Charles Hardin <ckhardin@gmail.com> move tcl stuff nearer to where it belongs.
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   This program is free software; you can redistribute it and/or modify  *
6  *   it under the terms of the GNU General Public License as published by  *
7  *   the Free Software Foundation; either version 2 of the License, or     *
8  *   (at your option) any later version.                                   *
9  *                                                                         *
10  *   This program is distributed in the hope that it will be useful,       *
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
13  *   GNU General Public License for more details.                          *
14  *                                                                         *
15  *   You should have received a copy of the GNU General Public License     *
16  *   along with this program; if not, write to the                         *
17  *   Free Software Foundation, Inc.,                                       *
18  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
19  ***************************************************************************/
20 #ifdef HAVE_CONFIG_H
21 #include "config.h"
22 #endif
23
24 #include "replacements.h"
25 #include "target.h"
26 #include "target_request.h"
27
28 #include "log.h"
29 #include "configuration.h"
30 #include "binarybuffer.h"
31 #include "jtag.h"
32
33 #include <string.h>
34 #include <stdlib.h>
35 #include <inttypes.h>
36
37 #include <sys/types.h>
38 #include <sys/stat.h>
39 #include <unistd.h>
40 #include <errno.h>
41
42 #include <sys/time.h>
43 #include <time.h>
44
45 #include <time_support.h>
46
47 #include <fileio.h>
48 #include <image.h>
49
50 int cli_target_callback_event_handler(struct target_s *target, enum target_event event, void *priv);
51
52 int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
53 int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
54
55 int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
56 int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
57
58 int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
59 int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
60 int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
61 int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
62 int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
63 int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
64 int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
65 int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
66 int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
67 int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
68 int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
69 int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
70 int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
71 int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
72 int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
73 int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
74 int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
75 int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc);
76 int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
77 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
78 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
79
80
81 /* targets */
82 extern target_type_t arm7tdmi_target;
83 extern target_type_t arm720t_target;
84 extern target_type_t arm9tdmi_target;
85 extern target_type_t arm920t_target;
86 extern target_type_t arm966e_target;
87 extern target_type_t arm926ejs_target;
88 extern target_type_t feroceon_target;
89 extern target_type_t xscale_target;
90 extern target_type_t cortexm3_target;
91 extern target_type_t arm11_target;
92
93 target_type_t *target_types[] =
94 {
95         &arm7tdmi_target,
96         &arm9tdmi_target,
97         &arm920t_target,
98         &arm720t_target,
99         &arm966e_target,
100         &arm926ejs_target,
101         &feroceon_target,
102         &xscale_target,
103         &cortexm3_target,
104         &arm11_target,
105         NULL,
106 };
107
108 target_t *targets = NULL;
109 target_event_callback_t *target_event_callbacks = NULL;
110 target_timer_callback_t *target_timer_callbacks = NULL;
111
112 char *target_state_strings[] =
113 {
114         "unknown",
115         "running",
116         "halted",
117         "reset",
118         "debug_running",
119 };
120
121 char *target_debug_reason_strings[] =
122 {
123         "debug request", "breakpoint", "watchpoint",
124         "watchpoint and breakpoint", "single step",
125         "target not halted", "undefined"
126 };
127
128 char *target_endianess_strings[] =
129 {
130         "big endian",
131         "little endian",
132 };
133
134 static int target_continous_poll = 1;
135
136 /* read a u32 from a buffer in target memory endianness */
137 u32 target_buffer_get_u32(target_t *target, u8 *buffer)
138 {
139         if (target->endianness == TARGET_LITTLE_ENDIAN)
140                 return le_to_h_u32(buffer);
141         else
142                 return be_to_h_u32(buffer);
143 }
144
145 /* read a u16 from a buffer in target memory endianness */
146 u16 target_buffer_get_u16(target_t *target, u8 *buffer)
147 {
148         if (target->endianness == TARGET_LITTLE_ENDIAN)
149                 return le_to_h_u16(buffer);
150         else
151                 return be_to_h_u16(buffer);
152 }
153
154 /* write a u32 to a buffer in target memory endianness */
155 void target_buffer_set_u32(target_t *target, u8 *buffer, u32 value)
156 {
157         if (target->endianness == TARGET_LITTLE_ENDIAN)
158                 h_u32_to_le(buffer, value);
159         else
160                 h_u32_to_be(buffer, value);
161 }
162
163 /* write a u16 to a buffer in target memory endianness */
164 void target_buffer_set_u16(target_t *target, u8 *buffer, u16 value)
165 {
166         if (target->endianness == TARGET_LITTLE_ENDIAN)
167                 h_u16_to_le(buffer, value);
168         else
169                 h_u16_to_be(buffer, value);
170 }
171
172 /* returns a pointer to the n-th configured target */
173 target_t* get_target_by_num(int num)
174 {
175         target_t *target = targets;
176         int i = 0;
177
178         while (target)
179         {
180                 if (num == i)
181                         return target;
182                 target = target->next;
183                 i++;
184         }
185
186         return NULL;
187 }
188
189 int get_num_by_target(target_t *query_target)
190 {
191         target_t *target = targets;
192         int i = 0;      
193         
194         while (target)
195         {
196                 if (target == query_target)
197                         return i;
198                 target = target->next;
199                 i++;
200         }
201         
202         return -1;
203 }
204
205 target_t* get_current_target(command_context_t *cmd_ctx)
206 {
207         target_t *target = get_target_by_num(cmd_ctx->current_target);
208         
209         if (target == NULL)
210         {
211                 LOG_ERROR("BUG: current_target out of bounds");
212                 exit(-1);
213         }
214         
215         return target;
216 }
217
218 /* Process target initialization, when target entered debug out of reset
219  * the handler is unregistered at the end of this function, so it's only called once
220  */
221 int target_init_handler(struct target_s *target, enum target_event event, void *priv)
222 {
223         struct command_context_s *cmd_ctx = priv;
224         
225         if (event == TARGET_EVENT_HALTED)
226         {
227                 target_unregister_event_callback(target_init_handler, priv);
228                 target_invoke_script(cmd_ctx, target, "post_reset");
229                 jtag_execute_queue();
230         }
231         
232         return ERROR_OK;
233 }
234
235 int target_run_and_halt_handler(void *priv)
236 {
237         target_t *target = priv;
238         
239         target_halt(target);
240         
241         return ERROR_OK;
242 }
243
244 int target_poll(struct target_s *target)
245 {
246         /* We can't poll until after examine */
247         if (!target->type->examined)
248         {
249                 /* Fail silently lest we pollute the log */
250                 return ERROR_FAIL;
251         }
252         return target->type->poll(target);
253 }
254
255 int target_halt(struct target_s *target)
256 {
257         /* We can't poll until after examine */
258         if (!target->type->examined)
259         {
260                 LOG_ERROR("Target not examined yet");
261                 return ERROR_FAIL;
262         }
263         return target->type->halt(target);
264 }
265
266 int target_resume(struct target_s *target, int current, u32 address, int handle_breakpoints, int debug_execution)
267 {
268         int retval;
269         
270         /* We can't poll until after examine */
271         if (!target->type->examined)
272         {
273                 LOG_ERROR("Target not examined yet");
274                 return ERROR_FAIL;
275         }
276         
277         if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
278                 return retval;
279         
280         return retval;
281 }
282
283 int target_process_reset(struct command_context_s *cmd_ctx)
284 {
285         int retval = ERROR_OK;
286         target_t *target;
287         struct timeval timeout, now;
288
289         jtag->speed(jtag_speed);
290
291         target = targets;
292         while (target)
293         {
294                 target_invoke_script(cmd_ctx, target, "pre_reset");
295                 target = target->next;
296         }
297         
298         if ((retval = jtag_init_reset(cmd_ctx)) != ERROR_OK)
299                 return retval;
300         
301         /* First time this is executed after launching OpenOCD, it will read out 
302          * the type of CPU, etc. and init Embedded ICE registers in host
303          * memory. 
304          * 
305          * It will also set up ICE registers in the target.
306          * 
307          * However, if we assert TRST later, we need to set up the registers again. 
308          * 
309          * For the "reset halt/init" case we must only set up the registers here.
310          */
311         if ((retval = target_examine(cmd_ctx)) != ERROR_OK)
312                 return retval;
313         
314         /* prepare reset_halt where necessary */
315         target = targets;
316         while (target)
317         {
318                 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
319                 {
320                         switch (target->reset_mode)
321                         {
322                                 case RESET_HALT:
323                                         command_print(cmd_ctx, "nSRST pulls nTRST, falling back to \"reset run_and_halt\"");
324                                         target->reset_mode = RESET_RUN_AND_HALT;
325                                         break;
326                                 case RESET_INIT:
327                                         command_print(cmd_ctx, "nSRST pulls nTRST, falling back to \"reset run_and_init\"");
328                                         target->reset_mode = RESET_RUN_AND_INIT;
329                                         break;
330                                 default:
331                                         break;
332                         } 
333                 }
334                 target = target->next;
335         }
336         
337         target = targets;
338         while (target)
339         {
340                 /* we have no idea what state the target is in, so we
341                  * have to drop working areas
342                  */
343                 target_free_all_working_areas_restore(target, 0);
344                 target->type->assert_reset(target);
345                 target = target->next;
346         }
347         if ((retval = jtag_execute_queue()) != ERROR_OK)
348         {
349                 LOG_WARNING("JTAG communication failed asserting reset.");
350                 retval = ERROR_OK;
351         }
352         
353         /* request target halt if necessary, and schedule further action */
354         target = targets;
355         while (target)
356         {
357                 switch (target->reset_mode)
358                 {
359                         case RESET_RUN:
360                                 /* nothing to do if target just wants to be run */
361                                 break;
362                         case RESET_RUN_AND_HALT:
363                                 /* schedule halt */
364                                 target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target);
365                                 break;
366                         case RESET_RUN_AND_INIT:
367                                 /* schedule halt */
368                                 target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target);
369                                 target_register_event_callback(target_init_handler, cmd_ctx);
370                                 break;
371                         case RESET_HALT:
372                                 target_halt(target);
373                                 break;
374                         case RESET_INIT:
375                                 target_halt(target);
376                                 target_register_event_callback(target_init_handler, cmd_ctx);
377                                 break;
378                         default:
379                                 LOG_ERROR("BUG: unknown target->reset_mode");
380                 }
381                 target = target->next;
382         }
383         
384         if ((retval = jtag_execute_queue()) != ERROR_OK)
385         {
386                 LOG_WARNING("JTAG communication failed while reset was asserted. Consider using srst_only for reset_config.");
387                 retval = ERROR_OK;              
388         }
389         
390         target = targets;
391         while (target)
392         {
393                 target->type->deassert_reset(target);
394                 target = target->next;
395         }
396         
397         if ((retval = jtag_execute_queue()) != ERROR_OK)
398         {
399                 LOG_WARNING("JTAG communication failed while deasserting reset.");
400                 retval = ERROR_OK;
401         }
402
403         if (jtag_reset_config & RESET_SRST_PULLS_TRST)
404         {
405                 /* If TRST was asserted we need to set up registers again */
406                 if ((retval = target_examine(cmd_ctx)) != ERROR_OK)
407                         return retval;
408         }               
409         
410         
411         LOG_DEBUG("Waiting for halted stated as approperiate");
412         
413         /* Wait for reset to complete, maximum 5 seconds. */    
414         gettimeofday(&timeout, NULL);
415         timeval_add_time(&timeout, 5, 0);
416         for(;;)
417         {
418                 gettimeofday(&now, NULL);
419                 
420                 target_call_timer_callbacks_now();
421                 
422                 target = targets;
423                 while (target)
424                 {
425                         LOG_DEBUG("Polling target");
426                         target_poll(target);
427                         if ((target->reset_mode == RESET_RUN_AND_INIT) || 
428                                         (target->reset_mode == RESET_RUN_AND_HALT) ||
429                                         (target->reset_mode == RESET_HALT) ||
430                                         (target->reset_mode == RESET_INIT))
431                         {
432                                 if (target->state != TARGET_HALTED)
433                                 {
434                                         if ((now.tv_sec > timeout.tv_sec) || ((now.tv_sec == timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
435                                         {
436                                                 LOG_USER("Timed out waiting for halt after reset");
437                                                 goto done;
438                                         }
439                                         /* this will send alive messages on e.g. GDB remote protocol. */
440                                         usleep(500*1000); 
441                                         LOG_USER_N("%s", ""); /* avoid warning about zero length formatting message*/ 
442                                         goto again;
443                                 }
444                         }
445                         target = target->next;
446                 }
447                 /* All targets we're waiting for are halted */
448                 break;
449                 
450                 again:;
451         }
452         done:
453         
454         
455         /* We want any events to be processed before the prompt */
456         target_call_timer_callbacks_now();
457
458         /* if we timed out we need to unregister these handlers */
459         target = targets;
460         while (target)
461         {
462                 target_unregister_timer_callback(target_run_and_halt_handler, target);
463                 target = target->next;
464         }
465         target_unregister_event_callback(target_init_handler, cmd_ctx);
466         
467         jtag->speed(jtag_speed_post_reset);
468         
469         return retval;
470 }
471
472 static int default_virt2phys(struct target_s *target, u32 virtual, u32 *physical)
473 {
474         *physical = virtual;
475         return ERROR_OK;
476 }
477
478 static int default_mmu(struct target_s *target, int *enabled)
479 {
480         *enabled = 0;
481         return ERROR_OK;
482 }
483
484 static int default_examine(struct command_context_s *cmd_ctx, struct target_s *target)
485 {
486         target->type->examined = 1;
487         return ERROR_OK;
488 }
489
490
491 /* Targets that correctly implement init+examine, i.e.
492  * no communication with target during init:
493  * 
494  * XScale 
495  */
496 int target_examine(struct command_context_s *cmd_ctx)
497 {
498         int retval = ERROR_OK;
499         target_t *target = targets;
500         while (target)
501         {
502                 if ((retval = target->type->examine(cmd_ctx, target))!=ERROR_OK)
503                         return retval;
504                 target = target->next;
505         }
506         return retval;
507 }
508
509 static int target_write_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
510 {
511         if (!target->type->examined)
512         {
513                 LOG_ERROR("Target not examined yet");
514                 return ERROR_FAIL;
515         }
516         return target->type->write_memory_imp(target, address, size, count, buffer);
517 }
518
519 static int target_read_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
520 {
521         if (!target->type->examined)
522         {
523                 LOG_ERROR("Target not examined yet");
524                 return ERROR_FAIL;
525         }
526         return target->type->read_memory_imp(target, address, size, count, buffer);
527 }
528
529 static int target_soft_reset_halt_imp(struct target_s *target)
530 {
531         if (!target->type->examined)
532         {
533                 LOG_ERROR("Target not examined yet");
534                 return ERROR_FAIL;
535         }
536         return target->type->soft_reset_halt_imp(target);
537 }
538
539 static int target_run_algorithm_imp(struct target_s *target, int num_mem_params, mem_param_t *mem_params, int num_reg_params, reg_param_t *reg_param, u32 entry_point, u32 exit_point, int timeout_ms, void *arch_info)
540 {
541         if (!target->type->examined)
542         {
543                 LOG_ERROR("Target not examined yet");
544                 return ERROR_FAIL;
545         }
546         return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
547 }
548
549 int target_init(struct command_context_s *cmd_ctx)
550 {
551         target_t *target = targets;
552         
553         while (target)
554         {
555                 target->type->examined = 0;
556                 if (target->type->examine == NULL)
557                 {
558                         target->type->examine = default_examine;
559                 }
560                 
561                 if (target->type->init_target(cmd_ctx, target) != ERROR_OK)
562                 {
563                         LOG_ERROR("target '%s' init failed", target->type->name);
564                         exit(-1);
565                 }
566                 
567                 /* Set up default functions if none are provided by target */
568                 if (target->type->virt2phys == NULL)
569                 {
570                         target->type->virt2phys = default_virt2phys;
571                 }
572                 target->type->virt2phys = default_virt2phys;
573                 /* a non-invasive way(in terms of patches) to add some code that
574                  * runs before the type->write/read_memory implementation
575                  */
576                 target->type->write_memory_imp = target->type->write_memory;
577                 target->type->write_memory = target_write_memory_imp;
578                 target->type->read_memory_imp = target->type->read_memory;
579                 target->type->read_memory = target_read_memory_imp;
580                 target->type->soft_reset_halt_imp = target->type->soft_reset_halt;
581                 target->type->soft_reset_halt = target_soft_reset_halt_imp;
582                 target->type->run_algorithm_imp = target->type->run_algorithm;
583                 target->type->run_algorithm = target_run_algorithm_imp;
584
585                 
586                 if (target->type->mmu == NULL)
587                 {
588                         target->type->mmu = default_mmu;
589                 }
590                 target = target->next;
591         }
592         
593         if (targets)
594         {
595                 target_register_user_commands(cmd_ctx);
596                 target_register_timer_callback(handle_target, 100, 1, NULL);
597         }
598                 
599         return ERROR_OK;
600 }
601
602 int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
603 {
604         target_event_callback_t **callbacks_p = &target_event_callbacks;
605         
606         if (callback == NULL)
607         {
608                 return ERROR_INVALID_ARGUMENTS;
609         }
610         
611         if (*callbacks_p)
612         {
613                 while ((*callbacks_p)->next)
614                         callbacks_p = &((*callbacks_p)->next);
615                 callbacks_p = &((*callbacks_p)->next);
616         }
617         
618         (*callbacks_p) = malloc(sizeof(target_event_callback_t));
619         (*callbacks_p)->callback = callback;
620         (*callbacks_p)->priv = priv;
621         (*callbacks_p)->next = NULL;
622         
623         return ERROR_OK;
624 }
625
626 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
627 {
628         target_timer_callback_t **callbacks_p = &target_timer_callbacks;
629         struct timeval now;
630         
631         if (callback == NULL)
632         {
633                 return ERROR_INVALID_ARGUMENTS;
634         }
635         
636         if (*callbacks_p)
637         {
638                 while ((*callbacks_p)->next)
639                         callbacks_p = &((*callbacks_p)->next);
640                 callbacks_p = &((*callbacks_p)->next);
641         }
642         
643         (*callbacks_p) = malloc(sizeof(target_timer_callback_t));
644         (*callbacks_p)->callback = callback;
645         (*callbacks_p)->periodic = periodic;
646         (*callbacks_p)->time_ms = time_ms;
647         
648         gettimeofday(&now, NULL);
649         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
650         time_ms -= (time_ms % 1000);
651         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
652         if ((*callbacks_p)->when.tv_usec > 1000000)
653         {
654                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
655                 (*callbacks_p)->when.tv_sec += 1;
656         }
657         
658         (*callbacks_p)->priv = priv;
659         (*callbacks_p)->next = NULL;
660         
661         return ERROR_OK;
662 }
663
664 int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
665 {
666         target_event_callback_t **p = &target_event_callbacks;
667         target_event_callback_t *c = target_event_callbacks;
668         
669         if (callback == NULL)
670         {
671                 return ERROR_INVALID_ARGUMENTS;
672         }
673                 
674         while (c)
675         {
676                 target_event_callback_t *next = c->next;
677                 if ((c->callback == callback) && (c->priv == priv))
678                 {
679                         *p = next;
680                         free(c);
681                         return ERROR_OK;
682                 }
683                 else
684                         p = &(c->next);
685                 c = next;
686         }
687         
688         return ERROR_OK;
689 }
690
691 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
692 {
693         target_timer_callback_t **p = &target_timer_callbacks;
694         target_timer_callback_t *c = target_timer_callbacks;
695         
696         if (callback == NULL)
697         {
698                 return ERROR_INVALID_ARGUMENTS;
699         }
700                 
701         while (c)
702         {
703                 target_timer_callback_t *next = c->next;
704                 if ((c->callback == callback) && (c->priv == priv))
705                 {
706                         *p = next;
707                         free(c);
708                         return ERROR_OK;
709                 }
710                 else
711                         p = &(c->next);
712                 c = next;
713         }
714         
715         return ERROR_OK;
716 }
717
718 int target_call_event_callbacks(target_t *target, enum target_event event)
719 {
720         target_event_callback_t *callback = target_event_callbacks;
721         target_event_callback_t *next_callback;
722         
723         LOG_DEBUG("target event %i", event);
724         
725         while (callback)
726         {
727                 next_callback = callback->next;
728                 callback->callback(target, event, callback->priv);
729                 callback = next_callback;
730         }
731         
732         return ERROR_OK;
733 }
734
735 static int target_call_timer_callbacks_check_time(int checktime)
736 {
737         target_timer_callback_t *callback = target_timer_callbacks;
738         target_timer_callback_t *next_callback;
739         struct timeval now;
740
741         gettimeofday(&now, NULL);
742         
743         while (callback)
744         {
745                 next_callback = callback->next;
746                 
747                 if ((!checktime&&callback->periodic)||
748                                 (((now.tv_sec >= callback->when.tv_sec) && (now.tv_usec >= callback->when.tv_usec))
749                                                 || (now.tv_sec > callback->when.tv_sec)))
750                 {
751                         if(callback->callback != NULL)
752                         {
753                                 callback->callback(callback->priv);
754                                 if (callback->periodic)
755                                 {
756                                         int time_ms = callback->time_ms;
757                                         callback->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
758                                         time_ms -= (time_ms % 1000);
759                                         callback->when.tv_sec = now.tv_sec + time_ms / 1000;
760                                         if (callback->when.tv_usec > 1000000)
761                                         {
762                                                 callback->when.tv_usec = callback->when.tv_usec - 1000000;
763                                                 callback->when.tv_sec += 1;
764                                         }
765                                 }
766                                 else
767                                         target_unregister_timer_callback(callback->callback, callback->priv);
768                         }
769                 }
770                         
771                 callback = next_callback;
772         }
773         
774         return ERROR_OK;
775 }
776
777 int target_call_timer_callbacks()
778 {
779         return target_call_timer_callbacks_check_time(1);
780 }
781
782 /* invoke periodic callbacks immediately */
783 int target_call_timer_callbacks_now()
784 {
785         return target_call_timer_callbacks(0);
786 }
787
788 int target_alloc_working_area(struct target_s *target, u32 size, working_area_t **area)
789 {
790         working_area_t *c = target->working_areas;
791         working_area_t *new_wa = NULL;
792         
793         /* Reevaluate working area address based on MMU state*/
794         if (target->working_areas == NULL)
795         {
796                 int retval;
797                 int enabled;
798                 retval = target->type->mmu(target, &enabled);
799                 if (retval != ERROR_OK)
800                 {
801                         return retval;
802                 }
803                 if (enabled)
804                 {
805                         target->working_area = target->working_area_virt;
806                 }
807                 else
808                 {
809                         target->working_area = target->working_area_phys;
810                 }
811         }
812         
813         /* only allocate multiples of 4 byte */
814         if (size % 4)
815         {
816                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes, padding");
817                 size = CEIL(size, 4);
818         }
819         
820         /* see if there's already a matching working area */
821         while (c)
822         {
823                 if ((c->free) && (c->size == size))
824                 {
825                         new_wa = c;
826                         break;
827                 }
828                 c = c->next;
829         }
830         
831         /* if not, allocate a new one */
832         if (!new_wa)
833         {
834                 working_area_t **p = &target->working_areas;
835                 u32 first_free = target->working_area;
836                 u32 free_size = target->working_area_size;
837                 
838                 LOG_DEBUG("allocating new working area");
839                 
840                 c = target->working_areas;
841                 while (c)
842                 {
843                         first_free += c->size;
844                         free_size -= c->size;
845                         p = &c->next;
846                         c = c->next;
847                 }
848                 
849                 if (free_size < size)
850                 {
851                         LOG_WARNING("not enough working area available(requested %d, free %d)", size, free_size);
852                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
853                 }
854                 
855                 new_wa = malloc(sizeof(working_area_t));
856                 new_wa->next = NULL;
857                 new_wa->size = size;
858                 new_wa->address = first_free;
859                 
860                 if (target->backup_working_area)
861                 {
862                         new_wa->backup = malloc(new_wa->size);
863                         target->type->read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup);
864                 }
865                 else
866                 {
867                         new_wa->backup = NULL;
868                 }
869                 
870                 /* put new entry in list */
871                 *p = new_wa;
872         }
873         
874         /* mark as used, and return the new (reused) area */
875         new_wa->free = 0;
876         *area = new_wa;
877         
878         /* user pointer */
879         new_wa->user = area;
880         
881         return ERROR_OK;
882 }
883
884 int target_free_working_area_restore(struct target_s *target, working_area_t *area, int restore)
885 {
886         if (area->free)
887                 return ERROR_OK;
888         
889         if (restore&&target->backup_working_area)
890                 target->type->write_memory(target, area->address, 4, area->size / 4, area->backup);
891         
892         area->free = 1;
893         
894         /* mark user pointer invalid */
895         *area->user = NULL;
896         area->user = NULL;
897         
898         return ERROR_OK;
899 }
900
901 int target_free_working_area(struct target_s *target, working_area_t *area)
902 {
903         return target_free_working_area_restore(target, area, 1);
904 }
905
906 int target_free_all_working_areas_restore(struct target_s *target, int restore)
907 {
908         working_area_t *c = target->working_areas;
909
910         while (c)
911         {
912                 working_area_t *next = c->next;
913                 target_free_working_area_restore(target, c, restore);
914                 
915                 if (c->backup)
916                         free(c->backup);
917                 
918                 free(c);
919                 
920                 c = next;
921         }
922         
923         target->working_areas = NULL;
924         
925         return ERROR_OK;
926 }
927
928 int target_free_all_working_areas(struct target_s *target)
929 {
930         return target_free_all_working_areas_restore(target, 1); 
931 }
932
933 int target_register_commands(struct command_context_s *cmd_ctx)
934 {
935         register_command(cmd_ctx, NULL, "target", handle_target_command, COMMAND_CONFIG, "target <cpu> [reset_init default - DEPRECATED] <chainpos> <endianness> <variant> [cpu type specifc args]");
936         register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, NULL);
937         register_command(cmd_ctx, NULL, "run_and_halt_time", handle_run_and_halt_time_command, COMMAND_CONFIG, "<target> <run time ms>");
938         register_command(cmd_ctx, NULL, "working_area", handle_working_area_command, COMMAND_ANY, "working_area <target#> <address> <size> <'backup'|'nobackup'> [virtual address]");
939         register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "virt2phys <virtual address>");
940         register_command(cmd_ctx, NULL, "profile", handle_profile_command, COMMAND_EXEC, "PRELIMINARY! - profile <seconds> <gmon.out>");
941
942
943         /* script procedures */
944         register_jim(cmd_ctx, "openocd_mem2array", jim_mem2array, "read memory and return as a TCL array for script processing");
945         register_jim(cmd_ctx, "openocd_array2mem", jim_mem2array, "convert a TCL array to memory locations and write the values");
946         return ERROR_OK;
947 }
948
949 int target_arch_state(struct target_s *target)
950 {
951         int retval;
952         if (target==NULL)
953         {
954                 LOG_USER("No target has been configured");
955                 return ERROR_OK;
956         }
957         
958         LOG_USER("target state: %s", target_state_strings[target->state]);
959         
960         if (target->state!=TARGET_HALTED)
961                 return ERROR_OK;
962         
963         retval=target->type->arch_state(target);
964         return retval;
965 }
966
967 /* Single aligned words are guaranteed to use 16 or 32 bit access 
968  * mode respectively, otherwise data is handled as quickly as 
969  * possible
970  */
971 int target_write_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
972 {
973         int retval;
974         if (!target->type->examined)
975         {
976                 LOG_ERROR("Target not examined yet");
977                 return ERROR_FAIL;
978         }
979         
980         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x", size, address);
981         
982         if (((address % 2) == 0) && (size == 2))
983         {
984                 return target->type->write_memory(target, address, 2, 1, buffer);
985         }
986         
987         /* handle unaligned head bytes */
988         if (address % 4)
989         {
990                 int unaligned = 4 - (address % 4);
991                 
992                 if (unaligned > size)
993                         unaligned = size;
994
995                 if ((retval = target->type->write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
996                         return retval;
997                 
998                 buffer += unaligned;
999                 address += unaligned;
1000                 size -= unaligned;
1001         }
1002                 
1003         /* handle aligned words */
1004         if (size >= 4)
1005         {
1006                 int aligned = size - (size % 4);
1007         
1008                 /* use bulk writes above a certain limit. This may have to be changed */
1009                 if (aligned > 128)
1010                 {
1011                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1012                                 return retval;
1013                 }
1014                 else
1015                 {
1016                         if ((retval = target->type->write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1017                                 return retval;
1018                 }
1019                 
1020                 buffer += aligned;
1021                 address += aligned;
1022                 size -= aligned;
1023         }
1024         
1025         /* handle tail writes of less than 4 bytes */
1026         if (size > 0)
1027         {
1028                 if ((retval = target->type->write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1029                         return retval;
1030         }
1031         
1032         return ERROR_OK;
1033 }
1034
1035
1036 /* Single aligned words are guaranteed to use 16 or 32 bit access 
1037  * mode respectively, otherwise data is handled as quickly as 
1038  * possible
1039  */
1040 int target_read_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
1041 {
1042         int retval;
1043         if (!target->type->examined)
1044         {
1045                 LOG_ERROR("Target not examined yet");
1046                 return ERROR_FAIL;
1047         }
1048
1049         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x", size, address);
1050         
1051         if (((address % 2) == 0) && (size == 2))
1052         {
1053                 return target->type->read_memory(target, address, 2, 1, buffer);
1054         }
1055         
1056         /* handle unaligned head bytes */
1057         if (address % 4)
1058         {
1059                 int unaligned = 4 - (address % 4);
1060                 
1061                 if (unaligned > size)
1062                         unaligned = size;
1063
1064                 if ((retval = target->type->read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1065                         return retval;
1066                 
1067                 buffer += unaligned;
1068                 address += unaligned;
1069                 size -= unaligned;
1070         }
1071                 
1072         /* handle aligned words */
1073         if (size >= 4)
1074         {
1075                 int aligned = size - (size % 4);
1076         
1077                 if ((retval = target->type->read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1078                         return retval;
1079                 
1080                 buffer += aligned;
1081                 address += aligned;
1082                 size -= aligned;
1083         }
1084         
1085         /* handle tail writes of less than 4 bytes */
1086         if (size > 0)
1087         {
1088                 if ((retval = target->type->read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1089                         return retval;
1090         }
1091         
1092         return ERROR_OK;
1093 }
1094
1095 int target_checksum_memory(struct target_s *target, u32 address, u32 size, u32* crc)
1096 {
1097         u8 *buffer;
1098         int retval;
1099         int i;
1100         u32 checksum = 0;
1101         if (!target->type->examined)
1102         {
1103                 LOG_ERROR("Target not examined yet");
1104                 return ERROR_FAIL;
1105         }
1106         
1107         if ((retval = target->type->checksum_memory(target, address,
1108                 size, &checksum)) == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1109         {
1110                 buffer = malloc(size);
1111                 if (buffer == NULL)
1112                 {
1113                         LOG_ERROR("error allocating buffer for section (%d bytes)", size);
1114                         return ERROR_INVALID_ARGUMENTS;
1115                 }
1116                 retval = target_read_buffer(target, address, size, buffer);
1117                 if (retval != ERROR_OK)
1118                 {
1119                         free(buffer);
1120                         return retval;
1121                 }
1122
1123                 /* convert to target endianess */
1124                 for (i = 0; i < (size/sizeof(u32)); i++)
1125                 {
1126                         u32 target_data;
1127                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(u32)]);
1128                         target_buffer_set_u32(target, &buffer[i*sizeof(u32)], target_data);
1129                 }
1130
1131                 retval = image_calculate_checksum( buffer, size, &checksum );
1132                 free(buffer);
1133         }
1134         
1135         *crc = checksum;
1136         
1137         return retval;
1138 }
1139
1140 int target_blank_check_memory(struct target_s *target, u32 address, u32 size, u32* blank)
1141 {
1142         int retval;
1143         if (!target->type->examined)
1144         {
1145                 LOG_ERROR("Target not examined yet");
1146                 return ERROR_FAIL;
1147         }
1148         
1149         if (target->type->blank_check_memory == 0)
1150                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1151         
1152         retval = target->type->blank_check_memory(target, address, size, blank);
1153                         
1154         return retval;
1155 }
1156
1157 int target_read_u32(struct target_s *target, u32 address, u32 *value)
1158 {
1159         u8 value_buf[4];
1160         if (!target->type->examined)
1161         {
1162                 LOG_ERROR("Target not examined yet");
1163                 return ERROR_FAIL;
1164         }
1165
1166         int retval = target->type->read_memory(target, address, 4, 1, value_buf);
1167         
1168         if (retval == ERROR_OK)
1169         {
1170                 *value = target_buffer_get_u32(target, value_buf);
1171                 LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, *value);
1172         }
1173         else
1174         {
1175                 *value = 0x0;
1176                 LOG_DEBUG("address: 0x%8.8x failed", address);
1177         }
1178         
1179         return retval;
1180 }
1181
1182 int target_read_u16(struct target_s *target, u32 address, u16 *value)
1183 {
1184         u8 value_buf[2];
1185         if (!target->type->examined)
1186         {
1187                 LOG_ERROR("Target not examined yet");
1188                 return ERROR_FAIL;
1189         }
1190
1191         int retval = target->type->read_memory(target, address, 2, 1, value_buf);
1192         
1193         if (retval == ERROR_OK)
1194         {
1195                 *value = target_buffer_get_u16(target, value_buf);
1196                 LOG_DEBUG("address: 0x%8.8x, value: 0x%4.4x", address, *value);
1197         }
1198         else
1199         {
1200                 *value = 0x0;
1201                 LOG_DEBUG("address: 0x%8.8x failed", address);
1202         }
1203         
1204         return retval;
1205 }
1206
1207 int target_read_u8(struct target_s *target, u32 address, u8 *value)
1208 {
1209         int retval = target->type->read_memory(target, address, 1, 1, value);
1210         if (!target->type->examined)
1211         {
1212                 LOG_ERROR("Target not examined yet");
1213                 return ERROR_FAIL;
1214         }
1215
1216         if (retval == ERROR_OK)
1217         {
1218                 LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, *value);
1219         }
1220         else
1221         {
1222                 *value = 0x0;
1223                 LOG_DEBUG("address: 0x%8.8x failed", address);
1224         }
1225         
1226         return retval;
1227 }
1228
1229 int target_write_u32(struct target_s *target, u32 address, u32 value)
1230 {
1231         int retval;
1232         u8 value_buf[4];
1233         if (!target->type->examined)
1234         {
1235                 LOG_ERROR("Target not examined yet");
1236                 return ERROR_FAIL;
1237         }
1238
1239         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1240
1241         target_buffer_set_u32(target, value_buf, value);        
1242         if ((retval = target->type->write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1243         {
1244                 LOG_DEBUG("failed: %i", retval);
1245         }
1246         
1247         return retval;
1248 }
1249
1250 int target_write_u16(struct target_s *target, u32 address, u16 value)
1251 {
1252         int retval;
1253         u8 value_buf[2];
1254         if (!target->type->examined)
1255         {
1256                 LOG_ERROR("Target not examined yet");
1257                 return ERROR_FAIL;
1258         }
1259
1260         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1261
1262         target_buffer_set_u16(target, value_buf, value);        
1263         if ((retval = target->type->write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1264         {
1265                 LOG_DEBUG("failed: %i", retval);
1266         }
1267         
1268         return retval;
1269 }
1270
1271 int target_write_u8(struct target_s *target, u32 address, u8 value)
1272 {
1273         int retval;
1274         if (!target->type->examined)
1275         {
1276                 LOG_ERROR("Target not examined yet");
1277                 return ERROR_FAIL;
1278         }
1279
1280         LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, value);
1281
1282         if ((retval = target->type->read_memory(target, address, 1, 1, &value)) != ERROR_OK)
1283         {
1284                 LOG_DEBUG("failed: %i", retval);
1285         }
1286         
1287         return retval;
1288 }
1289
1290 int target_register_user_commands(struct command_context_s *cmd_ctx)
1291 {
1292         register_command(cmd_ctx,  NULL, "reg", handle_reg_command, COMMAND_EXEC, NULL);
1293         register_command(cmd_ctx,  NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state");
1294         register_command(cmd_ctx,  NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]");
1295         register_command(cmd_ctx,  NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target");
1296         register_command(cmd_ctx,  NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]");
1297         register_command(cmd_ctx,  NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]");
1298         register_command(cmd_ctx,  NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run|halt|init|run_and_halt|run_and_init]");
1299         register_command(cmd_ctx,  NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset");
1300
1301         register_command(cmd_ctx,  NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words <addr> [count]");
1302         register_command(cmd_ctx,  NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words <addr> [count]");
1303         register_command(cmd_ctx,  NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes <addr> [count]");
1304         
1305         register_command(cmd_ctx,  NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word <addr> <value> [count]");
1306         register_command(cmd_ctx,  NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word <addr> <value> [count]");
1307         register_command(cmd_ctx,  NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte <addr> <value> [count]");
1308         
1309         register_command(cmd_ctx,  NULL, "bp", handle_bp_command, COMMAND_EXEC, "set breakpoint <address> <length> [hw]");      
1310         register_command(cmd_ctx,  NULL, "rbp", handle_rbp_command, COMMAND_EXEC, "remove breakpoint <adress>");
1311         register_command(cmd_ctx,  NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint <address> <length> <r/w/a> [value] [mask]");    
1312         register_command(cmd_ctx,  NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint <adress>");
1313         
1314         register_command(cmd_ctx,  NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> ['bin'|'ihex'|'elf'|'s19']");
1315         register_command(cmd_ctx,  NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>");
1316         register_command(cmd_ctx,  NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image <file> [offset] [type]");
1317         register_command(cmd_ctx,  NULL, "load_binary", handle_load_image_command, COMMAND_EXEC, "[DEPRECATED] load_binary <file> <address>");
1318         register_command(cmd_ctx,  NULL, "dump_binary", handle_dump_image_command, COMMAND_EXEC, "[DEPRECATED] dump_binary <file> <address> <size>");
1319         
1320         target_request_register_commands(cmd_ctx);
1321         trace_register_commands(cmd_ctx);
1322         
1323         return ERROR_OK;
1324 }
1325
1326 int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1327 {
1328         target_t *target = targets;
1329         int count = 0;
1330         
1331         if (argc == 1)
1332         {
1333                 int num = strtoul(args[0], NULL, 0);
1334                 
1335                 while (target)
1336                 {
1337                         count++;
1338                         target = target->next;
1339                 }
1340                 
1341                 if (num < count)
1342                         cmd_ctx->current_target = num;
1343                 else
1344                         command_print(cmd_ctx, "%i is out of bounds, only %i targets are configured", num, count);
1345                         
1346                 return ERROR_OK;
1347         }
1348                 
1349         while (target)
1350         {
1351                 command_print(cmd_ctx, "%i: %s (%s), state: %s", count++, target->type->name, target_endianess_strings[target->endianness], target_state_strings[target->state]);
1352                 target = target->next;
1353         }
1354         
1355         return ERROR_OK;
1356 }
1357
1358 int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1359 {
1360         int i;
1361         int found = 0;
1362         
1363         if (argc < 3)
1364         {
1365                 return ERROR_COMMAND_SYNTAX_ERROR;
1366         }
1367         
1368         /* search for the specified target */
1369         if (args[0] && (args[0][0] != 0))
1370         {
1371                 for (i = 0; target_types[i]; i++)
1372                 {
1373                         if (strcmp(args[0], target_types[i]->name) == 0)
1374                         {
1375                                 target_t **last_target_p = &targets;
1376                                 
1377                                 /* register target specific commands */
1378                                 if (target_types[i]->register_commands(cmd_ctx) != ERROR_OK)
1379                                 {
1380                                         LOG_ERROR("couldn't register '%s' commands", args[0]);
1381                                         exit(-1);
1382                                 }
1383
1384                                 if (*last_target_p)
1385                                 {
1386                                         while ((*last_target_p)->next)
1387                                                 last_target_p = &((*last_target_p)->next);
1388                                         last_target_p = &((*last_target_p)->next);
1389                                 }
1390
1391                                 *last_target_p = malloc(sizeof(target_t));
1392                                 
1393                                 /* allocate memory for each unique target type */
1394                                 (*last_target_p)->type = (target_type_t*)malloc(sizeof(target_type_t));
1395                                 *((*last_target_p)->type) = *target_types[i]; 
1396                                 
1397                                 if (strcmp(args[1], "big") == 0)
1398                                         (*last_target_p)->endianness = TARGET_BIG_ENDIAN;
1399                                 else if (strcmp(args[1], "little") == 0)
1400                                         (*last_target_p)->endianness = TARGET_LITTLE_ENDIAN;
1401                                 else
1402                                 {
1403                                         LOG_ERROR("endianness must be either 'little' or 'big', not '%s'", args[1]);
1404                                         return ERROR_COMMAND_SYNTAX_ERROR;
1405                                 }
1406                                 
1407                                 /* what to do on a target reset */
1408                                 (*last_target_p)->reset_mode = RESET_INIT; /* default */
1409                                 if (strcmp(args[2], "reset_halt") == 0)
1410                                         (*last_target_p)->reset_mode = RESET_HALT;
1411                                 else if (strcmp(args[2], "reset_run") == 0)
1412                                         (*last_target_p)->reset_mode = RESET_RUN;
1413                                 else if (strcmp(args[2], "reset_init") == 0)
1414                                         (*last_target_p)->reset_mode = RESET_INIT;
1415                                 else if (strcmp(args[2], "run_and_halt") == 0)
1416                                         (*last_target_p)->reset_mode = RESET_RUN_AND_HALT;
1417                                 else if (strcmp(args[2], "run_and_init") == 0)
1418                                         (*last_target_p)->reset_mode = RESET_RUN_AND_INIT;
1419                                 else
1420                                 {
1421                                         /* Kludge! we want to make this reset arg optional while remaining compatible! */
1422                                         args--;
1423                                         argc++;
1424                                 }
1425                                 (*last_target_p)->run_and_halt_time = 1000; /* default 1s */
1426                                 
1427                                 (*last_target_p)->working_area = 0x0;
1428                                 (*last_target_p)->working_area_size = 0x0;
1429                                 (*last_target_p)->working_areas = NULL;
1430                                 (*last_target_p)->backup_working_area = 0;
1431                                 
1432                                 (*last_target_p)->state = TARGET_UNKNOWN;
1433                                 (*last_target_p)->debug_reason = DBG_REASON_UNDEFINED;
1434                                 (*last_target_p)->reg_cache = NULL;
1435                                 (*last_target_p)->breakpoints = NULL;
1436                                 (*last_target_p)->watchpoints = NULL;
1437                                 (*last_target_p)->next = NULL;
1438                                 (*last_target_p)->arch_info = NULL;
1439                                 
1440                                 /* initialize trace information */
1441                                 (*last_target_p)->trace_info = malloc(sizeof(trace_t));
1442                                 (*last_target_p)->trace_info->num_trace_points = 0;
1443                                 (*last_target_p)->trace_info->trace_points_size = 0;
1444                                 (*last_target_p)->trace_info->trace_points = NULL;
1445                                 (*last_target_p)->trace_info->trace_history_size = 0;
1446                                 (*last_target_p)->trace_info->trace_history = NULL;
1447                                 (*last_target_p)->trace_info->trace_history_pos = 0;
1448                                 (*last_target_p)->trace_info->trace_history_overflowed = 0;
1449                                 
1450                                 (*last_target_p)->dbgmsg = NULL;
1451                                 (*last_target_p)->dbg_msg_enabled = 0;
1452                                                                 
1453                                 (*last_target_p)->type->target_command(cmd_ctx, cmd, args, argc, *last_target_p);
1454                                 
1455                                 found = 1;
1456                                 break;
1457                         }
1458                 }
1459         }
1460         
1461         /* no matching target found */
1462         if (!found)
1463         {
1464                 LOG_ERROR("target '%s' not found", args[0]);
1465                 return ERROR_COMMAND_SYNTAX_ERROR;
1466         }
1467
1468         return ERROR_OK;
1469 }
1470
1471 int target_invoke_script(struct command_context_s *cmd_ctx, target_t *target, char *name)
1472 {
1473         return command_run_linef(cmd_ctx, " if {[catch {info body target_%s_%d} t]==0} {target_%s_%d}", 
1474         name, get_num_by_target(target),
1475         name, get_num_by_target(target));
1476 }
1477
1478 int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1479 {
1480         target_t *target = NULL;
1481         
1482         if (argc < 2)
1483         {
1484                 return ERROR_COMMAND_SYNTAX_ERROR;
1485         }
1486         
1487         target = get_target_by_num(strtoul(args[0], NULL, 0));
1488         if (!target)
1489         {
1490                 return ERROR_COMMAND_SYNTAX_ERROR;
1491         }
1492         
1493         target->run_and_halt_time = strtoul(args[1], NULL, 0);
1494         
1495         return ERROR_OK;
1496 }
1497
1498 int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1499 {
1500         target_t *target = NULL;
1501         
1502         if ((argc < 4) || (argc > 5))
1503         {
1504                 return ERROR_COMMAND_SYNTAX_ERROR;
1505         }
1506         
1507         target = get_target_by_num(strtoul(args[0], NULL, 0));
1508         if (!target)
1509         {
1510                 return ERROR_COMMAND_SYNTAX_ERROR;
1511         }
1512         target_free_all_working_areas(target);
1513         
1514         target->working_area_phys = target->working_area_virt = strtoul(args[1], NULL, 0);
1515         if (argc == 5)
1516         {
1517                 target->working_area_virt = strtoul(args[4], NULL, 0);
1518         }
1519         target->working_area_size = strtoul(args[2], NULL, 0);
1520         
1521         if (strcmp(args[3], "backup") == 0)
1522         {
1523                 target->backup_working_area = 1;
1524         }
1525         else if (strcmp(args[3], "nobackup") == 0)
1526         {
1527                 target->backup_working_area = 0;
1528         }
1529         else
1530         {
1531                 LOG_ERROR("unrecognized <backup|nobackup> argument (%s)", args[3]);
1532                 return ERROR_COMMAND_SYNTAX_ERROR;
1533         }
1534         
1535         return ERROR_OK;
1536 }
1537
1538
1539 /* process target state changes */
1540 int handle_target(void *priv)
1541 {
1542         target_t *target = targets;
1543         
1544         while (target)
1545         {
1546                 if (target_continous_poll)
1547                 {
1548                         /* polling may fail silently until the target has been examined */
1549                         target_poll(target);
1550                 }
1551         
1552                 target = target->next;
1553         }
1554         
1555         return ERROR_OK;
1556 }
1557
1558 int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1559 {
1560         target_t *target;
1561         reg_t *reg = NULL;
1562         int count = 0;
1563         char *value;
1564         
1565         LOG_DEBUG("-");
1566         
1567         target = get_current_target(cmd_ctx);
1568         
1569         /* list all available registers for the current target */
1570         if (argc == 0)
1571         {
1572                 reg_cache_t *cache = target->reg_cache;
1573                 
1574                 count = 0;
1575                 while(cache)
1576                 {
1577                         int i;
1578                         for (i = 0; i < cache->num_regs; i++)
1579                         {
1580                                 value = buf_to_str(cache->reg_list[i].value, cache->reg_list[i].size, 16);
1581                                 command_print(cmd_ctx, "(%i) %s (/%i): 0x%s (dirty: %i, valid: %i)", count++, cache->reg_list[i].name, cache->reg_list[i].size, value, cache->reg_list[i].dirty, cache->reg_list[i].valid);
1582                                 free(value);
1583                         }
1584                         cache = cache->next;
1585                 }
1586                 
1587                 return ERROR_OK;
1588         }
1589         
1590         /* access a single register by its ordinal number */
1591         if ((args[0][0] >= '0') && (args[0][0] <= '9'))
1592         {
1593                 int num = strtoul(args[0], NULL, 0);
1594                 reg_cache_t *cache = target->reg_cache;
1595                 
1596                 count = 0;
1597                 while(cache)
1598                 {
1599                         int i;
1600                         for (i = 0; i < cache->num_regs; i++)
1601                         {
1602                                 if (count++ == num)
1603                                 {
1604                                         reg = &cache->reg_list[i];
1605                                         break;
1606                                 }
1607                         }
1608                         if (reg)
1609                                 break;
1610                         cache = cache->next;
1611                 }
1612                 
1613                 if (!reg)
1614                 {
1615                         command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1616                         return ERROR_OK;
1617                 }
1618         } else /* access a single register by its name */
1619         {
1620                 reg = register_get_by_name(target->reg_cache, args[0], 1);
1621                 
1622                 if (!reg)
1623                 {
1624                         command_print(cmd_ctx, "register %s not found in current target", args[0]);
1625                         return ERROR_OK;
1626                 }
1627         }
1628
1629         /* display a register */
1630         if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
1631         {
1632                 if ((argc == 2) && (strcmp(args[1], "force") == 0))
1633                         reg->valid = 0;
1634                 
1635                 if (reg->valid == 0)
1636                 {
1637                         reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1638                         if (arch_type == NULL)
1639                         {
1640                                 LOG_ERROR("BUG: encountered unregistered arch type");
1641                                 return ERROR_OK;
1642                         }
1643                         arch_type->get(reg);
1644                 }
1645                 value = buf_to_str(reg->value, reg->size, 16);
1646                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1647                 free(value);
1648                 return ERROR_OK;
1649         }
1650         
1651         /* set register value */
1652         if (argc == 2)
1653         {
1654                 u8 *buf = malloc(CEIL(reg->size, 8));
1655                 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
1656
1657                 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1658                 if (arch_type == NULL)
1659                 {
1660                         LOG_ERROR("BUG: encountered unregistered arch type");
1661                         return ERROR_OK;
1662                 }
1663                 
1664                 arch_type->set(reg, buf);
1665                 
1666                 value = buf_to_str(reg->value, reg->size, 16);
1667                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1668                 free(value);
1669                 
1670                 free(buf);
1671                 
1672                 return ERROR_OK;
1673         }
1674         
1675         command_print(cmd_ctx, "usage: reg <#|name> [value]");
1676         
1677         return ERROR_OK;
1678 }
1679
1680 static int wait_state(struct command_context_s *cmd_ctx, char *cmd, enum target_state state, int ms);
1681
1682 int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1683 {
1684         target_t *target = get_current_target(cmd_ctx);
1685
1686         if (argc == 0)
1687         {
1688                 target_poll(target);
1689                 target_arch_state(target);
1690         }
1691         else
1692         {
1693                 if (strcmp(args[0], "on") == 0)
1694                 {
1695                         target_continous_poll = 1;
1696                 }
1697                 else if (strcmp(args[0], "off") == 0)
1698                 {
1699                         target_continous_poll = 0;
1700                 }
1701                 else
1702                 {
1703                         command_print(cmd_ctx, "arg is \"on\" or \"off\"");
1704                 }
1705         }
1706         
1707         
1708         return ERROR_OK;
1709 }
1710
1711 int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1712 {
1713         int ms = 5000;
1714         
1715         if (argc > 0)
1716         {
1717                 char *end;
1718
1719                 ms = strtoul(args[0], &end, 0) * 1000;
1720                 if (*end)
1721                 {
1722                         command_print(cmd_ctx, "usage: %s [seconds]", cmd);
1723                         return ERROR_OK;
1724                 }
1725         }
1726
1727         return wait_state(cmd_ctx, cmd, TARGET_HALTED, ms); 
1728 }
1729
1730 static int wait_state(struct command_context_s *cmd_ctx, char *cmd, enum target_state state, int ms)
1731 {
1732         int retval;
1733         struct timeval timeout, now;
1734         int once=1;
1735         gettimeofday(&timeout, NULL);
1736         timeval_add_time(&timeout, 0, ms * 1000);
1737         
1738         target_t *target = get_current_target(cmd_ctx);
1739         for (;;)
1740         {
1741                 if ((retval=target_poll(target))!=ERROR_OK)
1742                         return retval;
1743                 target_call_timer_callbacks_now();
1744                 if (target->state == state)
1745                 {
1746                         break;
1747                 }
1748                 if (once)
1749                 {
1750                         once=0;
1751                         command_print(cmd_ctx, "waiting for target %s...", target_state_strings[state]);
1752                 }
1753                 
1754                 gettimeofday(&now, NULL);
1755                 if ((now.tv_sec > timeout.tv_sec) || ((now.tv_sec == timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
1756                 {
1757                         LOG_ERROR("timed out while waiting for target %s", target_state_strings[state]);
1758                         break;
1759                 }
1760         }
1761         
1762         return ERROR_OK;
1763 }
1764
1765 int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1766 {
1767         int retval;
1768         target_t *target = get_current_target(cmd_ctx);
1769
1770         LOG_DEBUG("-");
1771
1772         if ((retval = target_halt(target)) != ERROR_OK)
1773         {
1774                 return retval;
1775         }
1776         
1777         return handle_wait_halt_command(cmd_ctx, cmd, args, argc);
1778 }
1779
1780 int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1781 {
1782         target_t *target = get_current_target(cmd_ctx);
1783         
1784         LOG_USER("requesting target halt and executing a soft reset");
1785         
1786         target->type->soft_reset_halt(target);
1787         
1788         return ERROR_OK;
1789 }
1790
1791 int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1792 {
1793         target_t *target = get_current_target(cmd_ctx);
1794         enum target_reset_mode reset_mode = target->reset_mode;
1795         enum target_reset_mode save = target->reset_mode;
1796         
1797         LOG_DEBUG("-");
1798         
1799         if (argc >= 1)
1800         {
1801                 if (strcmp("run", args[0]) == 0)
1802                         reset_mode = RESET_RUN;
1803                 else if (strcmp("halt", args[0]) == 0)
1804                         reset_mode = RESET_HALT;
1805                 else if (strcmp("init", args[0]) == 0)
1806                         reset_mode = RESET_INIT;
1807                 else if (strcmp("run_and_halt", args[0]) == 0)
1808                 {
1809                         reset_mode = RESET_RUN_AND_HALT;
1810                         if (argc >= 2)
1811                         {
1812                                 target->run_and_halt_time = strtoul(args[1], NULL, 0);
1813                         }
1814                 }
1815                 else if (strcmp("run_and_init", args[0]) == 0)
1816                 {
1817                         reset_mode = RESET_RUN_AND_INIT;
1818                         if (argc >= 2)
1819                         {
1820                                 target->run_and_halt_time = strtoul(args[1], NULL, 0);
1821                         }
1822                 }
1823                 else
1824                 {
1825                         command_print(cmd_ctx, "usage: reset ['run', 'halt', 'init', 'run_and_halt', 'run_and_init]");
1826                         return ERROR_OK;
1827                 }
1828         }
1829         
1830         /* temporarily modify mode of current reset target */
1831         target->reset_mode = reset_mode;
1832
1833         /* reset *all* targets */
1834         target_process_reset(cmd_ctx);
1835         
1836         /* Restore default reset mode for this target */
1837     target->reset_mode = save;
1838         
1839         return ERROR_OK;
1840 }
1841
1842 int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1843 {
1844         int retval;
1845         target_t *target = get_current_target(cmd_ctx);
1846         
1847         target_invoke_script(cmd_ctx, target, "pre_resume");
1848         
1849         if (argc == 0)
1850                 retval = target_resume(target, 1, 0, 1, 0); /* current pc, addr = 0, handle breakpoints, not debugging */
1851         else if (argc == 1)
1852                 retval = target_resume(target, 0, strtoul(args[0], NULL, 0), 1, 0); /* addr = args[0], handle breakpoints, not debugging */
1853         else
1854         {
1855                 return ERROR_COMMAND_SYNTAX_ERROR;
1856         }
1857         
1858         return retval;
1859 }
1860
1861 int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1862 {
1863         target_t *target = get_current_target(cmd_ctx);
1864         
1865         LOG_DEBUG("-");
1866         
1867         if (argc == 0)
1868                 target->type->step(target, 1, 0, 1); /* current pc, addr = 0, handle breakpoints */
1869
1870         if (argc == 1)
1871                 target->type->step(target, 0, strtoul(args[0], NULL, 0), 1); /* addr = args[0], handle breakpoints */
1872         
1873         return ERROR_OK;
1874 }
1875
1876 int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1877 {
1878         const int line_bytecnt = 32;
1879         int count = 1;
1880         int size = 4;
1881         u32 address = 0;
1882         int line_modulo;
1883         int i;
1884
1885         char output[128];
1886         int output_len;
1887
1888         int retval;
1889
1890         u8 *buffer;
1891         target_t *target = get_current_target(cmd_ctx);
1892
1893         if (argc < 1)
1894                 return ERROR_OK;
1895
1896         if (argc == 2)
1897                 count = strtoul(args[1], NULL, 0);
1898
1899         address = strtoul(args[0], NULL, 0);
1900         
1901
1902         switch (cmd[2])
1903         {
1904                 case 'w':
1905                         size = 4; line_modulo = line_bytecnt / 4;
1906                         break;
1907                 case 'h':
1908                         size = 2; line_modulo = line_bytecnt / 2;
1909                         break;
1910                 case 'b':
1911                         size = 1; line_modulo = line_bytecnt / 1;
1912                         break;
1913                 default:
1914                         return ERROR_OK;
1915         }
1916
1917         buffer = calloc(count, size);
1918         retval  = target->type->read_memory(target, address, size, count, buffer);
1919         if (retval == ERROR_OK)
1920         {
1921                 output_len = 0;
1922         
1923                 for (i = 0; i < count; i++)
1924                 {
1925                         if (i%line_modulo == 0)
1926                                 output_len += snprintf(output + output_len, 128 - output_len, "0x%8.8x: ", address + (i*size));
1927                         
1928                         switch (size)
1929                         {
1930                                 case 4:
1931                                         output_len += snprintf(output + output_len, 128 - output_len, "%8.8x ", target_buffer_get_u32(target, &buffer[i*4]));
1932                                         break;
1933                                 case 2:
1934                                         output_len += snprintf(output + output_len, 128 - output_len, "%4.4x ", target_buffer_get_u16(target, &buffer[i*2]));
1935                                         break;
1936                                 case 1:
1937                                         output_len += snprintf(output + output_len, 128 - output_len, "%2.2x ", buffer[i*1]);
1938                                         break;
1939                         }
1940         
1941                         if ((i%line_modulo == line_modulo-1) || (i == count - 1))
1942                         {
1943                                 command_print(cmd_ctx, output);
1944                                 output_len = 0;
1945                         }
1946                 }
1947         }
1948
1949         free(buffer);
1950         
1951         return retval;
1952 }
1953
1954 int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1955 {
1956         u32 address = 0;
1957         u32 value = 0;
1958         int count = 1;
1959         int i;
1960         int wordsize;
1961         target_t *target = get_current_target(cmd_ctx);
1962         u8 value_buf[4];
1963
1964          if ((argc < 2) || (argc > 3))
1965                 return ERROR_COMMAND_SYNTAX_ERROR;
1966
1967         address = strtoul(args[0], NULL, 0);
1968         value = strtoul(args[1], NULL, 0);
1969         if (argc == 3)
1970                 count = strtoul(args[2], NULL, 0);
1971         
1972         switch (cmd[2])
1973         {
1974                 case 'w':
1975                         wordsize = 4;
1976                         target_buffer_set_u32(target, value_buf, value);
1977                         break;
1978                 case 'h':
1979                         wordsize = 2;
1980                         target_buffer_set_u16(target, value_buf, value);
1981                         break;
1982                 case 'b':
1983                         wordsize = 1;
1984                         value_buf[0] = value;
1985                         break;
1986                 default:
1987                         return ERROR_COMMAND_SYNTAX_ERROR;
1988         }
1989         for (i=0; i<count; i++)
1990         {
1991                 int retval;
1992                 switch (wordsize)
1993                 {
1994                         case 4:
1995                                 retval = target->type->write_memory(target, address + i*wordsize, 4, 1, value_buf);
1996                                 break;
1997                         case 2:
1998                                 retval = target->type->write_memory(target, address + i*wordsize, 2, 1, value_buf);
1999                                 break;
2000                         case 1:
2001                                 retval = target->type->write_memory(target, address + i*wordsize, 1, 1, value_buf);
2002                         break;
2003                         default:
2004                         return ERROR_OK;
2005                 }
2006                 if (retval!=ERROR_OK)
2007                 {
2008                         return retval;
2009                 }
2010         }
2011
2012         return ERROR_OK;
2013
2014 }
2015
2016 int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2017 {
2018         u8 *buffer;
2019         u32 buf_cnt;
2020         u32 image_size;
2021         int i;
2022         int retval;
2023
2024         image_t image;  
2025         
2026         duration_t duration;
2027         char *duration_text;
2028         
2029         target_t *target = get_current_target(cmd_ctx);
2030
2031         if (argc < 1)
2032         {
2033                 command_print(cmd_ctx, "usage: load_image <filename> [address] [type]");
2034                 return ERROR_OK;
2035         }
2036         
2037         /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
2038         if (argc >= 2)
2039         {
2040                 image.base_address_set = 1;
2041                 image.base_address = strtoul(args[1], NULL, 0);
2042         }
2043         else
2044         {
2045                 image.base_address_set = 0;
2046         }
2047         
2048         image.start_address_set = 0;
2049
2050         duration_start_measure(&duration);
2051         
2052         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
2053         {
2054                 return ERROR_OK;
2055         }
2056         
2057         image_size = 0x0;
2058         retval = ERROR_OK;
2059         for (i = 0; i < image.num_sections; i++)
2060         {
2061                 buffer = malloc(image.sections[i].size);
2062                 if (buffer == NULL)
2063                 {
2064                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2065                         break;
2066                 }
2067                 
2068                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2069                 {
2070                         free(buffer);
2071                         break;
2072                 }
2073                 if ((retval = target_write_buffer(target, image.sections[i].base_address, buf_cnt, buffer)) != ERROR_OK)
2074                 {
2075                         free(buffer);
2076                         break;
2077                 }
2078                 image_size += buf_cnt;
2079                 command_print(cmd_ctx, "%u byte written at address 0x%8.8x", buf_cnt, image.sections[i].base_address);
2080                 
2081                 free(buffer);
2082         }
2083
2084         duration_stop_measure(&duration, &duration_text);
2085         if (retval==ERROR_OK)
2086         {
2087                 command_print(cmd_ctx, "downloaded %u byte in %s", image_size, duration_text);
2088         }
2089         free(duration_text);
2090         
2091         image_close(&image);
2092
2093         return retval;
2094
2095 }
2096
2097 int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2098 {
2099         fileio_t fileio;
2100         
2101         u32 address;
2102         u32 size;
2103         u8 buffer[560];
2104         int retval=ERROR_OK;
2105         
2106         duration_t duration;
2107         char *duration_text;
2108         
2109         target_t *target = get_current_target(cmd_ctx);
2110
2111         if (argc != 3)
2112         {
2113                 command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
2114                 return ERROR_OK;
2115         }
2116
2117         address = strtoul(args[1], NULL, 0);
2118         size = strtoul(args[2], NULL, 0);
2119
2120         if ((address & 3) || (size & 3))
2121         {
2122                 command_print(cmd_ctx, "only 32-bit aligned address and size are supported");
2123                 return ERROR_OK;
2124         }
2125         
2126         if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2127         {
2128                 return ERROR_OK;
2129         }
2130         
2131         duration_start_measure(&duration);
2132         
2133         while (size > 0)
2134         {
2135                 u32 size_written;
2136                 u32 this_run_size = (size > 560) ? 560 : size;
2137                 
2138                 retval = target->type->read_memory(target, address, 4, this_run_size / 4, buffer);
2139                 if (retval != ERROR_OK)
2140                 {
2141                         break;
2142                 }
2143                 
2144                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2145                 if (retval != ERROR_OK)
2146                 {
2147                         break;
2148                 }
2149                 
2150                 size -= this_run_size;
2151                 address += this_run_size;
2152         }
2153
2154         fileio_close(&fileio);
2155
2156         duration_stop_measure(&duration, &duration_text);
2157         if (retval==ERROR_OK)
2158         {
2159                 command_print(cmd_ctx, "dumped %"PRIi64" byte in %s", fileio.size, duration_text);
2160         }
2161         free(duration_text);
2162         
2163         return ERROR_OK;
2164 }
2165
2166 int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2167 {
2168         u8 *buffer;
2169         u32 buf_cnt;
2170         u32 image_size;
2171         int i;
2172         int retval;
2173         u32 checksum = 0;
2174         u32 mem_checksum = 0;
2175
2176         image_t image;  
2177         
2178         duration_t duration;
2179         char *duration_text;
2180         
2181         target_t *target = get_current_target(cmd_ctx);
2182         
2183         if (argc < 1)
2184         {
2185                 return ERROR_COMMAND_SYNTAX_ERROR;
2186         }
2187         
2188         if (!target)
2189         {
2190                 LOG_ERROR("no target selected");
2191                 return ERROR_FAIL;
2192         }
2193         
2194         duration_start_measure(&duration);
2195         
2196         if (argc >= 2)
2197         {
2198                 image.base_address_set = 1;
2199                 image.base_address = strtoul(args[1], NULL, 0);
2200         }
2201         else
2202         {
2203                 image.base_address_set = 0;
2204                 image.base_address = 0x0;
2205         }
2206
2207         image.start_address_set = 0;
2208
2209         if ((retval=image_open(&image, args[0], (argc == 3) ? args[2] : NULL)) != ERROR_OK)
2210         {
2211                 return retval;
2212         }
2213         
2214         image_size = 0x0;
2215         retval=ERROR_OK;
2216         for (i = 0; i < image.num_sections; i++)
2217         {
2218                 buffer = malloc(image.sections[i].size);
2219                 if (buffer == NULL)
2220                 {
2221                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2222                         break;
2223                 }
2224                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2225                 {
2226                         free(buffer);
2227                         break;
2228                 }
2229                 
2230                 /* calculate checksum of image */
2231                 image_calculate_checksum( buffer, buf_cnt, &checksum );
2232                 
2233                 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2234                 if( retval != ERROR_OK )
2235                 {
2236                         free(buffer);
2237                         break;
2238                 }
2239                 
2240                 if( checksum != mem_checksum )
2241                 {
2242                         /* failed crc checksum, fall back to a binary compare */
2243                         u8 *data;
2244                         
2245                         command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
2246                         
2247                         data = (u8*)malloc(buf_cnt);
2248                         
2249                         /* Can we use 32bit word accesses? */
2250                         int size = 1;
2251                         int count = buf_cnt;
2252                         if ((count % 4) == 0)
2253                         {
2254                                 size *= 4;
2255                                 count /= 4;
2256                         }
2257                         retval = target->type->read_memory(target, image.sections[i].base_address, size, count, data);
2258                         if (retval == ERROR_OK)
2259                         {
2260                                 int t;
2261                                 for (t = 0; t < buf_cnt; t++)
2262                                 {
2263                                         if (data[t] != buffer[t])
2264                                         {
2265                                                 command_print(cmd_ctx, "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n", t + image.sections[i].base_address, data[t], buffer[t]);
2266                                                 free(data);
2267                                                 free(buffer);
2268                                                 retval=ERROR_FAIL;
2269                                                 goto done;
2270                                         }
2271                                 }
2272                         }
2273                         
2274                         free(data);
2275                 }
2276                 
2277                 free(buffer);
2278                 image_size += buf_cnt;
2279         }
2280 done:   
2281         duration_stop_measure(&duration, &duration_text);
2282         if (retval==ERROR_OK)
2283         {
2284                 command_print(cmd_ctx, "verified %u bytes in %s", image_size, duration_text);
2285         }
2286         free(duration_text);
2287         
2288         image_close(&image);
2289         
2290         return retval;
2291 }
2292
2293 int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2294 {
2295         int retval;
2296         target_t *target = get_current_target(cmd_ctx);
2297
2298         if (argc == 0)
2299         {
2300                 breakpoint_t *breakpoint = target->breakpoints;
2301
2302                 while (breakpoint)
2303                 {
2304                         if (breakpoint->type == BKPT_SOFT)
2305                         {
2306                                 char* buf = buf_to_str(breakpoint->orig_instr, breakpoint->length, 16);
2307                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i, 0x%s", breakpoint->address, breakpoint->length, breakpoint->set, buf);
2308                                 free(buf);
2309                         }
2310                         else
2311                         {
2312                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i", breakpoint->address, breakpoint->length, breakpoint->set);
2313                         }
2314                         breakpoint = breakpoint->next;
2315                 }
2316         }
2317         else if (argc >= 2)
2318         {
2319                 int hw = BKPT_SOFT;
2320                 u32 length = 0;
2321
2322                 length = strtoul(args[1], NULL, 0);
2323                 
2324                 if (argc >= 3)
2325                         if (strcmp(args[2], "hw") == 0)
2326                                 hw = BKPT_HARD;
2327
2328                 if ((retval = breakpoint_add(target, strtoul(args[0], NULL, 0), length, hw)) != ERROR_OK)
2329                 {
2330                         LOG_ERROR("Failure setting breakpoints");
2331                 }
2332                 else
2333                 {
2334                         command_print(cmd_ctx, "breakpoint added at address 0x%8.8x", strtoul(args[0], NULL, 0));
2335                 }
2336         }
2337         else
2338         {
2339                 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
2340         }
2341
2342         return ERROR_OK;
2343 }
2344
2345 int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2346 {
2347         target_t *target = get_current_target(cmd_ctx);
2348
2349         if (argc > 0)
2350                 breakpoint_remove(target, strtoul(args[0], NULL, 0));
2351
2352         return ERROR_OK;
2353 }
2354
2355 int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2356 {
2357         target_t *target = get_current_target(cmd_ctx);
2358         int retval;
2359
2360         if (argc == 0)
2361         {
2362                 watchpoint_t *watchpoint = target->watchpoints;
2363
2364                 while (watchpoint)
2365                 {
2366                         command_print(cmd_ctx, "address: 0x%8.8x, len: 0x%8.8x, r/w/a: %i, value: 0x%8.8x, mask: 0x%8.8x", watchpoint->address, watchpoint->length, watchpoint->rw, watchpoint->value, watchpoint->mask);
2367                         watchpoint = watchpoint->next;
2368                 }
2369         } 
2370         else if (argc >= 2)
2371         {
2372                 enum watchpoint_rw type = WPT_ACCESS;
2373                 u32 data_value = 0x0;
2374                 u32 data_mask = 0xffffffff;
2375                 
2376                 if (argc >= 3)
2377                 {
2378                         switch(args[2][0])
2379                         {
2380                                 case 'r':
2381                                         type = WPT_READ;
2382                                         break;
2383                                 case 'w':
2384                                         type = WPT_WRITE;
2385                                         break;
2386                                 case 'a':
2387                                         type = WPT_ACCESS;
2388                                         break;
2389                                 default:
2390                                         command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2391                                         return ERROR_OK;
2392                         }
2393                 }
2394                 if (argc >= 4)
2395                 {
2396                         data_value = strtoul(args[3], NULL, 0);
2397                 }
2398                 if (argc >= 5)
2399                 {
2400                         data_mask = strtoul(args[4], NULL, 0);
2401                 }
2402                 
2403                 if ((retval = watchpoint_add(target, strtoul(args[0], NULL, 0),
2404                                 strtoul(args[1], NULL, 0), type, data_value, data_mask)) != ERROR_OK)
2405                 {
2406                         LOG_ERROR("Failure setting breakpoints");
2407                 }
2408         }
2409         else
2410         {
2411                 command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2412         }
2413                 
2414         return ERROR_OK;
2415 }
2416
2417 int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2418 {
2419         target_t *target = get_current_target(cmd_ctx);
2420
2421         if (argc > 0)
2422                 watchpoint_remove(target, strtoul(args[0], NULL, 0));
2423         
2424         return ERROR_OK;
2425 }
2426
2427 int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc)
2428 {
2429         int retval;
2430         target_t *target = get_current_target(cmd_ctx);
2431         u32 va;
2432         u32 pa;
2433
2434         if (argc != 1)
2435         {
2436                 return ERROR_COMMAND_SYNTAX_ERROR;
2437         }
2438         va = strtoul(args[0], NULL, 0);
2439
2440         retval = target->type->virt2phys(target, va, &pa);
2441         if (retval == ERROR_OK)
2442         {
2443                 command_print(cmd_ctx, "Physical address 0x%08x", pa);
2444         }
2445         else
2446         {
2447                 /* lower levels will have logged a detailed error which is 
2448                  * forwarded to telnet/GDB session.  
2449                  */
2450         }
2451         return retval;
2452 }
2453 static void writeLong(FILE *f, int l)
2454 {
2455         int i;
2456         for (i=0; i<4; i++)
2457         {
2458                 char c=(l>>(i*8))&0xff;
2459                 fwrite(&c, 1, 1, f); 
2460         }
2461         
2462 }
2463 static void writeString(FILE *f, char *s)
2464 {
2465         fwrite(s, 1, strlen(s), f); 
2466 }
2467
2468
2469
2470 // Dump a gmon.out histogram file.
2471 static void writeGmon(u32 *samples, int sampleNum, char *filename)
2472 {
2473         int i;
2474         FILE *f=fopen(filename, "w");
2475         if (f==NULL)
2476                 return;
2477         fwrite("gmon", 1, 4, f);
2478         writeLong(f, 0x00000001); // Version
2479         writeLong(f, 0); // padding
2480         writeLong(f, 0); // padding
2481         writeLong(f, 0); // padding
2482                                 
2483         fwrite("", 1, 1, f);  // GMON_TAG_TIME_HIST 
2484
2485         // figure out bucket size
2486         u32 min=samples[0];
2487         u32 max=samples[0];
2488         for (i=0; i<sampleNum; i++)
2489         {
2490                 if (min>samples[i])
2491                 {
2492                         min=samples[i];
2493                 }
2494                 if (max<samples[i])
2495                 {
2496                         max=samples[i];
2497                 }
2498         }
2499
2500         int addressSpace=(max-min+1);
2501         
2502         static int const maxBuckets=256*1024; // maximum buckets.
2503         int length=addressSpace;
2504         if (length > maxBuckets)
2505         {
2506                 length=maxBuckets; 
2507         }
2508         int *buckets=malloc(sizeof(int)*length);
2509         if (buckets==NULL)
2510         {
2511                 fclose(f);
2512                 return;
2513         }
2514         memset(buckets, 0, sizeof(int)*length);
2515         for (i=0; i<sampleNum;i++)
2516         {
2517                 u32 address=samples[i];
2518                 long long a=address-min;
2519                 long long b=length-1;
2520                 long long c=addressSpace-1;
2521                 int index=(a*b)/c; // danger!!!! int32 overflows 
2522                 buckets[index]++;
2523         }
2524         
2525         //                         append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr))
2526         writeLong(f, min);                                      // low_pc
2527         writeLong(f, max);              // high_pc
2528         writeLong(f, length);           // # of samples
2529         writeLong(f, 64000000);                         // 64MHz
2530         writeString(f, "seconds");
2531         for (i=0; i<(15-strlen("seconds")); i++)
2532         {
2533                 fwrite("", 1, 1, f);  // padding
2534         }
2535         writeString(f, "s");
2536                 
2537 //                         append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size)
2538         
2539         char *data=malloc(2*length);
2540         if (data!=NULL)
2541         {
2542                 for (i=0; i<length;i++)
2543                 {
2544                         int val;
2545                         val=buckets[i];
2546                         if (val>65535)
2547                         {
2548                                 val=65535;
2549                         }
2550                         data[i*2]=val&0xff;
2551                         data[i*2+1]=(val>>8)&0xff;
2552                 }
2553                 free(buckets);
2554                 fwrite(data, 1, length*2, f);
2555                 free(data);
2556         } else
2557         {
2558                 free(buckets);
2559         }
2560
2561         fclose(f);
2562 }
2563
2564 /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
2565 int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2566 {
2567         target_t *target = get_current_target(cmd_ctx);
2568         struct timeval timeout, now;
2569         
2570         gettimeofday(&timeout, NULL);
2571         if (argc!=2)
2572         {
2573                 return ERROR_COMMAND_SYNTAX_ERROR;
2574         }
2575         char *end;
2576         timeval_add_time(&timeout, strtoul(args[0], &end, 0), 0);
2577         if (*end) 
2578         {
2579                 return ERROR_OK;
2580         }
2581         
2582         command_print(cmd_ctx, "Starting profiling. Halting and resuming the target as often as we can...");
2583
2584         static const int maxSample=10000;
2585         u32 *samples=malloc(sizeof(u32)*maxSample);
2586         if (samples==NULL)
2587                 return ERROR_OK;
2588         
2589         int numSamples=0;
2590         int retval=ERROR_OK;
2591         // hopefully it is safe to cache! We want to stop/restart as quickly as possible.
2592         reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1);
2593         
2594         for (;;)
2595         {
2596                 target_poll(target);
2597                 if (target->state == TARGET_HALTED)
2598                 {
2599                         u32 t=*((u32 *)reg->value);
2600                         samples[numSamples++]=t;
2601                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2602                         target_poll(target);
2603                         usleep(10*1000); // sleep 10ms, i.e. <100 samples/second.
2604                 } else if (target->state == TARGET_RUNNING)
2605                 {
2606                         // We want to quickly sample the PC.
2607                         target_halt(target);
2608                 } else
2609                 {
2610                         command_print(cmd_ctx, "Target not halted or running");
2611                         retval=ERROR_OK;
2612                         break;
2613                 }
2614                 if (retval!=ERROR_OK)
2615                 {
2616                         break;
2617                 }
2618                 
2619                 gettimeofday(&now, NULL);
2620                 if ((numSamples>=maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
2621                 {
2622                         command_print(cmd_ctx, "Profiling completed. %d samples.", numSamples);
2623                         target_poll(target);
2624                         if (target->state == TARGET_HALTED)
2625                         {
2626                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2627                         }
2628                         target_poll(target);
2629                         writeGmon(samples, numSamples, args[1]);
2630                         command_print(cmd_ctx, "Wrote %s", args[1]);
2631                         break;
2632                 }
2633         }
2634         free(samples);
2635         
2636         return ERROR_OK;
2637 }
2638
2639 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 val)
2640 {
2641         char *namebuf;
2642         Jim_Obj *nameObjPtr, *valObjPtr;
2643         int result;
2644
2645         namebuf = alloc_printf("%s(%d)", varname, idx);
2646         if (!namebuf)
2647                 return JIM_ERR;
2648         
2649         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
2650         valObjPtr = Jim_NewIntObj(interp, val);
2651         if (!nameObjPtr || !valObjPtr)
2652         {
2653                 free(namebuf);
2654                 return JIM_ERR;
2655         }
2656
2657         Jim_IncrRefCount(nameObjPtr);
2658         Jim_IncrRefCount(valObjPtr);
2659         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
2660         Jim_DecrRefCount(interp, nameObjPtr);
2661         Jim_DecrRefCount(interp, valObjPtr);
2662         free(namebuf);
2663         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
2664         return result;
2665 }
2666
2667 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
2668 {
2669         target_t *target;
2670         command_context_t *context;
2671         long l;
2672         u32 width;
2673         u32 len;
2674         u32 addr;
2675         u32 count;
2676         u32 v;
2677         const char *varname;
2678         u8 buffer[4096];
2679         int  i, n, e, retval;
2680
2681         /* argv[1] = name of array to receive the data
2682          * argv[2] = desired width
2683          * argv[3] = memory address 
2684          * argv[4] = count of times to read
2685          */
2686         if (argc != 5) {
2687                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
2688                 return JIM_ERR;
2689         }
2690         varname = Jim_GetString(argv[1], &len);
2691         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
2692
2693         e = Jim_GetLong(interp, argv[2], &l);
2694         width = l;
2695         if (e != JIM_OK) {
2696                 return e;
2697         }
2698         
2699         e = Jim_GetLong(interp, argv[3], &l);
2700         addr = l;
2701         if (e != JIM_OK) {
2702                 return e;
2703         }
2704         e = Jim_GetLong(interp, argv[4], &l);
2705         len = l;
2706         if (e != JIM_OK) {
2707                 return e;
2708         }
2709         switch (width) {
2710                 case 8:
2711                         width = 1;
2712                         break;
2713                 case 16:
2714                         width = 2;
2715                         break;
2716                 case 32:
2717                         width = 4;
2718                         break;
2719                 default:
2720                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2721                         Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
2722                         return JIM_ERR;
2723         }
2724         if (len == 0) {
2725                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2726                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
2727                 return JIM_ERR;
2728         }
2729         if ((addr + (len * width)) < addr) {
2730                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2731                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
2732                 return JIM_ERR;
2733         }
2734         /* absurd transfer size? */
2735         if (len > 65536) {
2736                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2737                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
2738                 return JIM_ERR;
2739         }               
2740                 
2741         if ((width == 1) ||
2742                 ((width == 2) && ((addr & 1) == 0)) ||
2743                 ((width == 4) && ((addr & 3) == 0))) {
2744                 /* all is well */
2745         } else {
2746                 char buf[100];
2747                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2748                 sprintf(buf, "mem2array address: 0x%08x is not aligned for %d byte reads", addr, width); 
2749                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
2750                 return JIM_ERR;
2751         }
2752
2753         context = Jim_GetAssocData(interp, "context");
2754         if (context == NULL)
2755         {
2756                 LOG_ERROR("mem2array: no command context");
2757                 return JIM_ERR;
2758         }
2759         target = get_current_target(context);
2760         if (target == NULL)
2761         {
2762                 LOG_ERROR("mem2array: no current target");
2763                 return JIM_ERR;
2764         }
2765         
2766         /* Transfer loop */
2767
2768         /* index counter */
2769         n = 0;
2770         /* assume ok */
2771         e = JIM_OK;
2772         while (len) {
2773                 /* Slurp... in buffer size chunks */
2774                 
2775                 count = len; /* in objects.. */
2776                 if (count > (sizeof(buffer)/width)) {
2777                         count = (sizeof(buffer)/width);
2778                 }
2779                 
2780                 retval = target->type->read_memory( target, addr, width, count, buffer );
2781                 if (retval != ERROR_OK) {
2782                         /* BOO !*/
2783                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
2784                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2785                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
2786                         e = JIM_ERR;
2787                         len = 0;
2788                 } else {
2789                         v = 0; /* shut up gcc */
2790                         for (i = 0 ;i < count ;i++, n++) {
2791                                 switch (width) {
2792                                         case 4:
2793                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
2794                                                 break;
2795                                         case 2:
2796                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
2797                                                 break;
2798                                         case 1:
2799                                                 v = buffer[i] & 0x0ff;
2800                                                 break;
2801                                 }
2802                                 new_int_array_element(interp, varname, n, v);
2803                         }
2804                         len -= count;
2805                 }
2806         }
2807         
2808         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2809
2810         return JIM_OK;
2811 }
2812
2813 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 *val)
2814 {
2815         char *namebuf;
2816         Jim_Obj *nameObjPtr, *valObjPtr;
2817         int result;
2818         long l;
2819
2820         namebuf = alloc_printf("%s(%d)", varname, idx);
2821         if (!namebuf)
2822                 return JIM_ERR;
2823
2824         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
2825         if (!nameObjPtr)
2826         {
2827                 free(namebuf);
2828                 return JIM_ERR;
2829         }
2830
2831         Jim_IncrRefCount(nameObjPtr);
2832         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
2833         Jim_DecrRefCount(interp, nameObjPtr);
2834         free(namebuf);
2835         if (valObjPtr == NULL)
2836                 return JIM_ERR;
2837
2838         result = Jim_GetLong(interp, valObjPtr, &l);
2839         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
2840         *val = l;
2841         return result;
2842 }
2843
2844 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
2845 {
2846         target_t *target;
2847         command_context_t *context;
2848         long l;
2849         u32 width;
2850         u32 len;
2851         u32 addr;
2852         u32 count;
2853         u32 v;
2854         const char *varname;
2855         u8 buffer[4096];
2856         int  i, n, e, retval;
2857
2858         /* argv[1] = name of array to get the data
2859          * argv[2] = desired width
2860          * argv[3] = memory address 
2861          * argv[4] = count to write
2862          */
2863         if (argc != 5) {
2864                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
2865                 return JIM_ERR;
2866         }
2867         varname = Jim_GetString(argv[1], &len);
2868         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
2869
2870         e = Jim_GetLong(interp, argv[2], &l);
2871         width = l;
2872         if (e != JIM_OK) {
2873                 return e;
2874         }
2875         
2876         e = Jim_GetLong(interp, argv[3], &l);
2877         addr = l;
2878         if (e != JIM_OK) {
2879                 return e;
2880         }
2881         e = Jim_GetLong(interp, argv[4], &l);
2882         len = l;
2883         if (e != JIM_OK) {
2884                 return e;
2885         }
2886         switch (width) {
2887                 case 8:
2888                         width = 1;
2889                         break;
2890                 case 16:
2891                         width = 2;
2892                         break;
2893                 case 32:
2894                         width = 4;
2895                         break;
2896                 default:
2897                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2898                         Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
2899                         return JIM_ERR;
2900         }
2901         if (len == 0) {
2902                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2903                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
2904                 return JIM_ERR;
2905         }
2906         if ((addr + (len * width)) < addr) {
2907                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2908                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
2909                 return JIM_ERR;
2910         }
2911         /* absurd transfer size? */
2912         if (len > 65536) {
2913                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2914                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
2915                 return JIM_ERR;
2916         }               
2917                 
2918         if ((width == 1) ||
2919                 ((width == 2) && ((addr & 1) == 0)) ||
2920                 ((width == 4) && ((addr & 3) == 0))) {
2921                 /* all is well */
2922         } else {
2923                 char buf[100];
2924                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2925                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads", addr, width); 
2926                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
2927                 return JIM_ERR;
2928         }
2929
2930         context = Jim_GetAssocData(interp, "context");
2931         if (context == NULL)
2932         {
2933                 LOG_ERROR("array2mem: no command context");
2934                 return JIM_ERR;
2935         }
2936         target = get_current_target(context);
2937         if (target == NULL)
2938         {
2939                 LOG_ERROR("array2mem: no current target");
2940                 return JIM_ERR;
2941         }
2942         
2943         /* Transfer loop */
2944
2945         /* index counter */
2946         n = 0;
2947         /* assume ok */
2948         e = JIM_OK;
2949         while (len) {
2950                 /* Slurp... in buffer size chunks */
2951                 
2952                 count = len; /* in objects.. */
2953                 if (count > (sizeof(buffer)/width)) {
2954                         count = (sizeof(buffer)/width);
2955                 }
2956
2957                 v = 0; /* shut up gcc */
2958                 for (i = 0 ;i < count ;i++, n++) {
2959                         get_int_array_element(interp, varname, n, &v);
2960                         switch (width) {
2961                         case 4:
2962                                 target_buffer_set_u32(target, &buffer[i*width], v);
2963                                 break;
2964                         case 2:
2965                                 target_buffer_set_u16(target, &buffer[i*width], v);
2966                                 break;
2967                         case 1:
2968                                 buffer[i] = v & 0x0ff;
2969                                 break;
2970                         }
2971                 }
2972                 len -= count;
2973
2974                 retval = target->type->write_memory(target, addr, width, count, buffer);
2975                 if (retval != ERROR_OK) {
2976                         /* BOO !*/
2977                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
2978                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2979                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
2980                         e = JIM_ERR;
2981                         len = 0;
2982                 }
2983         }
2984         
2985         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2986
2987         return JIM_OK;
2988 }