]> git.gag.com Git - fw/openocd/blob - src/target/target.c
Simplify the handle_md_command routine in target.c:
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007,2008 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   This program is free software; you can redistribute it and/or modify  *
18  *   it under the terms of the GNU General Public License as published by  *
19  *   the Free Software Foundation; either version 2 of the License, or     *
20  *   (at your option) any later version.                                   *
21  *                                                                         *
22  *   This program is distributed in the hope that it will be useful,       *
23  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
24  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
25  *   GNU General Public License for more details.                          *
26  *                                                                         *
27  *   You should have received a copy of the GNU General Public License     *
28  *   along with this program; if not, write to the                         *
29  *   Free Software Foundation, Inc.,                                       *
30  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "target.h"
37 #include "target_request.h"
38 #include "time_support.h"
39 #include "register.h"
40 #include "trace.h"
41 #include "image.h"
42 #include "jtag.h"
43
44 #include <inttypes.h>
45
46
47 static int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
48
49 static int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
50 static int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
51 static int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
52 static int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
53 static int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
54 static int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
55 static int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
56 static int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
57 static int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
58 static int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
59 static int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
60 static int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
61 static int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
62 static int handle_test_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
63 static int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
64 static int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
65 static int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
66 static int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
67 static int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc);
68 static int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
69 static int handle_fast_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
70 static int handle_fast_load_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
71
72 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
73 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
74 static int jim_target( Jim_Interp *interp, int argc, Jim_Obj *const *argv);
75
76 static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv);
77 static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv);
78
79 /* targets */
80 extern target_type_t arm7tdmi_target;
81 extern target_type_t arm720t_target;
82 extern target_type_t arm9tdmi_target;
83 extern target_type_t arm920t_target;
84 extern target_type_t arm966e_target;
85 extern target_type_t arm926ejs_target;
86 extern target_type_t feroceon_target;
87 extern target_type_t xscale_target;
88 extern target_type_t cortexm3_target;
89 extern target_type_t cortexa8_target;
90 extern target_type_t arm11_target;
91 extern target_type_t mips_m4k_target;
92 extern target_type_t avr_target;
93
94 target_type_t *target_types[] =
95 {
96         &arm7tdmi_target,
97         &arm9tdmi_target,
98         &arm920t_target,
99         &arm720t_target,
100         &arm966e_target,
101         &arm926ejs_target,
102         &feroceon_target,
103         &xscale_target,
104         &cortexm3_target,
105         &cortexa8_target,
106         &arm11_target,
107         &mips_m4k_target,
108         &avr_target,
109         NULL,
110 };
111
112 target_t *all_targets = NULL;
113 target_event_callback_t *target_event_callbacks = NULL;
114 target_timer_callback_t *target_timer_callbacks = NULL;
115
116 const Jim_Nvp nvp_assert[] = {
117         { .name = "assert", NVP_ASSERT },
118         { .name = "deassert", NVP_DEASSERT },
119         { .name = "T", NVP_ASSERT },
120         { .name = "F", NVP_DEASSERT },
121         { .name = "t", NVP_ASSERT },
122         { .name = "f", NVP_DEASSERT },
123         { .name = NULL, .value = -1 }
124 };
125
126 const Jim_Nvp nvp_error_target[] = {
127         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
128         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
129         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
130         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
131         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
132         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
133         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
134         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
135         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
136         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
137         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
138         { .value = -1, .name = NULL }
139 };
140
141 const char *target_strerror_safe( int err )
142 {
143         const Jim_Nvp *n;
144
145         n = Jim_Nvp_value2name_simple( nvp_error_target, err );
146         if( n->name == NULL ){
147                 return "unknown";
148         } else {
149                 return n->name;
150         }
151 }
152
153 static const Jim_Nvp nvp_target_event[] = {
154         { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
155         { .value = TARGET_EVENT_OLD_pre_resume         , .name = "old-pre_resume" },
156
157         { .value = TARGET_EVENT_EARLY_HALTED, .name = "early-halted" },
158         { .value = TARGET_EVENT_HALTED, .name = "halted" },
159         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
160         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
161         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
162
163         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
164         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
165
166         /* historical name */
167
168         { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
169
170         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
171         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
172         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
173         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
174         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
175         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
176         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
177         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
178         { .value = TARGET_EVENT_RESET_INIT , .name = "reset-init" },
179         { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
180
181         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
182         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
183
184         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
185         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
186
187         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
188         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
189
190         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
191         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
192
193         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
194         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
195
196         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
197         { .value = TARGET_EVENT_RESUMED     , .name = "resume-ok" },
198         { .value = TARGET_EVENT_RESUME_END  , .name = "resume-end" },
199
200         { .name = NULL, .value = -1 }
201 };
202
203 const Jim_Nvp nvp_target_state[] = {
204         { .name = "unknown", .value = TARGET_UNKNOWN },
205         { .name = "running", .value = TARGET_RUNNING },
206         { .name = "halted",  .value = TARGET_HALTED },
207         { .name = "reset",   .value = TARGET_RESET },
208         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
209         { .name = NULL, .value = -1 },
210 };
211
212 const Jim_Nvp nvp_target_debug_reason [] = {
213         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
214         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
215         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
216         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
217         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
218         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
219         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
220         { .name = NULL, .value = -1 },
221 };
222
223 const Jim_Nvp nvp_target_endian[] = {
224         { .name = "big",    .value = TARGET_BIG_ENDIAN },
225         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
226         { .name = "be",     .value = TARGET_BIG_ENDIAN },
227         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
228         { .name = NULL,     .value = -1 },
229 };
230
231 const Jim_Nvp nvp_reset_modes[] = {
232         { .name = "unknown", .value = RESET_UNKNOWN },
233         { .name = "run"    , .value = RESET_RUN },
234         { .name = "halt"   , .value = RESET_HALT },
235         { .name = "init"   , .value = RESET_INIT },
236         { .name = NULL     , .value = -1 },
237 };
238
239 static int max_target_number(void)
240 {
241         target_t *t;
242         int x;
243
244         x = -1;
245         t = all_targets;
246         while( t ){
247                 if( x < t->target_number ){
248                         x = (t->target_number)+1;
249                 }
250                 t = t->next;
251         }
252         return x;
253 }
254
255 /* determine the number of the new target */
256 static int new_target_number(void)
257 {
258         target_t *t;
259         int x;
260
261         /* number is 0 based */
262         x = -1;
263         t = all_targets;
264         while(t){
265                 if( x < t->target_number ){
266                         x = t->target_number;
267                 }
268                 t = t->next;
269         }
270         return x+1;
271 }
272
273 static int target_continous_poll = 1;
274
275 /* read a u32 from a buffer in target memory endianness */
276 u32 target_buffer_get_u32(target_t *target, const u8 *buffer)
277 {
278         if (target->endianness == TARGET_LITTLE_ENDIAN)
279                 return le_to_h_u32(buffer);
280         else
281                 return be_to_h_u32(buffer);
282 }
283
284 /* read a u16 from a buffer in target memory endianness */
285 u16 target_buffer_get_u16(target_t *target, const u8 *buffer)
286 {
287         if (target->endianness == TARGET_LITTLE_ENDIAN)
288                 return le_to_h_u16(buffer);
289         else
290                 return be_to_h_u16(buffer);
291 }
292
293 /* read a u8 from a buffer in target memory endianness */
294 u8 target_buffer_get_u8(target_t *target, const u8 *buffer)
295 {
296         return *buffer & 0x0ff;
297 }
298
299 /* write a u32 to a buffer in target memory endianness */
300 void target_buffer_set_u32(target_t *target, u8 *buffer, u32 value)
301 {
302         if (target->endianness == TARGET_LITTLE_ENDIAN)
303                 h_u32_to_le(buffer, value);
304         else
305                 h_u32_to_be(buffer, value);
306 }
307
308 /* write a u16 to a buffer in target memory endianness */
309 void target_buffer_set_u16(target_t *target, u8 *buffer, u16 value)
310 {
311         if (target->endianness == TARGET_LITTLE_ENDIAN)
312                 h_u16_to_le(buffer, value);
313         else
314                 h_u16_to_be(buffer, value);
315 }
316
317 /* write a u8 to a buffer in target memory endianness */
318 void target_buffer_set_u8(target_t *target, u8 *buffer, u8 value)
319 {
320         *buffer = value;
321 }
322
323 /* return a pointer to a configured target; id is name or number */
324 target_t *get_target(const char *id)
325 {
326         target_t *target;
327         char *endptr;
328         int num;
329
330         /* try as tcltarget name */
331         for (target = all_targets; target; target = target->next) {
332                 if (target->cmd_name == NULL)
333                         continue;
334                 if (strcmp(id, target->cmd_name) == 0)
335                         return target;
336         }
337
338         /* no match, try as number */
339         num = strtoul(id, &endptr, 0);
340         if (*endptr != 0)
341                 return NULL;
342
343         for (target = all_targets; target; target = target->next) {
344                 if (target->target_number == num)
345                         return target;
346         }
347
348         return NULL;
349 }
350
351 /* returns a pointer to the n-th configured target */
352 static target_t *get_target_by_num(int num)
353 {
354         target_t *target = all_targets;
355
356         while (target){
357                 if( target->target_number == num ){
358                         return target;
359                 }
360                 target = target->next;
361         }
362
363         return NULL;
364 }
365
366 int get_num_by_target(target_t *query_target)
367 {
368         return query_target->target_number;
369 }
370
371 target_t* get_current_target(command_context_t *cmd_ctx)
372 {
373         target_t *target = get_target_by_num(cmd_ctx->current_target);
374
375         if (target == NULL)
376         {
377                 LOG_ERROR("BUG: current_target out of bounds");
378                 exit(-1);
379         }
380
381         return target;
382 }
383
384 int target_poll(struct target_s *target)
385 {
386         /* We can't poll until after examine */
387         if (!target->type->examined)
388         {
389                 /* Fail silently lest we pollute the log */
390                 return ERROR_FAIL;
391         }
392         return target->type->poll(target);
393 }
394
395 int target_halt(struct target_s *target)
396 {
397         /* We can't poll until after examine */
398         if (!target->type->examined)
399         {
400                 LOG_ERROR("Target not examined yet");
401                 return ERROR_FAIL;
402         }
403         return target->type->halt(target);
404 }
405
406 int target_resume(struct target_s *target, int current, u32 address, int handle_breakpoints, int debug_execution)
407 {
408         int retval;
409
410         /* We can't poll until after examine */
411         if (!target->type->examined)
412         {
413                 LOG_ERROR("Target not examined yet");
414                 return ERROR_FAIL;
415         }
416
417         /* note that resume *must* be asynchronous. The CPU can halt before we poll. The CPU can
418          * even halt at the current PC as a result of a software breakpoint being inserted by (a bug?)
419          * the application.
420          */
421         if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
422                 return retval;
423
424         return retval;
425 }
426
427 int target_process_reset(struct command_context_s *cmd_ctx, enum target_reset_mode reset_mode)
428 {
429         char buf[100];
430         int retval;
431         Jim_Nvp *n;
432         n = Jim_Nvp_value2name_simple( nvp_reset_modes, reset_mode );
433         if( n->name == NULL ){
434                 LOG_ERROR("invalid reset mode");
435                 return ERROR_FAIL;
436         }
437
438         sprintf( buf, "ocd_process_reset %s", n->name );
439         retval = Jim_Eval( interp, buf );
440
441         if(retval != JIM_OK) {
442                 Jim_PrintErrorMessage(interp);
443                 return ERROR_FAIL;
444         }
445
446         /* We want any events to be processed before the prompt */
447         retval = target_call_timer_callbacks_now();
448
449         return retval;
450 }
451
452 static int default_virt2phys(struct target_s *target, u32 virtual, u32 *physical)
453 {
454         *physical = virtual;
455         return ERROR_OK;
456 }
457
458 static int default_mmu(struct target_s *target, int *enabled)
459 {
460         *enabled = 0;
461         return ERROR_OK;
462 }
463
464 static int default_examine(struct target_s *target)
465 {
466         target->type->examined = 1;
467         return ERROR_OK;
468 }
469
470 /* Targets that correctly implement init+examine, i.e.
471  * no communication with target during init:
472  *
473  * XScale
474  */
475 int target_examine(void)
476 {
477         int retval = ERROR_OK;
478         target_t *target = all_targets;
479         while (target)
480         {
481                 if ((retval = target->type->examine(target))!=ERROR_OK)
482                         return retval;
483                 target = target->next;
484         }
485         return retval;
486 }
487
488 static int target_write_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
489 {
490         if (!target->type->examined)
491         {
492                 LOG_ERROR("Target not examined yet");
493                 return ERROR_FAIL;
494         }
495         return target->type->write_memory_imp(target, address, size, count, buffer);
496 }
497
498 static int target_read_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
499 {
500         if (!target->type->examined)
501         {
502                 LOG_ERROR("Target not examined yet");
503                 return ERROR_FAIL;
504         }
505         return target->type->read_memory_imp(target, address, size, count, buffer);
506 }
507
508 static int target_soft_reset_halt_imp(struct target_s *target)
509 {
510         if (!target->type->examined)
511         {
512                 LOG_ERROR("Target not examined yet");
513                 return ERROR_FAIL;
514         }
515         return target->type->soft_reset_halt_imp(target);
516 }
517
518 static int target_run_algorithm_imp(struct target_s *target, int num_mem_params, mem_param_t *mem_params, int num_reg_params, reg_param_t *reg_param, u32 entry_point, u32 exit_point, int timeout_ms, void *arch_info)
519 {
520         if (!target->type->examined)
521         {
522                 LOG_ERROR("Target not examined yet");
523                 return ERROR_FAIL;
524         }
525         return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
526 }
527
528 int target_init(struct command_context_s *cmd_ctx)
529 {
530         target_t *target = all_targets;
531         int retval;
532
533         while (target)
534         {
535                 target->type->examined = 0;
536                 if (target->type->examine == NULL)
537                 {
538                         target->type->examine = default_examine;
539                 }
540
541                 if ((retval = target->type->init_target(cmd_ctx, target)) != ERROR_OK)
542                 {
543                         LOG_ERROR("target '%s' init failed", target->type->name);
544                         return retval;
545                 }
546
547                 /* Set up default functions if none are provided by target */
548                 if (target->type->virt2phys == NULL)
549                 {
550                         target->type->virt2phys = default_virt2phys;
551                 }
552                 target->type->virt2phys = default_virt2phys;
553                 /* a non-invasive way(in terms of patches) to add some code that
554                  * runs before the type->write/read_memory implementation
555                  */
556                 target->type->write_memory_imp = target->type->write_memory;
557                 target->type->write_memory = target_write_memory_imp;
558                 target->type->read_memory_imp = target->type->read_memory;
559                 target->type->read_memory = target_read_memory_imp;
560                 target->type->soft_reset_halt_imp = target->type->soft_reset_halt;
561                 target->type->soft_reset_halt = target_soft_reset_halt_imp;
562                 target->type->run_algorithm_imp = target->type->run_algorithm;
563                 target->type->run_algorithm = target_run_algorithm_imp;
564
565                 if (target->type->mmu == NULL)
566                 {
567                         target->type->mmu = default_mmu;
568                 }
569                 target = target->next;
570         }
571
572         if (all_targets)
573         {
574                 if((retval = target_register_user_commands(cmd_ctx)) != ERROR_OK)
575                         return retval;
576                 if((retval = target_register_timer_callback(handle_target, 100, 1, NULL)) != ERROR_OK)
577                         return retval;
578         }
579
580         return ERROR_OK;
581 }
582
583 int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
584 {
585         target_event_callback_t **callbacks_p = &target_event_callbacks;
586
587         if (callback == NULL)
588         {
589                 return ERROR_INVALID_ARGUMENTS;
590         }
591
592         if (*callbacks_p)
593         {
594                 while ((*callbacks_p)->next)
595                         callbacks_p = &((*callbacks_p)->next);
596                 callbacks_p = &((*callbacks_p)->next);
597         }
598
599         (*callbacks_p) = malloc(sizeof(target_event_callback_t));
600         (*callbacks_p)->callback = callback;
601         (*callbacks_p)->priv = priv;
602         (*callbacks_p)->next = NULL;
603
604         return ERROR_OK;
605 }
606
607 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
608 {
609         target_timer_callback_t **callbacks_p = &target_timer_callbacks;
610         struct timeval now;
611
612         if (callback == NULL)
613         {
614                 return ERROR_INVALID_ARGUMENTS;
615         }
616
617         if (*callbacks_p)
618         {
619                 while ((*callbacks_p)->next)
620                         callbacks_p = &((*callbacks_p)->next);
621                 callbacks_p = &((*callbacks_p)->next);
622         }
623
624         (*callbacks_p) = malloc(sizeof(target_timer_callback_t));
625         (*callbacks_p)->callback = callback;
626         (*callbacks_p)->periodic = periodic;
627         (*callbacks_p)->time_ms = time_ms;
628
629         gettimeofday(&now, NULL);
630         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
631         time_ms -= (time_ms % 1000);
632         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
633         if ((*callbacks_p)->when.tv_usec > 1000000)
634         {
635                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
636                 (*callbacks_p)->when.tv_sec += 1;
637         }
638
639         (*callbacks_p)->priv = priv;
640         (*callbacks_p)->next = NULL;
641
642         return ERROR_OK;
643 }
644
645 int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
646 {
647         target_event_callback_t **p = &target_event_callbacks;
648         target_event_callback_t *c = target_event_callbacks;
649
650         if (callback == NULL)
651         {
652                 return ERROR_INVALID_ARGUMENTS;
653         }
654
655         while (c)
656         {
657                 target_event_callback_t *next = c->next;
658                 if ((c->callback == callback) && (c->priv == priv))
659                 {
660                         *p = next;
661                         free(c);
662                         return ERROR_OK;
663                 }
664                 else
665                         p = &(c->next);
666                 c = next;
667         }
668
669         return ERROR_OK;
670 }
671
672 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
673 {
674         target_timer_callback_t **p = &target_timer_callbacks;
675         target_timer_callback_t *c = target_timer_callbacks;
676
677         if (callback == NULL)
678         {
679                 return ERROR_INVALID_ARGUMENTS;
680         }
681
682         while (c)
683         {
684                 target_timer_callback_t *next = c->next;
685                 if ((c->callback == callback) && (c->priv == priv))
686                 {
687                         *p = next;
688                         free(c);
689                         return ERROR_OK;
690                 }
691                 else
692                         p = &(c->next);
693                 c = next;
694         }
695
696         return ERROR_OK;
697 }
698
699 int target_call_event_callbacks(target_t *target, enum target_event event)
700 {
701         target_event_callback_t *callback = target_event_callbacks;
702         target_event_callback_t *next_callback;
703
704         if (event == TARGET_EVENT_HALTED)
705         {
706                 /* execute early halted first */
707                 target_call_event_callbacks(target, TARGET_EVENT_EARLY_HALTED);
708         }
709
710         LOG_DEBUG("target event %i (%s)",
711                           event,
712                           Jim_Nvp_value2name_simple( nvp_target_event, event )->name );
713
714         target_handle_event( target, event );
715
716         while (callback)
717         {
718                 next_callback = callback->next;
719                 callback->callback(target, event, callback->priv);
720                 callback = next_callback;
721         }
722
723         return ERROR_OK;
724 }
725
726 static int target_call_timer_callbacks_check_time(int checktime)
727 {
728         target_timer_callback_t *callback = target_timer_callbacks;
729         target_timer_callback_t *next_callback;
730         struct timeval now;
731
732         keep_alive();
733
734         gettimeofday(&now, NULL);
735
736         while (callback)
737         {
738                 next_callback = callback->next;
739
740                 if ((!checktime&&callback->periodic)||
741                                 (((now.tv_sec >= callback->when.tv_sec) && (now.tv_usec >= callback->when.tv_usec))
742                                                 || (now.tv_sec > callback->when.tv_sec)))
743                 {
744                         if(callback->callback != NULL)
745                         {
746                                 callback->callback(callback->priv);
747                                 if (callback->periodic)
748                                 {
749                                         int time_ms = callback->time_ms;
750                                         callback->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
751                                         time_ms -= (time_ms % 1000);
752                                         callback->when.tv_sec = now.tv_sec + time_ms / 1000;
753                                         if (callback->when.tv_usec > 1000000)
754                                         {
755                                                 callback->when.tv_usec = callback->when.tv_usec - 1000000;
756                                                 callback->when.tv_sec += 1;
757                                         }
758                                 }
759                                 else
760                                 {
761                                         int retval;
762                                         if((retval = target_unregister_timer_callback(callback->callback, callback->priv)) != ERROR_OK)
763                                                 return retval;
764                                 }
765                         }
766                 }
767
768                 callback = next_callback;
769         }
770
771         return ERROR_OK;
772 }
773
774 int target_call_timer_callbacks(void)
775 {
776         return target_call_timer_callbacks_check_time(1);
777 }
778
779 /* invoke periodic callbacks immediately */
780 int target_call_timer_callbacks_now(void)
781 {
782         return target_call_timer_callbacks_check_time(0);
783 }
784
785 int target_alloc_working_area(struct target_s *target, u32 size, working_area_t **area)
786 {
787         working_area_t *c = target->working_areas;
788         working_area_t *new_wa = NULL;
789
790         /* Reevaluate working area address based on MMU state*/
791         if (target->working_areas == NULL)
792         {
793                 int retval;
794                 int enabled;
795                 retval = target->type->mmu(target, &enabled);
796                 if (retval != ERROR_OK)
797                 {
798                         return retval;
799                 }
800                 if (enabled)
801                 {
802                         target->working_area = target->working_area_virt;
803                 }
804                 else
805                 {
806                         target->working_area = target->working_area_phys;
807                 }
808         }
809
810         /* only allocate multiples of 4 byte */
811         if (size % 4)
812         {
813                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes, padding");
814                 size = CEIL(size, 4);
815         }
816
817         /* see if there's already a matching working area */
818         while (c)
819         {
820                 if ((c->free) && (c->size == size))
821                 {
822                         new_wa = c;
823                         break;
824                 }
825                 c = c->next;
826         }
827
828         /* if not, allocate a new one */
829         if (!new_wa)
830         {
831                 working_area_t **p = &target->working_areas;
832                 u32 first_free = target->working_area;
833                 u32 free_size = target->working_area_size;
834
835                 LOG_DEBUG("allocating new working area");
836
837                 c = target->working_areas;
838                 while (c)
839                 {
840                         first_free += c->size;
841                         free_size -= c->size;
842                         p = &c->next;
843                         c = c->next;
844                 }
845
846                 if (free_size < size)
847                 {
848                         LOG_WARNING("not enough working area available(requested %d, free %d)", size, free_size);
849                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
850                 }
851
852                 new_wa = malloc(sizeof(working_area_t));
853                 new_wa->next = NULL;
854                 new_wa->size = size;
855                 new_wa->address = first_free;
856
857                 if (target->backup_working_area)
858                 {
859                         int retval;
860                         new_wa->backup = malloc(new_wa->size);
861                         if((retval = target->type->read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
862                         {
863                                 free(new_wa->backup);
864                                 free(new_wa);
865                                 return retval;
866                         }
867                 }
868                 else
869                 {
870                         new_wa->backup = NULL;
871                 }
872
873                 /* put new entry in list */
874                 *p = new_wa;
875         }
876
877         /* mark as used, and return the new (reused) area */
878         new_wa->free = 0;
879         *area = new_wa;
880
881         /* user pointer */
882         new_wa->user = area;
883
884         return ERROR_OK;
885 }
886
887 int target_free_working_area_restore(struct target_s *target, working_area_t *area, int restore)
888 {
889         if (area->free)
890                 return ERROR_OK;
891
892         if (restore&&target->backup_working_area)
893         {
894                 int retval;
895                 if((retval = target->type->write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
896                         return retval;
897         }
898
899         area->free = 1;
900
901         /* mark user pointer invalid */
902         *area->user = NULL;
903         area->user = NULL;
904
905         return ERROR_OK;
906 }
907
908 int target_free_working_area(struct target_s *target, working_area_t *area)
909 {
910         return target_free_working_area_restore(target, area, 1);
911 }
912
913 /* free resources and restore memory, if restoring memory fails,
914  * free up resources anyway
915  */
916 void target_free_all_working_areas_restore(struct target_s *target, int restore)
917 {
918         working_area_t *c = target->working_areas;
919
920         while (c)
921         {
922                 working_area_t *next = c->next;
923                 target_free_working_area_restore(target, c, restore);
924
925                 if (c->backup)
926                         free(c->backup);
927
928                 free(c);
929
930                 c = next;
931         }
932
933         target->working_areas = NULL;
934 }
935
936 void target_free_all_working_areas(struct target_s *target)
937 {
938         target_free_all_working_areas_restore(target, 1);
939 }
940
941 int target_register_commands(struct command_context_s *cmd_ctx)
942 {
943
944         register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, "change the current command line target (one parameter) or lists targets (with no parameter)");
945
946
947
948
949         register_jim(cmd_ctx, "target", jim_target, "configure target" );
950
951         return ERROR_OK;
952 }
953
954 int target_arch_state(struct target_s *target)
955 {
956         int retval;
957         if (target==NULL)
958         {
959                 LOG_USER("No target has been configured");
960                 return ERROR_OK;
961         }
962
963         LOG_USER("target state: %s",
964                  Jim_Nvp_value2name_simple(nvp_target_state,target->state)->name);
965
966         if (target->state!=TARGET_HALTED)
967                 return ERROR_OK;
968
969         retval=target->type->arch_state(target);
970         return retval;
971 }
972
973 /* Single aligned words are guaranteed to use 16 or 32 bit access
974  * mode respectively, otherwise data is handled as quickly as
975  * possible
976  */
977 int target_write_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
978 {
979         int retval;
980         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x", size, address);
981
982         if (!target->type->examined)
983         {
984                 LOG_ERROR("Target not examined yet");
985                 return ERROR_FAIL;
986         }
987
988         if (size == 0) {
989                 return ERROR_OK;
990         }
991
992         if ((address + size - 1) < address)
993         {
994                 /* GDB can request this when e.g. PC is 0xfffffffc*/
995                 LOG_ERROR("address+size wrapped(0x%08x, 0x%08x)", address, size);
996                 return ERROR_FAIL;
997         }
998
999         if (((address % 2) == 0) && (size == 2))
1000         {
1001                 return target->type->write_memory(target, address, 2, 1, buffer);
1002         }
1003
1004         /* handle unaligned head bytes */
1005         if (address % 4)
1006         {
1007                 u32 unaligned = 4 - (address % 4);
1008
1009                 if (unaligned > size)
1010                         unaligned = size;
1011
1012                 if ((retval = target->type->write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1013                         return retval;
1014
1015                 buffer += unaligned;
1016                 address += unaligned;
1017                 size -= unaligned;
1018         }
1019
1020         /* handle aligned words */
1021         if (size >= 4)
1022         {
1023                 int aligned = size - (size % 4);
1024
1025                 /* use bulk writes above a certain limit. This may have to be changed */
1026                 if (aligned > 128)
1027                 {
1028                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1029                                 return retval;
1030                 }
1031                 else
1032                 {
1033                         if ((retval = target->type->write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1034                                 return retval;
1035                 }
1036
1037                 buffer += aligned;
1038                 address += aligned;
1039                 size -= aligned;
1040         }
1041
1042         /* handle tail writes of less than 4 bytes */
1043         if (size > 0)
1044         {
1045                 if ((retval = target->type->write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1046                         return retval;
1047         }
1048
1049         return ERROR_OK;
1050 }
1051
1052 /* Single aligned words are guaranteed to use 16 or 32 bit access
1053  * mode respectively, otherwise data is handled as quickly as
1054  * possible
1055  */
1056 int target_read_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
1057 {
1058         int retval;
1059         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x", size, address);
1060
1061         if (!target->type->examined)
1062         {
1063                 LOG_ERROR("Target not examined yet");
1064                 return ERROR_FAIL;
1065         }
1066
1067         if (size == 0) {
1068                 return ERROR_OK;
1069         }
1070
1071         if ((address + size - 1) < address)
1072         {
1073                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1074                 LOG_ERROR("address+size wrapped(0x%08x, 0x%08x)", address, size);
1075                 return ERROR_FAIL;
1076         }
1077
1078         if (((address % 2) == 0) && (size == 2))
1079         {
1080                 return target->type->read_memory(target, address, 2, 1, buffer);
1081         }
1082
1083         /* handle unaligned head bytes */
1084         if (address % 4)
1085         {
1086                 u32 unaligned = 4 - (address % 4);
1087
1088                 if (unaligned > size)
1089                         unaligned = size;
1090
1091                 if ((retval = target->type->read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1092                         return retval;
1093
1094                 buffer += unaligned;
1095                 address += unaligned;
1096                 size -= unaligned;
1097         }
1098
1099         /* handle aligned words */
1100         if (size >= 4)
1101         {
1102                 int aligned = size - (size % 4);
1103
1104                 if ((retval = target->type->read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1105                         return retval;
1106
1107                 buffer += aligned;
1108                 address += aligned;
1109                 size -= aligned;
1110         }
1111
1112         /* handle tail writes of less than 4 bytes */
1113         if (size > 0)
1114         {
1115                 if ((retval = target->type->read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1116                         return retval;
1117         }
1118
1119         return ERROR_OK;
1120 }
1121
1122 int target_checksum_memory(struct target_s *target, u32 address, u32 size, u32* crc)
1123 {
1124         u8 *buffer;
1125         int retval;
1126         u32 i;
1127         u32 checksum = 0;
1128         if (!target->type->examined)
1129         {
1130                 LOG_ERROR("Target not examined yet");
1131                 return ERROR_FAIL;
1132         }
1133
1134         if ((retval = target->type->checksum_memory(target, address,
1135                 size, &checksum)) != ERROR_OK)
1136         {
1137                 buffer = malloc(size);
1138                 if (buffer == NULL)
1139                 {
1140                         LOG_ERROR("error allocating buffer for section (%d bytes)", size);
1141                         return ERROR_INVALID_ARGUMENTS;
1142                 }
1143                 retval = target_read_buffer(target, address, size, buffer);
1144                 if (retval != ERROR_OK)
1145                 {
1146                         free(buffer);
1147                         return retval;
1148                 }
1149
1150                 /* convert to target endianess */
1151                 for (i = 0; i < (size/sizeof(u32)); i++)
1152                 {
1153                         u32 target_data;
1154                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(u32)]);
1155                         target_buffer_set_u32(target, &buffer[i*sizeof(u32)], target_data);
1156                 }
1157
1158                 retval = image_calculate_checksum( buffer, size, &checksum );
1159                 free(buffer);
1160         }
1161
1162         *crc = checksum;
1163
1164         return retval;
1165 }
1166
1167 int target_blank_check_memory(struct target_s *target, u32 address, u32 size, u32* blank)
1168 {
1169         int retval;
1170         if (!target->type->examined)
1171         {
1172                 LOG_ERROR("Target not examined yet");
1173                 return ERROR_FAIL;
1174         }
1175
1176         if (target->type->blank_check_memory == 0)
1177                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1178
1179         retval = target->type->blank_check_memory(target, address, size, blank);
1180
1181         return retval;
1182 }
1183
1184 int target_read_u32(struct target_s *target, u32 address, u32 *value)
1185 {
1186         u8 value_buf[4];
1187         if (!target->type->examined)
1188         {
1189                 LOG_ERROR("Target not examined yet");
1190                 return ERROR_FAIL;
1191         }
1192
1193         int retval = target->type->read_memory(target, address, 4, 1, value_buf);
1194
1195         if (retval == ERROR_OK)
1196         {
1197                 *value = target_buffer_get_u32(target, value_buf);
1198                 LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, *value);
1199         }
1200         else
1201         {
1202                 *value = 0x0;
1203                 LOG_DEBUG("address: 0x%8.8x failed", address);
1204         }
1205
1206         return retval;
1207 }
1208
1209 int target_read_u16(struct target_s *target, u32 address, u16 *value)
1210 {
1211         u8 value_buf[2];
1212         if (!target->type->examined)
1213         {
1214                 LOG_ERROR("Target not examined yet");
1215                 return ERROR_FAIL;
1216         }
1217
1218         int retval = target->type->read_memory(target, address, 2, 1, value_buf);
1219
1220         if (retval == ERROR_OK)
1221         {
1222                 *value = target_buffer_get_u16(target, value_buf);
1223                 LOG_DEBUG("address: 0x%8.8x, value: 0x%4.4x", address, *value);
1224         }
1225         else
1226         {
1227                 *value = 0x0;
1228                 LOG_DEBUG("address: 0x%8.8x failed", address);
1229         }
1230
1231         return retval;
1232 }
1233
1234 int target_read_u8(struct target_s *target, u32 address, u8 *value)
1235 {
1236         int retval = target->type->read_memory(target, address, 1, 1, value);
1237         if (!target->type->examined)
1238         {
1239                 LOG_ERROR("Target not examined yet");
1240                 return ERROR_FAIL;
1241         }
1242
1243         if (retval == ERROR_OK)
1244         {
1245                 LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, *value);
1246         }
1247         else
1248         {
1249                 *value = 0x0;
1250                 LOG_DEBUG("address: 0x%8.8x failed", address);
1251         }
1252
1253         return retval;
1254 }
1255
1256 int target_write_u32(struct target_s *target, u32 address, u32 value)
1257 {
1258         int retval;
1259         u8 value_buf[4];
1260         if (!target->type->examined)
1261         {
1262                 LOG_ERROR("Target not examined yet");
1263                 return ERROR_FAIL;
1264         }
1265
1266         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1267
1268         target_buffer_set_u32(target, value_buf, value);
1269         if ((retval = target->type->write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1270         {
1271                 LOG_DEBUG("failed: %i", retval);
1272         }
1273
1274         return retval;
1275 }
1276
1277 int target_write_u16(struct target_s *target, u32 address, u16 value)
1278 {
1279         int retval;
1280         u8 value_buf[2];
1281         if (!target->type->examined)
1282         {
1283                 LOG_ERROR("Target not examined yet");
1284                 return ERROR_FAIL;
1285         }
1286
1287         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1288
1289         target_buffer_set_u16(target, value_buf, value);
1290         if ((retval = target->type->write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1291         {
1292                 LOG_DEBUG("failed: %i", retval);
1293         }
1294
1295         return retval;
1296 }
1297
1298 int target_write_u8(struct target_s *target, u32 address, u8 value)
1299 {
1300         int retval;
1301         if (!target->type->examined)
1302         {
1303                 LOG_ERROR("Target not examined yet");
1304                 return ERROR_FAIL;
1305         }
1306
1307         LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, value);
1308
1309         if ((retval = target->type->write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1310         {
1311                 LOG_DEBUG("failed: %i", retval);
1312         }
1313
1314         return retval;
1315 }
1316
1317 int target_register_user_commands(struct command_context_s *cmd_ctx)
1318 {
1319         int retval = ERROR_OK;
1320
1321
1322         /* script procedures */
1323         register_command(cmd_ctx, NULL, "profile", handle_profile_command, COMMAND_EXEC, "profiling samples the CPU PC");
1324         register_jim(cmd_ctx, "ocd_mem2array", jim_mem2array, "read memory and return as a TCL array for script processing <ARRAYNAME> <WIDTH=32/16/8> <ADDRESS> <COUNT>");
1325         register_jim(cmd_ctx, "ocd_array2mem", jim_array2mem, "convert a TCL array to memory locations and write the values  <ARRAYNAME> <WIDTH=32/16/8> <ADDRESS> <COUNT>");
1326
1327         register_command(cmd_ctx, NULL, "fast_load_image", handle_fast_load_image_command, COMMAND_ANY,
1328                         "same args as load_image, image stored in memory - mainly for profiling purposes");
1329
1330         register_command(cmd_ctx, NULL, "fast_load", handle_fast_load_command, COMMAND_ANY,
1331                         "loads active fast load image to current target - mainly for profiling purposes");
1332
1333
1334         register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "translate a virtual address into a physical address");
1335         register_command(cmd_ctx,  NULL, "reg", handle_reg_command, COMMAND_EXEC, "display or set a register");
1336         register_command(cmd_ctx,  NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state");
1337         register_command(cmd_ctx,  NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]");
1338         register_command(cmd_ctx,  NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target");
1339         register_command(cmd_ctx,  NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]");
1340         register_command(cmd_ctx,  NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]");
1341         register_command(cmd_ctx,  NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run|halt|init] - default is run");
1342         register_command(cmd_ctx,  NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset");
1343
1344         register_command(cmd_ctx,  NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words <addr> [count]");
1345         register_command(cmd_ctx,  NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words <addr> [count]");
1346         register_command(cmd_ctx,  NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes <addr> [count]");
1347
1348         register_command(cmd_ctx,  NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word <addr> <value> [count]");
1349         register_command(cmd_ctx,  NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word <addr> <value> [count]");
1350         register_command(cmd_ctx,  NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte <addr> <value> [count]");
1351
1352         register_command(cmd_ctx,  NULL, "bp", handle_bp_command, COMMAND_EXEC, "set breakpoint <address> <length> [hw]");
1353         register_command(cmd_ctx,  NULL, "rbp", handle_rbp_command, COMMAND_EXEC, "remove breakpoint <adress>");
1354         register_command(cmd_ctx,  NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint <address> <length> <r/w/a> [value] [mask]");
1355         register_command(cmd_ctx,  NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint <adress>");
1356
1357         register_command(cmd_ctx,  NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> ['bin'|'ihex'|'elf'|'s19'] [min_address] [max_length]");
1358         register_command(cmd_ctx,  NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>");
1359         register_command(cmd_ctx,  NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image <file> [offset] [type]");
1360         register_command(cmd_ctx,  NULL, "test_image", handle_test_image_command, COMMAND_EXEC, "test_image <file> [offset] [type]");
1361
1362         if((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
1363                 return retval;
1364         if((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
1365                 return retval;
1366
1367         return retval;
1368 }
1369
1370 static int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1371 {
1372         target_t *target = all_targets;
1373
1374         if (argc == 1)
1375         {
1376                 target = get_target(args[0]);
1377                 if (target == NULL) {
1378                         command_print(cmd_ctx,"Target: %s is unknown, try one of:\n", args[0] );
1379                         goto DumpTargets;
1380                 }
1381
1382                 cmd_ctx->current_target = target->target_number;
1383                 return ERROR_OK;
1384         }
1385 DumpTargets:
1386
1387         target = all_targets;
1388         command_print(cmd_ctx, "    CmdName    Type       Endian     AbsChainPos Name          State     ");
1389         command_print(cmd_ctx, "--  ---------- ---------- ---------- ----------- ------------- ----------");
1390         while (target)
1391         {
1392                 /* XX: abcdefghij abcdefghij abcdefghij abcdefghij */
1393                 command_print(cmd_ctx, "%2d: %-10s %-10s %-10s %10d %14s %s",
1394                                           target->target_number,
1395                                           target->cmd_name,
1396                                           target->type->name,
1397                                           Jim_Nvp_value2name_simple( nvp_target_endian, target->endianness )->name,
1398                                           target->tap->abs_chain_position,
1399                                           target->tap->dotted_name,
1400                                           Jim_Nvp_value2name_simple( nvp_target_state, target->state )->name );
1401                 target = target->next;
1402         }
1403
1404         return ERROR_OK;
1405 }
1406
1407 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1408
1409 static int powerDropout;
1410 static int srstAsserted;
1411
1412 static int runPowerRestore;
1413 static int runPowerDropout;
1414 static int runSrstAsserted;
1415 static int runSrstDeasserted;
1416
1417 static int sense_handler(void)
1418 {
1419         static int prevSrstAsserted = 0;
1420         static int prevPowerdropout = 0;
1421
1422         int retval;
1423         if ((retval=jtag_power_dropout(&powerDropout))!=ERROR_OK)
1424                 return retval;
1425
1426         int powerRestored;
1427         powerRestored = prevPowerdropout && !powerDropout;
1428         if (powerRestored)
1429         {
1430                 runPowerRestore = 1;
1431         }
1432
1433         long long current = timeval_ms();
1434         static long long lastPower = 0;
1435         int waitMore = lastPower + 2000 > current;
1436         if (powerDropout && !waitMore)
1437         {
1438                 runPowerDropout = 1;
1439                 lastPower = current;
1440         }
1441
1442         if ((retval=jtag_srst_asserted(&srstAsserted))!=ERROR_OK)
1443                 return retval;
1444
1445         int srstDeasserted;
1446         srstDeasserted = prevSrstAsserted && !srstAsserted;
1447
1448         static long long lastSrst = 0;
1449         waitMore = lastSrst + 2000 > current;
1450         if (srstDeasserted && !waitMore)
1451         {
1452                 runSrstDeasserted = 1;
1453                 lastSrst = current;
1454         }
1455
1456         if (!prevSrstAsserted && srstAsserted)
1457         {
1458                 runSrstAsserted = 1;
1459         }
1460
1461         prevSrstAsserted = srstAsserted;
1462         prevPowerdropout = powerDropout;
1463
1464         if (srstDeasserted || powerRestored)
1465         {
1466                 /* Other than logging the event we can't do anything here.
1467                  * Issuing a reset is a particularly bad idea as we might
1468                  * be inside a reset already.
1469                  */
1470         }
1471
1472         return ERROR_OK;
1473 }
1474
1475 /* process target state changes */
1476 int handle_target(void *priv)
1477 {
1478         int retval = ERROR_OK;
1479
1480         /* we do not want to recurse here... */
1481         static int recursive = 0;
1482         if (! recursive)
1483         {
1484                 recursive = 1;
1485                 sense_handler();
1486                 /* danger! running these procedures can trigger srst assertions and power dropouts.
1487                  * We need to avoid an infinite loop/recursion here and we do that by
1488                  * clearing the flags after running these events.
1489                  */
1490                 int did_something = 0;
1491                 if (runSrstAsserted)
1492                 {
1493                         Jim_Eval( interp, "srst_asserted");
1494                         did_something = 1;
1495                 }
1496                 if (runSrstDeasserted)
1497                 {
1498                         Jim_Eval( interp, "srst_deasserted");
1499                         did_something = 1;
1500                 }
1501                 if (runPowerDropout)
1502                 {
1503                         Jim_Eval( interp, "power_dropout");
1504                         did_something = 1;
1505                 }
1506                 if (runPowerRestore)
1507                 {
1508                         Jim_Eval( interp, "power_restore");
1509                         did_something = 1;
1510                 }
1511
1512                 if (did_something)
1513                 {
1514                         /* clear detect flags */
1515                         sense_handler();
1516                 }
1517
1518                 /* clear action flags */
1519
1520                 runSrstAsserted=0;
1521                 runSrstDeasserted=0;
1522                 runPowerRestore=0;
1523                 runPowerDropout=0;
1524
1525                 recursive = 0;
1526         }
1527
1528         target_t *target = all_targets;
1529
1530         while (target)
1531         {
1532
1533                 /* only poll target if we've got power and srst isn't asserted */
1534                 if (target_continous_poll&&!powerDropout&&!srstAsserted)
1535                 {
1536                         /* polling may fail silently until the target has been examined */
1537                         if((retval = target_poll(target)) != ERROR_OK)
1538                                 return retval;
1539                 }
1540
1541                 target = target->next;
1542         }
1543
1544         return retval;
1545 }
1546
1547 static int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1548 {
1549         target_t *target;
1550         reg_t *reg = NULL;
1551         int count = 0;
1552         char *value;
1553
1554         LOG_DEBUG("-");
1555
1556         target = get_current_target(cmd_ctx);
1557
1558         /* list all available registers for the current target */
1559         if (argc == 0)
1560         {
1561                 reg_cache_t *cache = target->reg_cache;
1562
1563                 count = 0;
1564                 while(cache)
1565                 {
1566                         int i;
1567                         for (i = 0; i < cache->num_regs; i++)
1568                         {
1569                                 value = buf_to_str(cache->reg_list[i].value, cache->reg_list[i].size, 16);
1570                                 command_print(cmd_ctx, "(%i) %s (/%i): 0x%s (dirty: %i, valid: %i)", count++, cache->reg_list[i].name, cache->reg_list[i].size, value, cache->reg_list[i].dirty, cache->reg_list[i].valid);
1571                                 free(value);
1572                         }
1573                         cache = cache->next;
1574                 }
1575
1576                 return ERROR_OK;
1577         }
1578
1579         /* access a single register by its ordinal number */
1580         if ((args[0][0] >= '0') && (args[0][0] <= '9'))
1581         {
1582                 int num = strtoul(args[0], NULL, 0);
1583                 reg_cache_t *cache = target->reg_cache;
1584
1585                 count = 0;
1586                 while(cache)
1587                 {
1588                         int i;
1589                         for (i = 0; i < cache->num_regs; i++)
1590                         {
1591                                 if (count++ == num)
1592                                 {
1593                                         reg = &cache->reg_list[i];
1594                                         break;
1595                                 }
1596                         }
1597                         if (reg)
1598                                 break;
1599                         cache = cache->next;
1600                 }
1601
1602                 if (!reg)
1603                 {
1604                         command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1605                         return ERROR_OK;
1606                 }
1607         } else /* access a single register by its name */
1608         {
1609                 reg = register_get_by_name(target->reg_cache, args[0], 1);
1610
1611                 if (!reg)
1612                 {
1613                         command_print(cmd_ctx, "register %s not found in current target", args[0]);
1614                         return ERROR_OK;
1615                 }
1616         }
1617
1618         /* display a register */
1619         if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
1620         {
1621                 if ((argc == 2) && (strcmp(args[1], "force") == 0))
1622                         reg->valid = 0;
1623
1624                 if (reg->valid == 0)
1625                 {
1626                         reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1627                         arch_type->get(reg);
1628                 }
1629                 value = buf_to_str(reg->value, reg->size, 16);
1630                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1631                 free(value);
1632                 return ERROR_OK;
1633         }
1634
1635         /* set register value */
1636         if (argc == 2)
1637         {
1638                 u8 *buf = malloc(CEIL(reg->size, 8));
1639                 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
1640
1641                 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1642                 arch_type->set(reg, buf);
1643
1644                 value = buf_to_str(reg->value, reg->size, 16);
1645                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1646                 free(value);
1647
1648                 free(buf);
1649
1650                 return ERROR_OK;
1651         }
1652
1653         command_print(cmd_ctx, "usage: reg <#|name> [value]");
1654
1655         return ERROR_OK;
1656 }
1657
1658 static int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1659 {
1660         int retval = ERROR_OK;
1661         target_t *target = get_current_target(cmd_ctx);
1662
1663         if (argc == 0)
1664         {
1665                 if((retval = target_poll(target)) != ERROR_OK)
1666                         return retval;
1667                 if((retval = target_arch_state(target)) != ERROR_OK)
1668                         return retval;
1669
1670         }
1671         else if (argc==1)
1672         {
1673                 if (strcmp(args[0], "on") == 0)
1674                 {
1675                         target_continous_poll = 1;
1676                 }
1677                 else if (strcmp(args[0], "off") == 0)
1678                 {
1679                         target_continous_poll = 0;
1680                 }
1681                 else
1682                 {
1683                         command_print(cmd_ctx, "arg is \"on\" or \"off\"");
1684                 }
1685         } else
1686         {
1687                 return ERROR_COMMAND_SYNTAX_ERROR;
1688         }
1689
1690         return retval;
1691 }
1692
1693 static int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1694 {
1695         int ms = 5000;
1696
1697         if (argc > 0)
1698         {
1699                 char *end;
1700
1701                 ms = strtoul(args[0], &end, 0) * 1000;
1702                 if (*end)
1703                 {
1704                         command_print(cmd_ctx, "usage: %s [seconds]", cmd);
1705                         return ERROR_OK;
1706                 }
1707         }
1708         target_t *target = get_current_target(cmd_ctx);
1709
1710         return target_wait_state(target, TARGET_HALTED, ms);
1711 }
1712
1713 /* wait for target state to change. The trick here is to have a low
1714  * latency for short waits and not to suck up all the CPU time
1715  * on longer waits.
1716  *
1717  * After 500ms, keep_alive() is invoked
1718  */
1719 int target_wait_state(target_t *target, enum target_state state, int ms)
1720 {
1721         int retval;
1722         long long then=0, cur;
1723         int once=1;
1724
1725         for (;;)
1726         {
1727                 if ((retval=target_poll(target))!=ERROR_OK)
1728                         return retval;
1729                 if (target->state == state)
1730                 {
1731                         break;
1732                 }
1733                 cur = timeval_ms();
1734                 if (once)
1735                 {
1736                         once=0;
1737                         then = timeval_ms();
1738                         LOG_DEBUG("waiting for target %s...",
1739                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
1740                 }
1741
1742                 if (cur-then>500)
1743                 {
1744                         keep_alive();
1745                 }
1746
1747                 if ((cur-then)>ms)
1748                 {
1749                         LOG_ERROR("timed out while waiting for target %s",
1750                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
1751                         return ERROR_FAIL;
1752                 }
1753         }
1754
1755         return ERROR_OK;
1756 }
1757
1758 static int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1759 {
1760         int retval;
1761         target_t *target = get_current_target(cmd_ctx);
1762
1763         LOG_DEBUG("-");
1764
1765         if ((retval = target_halt(target)) != ERROR_OK)
1766         {
1767                 return retval;
1768         }
1769
1770         if (argc == 1)
1771         {
1772                 int wait;
1773                 char *end;
1774
1775                 wait = strtoul(args[0], &end, 0);
1776                 if (!*end && !wait)
1777                         return ERROR_OK;
1778         }
1779
1780         return handle_wait_halt_command(cmd_ctx, cmd, args, argc);
1781 }
1782
1783 static int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1784 {
1785         target_t *target = get_current_target(cmd_ctx);
1786
1787         LOG_USER("requesting target halt and executing a soft reset");
1788
1789         target->type->soft_reset_halt(target);
1790
1791         return ERROR_OK;
1792 }
1793
1794 static int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1795 {
1796         const Jim_Nvp *n;
1797         enum target_reset_mode reset_mode = RESET_RUN;
1798
1799         if (argc >= 1)
1800         {
1801                 n = Jim_Nvp_name2value_simple( nvp_reset_modes, args[0] );
1802                 if( (n->name == NULL) || (n->value == RESET_UNKNOWN) ){
1803                         return ERROR_COMMAND_SYNTAX_ERROR;
1804                 }
1805                 reset_mode = n->value;
1806         }
1807
1808         /* reset *all* targets */
1809         return target_process_reset(cmd_ctx, reset_mode);
1810 }
1811
1812
1813 static int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1814 {
1815         int retval;
1816         target_t *target = get_current_target(cmd_ctx);
1817
1818         target_handle_event( target, TARGET_EVENT_OLD_pre_resume );
1819
1820         if (argc == 0)
1821                 retval = target_resume(target, 1, 0, 1, 0); /* current pc, addr = 0, handle breakpoints, not debugging */
1822         else if (argc == 1)
1823                 retval = target_resume(target, 0, strtoul(args[0], NULL, 0), 1, 0); /* addr = args[0], handle breakpoints, not debugging */
1824         else
1825         {
1826                 retval = ERROR_COMMAND_SYNTAX_ERROR;
1827         }
1828
1829         return retval;
1830 }
1831
1832 static int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1833 {
1834         target_t *target = get_current_target(cmd_ctx);
1835
1836         LOG_DEBUG("-");
1837
1838         if (argc == 0)
1839                 return target->type->step(target, 1, 0, 1); /* current pc, addr = 0, handle breakpoints */
1840
1841         if (argc == 1)
1842                 return target->type->step(target, 0, strtoul(args[0], NULL, 0), 1); /* addr = args[0], handle breakpoints */
1843
1844         return ERROR_OK;
1845 }
1846
1847 static void handle_md_output(struct command_context_s *cmd_ctx,
1848                 struct target_s *target, u32 address, unsigned size,
1849                 unsigned count, const u8 *buffer)
1850 {
1851         const unsigned line_bytecnt = 32;
1852         unsigned line_modulo = line_bytecnt / size;
1853
1854         char output[line_bytecnt * 4 + 1];
1855         unsigned output_len = 0;
1856
1857         const char *value_fmt;
1858         switch (size) {
1859         case 4: value_fmt = "%8.8x"; break;
1860         case 2: value_fmt = "%4.2x"; break;
1861         case 1: value_fmt = "%2.2x"; break;
1862         default:
1863                 LOG_ERROR("invalid memory read size: %u", size);
1864                 exit(-1);
1865         }
1866
1867         for (unsigned i = 0; i < count; i++)
1868         {
1869                 if (i % line_modulo == 0)
1870                 {
1871                         output_len += snprintf(output + output_len,
1872                                         sizeof(output) - output_len,
1873                                         "0x%8.8x: ", address + (i*size));
1874                 }
1875
1876                 u32 value;
1877                 const u8 *value_ptr = buffer + i * size;
1878                 switch (size) {
1879                 case 4: value = target_buffer_get_u32(target, value_ptr); break;
1880                 case 2: value = target_buffer_get_u16(target, value_ptr); break;
1881                 case 1: value = *value_ptr;
1882                 }
1883                 output_len += snprintf(output + output_len,
1884                                 sizeof(output) - output_len,
1885                                 value_fmt, value);
1886
1887                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
1888                 {
1889                         command_print(cmd_ctx, "%s", output);
1890                         output_len = 0;
1891                 }
1892         }
1893 }
1894
1895 static int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1896 {
1897         if (argc < 1)
1898                 return ERROR_COMMAND_SYNTAX_ERROR;
1899
1900         unsigned size = 0;
1901         switch (cmd[2]) {
1902         case 'w': size = 4; break;
1903         case 'h': size = 2; break;
1904         case 'b': size = 1; break;
1905         default: return ERROR_COMMAND_SYNTAX_ERROR;
1906         }
1907
1908         u32 address = strtoul(args[0], NULL, 0);
1909
1910         unsigned count = 1;
1911         if (argc == 2)
1912                 count = strtoul(args[1], NULL, 0);
1913
1914         u8 *buffer = calloc(count, size);
1915
1916         target_t *target = get_current_target(cmd_ctx);
1917         int retval = target->type->read_memory(target,
1918                                 address, size, count, buffer);
1919         if (ERROR_OK == retval)
1920                 handle_md_output(cmd_ctx, target, address, size, count, buffer);
1921
1922         free(buffer);
1923
1924         return retval;
1925 }
1926
1927 static int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1928 {
1929         u32 address = 0;
1930         u32 value = 0;
1931         int count = 1;
1932         int i;
1933         int wordsize;
1934         target_t *target = get_current_target(cmd_ctx);
1935         u8 value_buf[4];
1936
1937          if ((argc < 2) || (argc > 3))
1938                 return ERROR_COMMAND_SYNTAX_ERROR;
1939
1940         address = strtoul(args[0], NULL, 0);
1941         value = strtoul(args[1], NULL, 0);
1942         if (argc == 3)
1943                 count = strtoul(args[2], NULL, 0);
1944
1945         switch (cmd[2])
1946         {
1947                 case 'w':
1948                         wordsize = 4;
1949                         target_buffer_set_u32(target, value_buf, value);
1950                         break;
1951                 case 'h':
1952                         wordsize = 2;
1953                         target_buffer_set_u16(target, value_buf, value);
1954                         break;
1955                 case 'b':
1956                         wordsize = 1;
1957                         value_buf[0] = value;
1958                         break;
1959                 default:
1960                         return ERROR_COMMAND_SYNTAX_ERROR;
1961         }
1962         for (i=0; i<count; i++)
1963         {
1964                 int retval = target->type->write_memory(target,
1965                                 address + i * wordsize, wordsize, 1, value_buf);
1966                 if (ERROR_OK != retval)
1967                         return retval;
1968                 keep_alive();
1969         }
1970
1971         return ERROR_OK;
1972
1973 }
1974
1975 static int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1976 {
1977         u8 *buffer;
1978         u32 buf_cnt;
1979         u32 image_size;
1980         u32 min_address=0;
1981         u32 max_address=0xffffffff;
1982         int i;
1983         int retval, retvaltemp;
1984
1985         image_t image;
1986
1987         duration_t duration;
1988         char *duration_text;
1989
1990         target_t *target = get_current_target(cmd_ctx);
1991
1992         if ((argc < 1)||(argc > 5))
1993         {
1994                 return ERROR_COMMAND_SYNTAX_ERROR;
1995         }
1996
1997         /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
1998         if (argc >= 2)
1999         {
2000                 image.base_address_set = 1;
2001                 image.base_address = strtoul(args[1], NULL, 0);
2002         }
2003         else
2004         {
2005                 image.base_address_set = 0;
2006         }
2007
2008
2009         image.start_address_set = 0;
2010
2011         if (argc>=4)
2012         {
2013                 min_address=strtoul(args[3], NULL, 0);
2014         }
2015         if (argc>=5)
2016         {
2017                 max_address=strtoul(args[4], NULL, 0)+min_address;
2018         }
2019
2020         if (min_address>max_address)
2021         {
2022                 return ERROR_COMMAND_SYNTAX_ERROR;
2023         }
2024
2025         duration_start_measure(&duration);
2026
2027         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
2028         {
2029                 return ERROR_OK;
2030         }
2031
2032         image_size = 0x0;
2033         retval = ERROR_OK;
2034         for (i = 0; i < image.num_sections; i++)
2035         {
2036                 buffer = malloc(image.sections[i].size);
2037                 if (buffer == NULL)
2038                 {
2039                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2040                         break;
2041                 }
2042
2043                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2044                 {
2045                         free(buffer);
2046                         break;
2047                 }
2048
2049                 u32 offset=0;
2050                 u32 length=buf_cnt;
2051
2052                 /* DANGER!!! beware of unsigned comparision here!!! */
2053
2054                 if ((image.sections[i].base_address+buf_cnt>=min_address)&&
2055                                 (image.sections[i].base_address<max_address))
2056                 {
2057                         if (image.sections[i].base_address<min_address)
2058                         {
2059                                 /* clip addresses below */
2060                                 offset+=min_address-image.sections[i].base_address;
2061                                 length-=offset;
2062                         }
2063
2064                         if (image.sections[i].base_address+buf_cnt>max_address)
2065                         {
2066                                 length-=(image.sections[i].base_address+buf_cnt)-max_address;
2067                         }
2068
2069                         if ((retval = target_write_buffer(target, image.sections[i].base_address+offset, length, buffer+offset)) != ERROR_OK)
2070                         {
2071                                 free(buffer);
2072                                 break;
2073                         }
2074                         image_size += length;
2075                         command_print(cmd_ctx, "%u byte written at address 0x%8.8x", length, image.sections[i].base_address+offset);
2076                 }
2077
2078                 free(buffer);
2079         }
2080
2081         if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2082         {
2083                 image_close(&image);
2084                 return retvaltemp;
2085         }
2086
2087         if (retval==ERROR_OK)
2088         {
2089                 command_print(cmd_ctx, "downloaded %u byte in %s", image_size, duration_text);
2090         }
2091         free(duration_text);
2092
2093         image_close(&image);
2094
2095         return retval;
2096
2097 }
2098
2099 static int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2100 {
2101         fileio_t fileio;
2102
2103         u32 address;
2104         u32 size;
2105         u8 buffer[560];
2106         int retval=ERROR_OK, retvaltemp;
2107
2108         duration_t duration;
2109         char *duration_text;
2110
2111         target_t *target = get_current_target(cmd_ctx);
2112
2113         if (argc != 3)
2114         {
2115                 command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
2116                 return ERROR_OK;
2117         }
2118
2119         address = strtoul(args[1], NULL, 0);
2120         size = strtoul(args[2], NULL, 0);
2121
2122         if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2123         {
2124                 return ERROR_OK;
2125         }
2126
2127         duration_start_measure(&duration);
2128
2129         while (size > 0)
2130         {
2131                 u32 size_written;
2132                 u32 this_run_size = (size > 560) ? 560 : size;
2133
2134                 retval = target_read_buffer(target, address, this_run_size, buffer);
2135                 if (retval != ERROR_OK)
2136                 {
2137                         break;
2138                 }
2139
2140                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2141                 if (retval != ERROR_OK)
2142                 {
2143                         break;
2144                 }
2145
2146                 size -= this_run_size;
2147                 address += this_run_size;
2148         }
2149
2150         if((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2151                 return retvaltemp;
2152
2153         if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2154                 return retvaltemp;
2155
2156         if (retval==ERROR_OK)
2157         {
2158                 command_print(cmd_ctx, "dumped %lld byte in %s",
2159                                 fileio.size, duration_text);
2160                 free(duration_text);
2161         }
2162
2163         return retval;
2164 }
2165
2166 static int handle_verify_image_command_internal(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc, int verify)
2167 {
2168         u8 *buffer;
2169         u32 buf_cnt;
2170         u32 image_size;
2171         int i;
2172         int retval, retvaltemp;
2173         u32 checksum = 0;
2174         u32 mem_checksum = 0;
2175
2176         image_t image;
2177
2178         duration_t duration;
2179         char *duration_text;
2180
2181         target_t *target = get_current_target(cmd_ctx);
2182
2183         if (argc < 1)
2184         {
2185                 return ERROR_COMMAND_SYNTAX_ERROR;
2186         }
2187
2188         if (!target)
2189         {
2190                 LOG_ERROR("no target selected");
2191                 return ERROR_FAIL;
2192         }
2193
2194         duration_start_measure(&duration);
2195
2196         if (argc >= 2)
2197         {
2198                 image.base_address_set = 1;
2199                 image.base_address = strtoul(args[1], NULL, 0);
2200         }
2201         else
2202         {
2203                 image.base_address_set = 0;
2204                 image.base_address = 0x0;
2205         }
2206
2207         image.start_address_set = 0;
2208
2209         if ((retval=image_open(&image, args[0], (argc == 3) ? args[2] : NULL)) != ERROR_OK)
2210         {
2211                 return retval;
2212         }
2213
2214         image_size = 0x0;
2215         retval=ERROR_OK;
2216         for (i = 0; i < image.num_sections; i++)
2217         {
2218                 buffer = malloc(image.sections[i].size);
2219                 if (buffer == NULL)
2220                 {
2221                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2222                         break;
2223                 }
2224                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2225                 {
2226                         free(buffer);
2227                         break;
2228                 }
2229
2230                 if (verify)
2231                 {
2232                         /* calculate checksum of image */
2233                         image_calculate_checksum( buffer, buf_cnt, &checksum );
2234
2235                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2236                         if( retval != ERROR_OK )
2237                         {
2238                                 free(buffer);
2239                                 break;
2240                         }
2241
2242                         if( checksum != mem_checksum )
2243                         {
2244                                 /* failed crc checksum, fall back to a binary compare */
2245                                 u8 *data;
2246
2247                                 command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
2248
2249                                 data = (u8*)malloc(buf_cnt);
2250
2251                                 /* Can we use 32bit word accesses? */
2252                                 int size = 1;
2253                                 int count = buf_cnt;
2254                                 if ((count % 4) == 0)
2255                                 {
2256                                         size *= 4;
2257                                         count /= 4;
2258                                 }
2259                                 retval = target->type->read_memory(target, image.sections[i].base_address, size, count, data);
2260                                 if (retval == ERROR_OK)
2261                                 {
2262                                         u32 t;
2263                                         for (t = 0; t < buf_cnt; t++)
2264                                         {
2265                                                 if (data[t] != buffer[t])
2266                                                 {
2267                                                         command_print(cmd_ctx, "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n", t + image.sections[i].base_address, data[t], buffer[t]);
2268                                                         free(data);
2269                                                         free(buffer);
2270                                                         retval=ERROR_FAIL;
2271                                                         goto done;
2272                                                 }
2273                                                 if ((t%16384)==0)
2274                                                 {
2275                                                         keep_alive();
2276                                                 }
2277                                         }
2278                                 }
2279
2280                                 free(data);
2281                         }
2282                 } else
2283                 {
2284                         command_print(cmd_ctx, "address 0x%08x length 0x%08x", image.sections[i].base_address, buf_cnt);
2285                 }
2286
2287                 free(buffer);
2288                 image_size += buf_cnt;
2289         }
2290 done:
2291
2292         if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2293         {
2294                 image_close(&image);
2295                 return retvaltemp;
2296         }
2297
2298         if (retval==ERROR_OK)
2299         {
2300                 command_print(cmd_ctx, "verified %u bytes in %s", image_size, duration_text);
2301         }
2302         free(duration_text);
2303
2304         image_close(&image);
2305
2306         return retval;
2307 }
2308
2309 static int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2310 {
2311         return handle_verify_image_command_internal(cmd_ctx, cmd, args, argc, 1);
2312 }
2313
2314 static int handle_test_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2315 {
2316         return handle_verify_image_command_internal(cmd_ctx, cmd, args, argc, 0);
2317 }
2318
2319 static int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2320 {
2321         int retval;
2322         target_t *target = get_current_target(cmd_ctx);
2323
2324         if (argc == 0)
2325         {
2326                 breakpoint_t *breakpoint = target->breakpoints;
2327
2328                 while (breakpoint)
2329                 {
2330                         if (breakpoint->type == BKPT_SOFT)
2331                         {
2332                                 char* buf = buf_to_str(breakpoint->orig_instr, breakpoint->length, 16);
2333                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i, 0x%s", breakpoint->address, breakpoint->length, breakpoint->set, buf);
2334                                 free(buf);
2335                         }
2336                         else
2337                         {
2338                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i", breakpoint->address, breakpoint->length, breakpoint->set);
2339                         }
2340                         breakpoint = breakpoint->next;
2341                 }
2342         }
2343         else if (argc >= 2)
2344         {
2345                 int hw = BKPT_SOFT;
2346                 u32 length = 0;
2347
2348                 length = strtoul(args[1], NULL, 0);
2349
2350                 if (argc >= 3)
2351                         if (strcmp(args[2], "hw") == 0)
2352                                 hw = BKPT_HARD;
2353
2354                 if ((retval = breakpoint_add(target, strtoul(args[0], NULL, 0), length, hw)) != ERROR_OK)
2355                 {
2356                         LOG_ERROR("Failure setting breakpoints");
2357                 }
2358                 else
2359                 {
2360                         command_print(cmd_ctx, "breakpoint added at address 0x%8.8lx",
2361                                         strtoul(args[0], NULL, 0));
2362                 }
2363         }
2364         else
2365         {
2366                 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
2367         }
2368
2369         return ERROR_OK;
2370 }
2371
2372 static int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2373 {
2374         target_t *target = get_current_target(cmd_ctx);
2375
2376         if (argc > 0)
2377                 breakpoint_remove(target, strtoul(args[0], NULL, 0));
2378
2379         return ERROR_OK;
2380 }
2381
2382 static int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2383 {
2384         target_t *target = get_current_target(cmd_ctx);
2385         int retval;
2386
2387         if (argc == 0)
2388         {
2389                 watchpoint_t *watchpoint = target->watchpoints;
2390
2391                 while (watchpoint)
2392                 {
2393                         command_print(cmd_ctx, "address: 0x%8.8x, len: 0x%8.8x, r/w/a: %i, value: 0x%8.8x, mask: 0x%8.8x", watchpoint->address, watchpoint->length, watchpoint->rw, watchpoint->value, watchpoint->mask);
2394                         watchpoint = watchpoint->next;
2395                 }
2396         }
2397         else if (argc >= 2)
2398         {
2399                 enum watchpoint_rw type = WPT_ACCESS;
2400                 u32 data_value = 0x0;
2401                 u32 data_mask = 0xffffffff;
2402
2403                 if (argc >= 3)
2404                 {
2405                         switch(args[2][0])
2406                         {
2407                                 case 'r':
2408                                         type = WPT_READ;
2409                                         break;
2410                                 case 'w':
2411                                         type = WPT_WRITE;
2412                                         break;
2413                                 case 'a':
2414                                         type = WPT_ACCESS;
2415                                         break;
2416                                 default:
2417                                         command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2418                                         return ERROR_OK;
2419                         }
2420                 }
2421                 if (argc >= 4)
2422                 {
2423                         data_value = strtoul(args[3], NULL, 0);
2424                 }
2425                 if (argc >= 5)
2426                 {
2427                         data_mask = strtoul(args[4], NULL, 0);
2428                 }
2429
2430                 if ((retval = watchpoint_add(target, strtoul(args[0], NULL, 0),
2431                                 strtoul(args[1], NULL, 0), type, data_value, data_mask)) != ERROR_OK)
2432                 {
2433                         LOG_ERROR("Failure setting breakpoints");
2434                 }
2435         }
2436         else
2437         {
2438                 command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2439         }
2440
2441         return ERROR_OK;
2442 }
2443
2444 static int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2445 {
2446         target_t *target = get_current_target(cmd_ctx);
2447
2448         if (argc > 0)
2449                 watchpoint_remove(target, strtoul(args[0], NULL, 0));
2450
2451         return ERROR_OK;
2452 }
2453
2454 static int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc)
2455 {
2456         int retval;
2457         target_t *target = get_current_target(cmd_ctx);
2458         u32 va;
2459         u32 pa;
2460
2461         if (argc != 1)
2462         {
2463                 return ERROR_COMMAND_SYNTAX_ERROR;
2464         }
2465         va = strtoul(args[0], NULL, 0);
2466
2467         retval = target->type->virt2phys(target, va, &pa);
2468         if (retval == ERROR_OK)
2469         {
2470                 command_print(cmd_ctx, "Physical address 0x%08x", pa);
2471         }
2472         else
2473         {
2474                 /* lower levels will have logged a detailed error which is
2475                  * forwarded to telnet/GDB session.
2476                  */
2477         }
2478         return retval;
2479 }
2480
2481 static void writeData(FILE *f, const void *data, size_t len)
2482 {
2483         size_t written = fwrite(data, len, 1, f);
2484         if (written != len)
2485                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
2486 }
2487
2488 static void writeLong(FILE *f, int l)
2489 {
2490         int i;
2491         for (i=0; i<4; i++)
2492         {
2493                 char c=(l>>(i*8))&0xff;
2494                 writeData(f, &c, 1);
2495         }
2496
2497 }
2498
2499 static void writeString(FILE *f, char *s)
2500 {
2501         writeData(f, s, strlen(s));
2502 }
2503
2504 /* Dump a gmon.out histogram file. */
2505 static void writeGmon(u32 *samples, u32 sampleNum, char *filename)
2506 {
2507         u32 i;
2508         FILE *f=fopen(filename, "w");
2509         if (f==NULL)
2510                 return;
2511         writeString(f, "gmon");
2512         writeLong(f, 0x00000001); /* Version */
2513         writeLong(f, 0); /* padding */
2514         writeLong(f, 0); /* padding */
2515         writeLong(f, 0); /* padding */
2516
2517         u8 zero = 0;  /* GMON_TAG_TIME_HIST */
2518         writeData(f, &zero, 1);
2519
2520         /* figure out bucket size */
2521         u32 min=samples[0];
2522         u32 max=samples[0];
2523         for (i=0; i<sampleNum; i++)
2524         {
2525                 if (min>samples[i])
2526                 {
2527                         min=samples[i];
2528                 }
2529                 if (max<samples[i])
2530                 {
2531                         max=samples[i];
2532                 }
2533         }
2534
2535         int addressSpace=(max-min+1);
2536
2537         static const u32 maxBuckets = 256 * 1024; /* maximum buckets. */
2538         u32 length = addressSpace;
2539         if (length > maxBuckets)
2540         {
2541                 length=maxBuckets;
2542         }
2543         int *buckets=malloc(sizeof(int)*length);
2544         if (buckets==NULL)
2545         {
2546                 fclose(f);
2547                 return;
2548         }
2549         memset(buckets, 0, sizeof(int)*length);
2550         for (i=0; i<sampleNum;i++)
2551         {
2552                 u32 address=samples[i];
2553                 long long a=address-min;
2554                 long long b=length-1;
2555                 long long c=addressSpace-1;
2556                 int index=(a*b)/c; /* danger!!!! int32 overflows */
2557                 buckets[index]++;
2558         }
2559
2560         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
2561         writeLong(f, min);                      /* low_pc */
2562         writeLong(f, max);                      /* high_pc */
2563         writeLong(f, length);           /* # of samples */
2564         writeLong(f, 64000000);         /* 64MHz */
2565         writeString(f, "seconds");
2566         for (i=0; i<(15-strlen("seconds")); i++)
2567                 writeData(f, &zero, 1);
2568         writeString(f, "s");
2569
2570         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
2571
2572         char *data=malloc(2*length);
2573         if (data!=NULL)
2574         {
2575                 for (i=0; i<length;i++)
2576                 {
2577                         int val;
2578                         val=buckets[i];
2579                         if (val>65535)
2580                         {
2581                                 val=65535;
2582                         }
2583                         data[i*2]=val&0xff;
2584                         data[i*2+1]=(val>>8)&0xff;
2585                 }
2586                 free(buckets);
2587                 writeData(f, data, length * 2);
2588                 free(data);
2589         } else
2590         {
2591                 free(buckets);
2592         }
2593
2594         fclose(f);
2595 }
2596
2597 /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
2598 static int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2599 {
2600         target_t *target = get_current_target(cmd_ctx);
2601         struct timeval timeout, now;
2602
2603         gettimeofday(&timeout, NULL);
2604         if (argc!=2)
2605         {
2606                 return ERROR_COMMAND_SYNTAX_ERROR;
2607         }
2608         char *end;
2609         timeval_add_time(&timeout, strtoul(args[0], &end, 0), 0);
2610         if (*end)
2611         {
2612                 return ERROR_OK;
2613         }
2614
2615         command_print(cmd_ctx, "Starting profiling. Halting and resuming the target as often as we can...");
2616
2617         static const int maxSample=10000;
2618         u32 *samples=malloc(sizeof(u32)*maxSample);
2619         if (samples==NULL)
2620                 return ERROR_OK;
2621
2622         int numSamples=0;
2623         int retval=ERROR_OK;
2624         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2625         reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1);
2626
2627         for (;;)
2628         {
2629                 target_poll(target);
2630                 if (target->state == TARGET_HALTED)
2631                 {
2632                         u32 t=*((u32 *)reg->value);
2633                         samples[numSamples++]=t;
2634                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2635                         target_poll(target);
2636                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2637                 } else if (target->state == TARGET_RUNNING)
2638                 {
2639                         /* We want to quickly sample the PC. */
2640                         if((retval = target_halt(target)) != ERROR_OK)
2641                         {
2642                                 free(samples);
2643                                 return retval;
2644                         }
2645                 } else
2646                 {
2647                         command_print(cmd_ctx, "Target not halted or running");
2648                         retval=ERROR_OK;
2649                         break;
2650                 }
2651                 if (retval!=ERROR_OK)
2652                 {
2653                         break;
2654                 }
2655
2656                 gettimeofday(&now, NULL);
2657                 if ((numSamples>=maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
2658                 {
2659                         command_print(cmd_ctx, "Profiling completed. %d samples.", numSamples);
2660                         if((retval = target_poll(target)) != ERROR_OK)
2661                         {
2662                                 free(samples);
2663                                 return retval;
2664                         }
2665                         if (target->state == TARGET_HALTED)
2666                         {
2667                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2668                         }
2669                         if((retval = target_poll(target)) != ERROR_OK)
2670                         {
2671                                 free(samples);
2672                                 return retval;
2673                         }
2674                         writeGmon(samples, numSamples, args[1]);
2675                         command_print(cmd_ctx, "Wrote %s", args[1]);
2676                         break;
2677                 }
2678         }
2679         free(samples);
2680
2681         return ERROR_OK;
2682 }
2683
2684 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 val)
2685 {
2686         char *namebuf;
2687         Jim_Obj *nameObjPtr, *valObjPtr;
2688         int result;
2689
2690         namebuf = alloc_printf("%s(%d)", varname, idx);
2691         if (!namebuf)
2692                 return JIM_ERR;
2693
2694         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
2695         valObjPtr = Jim_NewIntObj(interp, val);
2696         if (!nameObjPtr || !valObjPtr)
2697         {
2698                 free(namebuf);
2699                 return JIM_ERR;
2700         }
2701
2702         Jim_IncrRefCount(nameObjPtr);
2703         Jim_IncrRefCount(valObjPtr);
2704         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
2705         Jim_DecrRefCount(interp, nameObjPtr);
2706         Jim_DecrRefCount(interp, valObjPtr);
2707         free(namebuf);
2708         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
2709         return result;
2710 }
2711
2712 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
2713 {
2714         command_context_t *context;
2715         target_t *target;
2716
2717         context = Jim_GetAssocData(interp, "context");
2718         if (context == NULL)
2719         {
2720                 LOG_ERROR("mem2array: no command context");
2721                 return JIM_ERR;
2722         }
2723         target = get_current_target(context);
2724         if (target == NULL)
2725         {
2726                 LOG_ERROR("mem2array: no current target");
2727                 return JIM_ERR;
2728         }
2729
2730         return  target_mem2array(interp, target, argc-1, argv+1);
2731 }
2732
2733 static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv)
2734 {
2735         long l;
2736         u32 width;
2737         int len;
2738         u32 addr;
2739         u32 count;
2740         u32 v;
2741         const char *varname;
2742         u8 buffer[4096];
2743         int  n, e, retval;
2744         u32 i;
2745
2746         /* argv[1] = name of array to receive the data
2747          * argv[2] = desired width
2748          * argv[3] = memory address
2749          * argv[4] = count of times to read
2750          */
2751         if (argc != 4) {
2752                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
2753                 return JIM_ERR;
2754         }
2755         varname = Jim_GetString(argv[0], &len);
2756         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
2757
2758         e = Jim_GetLong(interp, argv[1], &l);
2759         width = l;
2760         if (e != JIM_OK) {
2761                 return e;
2762         }
2763
2764         e = Jim_GetLong(interp, argv[2], &l);
2765         addr = l;
2766         if (e != JIM_OK) {
2767                 return e;
2768         }
2769         e = Jim_GetLong(interp, argv[3], &l);
2770         len = l;
2771         if (e != JIM_OK) {
2772                 return e;
2773         }
2774         switch (width) {
2775                 case 8:
2776                         width = 1;
2777                         break;
2778                 case 16:
2779                         width = 2;
2780                         break;
2781                 case 32:
2782                         width = 4;
2783                         break;
2784                 default:
2785                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2786                         Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
2787                         return JIM_ERR;
2788         }
2789         if (len == 0) {
2790                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2791                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
2792                 return JIM_ERR;
2793         }
2794         if ((addr + (len * width)) < addr) {
2795                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2796                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
2797                 return JIM_ERR;
2798         }
2799         /* absurd transfer size? */
2800         if (len > 65536) {
2801                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2802                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
2803                 return JIM_ERR;
2804         }
2805
2806         if ((width == 1) ||
2807                 ((width == 2) && ((addr & 1) == 0)) ||
2808                 ((width == 4) && ((addr & 3) == 0))) {
2809                 /* all is well */
2810         } else {
2811                 char buf[100];
2812                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2813                 sprintf(buf, "mem2array address: 0x%08x is not aligned for %d byte reads", addr, width);
2814                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
2815                 return JIM_ERR;
2816         }
2817
2818         /* Transfer loop */
2819
2820         /* index counter */
2821         n = 0;
2822         /* assume ok */
2823         e = JIM_OK;
2824         while (len) {
2825                 /* Slurp... in buffer size chunks */
2826
2827                 count = len; /* in objects.. */
2828                 if (count > (sizeof(buffer)/width)) {
2829                         count = (sizeof(buffer)/width);
2830                 }
2831
2832                 retval = target->type->read_memory( target, addr, width, count, buffer );
2833                 if (retval != ERROR_OK) {
2834                         /* BOO !*/
2835                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
2836                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2837                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
2838                         e = JIM_ERR;
2839                         len = 0;
2840                 } else {
2841                         v = 0; /* shut up gcc */
2842                         for (i = 0 ;i < count ;i++, n++) {
2843                                 switch (width) {
2844                                         case 4:
2845                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
2846                                                 break;
2847                                         case 2:
2848                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
2849                                                 break;
2850                                         case 1:
2851                                                 v = buffer[i] & 0x0ff;
2852                                                 break;
2853                                 }
2854                                 new_int_array_element(interp, varname, n, v);
2855                         }
2856                         len -= count;
2857                 }
2858         }
2859
2860         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2861
2862         return JIM_OK;
2863 }
2864
2865 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 *val)
2866 {
2867         char *namebuf;
2868         Jim_Obj *nameObjPtr, *valObjPtr;
2869         int result;
2870         long l;
2871
2872         namebuf = alloc_printf("%s(%d)", varname, idx);
2873         if (!namebuf)
2874                 return JIM_ERR;
2875
2876         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
2877         if (!nameObjPtr)
2878         {
2879                 free(namebuf);
2880                 return JIM_ERR;
2881         }
2882
2883         Jim_IncrRefCount(nameObjPtr);
2884         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
2885         Jim_DecrRefCount(interp, nameObjPtr);
2886         free(namebuf);
2887         if (valObjPtr == NULL)
2888                 return JIM_ERR;
2889
2890         result = Jim_GetLong(interp, valObjPtr, &l);
2891         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
2892         *val = l;
2893         return result;
2894 }
2895
2896 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
2897 {
2898         command_context_t *context;
2899         target_t *target;
2900
2901         context = Jim_GetAssocData(interp, "context");
2902         if (context == NULL){
2903                 LOG_ERROR("array2mem: no command context");
2904                 return JIM_ERR;
2905         }
2906         target = get_current_target(context);
2907         if (target == NULL){
2908                 LOG_ERROR("array2mem: no current target");
2909                 return JIM_ERR;
2910         }
2911
2912         return target_array2mem( interp,target, argc-1, argv+1 );
2913 }
2914
2915 static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv)
2916 {
2917         long l;
2918         u32 width;
2919         int len;
2920         u32 addr;
2921         u32 count;
2922         u32 v;
2923         const char *varname;
2924         u8 buffer[4096];
2925         int  n, e, retval;
2926         u32 i;
2927
2928         /* argv[1] = name of array to get the data
2929          * argv[2] = desired width
2930          * argv[3] = memory address
2931          * argv[4] = count to write
2932          */
2933         if (argc != 4) {
2934                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
2935                 return JIM_ERR;
2936         }
2937         varname = Jim_GetString(argv[0], &len);
2938         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
2939
2940         e = Jim_GetLong(interp, argv[1], &l);
2941         width = l;
2942         if (e != JIM_OK) {
2943                 return e;
2944         }
2945
2946         e = Jim_GetLong(interp, argv[2], &l);
2947         addr = l;
2948         if (e != JIM_OK) {
2949                 return e;
2950         }
2951         e = Jim_GetLong(interp, argv[3], &l);
2952         len = l;
2953         if (e != JIM_OK) {
2954                 return e;
2955         }
2956         switch (width) {
2957                 case 8:
2958                         width = 1;
2959                         break;
2960                 case 16:
2961                         width = 2;
2962                         break;
2963                 case 32:
2964                         width = 4;
2965                         break;
2966                 default:
2967                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2968                         Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
2969                         return JIM_ERR;
2970         }
2971         if (len == 0) {
2972                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2973                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
2974                 return JIM_ERR;
2975         }
2976         if ((addr + (len * width)) < addr) {
2977                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2978                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
2979                 return JIM_ERR;
2980         }
2981         /* absurd transfer size? */
2982         if (len > 65536) {
2983                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2984                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
2985                 return JIM_ERR;
2986         }
2987
2988         if ((width == 1) ||
2989                 ((width == 2) && ((addr & 1) == 0)) ||
2990                 ((width == 4) && ((addr & 3) == 0))) {
2991                 /* all is well */
2992         } else {
2993                 char buf[100];
2994                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2995                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads", addr, width);
2996                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
2997                 return JIM_ERR;
2998         }
2999
3000         /* Transfer loop */
3001
3002         /* index counter */
3003         n = 0;
3004         /* assume ok */
3005         e = JIM_OK;
3006         while (len) {
3007                 /* Slurp... in buffer size chunks */
3008
3009                 count = len; /* in objects.. */
3010                 if (count > (sizeof(buffer)/width)) {
3011                         count = (sizeof(buffer)/width);
3012                 }
3013
3014                 v = 0; /* shut up gcc */
3015                 for (i = 0 ;i < count ;i++, n++) {
3016                         get_int_array_element(interp, varname, n, &v);
3017                         switch (width) {
3018                         case 4:
3019                                 target_buffer_set_u32(target, &buffer[i*width], v);
3020                                 break;
3021                         case 2:
3022                                 target_buffer_set_u16(target, &buffer[i*width], v);
3023                                 break;
3024                         case 1:
3025                                 buffer[i] = v & 0x0ff;
3026                                 break;
3027                         }
3028                 }
3029                 len -= count;
3030
3031                 retval = target->type->write_memory(target, addr, width, count, buffer);
3032                 if (retval != ERROR_OK) {
3033                         /* BOO !*/
3034                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
3035                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3036                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3037                         e = JIM_ERR;
3038                         len = 0;
3039                 }
3040         }
3041
3042         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3043
3044         return JIM_OK;
3045 }
3046
3047 void target_all_handle_event( enum target_event e )
3048 {
3049         target_t *target;
3050
3051         LOG_DEBUG( "**all*targets: event: %d, %s",
3052                         e,
3053                         Jim_Nvp_value2name_simple( nvp_target_event, e )->name );
3054
3055         target = all_targets;
3056         while (target){
3057                 target_handle_event( target, e );
3058                 target = target->next;
3059         }
3060 }
3061
3062 void target_handle_event( target_t *target, enum target_event e )
3063 {
3064         target_event_action_t *teap;
3065         int done;
3066
3067         teap = target->event_action;
3068
3069         done = 0;
3070         while( teap ){
3071                 if( teap->event == e ){
3072                         done = 1;
3073                         LOG_DEBUG( "target: (%d) %s (%s) event: %d (%s) action: %s\n",
3074                                            target->target_number,
3075                                            target->cmd_name,
3076                                            target->type->name,
3077                                            e,
3078                                            Jim_Nvp_value2name_simple( nvp_target_event, e )->name,
3079                                            Jim_GetString( teap->body, NULL ) );
3080                         if (Jim_EvalObj( interp, teap->body )!=JIM_OK)
3081                         {
3082                                 Jim_PrintErrorMessage(interp);
3083                         }
3084                 }
3085                 teap = teap->next;
3086         }
3087         if( !done ){
3088                 LOG_DEBUG( "event: %d %s - no action",
3089                                    e,
3090                                    Jim_Nvp_value2name_simple( nvp_target_event, e )->name );
3091         }
3092 }
3093
3094 enum target_cfg_param {
3095         TCFG_TYPE,
3096         TCFG_EVENT,
3097         TCFG_WORK_AREA_VIRT,
3098         TCFG_WORK_AREA_PHYS,
3099         TCFG_WORK_AREA_SIZE,
3100         TCFG_WORK_AREA_BACKUP,
3101         TCFG_ENDIAN,
3102         TCFG_VARIANT,
3103         TCFG_CHAIN_POSITION,
3104 };
3105
3106 static Jim_Nvp nvp_config_opts[] = {
3107         { .name = "-type",             .value = TCFG_TYPE },
3108         { .name = "-event",            .value = TCFG_EVENT },
3109         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
3110         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
3111         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
3112         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3113         { .name = "-endian" ,          .value = TCFG_ENDIAN },
3114         { .name = "-variant",          .value = TCFG_VARIANT },
3115         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
3116
3117         { .name = NULL, .value = -1 }
3118 };
3119
3120 static int target_configure( Jim_GetOptInfo *goi, target_t *target )
3121 {
3122         Jim_Nvp *n;
3123         Jim_Obj *o;
3124         jim_wide w;
3125         char *cp;
3126         int e;
3127
3128         /* parse config or cget options ... */
3129         while( goi->argc > 0 ){
3130                 Jim_SetEmptyResult( goi->interp );
3131                 /* Jim_GetOpt_Debug( goi ); */
3132
3133                 if( target->type->target_jim_configure ){
3134                         /* target defines a configure function */
3135                         /* target gets first dibs on parameters */
3136                         e = (*(target->type->target_jim_configure))( target, goi );
3137                         if( e == JIM_OK ){
3138                                 /* more? */
3139                                 continue;
3140                         }
3141                         if( e == JIM_ERR ){
3142                                 /* An error */
3143                                 return e;
3144                         }
3145                         /* otherwise we 'continue' below */
3146                 }
3147                 e = Jim_GetOpt_Nvp( goi, nvp_config_opts, &n );
3148                 if( e != JIM_OK ){
3149                         Jim_GetOpt_NvpUnknown( goi, nvp_config_opts, 0 );
3150                         return e;
3151                 }
3152                 switch( n->value ){
3153                 case TCFG_TYPE:
3154                         /* not setable */
3155                         if( goi->isconfigure ){
3156                                 Jim_SetResult_sprintf( goi->interp, "not setable: %s", n->name );
3157                                 return JIM_ERR;
3158                         } else {
3159                         no_params:
3160                                 if( goi->argc != 0 ){
3161                                         Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "NO PARAMS");
3162                                         return JIM_ERR;
3163                                 }
3164                         }
3165                         Jim_SetResultString( goi->interp, target->type->name, -1 );
3166                         /* loop for more */
3167                         break;
3168                 case TCFG_EVENT:
3169                         if( goi->argc == 0 ){
3170                                 Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
3171                                 return JIM_ERR;
3172                         }
3173
3174                         e = Jim_GetOpt_Nvp( goi, nvp_target_event, &n );
3175                         if( e != JIM_OK ){
3176                                 Jim_GetOpt_NvpUnknown( goi, nvp_target_event, 1 );
3177                                 return e;
3178                         }
3179
3180                         if( goi->isconfigure ){
3181                                 if( goi->argc != 1 ){
3182                                         Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
3183                                         return JIM_ERR;
3184                                 }
3185                         } else {
3186                                 if( goi->argc != 0 ){
3187                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
3188                                         return JIM_ERR;
3189                                 }
3190                         }
3191
3192                         {
3193                                 target_event_action_t *teap;
3194
3195                                 teap = target->event_action;
3196                                 /* replace existing? */
3197                                 while( teap ){
3198                                         if( teap->event == (enum target_event)n->value ){
3199                                                 break;
3200                                         }
3201                                         teap = teap->next;
3202                                 }
3203
3204                                 if( goi->isconfigure ){
3205                                         if( teap == NULL ){
3206                                                 /* create new */
3207                                                 teap = calloc( 1, sizeof(*teap) );
3208                                         }
3209                                         teap->event = n->value;
3210                                         Jim_GetOpt_Obj( goi, &o );
3211                                         if( teap->body ){
3212                                                 Jim_DecrRefCount( interp, teap->body );
3213                                         }
3214                                         teap->body  = Jim_DuplicateObj( goi->interp, o );
3215                                         /*
3216                                          * FIXME:
3217                                          *     Tcl/TK - "tk events" have a nice feature.
3218                                          *     See the "BIND" command.
3219                                          *    We should support that here.
3220                                          *     You can specify %X and %Y in the event code.
3221                                          *     The idea is: %T - target name.
3222                                          *     The idea is: %N - target number
3223                                          *     The idea is: %E - event name.
3224                                          */
3225                                         Jim_IncrRefCount( teap->body );
3226
3227                                         /* add to head of event list */
3228                                         teap->next = target->event_action;
3229                                         target->event_action = teap;
3230                                         Jim_SetEmptyResult(goi->interp);
3231                                 } else {
3232                                         /* get */
3233                                         if( teap == NULL ){
3234                                                 Jim_SetEmptyResult( goi->interp );
3235                                         } else {
3236                                                 Jim_SetResult( goi->interp, Jim_DuplicateObj( goi->interp, teap->body ) );
3237                                         }
3238                                 }
3239                         }
3240                         /* loop for more */
3241                         break;
3242
3243                 case TCFG_WORK_AREA_VIRT:
3244                         if( goi->isconfigure ){
3245                                 target_free_all_working_areas(target);
3246                                 e = Jim_GetOpt_Wide( goi, &w );
3247                                 if( e != JIM_OK ){
3248                                         return e;
3249                                 }
3250                                 target->working_area_virt = w;
3251                         } else {
3252                                 if( goi->argc != 0 ){
3253                                         goto no_params;
3254                                 }
3255                         }
3256                         Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_virt ) );
3257                         /* loop for more */
3258                         break;
3259
3260                 case TCFG_WORK_AREA_PHYS:
3261                         if( goi->isconfigure ){
3262                                 target_free_all_working_areas(target);
3263                                 e = Jim_GetOpt_Wide( goi, &w );
3264                                 if( e != JIM_OK ){
3265                                         return e;
3266                                 }
3267                                 target->working_area_phys = w;
3268                         } else {
3269                                 if( goi->argc != 0 ){
3270                                         goto no_params;
3271                                 }
3272                         }
3273                         Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_phys ) );
3274                         /* loop for more */
3275                         break;
3276
3277                 case TCFG_WORK_AREA_SIZE:
3278                         if( goi->isconfigure ){
3279                                 target_free_all_working_areas(target);
3280                                 e = Jim_GetOpt_Wide( goi, &w );
3281                                 if( e != JIM_OK ){
3282                                         return e;
3283                                 }
3284                                 target->working_area_size = w;
3285                         } else {
3286                                 if( goi->argc != 0 ){
3287                                         goto no_params;
3288                                 }
3289                         }
3290                         Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_size ) );
3291                         /* loop for more */
3292                         break;
3293
3294                 case TCFG_WORK_AREA_BACKUP:
3295                         if( goi->isconfigure ){
3296                                 target_free_all_working_areas(target);
3297                                 e = Jim_GetOpt_Wide( goi, &w );
3298                                 if( e != JIM_OK ){
3299                                         return e;
3300                                 }
3301                                 /* make this exactly 1 or 0 */
3302                                 target->backup_working_area = (!!w);
3303                         } else {
3304                                 if( goi->argc != 0 ){
3305                                         goto no_params;
3306                                 }
3307                         }
3308                         Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_size ) );
3309                         /* loop for more e*/
3310                         break;
3311
3312                 case TCFG_ENDIAN:
3313                         if( goi->isconfigure ){
3314                                 e = Jim_GetOpt_Nvp( goi, nvp_target_endian, &n );
3315                                 if( e != JIM_OK ){
3316                                         Jim_GetOpt_NvpUnknown( goi, nvp_target_endian, 1 );
3317                                         return e;
3318                                 }
3319                                 target->endianness = n->value;
3320                         } else {
3321                                 if( goi->argc != 0 ){
3322                                         goto no_params;
3323                                 }
3324                         }
3325                         n = Jim_Nvp_value2name_simple( nvp_target_endian, target->endianness );
3326                         if( n->name == NULL ){
3327                                 target->endianness = TARGET_LITTLE_ENDIAN;
3328                                 n = Jim_Nvp_value2name_simple( nvp_target_endian, target->endianness );
3329                         }
3330                         Jim_SetResultString( goi->interp, n->name, -1 );
3331                         /* loop for more */
3332                         break;
3333
3334                 case TCFG_VARIANT:
3335                         if( goi->isconfigure ){
3336                                 if( goi->argc < 1 ){
3337                                         Jim_SetResult_sprintf( goi->interp,
3338                                                                                    "%s ?STRING?",
3339                                                                                    n->name );
3340                                         return JIM_ERR;
3341                                 }
3342                                 if( target->variant ){
3343                                         free((void *)(target->variant));
3344                                 }
3345                                 e = Jim_GetOpt_String( goi, &cp, NULL );
3346                                 target->variant = strdup(cp);
3347                         } else {
3348                                 if( goi->argc != 0 ){
3349                                         goto no_params;
3350                                 }
3351                         }
3352                         Jim_SetResultString( goi->interp, target->variant,-1 );
3353                         /* loop for more */
3354                         break;
3355                 case TCFG_CHAIN_POSITION:
3356                         if( goi->isconfigure ){
3357                                 Jim_Obj *o;
3358                                 jtag_tap_t *tap;
3359                                 target_free_all_working_areas(target);
3360                                 e = Jim_GetOpt_Obj( goi, &o );
3361                                 if( e != JIM_OK ){
3362                                         return e;
3363                                 }
3364                                 tap = jtag_TapByJimObj( goi->interp, o );
3365                                 if( tap == NULL ){
3366                                         return JIM_ERR;
3367                                 }
3368                                 /* make this exactly 1 or 0 */
3369                                 target->tap = tap;
3370                         } else {
3371                                 if( goi->argc != 0 ){
3372                                         goto no_params;
3373                                 }
3374                         }
3375                         Jim_SetResultString( interp, target->tap->dotted_name, -1 );
3376                         /* loop for more e*/
3377                         break;
3378                 }
3379         } /* while( goi->argc ) */
3380
3381
3382                 /* done - we return */
3383         return JIM_OK;
3384 }
3385
3386 /** this is the 'tcl' handler for the target specific command */
3387 static int tcl_target_func( Jim_Interp *interp, int argc, Jim_Obj *const *argv )
3388 {
3389         Jim_GetOptInfo goi;
3390         jim_wide a,b,c;
3391         int x,y,z;
3392         u8  target_buf[32];
3393         Jim_Nvp *n;
3394         target_t *target;
3395         struct command_context_s *cmd_ctx;
3396         int e;
3397
3398         enum {
3399                 TS_CMD_CONFIGURE,
3400                 TS_CMD_CGET,
3401
3402                 TS_CMD_MWW, TS_CMD_MWH, TS_CMD_MWB,
3403                 TS_CMD_MDW, TS_CMD_MDH, TS_CMD_MDB,
3404                 TS_CMD_MRW, TS_CMD_MRH, TS_CMD_MRB,
3405                 TS_CMD_MEM2ARRAY, TS_CMD_ARRAY2MEM,
3406                 TS_CMD_EXAMINE,
3407                 TS_CMD_POLL,
3408                 TS_CMD_RESET,
3409                 TS_CMD_HALT,
3410                 TS_CMD_WAITSTATE,
3411                 TS_CMD_EVENTLIST,
3412                 TS_CMD_CURSTATE,
3413                 TS_CMD_INVOKE_EVENT,
3414         };
3415
3416         static const Jim_Nvp target_options[] = {
3417                 { .name = "configure", .value = TS_CMD_CONFIGURE },
3418                 { .name = "cget", .value = TS_CMD_CGET },
3419                 { .name = "mww", .value = TS_CMD_MWW },
3420                 { .name = "mwh", .value = TS_CMD_MWH },
3421                 { .name = "mwb", .value = TS_CMD_MWB },
3422                 { .name = "mdw", .value = TS_CMD_MDW },
3423                 { .name = "mdh", .value = TS_CMD_MDH },
3424                 { .name = "mdb", .value = TS_CMD_MDB },
3425                 { .name = "mem2array", .value = TS_CMD_MEM2ARRAY },
3426                 { .name = "array2mem", .value = TS_CMD_ARRAY2MEM },
3427                 { .name = "eventlist", .value = TS_CMD_EVENTLIST },
3428                 { .name = "curstate",  .value = TS_CMD_CURSTATE },
3429
3430                 { .name = "arp_examine", .value = TS_CMD_EXAMINE },
3431                 { .name = "arp_poll", .value = TS_CMD_POLL },
3432                 { .name = "arp_reset", .value = TS_CMD_RESET },
3433                 { .name = "arp_halt", .value = TS_CMD_HALT },
3434                 { .name = "arp_waitstate", .value = TS_CMD_WAITSTATE },
3435                 { .name = "invoke-event", .value = TS_CMD_INVOKE_EVENT },
3436
3437                 { .name = NULL, .value = -1 },
3438         };
3439
3440         /* go past the "command" */
3441         Jim_GetOpt_Setup( &goi, interp, argc-1, argv+1 );
3442
3443         target = Jim_CmdPrivData( goi.interp );
3444         cmd_ctx = Jim_GetAssocData(goi.interp, "context");
3445
3446         /* commands here are in an NVP table */
3447         e = Jim_GetOpt_Nvp( &goi, target_options, &n );
3448         if( e != JIM_OK ){
3449                 Jim_GetOpt_NvpUnknown( &goi, target_options, 0 );
3450                 return e;
3451         }
3452         /* Assume blank result */
3453         Jim_SetEmptyResult( goi.interp );
3454
3455         switch( n->value ){
3456         case TS_CMD_CONFIGURE:
3457                 if( goi.argc < 2 ){
3458                         Jim_WrongNumArgs( goi.interp, goi.argc, goi.argv, "missing: -option VALUE ...");
3459                         return JIM_ERR;
3460                 }
3461                 goi.isconfigure = 1;
3462                 return target_configure( &goi, target );
3463         case TS_CMD_CGET:
3464                 // some things take params
3465                 if( goi.argc < 1 ){
3466                         Jim_WrongNumArgs( goi.interp, 0, goi.argv, "missing: ?-option?");
3467                         return JIM_ERR;
3468                 }
3469                 goi.isconfigure = 0;
3470                 return target_configure( &goi, target );
3471                 break;
3472         case TS_CMD_MWW:
3473         case TS_CMD_MWH:
3474         case TS_CMD_MWB:
3475                 /* argv[0] = cmd
3476                  * argv[1] = address
3477                  * argv[2] = data
3478                  * argv[3] = optional count.
3479                  */
3480
3481                 if( (goi.argc == 3) || (goi.argc == 4) ){
3482                         /* all is well */
3483                 } else {
3484                 mwx_error:
3485                         Jim_SetResult_sprintf( goi.interp, "expected: %s ADDR DATA [COUNT]", n->name );
3486                         return JIM_ERR;
3487                 }
3488
3489                 e = Jim_GetOpt_Wide( &goi, &a );
3490                 if( e != JIM_OK ){
3491                         goto mwx_error;
3492                 }
3493
3494                 e = Jim_GetOpt_Wide( &goi, &b );
3495                 if( e != JIM_OK ){
3496                         goto mwx_error;
3497                 }
3498                 if( goi.argc ){
3499                         e = Jim_GetOpt_Wide( &goi, &c );
3500                         if( e != JIM_OK ){
3501                                 goto mwx_error;
3502                         }
3503                 } else {
3504                         c = 1;
3505                 }
3506
3507                 switch( n->value ){
3508                 case TS_CMD_MWW:
3509                         target_buffer_set_u32( target, target_buf, b );
3510                         b = 4;
3511                         break;
3512                 case TS_CMD_MWH:
3513                         target_buffer_set_u16( target, target_buf, b );
3514                         b = 2;
3515                         break;
3516                 case TS_CMD_MWB:
3517                         target_buffer_set_u8( target, target_buf, b );
3518                         b = 1;
3519                         break;
3520                 }
3521                 for( x = 0 ; x < c ; x++ ){
3522                         e = target->type->write_memory( target, a, b, 1, target_buf );
3523                         if( e != ERROR_OK ){
3524                                 Jim_SetResult_sprintf( interp, "Error writing @ 0x%08x: %d\n", (int)(a), e );
3525                                 return JIM_ERR;
3526                         }
3527                         /* b = width */
3528                         a = a + b;
3529                 }
3530                 return JIM_OK;
3531                 break;
3532
3533                 /* display */
3534         case TS_CMD_MDW:
3535         case TS_CMD_MDH:
3536         case TS_CMD_MDB:
3537                 /* argv[0] = command
3538                  * argv[1] = address
3539                  * argv[2] = optional count
3540                  */
3541                 if( (goi.argc == 2) || (goi.argc == 3) ){
3542                         Jim_SetResult_sprintf( goi.interp, "expected: %s ADDR [COUNT]", n->name );
3543                         return JIM_ERR;
3544                 }
3545                 e = Jim_GetOpt_Wide( &goi, &a );
3546                 if( e != JIM_OK ){
3547                         return JIM_ERR;
3548                 }
3549                 if( goi.argc ){
3550                         e = Jim_GetOpt_Wide( &goi, &c );
3551                         if( e != JIM_OK ){
3552                                 return JIM_ERR;
3553                         }
3554                 } else {
3555                         c = 1;
3556                 }
3557                 b = 1; /* shut up gcc */
3558                 switch( n->value ){
3559                 case TS_CMD_MDW:
3560                         b =  4;
3561                         break;
3562                 case TS_CMD_MDH:
3563                         b = 2;
3564                         break;
3565                 case TS_CMD_MDB:
3566                         b = 1;
3567                         break;
3568                 }
3569
3570                 /* convert to "bytes" */
3571                 c = c * b;
3572                 /* count is now in 'BYTES' */
3573                 while( c > 0 ){
3574                         y = c;
3575                         if( y > 16 ){
3576                                 y = 16;
3577                         }
3578                         e = target->type->read_memory( target, a, b, y / b, target_buf );
3579                         if( e != ERROR_OK ){
3580                                 Jim_SetResult_sprintf( interp, "error reading target @ 0x%08lx", (int)(a) );
3581                                 return JIM_ERR;
3582                         }
3583
3584                         Jim_fprintf( interp, interp->cookie_stdout, "0x%08x ", (int)(a) );
3585                         switch( b ){
3586                         case 4:
3587                                 for( x = 0 ; (x < 16) && (x < y) ; x += 4 ){
3588                                         z = target_buffer_get_u32( target, &(target_buf[ x * 4 ]) );
3589                                         Jim_fprintf( interp, interp->cookie_stdout, "%08x ", (int)(z) );
3590                                 }
3591                                 for( ; (x < 16) ; x += 4 ){
3592                                         Jim_fprintf( interp, interp->cookie_stdout, "         " );
3593                                 }
3594                                 break;
3595                         case 2:
3596                                 for( x = 0 ; (x < 16) && (x < y) ; x += 2 ){
3597                                         z = target_buffer_get_u16( target, &(target_buf[ x * 2 ]) );
3598                                         Jim_fprintf( interp, interp->cookie_stdout, "%04x ", (int)(z) );
3599                                 }
3600                                 for( ; (x < 16) ; x += 2 ){
3601                                         Jim_fprintf( interp, interp->cookie_stdout, "     " );
3602                                 }
3603                                 break;
3604                         case 1:
3605                         default:
3606                                 for( x = 0 ; (x < 16) && (x < y) ; x += 1 ){
3607                                         z = target_buffer_get_u8( target, &(target_buf[ x * 4 ]) );
3608                                         Jim_fprintf( interp, interp->cookie_stdout, "%02x ", (int)(z) );
3609                                 }
3610                                 for( ; (x < 16) ; x += 1 ){
3611                                         Jim_fprintf( interp, interp->cookie_stdout, "   " );
3612                                 }
3613                                 break;
3614                         }
3615                         /* ascii-ify the bytes */
3616                         for( x = 0 ; x < y ; x++ ){
3617                                 if( (target_buf[x] >= 0x20) &&
3618                                         (target_buf[x] <= 0x7e) ){
3619                                         /* good */
3620                                 } else {
3621                                         /* smack it */
3622                                         target_buf[x] = '.';
3623                                 }
3624                         }
3625                         /* space pad  */
3626                         while( x < 16 ){
3627                                 target_buf[x] = ' ';
3628                                 x++;
3629                         }
3630                         /* terminate */
3631                         target_buf[16] = 0;
3632                         /* print - with a newline */
3633                         Jim_fprintf( interp, interp->cookie_stdout, "%s\n", target_buf );
3634                         /* NEXT... */
3635                         c -= 16;
3636                         a += 16;
3637                 }
3638                 return JIM_OK;
3639         case TS_CMD_MEM2ARRAY:
3640                 return target_mem2array( goi.interp, target, goi.argc, goi.argv );
3641                 break;
3642         case TS_CMD_ARRAY2MEM:
3643                 return target_array2mem( goi.interp, target, goi.argc, goi.argv );
3644                 break;
3645         case TS_CMD_EXAMINE:
3646                 if( goi.argc ){
3647                         Jim_WrongNumArgs( goi.interp, 2, argv, "[no parameters]");
3648                         return JIM_ERR;
3649                 }
3650                 e = target->type->examine( target );
3651                 if( e != ERROR_OK ){
3652                         Jim_SetResult_sprintf( interp, "examine-fails: %d", e );
3653                         return JIM_ERR;
3654                 }
3655                 return JIM_OK;
3656         case TS_CMD_POLL:
3657                 if( goi.argc ){
3658                         Jim_WrongNumArgs( goi.interp, 2, argv, "[no parameters]");
3659                         return JIM_ERR;
3660                 }
3661                 if( !(target->type->examined) ){
3662                         e = ERROR_TARGET_NOT_EXAMINED;
3663                 } else {
3664                         e = target->type->poll( target );
3665                 }
3666                 if( e != ERROR_OK ){
3667                         Jim_SetResult_sprintf( interp, "poll-fails: %d", e );
3668                         return JIM_ERR;
3669                 } else {
3670                         return JIM_OK;
3671                 }
3672                 break;
3673         case TS_CMD_RESET:
3674                 if( goi.argc != 2 ){
3675                         Jim_WrongNumArgs( interp, 2, argv, "t|f|assert|deassert BOOL");
3676                         return JIM_ERR;
3677                 }
3678                 e = Jim_GetOpt_Nvp( &goi, nvp_assert, &n );
3679                 if( e != JIM_OK ){
3680                         Jim_GetOpt_NvpUnknown( &goi, nvp_assert, 1 );
3681                         return e;
3682                 }
3683                 /* the halt or not param */
3684                 e = Jim_GetOpt_Wide( &goi, &a);
3685                 if( e != JIM_OK ){
3686                         return e;
3687                 }
3688                 /* determine if we should halt or not. */
3689                 target->reset_halt = !!a;
3690                 /* When this happens - all workareas are invalid. */
3691                 target_free_all_working_areas_restore(target, 0);
3692
3693                 /* do the assert */
3694                 if( n->value == NVP_ASSERT ){
3695                         target->type->assert_reset( target );
3696                 } else {
3697                         target->type->deassert_reset( target );
3698                 }
3699                 return JIM_OK;
3700         case TS_CMD_HALT:
3701                 if( goi.argc ){
3702                         Jim_WrongNumArgs( goi.interp, 0, argv, "halt [no parameters]");
3703                         return JIM_ERR;
3704                 }
3705                 target->type->halt( target );
3706                 return JIM_OK;
3707         case TS_CMD_WAITSTATE:
3708                 /* params:  <name>  statename timeoutmsecs */
3709                 if( goi.argc != 2 ){
3710                         Jim_SetResult_sprintf( goi.interp, "%s STATENAME TIMEOUTMSECS", n->name );
3711                         return JIM_ERR;
3712                 }
3713                 e = Jim_GetOpt_Nvp( &goi, nvp_target_state, &n );
3714                 if( e != JIM_OK ){
3715                         Jim_GetOpt_NvpUnknown( &goi, nvp_target_state,1 );
3716                         return e;
3717                 }
3718                 e = Jim_GetOpt_Wide( &goi, &a );
3719                 if( e != JIM_OK ){
3720                         return e;
3721                 }
3722                 e = target_wait_state( target, n->value, a );
3723                 if( e != ERROR_OK ){
3724                         Jim_SetResult_sprintf( goi.interp,
3725                                                                    "target: %s wait %s fails (%d) %s",
3726                                                                    target->cmd_name,
3727                                                                    n->name,
3728                                                                    e, target_strerror_safe(e) );
3729                         return JIM_ERR;
3730                 } else {
3731                         return JIM_OK;
3732                 }
3733         case TS_CMD_EVENTLIST:
3734                 /* List for human, Events defined for this target.
3735                  * scripts/programs should use 'name cget -event NAME'
3736                  */
3737                 {
3738                         target_event_action_t *teap;
3739                         teap = target->event_action;
3740                         command_print( cmd_ctx, "Event actions for target (%d) %s\n",
3741                                                    target->target_number,
3742                                                    target->cmd_name );
3743                         command_print( cmd_ctx, "%-25s | Body", "Event");
3744                         command_print( cmd_ctx, "------------------------- | ----------------------------------------");
3745                         while( teap ){
3746                                 command_print( cmd_ctx,
3747                                                            "%-25s | %s",
3748                                                            Jim_Nvp_value2name_simple( nvp_target_event, teap->event )->name,
3749                                                            Jim_GetString( teap->body, NULL ) );
3750                                 teap = teap->next;
3751                         }
3752                         command_print( cmd_ctx, "***END***");
3753                         return JIM_OK;
3754                 }
3755         case TS_CMD_CURSTATE:
3756                 if( goi.argc != 0 ){
3757                         Jim_WrongNumArgs( goi.interp, 0, argv, "[no parameters]");
3758                         return JIM_ERR;
3759                 }
3760                 Jim_SetResultString( goi.interp,
3761                                                          Jim_Nvp_value2name_simple(nvp_target_state,target->state)->name,-1);
3762                 return JIM_OK;
3763         case TS_CMD_INVOKE_EVENT:
3764                 if( goi.argc != 1 ){
3765                         Jim_SetResult_sprintf( goi.interp, "%s ?EVENTNAME?",n->name);
3766                         return JIM_ERR;
3767                 }
3768                 e = Jim_GetOpt_Nvp( &goi, nvp_target_event, &n );
3769                 if( e != JIM_OK ){
3770                         Jim_GetOpt_NvpUnknown( &goi, nvp_target_event, 1 );
3771                         return e;
3772                 }
3773                 target_handle_event( target, n->value );
3774                 return JIM_OK;
3775         }
3776         return JIM_ERR;
3777 }
3778
3779 static int target_create( Jim_GetOptInfo *goi )
3780 {
3781         Jim_Obj *new_cmd;
3782         Jim_Cmd *cmd;
3783         const char *cp;
3784         char *cp2;
3785         int e;
3786         int x;
3787         target_t *target;
3788         struct command_context_s *cmd_ctx;
3789
3790         cmd_ctx = Jim_GetAssocData(goi->interp, "context");
3791         if( goi->argc < 3 ){
3792                 Jim_WrongNumArgs( goi->interp, 1, goi->argv, "?name? ?type? ..options...");
3793                 return JIM_ERR;
3794         }
3795
3796         /* COMMAND */
3797         Jim_GetOpt_Obj( goi, &new_cmd );
3798         /* does this command exist? */
3799         cmd = Jim_GetCommand( goi->interp, new_cmd, JIM_ERRMSG );
3800         if( cmd ){
3801                 cp = Jim_GetString( new_cmd, NULL );
3802                 Jim_SetResult_sprintf(goi->interp, "Command/target: %s Exists", cp);
3803                 return JIM_ERR;
3804         }
3805
3806         /* TYPE */
3807         e = Jim_GetOpt_String( goi, &cp2, NULL );
3808         cp = cp2;
3809         /* now does target type exist */
3810         for( x = 0 ; target_types[x] ; x++ ){
3811                 if( 0 == strcmp( cp, target_types[x]->name ) ){
3812                         /* found */
3813                         break;
3814                 }
3815         }
3816         if( target_types[x] == NULL ){
3817                 Jim_SetResult_sprintf( goi->interp, "Unknown target type %s, try one of ", cp );
3818                 for( x = 0 ; target_types[x] ; x++ ){
3819                         if( target_types[x+1] ){
3820                                 Jim_AppendStrings( goi->interp,
3821                                                                    Jim_GetResult(goi->interp),
3822                                                                    target_types[x]->name,
3823                                                                    ", ", NULL);
3824                         } else {
3825                                 Jim_AppendStrings( goi->interp,
3826                                                                    Jim_GetResult(goi->interp),
3827                                                                    " or ",
3828                                                                    target_types[x]->name,NULL );
3829                         }
3830                 }
3831                 return JIM_ERR;
3832         }
3833
3834         /* Create it */
3835         target = calloc(1,sizeof(target_t));
3836         /* set target number */
3837         target->target_number = new_target_number();
3838
3839         /* allocate memory for each unique target type */
3840         target->type = (target_type_t*)calloc(1,sizeof(target_type_t));
3841
3842         memcpy( target->type, target_types[x], sizeof(target_type_t));
3843
3844         /* will be set by "-endian" */
3845         target->endianness = TARGET_ENDIAN_UNKNOWN;
3846
3847         target->working_area        = 0x0;
3848         target->working_area_size   = 0x0;
3849         target->working_areas       = NULL;
3850         target->backup_working_area = 0;
3851
3852         target->state               = TARGET_UNKNOWN;
3853         target->debug_reason        = DBG_REASON_UNDEFINED;
3854         target->reg_cache           = NULL;
3855         target->breakpoints         = NULL;
3856         target->watchpoints         = NULL;
3857         target->next                = NULL;
3858         target->arch_info           = NULL;
3859
3860         target->display             = 1;
3861
3862         /* initialize trace information */
3863         target->trace_info = malloc(sizeof(trace_t));
3864         target->trace_info->num_trace_points         = 0;
3865         target->trace_info->trace_points_size        = 0;
3866         target->trace_info->trace_points             = NULL;
3867         target->trace_info->trace_history_size       = 0;
3868         target->trace_info->trace_history            = NULL;
3869         target->trace_info->trace_history_pos        = 0;
3870         target->trace_info->trace_history_overflowed = 0;
3871
3872         target->dbgmsg          = NULL;
3873         target->dbg_msg_enabled = 0;
3874
3875         target->endianness = TARGET_ENDIAN_UNKNOWN;
3876
3877         /* Do the rest as "configure" options */
3878         goi->isconfigure = 1;
3879         e = target_configure( goi, target);
3880
3881         if (target->tap == NULL)
3882         {
3883                 Jim_SetResultString( interp, "-chain-position required when creating target", -1);
3884                 e=JIM_ERR;
3885         }
3886
3887         if( e != JIM_OK ){
3888                 free( target->type );
3889                 free( target );
3890                 return e;
3891         }
3892
3893         if( target->endianness == TARGET_ENDIAN_UNKNOWN ){
3894                 /* default endian to little if not specified */
3895                 target->endianness = TARGET_LITTLE_ENDIAN;
3896         }
3897
3898         /* incase variant is not set */
3899         if (!target->variant)
3900                 target->variant = strdup("");
3901
3902         /* create the target specific commands */
3903         if( target->type->register_commands ){
3904                 (*(target->type->register_commands))( cmd_ctx );
3905         }
3906         if( target->type->target_create ){
3907                 (*(target->type->target_create))( target, goi->interp );
3908         }
3909
3910         /* append to end of list */
3911         {
3912                 target_t **tpp;
3913                 tpp = &(all_targets);
3914                 while( *tpp ){
3915                         tpp = &( (*tpp)->next );
3916                 }
3917                 *tpp = target;
3918         }
3919
3920         cp = Jim_GetString( new_cmd, NULL );
3921         target->cmd_name = strdup(cp);
3922
3923         /* now - create the new target name command */
3924         e = Jim_CreateCommand( goi->interp,
3925                                                    /* name */
3926                                                    cp,
3927                                                    tcl_target_func, /* C function */
3928                                                    target, /* private data */
3929                                                    NULL ); /* no del proc */
3930
3931         return e;
3932 }
3933
3934 static int jim_target( Jim_Interp *interp, int argc, Jim_Obj *const *argv )
3935 {
3936         int x,r,e;
3937         jim_wide w;
3938         struct command_context_s *cmd_ctx;
3939         target_t *target;
3940         Jim_GetOptInfo goi;
3941         enum tcmd {
3942                 /* TG = target generic */
3943                 TG_CMD_CREATE,
3944                 TG_CMD_TYPES,
3945                 TG_CMD_NAMES,
3946                 TG_CMD_CURRENT,
3947                 TG_CMD_NUMBER,
3948                 TG_CMD_COUNT,
3949         };
3950         const char *target_cmds[] = {
3951                 "create", "types", "names", "current", "number",
3952                 "count",
3953                 NULL /* terminate */
3954         };
3955
3956         LOG_DEBUG("Target command params:");
3957         LOG_DEBUG("%s", Jim_Debug_ArgvString(interp, argc, argv));
3958
3959         cmd_ctx = Jim_GetAssocData( interp, "context" );
3960
3961         Jim_GetOpt_Setup( &goi, interp, argc-1, argv+1 );
3962
3963         if( goi.argc == 0 ){
3964                 Jim_WrongNumArgs(interp, 1, argv, "missing: command ...");
3965                 return JIM_ERR;
3966         }
3967
3968         /* Jim_GetOpt_Debug( &goi ); */
3969         r = Jim_GetOpt_Enum( &goi, target_cmds, &x   );
3970         if( r != JIM_OK ){
3971                 return r;
3972         }
3973
3974         switch(x){
3975         default:
3976                 Jim_Panic(goi.interp,"Why am I here?");
3977                 return JIM_ERR;
3978         case TG_CMD_CURRENT:
3979                 if( goi.argc != 0 ){
3980                         Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters");
3981                         return JIM_ERR;
3982                 }
3983                 Jim_SetResultString( goi.interp, get_current_target( cmd_ctx )->cmd_name, -1 );
3984                 return JIM_OK;
3985         case TG_CMD_TYPES:
3986                 if( goi.argc != 0 ){
3987                         Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters" );
3988                         return JIM_ERR;
3989                 }
3990                 Jim_SetResult( goi.interp, Jim_NewListObj( goi.interp, NULL, 0 ) );
3991                 for( x = 0 ; target_types[x] ; x++ ){
3992                         Jim_ListAppendElement( goi.interp,
3993                                                                    Jim_GetResult(goi.interp),
3994                                                                    Jim_NewStringObj( goi.interp, target_types[x]->name, -1 ) );
3995                 }
3996                 return JIM_OK;
3997         case TG_CMD_NAMES:
3998                 if( goi.argc != 0 ){
3999                         Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters" );
4000                         return JIM_ERR;
4001                 }
4002                 Jim_SetResult( goi.interp, Jim_NewListObj( goi.interp, NULL, 0 ) );
4003                 target = all_targets;
4004                 while( target ){
4005                         Jim_ListAppendElement( goi.interp,
4006                                                                    Jim_GetResult(goi.interp),
4007                                                                    Jim_NewStringObj( goi.interp, target->cmd_name, -1 ) );
4008                         target = target->next;
4009                 }
4010                 return JIM_OK;
4011         case TG_CMD_CREATE:
4012                 if( goi.argc < 3 ){
4013                         Jim_WrongNumArgs( goi.interp, goi.argc, goi.argv, "?name  ... config options ...");
4014                         return JIM_ERR;
4015                 }
4016                 return target_create( &goi );
4017                 break;
4018         case TG_CMD_NUMBER:
4019                 if( goi.argc != 1 ){
4020                         Jim_SetResult_sprintf( goi.interp, "expected: target number ?NUMBER?");
4021                         return JIM_ERR;
4022                 }
4023                 e = Jim_GetOpt_Wide( &goi, &w );
4024                 if( e != JIM_OK ){
4025                         return JIM_ERR;
4026                 }
4027                 {
4028                         target_t *t;
4029                         t = get_target_by_num(w);
4030                         if( t == NULL ){
4031                                 Jim_SetResult_sprintf( goi.interp,"Target: number %d does not exist", (int)(w));
4032                                 return JIM_ERR;
4033                         }
4034                         Jim_SetResultString( goi.interp, t->cmd_name, -1 );
4035                         return JIM_OK;
4036                 }
4037         case TG_CMD_COUNT:
4038                 if( goi.argc != 0 ){
4039                         Jim_WrongNumArgs( goi.interp, 0, goi.argv, "<no parameters>");
4040                         return JIM_ERR;
4041                 }
4042                 Jim_SetResult( goi.interp,
4043                                            Jim_NewIntObj( goi.interp, max_target_number()));
4044                 return JIM_OK;
4045         }
4046
4047         return JIM_ERR;
4048 }
4049
4050
4051 struct FastLoad
4052 {
4053         u32 address;
4054         u8 *data;
4055         int length;
4056
4057 };
4058
4059 static int fastload_num;
4060 static struct FastLoad *fastload;
4061
4062 static void free_fastload(void)
4063 {
4064         if (fastload!=NULL)
4065         {
4066                 int i;
4067                 for (i=0; i<fastload_num; i++)
4068                 {
4069                         if (fastload[i].data)
4070                                 free(fastload[i].data);
4071                 }
4072                 free(fastload);
4073                 fastload=NULL;
4074         }
4075 }
4076
4077
4078
4079
4080 static int handle_fast_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
4081 {
4082         u8 *buffer;
4083         u32 buf_cnt;
4084         u32 image_size;
4085         u32 min_address=0;
4086         u32 max_address=0xffffffff;
4087         int i;
4088         int retval;
4089
4090         image_t image;
4091
4092         duration_t duration;
4093         char *duration_text;
4094
4095         if ((argc < 1)||(argc > 5))
4096         {
4097                 return ERROR_COMMAND_SYNTAX_ERROR;
4098         }
4099
4100         /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
4101         if (argc >= 2)
4102         {
4103                 image.base_address_set = 1;
4104                 image.base_address = strtoul(args[1], NULL, 0);
4105         }
4106         else
4107         {
4108                 image.base_address_set = 0;
4109         }
4110
4111
4112         image.start_address_set = 0;
4113
4114         if (argc>=4)
4115         {
4116                 min_address=strtoul(args[3], NULL, 0);
4117         }
4118         if (argc>=5)
4119         {
4120                 max_address=strtoul(args[4], NULL, 0)+min_address;
4121         }
4122
4123         if (min_address>max_address)
4124         {
4125                 return ERROR_COMMAND_SYNTAX_ERROR;
4126         }
4127
4128         duration_start_measure(&duration);
4129
4130         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
4131         {
4132                 return ERROR_OK;
4133         }
4134
4135         image_size = 0x0;
4136         retval = ERROR_OK;
4137         fastload_num=image.num_sections;
4138         fastload=(struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
4139         if (fastload==NULL)
4140         {
4141                 image_close(&image);
4142                 return ERROR_FAIL;
4143         }
4144         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
4145         for (i = 0; i < image.num_sections; i++)
4146         {
4147                 buffer = malloc(image.sections[i].size);
4148                 if (buffer == NULL)
4149                 {
4150                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
4151                         break;
4152                 }
4153
4154                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
4155                 {
4156                         free(buffer);
4157                         break;
4158                 }
4159
4160                 u32 offset=0;
4161                 u32 length=buf_cnt;
4162
4163
4164                 /* DANGER!!! beware of unsigned comparision here!!! */
4165
4166                 if ((image.sections[i].base_address+buf_cnt>=min_address)&&
4167                                 (image.sections[i].base_address<max_address))
4168                 {
4169                         if (image.sections[i].base_address<min_address)
4170                         {
4171                                 /* clip addresses below */
4172                                 offset+=min_address-image.sections[i].base_address;
4173                                 length-=offset;
4174                         }
4175
4176                         if (image.sections[i].base_address+buf_cnt>max_address)
4177                         {
4178                                 length-=(image.sections[i].base_address+buf_cnt)-max_address;
4179                         }
4180
4181                         fastload[i].address=image.sections[i].base_address+offset;
4182                         fastload[i].data=malloc(length);
4183                         if (fastload[i].data==NULL)
4184                         {
4185                                 free(buffer);
4186                                 break;
4187                         }
4188                         memcpy(fastload[i].data, buffer+offset, length);
4189                         fastload[i].length=length;
4190
4191                         image_size += length;
4192                         command_print(cmd_ctx, "%u byte written at address 0x%8.8x", length, image.sections[i].base_address+offset);
4193                 }
4194
4195                 free(buffer);
4196         }
4197
4198         duration_stop_measure(&duration, &duration_text);
4199         if (retval==ERROR_OK)
4200         {
4201                 command_print(cmd_ctx, "Loaded %u bytes in %s", image_size, duration_text);
4202                 command_print(cmd_ctx, "NB!!! image has not been loaded to target, issue a subsequent 'fast_load' to do so.");
4203         }
4204         free(duration_text);
4205
4206         image_close(&image);
4207
4208         if (retval!=ERROR_OK)
4209         {
4210                 free_fastload();
4211         }
4212
4213         return retval;
4214 }
4215
4216 static int handle_fast_load_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
4217 {
4218         if (argc>0)
4219                 return ERROR_COMMAND_SYNTAX_ERROR;
4220         if (fastload==NULL)
4221         {
4222                 LOG_ERROR("No image in memory");
4223                 return ERROR_FAIL;
4224         }
4225         int i;
4226         int ms=timeval_ms();
4227         int size=0;
4228         int retval=ERROR_OK;
4229         for (i=0; i<fastload_num;i++)
4230         {
4231                 target_t *target = get_current_target(cmd_ctx);
4232                 command_print(cmd_ctx, "Write to 0x%08x, length 0x%08x", fastload[i].address, fastload[i].length);
4233                 if (retval==ERROR_OK)
4234                 {
4235                         retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
4236                 }
4237                 size+=fastload[i].length;
4238         }
4239         int after=timeval_ms();
4240         command_print(cmd_ctx, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
4241         return retval;
4242 }