minimum address and maximum length argument to load_image. Used in lieu of reset...
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007,2008 Ã˜yvind Harboe                                      *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   This program is free software; you can redistribute it and/or modify  *
9  *   it under the terms of the GNU General Public License as published by  *
10  *   the Free Software Foundation; either version 2 of the License, or     *
11  *   (at your option) any later version.                                   *
12  *                                                                         *
13  *   This program is distributed in the hope that it will be useful,       *
14  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
15  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
16  *   GNU General Public License for more details.                          *
17  *                                                                         *
18  *   You should have received a copy of the GNU General Public License     *
19  *   along with this program; if not, write to the                         *
20  *   Free Software Foundation, Inc.,                                       *
21  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
22  ***************************************************************************/
23 #ifdef HAVE_CONFIG_H
24 #include "config.h"
25 #endif
26
27 #include "replacements.h"
28 #include "target.h"
29 #include "target_request.h"
30
31 #include "log.h"
32 #include "configuration.h"
33 #include "binarybuffer.h"
34 #include "jtag.h"
35
36 #include <string.h>
37 #include <stdlib.h>
38 #include <inttypes.h>
39
40 #include <sys/types.h>
41 #include <sys/stat.h>
42 #include <unistd.h>
43 #include <errno.h>
44
45 #include <sys/time.h>
46 #include <time.h>
47
48 #include <time_support.h>
49
50 #include <fileio.h>
51 #include <image.h>
52
53 int cli_target_callback_event_handler(struct target_s *target, enum target_event event, void *priv);
54
55 int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
56 int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
57
58 int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
59 int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
60
61 int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
62 int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
63 int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
64 int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
65 int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
66 int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
67 int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
68 int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
69 int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
70 int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
71 int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
72 int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
73 int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
74 int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
75 int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
76 int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
77 int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
78 int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc);
79 int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
80 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
81 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
82
83
84 /* targets */
85 extern target_type_t arm7tdmi_target;
86 extern target_type_t arm720t_target;
87 extern target_type_t arm9tdmi_target;
88 extern target_type_t arm920t_target;
89 extern target_type_t arm966e_target;
90 extern target_type_t arm926ejs_target;
91 extern target_type_t feroceon_target;
92 extern target_type_t xscale_target;
93 extern target_type_t cortexm3_target;
94 extern target_type_t arm11_target;
95
96 target_type_t *target_types[] =
97 {
98         &arm7tdmi_target,
99         &arm9tdmi_target,
100         &arm920t_target,
101         &arm720t_target,
102         &arm966e_target,
103         &arm926ejs_target,
104         &feroceon_target,
105         &xscale_target,
106         &cortexm3_target,
107         &arm11_target,
108         NULL,
109 };
110
111 target_t *targets = NULL;
112 target_event_callback_t *target_event_callbacks = NULL;
113 target_timer_callback_t *target_timer_callbacks = NULL;
114
115 char *target_state_strings[] =
116 {
117         "unknown",
118         "running",
119         "halted",
120         "reset",
121         "debug_running",
122 };
123
124 char *target_debug_reason_strings[] =
125 {
126         "debug request", "breakpoint", "watchpoint",
127         "watchpoint and breakpoint", "single step",
128         "target not halted", "undefined"
129 };
130
131 char *target_endianess_strings[] =
132 {
133         "big endian",
134         "little endian",
135 };
136
137 static int target_continous_poll = 1;
138
139 /* read a u32 from a buffer in target memory endianness */
140 u32 target_buffer_get_u32(target_t *target, u8 *buffer)
141 {
142         if (target->endianness == TARGET_LITTLE_ENDIAN)
143                 return le_to_h_u32(buffer);
144         else
145                 return be_to_h_u32(buffer);
146 }
147
148 /* read a u16 from a buffer in target memory endianness */
149 u16 target_buffer_get_u16(target_t *target, u8 *buffer)
150 {
151         if (target->endianness == TARGET_LITTLE_ENDIAN)
152                 return le_to_h_u16(buffer);
153         else
154                 return be_to_h_u16(buffer);
155 }
156
157 /* write a u32 to a buffer in target memory endianness */
158 void target_buffer_set_u32(target_t *target, u8 *buffer, u32 value)
159 {
160         if (target->endianness == TARGET_LITTLE_ENDIAN)
161                 h_u32_to_le(buffer, value);
162         else
163                 h_u32_to_be(buffer, value);
164 }
165
166 /* write a u16 to a buffer in target memory endianness */
167 void target_buffer_set_u16(target_t *target, u8 *buffer, u16 value)
168 {
169         if (target->endianness == TARGET_LITTLE_ENDIAN)
170                 h_u16_to_le(buffer, value);
171         else
172                 h_u16_to_be(buffer, value);
173 }
174
175 /* returns a pointer to the n-th configured target */
176 target_t* get_target_by_num(int num)
177 {
178         target_t *target = targets;
179         int i = 0;
180
181         while (target)
182         {
183                 if (num == i)
184                         return target;
185                 target = target->next;
186                 i++;
187         }
188
189         return NULL;
190 }
191
192 int get_num_by_target(target_t *query_target)
193 {
194         target_t *target = targets;
195         int i = 0;      
196         
197         while (target)
198         {
199                 if (target == query_target)
200                         return i;
201                 target = target->next;
202                 i++;
203         }
204         
205         return -1;
206 }
207
208 target_t* get_current_target(command_context_t *cmd_ctx)
209 {
210         target_t *target = get_target_by_num(cmd_ctx->current_target);
211         
212         if (target == NULL)
213         {
214                 LOG_ERROR("BUG: current_target out of bounds");
215                 exit(-1);
216         }
217         
218         return target;
219 }
220
221 /* Process target initialization, when target entered debug out of reset
222  * the handler is unregistered at the end of this function, so it's only called once
223  */
224 int target_init_handler(struct target_s *target, enum target_event event, void *priv)
225 {
226         struct command_context_s *cmd_ctx = priv;
227         
228         if (event == TARGET_EVENT_HALTED)
229         {
230                 target_unregister_event_callback(target_init_handler, priv);
231                 target_invoke_script(cmd_ctx, target, "post_reset");
232                 jtag_execute_queue();
233         }
234         
235         return ERROR_OK;
236 }
237
238 int target_run_and_halt_handler(void *priv)
239 {
240         target_t *target = priv;
241         
242         target_halt(target);
243         
244         return ERROR_OK;
245 }
246
247 int target_poll(struct target_s *target)
248 {
249         /* We can't poll until after examine */
250         if (!target->type->examined)
251         {
252                 /* Fail silently lest we pollute the log */
253                 return ERROR_FAIL;
254         }
255         return target->type->poll(target);
256 }
257
258 int target_halt(struct target_s *target)
259 {
260         /* We can't poll until after examine */
261         if (!target->type->examined)
262         {
263                 LOG_ERROR("Target not examined yet");
264                 return ERROR_FAIL;
265         }
266         return target->type->halt(target);
267 }
268
269 int target_resume(struct target_s *target, int current, u32 address, int handle_breakpoints, int debug_execution)
270 {
271         int retval;
272         
273         /* We can't poll until after examine */
274         if (!target->type->examined)
275         {
276                 LOG_ERROR("Target not examined yet");
277                 return ERROR_FAIL;
278         }
279         
280         /* note that resume *must* be asynchronous. The CPU can halt before we poll. The CPU can
281          * even halt at the current PC as a result of a software breakpoint being inserted by (a bug?)
282          * the application.
283          */
284         if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
285                 return retval;
286         
287         return retval;
288 }
289
290 int target_process_reset(struct command_context_s *cmd_ctx, enum target_reset_mode reset_mode)
291 {
292         int retval = ERROR_OK;
293         target_t *target;
294         struct timeval timeout, now;
295
296         target = targets;
297         while (target)
298         {
299                 target_invoke_script(cmd_ctx, target, "pre_reset");
300                 target = target->next;
301         }
302         
303         if ((retval = jtag_init_reset(cmd_ctx)) != ERROR_OK)
304                 return retval;
305         
306         keep_alive(); /* we might be running on a very slow JTAG clk */
307         
308         /* First time this is executed after launching OpenOCD, it will read out 
309          * the type of CPU, etc. and init Embedded ICE registers in host
310          * memory. 
311          * 
312          * It will also set up ICE registers in the target.
313          * 
314          * However, if we assert TRST later, we need to set up the registers again. 
315          * 
316          * For the "reset halt/init" case we must only set up the registers here.
317          */
318         if ((retval = target_examine(cmd_ctx)) != ERROR_OK)
319                 return retval;
320         
321         keep_alive(); /* we might be running on a very slow JTAG clk */
322                 
323         target = targets;
324         while (target)
325         {
326                 /* we have no idea what state the target is in, so we
327                  * have to drop working areas
328                  */
329                 target_free_all_working_areas_restore(target, 0);
330                 target->reset_halt=((reset_mode==RESET_HALT)||(reset_mode==RESET_INIT));
331                 target->type->assert_reset(target);
332                 target = target->next;
333         }
334         if ((retval = jtag_execute_queue()) != ERROR_OK)
335         {
336                 LOG_WARNING("JTAG communication failed asserting reset.");
337                 retval = ERROR_OK;
338         }
339         
340         /* request target halt if necessary, and schedule further action */
341         target = targets;
342         while (target)
343         {
344                 switch (reset_mode)
345                 {
346                         case RESET_RUN:
347                                 /* nothing to do if target just wants to be run */
348                                 break;
349                         case RESET_RUN_AND_HALT:
350                                 /* schedule halt */
351                                 target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target);
352                                 break;
353                         case RESET_RUN_AND_INIT:
354                                 /* schedule halt */
355                                 target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target);
356                                 target_register_event_callback(target_init_handler, cmd_ctx);
357                                 break;
358                         case RESET_HALT:
359                                 if ((jtag_reset_config & RESET_SRST_PULLS_TRST)==0)
360                                         target_halt(target);
361                                 break;
362                         case RESET_INIT:
363                                 if ((jtag_reset_config & RESET_SRST_PULLS_TRST)==0)
364                                         target_halt(target);
365                                 target_register_event_callback(target_init_handler, cmd_ctx);
366                                 break;
367                         default:
368                                 LOG_ERROR("BUG: unknown target->reset_mode");
369                 }
370                 target = target->next;
371         }
372         
373         if ((retval = jtag_execute_queue()) != ERROR_OK)
374         {
375                 LOG_WARNING("JTAG communication failed while reset was asserted. Consider using srst_only for reset_config.");
376                 retval = ERROR_OK;              
377         }
378         
379         target = targets;
380         while (target)
381         {
382                 target->type->deassert_reset(target);
383                 /* We can fail to bring the target into the halted state  */
384                 target_poll(target);
385                 if (target->reset_halt&&((target->state != TARGET_HALTED)))
386                 {
387                         LOG_WARNING("Failed to reset target into halted mode - issuing halt");
388                         target->type->halt(target);
389                 }
390                 
391                 target = target->next;
392         }
393         
394         if ((retval = jtag_execute_queue()) != ERROR_OK)
395         {
396                 LOG_WARNING("JTAG communication failed while deasserting reset.");
397                 retval = ERROR_OK;
398         }
399
400         if (jtag_reset_config & RESET_SRST_PULLS_TRST)
401         {
402                 /* If TRST was asserted we need to set up registers again */
403                 if ((retval = target_examine(cmd_ctx)) != ERROR_OK)
404                         return retval;
405         }               
406         
407         LOG_DEBUG("Waiting for halted stated as appropriate");
408         
409         /* Wait for reset to complete, maximum 5 seconds. */    
410         gettimeofday(&timeout, NULL);
411         timeval_add_time(&timeout, 5, 0);
412         for(;;)
413         {
414                 gettimeofday(&now, NULL);
415                 
416                 target_call_timer_callbacks_now();
417                 
418                 target = targets;
419                 while (target)
420                 {
421                         LOG_DEBUG("Polling target");
422                         target_poll(target);
423                         if ((reset_mode == RESET_RUN_AND_INIT) || 
424                                         (reset_mode == RESET_RUN_AND_HALT) ||
425                                         (reset_mode == RESET_HALT) ||
426                                         (reset_mode == RESET_INIT))
427                         {
428                                 if (target->state != TARGET_HALTED)
429                                 {
430                                         if ((now.tv_sec > timeout.tv_sec) || ((now.tv_sec == timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
431                                         {
432                                                 LOG_USER("Timed out waiting for halt after reset");
433                                                 goto done;
434                                         }
435                                         /* this will send alive messages on e.g. GDB remote protocol. */
436                                         usleep(500*1000); 
437                                         LOG_USER_N("%s", ""); /* avoid warning about zero length formatting message*/ 
438                                         goto again;
439                                 }
440                         }
441                         target = target->next;
442                 }
443                 /* All targets we're waiting for are halted */
444                 break;
445                 
446                 again:;
447         }
448         done:
449         
450         
451         /* We want any events to be processed before the prompt */
452         target_call_timer_callbacks_now();
453
454         /* if we timed out we need to unregister these handlers */
455         target = targets;
456         while (target)
457         {
458                 target_unregister_timer_callback(target_run_and_halt_handler, target);
459                 target = target->next;
460         }
461         target_unregister_event_callback(target_init_handler, cmd_ctx);
462         
463         return retval;
464 }
465
466 static int default_virt2phys(struct target_s *target, u32 virtual, u32 *physical)
467 {
468         *physical = virtual;
469         return ERROR_OK;
470 }
471
472 static int default_mmu(struct target_s *target, int *enabled)
473 {
474         *enabled = 0;
475         return ERROR_OK;
476 }
477
478 static int default_examine(struct command_context_s *cmd_ctx, struct target_s *target)
479 {
480         target->type->examined = 1;
481         return ERROR_OK;
482 }
483
484
485 /* Targets that correctly implement init+examine, i.e.
486  * no communication with target during init:
487  * 
488  * XScale 
489  */
490 int target_examine(struct command_context_s *cmd_ctx)
491 {
492         int retval = ERROR_OK;
493         target_t *target = targets;
494         while (target)
495         {
496                 if ((retval = target->type->examine(cmd_ctx, target))!=ERROR_OK)
497                         return retval;
498                 target = target->next;
499         }
500         return retval;
501 }
502
503 static int target_write_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
504 {
505         if (!target->type->examined)
506         {
507                 LOG_ERROR("Target not examined yet");
508                 return ERROR_FAIL;
509         }
510         return target->type->write_memory_imp(target, address, size, count, buffer);
511 }
512
513 static int target_read_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
514 {
515         if (!target->type->examined)
516         {
517                 LOG_ERROR("Target not examined yet");
518                 return ERROR_FAIL;
519         }
520         return target->type->read_memory_imp(target, address, size, count, buffer);
521 }
522
523 static int target_soft_reset_halt_imp(struct target_s *target)
524 {
525         if (!target->type->examined)
526         {
527                 LOG_ERROR("Target not examined yet");
528                 return ERROR_FAIL;
529         }
530         return target->type->soft_reset_halt_imp(target);
531 }
532
533 static int target_run_algorithm_imp(struct target_s *target, int num_mem_params, mem_param_t *mem_params, int num_reg_params, reg_param_t *reg_param, u32 entry_point, u32 exit_point, int timeout_ms, void *arch_info)
534 {
535         if (!target->type->examined)
536         {
537                 LOG_ERROR("Target not examined yet");
538                 return ERROR_FAIL;
539         }
540         return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
541 }
542
543 int target_init(struct command_context_s *cmd_ctx)
544 {
545         target_t *target = targets;
546         
547         while (target)
548         {
549                 target->type->examined = 0;
550                 if (target->type->examine == NULL)
551                 {
552                         target->type->examine = default_examine;
553                 }
554                 
555                 if (target->type->init_target(cmd_ctx, target) != ERROR_OK)
556                 {
557                         LOG_ERROR("target '%s' init failed", target->type->name);
558                         exit(-1);
559                 }
560                 
561                 /* Set up default functions if none are provided by target */
562                 if (target->type->virt2phys == NULL)
563                 {
564                         target->type->virt2phys = default_virt2phys;
565                 }
566                 target->type->virt2phys = default_virt2phys;
567                 /* a non-invasive way(in terms of patches) to add some code that
568                  * runs before the type->write/read_memory implementation
569                  */
570                 target->type->write_memory_imp = target->type->write_memory;
571                 target->type->write_memory = target_write_memory_imp;
572                 target->type->read_memory_imp = target->type->read_memory;
573                 target->type->read_memory = target_read_memory_imp;
574                 target->type->soft_reset_halt_imp = target->type->soft_reset_halt;
575                 target->type->soft_reset_halt = target_soft_reset_halt_imp;
576                 target->type->run_algorithm_imp = target->type->run_algorithm;
577                 target->type->run_algorithm = target_run_algorithm_imp;
578
579                 
580                 if (target->type->mmu == NULL)
581                 {
582                         target->type->mmu = default_mmu;
583                 }
584                 target = target->next;
585         }
586         
587         if (targets)
588         {
589                 target_register_user_commands(cmd_ctx);
590                 target_register_timer_callback(handle_target, 100, 1, NULL);
591         }
592                 
593         return ERROR_OK;
594 }
595
596 int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
597 {
598         target_event_callback_t **callbacks_p = &target_event_callbacks;
599         
600         if (callback == NULL)
601         {
602                 return ERROR_INVALID_ARGUMENTS;
603         }
604         
605         if (*callbacks_p)
606         {
607                 while ((*callbacks_p)->next)
608                         callbacks_p = &((*callbacks_p)->next);
609                 callbacks_p = &((*callbacks_p)->next);
610         }
611         
612         (*callbacks_p) = malloc(sizeof(target_event_callback_t));
613         (*callbacks_p)->callback = callback;
614         (*callbacks_p)->priv = priv;
615         (*callbacks_p)->next = NULL;
616         
617         return ERROR_OK;
618 }
619
620 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
621 {
622         target_timer_callback_t **callbacks_p = &target_timer_callbacks;
623         struct timeval now;
624         
625         if (callback == NULL)
626         {
627                 return ERROR_INVALID_ARGUMENTS;
628         }
629         
630         if (*callbacks_p)
631         {
632                 while ((*callbacks_p)->next)
633                         callbacks_p = &((*callbacks_p)->next);
634                 callbacks_p = &((*callbacks_p)->next);
635         }
636         
637         (*callbacks_p) = malloc(sizeof(target_timer_callback_t));
638         (*callbacks_p)->callback = callback;
639         (*callbacks_p)->periodic = periodic;
640         (*callbacks_p)->time_ms = time_ms;
641         
642         gettimeofday(&now, NULL);
643         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
644         time_ms -= (time_ms % 1000);
645         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
646         if ((*callbacks_p)->when.tv_usec > 1000000)
647         {
648                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
649                 (*callbacks_p)->when.tv_sec += 1;
650         }
651         
652         (*callbacks_p)->priv = priv;
653         (*callbacks_p)->next = NULL;
654         
655         return ERROR_OK;
656 }
657
658 int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
659 {
660         target_event_callback_t **p = &target_event_callbacks;
661         target_event_callback_t *c = target_event_callbacks;
662         
663         if (callback == NULL)
664         {
665                 return ERROR_INVALID_ARGUMENTS;
666         }
667                 
668         while (c)
669         {
670                 target_event_callback_t *next = c->next;
671                 if ((c->callback == callback) && (c->priv == priv))
672                 {
673                         *p = next;
674                         free(c);
675                         return ERROR_OK;
676                 }
677                 else
678                         p = &(c->next);
679                 c = next;
680         }
681         
682         return ERROR_OK;
683 }
684
685 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
686 {
687         target_timer_callback_t **p = &target_timer_callbacks;
688         target_timer_callback_t *c = target_timer_callbacks;
689         
690         if (callback == NULL)
691         {
692                 return ERROR_INVALID_ARGUMENTS;
693         }
694                 
695         while (c)
696         {
697                 target_timer_callback_t *next = c->next;
698                 if ((c->callback == callback) && (c->priv == priv))
699                 {
700                         *p = next;
701                         free(c);
702                         return ERROR_OK;
703                 }
704                 else
705                         p = &(c->next);
706                 c = next;
707         }
708         
709         return ERROR_OK;
710 }
711
712 int target_call_event_callbacks(target_t *target, enum target_event event)
713 {
714         target_event_callback_t *callback = target_event_callbacks;
715         target_event_callback_t *next_callback;
716         
717         LOG_DEBUG("target event %i", event);
718         
719         while (callback)
720         {
721                 next_callback = callback->next;
722                 callback->callback(target, event, callback->priv);
723                 callback = next_callback;
724         }
725         
726         return ERROR_OK;
727 }
728
729 static int target_call_timer_callbacks_check_time(int checktime)
730 {
731         target_timer_callback_t *callback = target_timer_callbacks;
732         target_timer_callback_t *next_callback;
733         struct timeval now;
734
735         keep_alive();
736         
737         gettimeofday(&now, NULL);
738         
739         while (callback)
740         {
741                 next_callback = callback->next;
742                 
743                 if ((!checktime&&callback->periodic)||
744                                 (((now.tv_sec >= callback->when.tv_sec) && (now.tv_usec >= callback->when.tv_usec))
745                                                 || (now.tv_sec > callback->when.tv_sec)))
746                 {
747                         if(callback->callback != NULL)
748                         {
749                                 callback->callback(callback->priv);
750                                 if (callback->periodic)
751                                 {
752                                         int time_ms = callback->time_ms;
753                                         callback->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
754                                         time_ms -= (time_ms % 1000);
755                                         callback->when.tv_sec = now.tv_sec + time_ms / 1000;
756                                         if (callback->when.tv_usec > 1000000)
757                                         {
758                                                 callback->when.tv_usec = callback->when.tv_usec - 1000000;
759                                                 callback->when.tv_sec += 1;
760                                         }
761                                 }
762                                 else
763                                         target_unregister_timer_callback(callback->callback, callback->priv);
764                         }
765                 }
766                         
767                 callback = next_callback;
768         }
769         
770         return ERROR_OK;
771 }
772
773 int target_call_timer_callbacks()
774 {
775         return target_call_timer_callbacks_check_time(1);
776 }
777
778 /* invoke periodic callbacks immediately */
779 int target_call_timer_callbacks_now()
780 {
781         return target_call_timer_callbacks(0);
782 }
783
784 int target_alloc_working_area(struct target_s *target, u32 size, working_area_t **area)
785 {
786         working_area_t *c = target->working_areas;
787         working_area_t *new_wa = NULL;
788         
789         /* Reevaluate working area address based on MMU state*/
790         if (target->working_areas == NULL)
791         {
792                 int retval;
793                 int enabled;
794                 retval = target->type->mmu(target, &enabled);
795                 if (retval != ERROR_OK)
796                 {
797                         return retval;
798                 }
799                 if (enabled)
800                 {
801                         target->working_area = target->working_area_virt;
802                 }
803                 else
804                 {
805                         target->working_area = target->working_area_phys;
806                 }
807         }
808         
809         /* only allocate multiples of 4 byte */
810         if (size % 4)
811         {
812                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes, padding");
813                 size = CEIL(size, 4);
814         }
815         
816         /* see if there's already a matching working area */
817         while (c)
818         {
819                 if ((c->free) && (c->size == size))
820                 {
821                         new_wa = c;
822                         break;
823                 }
824                 c = c->next;
825         }
826         
827         /* if not, allocate a new one */
828         if (!new_wa)
829         {
830                 working_area_t **p = &target->working_areas;
831                 u32 first_free = target->working_area;
832                 u32 free_size = target->working_area_size;
833                 
834                 LOG_DEBUG("allocating new working area");
835                 
836                 c = target->working_areas;
837                 while (c)
838                 {
839                         first_free += c->size;
840                         free_size -= c->size;
841                         p = &c->next;
842                         c = c->next;
843                 }
844                 
845                 if (free_size < size)
846                 {
847                         LOG_WARNING("not enough working area available(requested %d, free %d)", size, free_size);
848                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
849                 }
850                 
851                 new_wa = malloc(sizeof(working_area_t));
852                 new_wa->next = NULL;
853                 new_wa->size = size;
854                 new_wa->address = first_free;
855                 
856                 if (target->backup_working_area)
857                 {
858                         new_wa->backup = malloc(new_wa->size);
859                         target->type->read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup);
860                 }
861                 else
862                 {
863                         new_wa->backup = NULL;
864                 }
865                 
866                 /* put new entry in list */
867                 *p = new_wa;
868         }
869         
870         /* mark as used, and return the new (reused) area */
871         new_wa->free = 0;
872         *area = new_wa;
873         
874         /* user pointer */
875         new_wa->user = area;
876         
877         return ERROR_OK;
878 }
879
880 int target_free_working_area_restore(struct target_s *target, working_area_t *area, int restore)
881 {
882         if (area->free)
883                 return ERROR_OK;
884         
885         if (restore&&target->backup_working_area)
886                 target->type->write_memory(target, area->address, 4, area->size / 4, area->backup);
887         
888         area->free = 1;
889         
890         /* mark user pointer invalid */
891         *area->user = NULL;
892         area->user = NULL;
893         
894         return ERROR_OK;
895 }
896
897 int target_free_working_area(struct target_s *target, working_area_t *area)
898 {
899         return target_free_working_area_restore(target, area, 1);
900 }
901
902 int target_free_all_working_areas_restore(struct target_s *target, int restore)
903 {
904         working_area_t *c = target->working_areas;
905
906         while (c)
907         {
908                 working_area_t *next = c->next;
909                 target_free_working_area_restore(target, c, restore);
910                 
911                 if (c->backup)
912                         free(c->backup);
913                 
914                 free(c);
915                 
916                 c = next;
917         }
918         
919         target->working_areas = NULL;
920         
921         return ERROR_OK;
922 }
923
924 int target_free_all_working_areas(struct target_s *target)
925 {
926         return target_free_all_working_areas_restore(target, 1); 
927 }
928
929 int target_register_commands(struct command_context_s *cmd_ctx)
930 {
931         register_command(cmd_ctx, NULL, "target", handle_target_command, COMMAND_CONFIG, "target <cpu> [reset_init default - DEPRECATED] <chainpos> <endianness> <variant> [cpu type specifc args]");
932         register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, NULL);
933         register_command(cmd_ctx, NULL, "run_and_halt_time", handle_run_and_halt_time_command, COMMAND_CONFIG, "<target> <run time ms>");
934         register_command(cmd_ctx, NULL, "working_area", handle_working_area_command, COMMAND_ANY, "working_area <target#> <address> <size> <'backup'|'nobackup'> [virtual address]");
935         register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "virt2phys <virtual address>");
936         register_command(cmd_ctx, NULL, "profile", handle_profile_command, COMMAND_EXEC, "PRELIMINARY! - profile <seconds> <gmon.out>");
937
938
939         /* script procedures */
940         register_jim(cmd_ctx, "ocd_mem2array", jim_mem2array, "read memory and return as a TCL array for script processing");
941         register_jim(cmd_ctx, "ocd_array2mem", jim_array2mem, "convert a TCL array to memory locations and write the values");
942         return ERROR_OK;
943 }
944
945 int target_arch_state(struct target_s *target)
946 {
947         int retval;
948         if (target==NULL)
949         {
950                 LOG_USER("No target has been configured");
951                 return ERROR_OK;
952         }
953         
954         LOG_USER("target state: %s", target_state_strings[target->state]);
955         
956         if (target->state!=TARGET_HALTED)
957                 return ERROR_OK;
958         
959         retval=target->type->arch_state(target);
960         return retval;
961 }
962
963 /* Single aligned words are guaranteed to use 16 or 32 bit access 
964  * mode respectively, otherwise data is handled as quickly as 
965  * possible
966  */
967 int target_write_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
968 {
969         int retval;
970         if (!target->type->examined)
971         {
972                 LOG_ERROR("Target not examined yet");
973                 return ERROR_FAIL;
974         }
975         
976         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x", size, address);
977         
978         if (((address % 2) == 0) && (size == 2))
979         {
980                 return target->type->write_memory(target, address, 2, 1, buffer);
981         }
982         
983         /* handle unaligned head bytes */
984         if (address % 4)
985         {
986                 int unaligned = 4 - (address % 4);
987                 
988                 if (unaligned > size)
989                         unaligned = size;
990
991                 if ((retval = target->type->write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
992                         return retval;
993                 
994                 buffer += unaligned;
995                 address += unaligned;
996                 size -= unaligned;
997         }
998                 
999         /* handle aligned words */
1000         if (size >= 4)
1001         {
1002                 int aligned = size - (size % 4);
1003         
1004                 /* use bulk writes above a certain limit. This may have to be changed */
1005                 if (aligned > 128)
1006                 {
1007                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1008                                 return retval;
1009                 }
1010                 else
1011                 {
1012                         if ((retval = target->type->write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1013                                 return retval;
1014                 }
1015                 
1016                 buffer += aligned;
1017                 address += aligned;
1018                 size -= aligned;
1019         }
1020         
1021         /* handle tail writes of less than 4 bytes */
1022         if (size > 0)
1023         {
1024                 if ((retval = target->type->write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1025                         return retval;
1026         }
1027         
1028         return ERROR_OK;
1029 }
1030
1031
1032 /* Single aligned words are guaranteed to use 16 or 32 bit access 
1033  * mode respectively, otherwise data is handled as quickly as 
1034  * possible
1035  */
1036 int target_read_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
1037 {
1038         int retval;
1039         if (!target->type->examined)
1040         {
1041                 LOG_ERROR("Target not examined yet");
1042                 return ERROR_FAIL;
1043         }
1044
1045         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x", size, address);
1046         
1047         if (((address % 2) == 0) && (size == 2))
1048         {
1049                 return target->type->read_memory(target, address, 2, 1, buffer);
1050         }
1051         
1052         /* handle unaligned head bytes */
1053         if (address % 4)
1054         {
1055                 int unaligned = 4 - (address % 4);
1056                 
1057                 if (unaligned > size)
1058                         unaligned = size;
1059
1060                 if ((retval = target->type->read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1061                         return retval;
1062                 
1063                 buffer += unaligned;
1064                 address += unaligned;
1065                 size -= unaligned;
1066         }
1067                 
1068         /* handle aligned words */
1069         if (size >= 4)
1070         {
1071                 int aligned = size - (size % 4);
1072         
1073                 if ((retval = target->type->read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1074                         return retval;
1075                 
1076                 buffer += aligned;
1077                 address += aligned;
1078                 size -= aligned;
1079         }
1080         
1081         /* handle tail writes of less than 4 bytes */
1082         if (size > 0)
1083         {
1084                 if ((retval = target->type->read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1085                         return retval;
1086         }
1087         
1088         return ERROR_OK;
1089 }
1090
1091 int target_checksum_memory(struct target_s *target, u32 address, u32 size, u32* crc)
1092 {
1093         u8 *buffer;
1094         int retval;
1095         int i;
1096         u32 checksum = 0;
1097         if (!target->type->examined)
1098         {
1099                 LOG_ERROR("Target not examined yet");
1100                 return ERROR_FAIL;
1101         }
1102         
1103         if ((retval = target->type->checksum_memory(target, address,
1104                 size, &checksum)) == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1105         {
1106                 buffer = malloc(size);
1107                 if (buffer == NULL)
1108                 {
1109                         LOG_ERROR("error allocating buffer for section (%d bytes)", size);
1110                         return ERROR_INVALID_ARGUMENTS;
1111                 }
1112                 retval = target_read_buffer(target, address, size, buffer);
1113                 if (retval != ERROR_OK)
1114                 {
1115                         free(buffer);
1116                         return retval;
1117                 }
1118
1119                 /* convert to target endianess */
1120                 for (i = 0; i < (size/sizeof(u32)); i++)
1121                 {
1122                         u32 target_data;
1123                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(u32)]);
1124                         target_buffer_set_u32(target, &buffer[i*sizeof(u32)], target_data);
1125                 }
1126
1127                 retval = image_calculate_checksum( buffer, size, &checksum );
1128                 free(buffer);
1129         }
1130         
1131         *crc = checksum;
1132         
1133         return retval;
1134 }
1135
1136 int target_blank_check_memory(struct target_s *target, u32 address, u32 size, u32* blank)
1137 {
1138         int retval;
1139         if (!target->type->examined)
1140         {
1141                 LOG_ERROR("Target not examined yet");
1142                 return ERROR_FAIL;
1143         }
1144         
1145         if (target->type->blank_check_memory == 0)
1146                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1147         
1148         retval = target->type->blank_check_memory(target, address, size, blank);
1149                         
1150         return retval;
1151 }
1152
1153 int target_read_u32(struct target_s *target, u32 address, u32 *value)
1154 {
1155         u8 value_buf[4];
1156         if (!target->type->examined)
1157         {
1158                 LOG_ERROR("Target not examined yet");
1159                 return ERROR_FAIL;
1160         }
1161
1162         int retval = target->type->read_memory(target, address, 4, 1, value_buf);
1163         
1164         if (retval == ERROR_OK)
1165         {
1166                 *value = target_buffer_get_u32(target, value_buf);
1167                 LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, *value);
1168         }
1169         else
1170         {
1171                 *value = 0x0;
1172                 LOG_DEBUG("address: 0x%8.8x failed", address);
1173         }
1174         
1175         return retval;
1176 }
1177
1178 int target_read_u16(struct target_s *target, u32 address, u16 *value)
1179 {
1180         u8 value_buf[2];
1181         if (!target->type->examined)
1182         {
1183                 LOG_ERROR("Target not examined yet");
1184                 return ERROR_FAIL;
1185         }
1186
1187         int retval = target->type->read_memory(target, address, 2, 1, value_buf);
1188         
1189         if (retval == ERROR_OK)
1190         {
1191                 *value = target_buffer_get_u16(target, value_buf);
1192                 LOG_DEBUG("address: 0x%8.8x, value: 0x%4.4x", address, *value);
1193         }
1194         else
1195         {
1196                 *value = 0x0;
1197                 LOG_DEBUG("address: 0x%8.8x failed", address);
1198         }
1199         
1200         return retval;
1201 }
1202
1203 int target_read_u8(struct target_s *target, u32 address, u8 *value)
1204 {
1205         int retval = target->type->read_memory(target, address, 1, 1, value);
1206         if (!target->type->examined)
1207         {
1208                 LOG_ERROR("Target not examined yet");
1209                 return ERROR_FAIL;
1210         }
1211
1212         if (retval == ERROR_OK)
1213         {
1214                 LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, *value);
1215         }
1216         else
1217         {
1218                 *value = 0x0;
1219                 LOG_DEBUG("address: 0x%8.8x failed", address);
1220         }
1221         
1222         return retval;
1223 }
1224
1225 int target_write_u32(struct target_s *target, u32 address, u32 value)
1226 {
1227         int retval;
1228         u8 value_buf[4];
1229         if (!target->type->examined)
1230         {
1231                 LOG_ERROR("Target not examined yet");
1232                 return ERROR_FAIL;
1233         }
1234
1235         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1236
1237         target_buffer_set_u32(target, value_buf, value);        
1238         if ((retval = target->type->write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1239         {
1240                 LOG_DEBUG("failed: %i", retval);
1241         }
1242         
1243         return retval;
1244 }
1245
1246 int target_write_u16(struct target_s *target, u32 address, u16 value)
1247 {
1248         int retval;
1249         u8 value_buf[2];
1250         if (!target->type->examined)
1251         {
1252                 LOG_ERROR("Target not examined yet");
1253                 return ERROR_FAIL;
1254         }
1255
1256         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1257
1258         target_buffer_set_u16(target, value_buf, value);        
1259         if ((retval = target->type->write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1260         {
1261                 LOG_DEBUG("failed: %i", retval);
1262         }
1263         
1264         return retval;
1265 }
1266
1267 int target_write_u8(struct target_s *target, u32 address, u8 value)
1268 {
1269         int retval;
1270         if (!target->type->examined)
1271         {
1272                 LOG_ERROR("Target not examined yet");
1273                 return ERROR_FAIL;
1274         }
1275
1276         LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, value);
1277
1278         if ((retval = target->type->read_memory(target, address, 1, 1, &value)) != ERROR_OK)
1279         {
1280                 LOG_DEBUG("failed: %i", retval);
1281         }
1282         
1283         return retval;
1284 }
1285
1286 int target_register_user_commands(struct command_context_s *cmd_ctx)
1287 {
1288         register_command(cmd_ctx,  NULL, "reg", handle_reg_command, COMMAND_EXEC, NULL);
1289         register_command(cmd_ctx,  NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state");
1290         register_command(cmd_ctx,  NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]");
1291         register_command(cmd_ctx,  NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target");
1292         register_command(cmd_ctx,  NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]");
1293         register_command(cmd_ctx,  NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]");
1294         register_command(cmd_ctx,  NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run|halt|init|run_and_halt|run_and_init]");
1295         register_command(cmd_ctx,  NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset");
1296
1297         register_command(cmd_ctx,  NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words <addr> [count]");
1298         register_command(cmd_ctx,  NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words <addr> [count]");
1299         register_command(cmd_ctx,  NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes <addr> [count]");
1300         
1301         register_command(cmd_ctx,  NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word <addr> <value> [count]");
1302         register_command(cmd_ctx,  NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word <addr> <value> [count]");
1303         register_command(cmd_ctx,  NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte <addr> <value> [count]");
1304         
1305         register_command(cmd_ctx,  NULL, "bp", handle_bp_command, COMMAND_EXEC, "set breakpoint <address> <length> [hw]");      
1306         register_command(cmd_ctx,  NULL, "rbp", handle_rbp_command, COMMAND_EXEC, "remove breakpoint <adress>");
1307         register_command(cmd_ctx,  NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint <address> <length> <r/w/a> [value] [mask]");    
1308         register_command(cmd_ctx,  NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint <adress>");
1309         
1310         register_command(cmd_ctx,  NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> ['bin'|'ihex'|'elf'|'s19'] [min_address] [max_length]");
1311         register_command(cmd_ctx,  NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>");
1312         register_command(cmd_ctx,  NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image <file> [offset] [type]");
1313         
1314         target_request_register_commands(cmd_ctx);
1315         trace_register_commands(cmd_ctx);
1316         
1317         return ERROR_OK;
1318 }
1319
1320 int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1321 {
1322         target_t *target = targets;
1323         int count = 0;
1324         
1325         if (argc == 1)
1326         {
1327                 int num = strtoul(args[0], NULL, 0);
1328                 
1329                 while (target)
1330                 {
1331                         count++;
1332                         target = target->next;
1333                 }
1334                 
1335                 if (num < count)
1336                         cmd_ctx->current_target = num;
1337                 else
1338                         command_print(cmd_ctx, "%i is out of bounds, only %i targets are configured", num, count);
1339                         
1340                 return ERROR_OK;
1341         }
1342                 
1343         while (target)
1344         {
1345                 command_print(cmd_ctx, "%i: %s (%s), state: %s", count++, target->type->name, target_endianess_strings[target->endianness], target_state_strings[target->state]);
1346                 target = target->next;
1347         }
1348         
1349         return ERROR_OK;
1350 }
1351
1352 int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1353 {
1354         int i;
1355         int found = 0;
1356         
1357         if (argc < 3)
1358         {
1359                 return ERROR_COMMAND_SYNTAX_ERROR;
1360         }
1361         
1362         /* search for the specified target */
1363         if (args[0] && (args[0][0] != 0))
1364         {
1365                 for (i = 0; target_types[i]; i++)
1366                 {
1367                         if (strcmp(args[0], target_types[i]->name) == 0)
1368                         {
1369                                 target_t **last_target_p = &targets;
1370                                 
1371                                 /* register target specific commands */
1372                                 if (target_types[i]->register_commands(cmd_ctx) != ERROR_OK)
1373                                 {
1374                                         LOG_ERROR("couldn't register '%s' commands", args[0]);
1375                                         exit(-1);
1376                                 }
1377
1378                                 if (*last_target_p)
1379                                 {
1380                                         while ((*last_target_p)->next)
1381                                                 last_target_p = &((*last_target_p)->next);
1382                                         last_target_p = &((*last_target_p)->next);
1383                                 }
1384
1385                                 *last_target_p = malloc(sizeof(target_t));
1386                                 
1387                                 /* allocate memory for each unique target type */
1388                                 (*last_target_p)->type = (target_type_t*)malloc(sizeof(target_type_t));
1389                                 *((*last_target_p)->type) = *target_types[i]; 
1390                                 
1391                                 if (strcmp(args[1], "big") == 0)
1392                                         (*last_target_p)->endianness = TARGET_BIG_ENDIAN;
1393                                 else if (strcmp(args[1], "little") == 0)
1394                                         (*last_target_p)->endianness = TARGET_LITTLE_ENDIAN;
1395                                 else
1396                                 {
1397                                         LOG_ERROR("endianness must be either 'little' or 'big', not '%s'", args[1]);
1398                                         return ERROR_COMMAND_SYNTAX_ERROR;
1399                                 }
1400                                 
1401                                 if (strcmp(args[2], "reset_halt") == 0)
1402                                 {
1403                                         LOG_WARNING("reset_mode argument is obsolete.");
1404                                         return ERROR_COMMAND_SYNTAX_ERROR;
1405                                 }
1406                                 else if (strcmp(args[2], "reset_run") == 0)
1407                                 {
1408                                         LOG_WARNING("reset_mode argument is obsolete.");
1409                                         return ERROR_COMMAND_SYNTAX_ERROR;
1410                                 }
1411                                 else if (strcmp(args[2], "reset_init") == 0)
1412                                 {
1413                                         LOG_WARNING("reset_mode argument is obsolete.");
1414                                         return ERROR_COMMAND_SYNTAX_ERROR;
1415                                 }
1416                                 else if (strcmp(args[2], "run_and_halt") == 0)
1417                                 {
1418                                         LOG_WARNING("reset_mode argument is obsolete.");
1419                                         return ERROR_COMMAND_SYNTAX_ERROR;
1420                                 }
1421                                 else if (strcmp(args[2], "run_and_init") == 0)
1422                                 {
1423                                         LOG_WARNING("reset_mode argument is obsolete.");
1424                                         return ERROR_COMMAND_SYNTAX_ERROR;
1425                                 }
1426                                 else
1427                                 {
1428                                         /* Kludge! we want to make this reset arg optional while remaining compatible! */
1429                                         args--;
1430                                         argc++;
1431                                 }
1432                                 (*last_target_p)->run_and_halt_time = 1000; /* default 1s */
1433                                 
1434                                 (*last_target_p)->working_area = 0x0;
1435                                 (*last_target_p)->working_area_size = 0x0;
1436                                 (*last_target_p)->working_areas = NULL;
1437                                 (*last_target_p)->backup_working_area = 0;
1438                                 
1439                                 (*last_target_p)->state = TARGET_UNKNOWN;
1440                                 (*last_target_p)->debug_reason = DBG_REASON_UNDEFINED;
1441                                 (*last_target_p)->reg_cache = NULL;
1442                                 (*last_target_p)->breakpoints = NULL;
1443                                 (*last_target_p)->watchpoints = NULL;
1444                                 (*last_target_p)->next = NULL;
1445                                 (*last_target_p)->arch_info = NULL;
1446                                 
1447                                 /* initialize trace information */
1448                                 (*last_target_p)->trace_info = malloc(sizeof(trace_t));
1449                                 (*last_target_p)->trace_info->num_trace_points = 0;
1450                                 (*last_target_p)->trace_info->trace_points_size = 0;
1451                                 (*last_target_p)->trace_info->trace_points = NULL;
1452                                 (*last_target_p)->trace_info->trace_history_size = 0;
1453                                 (*last_target_p)->trace_info->trace_history = NULL;
1454                                 (*last_target_p)->trace_info->trace_history_pos = 0;
1455                                 (*last_target_p)->trace_info->trace_history_overflowed = 0;
1456                                 
1457                                 (*last_target_p)->dbgmsg = NULL;
1458                                 (*last_target_p)->dbg_msg_enabled = 0;
1459                                                                 
1460                                 (*last_target_p)->type->target_command(cmd_ctx, cmd, args, argc, *last_target_p);
1461                                 
1462                                 found = 1;
1463                                 break;
1464                         }
1465                 }
1466         }
1467         
1468         /* no matching target found */
1469         if (!found)
1470         {
1471                 LOG_ERROR("target '%s' not found", args[0]);
1472                 return ERROR_COMMAND_SYNTAX_ERROR;
1473         }
1474
1475         return ERROR_OK;
1476 }
1477
1478 int target_invoke_script(struct command_context_s *cmd_ctx, target_t *target, char *name)
1479 {
1480         return command_run_linef(cmd_ctx, " if {[catch {info body target_%d_%s} t]==0} {target_%d_%s}", 
1481                         get_num_by_target(target), name, 
1482                         get_num_by_target(target), name);
1483 }
1484
1485 int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1486 {
1487         target_t *target = NULL;
1488         
1489         if (argc < 2)
1490         {
1491                 return ERROR_COMMAND_SYNTAX_ERROR;
1492         }
1493         
1494         target = get_target_by_num(strtoul(args[0], NULL, 0));
1495         if (!target)
1496         {
1497                 return ERROR_COMMAND_SYNTAX_ERROR;
1498         }
1499         
1500         target->run_and_halt_time = strtoul(args[1], NULL, 0);
1501         
1502         return ERROR_OK;
1503 }
1504
1505 int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1506 {
1507         target_t *target = NULL;
1508         
1509         if ((argc < 4) || (argc > 5))
1510         {
1511                 return ERROR_COMMAND_SYNTAX_ERROR;
1512         }
1513         
1514         target = get_target_by_num(strtoul(args[0], NULL, 0));
1515         if (!target)
1516         {
1517                 return ERROR_COMMAND_SYNTAX_ERROR;
1518         }
1519         target_free_all_working_areas(target);
1520         
1521         target->working_area_phys = target->working_area_virt = strtoul(args[1], NULL, 0);
1522         if (argc == 5)
1523         {
1524                 target->working_area_virt = strtoul(args[4], NULL, 0);
1525         }
1526         target->working_area_size = strtoul(args[2], NULL, 0);
1527         
1528         if (strcmp(args[3], "backup") == 0)
1529         {
1530                 target->backup_working_area = 1;
1531         }
1532         else if (strcmp(args[3], "nobackup") == 0)
1533         {
1534                 target->backup_working_area = 0;
1535         }
1536         else
1537         {
1538                 LOG_ERROR("unrecognized <backup|nobackup> argument (%s)", args[3]);
1539                 return ERROR_COMMAND_SYNTAX_ERROR;
1540         }
1541         
1542         return ERROR_OK;
1543 }
1544
1545
1546 /* process target state changes */
1547 int handle_target(void *priv)
1548 {
1549         target_t *target = targets;
1550         
1551         while (target)
1552         {
1553                 if (target_continous_poll)
1554                 {
1555                         /* polling may fail silently until the target has been examined */
1556                         target_poll(target);
1557                 }
1558         
1559                 target = target->next;
1560         }
1561         
1562         return ERROR_OK;
1563 }
1564
1565 int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1566 {
1567         target_t *target;
1568         reg_t *reg = NULL;
1569         int count = 0;
1570         char *value;
1571         
1572         LOG_DEBUG("-");
1573         
1574         target = get_current_target(cmd_ctx);
1575         
1576         /* list all available registers for the current target */
1577         if (argc == 0)
1578         {
1579                 reg_cache_t *cache = target->reg_cache;
1580                 
1581                 count = 0;
1582                 while(cache)
1583                 {
1584                         int i;
1585                         for (i = 0; i < cache->num_regs; i++)
1586                         {
1587                                 value = buf_to_str(cache->reg_list[i].value, cache->reg_list[i].size, 16);
1588                                 command_print(cmd_ctx, "(%i) %s (/%i): 0x%s (dirty: %i, valid: %i)", count++, cache->reg_list[i].name, cache->reg_list[i].size, value, cache->reg_list[i].dirty, cache->reg_list[i].valid);
1589                                 free(value);
1590                         }
1591                         cache = cache->next;
1592                 }
1593                 
1594                 return ERROR_OK;
1595         }
1596         
1597         /* access a single register by its ordinal number */
1598         if ((args[0][0] >= '0') && (args[0][0] <= '9'))
1599         {
1600                 int num = strtoul(args[0], NULL, 0);
1601                 reg_cache_t *cache = target->reg_cache;
1602                 
1603                 count = 0;
1604                 while(cache)
1605                 {
1606                         int i;
1607                         for (i = 0; i < cache->num_regs; i++)
1608                         {
1609                                 if (count++ == num)
1610                                 {
1611                                         reg = &cache->reg_list[i];
1612                                         break;
1613                                 }
1614                         }
1615                         if (reg)
1616                                 break;
1617                         cache = cache->next;
1618                 }
1619                 
1620                 if (!reg)
1621                 {
1622                         command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1623                         return ERROR_OK;
1624                 }
1625         } else /* access a single register by its name */
1626         {
1627                 reg = register_get_by_name(target->reg_cache, args[0], 1);
1628                 
1629                 if (!reg)
1630                 {
1631                         command_print(cmd_ctx, "register %s not found in current target", args[0]);
1632                         return ERROR_OK;
1633                 }
1634         }
1635
1636         /* display a register */
1637         if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
1638         {
1639                 if ((argc == 2) && (strcmp(args[1], "force") == 0))
1640                         reg->valid = 0;
1641                 
1642                 if (reg->valid == 0)
1643                 {
1644                         reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1645                         if (arch_type == NULL)
1646                         {
1647                                 LOG_ERROR("BUG: encountered unregistered arch type");
1648                                 return ERROR_OK;
1649                         }
1650                         arch_type->get(reg);
1651                 }
1652                 value = buf_to_str(reg->value, reg->size, 16);
1653                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1654                 free(value);
1655                 return ERROR_OK;
1656         }
1657         
1658         /* set register value */
1659         if (argc == 2)
1660         {
1661                 u8 *buf = malloc(CEIL(reg->size, 8));
1662                 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
1663
1664                 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1665                 if (arch_type == NULL)
1666                 {
1667                         LOG_ERROR("BUG: encountered unregistered arch type");
1668                         return ERROR_OK;
1669                 }
1670                 
1671                 arch_type->set(reg, buf);
1672                 
1673                 value = buf_to_str(reg->value, reg->size, 16);
1674                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1675                 free(value);
1676                 
1677                 free(buf);
1678                 
1679                 return ERROR_OK;
1680         }
1681         
1682         command_print(cmd_ctx, "usage: reg <#|name> [value]");
1683         
1684         return ERROR_OK;
1685 }
1686
1687
1688 int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1689 {
1690         target_t *target = get_current_target(cmd_ctx);
1691
1692         if (argc == 0)
1693         {
1694                 target_poll(target);
1695                 target_arch_state(target);
1696         }
1697         else
1698         {
1699                 if (strcmp(args[0], "on") == 0)
1700                 {
1701                         target_continous_poll = 1;
1702                 }
1703                 else if (strcmp(args[0], "off") == 0)
1704                 {
1705                         target_continous_poll = 0;
1706                 }
1707                 else
1708                 {
1709                         command_print(cmd_ctx, "arg is \"on\" or \"off\"");
1710                 }
1711         }
1712         
1713         
1714         return ERROR_OK;
1715 }
1716
1717 int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1718 {
1719         int ms = 5000;
1720         
1721         if (argc > 0)
1722         {
1723                 char *end;
1724
1725                 ms = strtoul(args[0], &end, 0) * 1000;
1726                 if (*end)
1727                 {
1728                         command_print(cmd_ctx, "usage: %s [seconds]", cmd);
1729                         return ERROR_OK;
1730                 }
1731         }
1732         target_t *target = get_current_target(cmd_ctx);
1733
1734         return target_wait_state(target, TARGET_HALTED, ms); 
1735 }
1736
1737 int target_wait_state(target_t *target, enum target_state state, int ms)
1738 {
1739         int retval;
1740         struct timeval timeout, now;
1741         int once=1;
1742         gettimeofday(&timeout, NULL);
1743         timeval_add_time(&timeout, 0, ms * 1000);
1744         
1745         for (;;)
1746         {
1747                 if ((retval=target_poll(target))!=ERROR_OK)
1748                         return retval;
1749                 target_call_timer_callbacks_now();
1750                 if (target->state == state)
1751                 {
1752                         break;
1753                 }
1754                 if (once)
1755                 {
1756                         once=0;
1757                         LOG_USER("waiting for target %s...", target_state_strings[state]);
1758                 }
1759                 
1760                 gettimeofday(&now, NULL);
1761                 if ((now.tv_sec > timeout.tv_sec) || ((now.tv_sec == timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
1762                 {
1763                         LOG_ERROR("timed out while waiting for target %s", target_state_strings[state]);
1764                         break;
1765                 }
1766         }
1767         
1768         return ERROR_OK;
1769 }
1770
1771 int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1772 {
1773         int retval;
1774         target_t *target = get_current_target(cmd_ctx);
1775
1776         LOG_DEBUG("-");
1777
1778         if ((retval = target_halt(target)) != ERROR_OK)
1779         {
1780                 return retval;
1781         }
1782         
1783         return handle_wait_halt_command(cmd_ctx, cmd, args, argc);
1784 }
1785
1786 int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1787 {
1788         target_t *target = get_current_target(cmd_ctx);
1789         
1790         LOG_USER("requesting target halt and executing a soft reset");
1791         
1792         target->type->soft_reset_halt(target);
1793         
1794         return ERROR_OK;
1795 }
1796
1797 int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1798 {
1799         target_t *target = get_current_target(cmd_ctx);
1800         enum target_reset_mode reset_mode = RESET_RUN;
1801         
1802         LOG_DEBUG("-");
1803         
1804         if (argc >= 1)
1805         {
1806                 if (strcmp("run", args[0]) == 0)
1807                         reset_mode = RESET_RUN;
1808                 else if (strcmp("halt", args[0]) == 0)
1809                         reset_mode = RESET_HALT;
1810                 else if (strcmp("init", args[0]) == 0)
1811                         reset_mode = RESET_INIT;
1812                 else if (strcmp("run_and_halt", args[0]) == 0)
1813                 {
1814                         reset_mode = RESET_RUN_AND_HALT;
1815                         if (argc >= 2)
1816                         {
1817                                 target->run_and_halt_time = strtoul(args[1], NULL, 0);
1818                         }
1819                 }
1820                 else if (strcmp("run_and_init", args[0]) == 0)
1821                 {
1822                         reset_mode = RESET_RUN_AND_INIT;
1823                         if (argc >= 2)
1824                         {
1825                                 target->run_and_halt_time = strtoul(args[1], NULL, 0);
1826                         }
1827                 }
1828                 else
1829                 {
1830                         command_print(cmd_ctx, "usage: reset ['run', 'halt', 'init', 'run_and_halt', 'run_and_init]");
1831                         return ERROR_OK;
1832                 }
1833         }
1834         
1835         /* reset *all* targets */
1836         target_process_reset(cmd_ctx, reset_mode);
1837         
1838         return ERROR_OK;
1839 }
1840
1841 int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1842 {
1843         int retval;
1844         target_t *target = get_current_target(cmd_ctx);
1845         
1846         target_invoke_script(cmd_ctx, target, "pre_resume");
1847         
1848         if (argc == 0)
1849                 retval = target_resume(target, 1, 0, 1, 0); /* current pc, addr = 0, handle breakpoints, not debugging */
1850         else if (argc == 1)
1851                 retval = target_resume(target, 0, strtoul(args[0], NULL, 0), 1, 0); /* addr = args[0], handle breakpoints, not debugging */
1852         else
1853         {
1854                 return ERROR_COMMAND_SYNTAX_ERROR;
1855         }
1856         
1857         return retval;
1858 }
1859
1860 int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1861 {
1862         target_t *target = get_current_target(cmd_ctx);
1863         
1864         LOG_DEBUG("-");
1865         
1866         if (argc == 0)
1867                 target->type->step(target, 1, 0, 1); /* current pc, addr = 0, handle breakpoints */
1868
1869         if (argc == 1)
1870                 target->type->step(target, 0, strtoul(args[0], NULL, 0), 1); /* addr = args[0], handle breakpoints */
1871         
1872         return ERROR_OK;
1873 }
1874
1875 int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1876 {
1877         const int line_bytecnt = 32;
1878         int count = 1;
1879         int size = 4;
1880         u32 address = 0;
1881         int line_modulo;
1882         int i;
1883
1884         char output[128];
1885         int output_len;
1886
1887         int retval;
1888
1889         u8 *buffer;
1890         target_t *target = get_current_target(cmd_ctx);
1891
1892         if (argc < 1)
1893                 return ERROR_OK;
1894
1895         if (argc == 2)
1896                 count = strtoul(args[1], NULL, 0);
1897
1898         address = strtoul(args[0], NULL, 0);
1899         
1900
1901         switch (cmd[2])
1902         {
1903                 case 'w':
1904                         size = 4; line_modulo = line_bytecnt / 4;
1905                         break;
1906                 case 'h':
1907                         size = 2; line_modulo = line_bytecnt / 2;
1908                         break;
1909                 case 'b':
1910                         size = 1; line_modulo = line_bytecnt / 1;
1911                         break;
1912                 default:
1913                         return ERROR_OK;
1914         }
1915
1916         buffer = calloc(count, size);
1917         retval  = target->type->read_memory(target, address, size, count, buffer);
1918         if (retval == ERROR_OK)
1919         {
1920                 output_len = 0;
1921         
1922                 for (i = 0; i < count; i++)
1923                 {
1924                         if (i%line_modulo == 0)
1925                                 output_len += snprintf(output + output_len, 128 - output_len, "0x%8.8x: ", address + (i*size));
1926                         
1927                         switch (size)
1928                         {
1929                                 case 4:
1930                                         output_len += snprintf(output + output_len, 128 - output_len, "%8.8x ", target_buffer_get_u32(target, &buffer[i*4]));
1931                                         break;
1932                                 case 2:
1933                                         output_len += snprintf(output + output_len, 128 - output_len, "%4.4x ", target_buffer_get_u16(target, &buffer[i*2]));
1934                                         break;
1935                                 case 1:
1936                                         output_len += snprintf(output + output_len, 128 - output_len, "%2.2x ", buffer[i*1]);
1937                                         break;
1938                         }
1939         
1940                         if ((i%line_modulo == line_modulo-1) || (i == count - 1))
1941                         {
1942                                 command_print(cmd_ctx, output);
1943                                 output_len = 0;
1944                         }
1945                 }
1946         }
1947
1948         free(buffer);
1949         
1950         return retval;
1951 }
1952
1953 int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1954 {
1955         u32 address = 0;
1956         u32 value = 0;
1957         int count = 1;
1958         int i;
1959         int wordsize;
1960         target_t *target = get_current_target(cmd_ctx);
1961         u8 value_buf[4];
1962
1963          if ((argc < 2) || (argc > 3))
1964                 return ERROR_COMMAND_SYNTAX_ERROR;
1965
1966         address = strtoul(args[0], NULL, 0);
1967         value = strtoul(args[1], NULL, 0);
1968         if (argc == 3)
1969                 count = strtoul(args[2], NULL, 0);
1970         
1971         switch (cmd[2])
1972         {
1973                 case 'w':
1974                         wordsize = 4;
1975                         target_buffer_set_u32(target, value_buf, value);
1976                         break;
1977                 case 'h':
1978                         wordsize = 2;
1979                         target_buffer_set_u16(target, value_buf, value);
1980                         break;
1981                 case 'b':
1982                         wordsize = 1;
1983                         value_buf[0] = value;
1984                         break;
1985                 default:
1986                         return ERROR_COMMAND_SYNTAX_ERROR;
1987         }
1988         for (i=0; i<count; i++)
1989         {
1990                 int retval;
1991                 switch (wordsize)
1992                 {
1993                         case 4:
1994                                 retval = target->type->write_memory(target, address + i*wordsize, 4, 1, value_buf);
1995                                 break;
1996                         case 2:
1997                                 retval = target->type->write_memory(target, address + i*wordsize, 2, 1, value_buf);
1998                                 break;
1999                         case 1:
2000                                 retval = target->type->write_memory(target, address + i*wordsize, 1, 1, value_buf);
2001                         break;
2002                         default:
2003                         return ERROR_OK;
2004                 }
2005                 if (retval!=ERROR_OK)
2006                 {
2007                         return retval;
2008                 }
2009         }
2010
2011         return ERROR_OK;
2012
2013 }
2014
2015 int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2016 {
2017         u8 *buffer;
2018         u32 buf_cnt;
2019         u32 image_size;
2020         u32 min_address=0;
2021         u32 max_address=0xffffffff;
2022         int i;
2023         int retval;
2024
2025         image_t image;  
2026         
2027         duration_t duration;
2028         char *duration_text;
2029         
2030         target_t *target = get_current_target(cmd_ctx);
2031
2032         if ((argc < 1)||(argc > 5))
2033         {
2034                 return ERROR_COMMAND_SYNTAX_ERROR;
2035         }
2036         
2037         /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
2038         if (argc >= 2)
2039         {
2040                 image.base_address_set = 1;
2041                 image.base_address = strtoul(args[1], NULL, 0);
2042         }
2043         else
2044         {
2045                 image.base_address_set = 0;
2046         }
2047         
2048         
2049         image.start_address_set = 0;
2050         
2051         if (argc>=4)
2052         {
2053                 min_address=strtoul(args[3], NULL, 0);
2054         }
2055         if (argc>=5)
2056         {
2057                 max_address=strtoul(args[4], NULL, 0)+min_address;
2058         }
2059         
2060         if (min_address>max_address)
2061         {
2062                 return ERROR_COMMAND_SYNTAX_ERROR;
2063         }
2064         
2065
2066         duration_start_measure(&duration);
2067         
2068         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
2069         {
2070                 return ERROR_OK;
2071         }
2072         
2073         image_size = 0x0;
2074         retval = ERROR_OK;
2075         for (i = 0; i < image.num_sections; i++)
2076         {
2077                 buffer = malloc(image.sections[i].size);
2078                 if (buffer == NULL)
2079                 {
2080                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2081                         break;
2082                 }
2083                 
2084                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2085                 {
2086                         free(buffer);
2087                         break;
2088                 }
2089                 
2090                 u32 offset=0;
2091                 u32 length=buf_cnt;
2092                 
2093                 
2094                 /* DANGER!!! beware of unsigned comparision here!!! */
2095                 
2096                 if ((image.sections[i].base_address+buf_cnt>=min_address)&&
2097                                 (image.sections[i].base_address<max_address))
2098                 {
2099                         if (image.sections[i].base_address<min_address)
2100                         {
2101                                 /* clip addresses below */
2102                                 offset+=min_address-image.sections[i].base_address;
2103                                 length-=offset;
2104                         }
2105                         
2106                         if (image.sections[i].base_address+buf_cnt>max_address)
2107                         {
2108                                 length-=(image.sections[i].base_address+buf_cnt)-max_address;
2109                         }
2110                         
2111                         if ((retval = target_write_buffer(target, image.sections[i].base_address+offset, length, buffer+offset)) != ERROR_OK)
2112                         {
2113                                 free(buffer);
2114                                 break;
2115                         }
2116                         image_size += length;
2117                         command_print(cmd_ctx, "%u byte written at address 0x%8.8x", length, image.sections[i].base_address+offset);
2118                 }
2119                 
2120                 free(buffer);
2121         }
2122
2123         duration_stop_measure(&duration, &duration_text);
2124         if (retval==ERROR_OK)
2125         {
2126                 command_print(cmd_ctx, "downloaded %u byte in %s", image_size, duration_text);
2127         }
2128         free(duration_text);
2129         
2130         image_close(&image);
2131
2132         return retval;
2133
2134 }
2135
2136 int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2137 {
2138         fileio_t fileio;
2139         
2140         u32 address;
2141         u32 size;
2142         u8 buffer[560];
2143         int retval=ERROR_OK;
2144         
2145         duration_t duration;
2146         char *duration_text;
2147         
2148         target_t *target = get_current_target(cmd_ctx);
2149
2150         if (argc != 3)
2151         {
2152                 command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
2153                 return ERROR_OK;
2154         }
2155
2156         address = strtoul(args[1], NULL, 0);
2157         size = strtoul(args[2], NULL, 0);
2158
2159         if ((address & 3) || (size & 3))
2160         {
2161                 command_print(cmd_ctx, "only 32-bit aligned address and size are supported");
2162                 return ERROR_OK;
2163         }
2164         
2165         if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2166         {
2167                 return ERROR_OK;
2168         }
2169         
2170         duration_start_measure(&duration);
2171         
2172         while (size > 0)
2173         {
2174                 u32 size_written;
2175                 u32 this_run_size = (size > 560) ? 560 : size;
2176                 
2177                 retval = target->type->read_memory(target, address, 4, this_run_size / 4, buffer);
2178                 if (retval != ERROR_OK)
2179                 {
2180                         break;
2181                 }
2182                 
2183                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2184                 if (retval != ERROR_OK)
2185                 {
2186                         break;
2187                 }
2188                 
2189                 size -= this_run_size;
2190                 address += this_run_size;
2191         }
2192
2193         fileio_close(&fileio);
2194
2195         duration_stop_measure(&duration, &duration_text);
2196         if (retval==ERROR_OK)
2197         {
2198                 command_print(cmd_ctx, "dumped %"PRIi64" byte in %s", fileio.size, duration_text);
2199         }
2200         free(duration_text);
2201         
2202         return ERROR_OK;
2203 }
2204
2205 int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2206 {
2207         u8 *buffer;
2208         u32 buf_cnt;
2209         u32 image_size;
2210         int i;
2211         int retval;
2212         u32 checksum = 0;
2213         u32 mem_checksum = 0;
2214
2215         image_t image;  
2216         
2217         duration_t duration;
2218         char *duration_text;
2219         
2220         target_t *target = get_current_target(cmd_ctx);
2221         
2222         if (argc < 1)
2223         {
2224                 return ERROR_COMMAND_SYNTAX_ERROR;
2225         }
2226         
2227         if (!target)
2228         {
2229                 LOG_ERROR("no target selected");
2230                 return ERROR_FAIL;
2231         }
2232         
2233         duration_start_measure(&duration);
2234         
2235         if (argc >= 2)
2236         {
2237                 image.base_address_set = 1;
2238                 image.base_address = strtoul(args[1], NULL, 0);
2239         }
2240         else
2241         {
2242                 image.base_address_set = 0;
2243                 image.base_address = 0x0;
2244         }
2245
2246         image.start_address_set = 0;
2247
2248         if ((retval=image_open(&image, args[0], (argc == 3) ? args[2] : NULL)) != ERROR_OK)
2249         {
2250                 return retval;
2251         }
2252         
2253         image_size = 0x0;
2254         retval=ERROR_OK;
2255         for (i = 0; i < image.num_sections; i++)
2256         {
2257                 buffer = malloc(image.sections[i].size);
2258                 if (buffer == NULL)
2259                 {
2260                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2261                         break;
2262                 }
2263                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2264                 {
2265                         free(buffer);
2266                         break;
2267                 }
2268                 
2269                 /* calculate checksum of image */
2270                 image_calculate_checksum( buffer, buf_cnt, &checksum );
2271                 
2272                 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2273                 if( retval != ERROR_OK )
2274                 {
2275                         free(buffer);
2276                         break;
2277                 }
2278                 
2279                 if( checksum != mem_checksum )
2280                 {
2281                         /* failed crc checksum, fall back to a binary compare */
2282                         u8 *data;
2283                         
2284                         command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
2285                         
2286                         data = (u8*)malloc(buf_cnt);
2287                         
2288                         /* Can we use 32bit word accesses? */
2289                         int size = 1;
2290                         int count = buf_cnt;
2291                         if ((count % 4) == 0)
2292                         {
2293                                 size *= 4;
2294                                 count /= 4;
2295                         }
2296                         retval = target->type->read_memory(target, image.sections[i].base_address, size, count, data);
2297                         if (retval == ERROR_OK)
2298                         {
2299                                 int t;
2300                                 for (t = 0; t < buf_cnt; t++)
2301                                 {
2302                                         if (data[t] != buffer[t])
2303                                         {
2304                                                 command_print(cmd_ctx, "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n", t + image.sections[i].base_address, data[t], buffer[t]);
2305                                                 free(data);
2306                                                 free(buffer);
2307                                                 retval=ERROR_FAIL;
2308                                                 goto done;
2309                                         }
2310                                 }
2311                         }
2312                         
2313                         free(data);
2314                 }
2315                 
2316                 free(buffer);
2317                 image_size += buf_cnt;
2318         }
2319 done:   
2320         duration_stop_measure(&duration, &duration_text);
2321         if (retval==ERROR_OK)
2322         {
2323                 command_print(cmd_ctx, "verified %u bytes in %s", image_size, duration_text);
2324         }
2325         free(duration_text);
2326         
2327         image_close(&image);
2328         
2329         return retval;
2330 }
2331
2332 int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2333 {
2334         int retval;
2335         target_t *target = get_current_target(cmd_ctx);
2336
2337         if (argc == 0)
2338         {
2339                 breakpoint_t *breakpoint = target->breakpoints;
2340
2341                 while (breakpoint)
2342                 {
2343                         if (breakpoint->type == BKPT_SOFT)
2344                         {
2345                                 char* buf = buf_to_str(breakpoint->orig_instr, breakpoint->length, 16);
2346                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i, 0x%s", breakpoint->address, breakpoint->length, breakpoint->set, buf);
2347                                 free(buf);
2348                         }
2349                         else
2350                         {
2351                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i", breakpoint->address, breakpoint->length, breakpoint->set);
2352                         }
2353                         breakpoint = breakpoint->next;
2354                 }
2355         }
2356         else if (argc >= 2)
2357         {
2358                 int hw = BKPT_SOFT;
2359                 u32 length = 0;
2360
2361                 length = strtoul(args[1], NULL, 0);
2362                 
2363                 if (argc >= 3)
2364                         if (strcmp(args[2], "hw") == 0)
2365                                 hw = BKPT_HARD;
2366
2367                 if ((retval = breakpoint_add(target, strtoul(args[0], NULL, 0), length, hw)) != ERROR_OK)
2368                 {
2369                         LOG_ERROR("Failure setting breakpoints");
2370                 }
2371                 else
2372                 {
2373                         command_print(cmd_ctx, "breakpoint added at address 0x%8.8x", strtoul(args[0], NULL, 0));
2374                 }
2375         }
2376         else
2377         {
2378                 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
2379         }
2380
2381         return ERROR_OK;
2382 }
2383
2384 int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2385 {
2386         target_t *target = get_current_target(cmd_ctx);
2387
2388         if (argc > 0)
2389                 breakpoint_remove(target, strtoul(args[0], NULL, 0));
2390
2391         return ERROR_OK;
2392 }
2393
2394 int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2395 {
2396         target_t *target = get_current_target(cmd_ctx);
2397         int retval;
2398
2399         if (argc == 0)
2400         {
2401                 watchpoint_t *watchpoint = target->watchpoints;
2402
2403                 while (watchpoint)
2404                 {
2405                         command_print(cmd_ctx, "address: 0x%8.8x, len: 0x%8.8x, r/w/a: %i, value: 0x%8.8x, mask: 0x%8.8x", watchpoint->address, watchpoint->length, watchpoint->rw, watchpoint->value, watchpoint->mask);
2406                         watchpoint = watchpoint->next;
2407                 }
2408         } 
2409         else if (argc >= 2)
2410         {
2411                 enum watchpoint_rw type = WPT_ACCESS;
2412                 u32 data_value = 0x0;
2413                 u32 data_mask = 0xffffffff;
2414                 
2415                 if (argc >= 3)
2416                 {
2417                         switch(args[2][0])
2418                         {
2419                                 case 'r':
2420                                         type = WPT_READ;
2421                                         break;
2422                                 case 'w':
2423                                         type = WPT_WRITE;
2424                                         break;
2425                                 case 'a':
2426                                         type = WPT_ACCESS;
2427                                         break;
2428                                 default:
2429                                         command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2430                                         return ERROR_OK;
2431                         }
2432                 }
2433                 if (argc >= 4)
2434                 {
2435                         data_value = strtoul(args[3], NULL, 0);
2436                 }
2437                 if (argc >= 5)
2438                 {
2439                         data_mask = strtoul(args[4], NULL, 0);
2440                 }
2441                 
2442                 if ((retval = watchpoint_add(target, strtoul(args[0], NULL, 0),
2443                                 strtoul(args[1], NULL, 0), type, data_value, data_mask)) != ERROR_OK)
2444                 {
2445                         LOG_ERROR("Failure setting breakpoints");
2446                 }
2447         }
2448         else
2449         {
2450                 command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2451         }
2452                 
2453         return ERROR_OK;
2454 }
2455
2456 int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2457 {
2458         target_t *target = get_current_target(cmd_ctx);
2459
2460         if (argc > 0)
2461                 watchpoint_remove(target, strtoul(args[0], NULL, 0));
2462         
2463         return ERROR_OK;
2464 }
2465
2466 int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc)
2467 {
2468         int retval;
2469         target_t *target = get_current_target(cmd_ctx);
2470         u32 va;
2471         u32 pa;
2472
2473         if (argc != 1)
2474         {
2475                 return ERROR_COMMAND_SYNTAX_ERROR;
2476         }
2477         va = strtoul(args[0], NULL, 0);
2478
2479         retval = target->type->virt2phys(target, va, &pa);
2480         if (retval == ERROR_OK)
2481         {
2482                 command_print(cmd_ctx, "Physical address 0x%08x", pa);
2483         }
2484         else
2485         {
2486                 /* lower levels will have logged a detailed error which is 
2487                  * forwarded to telnet/GDB session.  
2488                  */
2489         }
2490         return retval;
2491 }
2492 static void writeLong(FILE *f, int l)
2493 {
2494         int i;
2495         for (i=0; i<4; i++)
2496         {
2497                 char c=(l>>(i*8))&0xff;
2498                 fwrite(&c, 1, 1, f); 
2499         }
2500         
2501 }
2502 static void writeString(FILE *f, char *s)
2503 {
2504         fwrite(s, 1, strlen(s), f); 
2505 }
2506
2507
2508
2509 // Dump a gmon.out histogram file.
2510 static void writeGmon(u32 *samples, int sampleNum, char *filename)
2511 {
2512         int i;
2513         FILE *f=fopen(filename, "w");
2514         if (f==NULL)
2515                 return;
2516         fwrite("gmon", 1, 4, f);
2517         writeLong(f, 0x00000001); // Version
2518         writeLong(f, 0); // padding
2519         writeLong(f, 0); // padding
2520         writeLong(f, 0); // padding
2521                                 
2522         fwrite("", 1, 1, f);  // GMON_TAG_TIME_HIST 
2523
2524         // figure out bucket size
2525         u32 min=samples[0];
2526         u32 max=samples[0];
2527         for (i=0; i<sampleNum; i++)
2528         {
2529                 if (min>samples[i])
2530                 {
2531                         min=samples[i];
2532                 }
2533                 if (max<samples[i])
2534                 {
2535                         max=samples[i];
2536                 }
2537         }
2538
2539         int addressSpace=(max-min+1);
2540         
2541         static int const maxBuckets=256*1024; // maximum buckets.
2542         int length=addressSpace;
2543         if (length > maxBuckets)
2544         {
2545                 length=maxBuckets; 
2546         }
2547         int *buckets=malloc(sizeof(int)*length);
2548         if (buckets==NULL)
2549         {
2550                 fclose(f);
2551                 return;
2552         }
2553         memset(buckets, 0, sizeof(int)*length);
2554         for (i=0; i<sampleNum;i++)
2555         {
2556                 u32 address=samples[i];
2557                 long long a=address-min;
2558                 long long b=length-1;
2559                 long long c=addressSpace-1;
2560                 int index=(a*b)/c; // danger!!!! int32 overflows 
2561                 buckets[index]++;
2562         }
2563         
2564         //                         append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr))
2565         writeLong(f, min);                                      // low_pc
2566         writeLong(f, max);              // high_pc
2567         writeLong(f, length);           // # of samples
2568         writeLong(f, 64000000);                         // 64MHz
2569         writeString(f, "seconds");
2570         for (i=0; i<(15-strlen("seconds")); i++)
2571         {
2572                 fwrite("", 1, 1, f);  // padding
2573         }
2574         writeString(f, "s");
2575                 
2576 //                         append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size)
2577         
2578         char *data=malloc(2*length);
2579         if (data!=NULL)
2580         {
2581                 for (i=0; i<length;i++)
2582                 {
2583                         int val;
2584                         val=buckets[i];
2585                         if (val>65535)
2586                         {
2587                                 val=65535;
2588                         }
2589                         data[i*2]=val&0xff;
2590                         data[i*2+1]=(val>>8)&0xff;
2591                 }
2592                 free(buckets);
2593                 fwrite(data, 1, length*2, f);
2594                 free(data);
2595         } else
2596         {
2597                 free(buckets);
2598         }
2599
2600         fclose(f);
2601 }
2602
2603 /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
2604 int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2605 {
2606         target_t *target = get_current_target(cmd_ctx);
2607         struct timeval timeout, now;
2608         
2609         gettimeofday(&timeout, NULL);
2610         if (argc!=2)
2611         {
2612                 return ERROR_COMMAND_SYNTAX_ERROR;
2613         }
2614         char *end;
2615         timeval_add_time(&timeout, strtoul(args[0], &end, 0), 0);
2616         if (*end) 
2617         {
2618                 return ERROR_OK;
2619         }
2620         
2621         command_print(cmd_ctx, "Starting profiling. Halting and resuming the target as often as we can...");
2622
2623         static const int maxSample=10000;
2624         u32 *samples=malloc(sizeof(u32)*maxSample);
2625         if (samples==NULL)
2626                 return ERROR_OK;
2627         
2628         int numSamples=0;
2629         int retval=ERROR_OK;
2630         // hopefully it is safe to cache! We want to stop/restart as quickly as possible.
2631         reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1);
2632         
2633         for (;;)
2634         {
2635                 target_poll(target);
2636                 if (target->state == TARGET_HALTED)
2637                 {
2638                         u32 t=*((u32 *)reg->value);
2639                         samples[numSamples++]=t;
2640                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2641                         target_poll(target);
2642                         usleep(10*1000); // sleep 10ms, i.e. <100 samples/second.
2643                 } else if (target->state == TARGET_RUNNING)
2644                 {
2645                         // We want to quickly sample the PC.
2646                         target_halt(target);
2647                 } else
2648                 {
2649                         command_print(cmd_ctx, "Target not halted or running");
2650                         retval=ERROR_OK;
2651                         break;
2652                 }
2653                 if (retval!=ERROR_OK)
2654                 {
2655                         break;
2656                 }
2657                 
2658                 gettimeofday(&now, NULL);
2659                 if ((numSamples>=maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
2660                 {
2661                         command_print(cmd_ctx, "Profiling completed. %d samples.", numSamples);
2662                         target_poll(target);
2663                         if (target->state == TARGET_HALTED)
2664                         {
2665                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2666                         }
2667                         target_poll(target);
2668                         writeGmon(samples, numSamples, args[1]);
2669                         command_print(cmd_ctx, "Wrote %s", args[1]);
2670                         break;
2671                 }
2672         }
2673         free(samples);
2674         
2675         return ERROR_OK;
2676 }
2677
2678 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 val)
2679 {
2680         char *namebuf;
2681         Jim_Obj *nameObjPtr, *valObjPtr;
2682         int result;
2683
2684         namebuf = alloc_printf("%s(%d)", varname, idx);
2685         if (!namebuf)
2686                 return JIM_ERR;
2687         
2688         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
2689         valObjPtr = Jim_NewIntObj(interp, val);
2690         if (!nameObjPtr || !valObjPtr)
2691         {
2692                 free(namebuf);
2693                 return JIM_ERR;
2694         }
2695
2696         Jim_IncrRefCount(nameObjPtr);
2697         Jim_IncrRefCount(valObjPtr);
2698         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
2699         Jim_DecrRefCount(interp, nameObjPtr);
2700         Jim_DecrRefCount(interp, valObjPtr);
2701         free(namebuf);
2702         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
2703         return result;
2704 }
2705
2706 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
2707 {
2708         target_t *target;
2709         command_context_t *context;
2710         long l;
2711         u32 width;
2712         u32 len;
2713         u32 addr;
2714         u32 count;
2715         u32 v;
2716         const char *varname;
2717         u8 buffer[4096];
2718         int  i, n, e, retval;
2719
2720         /* argv[1] = name of array to receive the data
2721          * argv[2] = desired width
2722          * argv[3] = memory address 
2723          * argv[4] = count of times to read
2724          */
2725         if (argc != 5) {
2726                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
2727                 return JIM_ERR;
2728         }
2729         varname = Jim_GetString(argv[1], &len);
2730         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
2731
2732         e = Jim_GetLong(interp, argv[2], &l);
2733         width = l;
2734         if (e != JIM_OK) {
2735                 return e;
2736         }
2737         
2738         e = Jim_GetLong(interp, argv[3], &l);
2739         addr = l;
2740         if (e != JIM_OK) {
2741                 return e;
2742         }
2743         e = Jim_GetLong(interp, argv[4], &l);
2744         len = l;
2745         if (e != JIM_OK) {
2746                 return e;
2747         }
2748         switch (width) {
2749                 case 8:
2750                         width = 1;
2751                         break;
2752                 case 16:
2753                         width = 2;
2754                         break;
2755                 case 32:
2756                         width = 4;
2757                         break;
2758                 default:
2759                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2760                         Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
2761                         return JIM_ERR;
2762         }
2763         if (len == 0) {
2764                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2765                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
2766                 return JIM_ERR;
2767         }
2768         if ((addr + (len * width)) < addr) {
2769                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2770                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
2771                 return JIM_ERR;
2772         }
2773         /* absurd transfer size? */
2774         if (len > 65536) {
2775                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2776                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
2777                 return JIM_ERR;
2778         }               
2779                 
2780         if ((width == 1) ||
2781                 ((width == 2) && ((addr & 1) == 0)) ||
2782                 ((width == 4) && ((addr & 3) == 0))) {
2783                 /* all is well */
2784         } else {
2785                 char buf[100];
2786                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2787                 sprintf(buf, "mem2array address: 0x%08x is not aligned for %d byte reads", addr, width); 
2788                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
2789                 return JIM_ERR;
2790         }
2791
2792         context = Jim_GetAssocData(interp, "context");
2793         if (context == NULL)
2794         {
2795                 LOG_ERROR("mem2array: no command context");
2796                 return JIM_ERR;
2797         }
2798         target = get_current_target(context);
2799         if (target == NULL)
2800         {
2801                 LOG_ERROR("mem2array: no current target");
2802                 return JIM_ERR;
2803         }
2804         
2805         /* Transfer loop */
2806
2807         /* index counter */
2808         n = 0;
2809         /* assume ok */
2810         e = JIM_OK;
2811         while (len) {
2812                 /* Slurp... in buffer size chunks */
2813                 
2814                 count = len; /* in objects.. */
2815                 if (count > (sizeof(buffer)/width)) {
2816                         count = (sizeof(buffer)/width);
2817                 }
2818                 
2819                 retval = target->type->read_memory( target, addr, width, count, buffer );
2820                 if (retval != ERROR_OK) {
2821                         /* BOO !*/
2822                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
2823                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2824                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
2825                         e = JIM_ERR;
2826                         len = 0;
2827                 } else {
2828                         v = 0; /* shut up gcc */
2829                         for (i = 0 ;i < count ;i++, n++) {
2830                                 switch (width) {
2831                                         case 4:
2832                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
2833                                                 break;
2834                                         case 2:
2835                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
2836                                                 break;
2837                                         case 1:
2838                                                 v = buffer[i] & 0x0ff;
2839                                                 break;
2840                                 }
2841                                 new_int_array_element(interp, varname, n, v);
2842                         }
2843                         len -= count;
2844                 }
2845         }
2846         
2847         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2848
2849         return JIM_OK;
2850 }
2851
2852 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 *val)
2853 {
2854         char *namebuf;
2855         Jim_Obj *nameObjPtr, *valObjPtr;
2856         int result;
2857         long l;
2858
2859         namebuf = alloc_printf("%s(%d)", varname, idx);
2860         if (!namebuf)
2861                 return JIM_ERR;
2862
2863         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
2864         if (!nameObjPtr)
2865         {
2866                 free(namebuf);
2867                 return JIM_ERR;
2868         }
2869
2870         Jim_IncrRefCount(nameObjPtr);
2871         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
2872         Jim_DecrRefCount(interp, nameObjPtr);
2873         free(namebuf);
2874         if (valObjPtr == NULL)
2875                 return JIM_ERR;
2876
2877         result = Jim_GetLong(interp, valObjPtr, &l);
2878         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
2879         *val = l;
2880         return result;
2881 }
2882
2883 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
2884 {
2885         target_t *target;
2886         command_context_t *context;
2887         long l;
2888         u32 width;
2889         u32 len;
2890         u32 addr;
2891         u32 count;
2892         u32 v;
2893         const char *varname;
2894         u8 buffer[4096];
2895         int  i, n, e, retval;
2896
2897         /* argv[1] = name of array to get the data
2898          * argv[2] = desired width
2899          * argv[3] = memory address 
2900          * argv[4] = count to write
2901          */
2902         if (argc != 5) {
2903                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
2904                 return JIM_ERR;
2905         }
2906         varname = Jim_GetString(argv[1], &len);
2907         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
2908
2909         e = Jim_GetLong(interp, argv[2], &l);
2910         width = l;
2911         if (e != JIM_OK) {
2912                 return e;
2913         }
2914         
2915         e = Jim_GetLong(interp, argv[3], &l);
2916         addr = l;
2917         if (e != JIM_OK) {
2918                 return e;
2919         }
2920         e = Jim_GetLong(interp, argv[4], &l);
2921         len = l;
2922         if (e != JIM_OK) {
2923                 return e;
2924         }
2925         switch (width) {
2926                 case 8:
2927                         width = 1;
2928                         break;
2929                 case 16:
2930                         width = 2;
2931                         break;
2932                 case 32:
2933                         width = 4;
2934                         break;
2935                 default:
2936                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2937                         Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
2938                         return JIM_ERR;
2939         }
2940         if (len == 0) {
2941                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2942                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
2943                 return JIM_ERR;
2944         }
2945         if ((addr + (len * width)) < addr) {
2946                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2947                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
2948                 return JIM_ERR;
2949         }
2950         /* absurd transfer size? */
2951         if (len > 65536) {
2952                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2953                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
2954                 return JIM_ERR;
2955         }               
2956                 
2957         if ((width == 1) ||
2958                 ((width == 2) && ((addr & 1) == 0)) ||
2959                 ((width == 4) && ((addr & 3) == 0))) {
2960                 /* all is well */
2961         } else {
2962                 char buf[100];
2963                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2964                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads", addr, width); 
2965                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
2966                 return JIM_ERR;
2967         }
2968
2969         context = Jim_GetAssocData(interp, "context");
2970         if (context == NULL)
2971         {
2972                 LOG_ERROR("array2mem: no command context");
2973                 return JIM_ERR;
2974         }
2975         target = get_current_target(context);
2976         if (target == NULL)
2977         {
2978                 LOG_ERROR("array2mem: no current target");
2979                 return JIM_ERR;
2980         }
2981         
2982         /* Transfer loop */
2983
2984         /* index counter */
2985         n = 0;
2986         /* assume ok */
2987         e = JIM_OK;
2988         while (len) {
2989                 /* Slurp... in buffer size chunks */
2990                 
2991                 count = len; /* in objects.. */
2992                 if (count > (sizeof(buffer)/width)) {
2993                         count = (sizeof(buffer)/width);
2994                 }
2995
2996                 v = 0; /* shut up gcc */
2997                 for (i = 0 ;i < count ;i++, n++) {
2998                         get_int_array_element(interp, varname, n, &v);
2999                         switch (width) {
3000                         case 4:
3001                                 target_buffer_set_u32(target, &buffer[i*width], v);
3002                                 break;
3003                         case 2:
3004                                 target_buffer_set_u16(target, &buffer[i*width], v);
3005                                 break;
3006                         case 1:
3007                                 buffer[i] = v & 0x0ff;
3008                                 break;
3009                         }
3010                 }
3011                 len -= count;
3012
3013                 retval = target->type->write_memory(target, addr, width, count, buffer);
3014                 if (retval != ERROR_OK) {
3015                         /* BOO !*/
3016                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
3017                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3018                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3019                         e = JIM_ERR;
3020                         len = 0;
3021                 }
3022         }
3023         
3024         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3025
3026         return JIM_OK;
3027 }