* fixed malloc corruption in target->debug_reason
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   This program is free software; you can redistribute it and/or modify  *
6  *   it under the terms of the GNU General Public License as published by  *
7  *   the Free Software Foundation; either version 2 of the License, or     *
8  *   (at your option) any later version.                                   *
9  *                                                                         *
10  *   This program is distributed in the hope that it will be useful,       *
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
13  *   GNU General Public License for more details.                          *
14  *                                                                         *
15  *   You should have received a copy of the GNU General Public License     *
16  *   along with this program; if not, write to the                         *
17  *   Free Software Foundation, Inc.,                                       *
18  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
19  ***************************************************************************/
20 #ifdef HAVE_CONFIG_H
21 #include "config.h"
22 #endif
23
24 #include "replacements.h"
25 #include "target.h"
26 #include "target_request.h"
27
28 #include "log.h"
29 #include "configuration.h"
30 #include "binarybuffer.h"
31 #include "jtag.h"
32
33 #include <string.h>
34 #include <stdlib.h>
35 #include <inttypes.h>
36
37 #include <sys/types.h>
38 #include <sys/stat.h>
39 #include <unistd.h>
40 #include <errno.h>
41
42 #include <sys/time.h>
43 #include <time.h>
44
45 #include <time_support.h>
46
47 #include <fileio.h>
48 #include <image.h>
49
50 int cli_target_callback_event_handler(struct target_s *target, enum target_event event, void *priv);
51
52
53 int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
54 int handle_daemon_startup_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
55 int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
56
57 int handle_target_script_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
58 int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
59 int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
60
61 int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
62 int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
63 int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
64 int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
65 int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
66 int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
67 int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
68 int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
69 int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
70 int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
71 int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
72 int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
73 int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
74 int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
75 int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
76 int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
77 int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
78 int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc);
79
80 /* targets
81  */
82 extern target_type_t arm7tdmi_target;
83 extern target_type_t arm720t_target;
84 extern target_type_t arm9tdmi_target;
85 extern target_type_t arm920t_target;
86 extern target_type_t arm966e_target;
87 extern target_type_t arm926ejs_target;
88 extern target_type_t feroceon_target;
89 extern target_type_t xscale_target;
90 extern target_type_t cortexm3_target;
91 extern target_type_t arm11_target;
92
93 target_type_t *target_types[] =
94 {
95         &arm7tdmi_target,
96         &arm9tdmi_target,
97         &arm920t_target,
98         &arm720t_target,
99         &arm966e_target,
100         &arm926ejs_target,
101         &feroceon_target,
102         &xscale_target,
103         &cortexm3_target,
104         &arm11_target,
105         NULL,
106 };
107
108 target_t *targets = NULL;
109 target_event_callback_t *target_event_callbacks = NULL;
110 target_timer_callback_t *target_timer_callbacks = NULL;
111
112 char *target_state_strings[] =
113 {
114         "unknown",
115         "running",
116         "halted",
117         "reset",
118         "debug_running",
119 };
120
121 char *target_debug_reason_strings[] =
122 {
123         "debug request", "breakpoint", "watchpoint",
124         "watchpoint and breakpoint", "single step",
125         "target not halted", "undefined"
126 };
127
128 char *target_endianess_strings[] =
129 {
130         "big endian",
131         "little endian",
132 };
133
134 enum daemon_startup_mode startup_mode = DAEMON_ATTACH;
135
136 static int target_continous_poll = 1;
137
138 /* read a u32 from a buffer in target memory endianness */
139 u32 target_buffer_get_u32(target_t *target, u8 *buffer)
140 {
141         if (target->endianness == TARGET_LITTLE_ENDIAN)
142                 return le_to_h_u32(buffer);
143         else
144                 return be_to_h_u32(buffer);
145 }
146
147 /* read a u16 from a buffer in target memory endianness */
148 u16 target_buffer_get_u16(target_t *target, u8 *buffer)
149 {
150         if (target->endianness == TARGET_LITTLE_ENDIAN)
151                 return le_to_h_u16(buffer);
152         else
153                 return be_to_h_u16(buffer);
154 }
155
156 /* write a u32 to a buffer in target memory endianness */
157 void target_buffer_set_u32(target_t *target, u8 *buffer, u32 value)
158 {
159         if (target->endianness == TARGET_LITTLE_ENDIAN)
160                 h_u32_to_le(buffer, value);
161         else
162                 h_u32_to_be(buffer, value);
163 }
164
165 /* write a u16 to a buffer in target memory endianness */
166 void target_buffer_set_u16(target_t *target, u8 *buffer, u16 value)
167 {
168         if (target->endianness == TARGET_LITTLE_ENDIAN)
169                 h_u16_to_le(buffer, value);
170         else
171                 h_u16_to_be(buffer, value);
172 }
173
174 /* returns a pointer to the n-th configured target */
175 target_t* get_target_by_num(int num)
176 {
177         target_t *target = targets;
178         int i = 0;
179
180         while (target)
181         {
182                 if (num == i)
183                         return target;
184                 target = target->next;
185                 i++;
186         }
187
188         return NULL;
189 }
190
191 int get_num_by_target(target_t *query_target)
192 {
193         target_t *target = targets;
194         int i = 0;      
195         
196         while (target)
197         {
198                 if (target == query_target)
199                         return i;
200                 target = target->next;
201                 i++;
202         }
203         
204         return -1;
205 }
206
207 target_t* get_current_target(command_context_t *cmd_ctx)
208 {
209         target_t *target = get_target_by_num(cmd_ctx->current_target);
210         
211         if (target == NULL)
212         {
213                 ERROR("BUG: current_target out of bounds");
214                 exit(-1);
215         }
216         
217         return target;
218 }
219
220 /* Process target initialization, when target entered debug out of reset
221  * the handler is unregistered at the end of this function, so it's only called once
222  */
223 int target_init_handler(struct target_s *target, enum target_event event, void *priv)
224 {
225         FILE *script;
226         struct command_context_s *cmd_ctx = priv;
227         
228         if ((event == TARGET_EVENT_HALTED) && (target->reset_script))
229         {
230                 target_unregister_event_callback(target_init_handler, priv);
231
232                 script = open_file_from_path(target->reset_script, "r");
233                 if (!script)
234                 {
235                         ERROR("couldn't open script file %s", target->reset_script);
236                                 return ERROR_OK;
237                 }
238
239                 INFO("executing reset script '%s'", target->reset_script);
240                 command_run_file(cmd_ctx, script, COMMAND_EXEC);
241                 fclose(script);
242
243                 jtag_execute_queue();
244         }
245         
246         return ERROR_OK;
247 }
248
249 int target_run_and_halt_handler(void *priv)
250 {
251         target_t *target = priv;
252         
253         target->type->halt(target);
254         
255         return ERROR_OK;
256 }
257
258 int target_process_reset(struct command_context_s *cmd_ctx)
259 {
260         int retval = ERROR_OK;
261         target_t *target;
262         struct timeval timeout, now;
263         
264         /* prepare reset_halt where necessary */
265         target = targets;
266         while (target)
267         {
268                 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
269                 {
270                         switch (target->reset_mode)
271                         {
272                                 case RESET_HALT:
273                                         command_print(cmd_ctx, "nSRST pulls nTRST, falling back to \"reset run_and_halt\"");
274                                         target->reset_mode = RESET_RUN_AND_HALT;
275                                         break;
276                                 case RESET_INIT:
277                                         command_print(cmd_ctx, "nSRST pulls nTRST, falling back to \"reset run_and_init\"");
278                                         target->reset_mode = RESET_RUN_AND_INIT;
279                                         break;
280                                 default:
281                                         break;
282                         } 
283                 }
284                 switch (target->reset_mode)
285                 {
286                         case RESET_HALT:
287                         case RESET_INIT:
288                                 target->type->prepare_reset_halt(target);
289                                 break;
290                         default:
291                                 break;
292                 }
293                 target = target->next;
294         }
295         
296         target = targets;
297         while (target)
298         {
299                 target->type->assert_reset(target);
300                 target = target->next;
301         }
302         jtag_execute_queue();
303         
304         /* request target halt if necessary, and schedule further action */
305         target = targets;
306         while (target)
307         {
308                 switch (target->reset_mode)
309                 {
310                         case RESET_RUN:
311                                 /* nothing to do if target just wants to be run */
312                                 break;
313                         case RESET_RUN_AND_HALT:
314                                 /* schedule halt */
315                                 target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target);
316                                 break;
317                         case RESET_RUN_AND_INIT:
318                                 /* schedule halt */
319                                 target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target);
320                                 target_register_event_callback(target_init_handler, cmd_ctx);
321                                 break;
322                         case RESET_HALT:
323                                 target->type->halt(target);
324                                 break;
325                         case RESET_INIT:
326                                 target->type->halt(target);
327                                 target_register_event_callback(target_init_handler, cmd_ctx);
328                                 break;
329                         default:
330                                 ERROR("BUG: unknown target->reset_mode");
331                 }
332                 target = target->next;
333         }
334         
335         target = targets;
336         while (target)
337         {
338                 target->type->deassert_reset(target);
339                 target = target->next;
340         }
341         jtag_execute_queue();
342
343         /* Wait for reset to complete, maximum 5 seconds. */    
344         gettimeofday(&timeout, NULL);
345         timeval_add_time(&timeout, 5, 0);
346         for(;;)
347         {
348                 gettimeofday(&now, NULL);
349                 
350                 target_call_timer_callbacks();
351                 
352                 target = targets;
353                 while (target)
354                 {
355                         target->type->poll(target);
356                         if ((target->reset_mode == RESET_RUN_AND_INIT) || (target->reset_mode == RESET_RUN_AND_HALT))
357                         {
358                                 if (target->state != TARGET_HALTED)
359                                 {
360                                         if ((now.tv_sec > timeout.tv_sec) || ((now.tv_sec == timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
361                                         {
362                                                 command_print(cmd_ctx, "Timed out waiting for reset");
363                                                 goto done;
364                                         }
365                                         /* this will send alive messages on e.g. GDB remote protocol.
366                                          * GDB warns me that I'm sending a zero length formatting message,
367                                          * which is strange, but in fact what is intended here. */
368                                         usleep(500*1000); 
369                                         USER_N(""); 
370                                         goto again;
371                                 }
372                         }
373                         target = target->next;
374                 }
375                 /* All targets we're waiting for are halted */
376                 break;
377                 
378                 again:;
379         }
380         done:
381         
382         
383         /* We want any events to be processed before the prompt */
384         target_call_timer_callbacks();
385         
386         return retval;
387 }
388
389 static int default_virt2phys(struct target_s *target, u32 virtual, u32 *physical)
390 {
391         *physical = virtual;
392         return ERROR_OK;
393 }
394
395 static int default_mmu(struct target_s *target, int *enabled)
396 {
397         *enabled = 0;
398         return ERROR_OK;
399 }
400
401 int target_init(struct command_context_s *cmd_ctx)
402 {
403         target_t *target = targets;
404         
405         while (target)
406         {
407                 if (target->type->init_target(cmd_ctx, target) != ERROR_OK)
408                 {
409                         ERROR("target '%s' init failed", target->type->name);
410                         exit(-1);
411                 }
412                 
413                 /* Set up default functions if none are provided by target */
414                 if (target->type->virt2phys == NULL)
415                 {
416                         target->type->virt2phys = default_virt2phys;
417                 }
418                 if (target->type->mmu == NULL)
419                 {
420                         target->type->mmu = default_mmu;
421                 }
422                 target = target->next;
423         }
424         
425         if (targets)
426         {
427                 target_register_user_commands(cmd_ctx);
428                 target_register_timer_callback(handle_target, 100, 1, NULL);
429         }
430                 
431         return ERROR_OK;
432 }
433
434 int target_init_reset(struct command_context_s *cmd_ctx)
435 {
436         if (startup_mode == DAEMON_RESET)
437                 target_process_reset(cmd_ctx);
438         
439         return ERROR_OK;
440 }
441
442 int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
443 {
444         target_event_callback_t **callbacks_p = &target_event_callbacks;
445         
446         if (callback == NULL)
447         {
448                 return ERROR_INVALID_ARGUMENTS;
449         }
450         
451         if (*callbacks_p)
452         {
453                 while ((*callbacks_p)->next)
454                         callbacks_p = &((*callbacks_p)->next);
455                 callbacks_p = &((*callbacks_p)->next);
456         }
457         
458         (*callbacks_p) = malloc(sizeof(target_event_callback_t));
459         (*callbacks_p)->callback = callback;
460         (*callbacks_p)->priv = priv;
461         (*callbacks_p)->next = NULL;
462         
463         return ERROR_OK;
464 }
465
466 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
467 {
468         target_timer_callback_t **callbacks_p = &target_timer_callbacks;
469         struct timeval now;
470         
471         if (callback == NULL)
472         {
473                 return ERROR_INVALID_ARGUMENTS;
474         }
475         
476         if (*callbacks_p)
477         {
478                 while ((*callbacks_p)->next)
479                         callbacks_p = &((*callbacks_p)->next);
480                 callbacks_p = &((*callbacks_p)->next);
481         }
482         
483         (*callbacks_p) = malloc(sizeof(target_timer_callback_t));
484         (*callbacks_p)->callback = callback;
485         (*callbacks_p)->periodic = periodic;
486         (*callbacks_p)->time_ms = time_ms;
487         
488         gettimeofday(&now, NULL);
489         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
490         time_ms -= (time_ms % 1000);
491         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
492         if ((*callbacks_p)->when.tv_usec > 1000000)
493         {
494                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
495                 (*callbacks_p)->when.tv_sec += 1;
496         }
497         
498         (*callbacks_p)->priv = priv;
499         (*callbacks_p)->next = NULL;
500         
501         return ERROR_OK;
502 }
503
504 int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
505 {
506         target_event_callback_t **p = &target_event_callbacks;
507         target_event_callback_t *c = target_event_callbacks;
508         
509         if (callback == NULL)
510         {
511                 return ERROR_INVALID_ARGUMENTS;
512         }
513                 
514         while (c)
515         {
516                 target_event_callback_t *next = c->next;
517                 if ((c->callback == callback) && (c->priv == priv))
518                 {
519                         *p = next;
520                         free(c);
521                         return ERROR_OK;
522                 }
523                 else
524                         p = &(c->next);
525                 c = next;
526         }
527         
528         return ERROR_OK;
529 }
530
531 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
532 {
533         target_timer_callback_t **p = &target_timer_callbacks;
534         target_timer_callback_t *c = target_timer_callbacks;
535         
536         if (callback == NULL)
537         {
538                 return ERROR_INVALID_ARGUMENTS;
539         }
540                 
541         while (c)
542         {
543                 target_timer_callback_t *next = c->next;
544                 if ((c->callback == callback) && (c->priv == priv))
545                 {
546                         *p = next;
547                         free(c);
548                         return ERROR_OK;
549                 }
550                 else
551                         p = &(c->next);
552                 c = next;
553         }
554         
555         return ERROR_OK;
556 }
557
558 int target_call_event_callbacks(target_t *target, enum target_event event)
559 {
560         target_event_callback_t *callback = target_event_callbacks;
561         target_event_callback_t *next_callback;
562         
563         DEBUG("target event %i", event);
564         
565         while (callback)
566         {
567                 next_callback = callback->next;
568                 callback->callback(target, event, callback->priv);
569                 callback = next_callback;
570         }
571         
572         return ERROR_OK;
573 }
574
575 int target_call_timer_callbacks()
576 {
577         target_timer_callback_t *callback = target_timer_callbacks;
578         target_timer_callback_t *next_callback;
579         struct timeval now;
580
581         gettimeofday(&now, NULL);
582         
583         while (callback)
584         {
585                 next_callback = callback->next;
586                 
587                 if (((now.tv_sec >= callback->when.tv_sec) && (now.tv_usec >= callback->when.tv_usec))
588                         || (now.tv_sec > callback->when.tv_sec))
589                 {
590                         callback->callback(callback->priv);
591                         if (callback->periodic)
592                         {
593                                 int time_ms = callback->time_ms;
594                                 callback->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
595                                 time_ms -= (time_ms % 1000);
596                                 callback->when.tv_sec = now.tv_sec + time_ms / 1000;
597                                 if (callback->when.tv_usec > 1000000)
598                                 {
599                                         callback->when.tv_usec = callback->when.tv_usec - 1000000;
600                                         callback->when.tv_sec += 1;
601                                 }
602                         }
603                         else
604                                 target_unregister_timer_callback(callback->callback, callback->priv);
605                 }
606                         
607                 callback = next_callback;
608         }
609         
610         return ERROR_OK;
611 }
612
613 int target_alloc_working_area(struct target_s *target, u32 size, working_area_t **area)
614 {
615         working_area_t *c = target->working_areas;
616         working_area_t *new_wa = NULL;
617         
618         /* Reevaluate working area address based on MMU state*/
619         if (target->working_areas == NULL)
620         {
621                 int retval;
622                 int enabled;
623                 retval = target->type->mmu(target, &enabled);
624                 if (retval != ERROR_OK)
625                 {
626                         return retval;
627                 }
628                 if (enabled)
629                 {
630                         target->working_area = target->working_area_virt;
631                 }
632                 else
633                 {
634                         target->working_area = target->working_area_phys;
635                 }
636         }
637         
638         /* only allocate multiples of 4 byte */
639         if (size % 4)
640         {
641                 ERROR("BUG: code tried to allocate unaligned number of bytes, padding");
642                 size = CEIL(size, 4);
643         }
644         
645         /* see if there's already a matching working area */
646         while (c)
647         {
648                 if ((c->free) && (c->size == size))
649                 {
650                         new_wa = c;
651                         break;
652                 }
653                 c = c->next;
654         }
655         
656         /* if not, allocate a new one */
657         if (!new_wa)
658         {
659                 working_area_t **p = &target->working_areas;
660                 u32 first_free = target->working_area;
661                 u32 free_size = target->working_area_size;
662                 
663                 DEBUG("allocating new working area");
664                 
665                 c = target->working_areas;
666                 while (c)
667                 {
668                         first_free += c->size;
669                         free_size -= c->size;
670                         p = &c->next;
671                         c = c->next;
672                 }
673                 
674                 if (free_size < size)
675                 {
676                         WARNING("not enough working area available(requested %d, free %d)", size, free_size);
677                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
678                 }
679                 
680                 new_wa = malloc(sizeof(working_area_t));
681                 new_wa->next = NULL;
682                 new_wa->size = size;
683                 new_wa->address = first_free;
684                 
685                 if (target->backup_working_area)
686                 {
687                         new_wa->backup = malloc(new_wa->size);
688                         target->type->read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup);
689                 }
690                 else
691                 {
692                         new_wa->backup = NULL;
693                 }
694                 
695                 /* put new entry in list */
696                 *p = new_wa;
697         }
698         
699         /* mark as used, and return the new (reused) area */
700         new_wa->free = 0;
701         *area = new_wa;
702         
703         /* user pointer */
704         new_wa->user = area;
705         
706         return ERROR_OK;
707 }
708
709 int target_free_working_area(struct target_s *target, working_area_t *area)
710 {
711         if (area->free)
712                 return ERROR_OK;
713         
714         if (target->backup_working_area)
715                 target->type->write_memory(target, area->address, 4, area->size / 4, area->backup);
716         
717         area->free = 1;
718         
719         /* mark user pointer invalid */
720         *area->user = NULL;
721         area->user = NULL;
722         
723         return ERROR_OK;
724 }
725
726 int target_free_all_working_areas(struct target_s *target)
727 {
728         working_area_t *c = target->working_areas;
729
730         while (c)
731         {
732                 working_area_t *next = c->next;
733                 target_free_working_area(target, c);
734                 
735                 if (c->backup)
736                         free(c->backup);
737                 
738                 free(c);
739                 
740                 c = next;
741         }
742         
743         target->working_areas = NULL;
744         
745         return ERROR_OK;
746 }
747
748 int target_register_commands(struct command_context_s *cmd_ctx)
749 {
750         register_command(cmd_ctx, NULL, "target", handle_target_command, COMMAND_CONFIG, NULL);
751         register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, NULL);
752         register_command(cmd_ctx, NULL, "daemon_startup", handle_daemon_startup_command, COMMAND_CONFIG, NULL);
753         register_command(cmd_ctx, NULL, "target_script", handle_target_script_command, COMMAND_CONFIG, NULL);
754         register_command(cmd_ctx, NULL, "run_and_halt_time", handle_run_and_halt_time_command, COMMAND_CONFIG, NULL);
755         register_command(cmd_ctx, NULL, "working_area", handle_working_area_command, COMMAND_ANY, "working_area <target#> <address> <size> <'backup'|'nobackup'> [virtual address]");
756         register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "virt2phys <virtual address>");
757
758         return ERROR_OK;
759 }
760
761 int target_arch_state(struct target_s *target)
762 {
763         int retval;
764         if (target==NULL)
765         {
766                 USER("No target has been configured");
767                 return ERROR_OK;
768         }
769         
770         USER("target state: %s", target_state_strings[target->state]);
771         
772         if (target->state!=TARGET_HALTED)
773                 return ERROR_OK;
774         
775         retval=target->type->arch_state(target);
776         return retval;
777 }
778
779 /* Single aligned words are guaranteed to use 16 or 32 bit access 
780  * mode respectively, otherwise data is handled as quickly as 
781  * possible
782  */
783 int target_write_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
784 {
785         int retval;
786         
787         DEBUG("writing buffer of %i byte at 0x%8.8x", size, address);
788         
789         if (((address % 2) == 0) && (size == 2))
790         {
791                 return target->type->write_memory(target, address, 2, 1, buffer);
792         }
793         
794         /* handle unaligned head bytes */
795         if (address % 4)
796         {
797                 int unaligned = 4 - (address % 4);
798                 
799                 if (unaligned > size)
800                         unaligned = size;
801
802                 if ((retval = target->type->write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
803                         return retval;
804                 
805                 buffer += unaligned;
806                 address += unaligned;
807                 size -= unaligned;
808         }
809                 
810         /* handle aligned words */
811         if (size >= 4)
812         {
813                 int aligned = size - (size % 4);
814         
815                 /* use bulk writes above a certain limit. This may have to be changed */
816                 if (aligned > 128)
817                 {
818                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
819                                 return retval;
820                 }
821                 else
822                 {
823                         if ((retval = target->type->write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
824                                 return retval;
825                 }
826                 
827                 buffer += aligned;
828                 address += aligned;
829                 size -= aligned;
830         }
831         
832         /* handle tail writes of less than 4 bytes */
833         if (size > 0)
834         {
835                 if ((retval = target->type->write_memory(target, address, 1, size, buffer)) != ERROR_OK)
836                         return retval;
837         }
838         
839         return ERROR_OK;
840 }
841
842
843 /* Single aligned words are guaranteed to use 16 or 32 bit access 
844  * mode respectively, otherwise data is handled as quickly as 
845  * possible
846  */
847 int target_read_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
848 {
849         int retval;
850         
851         DEBUG("reading buffer of %i byte at 0x%8.8x", size, address);
852         
853         if (((address % 2) == 0) && (size == 2))
854         {
855                 return target->type->read_memory(target, address, 2, 1, buffer);
856         }
857         
858         /* handle unaligned head bytes */
859         if (address % 4)
860         {
861                 int unaligned = 4 - (address % 4);
862                 
863                 if (unaligned > size)
864                         unaligned = size;
865
866                 if ((retval = target->type->read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
867                         return retval;
868                 
869                 buffer += unaligned;
870                 address += unaligned;
871                 size -= unaligned;
872         }
873                 
874         /* handle aligned words */
875         if (size >= 4)
876         {
877                 int aligned = size - (size % 4);
878         
879                 if ((retval = target->type->read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
880                         return retval;
881                 
882                 buffer += aligned;
883                 address += aligned;
884                 size -= aligned;
885         }
886         
887         /* handle tail writes of less than 4 bytes */
888         if (size > 0)
889         {
890                 if ((retval = target->type->read_memory(target, address, 1, size, buffer)) != ERROR_OK)
891                         return retval;
892         }
893         
894         return ERROR_OK;
895 }
896
897 int target_checksum_memory(struct target_s *target, u32 address, u32 size, u32* crc)
898 {
899         u8 *buffer;
900         int retval;
901         int i;
902         u32 checksum = 0;
903         
904         if ((retval = target->type->checksum_memory(target, address,
905                 size, &checksum)) == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
906         {
907                 buffer = malloc(size);
908                 if (buffer == NULL)
909                 {
910                         ERROR("error allocating buffer for section (%d bytes)", size);
911                         return ERROR_INVALID_ARGUMENTS;
912                 }
913                 retval = target_read_buffer(target, address, size, buffer);
914                 if (retval != ERROR_OK)
915                 {
916                         free(buffer);
917                         return retval;
918                 }
919
920                 /* convert to target endianess */
921                 for (i = 0; i < (size/sizeof(u32)); i++)
922                 {
923                         u32 target_data;
924                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(u32)]);
925                         target_buffer_set_u32(target, &buffer[i*sizeof(u32)], target_data);
926                 }
927
928                 retval = image_calculate_checksum( buffer, size, &checksum );
929                 free(buffer);
930         }
931         
932         *crc = checksum;
933         
934         return retval;
935 }
936
937 int target_read_u32(struct target_s *target, u32 address, u32 *value)
938 {
939         u8 value_buf[4];
940
941         int retval = target->type->read_memory(target, address, 4, 1, value_buf);
942         
943         if (retval == ERROR_OK)
944         {
945                 *value = target_buffer_get_u32(target, value_buf);
946                 DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, *value);
947         }
948         else
949         {
950                 *value = 0x0;
951                 DEBUG("address: 0x%8.8x failed", address);
952         }
953         
954         return retval;
955 }
956
957 int target_read_u16(struct target_s *target, u32 address, u16 *value)
958 {
959         u8 value_buf[2];
960         
961         int retval = target->type->read_memory(target, address, 2, 1, value_buf);
962         
963         if (retval == ERROR_OK)
964         {
965                 *value = target_buffer_get_u16(target, value_buf);
966                 DEBUG("address: 0x%8.8x, value: 0x%4.4x", address, *value);
967         }
968         else
969         {
970                 *value = 0x0;
971                 DEBUG("address: 0x%8.8x failed", address);
972         }
973         
974         return retval;
975 }
976
977 int target_read_u8(struct target_s *target, u32 address, u8 *value)
978 {
979         int retval = target->type->read_memory(target, address, 1, 1, value);
980
981         if (retval == ERROR_OK)
982         {
983                 DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, *value);
984         }
985         else
986         {
987                 *value = 0x0;
988                 DEBUG("address: 0x%8.8x failed", address);
989         }
990         
991         return retval;
992 }
993
994 int target_write_u32(struct target_s *target, u32 address, u32 value)
995 {
996         int retval;
997         u8 value_buf[4];
998
999         DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1000
1001         target_buffer_set_u32(target, value_buf, value);        
1002         if ((retval = target->type->write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1003         {
1004                 DEBUG("failed: %i", retval);
1005         }
1006         
1007         return retval;
1008 }
1009
1010 int target_write_u16(struct target_s *target, u32 address, u16 value)
1011 {
1012         int retval;
1013         u8 value_buf[2];
1014         
1015         DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1016
1017         target_buffer_set_u16(target, value_buf, value);        
1018         if ((retval = target->type->write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1019         {
1020                 DEBUG("failed: %i", retval);
1021         }
1022         
1023         return retval;
1024 }
1025
1026 int target_write_u8(struct target_s *target, u32 address, u8 value)
1027 {
1028         int retval;
1029         
1030         DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, value);
1031
1032         if ((retval = target->type->read_memory(target, address, 1, 1, &value)) != ERROR_OK)
1033         {
1034                 DEBUG("failed: %i", retval);
1035         }
1036         
1037         return retval;
1038 }
1039
1040 int target_register_user_commands(struct command_context_s *cmd_ctx)
1041 {
1042         register_command(cmd_ctx,  NULL, "reg", handle_reg_command, COMMAND_EXEC, NULL);
1043         register_command(cmd_ctx,  NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state");
1044         register_command(cmd_ctx,  NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]");
1045         register_command(cmd_ctx,  NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target");
1046         register_command(cmd_ctx,  NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]");
1047         register_command(cmd_ctx,  NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]");
1048         register_command(cmd_ctx,  NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run|halt|init|run_and_halt|run_and_init]");
1049         register_command(cmd_ctx,  NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset");
1050
1051         register_command(cmd_ctx,  NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words <addr> [count]");
1052         register_command(cmd_ctx,  NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words <addr> [count]");
1053         register_command(cmd_ctx,  NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes <addr> [count]");
1054         
1055         register_command(cmd_ctx,  NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word <addr> <value>");
1056         register_command(cmd_ctx,  NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word <addr> <value>");
1057         register_command(cmd_ctx,  NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte <addr> <value>");
1058         
1059         register_command(cmd_ctx,  NULL, "bp", handle_bp_command, COMMAND_EXEC, "set breakpoint <address> <length> [hw]");      
1060         register_command(cmd_ctx,  NULL, "rbp", handle_rbp_command, COMMAND_EXEC, "remove breakpoint <adress>");
1061         register_command(cmd_ctx,  NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint <address> <length> <r/w/a> [value] [mask]");    
1062         register_command(cmd_ctx,  NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint <adress>");
1063         
1064         register_command(cmd_ctx,  NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> ['bin'|'ihex'|'elf'|'s19']");
1065         register_command(cmd_ctx,  NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>");
1066         register_command(cmd_ctx,  NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image <file> [offset] [type]");
1067         register_command(cmd_ctx,  NULL, "load_binary", handle_load_image_command, COMMAND_EXEC, "[DEPRECATED] load_binary <file> <address>");
1068         register_command(cmd_ctx,  NULL, "dump_binary", handle_dump_image_command, COMMAND_EXEC, "[DEPRECATED] dump_binary <file> <address> <size>");
1069         
1070         target_request_register_commands(cmd_ctx);
1071         trace_register_commands(cmd_ctx);
1072         
1073         return ERROR_OK;
1074 }
1075
1076 int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1077 {
1078         target_t *target = targets;
1079         int count = 0;
1080         
1081         if (argc == 1)
1082         {
1083                 int num = strtoul(args[0], NULL, 0);
1084                 
1085                 while (target)
1086                 {
1087                         count++;
1088                         target = target->next;
1089                 }
1090                 
1091                 if (num < count)
1092                         cmd_ctx->current_target = num;
1093                 else
1094                         command_print(cmd_ctx, "%i is out of bounds, only %i targets are configured", num, count);
1095                         
1096                 return ERROR_OK;
1097         }
1098                 
1099         while (target)
1100         {
1101                 command_print(cmd_ctx, "%i: %s (%s), state: %s", count++, target->type->name, target_endianess_strings[target->endianness], target_state_strings[target->state]);
1102                 target = target->next;
1103         }
1104         
1105         return ERROR_OK;
1106 }
1107
1108 int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1109 {
1110         int i;
1111         int found = 0;
1112         
1113         if (argc < 3)
1114         {
1115                 ERROR("target command requires at least three arguments: <type> <endianess> <reset_mode>");
1116                 exit(-1);
1117         }
1118         
1119         /* search for the specified target */
1120         if (args[0] && (args[0][0] != 0))
1121         {
1122                 for (i = 0; target_types[i]; i++)
1123                 {
1124                         if (strcmp(args[0], target_types[i]->name) == 0)
1125                         {
1126                                 target_t **last_target_p = &targets;
1127                                 
1128                                 /* register target specific commands */
1129                                 if (target_types[i]->register_commands(cmd_ctx) != ERROR_OK)
1130                                 {
1131                                         ERROR("couldn't register '%s' commands", args[0]);
1132                                         exit(-1);
1133                                 }
1134
1135                                 if (*last_target_p)
1136                                 {
1137                                         while ((*last_target_p)->next)
1138                                                 last_target_p = &((*last_target_p)->next);
1139                                         last_target_p = &((*last_target_p)->next);
1140                                 }
1141
1142                                 *last_target_p = malloc(sizeof(target_t));
1143                                 
1144                                 (*last_target_p)->type = target_types[i];
1145                                 
1146                                 if (strcmp(args[1], "big") == 0)
1147                                         (*last_target_p)->endianness = TARGET_BIG_ENDIAN;
1148                                 else if (strcmp(args[1], "little") == 0)
1149                                         (*last_target_p)->endianness = TARGET_LITTLE_ENDIAN;
1150                                 else
1151                                 {
1152                                         ERROR("endianness must be either 'little' or 'big', not '%s'", args[1]);
1153                                         exit(-1);
1154                                 }
1155                                 
1156                                 /* what to do on a target reset */
1157                                 if (strcmp(args[2], "reset_halt") == 0)
1158                                         (*last_target_p)->reset_mode = RESET_HALT;
1159                                 else if (strcmp(args[2], "reset_run") == 0)
1160                                         (*last_target_p)->reset_mode = RESET_RUN;
1161                                 else if (strcmp(args[2], "reset_init") == 0)
1162                                         (*last_target_p)->reset_mode = RESET_INIT;
1163                                 else if (strcmp(args[2], "run_and_halt") == 0)
1164                                         (*last_target_p)->reset_mode = RESET_RUN_AND_HALT;
1165                                 else if (strcmp(args[2], "run_and_init") == 0)
1166                                         (*last_target_p)->reset_mode = RESET_RUN_AND_INIT;
1167                                 else
1168                                 {
1169                                         ERROR("unknown target startup mode %s", args[2]);
1170                                         exit(-1);
1171                                 }
1172                                 (*last_target_p)->run_and_halt_time = 1000; /* default 1s */
1173                                 
1174                                 (*last_target_p)->reset_script = NULL;
1175                                 (*last_target_p)->post_halt_script = NULL;
1176                                 (*last_target_p)->pre_resume_script = NULL;
1177                                 (*last_target_p)->gdb_program_script = NULL;
1178                                 
1179                                 (*last_target_p)->working_area = 0x0;
1180                                 (*last_target_p)->working_area_size = 0x0;
1181                                 (*last_target_p)->working_areas = NULL;
1182                                 (*last_target_p)->backup_working_area = 0;
1183                                 
1184                                 (*last_target_p)->state = TARGET_UNKNOWN;
1185                                 (*last_target_p)->debug_reason = DBG_REASON_UNDEFINED;
1186                                 (*last_target_p)->reg_cache = NULL;
1187                                 (*last_target_p)->breakpoints = NULL;
1188                                 (*last_target_p)->watchpoints = NULL;
1189                                 (*last_target_p)->next = NULL;
1190                                 (*last_target_p)->arch_info = NULL;
1191                                 
1192                                 /* initialize trace information */
1193                                 (*last_target_p)->trace_info = malloc(sizeof(trace_t));
1194                                 (*last_target_p)->trace_info->num_trace_points = 0;
1195                                 (*last_target_p)->trace_info->trace_points_size = 0;
1196                                 (*last_target_p)->trace_info->trace_points = NULL;
1197                                 (*last_target_p)->trace_info->trace_history_size = 0;
1198                                 (*last_target_p)->trace_info->trace_history = NULL;
1199                                 (*last_target_p)->trace_info->trace_history_pos = 0;
1200                                 (*last_target_p)->trace_info->trace_history_overflowed = 0;
1201                                 
1202                                 (*last_target_p)->dbgmsg = NULL;
1203                                 (*last_target_p)->dbg_msg_enabled = 0;
1204                                                                 
1205                                 (*last_target_p)->type->target_command(cmd_ctx, cmd, args, argc, *last_target_p);
1206                                 
1207                                 found = 1;
1208                                 break;
1209                         }
1210                 }
1211         }
1212         
1213         /* no matching target found */
1214         if (!found)
1215         {
1216                 ERROR("target '%s' not found", args[0]);
1217                 exit(-1);
1218         }
1219
1220         return ERROR_OK;
1221 }
1222
1223 /* usage: target_script <target#> <event> <script_file> */
1224 int handle_target_script_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1225 {
1226         target_t *target = NULL;
1227         
1228         if (argc < 3)
1229         {
1230                 ERROR("incomplete target_script command");
1231                 exit(-1);
1232         }
1233         
1234         target = get_target_by_num(strtoul(args[0], NULL, 0));
1235         
1236         if (!target)
1237         {
1238                 ERROR("target number '%s' not defined", args[0]);
1239                 exit(-1);
1240         }
1241         
1242         if (strcmp(args[1], "reset") == 0)
1243         {
1244                 if (target->reset_script)
1245                         free(target->reset_script);
1246                 target->reset_script = strdup(args[2]);
1247         }
1248         else if (strcmp(args[1], "post_halt") == 0)
1249         {
1250                 if (target->post_halt_script)
1251                         free(target->post_halt_script);
1252                 target->post_halt_script = strdup(args[2]);
1253         }
1254         else if (strcmp(args[1], "pre_resume") == 0)
1255         {
1256                 if (target->pre_resume_script)
1257                         free(target->pre_resume_script);
1258                 target->pre_resume_script = strdup(args[2]);
1259         }
1260         else if (strcmp(args[1], "gdb_program_config") == 0)
1261         {
1262                 if (target->gdb_program_script)
1263                         free(target->gdb_program_script);
1264                 target->gdb_program_script = strdup(args[2]);
1265         }
1266         else
1267         {
1268                 ERROR("unknown event type: '%s", args[1]);
1269                 exit(-1);       
1270         }
1271         
1272         return ERROR_OK;
1273 }
1274
1275 int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1276 {
1277         target_t *target = NULL;
1278         
1279         if (argc < 2)
1280         {
1281                 ERROR("incomplete run_and_halt_time command");
1282                 exit(-1);
1283         }
1284         
1285         target = get_target_by_num(strtoul(args[0], NULL, 0));
1286         
1287         if (!target)
1288         {
1289                 ERROR("target number '%s' not defined", args[0]);
1290                 exit(-1);
1291         }
1292         
1293         target->run_and_halt_time = strtoul(args[1], NULL, 0);
1294         
1295         return ERROR_OK;
1296 }
1297
1298 int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1299 {
1300         target_t *target = NULL;
1301         
1302         if ((argc < 4) || (argc > 5))
1303         {
1304                 return ERROR_COMMAND_SYNTAX_ERROR;
1305         }
1306         
1307         target = get_target_by_num(strtoul(args[0], NULL, 0));
1308         
1309         if (!target)
1310         {
1311                 ERROR("target number '%s' not defined", args[0]);
1312                 exit(-1);
1313         }
1314         target_free_all_working_areas(target);
1315         
1316         target->working_area_phys = target->working_area_virt = strtoul(args[1], NULL, 0);
1317         if (argc == 5)
1318         {
1319                 target->working_area_virt = strtoul(args[4], NULL, 0);
1320         }
1321         target->working_area_size = strtoul(args[2], NULL, 0);
1322         
1323         if (strcmp(args[3], "backup") == 0)
1324         {
1325                 target->backup_working_area = 1;
1326         }
1327         else if (strcmp(args[3], "nobackup") == 0)
1328         {
1329                 target->backup_working_area = 0;
1330         }
1331         else
1332         {
1333                 ERROR("unrecognized <backup|nobackup> argument (%s)", args[3]);
1334                 return ERROR_COMMAND_SYNTAX_ERROR;
1335         }
1336         
1337         return ERROR_OK;
1338 }
1339
1340
1341 /* process target state changes */
1342 int handle_target(void *priv)
1343 {
1344         int retval;
1345         target_t *target = targets;
1346         
1347         while (target)
1348         {
1349                 /* only poll if target isn't already halted */
1350                 if (target->state != TARGET_HALTED)
1351                 {
1352                         if (target_continous_poll)
1353                                 if ((retval = target->type->poll(target)) != ERROR_OK)
1354                                 {
1355                                         ERROR("couldn't poll target(%d). It's due for a reset.", retval);
1356                                 }
1357                 }
1358         
1359                 target = target->next;
1360         }
1361         
1362         return ERROR_OK;
1363 }
1364
1365 int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1366 {
1367         target_t *target;
1368         reg_t *reg = NULL;
1369         int count = 0;
1370         char *value;
1371         
1372         DEBUG("-");
1373         
1374         target = get_current_target(cmd_ctx);
1375         
1376         /* list all available registers for the current target */
1377         if (argc == 0)
1378         {
1379                 reg_cache_t *cache = target->reg_cache;
1380                 
1381                 count = 0;
1382                 while(cache)
1383                 {
1384                         int i;
1385                         for (i = 0; i < cache->num_regs; i++)
1386                         {
1387                                 value = buf_to_str(cache->reg_list[i].value, cache->reg_list[i].size, 16);
1388                                 command_print(cmd_ctx, "(%i) %s (/%i): 0x%s (dirty: %i, valid: %i)", count++, cache->reg_list[i].name, cache->reg_list[i].size, value, cache->reg_list[i].dirty, cache->reg_list[i].valid);
1389                                 free(value);
1390                         }
1391                         cache = cache->next;
1392                 }
1393                 
1394                 return ERROR_OK;
1395         }
1396         
1397         /* access a single register by its ordinal number */
1398         if ((args[0][0] >= '0') && (args[0][0] <= '9'))
1399         {
1400                 int num = strtoul(args[0], NULL, 0);
1401                 reg_cache_t *cache = target->reg_cache;
1402                 
1403                 count = 0;
1404                 while(cache)
1405                 {
1406                         int i;
1407                         for (i = 0; i < cache->num_regs; i++)
1408                         {
1409                                 if (count++ == num)
1410                                 {
1411                                         reg = &cache->reg_list[i];
1412                                         break;
1413                                 }
1414                         }
1415                         if (reg)
1416                                 break;
1417                         cache = cache->next;
1418                 }
1419                 
1420                 if (!reg)
1421                 {
1422                         command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1423                         return ERROR_OK;
1424                 }
1425         } else /* access a single register by its name */
1426         {
1427                 reg = register_get_by_name(target->reg_cache, args[0], 1);
1428                 
1429                 if (!reg)
1430                 {
1431                         command_print(cmd_ctx, "register %s not found in current target", args[0]);
1432                         return ERROR_OK;
1433                 }
1434         }
1435
1436         /* display a register */
1437         if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
1438         {
1439                 if ((argc == 2) && (strcmp(args[1], "force") == 0))
1440                         reg->valid = 0;
1441                 
1442                 if (reg->valid == 0)
1443                 {
1444                         reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1445                         if (arch_type == NULL)
1446                         {
1447                                 ERROR("BUG: encountered unregistered arch type");
1448                                 return ERROR_OK;
1449                         }
1450                         arch_type->get(reg);
1451                 }
1452                 value = buf_to_str(reg->value, reg->size, 16);
1453                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1454                 free(value);
1455                 return ERROR_OK;
1456         }
1457         
1458         /* set register value */
1459         if (argc == 2)
1460         {
1461                 u8 *buf = malloc(CEIL(reg->size, 8));
1462                 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
1463
1464                 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1465                 if (arch_type == NULL)
1466                 {
1467                         ERROR("BUG: encountered unregistered arch type");
1468                         return ERROR_OK;
1469                 }
1470                 
1471                 arch_type->set(reg, buf);
1472                 
1473                 value = buf_to_str(reg->value, reg->size, 16);
1474                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1475                 free(value);
1476                 
1477                 free(buf);
1478                 
1479                 return ERROR_OK;
1480         }
1481         
1482         command_print(cmd_ctx, "usage: reg <#|name> [value]");
1483         
1484         return ERROR_OK;
1485 }
1486
1487 static int wait_state(struct command_context_s *cmd_ctx, char *cmd, enum target_state state, int ms);
1488
1489 int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1490 {
1491         target_t *target = get_current_target(cmd_ctx);
1492
1493         if (argc == 0)
1494         {
1495                 target->type->poll(target);
1496                         target_arch_state(target);
1497         }
1498         else
1499         {
1500                 if (strcmp(args[0], "on") == 0)
1501                 {
1502                         target_continous_poll = 1;
1503                 }
1504                 else if (strcmp(args[0], "off") == 0)
1505                 {
1506                         target_continous_poll = 0;
1507                 }
1508                 else
1509                 {
1510                         command_print(cmd_ctx, "arg is \"on\" or \"off\"");
1511                 }
1512         }
1513         
1514         
1515         return ERROR_OK;
1516 }
1517
1518 int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1519 {
1520         int ms = 5000;
1521         
1522         if (argc > 0)
1523         {
1524                 char *end;
1525
1526                 ms = strtoul(args[0], &end, 0) * 1000;
1527                 if (*end)
1528                 {
1529                         command_print(cmd_ctx, "usage: %s [seconds]", cmd);
1530                         return ERROR_OK;
1531                 }
1532         }
1533
1534         return wait_state(cmd_ctx, cmd, TARGET_HALTED, ms); 
1535 }
1536
1537 static void target_process_events(struct command_context_s *cmd_ctx)
1538 {
1539         target_t *target = get_current_target(cmd_ctx);
1540         target->type->poll(target);
1541         target_call_timer_callbacks();
1542 }
1543
1544 static int wait_state(struct command_context_s *cmd_ctx, char *cmd, enum target_state state, int ms)
1545 {
1546         int retval;
1547         struct timeval timeout, now;
1548         int once=1;
1549         gettimeofday(&timeout, NULL);
1550         timeval_add_time(&timeout, 0, ms * 1000);
1551         
1552         target_t *target = get_current_target(cmd_ctx);
1553         for (;;)
1554         {
1555                 if ((retval=target->type->poll(target))!=ERROR_OK)
1556                         return retval;
1557                 target_call_timer_callbacks();
1558                 if (target->state == state)
1559                 {
1560                         break;
1561                 }
1562                 if (once)
1563                 {
1564                         once=0;
1565                         command_print(cmd_ctx, "waiting for target %s...", target_state_strings[state]);
1566                 }
1567                 
1568                 gettimeofday(&now, NULL);
1569                 if ((now.tv_sec > timeout.tv_sec) || ((now.tv_sec == timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
1570                 {
1571                         ERROR("timed out while waiting for target %s", target_state_strings[state]);
1572                         break;
1573                 }
1574         }
1575         
1576         return ERROR_OK;
1577 }
1578
1579 int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1580 {
1581         int retval;
1582         target_t *target = get_current_target(cmd_ctx);
1583
1584         DEBUG("-");
1585
1586         if ((retval = target->type->halt(target)) != ERROR_OK)
1587                 {
1588                                 return retval;
1589                 }
1590         
1591         return handle_wait_halt_command(cmd_ctx, cmd, args, argc);
1592 }
1593
1594 /* what to do on daemon startup */
1595 int handle_daemon_startup_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1596 {
1597         if (argc == 1)
1598         {
1599                 if (strcmp(args[0], "attach") == 0)
1600                 {
1601                         startup_mode = DAEMON_ATTACH;
1602                         return ERROR_OK;
1603                 }
1604                 else if (strcmp(args[0], "reset") == 0)
1605                 {
1606                         startup_mode = DAEMON_RESET;
1607                         return ERROR_OK;
1608                 }
1609         }
1610         
1611         WARNING("invalid daemon_startup configuration directive: %s", args[0]);
1612         return ERROR_OK;
1613
1614 }
1615                 
1616 int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1617 {
1618         target_t *target = get_current_target(cmd_ctx);
1619         int retval;
1620         
1621         command_print(cmd_ctx, "requesting target halt and executing a soft reset");
1622         
1623         if ((retval = target->type->soft_reset_halt(target)) != ERROR_OK)
1624         {       
1625                 switch (retval)
1626                 {
1627                         case ERROR_TARGET_TIMEOUT:
1628                                 command_print(cmd_ctx, "target timed out... shutting down");
1629                                 exit(-1);
1630                         default:
1631                                 command_print(cmd_ctx, "unknown error... shutting down");
1632                                 exit(-1);
1633                 }
1634         }
1635         
1636         return ERROR_OK;
1637 }
1638
1639 int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1640 {
1641         target_t *target = get_current_target(cmd_ctx);
1642         enum target_reset_mode reset_mode = target->reset_mode;
1643         enum target_reset_mode save = target->reset_mode;
1644         
1645         DEBUG("-");
1646         
1647         if (argc >= 1)
1648         {
1649                 if (strcmp("run", args[0]) == 0)
1650                         reset_mode = RESET_RUN;
1651                 else if (strcmp("halt", args[0]) == 0)
1652                         reset_mode = RESET_HALT;
1653                 else if (strcmp("init", args[0]) == 0)
1654                         reset_mode = RESET_INIT;
1655                 else if (strcmp("run_and_halt", args[0]) == 0)
1656                 {
1657                         reset_mode = RESET_RUN_AND_HALT;
1658                         if (argc >= 2)
1659                         {
1660                                 target->run_and_halt_time = strtoul(args[1], NULL, 0);
1661                         }
1662                 }
1663                 else if (strcmp("run_and_init", args[0]) == 0)
1664                 {
1665                         reset_mode = RESET_RUN_AND_INIT;
1666                         if (argc >= 2)
1667                         {
1668                                 target->run_and_halt_time = strtoul(args[1], NULL, 0);
1669                         }
1670                 }
1671                 else
1672                 {
1673                         command_print(cmd_ctx, "usage: reset ['run', 'halt', 'init', 'run_and_halt', 'run_and_init]");
1674                         return ERROR_OK;
1675                 }
1676         }
1677         
1678         /* temporarily modify mode of current reset target */
1679         target->reset_mode = reset_mode;
1680
1681         /* reset *all* targets */
1682         target_process_reset(cmd_ctx);
1683         
1684         /* Restore default reset mode for this target */
1685     target->reset_mode = save;
1686         
1687         return ERROR_OK;
1688 }
1689
1690 int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1691 {
1692         int retval;
1693         target_t *target = get_current_target(cmd_ctx);
1694         
1695         if (argc == 0)
1696                 retval = target->type->resume(target, 1, 0, 1, 0); /* current pc, addr = 0, handle breakpoints, not debugging */
1697         else if (argc == 1)
1698                 retval = target->type->resume(target, 0, strtoul(args[0], NULL, 0), 1, 0); /* addr = args[0], handle breakpoints, not debugging */
1699         else
1700         {
1701                 return ERROR_COMMAND_SYNTAX_ERROR;
1702         }
1703
1704         target_process_events(cmd_ctx);
1705         
1706         return retval;
1707 }
1708
1709 int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1710 {
1711         target_t *target = get_current_target(cmd_ctx);
1712         
1713         DEBUG("-");
1714         
1715         if (argc == 0)
1716                 target->type->step(target, 1, 0, 1); /* current pc, addr = 0, handle breakpoints */
1717
1718         if (argc == 1)
1719                 target->type->step(target, 0, strtoul(args[0], NULL, 0), 1); /* addr = args[0], handle breakpoints */
1720         
1721         return ERROR_OK;
1722 }
1723
1724 int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1725 {
1726         const int line_bytecnt = 32;
1727         int count = 1;
1728         int size = 4;
1729         u32 address = 0;
1730         int line_modulo;
1731         int i;
1732
1733         char output[128];
1734         int output_len;
1735
1736         int retval;
1737
1738         u8 *buffer;
1739         target_t *target = get_current_target(cmd_ctx);
1740
1741         if (argc < 1)
1742                 return ERROR_OK;
1743
1744         if (argc == 2)
1745                 count = strtoul(args[1], NULL, 0);
1746
1747         address = strtoul(args[0], NULL, 0);
1748         
1749
1750         switch (cmd[2])
1751         {
1752                 case 'w':
1753                         size = 4; line_modulo = line_bytecnt / 4;
1754                         break;
1755                 case 'h':
1756                         size = 2; line_modulo = line_bytecnt / 2;
1757                         break;
1758                 case 'b':
1759                         size = 1; line_modulo = line_bytecnt / 1;
1760                         break;
1761                 default:
1762                         return ERROR_OK;
1763         }
1764
1765         buffer = calloc(count, size);
1766         retval  = target->type->read_memory(target, address, size, count, buffer);
1767         if (retval != ERROR_OK)
1768         {
1769                 switch (retval)
1770                 {
1771                         case ERROR_TARGET_UNALIGNED_ACCESS:
1772                                 command_print(cmd_ctx, "error: address not aligned");
1773                                 break;
1774                         case ERROR_TARGET_NOT_HALTED:
1775                                 command_print(cmd_ctx, "error: target must be halted for memory accesses");
1776                                 break;                  
1777                         case ERROR_TARGET_DATA_ABORT:
1778                                 command_print(cmd_ctx, "error: access caused data abort, system possibly corrupted");
1779                                 break;
1780                         default:
1781                                 command_print(cmd_ctx, "error: unknown error");
1782                                 break;
1783                 }
1784                 return ERROR_OK;
1785         }
1786
1787         output_len = 0;
1788
1789         for (i = 0; i < count; i++)
1790         {
1791                 if (i%line_modulo == 0)
1792                         output_len += snprintf(output + output_len, 128 - output_len, "0x%8.8x: ", address + (i*size));
1793                 
1794                 switch (size)
1795                 {
1796                         case 4:
1797                                 output_len += snprintf(output + output_len, 128 - output_len, "%8.8x ", target_buffer_get_u32(target, &buffer[i*4]));
1798                                 break;
1799                         case 2:
1800                                 output_len += snprintf(output + output_len, 128 - output_len, "%4.4x ", target_buffer_get_u16(target, &buffer[i*2]));
1801                                 break;
1802                         case 1:
1803                                 output_len += snprintf(output + output_len, 128 - output_len, "%2.2x ", buffer[i*1]);
1804                                 break;
1805                 }
1806
1807                 if ((i%line_modulo == line_modulo-1) || (i == count - 1))
1808                 {
1809                         command_print(cmd_ctx, output);
1810                         output_len = 0;
1811                 }
1812         }
1813
1814         free(buffer);
1815         
1816         return ERROR_OK;
1817 }
1818
1819 int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1820 {
1821         u32 address = 0;
1822         u32 value = 0;
1823         int retval;
1824         target_t *target = get_current_target(cmd_ctx);
1825         u8 value_buf[4];
1826
1827         if (argc < 2)
1828                 return ERROR_OK;
1829
1830         address = strtoul(args[0], NULL, 0);
1831         value = strtoul(args[1], NULL, 0);
1832
1833         switch (cmd[2])
1834         {
1835                 case 'w':
1836                         target_buffer_set_u32(target, value_buf, value);
1837                         retval = target->type->write_memory(target, address, 4, 1, value_buf);
1838                         break;
1839                 case 'h':
1840                         target_buffer_set_u16(target, value_buf, value);
1841                         retval = target->type->write_memory(target, address, 2, 1, value_buf);
1842                         break;
1843                 case 'b':
1844                         value_buf[0] = value;
1845                         retval = target->type->write_memory(target, address, 1, 1, value_buf);
1846                         break;
1847                 default:
1848                         return ERROR_OK;
1849         }
1850
1851         switch (retval)
1852         {
1853                 case ERROR_TARGET_UNALIGNED_ACCESS:
1854                         command_print(cmd_ctx, "error: address not aligned");
1855                         break;
1856                 case ERROR_TARGET_DATA_ABORT:
1857                         command_print(cmd_ctx, "error: access caused data abort, system possibly corrupted");
1858                         break;
1859                 case ERROR_TARGET_NOT_HALTED:
1860                         command_print(cmd_ctx, "error: target must be halted for memory accesses");
1861                         break;
1862                 case ERROR_OK:
1863                         break;
1864                 default:
1865                         command_print(cmd_ctx, "error: unknown error");
1866                         break;
1867         }
1868
1869         return ERROR_OK;
1870
1871 }
1872
1873 int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1874 {
1875         u8 *buffer;
1876         u32 buf_cnt;
1877         u32 image_size;
1878         int i;
1879         int retval;
1880
1881         image_t image;  
1882         
1883         duration_t duration;
1884         char *duration_text;
1885         
1886         target_t *target = get_current_target(cmd_ctx);
1887
1888         if (argc < 1)
1889         {
1890                 command_print(cmd_ctx, "usage: load_image <filename> [address] [type]");
1891                 return ERROR_OK;
1892         }
1893         
1894         /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
1895         if (argc >= 2)
1896         {
1897                 image.base_address_set = 1;
1898                 image.base_address = strtoul(args[1], NULL, 0);
1899         }
1900         else
1901         {
1902                 image.base_address_set = 0;
1903         }
1904         
1905         image.start_address_set = 0;
1906
1907         duration_start_measure(&duration);
1908         
1909         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
1910         {
1911                 return ERROR_OK;
1912         }
1913         
1914         image_size = 0x0;
1915         for (i = 0; i < image.num_sections; i++)
1916         {
1917                 buffer = malloc(image.sections[i].size);
1918                 if (buffer == NULL)
1919                 {
1920                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
1921                         break;
1922                 }
1923                 
1924                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
1925                 {
1926                         ERROR("image_read_section failed with error code: %i", retval);
1927                         command_print(cmd_ctx, "image reading failed, download aborted");
1928                         free(buffer);
1929                         image_close(&image);
1930                         return ERROR_OK;
1931                 }
1932                 target_write_buffer(target, image.sections[i].base_address, buf_cnt, buffer);
1933                 image_size += buf_cnt;
1934                 command_print(cmd_ctx, "%u byte written at address 0x%8.8x", buf_cnt, image.sections[i].base_address);
1935                 
1936                 free(buffer);
1937         }
1938
1939         duration_stop_measure(&duration, &duration_text);
1940         command_print(cmd_ctx, "downloaded %u byte in %s", image_size, duration_text);
1941         free(duration_text);
1942         
1943         image_close(&image);
1944
1945         return ERROR_OK;
1946
1947 }
1948
1949 int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1950 {
1951         fileio_t fileio;
1952         
1953         u32 address;
1954         u32 size;
1955         u8 buffer[560];
1956         int retval;
1957         
1958         duration_t duration;
1959         char *duration_text;
1960         
1961         target_t *target = get_current_target(cmd_ctx);
1962
1963         if (argc != 3)
1964         {
1965                 command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
1966                 return ERROR_OK;
1967         }
1968
1969         address = strtoul(args[1], NULL, 0);
1970         size = strtoul(args[2], NULL, 0);
1971
1972         if ((address & 3) || (size & 3))
1973         {
1974                 command_print(cmd_ctx, "only 32-bit aligned address and size are supported");
1975                 return ERROR_OK;
1976         }
1977         
1978         if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
1979         {
1980                 return ERROR_OK;
1981         }
1982         
1983         duration_start_measure(&duration);
1984         
1985         while (size > 0)
1986         {
1987                 u32 size_written;
1988                 u32 this_run_size = (size > 560) ? 560 : size;
1989                 
1990                 retval = target->type->read_memory(target, address, 4, this_run_size / 4, buffer);
1991                 if (retval != ERROR_OK)
1992                 {
1993                         command_print(cmd_ctx, "Reading memory failed %d", retval);
1994                         break;
1995                 }
1996                 
1997                 fileio_write(&fileio, this_run_size, buffer, &size_written);
1998                 
1999                 size -= this_run_size;
2000                 address += this_run_size;
2001         }
2002
2003         fileio_close(&fileio);
2004
2005         duration_stop_measure(&duration, &duration_text);
2006         command_print(cmd_ctx, "dumped %"PRIi64" byte in %s", fileio.size, duration_text);
2007         free(duration_text);
2008         
2009         return ERROR_OK;
2010 }
2011
2012 int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2013 {
2014         u8 *buffer;
2015         u32 buf_cnt;
2016         u32 image_size;
2017         int i;
2018         int retval;
2019         u32 checksum = 0;
2020         u32 mem_checksum = 0;
2021
2022         image_t image;  
2023         
2024         duration_t duration;
2025         char *duration_text;
2026         
2027         target_t *target = get_current_target(cmd_ctx);
2028         
2029         if (argc < 1)
2030         {
2031                 command_print(cmd_ctx, "usage: verify_image <file> [offset] [type]");
2032                 return ERROR_OK;
2033         }
2034         
2035         if (!target)
2036         {
2037                 ERROR("no target selected");
2038                 return ERROR_OK;
2039         }
2040         
2041         duration_start_measure(&duration);
2042         
2043         if (argc >= 2)
2044         {
2045                 image.base_address_set = 1;
2046                 image.base_address = strtoul(args[1], NULL, 0);
2047         }
2048         else
2049         {
2050                 image.base_address_set = 0;
2051                 image.base_address = 0x0;
2052         }
2053
2054         image.start_address_set = 0;
2055
2056         if (image_open(&image, args[0], (argc == 3) ? args[2] : NULL) != ERROR_OK)
2057         {
2058                 return ERROR_OK;
2059         }
2060         
2061         image_size = 0x0;
2062         for (i = 0; i < image.num_sections; i++)
2063         {
2064                 buffer = malloc(image.sections[i].size);
2065                 if (buffer == NULL)
2066                 {
2067                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2068                         break;
2069                 }
2070                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2071                 {
2072                         ERROR("image_read_section failed with error code: %i", retval);
2073                         command_print(cmd_ctx, "image reading failed, verify aborted");
2074                         free(buffer);
2075                         image_close(&image);
2076                         return ERROR_OK;
2077                 }
2078                 
2079                 /* calculate checksum of image */
2080                 image_calculate_checksum( buffer, buf_cnt, &checksum );
2081                 
2082                 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2083                 
2084                 if( retval != ERROR_OK )
2085                 {
2086                         command_print(cmd_ctx, "could not calculate checksum, verify aborted");
2087                         free(buffer);
2088                         image_close(&image);
2089                         return ERROR_OK;
2090                 }
2091                 
2092                 if( checksum != mem_checksum )
2093                 {
2094                         /* failed crc checksum, fall back to a binary compare */
2095                         u8 *data;
2096                         
2097                         command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
2098                         
2099                         data = (u8*)malloc(buf_cnt);
2100                         
2101                         /* Can we use 32bit word accesses? */
2102                         int size = 1;
2103                         int count = buf_cnt;
2104                         if ((count % 4) == 0)
2105                         {
2106                                 size *= 4;
2107                                 count /= 4;
2108                         }
2109                         retval = target->type->read_memory(target, image.sections[i].base_address, size, count, data);
2110         
2111                         if (retval == ERROR_OK)
2112                         {
2113                                 int t;
2114                                 for (t = 0; t < buf_cnt; t++)
2115                                 {
2116                                         if (data[t] != buffer[t])
2117                                         {
2118                                                 command_print(cmd_ctx, "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n", t + image.sections[i].base_address, data[t], buffer[t]);
2119                                                 free(data);
2120                                                 free(buffer);
2121                                                 image_close(&image);
2122                                                 return ERROR_OK;
2123                                         }
2124                                 }
2125                         }
2126                         
2127                         free(data);
2128                 }
2129                 
2130                 free(buffer);
2131                 image_size += buf_cnt;
2132         }
2133         
2134         duration_stop_measure(&duration, &duration_text);
2135         command_print(cmd_ctx, "verified %u bytes in %s", image_size, duration_text);
2136         free(duration_text);
2137         
2138         image_close(&image);
2139         
2140         return ERROR_OK;
2141 }
2142
2143 int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2144 {
2145         int retval;
2146         target_t *target = get_current_target(cmd_ctx);
2147
2148         if (argc == 0)
2149         {
2150                 breakpoint_t *breakpoint = target->breakpoints;
2151
2152                 while (breakpoint)
2153                 {
2154                         if (breakpoint->type == BKPT_SOFT)
2155                         {
2156                                 char* buf = buf_to_str(breakpoint->orig_instr, breakpoint->length, 16);
2157                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i, 0x%s", breakpoint->address, breakpoint->length, breakpoint->set, buf);
2158                                 free(buf);
2159                         }
2160                         else
2161                         {
2162                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i", breakpoint->address, breakpoint->length, breakpoint->set);
2163                         }
2164                         breakpoint = breakpoint->next;
2165                 }
2166         }
2167         else if (argc >= 2)
2168         {
2169                 int hw = BKPT_SOFT;
2170                 u32 length = 0;
2171
2172                 length = strtoul(args[1], NULL, 0);
2173                 
2174                 if (argc >= 3)
2175                         if (strcmp(args[2], "hw") == 0)
2176                                 hw = BKPT_HARD;
2177
2178                 if ((retval = breakpoint_add(target, strtoul(args[0], NULL, 0), length, hw)) != ERROR_OK)
2179                 {
2180                         switch (retval)
2181                         {
2182                                 case ERROR_TARGET_NOT_HALTED:
2183                                         command_print(cmd_ctx, "target must be halted to set breakpoints");
2184                                         break;
2185                                 case ERROR_TARGET_RESOURCE_NOT_AVAILABLE:
2186                                         command_print(cmd_ctx, "no more breakpoints available");
2187                                         break;
2188                                 default:
2189                                         command_print(cmd_ctx, "unknown error, breakpoint not set");
2190                                         break;
2191                         }
2192                 }
2193                 else
2194                 {
2195                         command_print(cmd_ctx, "breakpoint added at address 0x%8.8x", strtoul(args[0], NULL, 0));
2196                 }
2197         }
2198         else
2199         {
2200                 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
2201         }
2202
2203         return ERROR_OK;
2204 }
2205
2206 int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2207 {
2208         target_t *target = get_current_target(cmd_ctx);
2209
2210         if (argc > 0)
2211                 breakpoint_remove(target, strtoul(args[0], NULL, 0));
2212
2213         return ERROR_OK;
2214 }
2215
2216 int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2217 {
2218         target_t *target = get_current_target(cmd_ctx);
2219         int retval;
2220
2221         if (argc == 0)
2222         {
2223                 watchpoint_t *watchpoint = target->watchpoints;
2224
2225                 while (watchpoint)
2226                 {
2227                         command_print(cmd_ctx, "address: 0x%8.8x, mask: 0x%8.8x, r/w/a: %i, value: 0x%8.8x, mask: 0x%8.8x", watchpoint->address, watchpoint->length, watchpoint->rw, watchpoint->value, watchpoint->mask);
2228                         watchpoint = watchpoint->next;
2229                 }
2230         } 
2231         else if (argc >= 2)
2232         {
2233                 enum watchpoint_rw type = WPT_ACCESS;
2234                 u32 data_value = 0x0;
2235                 u32 data_mask = 0xffffffff;
2236                 
2237                 if (argc >= 3)
2238                 {
2239                         switch(args[2][0])
2240                         {
2241                                 case 'r':
2242                                         type = WPT_READ;
2243                                         break;
2244                                 case 'w':
2245                                         type = WPT_WRITE;
2246                                         break;
2247                                 case 'a':
2248                                         type = WPT_ACCESS;
2249                                         break;
2250                                 default:
2251                                         command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2252                                         return ERROR_OK;
2253                         }
2254                 }
2255                 if (argc >= 4)
2256                 {
2257                         data_value = strtoul(args[3], NULL, 0);
2258                 }
2259                 if (argc >= 5)
2260                 {
2261                         data_mask = strtoul(args[4], NULL, 0);
2262                 }
2263                 
2264                 if ((retval = watchpoint_add(target, strtoul(args[0], NULL, 0),
2265                                 strtoul(args[1], NULL, 0), type, data_value, data_mask)) != ERROR_OK)
2266                 {
2267                         switch (retval)
2268                         {
2269                                 case ERROR_TARGET_NOT_HALTED:
2270                                         command_print(cmd_ctx, "target must be halted to set watchpoints");
2271                                         break;
2272                                 case ERROR_TARGET_RESOURCE_NOT_AVAILABLE:
2273                                         command_print(cmd_ctx, "no more watchpoints available");
2274                                         break;
2275                                 default:
2276                                         command_print(cmd_ctx, "unknown error, watchpoint not set");
2277                                         break;
2278                         }       
2279                 }
2280         }
2281         else
2282         {
2283                 command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2284         }
2285                 
2286         return ERROR_OK;
2287 }
2288
2289 int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2290 {
2291         target_t *target = get_current_target(cmd_ctx);
2292
2293         if (argc > 0)
2294                 watchpoint_remove(target, strtoul(args[0], NULL, 0));
2295         
2296         return ERROR_OK;
2297 }
2298
2299 int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc)
2300 {
2301         int retval;
2302         target_t *target = get_current_target(cmd_ctx);
2303         u32 va;
2304         u32 pa;
2305
2306         if (argc != 1)
2307         {
2308                 return ERROR_COMMAND_SYNTAX_ERROR;
2309         }
2310         va = strtoul(args[0], NULL, 0);
2311
2312         retval = target->type->virt2phys(target, va, &pa);
2313         if (retval == ERROR_OK)
2314         {
2315                 command_print(cmd_ctx, "Physical address 0x%08x", pa);
2316         }
2317         else
2318         {
2319                 /* lower levels will have logged a detailed error which is 
2320                  * forwarded to telnet/GDB session.  
2321                  */
2322         }
2323         return retval;
2324 }