added pre/post_reset scripts based on Pieter Conradie's ideas.
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   This program is free software; you can redistribute it and/or modify  *
6  *   it under the terms of the GNU General Public License as published by  *
7  *   the Free Software Foundation; either version 2 of the License, or     *
8  *   (at your option) any later version.                                   *
9  *                                                                         *
10  *   This program is distributed in the hope that it will be useful,       *
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
13  *   GNU General Public License for more details.                          *
14  *                                                                         *
15  *   You should have received a copy of the GNU General Public License     *
16  *   along with this program; if not, write to the                         *
17  *   Free Software Foundation, Inc.,                                       *
18  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
19  ***************************************************************************/
20 #ifdef HAVE_CONFIG_H
21 #include "config.h"
22 #endif
23
24 #include "replacements.h"
25 #include "target.h"
26 #include "target_request.h"
27
28 #include "log.h"
29 #include "configuration.h"
30 #include "binarybuffer.h"
31 #include "jtag.h"
32
33 #include <string.h>
34 #include <stdlib.h>
35 #include <inttypes.h>
36
37 #include <sys/types.h>
38 #include <sys/stat.h>
39 #include <unistd.h>
40 #include <errno.h>
41
42 #include <sys/time.h>
43 #include <time.h>
44
45 #include <time_support.h>
46
47 #include <fileio.h>
48 #include <image.h>
49
50 int cli_target_callback_event_handler(struct target_s *target, enum target_event event, void *priv);
51
52
53 int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
54 int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
55
56 int handle_target_script_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
57 int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
58 int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
59
60 int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
61 int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
62 int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
63 int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
64 int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
65 int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
66 int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
67 int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
68 int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
69 int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
70 int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
71 int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
72 int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
73 int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
74 int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
75 int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
76 int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
77 int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc);
78 int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
79
80 /* targets
81  */
82 extern target_type_t arm7tdmi_target;
83 extern target_type_t arm720t_target;
84 extern target_type_t arm9tdmi_target;
85 extern target_type_t arm920t_target;
86 extern target_type_t arm966e_target;
87 extern target_type_t arm926ejs_target;
88 extern target_type_t feroceon_target;
89 extern target_type_t xscale_target;
90 extern target_type_t cortexm3_target;
91 extern target_type_t arm11_target;
92
93 target_type_t *target_types[] =
94 {
95         &arm7tdmi_target,
96         &arm9tdmi_target,
97         &arm920t_target,
98         &arm720t_target,
99         &arm966e_target,
100         &arm926ejs_target,
101         &feroceon_target,
102         &xscale_target,
103         &cortexm3_target,
104         &arm11_target,
105         NULL,
106 };
107
108 target_t *targets = NULL;
109 target_event_callback_t *target_event_callbacks = NULL;
110 target_timer_callback_t *target_timer_callbacks = NULL;
111
112 char *target_state_strings[] =
113 {
114         "unknown",
115         "running",
116         "halted",
117         "reset",
118         "debug_running",
119 };
120
121 char *target_debug_reason_strings[] =
122 {
123         "debug request", "breakpoint", "watchpoint",
124         "watchpoint and breakpoint", "single step",
125         "target not halted", "undefined"
126 };
127
128 char *target_endianess_strings[] =
129 {
130         "big endian",
131         "little endian",
132 };
133
134 static int target_continous_poll = 1;
135
136 /* read a u32 from a buffer in target memory endianness */
137 u32 target_buffer_get_u32(target_t *target, u8 *buffer)
138 {
139         if (target->endianness == TARGET_LITTLE_ENDIAN)
140                 return le_to_h_u32(buffer);
141         else
142                 return be_to_h_u32(buffer);
143 }
144
145 /* read a u16 from a buffer in target memory endianness */
146 u16 target_buffer_get_u16(target_t *target, u8 *buffer)
147 {
148         if (target->endianness == TARGET_LITTLE_ENDIAN)
149                 return le_to_h_u16(buffer);
150         else
151                 return be_to_h_u16(buffer);
152 }
153
154 /* write a u32 to a buffer in target memory endianness */
155 void target_buffer_set_u32(target_t *target, u8 *buffer, u32 value)
156 {
157         if (target->endianness == TARGET_LITTLE_ENDIAN)
158                 h_u32_to_le(buffer, value);
159         else
160                 h_u32_to_be(buffer, value);
161 }
162
163 /* write a u16 to a buffer in target memory endianness */
164 void target_buffer_set_u16(target_t *target, u8 *buffer, u16 value)
165 {
166         if (target->endianness == TARGET_LITTLE_ENDIAN)
167                 h_u16_to_le(buffer, value);
168         else
169                 h_u16_to_be(buffer, value);
170 }
171
172 /* returns a pointer to the n-th configured target */
173 target_t* get_target_by_num(int num)
174 {
175         target_t *target = targets;
176         int i = 0;
177
178         while (target)
179         {
180                 if (num == i)
181                         return target;
182                 target = target->next;
183                 i++;
184         }
185
186         return NULL;
187 }
188
189 int get_num_by_target(target_t *query_target)
190 {
191         target_t *target = targets;
192         int i = 0;      
193         
194         while (target)
195         {
196                 if (target == query_target)
197                         return i;
198                 target = target->next;
199                 i++;
200         }
201         
202         return -1;
203 }
204
205 target_t* get_current_target(command_context_t *cmd_ctx)
206 {
207         target_t *target = get_target_by_num(cmd_ctx->current_target);
208         
209         if (target == NULL)
210         {
211                 LOG_ERROR("BUG: current_target out of bounds");
212                 exit(-1);
213         }
214         
215         return target;
216 }
217
218 static void execute_script(struct command_context_s *cmd_ctx, char *reset_script)
219 {
220         FILE *script;
221         script = open_file_from_path(reset_script, "r");
222         if (!script)
223         {
224                 LOG_ERROR("couldn't open script file %s", reset_script);
225                 return;
226         }
227         
228         LOG_INFO("executing script '%s'", reset_script);
229         command_run_file(cmd_ctx, script, COMMAND_EXEC);
230         fclose(script);
231 }
232
233 /* Process target initialization, when target entered debug out of reset
234  * the handler is unregistered at the end of this function, so it's only called once
235  */
236 int target_init_handler(struct target_s *target, enum target_event event, void *priv)
237 {
238         struct command_context_s *cmd_ctx = priv;
239         
240         if ((event == TARGET_EVENT_HALTED) && (target->reset_script))
241         {
242                 target_unregister_event_callback(target_init_handler, priv);
243
244                 execute_script(cmd_ctx, target->reset_script);
245
246                 jtag_execute_queue();
247         }
248         
249         return ERROR_OK;
250 }
251
252 int target_run_and_halt_handler(void *priv)
253 {
254         target_t *target = priv;
255         
256         target_halt(target);
257         
258         return ERROR_OK;
259 }
260
261 int target_poll(struct target_s *target)
262 {
263         /* We can't poll until after examine */
264         if (!target->type->examined)
265         {
266                 /* Fail silently lest we pollute the log */
267                 return ERROR_FAIL;
268         }
269         return target->type->poll(target);
270 }
271
272 int target_halt(struct target_s *target)
273 {
274         /* We can't poll until after examine */
275         if (!target->type->examined)
276         {
277                 LOG_ERROR("Target not examined yet");
278                 return ERROR_FAIL;
279         }
280         return target->type->halt(target);
281 }
282
283 int target_resume(struct target_s *target, int current, u32 address, int handle_breakpoints, int debug_execution)
284 {
285         /* We can't poll until after examine */
286         if (!target->type->examined)
287         {
288                 LOG_ERROR("Target not examined yet");
289                 return ERROR_FAIL;
290         }
291         return target->type->resume(target, current, address, handle_breakpoints, debug_execution);
292 }
293
294
295 int target_process_reset(struct command_context_s *cmd_ctx)
296 {
297         int retval = ERROR_OK;
298         target_t *target;
299         struct timeval timeout, now;
300
301         jtag->speed(jtag_speed);
302
303         target = targets;
304         while (target)
305         {
306                 execute_script(cmd_ctx, target->pre_reset_script);
307                 target = target->next;
308         }
309         
310         if ((retval = jtag_init_reset(cmd_ctx)) != ERROR_OK)
311                 return retval;
312         
313         /* First time this is executed after launching OpenOCD, it will read out 
314          * the type of CPU, etc. and init Embedded ICE registers in host
315          * memory. 
316          * 
317          * It will also set up ICE registers in the target.
318          * 
319          * However, if we assert TRST later, we need to set up the registers again. 
320          * 
321          * For the "reset halt/init" case we must only set up the registers here.
322          */
323         if ((retval = target_examine(cmd_ctx)) != ERROR_OK)
324                 return retval;
325         
326         /* prepare reset_halt where necessary */
327         target = targets;
328         while (target)
329         {
330                 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
331                 {
332                         switch (target->reset_mode)
333                         {
334                                 case RESET_HALT:
335                                         command_print(cmd_ctx, "nSRST pulls nTRST, falling back to \"reset run_and_halt\"");
336                                         target->reset_mode = RESET_RUN_AND_HALT;
337                                         break;
338                                 case RESET_INIT:
339                                         command_print(cmd_ctx, "nSRST pulls nTRST, falling back to \"reset run_and_init\"");
340                                         target->reset_mode = RESET_RUN_AND_INIT;
341                                         break;
342                                 default:
343                                         break;
344                         } 
345                 }
346                 target = target->next;
347         }
348         
349         target = targets;
350         while (target)
351         {
352                 /* we have no idea what state the target is in, so we
353                  * have to drop working areas
354                  */
355                 target_free_all_working_areas_restore(target, 0);
356                 target->type->assert_reset(target);
357                 target = target->next;
358         }
359         if ((retval = jtag_execute_queue()) != ERROR_OK)
360         {
361                 LOG_WARNING("JTAG communication failed asserting reset.");
362                 retval = ERROR_OK;
363         }
364         
365         /* request target halt if necessary, and schedule further action */
366         target = targets;
367         while (target)
368         {
369                 switch (target->reset_mode)
370                 {
371                         case RESET_RUN:
372                                 /* nothing to do if target just wants to be run */
373                                 break;
374                         case RESET_RUN_AND_HALT:
375                                 /* schedule halt */
376                                 target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target);
377                                 break;
378                         case RESET_RUN_AND_INIT:
379                                 /* schedule halt */
380                                 target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target);
381                                 target_register_event_callback(target_init_handler, cmd_ctx);
382                                 break;
383                         case RESET_HALT:
384                                 target_halt(target);
385                                 break;
386                         case RESET_INIT:
387                                 target_halt(target);
388                                 target_register_event_callback(target_init_handler, cmd_ctx);
389                                 break;
390                         default:
391                                 LOG_ERROR("BUG: unknown target->reset_mode");
392                 }
393                 target = target->next;
394         }
395         
396         if ((retval = jtag_execute_queue()) != ERROR_OK)
397         {
398                 LOG_WARNING("JTAG communication failed while reset was asserted. Consider using srst_only for reset_config.");
399                 retval = ERROR_OK;              
400         }
401         
402         target = targets;
403         while (target)
404         {
405                 target->type->deassert_reset(target);
406                 target = target->next;
407         }
408         
409         if ((retval = jtag_execute_queue()) != ERROR_OK)
410         {
411                 LOG_WARNING("JTAG communication failed while deasserting reset.");
412                 retval = ERROR_OK;
413         }
414
415         if (jtag_reset_config & RESET_SRST_PULLS_TRST)
416         {
417                 /* If TRST was asserted we need to set up registers again */
418                 if ((retval = target_examine(cmd_ctx)) != ERROR_OK)
419                         return retval;
420         }               
421         
422         
423         LOG_DEBUG("Waiting for halted stated as approperiate");
424         
425         /* Wait for reset to complete, maximum 5 seconds. */    
426         gettimeofday(&timeout, NULL);
427         timeval_add_time(&timeout, 5, 0);
428         for(;;)
429         {
430                 gettimeofday(&now, NULL);
431                 
432                 target_call_timer_callbacks_now();
433                 
434                 target = targets;
435                 while (target)
436                 {
437                         LOG_DEBUG("Polling target");
438                         target_poll(target);
439                         if ((target->reset_mode == RESET_RUN_AND_INIT) || 
440                                         (target->reset_mode == RESET_RUN_AND_HALT) ||
441                                         (target->reset_mode == RESET_HALT) ||
442                                         (target->reset_mode == RESET_INIT))
443                         {
444                                 if (target->state != TARGET_HALTED)
445                                 {
446                                         if ((now.tv_sec > timeout.tv_sec) || ((now.tv_sec == timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
447                                         {
448                                                 LOG_USER("Timed out waiting for halt after reset");
449                                                 goto done;
450                                         }
451                                         /* this will send alive messages on e.g. GDB remote protocol. */
452                                         usleep(500*1000); 
453                                         LOG_USER_N("%s", ""); /* avoid warning about zero length formatting message*/ 
454                                         goto again;
455                                 }
456                         }
457                         target = target->next;
458                 }
459                 /* All targets we're waiting for are halted */
460                 break;
461                 
462                 again:;
463         }
464         done:
465         
466         
467         /* We want any events to be processed before the prompt */
468         target_call_timer_callbacks_now();
469
470         /* if we timed out we need to unregister these handlers */
471         target = targets;
472         while (target)
473         {
474                 target_unregister_timer_callback(target_run_and_halt_handler, target);
475                 target = target->next;
476         }
477         target_unregister_event_callback(target_init_handler, cmd_ctx);
478                                 
479         
480         jtag->speed(jtag_speed_post_reset);
481         
482         return retval;
483 }
484
485 static int default_virt2phys(struct target_s *target, u32 virtual, u32 *physical)
486 {
487         *physical = virtual;
488         return ERROR_OK;
489 }
490
491 static int default_mmu(struct target_s *target, int *enabled)
492 {
493         *enabled = 0;
494         return ERROR_OK;
495 }
496
497 static int default_examine(struct command_context_s *cmd_ctx, struct target_s *target)
498 {
499         target->type->examined = 1;
500         return ERROR_OK;
501 }
502
503
504 /* Targets that correctly implement init+examine, i.e.
505  * no communication with target during init:
506  * 
507  * XScale 
508  */
509 int target_examine(struct command_context_s *cmd_ctx)
510 {
511         int retval = ERROR_OK;
512         target_t *target = targets;
513         while (target)
514         {
515                 if ((retval = target->type->examine(cmd_ctx, target))!=ERROR_OK)
516                         return retval;
517                 target = target->next;
518         }
519         return retval;
520 }
521
522 static int target_write_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
523 {
524         if (!target->type->examined)
525         {
526                 LOG_ERROR("Target not examined yet");
527                 return ERROR_FAIL;
528         }
529         return target->type->write_memory_imp(target, address, size, count, buffer);
530 }
531
532 static int target_read_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
533 {
534         if (!target->type->examined)
535         {
536                 LOG_ERROR("Target not examined yet");
537                 return ERROR_FAIL;
538         }
539         return target->type->read_memory_imp(target, address, size, count, buffer);
540 }
541
542 static int target_soft_reset_halt_imp(struct target_s *target)
543 {
544         if (!target->type->examined)
545         {
546                 LOG_ERROR("Target not examined yet");
547                 return ERROR_FAIL;
548         }
549         return target->type->soft_reset_halt_imp(target);
550 }
551
552 static int target_run_algorithm_imp(struct target_s *target, int num_mem_params, mem_param_t *mem_params, int num_reg_params, reg_param_t *reg_param, u32 entry_point, u32 exit_point, int timeout_ms, void *arch_info)
553 {
554         if (!target->type->examined)
555         {
556                 LOG_ERROR("Target not examined yet");
557                 return ERROR_FAIL;
558         }
559         return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
560 }
561
562 int target_init(struct command_context_s *cmd_ctx)
563 {
564         target_t *target = targets;
565         
566         while (target)
567         {
568                 target->type->examined = 0;
569                 if (target->type->examine == NULL)
570                 {
571                         target->type->examine = default_examine;
572                 }
573                 
574                 if (target->type->init_target(cmd_ctx, target) != ERROR_OK)
575                 {
576                         LOG_ERROR("target '%s' init failed", target->type->name);
577                         exit(-1);
578                 }
579                 
580                 /* Set up default functions if none are provided by target */
581                 if (target->type->virt2phys == NULL)
582                 {
583                         target->type->virt2phys = default_virt2phys;
584                 }
585                 target->type->virt2phys = default_virt2phys;
586                 /* a non-invasive way(in terms of patches) to add some code that
587                  * runs before the type->write/read_memory implementation
588                  */
589                 target->type->write_memory_imp = target->type->write_memory;
590                 target->type->write_memory = target_write_memory_imp;
591                 target->type->read_memory_imp = target->type->read_memory;
592                 target->type->read_memory = target_read_memory_imp;
593                 target->type->soft_reset_halt_imp = target->type->soft_reset_halt;
594                 target->type->soft_reset_halt = target_soft_reset_halt_imp;
595                 target->type->run_algorithm_imp = target->type->run_algorithm;
596                 target->type->run_algorithm = target_run_algorithm_imp;
597
598                 
599                 if (target->type->mmu == NULL)
600                 {
601                         target->type->mmu = default_mmu;
602                 }
603                 target = target->next;
604         }
605         
606         if (targets)
607         {
608                 target_register_user_commands(cmd_ctx);
609                 target_register_timer_callback(handle_target, 100, 1, NULL);
610         }
611                 
612         return ERROR_OK;
613 }
614
615 int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
616 {
617         target_event_callback_t **callbacks_p = &target_event_callbacks;
618         
619         if (callback == NULL)
620         {
621                 return ERROR_INVALID_ARGUMENTS;
622         }
623         
624         if (*callbacks_p)
625         {
626                 while ((*callbacks_p)->next)
627                         callbacks_p = &((*callbacks_p)->next);
628                 callbacks_p = &((*callbacks_p)->next);
629         }
630         
631         (*callbacks_p) = malloc(sizeof(target_event_callback_t));
632         (*callbacks_p)->callback = callback;
633         (*callbacks_p)->priv = priv;
634         (*callbacks_p)->next = NULL;
635         
636         return ERROR_OK;
637 }
638
639 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
640 {
641         target_timer_callback_t **callbacks_p = &target_timer_callbacks;
642         struct timeval now;
643         
644         if (callback == NULL)
645         {
646                 return ERROR_INVALID_ARGUMENTS;
647         }
648         
649         if (*callbacks_p)
650         {
651                 while ((*callbacks_p)->next)
652                         callbacks_p = &((*callbacks_p)->next);
653                 callbacks_p = &((*callbacks_p)->next);
654         }
655         
656         (*callbacks_p) = malloc(sizeof(target_timer_callback_t));
657         (*callbacks_p)->callback = callback;
658         (*callbacks_p)->periodic = periodic;
659         (*callbacks_p)->time_ms = time_ms;
660         
661         gettimeofday(&now, NULL);
662         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
663         time_ms -= (time_ms % 1000);
664         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
665         if ((*callbacks_p)->when.tv_usec > 1000000)
666         {
667                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
668                 (*callbacks_p)->when.tv_sec += 1;
669         }
670         
671         (*callbacks_p)->priv = priv;
672         (*callbacks_p)->next = NULL;
673         
674         return ERROR_OK;
675 }
676
677 int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
678 {
679         target_event_callback_t **p = &target_event_callbacks;
680         target_event_callback_t *c = target_event_callbacks;
681         
682         if (callback == NULL)
683         {
684                 return ERROR_INVALID_ARGUMENTS;
685         }
686                 
687         while (c)
688         {
689                 target_event_callback_t *next = c->next;
690                 if ((c->callback == callback) && (c->priv == priv))
691                 {
692                         *p = next;
693                         free(c);
694                         return ERROR_OK;
695                 }
696                 else
697                         p = &(c->next);
698                 c = next;
699         }
700         
701         return ERROR_OK;
702 }
703
704 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
705 {
706         target_timer_callback_t **p = &target_timer_callbacks;
707         target_timer_callback_t *c = target_timer_callbacks;
708         
709         if (callback == NULL)
710         {
711                 return ERROR_INVALID_ARGUMENTS;
712         }
713                 
714         while (c)
715         {
716                 target_timer_callback_t *next = c->next;
717                 if ((c->callback == callback) && (c->priv == priv))
718                 {
719                         *p = next;
720                         free(c);
721                         return ERROR_OK;
722                 }
723                 else
724                         p = &(c->next);
725                 c = next;
726         }
727         
728         return ERROR_OK;
729 }
730
731 int target_call_event_callbacks(target_t *target, enum target_event event)
732 {
733         target_event_callback_t *callback = target_event_callbacks;
734         target_event_callback_t *next_callback;
735         
736         LOG_DEBUG("target event %i", event);
737         
738         while (callback)
739         {
740                 next_callback = callback->next;
741                 callback->callback(target, event, callback->priv);
742                 callback = next_callback;
743         }
744         
745         return ERROR_OK;
746 }
747
748 static int target_call_timer_callbacks_check_time(int checktime)
749 {
750         target_timer_callback_t *callback = target_timer_callbacks;
751         target_timer_callback_t *next_callback;
752         struct timeval now;
753
754         gettimeofday(&now, NULL);
755         
756         while (callback)
757         {
758                 next_callback = callback->next;
759                 
760                 if ((!checktime&&callback->periodic)||
761                                 (((now.tv_sec >= callback->when.tv_sec) && (now.tv_usec >= callback->when.tv_usec))
762                                                 || (now.tv_sec > callback->when.tv_sec)))
763                 {
764                         if(callback->callback != NULL)
765                         {
766                                 callback->callback(callback->priv);
767                                 if (callback->periodic)
768                                 {
769                                         int time_ms = callback->time_ms;
770                                         callback->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
771                                         time_ms -= (time_ms % 1000);
772                                         callback->when.tv_sec = now.tv_sec + time_ms / 1000;
773                                         if (callback->when.tv_usec > 1000000)
774                                         {
775                                                 callback->when.tv_usec = callback->when.tv_usec - 1000000;
776                                                 callback->when.tv_sec += 1;
777                                         }
778                                 }
779                                 else
780                                         target_unregister_timer_callback(callback->callback, callback->priv);
781                         }
782                 }
783                         
784                 callback = next_callback;
785         }
786         
787         return ERROR_OK;
788 }
789
790 int target_call_timer_callbacks()
791 {
792         return target_call_timer_callbacks_check_time(1);
793 }
794
795 /* invoke periodic callbacks immediately */
796 int target_call_timer_callbacks_now()
797 {
798         return target_call_timer_callbacks(0);
799 }
800
801
802 int target_alloc_working_area(struct target_s *target, u32 size, working_area_t **area)
803 {
804         working_area_t *c = target->working_areas;
805         working_area_t *new_wa = NULL;
806         
807         /* Reevaluate working area address based on MMU state*/
808         if (target->working_areas == NULL)
809         {
810                 int retval;
811                 int enabled;
812                 retval = target->type->mmu(target, &enabled);
813                 if (retval != ERROR_OK)
814                 {
815                         return retval;
816                 }
817                 if (enabled)
818                 {
819                         target->working_area = target->working_area_virt;
820                 }
821                 else
822                 {
823                         target->working_area = target->working_area_phys;
824                 }
825         }
826         
827         /* only allocate multiples of 4 byte */
828         if (size % 4)
829         {
830                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes, padding");
831                 size = CEIL(size, 4);
832         }
833         
834         /* see if there's already a matching working area */
835         while (c)
836         {
837                 if ((c->free) && (c->size == size))
838                 {
839                         new_wa = c;
840                         break;
841                 }
842                 c = c->next;
843         }
844         
845         /* if not, allocate a new one */
846         if (!new_wa)
847         {
848                 working_area_t **p = &target->working_areas;
849                 u32 first_free = target->working_area;
850                 u32 free_size = target->working_area_size;
851                 
852                 LOG_DEBUG("allocating new working area");
853                 
854                 c = target->working_areas;
855                 while (c)
856                 {
857                         first_free += c->size;
858                         free_size -= c->size;
859                         p = &c->next;
860                         c = c->next;
861                 }
862                 
863                 if (free_size < size)
864                 {
865                         LOG_WARNING("not enough working area available(requested %d, free %d)", size, free_size);
866                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
867                 }
868                 
869                 new_wa = malloc(sizeof(working_area_t));
870                 new_wa->next = NULL;
871                 new_wa->size = size;
872                 new_wa->address = first_free;
873                 
874                 if (target->backup_working_area)
875                 {
876                         new_wa->backup = malloc(new_wa->size);
877                         target->type->read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup);
878                 }
879                 else
880                 {
881                         new_wa->backup = NULL;
882                 }
883                 
884                 /* put new entry in list */
885                 *p = new_wa;
886         }
887         
888         /* mark as used, and return the new (reused) area */
889         new_wa->free = 0;
890         *area = new_wa;
891         
892         /* user pointer */
893         new_wa->user = area;
894         
895         return ERROR_OK;
896 }
897
898 int target_free_working_area_restore(struct target_s *target, working_area_t *area, int restore)
899 {
900         if (area->free)
901                 return ERROR_OK;
902         
903         if (restore&&target->backup_working_area)
904                 target->type->write_memory(target, area->address, 4, area->size / 4, area->backup);
905         
906         area->free = 1;
907         
908         /* mark user pointer invalid */
909         *area->user = NULL;
910         area->user = NULL;
911         
912         return ERROR_OK;
913 }
914
915 int target_free_working_area(struct target_s *target, working_area_t *area)
916 {
917         return target_free_working_area_restore(target, area, 1);
918 }
919
920 int target_free_all_working_areas_restore(struct target_s *target, int restore)
921 {
922         working_area_t *c = target->working_areas;
923
924         while (c)
925         {
926                 working_area_t *next = c->next;
927                 target_free_working_area_restore(target, c, restore);
928                 
929                 if (c->backup)
930                         free(c->backup);
931                 
932                 free(c);
933                 
934                 c = next;
935         }
936         
937         target->working_areas = NULL;
938         
939         return ERROR_OK;
940 }
941
942 int target_free_all_working_areas(struct target_s *target)
943 {
944         return target_free_all_working_areas_restore(target, 1); 
945 }
946
947 int target_register_commands(struct command_context_s *cmd_ctx)
948 {
949         register_command(cmd_ctx, NULL, "target", handle_target_command, COMMAND_CONFIG, "target <cpu> [reset_init default - DEPRECATED] <chainpos> <endianness> <variant> [cpu type specifc args]");
950         register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, NULL);
951         register_command(cmd_ctx, NULL, "target_script", handle_target_script_command, COMMAND_CONFIG, NULL);
952         register_command(cmd_ctx, NULL, "run_and_halt_time", handle_run_and_halt_time_command, COMMAND_CONFIG, "<target> <run time ms>");
953         register_command(cmd_ctx, NULL, "working_area", handle_working_area_command, COMMAND_ANY, "working_area <target#> <address> <size> <'backup'|'nobackup'> [virtual address]");
954         register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "virt2phys <virtual address>");
955         register_command(cmd_ctx, NULL, "profile", handle_profile_command, COMMAND_EXEC, "PRELIMINARY! - profile <seconds> <gmon.out>");
956
957         return ERROR_OK;
958 }
959
960 int target_arch_state(struct target_s *target)
961 {
962         int retval;
963         if (target==NULL)
964         {
965                 LOG_USER("No target has been configured");
966                 return ERROR_OK;
967         }
968         
969         LOG_USER("target state: %s", target_state_strings[target->state]);
970         
971         if (target->state!=TARGET_HALTED)
972                 return ERROR_OK;
973         
974         retval=target->type->arch_state(target);
975         return retval;
976 }
977
978 /* Single aligned words are guaranteed to use 16 or 32 bit access 
979  * mode respectively, otherwise data is handled as quickly as 
980  * possible
981  */
982 int target_write_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
983 {
984         int retval;
985         if (!target->type->examined)
986         {
987                 LOG_ERROR("Target not examined yet");
988                 return ERROR_FAIL;
989         }
990         
991         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x", size, address);
992         
993         if (((address % 2) == 0) && (size == 2))
994         {
995                 return target->type->write_memory(target, address, 2, 1, buffer);
996         }
997         
998         /* handle unaligned head bytes */
999         if (address % 4)
1000         {
1001                 int unaligned = 4 - (address % 4);
1002                 
1003                 if (unaligned > size)
1004                         unaligned = size;
1005
1006                 if ((retval = target->type->write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1007                         return retval;
1008                 
1009                 buffer += unaligned;
1010                 address += unaligned;
1011                 size -= unaligned;
1012         }
1013                 
1014         /* handle aligned words */
1015         if (size >= 4)
1016         {
1017                 int aligned = size - (size % 4);
1018         
1019                 /* use bulk writes above a certain limit. This may have to be changed */
1020                 if (aligned > 128)
1021                 {
1022                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1023                                 return retval;
1024                 }
1025                 else
1026                 {
1027                         if ((retval = target->type->write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1028                                 return retval;
1029                 }
1030                 
1031                 buffer += aligned;
1032                 address += aligned;
1033                 size -= aligned;
1034         }
1035         
1036         /* handle tail writes of less than 4 bytes */
1037         if (size > 0)
1038         {
1039                 if ((retval = target->type->write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1040                         return retval;
1041         }
1042         
1043         return ERROR_OK;
1044 }
1045
1046
1047 /* Single aligned words are guaranteed to use 16 or 32 bit access 
1048  * mode respectively, otherwise data is handled as quickly as 
1049  * possible
1050  */
1051 int target_read_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
1052 {
1053         int retval;
1054         if (!target->type->examined)
1055         {
1056                 LOG_ERROR("Target not examined yet");
1057                 return ERROR_FAIL;
1058         }
1059
1060         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x", size, address);
1061         
1062         if (((address % 2) == 0) && (size == 2))
1063         {
1064                 return target->type->read_memory(target, address, 2, 1, buffer);
1065         }
1066         
1067         /* handle unaligned head bytes */
1068         if (address % 4)
1069         {
1070                 int unaligned = 4 - (address % 4);
1071                 
1072                 if (unaligned > size)
1073                         unaligned = size;
1074
1075                 if ((retval = target->type->read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1076                         return retval;
1077                 
1078                 buffer += unaligned;
1079                 address += unaligned;
1080                 size -= unaligned;
1081         }
1082                 
1083         /* handle aligned words */
1084         if (size >= 4)
1085         {
1086                 int aligned = size - (size % 4);
1087         
1088                 if ((retval = target->type->read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1089                         return retval;
1090                 
1091                 buffer += aligned;
1092                 address += aligned;
1093                 size -= aligned;
1094         }
1095         
1096         /* handle tail writes of less than 4 bytes */
1097         if (size > 0)
1098         {
1099                 if ((retval = target->type->read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1100                         return retval;
1101         }
1102         
1103         return ERROR_OK;
1104 }
1105
1106 int target_checksum_memory(struct target_s *target, u32 address, u32 size, u32* crc)
1107 {
1108         u8 *buffer;
1109         int retval;
1110         int i;
1111         u32 checksum = 0;
1112         if (!target->type->examined)
1113         {
1114                 LOG_ERROR("Target not examined yet");
1115                 return ERROR_FAIL;
1116         }
1117         
1118         if ((retval = target->type->checksum_memory(target, address,
1119                 size, &checksum)) == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1120         {
1121                 buffer = malloc(size);
1122                 if (buffer == NULL)
1123                 {
1124                         LOG_ERROR("error allocating buffer for section (%d bytes)", size);
1125                         return ERROR_INVALID_ARGUMENTS;
1126                 }
1127                 retval = target_read_buffer(target, address, size, buffer);
1128                 if (retval != ERROR_OK)
1129                 {
1130                         free(buffer);
1131                         return retval;
1132                 }
1133
1134                 /* convert to target endianess */
1135                 for (i = 0; i < (size/sizeof(u32)); i++)
1136                 {
1137                         u32 target_data;
1138                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(u32)]);
1139                         target_buffer_set_u32(target, &buffer[i*sizeof(u32)], target_data);
1140                 }
1141
1142                 retval = image_calculate_checksum( buffer, size, &checksum );
1143                 free(buffer);
1144         }
1145         
1146         *crc = checksum;
1147         
1148         return retval;
1149 }
1150
1151 int target_blank_check_memory(struct target_s *target, u32 address, u32 size, u32* blank)
1152 {
1153         int retval;
1154         if (!target->type->examined)
1155         {
1156                 LOG_ERROR("Target not examined yet");
1157                 return ERROR_FAIL;
1158         }
1159         
1160         if (target->type->blank_check_memory == 0)
1161                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1162         
1163         retval = target->type->blank_check_memory(target, address, size, blank);
1164                         
1165         return retval;
1166 }
1167
1168 int target_read_u32(struct target_s *target, u32 address, u32 *value)
1169 {
1170         u8 value_buf[4];
1171         if (!target->type->examined)
1172         {
1173                 LOG_ERROR("Target not examined yet");
1174                 return ERROR_FAIL;
1175         }
1176
1177         int retval = target->type->read_memory(target, address, 4, 1, value_buf);
1178         
1179         if (retval == ERROR_OK)
1180         {
1181                 *value = target_buffer_get_u32(target, value_buf);
1182                 LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, *value);
1183         }
1184         else
1185         {
1186                 *value = 0x0;
1187                 LOG_DEBUG("address: 0x%8.8x failed", address);
1188         }
1189         
1190         return retval;
1191 }
1192
1193 int target_read_u16(struct target_s *target, u32 address, u16 *value)
1194 {
1195         u8 value_buf[2];
1196         if (!target->type->examined)
1197         {
1198                 LOG_ERROR("Target not examined yet");
1199                 return ERROR_FAIL;
1200         }
1201
1202         int retval = target->type->read_memory(target, address, 2, 1, value_buf);
1203         
1204         if (retval == ERROR_OK)
1205         {
1206                 *value = target_buffer_get_u16(target, value_buf);
1207                 LOG_DEBUG("address: 0x%8.8x, value: 0x%4.4x", address, *value);
1208         }
1209         else
1210         {
1211                 *value = 0x0;
1212                 LOG_DEBUG("address: 0x%8.8x failed", address);
1213         }
1214         
1215         return retval;
1216 }
1217
1218 int target_read_u8(struct target_s *target, u32 address, u8 *value)
1219 {
1220         int retval = target->type->read_memory(target, address, 1, 1, value);
1221         if (!target->type->examined)
1222         {
1223                 LOG_ERROR("Target not examined yet");
1224                 return ERROR_FAIL;
1225         }
1226
1227         if (retval == ERROR_OK)
1228         {
1229                 LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, *value);
1230         }
1231         else
1232         {
1233                 *value = 0x0;
1234                 LOG_DEBUG("address: 0x%8.8x failed", address);
1235         }
1236         
1237         return retval;
1238 }
1239
1240 int target_write_u32(struct target_s *target, u32 address, u32 value)
1241 {
1242         int retval;
1243         u8 value_buf[4];
1244         if (!target->type->examined)
1245         {
1246                 LOG_ERROR("Target not examined yet");
1247                 return ERROR_FAIL;
1248         }
1249
1250         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1251
1252         target_buffer_set_u32(target, value_buf, value);        
1253         if ((retval = target->type->write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1254         {
1255                 LOG_DEBUG("failed: %i", retval);
1256         }
1257         
1258         return retval;
1259 }
1260
1261 int target_write_u16(struct target_s *target, u32 address, u16 value)
1262 {
1263         int retval;
1264         u8 value_buf[2];
1265         if (!target->type->examined)
1266         {
1267                 LOG_ERROR("Target not examined yet");
1268                 return ERROR_FAIL;
1269         }
1270
1271         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1272
1273         target_buffer_set_u16(target, value_buf, value);        
1274         if ((retval = target->type->write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1275         {
1276                 LOG_DEBUG("failed: %i", retval);
1277         }
1278         
1279         return retval;
1280 }
1281
1282 int target_write_u8(struct target_s *target, u32 address, u8 value)
1283 {
1284         int retval;
1285         if (!target->type->examined)
1286         {
1287                 LOG_ERROR("Target not examined yet");
1288                 return ERROR_FAIL;
1289         }
1290
1291         LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, value);
1292
1293         if ((retval = target->type->read_memory(target, address, 1, 1, &value)) != ERROR_OK)
1294         {
1295                 LOG_DEBUG("failed: %i", retval);
1296         }
1297         
1298         return retval;
1299 }
1300
1301 int target_register_user_commands(struct command_context_s *cmd_ctx)
1302 {
1303         register_command(cmd_ctx,  NULL, "reg", handle_reg_command, COMMAND_EXEC, NULL);
1304         register_command(cmd_ctx,  NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state");
1305         register_command(cmd_ctx,  NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]");
1306         register_command(cmd_ctx,  NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target");
1307         register_command(cmd_ctx,  NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]");
1308         register_command(cmd_ctx,  NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]");
1309         register_command(cmd_ctx,  NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run|halt|init|run_and_halt|run_and_init]");
1310         register_command(cmd_ctx,  NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset");
1311
1312         register_command(cmd_ctx,  NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words <addr> [count]");
1313         register_command(cmd_ctx,  NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words <addr> [count]");
1314         register_command(cmd_ctx,  NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes <addr> [count]");
1315         
1316         register_command(cmd_ctx,  NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word <addr> <value> [count]");
1317         register_command(cmd_ctx,  NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word <addr> <value> [count]");
1318         register_command(cmd_ctx,  NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte <addr> <value> [count]");
1319         
1320         register_command(cmd_ctx,  NULL, "bp", handle_bp_command, COMMAND_EXEC, "set breakpoint <address> <length> [hw]");      
1321         register_command(cmd_ctx,  NULL, "rbp", handle_rbp_command, COMMAND_EXEC, "remove breakpoint <adress>");
1322         register_command(cmd_ctx,  NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint <address> <length> <r/w/a> [value] [mask]");    
1323         register_command(cmd_ctx,  NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint <adress>");
1324         
1325         register_command(cmd_ctx,  NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> ['bin'|'ihex'|'elf'|'s19']");
1326         register_command(cmd_ctx,  NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>");
1327         register_command(cmd_ctx,  NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image <file> [offset] [type]");
1328         register_command(cmd_ctx,  NULL, "load_binary", handle_load_image_command, COMMAND_EXEC, "[DEPRECATED] load_binary <file> <address>");
1329         register_command(cmd_ctx,  NULL, "dump_binary", handle_dump_image_command, COMMAND_EXEC, "[DEPRECATED] dump_binary <file> <address> <size>");
1330         
1331         target_request_register_commands(cmd_ctx);
1332         trace_register_commands(cmd_ctx);
1333         
1334         return ERROR_OK;
1335 }
1336
1337 int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1338 {
1339         target_t *target = targets;
1340         int count = 0;
1341         
1342         if (argc == 1)
1343         {
1344                 int num = strtoul(args[0], NULL, 0);
1345                 
1346                 while (target)
1347                 {
1348                         count++;
1349                         target = target->next;
1350                 }
1351                 
1352                 if (num < count)
1353                         cmd_ctx->current_target = num;
1354                 else
1355                         command_print(cmd_ctx, "%i is out of bounds, only %i targets are configured", num, count);
1356                         
1357                 return ERROR_OK;
1358         }
1359                 
1360         while (target)
1361         {
1362                 command_print(cmd_ctx, "%i: %s (%s), state: %s", count++, target->type->name, target_endianess_strings[target->endianness], target_state_strings[target->state]);
1363                 target = target->next;
1364         }
1365         
1366         return ERROR_OK;
1367 }
1368
1369 int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1370 {
1371         int i;
1372         int found = 0;
1373         
1374         if (argc < 3)
1375         {
1376                 return ERROR_COMMAND_SYNTAX_ERROR;
1377         }
1378         
1379         /* search for the specified target */
1380         if (args[0] && (args[0][0] != 0))
1381         {
1382                 for (i = 0; target_types[i]; i++)
1383                 {
1384                         if (strcmp(args[0], target_types[i]->name) == 0)
1385                         {
1386                                 target_t **last_target_p = &targets;
1387                                 
1388                                 /* register target specific commands */
1389                                 if (target_types[i]->register_commands(cmd_ctx) != ERROR_OK)
1390                                 {
1391                                         LOG_ERROR("couldn't register '%s' commands", args[0]);
1392                                         exit(-1);
1393                                 }
1394
1395                                 if (*last_target_p)
1396                                 {
1397                                         while ((*last_target_p)->next)
1398                                                 last_target_p = &((*last_target_p)->next);
1399                                         last_target_p = &((*last_target_p)->next);
1400                                 }
1401
1402                                 *last_target_p = malloc(sizeof(target_t));
1403                                 
1404                                 (*last_target_p)->type = target_types[i];
1405                                 
1406                                 if (strcmp(args[1], "big") == 0)
1407                                         (*last_target_p)->endianness = TARGET_BIG_ENDIAN;
1408                                 else if (strcmp(args[1], "little") == 0)
1409                                         (*last_target_p)->endianness = TARGET_LITTLE_ENDIAN;
1410                                 else
1411                                 {
1412                                         LOG_ERROR("endianness must be either 'little' or 'big', not '%s'", args[1]);
1413                                         return ERROR_COMMAND_SYNTAX_ERROR;
1414                                 }
1415                                 
1416                                 /* what to do on a target reset */
1417                                 (*last_target_p)->reset_mode = RESET_INIT; /* default */
1418                                 if (strcmp(args[2], "reset_halt") == 0)
1419                                         (*last_target_p)->reset_mode = RESET_HALT;
1420                                 else if (strcmp(args[2], "reset_run") == 0)
1421                                         (*last_target_p)->reset_mode = RESET_RUN;
1422                                 else if (strcmp(args[2], "reset_init") == 0)
1423                                         (*last_target_p)->reset_mode = RESET_INIT;
1424                                 else if (strcmp(args[2], "run_and_halt") == 0)
1425                                         (*last_target_p)->reset_mode = RESET_RUN_AND_HALT;
1426                                 else if (strcmp(args[2], "run_and_init") == 0)
1427                                         (*last_target_p)->reset_mode = RESET_RUN_AND_INIT;
1428                                 else
1429                                 {
1430                                         /* Kludge! we want to make this reset arg optional while remaining compatible! */
1431                                         args--;
1432                                         argc++;
1433                                 }
1434                                 (*last_target_p)->run_and_halt_time = 1000; /* default 1s */
1435                                 
1436                                 (*last_target_p)->reset_script = NULL;
1437                                 (*last_target_p)->pre_reset_script = NULL;
1438                                 (*last_target_p)->post_halt_script = NULL;
1439                                 (*last_target_p)->pre_resume_script = NULL;
1440                                 (*last_target_p)->gdb_program_script = NULL;
1441                                 
1442                                 (*last_target_p)->working_area = 0x0;
1443                                 (*last_target_p)->working_area_size = 0x0;
1444                                 (*last_target_p)->working_areas = NULL;
1445                                 (*last_target_p)->backup_working_area = 0;
1446                                 
1447                                 (*last_target_p)->state = TARGET_UNKNOWN;
1448                                 (*last_target_p)->debug_reason = DBG_REASON_UNDEFINED;
1449                                 (*last_target_p)->reg_cache = NULL;
1450                                 (*last_target_p)->breakpoints = NULL;
1451                                 (*last_target_p)->watchpoints = NULL;
1452                                 (*last_target_p)->next = NULL;
1453                                 (*last_target_p)->arch_info = NULL;
1454                                 
1455                                 /* initialize trace information */
1456                                 (*last_target_p)->trace_info = malloc(sizeof(trace_t));
1457                                 (*last_target_p)->trace_info->num_trace_points = 0;
1458                                 (*last_target_p)->trace_info->trace_points_size = 0;
1459                                 (*last_target_p)->trace_info->trace_points = NULL;
1460                                 (*last_target_p)->trace_info->trace_history_size = 0;
1461                                 (*last_target_p)->trace_info->trace_history = NULL;
1462                                 (*last_target_p)->trace_info->trace_history_pos = 0;
1463                                 (*last_target_p)->trace_info->trace_history_overflowed = 0;
1464                                 
1465                                 (*last_target_p)->dbgmsg = NULL;
1466                                 (*last_target_p)->dbg_msg_enabled = 0;
1467                                                                 
1468                                 (*last_target_p)->type->target_command(cmd_ctx, cmd, args, argc, *last_target_p);
1469                                 
1470                                 found = 1;
1471                                 break;
1472                         }
1473                 }
1474         }
1475         
1476         /* no matching target found */
1477         if (!found)
1478         {
1479                 LOG_ERROR("target '%s' not found", args[0]);
1480                 return ERROR_COMMAND_SYNTAX_ERROR;
1481         }
1482
1483         return ERROR_OK;
1484 }
1485
1486 /* usage: target_script <target#> <event> <script_file> */
1487 int handle_target_script_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1488 {
1489         target_t *target = NULL;
1490         
1491         if (argc < 3)
1492         {
1493                 LOG_ERROR("incomplete target_script command");
1494                 return ERROR_COMMAND_SYNTAX_ERROR;
1495         }
1496         
1497         target = get_target_by_num(strtoul(args[0], NULL, 0));
1498         
1499         if (!target)
1500         {
1501                 return ERROR_COMMAND_SYNTAX_ERROR;
1502         }
1503         
1504         if ((strcmp(args[1], "reset") == 0)||(strcmp(args[1], "post_reset") == 0))
1505         {
1506                 if (target->reset_script)
1507                         free(target->reset_script);
1508                 target->reset_script = strdup(args[2]);
1509         }
1510         else if (strcmp(args[1], "pre_reset") == 0)
1511         {
1512                 if (target->pre_reset_script)
1513                         free(target->pre_reset_script);
1514                 target->pre_reset_script = strdup(args[2]);
1515         }
1516         else if (strcmp(args[1], "post_halt") == 0)
1517         {
1518                 if (target->post_halt_script)
1519                         free(target->post_halt_script);
1520                 target->post_halt_script = strdup(args[2]);
1521         }
1522         else if (strcmp(args[1], "pre_resume") == 0)
1523         {
1524                 if (target->pre_resume_script)
1525                         free(target->pre_resume_script);
1526                 target->pre_resume_script = strdup(args[2]);
1527         }
1528         else if (strcmp(args[1], "gdb_program_config") == 0)
1529         {
1530                 if (target->gdb_program_script)
1531                         free(target->gdb_program_script);
1532                 target->gdb_program_script = strdup(args[2]);
1533         }
1534         else
1535         {
1536                 LOG_ERROR("unknown event type: '%s", args[1]);
1537                 return ERROR_COMMAND_SYNTAX_ERROR;
1538         }
1539         
1540         return ERROR_OK;
1541 }
1542
1543 int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1544 {
1545         target_t *target = NULL;
1546         
1547         if (argc < 2)
1548         {
1549                 return ERROR_COMMAND_SYNTAX_ERROR;
1550         }
1551         
1552         target = get_target_by_num(strtoul(args[0], NULL, 0));
1553         if (!target)
1554         {
1555                 return ERROR_COMMAND_SYNTAX_ERROR;
1556         }
1557         
1558         target->run_and_halt_time = strtoul(args[1], NULL, 0);
1559         
1560         return ERROR_OK;
1561 }
1562
1563 int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1564 {
1565         target_t *target = NULL;
1566         
1567         if ((argc < 4) || (argc > 5))
1568         {
1569                 return ERROR_COMMAND_SYNTAX_ERROR;
1570         }
1571         
1572         target = get_target_by_num(strtoul(args[0], NULL, 0));
1573         if (!target)
1574         {
1575                 return ERROR_COMMAND_SYNTAX_ERROR;
1576         }
1577         target_free_all_working_areas(target);
1578         
1579         target->working_area_phys = target->working_area_virt = strtoul(args[1], NULL, 0);
1580         if (argc == 5)
1581         {
1582                 target->working_area_virt = strtoul(args[4], NULL, 0);
1583         }
1584         target->working_area_size = strtoul(args[2], NULL, 0);
1585         
1586         if (strcmp(args[3], "backup") == 0)
1587         {
1588                 target->backup_working_area = 1;
1589         }
1590         else if (strcmp(args[3], "nobackup") == 0)
1591         {
1592                 target->backup_working_area = 0;
1593         }
1594         else
1595         {
1596                 LOG_ERROR("unrecognized <backup|nobackup> argument (%s)", args[3]);
1597                 return ERROR_COMMAND_SYNTAX_ERROR;
1598         }
1599         
1600         return ERROR_OK;
1601 }
1602
1603
1604 /* process target state changes */
1605 int handle_target(void *priv)
1606 {
1607         target_t *target = targets;
1608         
1609         while (target)
1610         {
1611                 if (target_continous_poll)
1612                 {
1613                         /* polling may fail silently until the target has been examined */
1614                         target_poll(target);
1615                 }
1616         
1617                 target = target->next;
1618         }
1619         
1620         return ERROR_OK;
1621 }
1622
1623 int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1624 {
1625         target_t *target;
1626         reg_t *reg = NULL;
1627         int count = 0;
1628         char *value;
1629         
1630         LOG_DEBUG("-");
1631         
1632         target = get_current_target(cmd_ctx);
1633         
1634         /* list all available registers for the current target */
1635         if (argc == 0)
1636         {
1637                 reg_cache_t *cache = target->reg_cache;
1638                 
1639                 count = 0;
1640                 while(cache)
1641                 {
1642                         int i;
1643                         for (i = 0; i < cache->num_regs; i++)
1644                         {
1645                                 value = buf_to_str(cache->reg_list[i].value, cache->reg_list[i].size, 16);
1646                                 command_print(cmd_ctx, "(%i) %s (/%i): 0x%s (dirty: %i, valid: %i)", count++, cache->reg_list[i].name, cache->reg_list[i].size, value, cache->reg_list[i].dirty, cache->reg_list[i].valid);
1647                                 free(value);
1648                         }
1649                         cache = cache->next;
1650                 }
1651                 
1652                 return ERROR_OK;
1653         }
1654         
1655         /* access a single register by its ordinal number */
1656         if ((args[0][0] >= '0') && (args[0][0] <= '9'))
1657         {
1658                 int num = strtoul(args[0], NULL, 0);
1659                 reg_cache_t *cache = target->reg_cache;
1660                 
1661                 count = 0;
1662                 while(cache)
1663                 {
1664                         int i;
1665                         for (i = 0; i < cache->num_regs; i++)
1666                         {
1667                                 if (count++ == num)
1668                                 {
1669                                         reg = &cache->reg_list[i];
1670                                         break;
1671                                 }
1672                         }
1673                         if (reg)
1674                                 break;
1675                         cache = cache->next;
1676                 }
1677                 
1678                 if (!reg)
1679                 {
1680                         command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1681                         return ERROR_OK;
1682                 }
1683         } else /* access a single register by its name */
1684         {
1685                 reg = register_get_by_name(target->reg_cache, args[0], 1);
1686                 
1687                 if (!reg)
1688                 {
1689                         command_print(cmd_ctx, "register %s not found in current target", args[0]);
1690                         return ERROR_OK;
1691                 }
1692         }
1693
1694         /* display a register */
1695         if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
1696         {
1697                 if ((argc == 2) && (strcmp(args[1], "force") == 0))
1698                         reg->valid = 0;
1699                 
1700                 if (reg->valid == 0)
1701                 {
1702                         reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1703                         if (arch_type == NULL)
1704                         {
1705                                 LOG_ERROR("BUG: encountered unregistered arch type");
1706                                 return ERROR_OK;
1707                         }
1708                         arch_type->get(reg);
1709                 }
1710                 value = buf_to_str(reg->value, reg->size, 16);
1711                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1712                 free(value);
1713                 return ERROR_OK;
1714         }
1715         
1716         /* set register value */
1717         if (argc == 2)
1718         {
1719                 u8 *buf = malloc(CEIL(reg->size, 8));
1720                 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
1721
1722                 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1723                 if (arch_type == NULL)
1724                 {
1725                         LOG_ERROR("BUG: encountered unregistered arch type");
1726                         return ERROR_OK;
1727                 }
1728                 
1729                 arch_type->set(reg, buf);
1730                 
1731                 value = buf_to_str(reg->value, reg->size, 16);
1732                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1733                 free(value);
1734                 
1735                 free(buf);
1736                 
1737                 return ERROR_OK;
1738         }
1739         
1740         command_print(cmd_ctx, "usage: reg <#|name> [value]");
1741         
1742         return ERROR_OK;
1743 }
1744
1745 static int wait_state(struct command_context_s *cmd_ctx, char *cmd, enum target_state state, int ms);
1746
1747 int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1748 {
1749         target_t *target = get_current_target(cmd_ctx);
1750
1751         if (argc == 0)
1752         {
1753                 target_poll(target);
1754                 target_arch_state(target);
1755         }
1756         else
1757         {
1758                 if (strcmp(args[0], "on") == 0)
1759                 {
1760                         target_continous_poll = 1;
1761                 }
1762                 else if (strcmp(args[0], "off") == 0)
1763                 {
1764                         target_continous_poll = 0;
1765                 }
1766                 else
1767                 {
1768                         command_print(cmd_ctx, "arg is \"on\" or \"off\"");
1769                 }
1770         }
1771         
1772         
1773         return ERROR_OK;
1774 }
1775
1776 int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1777 {
1778         int ms = 5000;
1779         
1780         if (argc > 0)
1781         {
1782                 char *end;
1783
1784                 ms = strtoul(args[0], &end, 0) * 1000;
1785                 if (*end)
1786                 {
1787                         command_print(cmd_ctx, "usage: %s [seconds]", cmd);
1788                         return ERROR_OK;
1789                 }
1790         }
1791
1792         return wait_state(cmd_ctx, cmd, TARGET_HALTED, ms); 
1793 }
1794
1795 static void target_process_events(struct command_context_s *cmd_ctx)
1796 {
1797         target_t *target = get_current_target(cmd_ctx);
1798         target_poll(target);
1799         target_call_timer_callbacks_now();
1800 }
1801
1802 static int wait_state(struct command_context_s *cmd_ctx, char *cmd, enum target_state state, int ms)
1803 {
1804         int retval;
1805         struct timeval timeout, now;
1806         int once=1;
1807         gettimeofday(&timeout, NULL);
1808         timeval_add_time(&timeout, 0, ms * 1000);
1809         
1810         target_t *target = get_current_target(cmd_ctx);
1811         for (;;)
1812         {
1813                 if ((retval=target_poll(target))!=ERROR_OK)
1814                         return retval;
1815                 target_call_timer_callbacks_now();
1816                 if (target->state == state)
1817                 {
1818                         break;
1819                 }
1820                 if (once)
1821                 {
1822                         once=0;
1823                         command_print(cmd_ctx, "waiting for target %s...", target_state_strings[state]);
1824                 }
1825                 
1826                 gettimeofday(&now, NULL);
1827                 if ((now.tv_sec > timeout.tv_sec) || ((now.tv_sec == timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
1828                 {
1829                         LOG_ERROR("timed out while waiting for target %s", target_state_strings[state]);
1830                         break;
1831                 }
1832         }
1833         
1834         return ERROR_OK;
1835 }
1836
1837 int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1838 {
1839         int retval;
1840         target_t *target = get_current_target(cmd_ctx);
1841
1842         LOG_DEBUG("-");
1843
1844         if ((retval = target_halt(target)) != ERROR_OK)
1845         {
1846                 return retval;
1847         }
1848         
1849         return handle_wait_halt_command(cmd_ctx, cmd, args, argc);
1850 }
1851
1852                 
1853 int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1854 {
1855         target_t *target = get_current_target(cmd_ctx);
1856         
1857         LOG_USER("requesting target halt and executing a soft reset");
1858         
1859         target->type->soft_reset_halt(target);
1860         
1861         return ERROR_OK;
1862 }
1863
1864 int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1865 {
1866         target_t *target = get_current_target(cmd_ctx);
1867         enum target_reset_mode reset_mode = target->reset_mode;
1868         enum target_reset_mode save = target->reset_mode;
1869         
1870         LOG_DEBUG("-");
1871         
1872         if (argc >= 1)
1873         {
1874                 if (strcmp("run", args[0]) == 0)
1875                         reset_mode = RESET_RUN;
1876                 else if (strcmp("halt", args[0]) == 0)
1877                         reset_mode = RESET_HALT;
1878                 else if (strcmp("init", args[0]) == 0)
1879                         reset_mode = RESET_INIT;
1880                 else if (strcmp("run_and_halt", args[0]) == 0)
1881                 {
1882                         reset_mode = RESET_RUN_AND_HALT;
1883                         if (argc >= 2)
1884                         {
1885                                 target->run_and_halt_time = strtoul(args[1], NULL, 0);
1886                         }
1887                 }
1888                 else if (strcmp("run_and_init", args[0]) == 0)
1889                 {
1890                         reset_mode = RESET_RUN_AND_INIT;
1891                         if (argc >= 2)
1892                         {
1893                                 target->run_and_halt_time = strtoul(args[1], NULL, 0);
1894                         }
1895                 }
1896                 else
1897                 {
1898                         command_print(cmd_ctx, "usage: reset ['run', 'halt', 'init', 'run_and_halt', 'run_and_init]");
1899                         return ERROR_OK;
1900                 }
1901         }
1902         
1903         /* temporarily modify mode of current reset target */
1904         target->reset_mode = reset_mode;
1905
1906         /* reset *all* targets */
1907         target_process_reset(cmd_ctx);
1908         
1909         /* Restore default reset mode for this target */
1910     target->reset_mode = save;
1911         
1912         return ERROR_OK;
1913 }
1914
1915 int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1916 {
1917         int retval;
1918         target_t *target = get_current_target(cmd_ctx);
1919         
1920         if (argc == 0)
1921                 retval = target_resume(target, 1, 0, 1, 0); /* current pc, addr = 0, handle breakpoints, not debugging */
1922         else if (argc == 1)
1923                 retval = target_resume(target, 0, strtoul(args[0], NULL, 0), 1, 0); /* addr = args[0], handle breakpoints, not debugging */
1924         else
1925         {
1926                 return ERROR_COMMAND_SYNTAX_ERROR;
1927         }
1928
1929         target_process_events(cmd_ctx);
1930         
1931         return retval;
1932 }
1933
1934 int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1935 {
1936         target_t *target = get_current_target(cmd_ctx);
1937         
1938         LOG_DEBUG("-");
1939         
1940         if (argc == 0)
1941                 target->type->step(target, 1, 0, 1); /* current pc, addr = 0, handle breakpoints */
1942
1943         if (argc == 1)
1944                 target->type->step(target, 0, strtoul(args[0], NULL, 0), 1); /* addr = args[0], handle breakpoints */
1945         
1946         return ERROR_OK;
1947 }
1948
1949 int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1950 {
1951         const int line_bytecnt = 32;
1952         int count = 1;
1953         int size = 4;
1954         u32 address = 0;
1955         int line_modulo;
1956         int i;
1957
1958         char output[128];
1959         int output_len;
1960
1961         int retval;
1962
1963         u8 *buffer;
1964         target_t *target = get_current_target(cmd_ctx);
1965
1966         if (argc < 1)
1967                 return ERROR_OK;
1968
1969         if (argc == 2)
1970                 count = strtoul(args[1], NULL, 0);
1971
1972         address = strtoul(args[0], NULL, 0);
1973         
1974
1975         switch (cmd[2])
1976         {
1977                 case 'w':
1978                         size = 4; line_modulo = line_bytecnt / 4;
1979                         break;
1980                 case 'h':
1981                         size = 2; line_modulo = line_bytecnt / 2;
1982                         break;
1983                 case 'b':
1984                         size = 1; line_modulo = line_bytecnt / 1;
1985                         break;
1986                 default:
1987                         return ERROR_OK;
1988         }
1989
1990         buffer = calloc(count, size);
1991         retval  = target->type->read_memory(target, address, size, count, buffer);
1992         if (retval == ERROR_OK)
1993         {
1994                 output_len = 0;
1995         
1996                 for (i = 0; i < count; i++)
1997                 {
1998                         if (i%line_modulo == 0)
1999                                 output_len += snprintf(output + output_len, 128 - output_len, "0x%8.8x: ", address + (i*size));
2000                         
2001                         switch (size)
2002                         {
2003                                 case 4:
2004                                         output_len += snprintf(output + output_len, 128 - output_len, "%8.8x ", target_buffer_get_u32(target, &buffer[i*4]));
2005                                         break;
2006                                 case 2:
2007                                         output_len += snprintf(output + output_len, 128 - output_len, "%4.4x ", target_buffer_get_u16(target, &buffer[i*2]));
2008                                         break;
2009                                 case 1:
2010                                         output_len += snprintf(output + output_len, 128 - output_len, "%2.2x ", buffer[i*1]);
2011                                         break;
2012                         }
2013         
2014                         if ((i%line_modulo == line_modulo-1) || (i == count - 1))
2015                         {
2016                                 command_print(cmd_ctx, output);
2017                                 output_len = 0;
2018                         }
2019                 }
2020         } else
2021         {
2022                 LOG_ERROR("Failure examining memory");
2023         }
2024
2025         free(buffer);
2026         
2027         return ERROR_OK;
2028 }
2029
2030 int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2031 {
2032         u32 address = 0;
2033         u32 value = 0;
2034         int count = 1;
2035         int i;
2036         int wordsize;
2037         target_t *target = get_current_target(cmd_ctx);
2038         u8 value_buf[4];
2039
2040          if ((argc < 2) || (argc > 3))
2041                 return ERROR_COMMAND_SYNTAX_ERROR;
2042
2043         address = strtoul(args[0], NULL, 0);
2044         value = strtoul(args[1], NULL, 0);
2045         if (argc == 3)
2046                 count = strtoul(args[2], NULL, 0);
2047
2048
2049         switch (cmd[2])
2050         {
2051                 case 'w':
2052                         wordsize = 4;
2053                         target_buffer_set_u32(target, value_buf, value);
2054                         break;
2055                 case 'h':
2056                         wordsize = 2;
2057                         target_buffer_set_u16(target, value_buf, value);
2058                         break;
2059                 case 'b':
2060                         wordsize = 1;
2061                         value_buf[0] = value;
2062                         break;
2063                 default:
2064                         return ERROR_COMMAND_SYNTAX_ERROR;
2065         }
2066         for (i=0; i<count; i++)
2067         {
2068                 int retval;
2069                 switch (wordsize)
2070                 {
2071                         case 4:
2072                                 retval = target->type->write_memory(target, address + i*wordsize, 4, 1, value_buf);
2073                                 break;
2074                         case 2:
2075                                 retval = target->type->write_memory(target, address + i*wordsize, 2, 1, value_buf);
2076                                 break;
2077                         case 1:
2078                                 retval = target->type->write_memory(target, address + i*wordsize, 1, 1, value_buf);
2079                         break;
2080                         default:
2081                         return ERROR_OK;
2082                 }
2083                 if (retval!=ERROR_OK)
2084                 {
2085                         return retval;
2086                 }
2087         }
2088
2089         return ERROR_OK;
2090
2091 }
2092
2093 int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2094 {
2095         u8 *buffer;
2096         u32 buf_cnt;
2097         u32 image_size;
2098         int i;
2099         int retval;
2100
2101         image_t image;  
2102         
2103         duration_t duration;
2104         char *duration_text;
2105         
2106         target_t *target = get_current_target(cmd_ctx);
2107
2108         if (argc < 1)
2109         {
2110                 command_print(cmd_ctx, "usage: load_image <filename> [address] [type]");
2111                 return ERROR_OK;
2112         }
2113         
2114         /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
2115         if (argc >= 2)
2116         {
2117                 image.base_address_set = 1;
2118                 image.base_address = strtoul(args[1], NULL, 0);
2119         }
2120         else
2121         {
2122                 image.base_address_set = 0;
2123         }
2124         
2125         image.start_address_set = 0;
2126
2127         duration_start_measure(&duration);
2128         
2129         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
2130         {
2131                 return ERROR_OK;
2132         }
2133         
2134         image_size = 0x0;
2135         retval = ERROR_OK;
2136         for (i = 0; i < image.num_sections; i++)
2137         {
2138                 buffer = malloc(image.sections[i].size);
2139                 if (buffer == NULL)
2140                 {
2141                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2142                         break;
2143                 }
2144                 
2145                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2146                 {
2147                         free(buffer);
2148                         break;
2149                 }
2150                 if ((retval = target_write_buffer(target, image.sections[i].base_address, buf_cnt, buffer)) != ERROR_OK)
2151                 {
2152                         free(buffer);
2153                         break;
2154                 }
2155                 image_size += buf_cnt;
2156                 command_print(cmd_ctx, "%u byte written at address 0x%8.8x", buf_cnt, image.sections[i].base_address);
2157                 
2158                 free(buffer);
2159         }
2160
2161         duration_stop_measure(&duration, &duration_text);
2162         if (retval==ERROR_OK)
2163         {
2164                 command_print(cmd_ctx, "downloaded %u byte in %s", image_size, duration_text);
2165         }
2166         free(duration_text);
2167         
2168         image_close(&image);
2169
2170         return retval;
2171
2172 }
2173
2174 int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2175 {
2176         fileio_t fileio;
2177         
2178         u32 address;
2179         u32 size;
2180         u8 buffer[560];
2181         int retval=ERROR_OK;
2182         
2183         duration_t duration;
2184         char *duration_text;
2185         
2186         target_t *target = get_current_target(cmd_ctx);
2187
2188         if (argc != 3)
2189         {
2190                 command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
2191                 return ERROR_OK;
2192         }
2193
2194         address = strtoul(args[1], NULL, 0);
2195         size = strtoul(args[2], NULL, 0);
2196
2197         if ((address & 3) || (size & 3))
2198         {
2199                 command_print(cmd_ctx, "only 32-bit aligned address and size are supported");
2200                 return ERROR_OK;
2201         }
2202         
2203         if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2204         {
2205                 return ERROR_OK;
2206         }
2207         
2208         duration_start_measure(&duration);
2209         
2210         while (size > 0)
2211         {
2212                 u32 size_written;
2213                 u32 this_run_size = (size > 560) ? 560 : size;
2214                 
2215                 retval = target->type->read_memory(target, address, 4, this_run_size / 4, buffer);
2216                 if (retval != ERROR_OK)
2217                 {
2218                         break;
2219                 }
2220                 
2221                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2222                 if (retval != ERROR_OK)
2223                 {
2224                         break;
2225                 }
2226                 
2227                 size -= this_run_size;
2228                 address += this_run_size;
2229         }
2230
2231         fileio_close(&fileio);
2232
2233         duration_stop_measure(&duration, &duration_text);
2234         if (retval==ERROR_OK)
2235         {
2236                 command_print(cmd_ctx, "dumped %"PRIi64" byte in %s", fileio.size, duration_text);
2237         }
2238         free(duration_text);
2239         
2240         return ERROR_OK;
2241 }
2242
2243 int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2244 {
2245         u8 *buffer;
2246         u32 buf_cnt;
2247         u32 image_size;
2248         int i;
2249         int retval;
2250         u32 checksum = 0;
2251         u32 mem_checksum = 0;
2252
2253         image_t image;  
2254         
2255         duration_t duration;
2256         char *duration_text;
2257         
2258         target_t *target = get_current_target(cmd_ctx);
2259         
2260         if (argc < 1)
2261         {
2262                 return ERROR_COMMAND_SYNTAX_ERROR;
2263         }
2264         
2265         if (!target)
2266         {
2267                 LOG_ERROR("no target selected");
2268                 return ERROR_FAIL;
2269         }
2270         
2271         duration_start_measure(&duration);
2272         
2273         if (argc >= 2)
2274         {
2275                 image.base_address_set = 1;
2276                 image.base_address = strtoul(args[1], NULL, 0);
2277         }
2278         else
2279         {
2280                 image.base_address_set = 0;
2281                 image.base_address = 0x0;
2282         }
2283
2284         image.start_address_set = 0;
2285
2286         if ((retval=image_open(&image, args[0], (argc == 3) ? args[2] : NULL)) != ERROR_OK)
2287         {
2288                 return retval;
2289         }
2290         
2291         image_size = 0x0;
2292         retval=ERROR_OK;
2293         for (i = 0; i < image.num_sections; i++)
2294         {
2295                 buffer = malloc(image.sections[i].size);
2296                 if (buffer == NULL)
2297                 {
2298                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2299                         break;
2300                 }
2301                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2302                 {
2303                         free(buffer);
2304                         break;
2305                 }
2306                 
2307                 /* calculate checksum of image */
2308                 image_calculate_checksum( buffer, buf_cnt, &checksum );
2309                 
2310                 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2311                 if( retval != ERROR_OK )
2312                 {
2313                         free(buffer);
2314                         break;
2315                 }
2316                 
2317                 if( checksum != mem_checksum )
2318                 {
2319                         /* failed crc checksum, fall back to a binary compare */
2320                         u8 *data;
2321                         
2322                         command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
2323                         
2324                         data = (u8*)malloc(buf_cnt);
2325                         
2326                         /* Can we use 32bit word accesses? */
2327                         int size = 1;
2328                         int count = buf_cnt;
2329                         if ((count % 4) == 0)
2330                         {
2331                                 size *= 4;
2332                                 count /= 4;
2333                         }
2334                         retval = target->type->read_memory(target, image.sections[i].base_address, size, count, data);
2335                         if (retval == ERROR_OK)
2336                         {
2337                                 int t;
2338                                 for (t = 0; t < buf_cnt; t++)
2339                                 {
2340                                         if (data[t] != buffer[t])
2341                                         {
2342                                                 command_print(cmd_ctx, "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n", t + image.sections[i].base_address, data[t], buffer[t]);
2343                                                 free(data);
2344                                                 free(buffer);
2345                                                 retval=ERROR_FAIL;
2346                                                 goto done;
2347                                         }
2348                                 }
2349                         }
2350                         
2351                         free(data);
2352                 }
2353                 
2354                 free(buffer);
2355                 image_size += buf_cnt;
2356         }
2357 done:   
2358         duration_stop_measure(&duration, &duration_text);
2359         if (retval==ERROR_OK)
2360         {
2361                 command_print(cmd_ctx, "verified %u bytes in %s", image_size, duration_text);
2362         }
2363         free(duration_text);
2364         
2365         image_close(&image);
2366         
2367         return retval;
2368 }
2369
2370 int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2371 {
2372         int retval;
2373         target_t *target = get_current_target(cmd_ctx);
2374
2375         if (argc == 0)
2376         {
2377                 breakpoint_t *breakpoint = target->breakpoints;
2378
2379                 while (breakpoint)
2380                 {
2381                         if (breakpoint->type == BKPT_SOFT)
2382                         {
2383                                 char* buf = buf_to_str(breakpoint->orig_instr, breakpoint->length, 16);
2384                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i, 0x%s", breakpoint->address, breakpoint->length, breakpoint->set, buf);
2385                                 free(buf);
2386                         }
2387                         else
2388                         {
2389                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i", breakpoint->address, breakpoint->length, breakpoint->set);
2390                         }
2391                         breakpoint = breakpoint->next;
2392                 }
2393         }
2394         else if (argc >= 2)
2395         {
2396                 int hw = BKPT_SOFT;
2397                 u32 length = 0;
2398
2399                 length = strtoul(args[1], NULL, 0);
2400                 
2401                 if (argc >= 3)
2402                         if (strcmp(args[2], "hw") == 0)
2403                                 hw = BKPT_HARD;
2404
2405                 if ((retval = breakpoint_add(target, strtoul(args[0], NULL, 0), length, hw)) != ERROR_OK)
2406                 {
2407                         LOG_ERROR("Failure setting breakpoints");
2408                 }
2409                 else
2410                 {
2411                         command_print(cmd_ctx, "breakpoint added at address 0x%8.8x", strtoul(args[0], NULL, 0));
2412                 }
2413         }
2414         else
2415         {
2416                 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
2417         }
2418
2419         return ERROR_OK;
2420 }
2421
2422 int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2423 {
2424         target_t *target = get_current_target(cmd_ctx);
2425
2426         if (argc > 0)
2427                 breakpoint_remove(target, strtoul(args[0], NULL, 0));
2428
2429         return ERROR_OK;
2430 }
2431
2432 int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2433 {
2434         target_t *target = get_current_target(cmd_ctx);
2435         int retval;
2436
2437         if (argc == 0)
2438         {
2439                 watchpoint_t *watchpoint = target->watchpoints;
2440
2441                 while (watchpoint)
2442                 {
2443                         command_print(cmd_ctx, "address: 0x%8.8x, len: 0x%8.8x, r/w/a: %i, value: 0x%8.8x, mask: 0x%8.8x", watchpoint->address, watchpoint->length, watchpoint->rw, watchpoint->value, watchpoint->mask);
2444                         watchpoint = watchpoint->next;
2445                 }
2446         } 
2447         else if (argc >= 2)
2448         {
2449                 enum watchpoint_rw type = WPT_ACCESS;
2450                 u32 data_value = 0x0;
2451                 u32 data_mask = 0xffffffff;
2452                 
2453                 if (argc >= 3)
2454                 {
2455                         switch(args[2][0])
2456                         {
2457                                 case 'r':
2458                                         type = WPT_READ;
2459                                         break;
2460                                 case 'w':
2461                                         type = WPT_WRITE;
2462                                         break;
2463                                 case 'a':
2464                                         type = WPT_ACCESS;
2465                                         break;
2466                                 default:
2467                                         command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2468                                         return ERROR_OK;
2469                         }
2470                 }
2471                 if (argc >= 4)
2472                 {
2473                         data_value = strtoul(args[3], NULL, 0);
2474                 }
2475                 if (argc >= 5)
2476                 {
2477                         data_mask = strtoul(args[4], NULL, 0);
2478                 }
2479                 
2480                 if ((retval = watchpoint_add(target, strtoul(args[0], NULL, 0),
2481                                 strtoul(args[1], NULL, 0), type, data_value, data_mask)) != ERROR_OK)
2482                 {
2483                         LOG_ERROR("Failure setting breakpoints");
2484                 }
2485         }
2486         else
2487         {
2488                 command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2489         }
2490                 
2491         return ERROR_OK;
2492 }
2493
2494 int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2495 {
2496         target_t *target = get_current_target(cmd_ctx);
2497
2498         if (argc > 0)
2499                 watchpoint_remove(target, strtoul(args[0], NULL, 0));
2500         
2501         return ERROR_OK;
2502 }
2503
2504 int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc)
2505 {
2506         int retval;
2507         target_t *target = get_current_target(cmd_ctx);
2508         u32 va;
2509         u32 pa;
2510
2511         if (argc != 1)
2512         {
2513                 return ERROR_COMMAND_SYNTAX_ERROR;
2514         }
2515         va = strtoul(args[0], NULL, 0);
2516
2517         retval = target->type->virt2phys(target, va, &pa);
2518         if (retval == ERROR_OK)
2519         {
2520                 command_print(cmd_ctx, "Physical address 0x%08x", pa);
2521         }
2522         else
2523         {
2524                 /* lower levels will have logged a detailed error which is 
2525                  * forwarded to telnet/GDB session.  
2526                  */
2527         }
2528         return retval;
2529 }
2530 static void writeLong(FILE *f, int l)
2531 {
2532         int i;
2533         for (i=0; i<4; i++)
2534         {
2535                 char c=(l>>(i*8))&0xff;
2536                 fwrite(&c, 1, 1, f); 
2537         }
2538         
2539 }
2540 static void writeString(FILE *f, char *s)
2541 {
2542         fwrite(s, 1, strlen(s), f); 
2543 }
2544
2545
2546
2547 // Dump a gmon.out histogram file.
2548 static void writeGmon(u32 *samples, int sampleNum, char *filename)
2549 {
2550         int i;
2551         FILE *f=fopen(filename, "w");
2552         if (f==NULL)
2553                 return;
2554         fwrite("gmon", 1, 4, f);
2555         writeLong(f, 0x00000001); // Version
2556         writeLong(f, 0); // padding
2557         writeLong(f, 0); // padding
2558         writeLong(f, 0); // padding
2559                                 
2560         fwrite("", 1, 1, f);  // GMON_TAG_TIME_HIST 
2561
2562         // figure out bucket size
2563         u32 min=samples[0];
2564         u32 max=samples[0];
2565         for (i=0; i<sampleNum; i++)
2566         {
2567                 if (min>samples[i])
2568                 {
2569                         min=samples[i];
2570                 }
2571                 if (max<samples[i])
2572                 {
2573                         max=samples[i];
2574                 }
2575         }
2576
2577         int addressSpace=(max-min+1);
2578         
2579         static int const maxBuckets=256*1024; // maximum buckets.
2580         int length=addressSpace;
2581         if (length > maxBuckets)
2582         {
2583                 length=maxBuckets; 
2584         }
2585         int *buckets=malloc(sizeof(int)*length);
2586         if (buckets==NULL)
2587         {
2588                 fclose(f);
2589                 return;
2590         }
2591         memset(buckets, 0, sizeof(int)*length);
2592         for (i=0; i<sampleNum;i++)
2593         {
2594                 u32 address=samples[i];
2595                 long long a=address-min;
2596                 long long b=length-1;
2597                 long long c=addressSpace-1;
2598                 int index=(a*b)/c; // danger!!!! int32 overflows 
2599                 buckets[index]++;
2600         }
2601         
2602         //                         append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr))
2603         writeLong(f, min);                                      // low_pc
2604         writeLong(f, max);              // high_pc
2605         writeLong(f, length);           // # of samples
2606         writeLong(f, 64000000);                         // 64MHz
2607         writeString(f, "seconds");
2608         for (i=0; i<(15-strlen("seconds")); i++)
2609         {
2610                 fwrite("", 1, 1, f);  // padding
2611         }
2612         writeString(f, "s");
2613                 
2614 //                         append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size)
2615         
2616         char *data=malloc(2*length);
2617         if (data!=NULL)
2618         {
2619                 for (i=0; i<length;i++)
2620                 {
2621                         int val;
2622                         val=buckets[i];
2623                         if (val>65535)
2624                         {
2625                                 val=65535;
2626                         }
2627                         data[i*2]=val&0xff;
2628                         data[i*2+1]=(val>>8)&0xff;
2629                 }
2630                 free(buckets);
2631                 fwrite(data, 1, length*2, f);
2632                 free(data);
2633         } else
2634         {
2635                 free(buckets);
2636         }
2637
2638         fclose(f);
2639 }
2640
2641 /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
2642 int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2643 {
2644         target_t *target = get_current_target(cmd_ctx);
2645         struct timeval timeout, now;
2646         
2647         gettimeofday(&timeout, NULL);
2648         if (argc!=2)
2649         {
2650                 return ERROR_COMMAND_SYNTAX_ERROR;
2651         }
2652         char *end;
2653         timeval_add_time(&timeout, strtoul(args[0], &end, 0), 0);
2654         if (*end) 
2655         {
2656                 return ERROR_OK;
2657         }
2658         
2659         command_print(cmd_ctx, "Starting profiling. Halting and resuming the target as often as we can...");
2660
2661         static const int maxSample=10000;
2662         u32 *samples=malloc(sizeof(u32)*maxSample);
2663         if (samples==NULL)
2664                 return ERROR_OK;
2665         
2666         int numSamples=0;
2667         int retval=ERROR_OK;
2668         // hopefully it is safe to cache! We want to stop/restart as quickly as possible.
2669         reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1);
2670         
2671         for (;;)
2672         {
2673                 target_poll(target);
2674                 if (target->state == TARGET_HALTED)
2675                 {
2676                         u32 t=*((u32 *)reg->value);
2677                         samples[numSamples++]=t;
2678                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2679                         target_poll(target);
2680                         usleep(10*1000); // sleep 10ms, i.e. <100 samples/second.
2681                 } else if (target->state == TARGET_RUNNING)
2682                 {
2683                         // We want to quickly sample the PC.
2684                         target_halt(target);
2685                 } else
2686                 {
2687                         command_print(cmd_ctx, "Target not halted or running");
2688                         retval=ERROR_OK;
2689                         break;
2690                 }
2691                 if (retval!=ERROR_OK)
2692                 {
2693                         break;
2694                 }
2695                 
2696                 gettimeofday(&now, NULL);
2697                 if ((numSamples>=maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
2698                 {
2699                         command_print(cmd_ctx, "Profiling completed. %d samples.", numSamples);
2700                         target_poll(target);
2701                         if (target->state == TARGET_HALTED)
2702                         {
2703                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2704                         }
2705                         target_poll(target);
2706                         writeGmon(samples, numSamples, args[1]);
2707                         command_print(cmd_ctx, "Wrote %s", args[1]);
2708                         break;
2709                 }
2710         }
2711         free(samples);
2712         
2713         return ERROR_OK;
2714 }
2715