 1;
5142         target->head = head;
5143         curr=curr->next;
5144         }
5145         return retval;
5146 }
5147
5148
5149 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5150 {
5151         Jim_GetOptInfo goi;
5152         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5153         if (goi.argc < 3)
5154         {
5155                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5156                         "<name> <target_type> [<target_options> ...]");
5157                 return JIM_ERR;
5158         }
5159         return target_create(&goi);
5160 }
5161
5162 static int jim_target_number(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5163 {
5164         Jim_GetOptInfo goi;
5165         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5166
5167         /* It's OK to remove this mechanism sometime after August 2010 or so */
5168         LOG_WARNING("don't use numbers as target identifiers; use names");
5169         if (goi.argc != 1)
5170         {
5171                 Jim_SetResultFormatted(goi.interp, "usage: target number <number>");
5172                 return JIM_ERR;
5173         }
5174         jim_wide w;
5175         int e = Jim_GetOpt_Wide(&goi, &w);
5176         if (e != JIM_OK)
5177                 return JIM_ERR;
5178
5179         struct target *target;
5180         for (target = all_targets; NULL != target; target = target->next)
5181         {
5182                 if (target->target_number != w)
5183                         continue;
5184
5185                 Jim_SetResultString(goi.interp, target_name(target), -1);
5186                 return JIM_OK;
5187         }
5188         {
5189                 Jim_Obj *wObj = Jim_NewIntObj(goi.interp, w);
5190                 Jim_SetResultFormatted(goi.interp,
5191                         "Target: number %#s does not exist", wObj);
5192                 Jim_FreeNewObj(interp, wObj);
5193         }
5194         return JIM_ERR;
5195 }
5196
5197 static int jim_target_count(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5198 {
5199         if (argc != 1)
5200         {
5201                 Jim_WrongNumArgs(interp, 1, argv, "<no parameters>");
5202                 return JIM_ERR;
5203         }
5204         unsigned count = 0;
5205         struct target *target = all_targets;
5206         while (NULL != target)
5207         {
5208                 target = target->next;
5209                 count++;
5210         }
5211         Jim_SetResult(interp, Jim_NewIntObj(interp, count));
5212         return JIM_OK;
5213 }
5214
5215 static const struct command_registration target_subcommand_handlers[] = {
5216         {
5217                 .name = "init",
5218                 .mode = COMMAND_CONFIG,
5219                 .handler = handle_target_init_command,
5220                 .help = "initialize targets",
5221         },
5222         {
5223                 .name = "create",
5224                 /* REVISIT this should be COMMAND_CONFIG ... */
5225                 .mode = COMMAND_ANY,
5226                 .jim_handler = jim_target_create,
5227                 .usage = "name type '-chain-position' name [options ...]",
5228                 .help = "Creates and selects a new target",
5229         },
5230         {
5231                 .name = "current",
5232                 .mode = COMMAND_ANY,
5233                 .jim_handler = jim_target_current,
5234                 .help = "Returns the currently selected target",
5235         },
5236         {
5237                 .name = "types",
5238                 .mode = COMMAND_ANY,
5239                 .jim_handler = jim_target_types,
5240                 .help = "Returns the available target types as "
5241                                 "a list of strings",
5242         },
5243         {
5244                 .name = "names",
5245                 .mode = COMMAND_ANY,
5246                 .jim_handler = jim_target_names,
5247                 .help = "Returns the names of all targets as a list of strings",
5248         },
5249         {
5250                 .name = "number",
5251                 .mode = COMMAND_ANY,
5252                 .jim_handler = jim_target_number,
5253                 .usage = "number",
5254                 .help = "Returns the name of the numbered target "
5255                         "(DEPRECATED)",
5256         },
5257         {
5258                 .name = "count",
5259                 .mode = COMMAND_ANY,
5260                 .jim_handler = jim_target_count,
5261                 .help = "Returns the number of targets as an integer "
5262                         "(DEPRECATED)",
5263         },
5264         {
5265                 .name = "smp",
5266                 .mode = COMMAND_ANY,
5267                 .jim_handler = jim_target_smp,
5268                 .usage = "targetname1 targetname2 ...",
5269                 .help = "gather several target in a smp list"
5270         },
5271
5272         COMMAND_REGISTRATION_DONE
5273 };
5274
5275 struct FastLoad
5276 {
5277         uint32_t address;
5278         uint8_t *data;
5279         int length;
5280
5281 };
5282
5283 static int fastload_num;
5284 static struct FastLoad *fastload;
5285
5286 static void free_fastload(void)
5287 {
5288         if (fastload != NULL)
5289         {
5290                 int i;
5291                 for (i = 0; i < fastload_num; i++)
5292                 {
5293                         if (fastload[i].data)
5294                                 free(fastload[i].data);
5295                 }
5296                 free(fastload);
5297                 fastload = NULL;
5298         }
5299 }
5300
5301
5302
5303
5304 COMMAND_HANDLER(handle_fast_load_image_command)
5305 {
5306         uint8_t *buffer;
5307         size_t buf_cnt;
5308         uint32_t image_size;
5309         uint32_t min_address = 0;
5310         uint32_t max_address = 0xffffffff;
5311         int i;
5312
5313         struct image image;
5314
5315         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
5316                         &image, &min_address, &max_address);
5317         if (ERROR_OK != retval)
5318                 return retval;
5319
5320         struct duration bench;
5321         duration_start(&bench);
5322
5323         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
5324         if (retval != ERROR_OK)
5325         {
5326                 return retval;
5327         }
5328
5329         image_size = 0x0;
5330         retval = ERROR_OK;
5331         fastload_num = image.num_sections;
5332         fastload = (struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
5333         if (fastload == NULL)
5334         {
5335                 command_print(CMD_CTX, "out of memory");
5336                 image_close(&image);
5337                 return ERROR_FAIL;
5338         }
5339         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
5340         for (i = 0; i < image.num_sections; i++)
5341         {
5342                 buffer = malloc(image.sections[i].size);
5343                 if (buffer == NULL)
5344                 {
5345                         command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5346                                                   (int)(image.sections[i].size));
5347                         retval = ERROR_FAIL;
5348                         break;
5349                 }
5350
5351                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
5352                 {
5353                         free(buffer);
5354                         break;
5355                 }
5356
5357                 uint32_t offset = 0;
5358                 uint32_t length = buf_cnt;
5359
5360
5361                 /* DANGER!!! beware of unsigned comparision here!!! */
5362
5363                 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
5364                                 (image.sections[i].base_address < max_address))
5365                 {
5366                         if (image.sections[i].base_address < min_address)
5367                         {
5368                                 /* clip addresses below */
5369                                 offset += min_address-image.sections[i].base_address;
5370                                 length -= offset;
5371                         }
5372
5373                         if (image.sections[i].base_address + buf_cnt > max_address)
5374                         {
5375                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5376                         }
5377
5378                         fastload[i].address = image.sections[i].base_address + offset;
5379                         fastload[i].data = malloc(length);
5380                         if (fastload[i].data == NULL)
5381                         {
5382                                 free(buffer);
5383                                 command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5384                                                           length);
5385                                 retval = ERROR_FAIL;
5386                                 break;
5387                         }
5388                         memcpy(fastload[i].data, buffer + offset, length);
5389                         fastload[i].length = length;
5390
5391                         image_size += length;
5392                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
5393                                                   (unsigned int)length,
5394                                                   ((unsigned int)(image.sections[i].base_address + offset)));
5395                 }
5396
5397                 free(buffer);
5398         }
5399
5400         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
5401         {
5402                 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
5403                                 "in %fs (%0.3f KiB/s)", image_size,
5404                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5405
5406                 command_print(CMD_CTX,
5407                                 "WARNING: image has not been loaded to target!"
5408                                 "You can issue a 'fast_load' to finish loading.");
5409         }
5410
5411         image_close(&image);
5412
5413         if (retval != ERROR_OK)
5414         {
5415                 free_fastload();
5416         }
5417
5418         return retval;
5419 }
5420
5421 COMMAND_HANDLER(handle_fast_load_command)
5422 {
5423         if (CMD_ARGC > 0)
5424                 return ERROR_COMMAND_SYNTAX_ERROR;
5425         if (fastload == NULL)
5426         {
5427                 LOG_ERROR("No image in memory");
5428                 return ERROR_FAIL;
5429         }
5430         int i;
5431         int ms = timeval_ms();
5432         int size = 0;
5433         int retval = ERROR_OK;
5434         for (i = 0; i < fastload_num;i++)
5435         {
5436                 struct target *target = get_current_target(CMD_CTX);
5437                 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
5438                                           (unsigned int)(fastload[i].address),
5439                                           (unsigned int)(fastload[i].length));
5440                 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5441                 if (retval != ERROR_OK)
5442                 {
5443                         break;
5444                 }
5445                 size += fastload[i].length;
5446         }
5447         if (retval == ERROR_OK)
5448         {
5449                 int after = timeval_ms();
5450                 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5451         }
5452         return retval;
5453 }
5454
5455 static const struct command_registration target_command_handlers[] = {
5456         {
5457                 .name = "targets",
5458                 .handler = handle_targets_command,
5459                 .mode = COMMAND_ANY,
5460                 .help = "change current default target (one parameter) "
5461                         "or prints table of all targets (no parameters)",
5462                 .usage = "[target]",
5463         },
5464         {
5465                 .name = "target",
5466                 .mode = COMMAND_CONFIG,
5467                 .help = "configure target",
5468
5469                 .chain = target_subcommand_handlers,
5470         },
5471         COMMAND_REGISTRATION_DONE
5472 };
5473
5474 int target_register_commands(struct command_context *cmd_ctx)
5475 {
5476         return register_commands(cmd_ctx, NULL, target_command_handlers);
5477 }
5478
5479 static bool target_reset_nag = true;
5480
5481 bool get_target_reset_nag(void)
5482 {
5483         return target_reset_nag;
5484 }
5485
5486 COMMAND_HANDLER(handle_target_reset_nag)
5487 {
5488         return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5489                         &target_reset_nag, "Nag after each reset about options to improve "
5490                         "performance");
5491 }
5492
5493 static const struct command_registration target_exec_command_handlers[] = {
5494         {
5495                 .name = "fast_load_image",
5496                 .handler = handle_fast_load_image_command,
5497                 .mode = COMMAND_ANY,
5498                 .help = "Load image into server memory for later use by "
5499                         "fast_load; primarily for profiling",
5500                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5501                         "[min_address [max_length]]",
5502         },
5503         {
5504                 .name = "fast_load",
5505                 .handler = handle_fast_load_command,
5506                 .mode = COMMAND_EXEC,
5507                 .help = "loads active fast load image to current target "
5508                         "- mainly for profiling purposes",
5509         },
5510         {
5511                 .name = "profile",
5512                 .handler = handle_profile_command,
5513                 .mode = COMMAND_EXEC,
5514                 .help = "profiling samples the CPU PC",
5515         },
5516         /** @todo don't register virt2phys() unless target supports it */
5517         {
5518                 .name = "virt2phys",
5519                 .handler = handle_virt2phys_command,
5520                 .mode = COMMAND_ANY,
5521                 .help = "translate a virtual address into a physical address",
5522                 .usage = "virtual_address",
5523         },
5524         {
5525                 .name = "reg",
5526                 .handler = handle_reg_command,
5527                 .mode = COMMAND_EXEC,
5528                 .help = "display or set a register; with no arguments, "
5529                         "displays all registers and their values",
5530                 .usage = "[(register_name|register_number) [value]]",
5531         },
5532         {
5533                 .name = "poll",
5534                 .handler = handle_poll_command,
5535                 .mode = COMMAND_EXEC,
5536                 .help = "poll target state; or reconfigure background polling",
5537                 .usage = "['on'|'off']",
5538         },
5539         {
5540                 .name = "wait_halt",
5541                 .handler = handle_wait_halt_command,
5542                 .mode = COMMAND_EXEC,
5543                 .help = "wait up to the specified number of milliseconds "
5544                         "(default 5) for a previously requested halt",
5545                 .usage = "[milliseconds]",
5546         },
5547         {
5548                 .name = "halt",
5549                 .handler = handle_halt_command,
5550                 .mode = COMMAND_EXEC,
5551                 .help = "request target to halt, then wait up to the specified"
5552                         "number of milliseconds (default 5) for it to complete",
5553                 .usage = "[milliseconds]",
5554         },
5555         {
5556                 .name = "resume",
5557                 .handler = handle_resume_command,
5558                 .mode = COMMAND_EXEC,
5559                 .help = "resume target execution from current PC or address",
5560                 .usage = "[address]",
5561         },
5562         {
5563                 .name = "reset",
5564                 .handler = handle_reset_command,
5565                 .mode = COMMAND_EXEC,
5566                 .usage = "[run|halt|init]",
5567                 .help = "Reset all targets into the specified mode."
5568                         "Default reset mode is run, if not given.",
5569         },
5570         {
5571                 .name = "soft_reset_halt",
5572                 .handler = handle_soft_reset_halt_command,
5573                 .mode = COMMAND_EXEC,
5574                 .help = "halt the target and do a soft reset",
5575         },
5576         {
5577                 .name = "step",
5578                 .handler = handle_step_command,
5579                 .mode = COMMAND_EXEC,
5580                 .help = "step one instruction from current PC or address",
5581                 .usage = "[address]",
5582         },
5583         {
5584                 .name = "mdw",
5585                 .handler = handle_md_command,
5586                 .mode = COMMAND_EXEC,
5587                 .help = "display memory words",
5588                 .usage = "['phys'] address [count]",
5589         },
5590         {
5591                 .name = "mdh",
5592                 .handler = handle_md_command,
5593                 .mode = COMMAND_EXEC,
5594                 .help = "display memory half-words",
5595                 .usage = "['phys'] address [count]",
5596         },
5597         {
5598                 .name = "mdb",
5599                 .handler = handle_md_command,
5600                 .mode = COMMAND_EXEC,
5601                 .help = "display memory bytes",
5602                 .usage = "['phys'] address [count]",
5603         },
5604         {
5605                 .name = "mww",
5606                 .handler = handle_mw_command,
5607                 .mode = COMMAND_EXEC,
5608                 .help = "write memory word",
5609                 .usage = "['phys'] address value [count]",
5610         },
5611         {
5612                 .name = "mwh",
5613                 .handler = handle_mw_command,
5614                 .mode = COMMAND_EXEC,
5615                 .help = "write memory half-word",
5616                 .usage = "['phys'] address value [count]",
5617         },
5618         {
5619                 .name = "mwb",
5620                 .handler = handle_mw_command,
5621                 .mode = COMMAND_EXEC,
5622                 .help = "write memory byte",
5623                 .usage = "['phys'] address value [count]",
5624         },
5625         {
5626                 .name = "bp",
5627                 .handler = handle_bp_command,
5628                 .mode = COMMAND_EXEC,
5629                 .help = "list or set hardware or software breakpoint",
5630                 .usage = "usage: bp <address> [<asid>]<length> ['hw'|'hw_ctx']",
5631         },
5632         {
5633                 .name = "rbp",
5634                 .handler = handle_rbp_command,
5635                 .mode = COMMAND_EXEC,
5636                 .help = "remove breakpoint",
5637                 .usage = "address",
5638         },
5639         {
5640                 .name = "wp",
5641                 .handler = handle_wp_command,
5642                 .mode = COMMAND_EXEC,
5643                 .help = "list (no params) or create watchpoints",
5644                 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
5645         },
5646         {
5647                 .name = "rwp",
5648                 .handler = handle_rwp_command,
5649                 .mode = COMMAND_EXEC,
5650                 .help = "remove watchpoint",
5651                 .usage = "address",
5652         },
5653         {
5654                 .name = "load_image",
5655                 .handler = handle_load_image_command,
5656                 .mode = COMMAND_EXEC,
5657                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5658                         "[min_address] [max_length]",
5659         },
5660         {
5661                 .name = "dump_image",
5662                 .handler = handle_dump_image_command,
5663                 .mode = COMMAND_EXEC,
5664                 .usage = "filename address size",
5665         },
5666         {
5667                 .name = "verify_image",
5668                 .handler = handle_verify_image_command,
5669                 .mode = COMMAND_EXEC,
5670                 .usage = "filename [offset [type]]",
5671         },
5672         {
5673                 .name = "test_image",
5674                 .handler = handle_test_image_command,
5675                 .mode = COMMAND_EXEC,
5676                 .usage = "filename [offset [type]]",
5677         },
5678         {
5679                 .name = "mem2array",
5680                 .mode = COMMAND_EXEC,
5681                 .jim_handler = jim_mem2array,
5682                 .help = "read 8/16/32 bit memory and return as a TCL array "
5683                         "for script processing",
5684                 .usage = "arrayname bitwidth address count",
5685         },
5686         {
5687                 .name = "array2mem",
5688                 .mode = COMMAND_EXEC,
5689                 .jim_handler = jim_array2mem,
5690                 .help = "convert a TCL array to memory locations "
5691                         "and write the 8/16/32 bit values",
5692                 .usage = "arrayname bitwidth address count",
5693         },
5694         {
5695                 .name = "reset_nag",
5696                 .handler = handle_target_reset_nag,
5697                 .mode = COMMAND_ANY,
5698                 .help = "Nag after each reset about options that could have been "
5699                                 "enabled to improve performance. ",
5700                 .usage = "['enable'|'disable']",
5701         },
5702         COMMAND_REGISTRATION_DONE
5703 };
5704 static int target_register_user_commands(struct command_context *cmd_ctx)
5705 {
5706         int retval = ERROR_OK;
5707         if ((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
5708                 return retval;
5709
5710         if ((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
5711                 return retval;
5712
5713
5714         return register_commands(cmd_ctx, NULL, target_exec_command_handlers);
5715 }