target: remove unused function target_buffer_get_u8()
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2010 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   Copyright (C) 2011 by Broadcom Corporation                            *
18  *   Evan Hunter - ehunter@broadcom.com                                    *
19  *                                                                         *
20  *   Copyright (C) ST-Ericsson SA 2011                                     *
21  *   michel.jaouen@stericsson.com : smp minimum support                    *
22  *                                                                         *
23  *   Copyright (C) 2011 Andreas Fritiofson                                 *
24  *   andreas.fritiofson@gmail.com                                          *
25  *                                                                         *
26  *   This program is free software; you can redistribute it and/or modify  *
27  *   it under the terms of the GNU General Public License as published by  *
28  *   the Free Software Foundation; either version 2 of the License, or     *
29  *   (at your option) any later version.                                   *
30  *                                                                         *
31  *   This program is distributed in the hope that it will be useful,       *
32  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
33  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
34  *   GNU General Public License for more details.                          *
35  *                                                                         *
36  *   You should have received a copy of the GNU General Public License     *
37  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
38  ***************************************************************************/
39
40 #ifdef HAVE_CONFIG_H
41 #include "config.h"
42 #endif
43
44 #include <helper/time_support.h>
45 #include <jtag/jtag.h>
46 #include <flash/nor/core.h>
47
48 #include "target.h"
49 #include "target_type.h"
50 #include "target_request.h"
51 #include "breakpoints.h"
52 #include "register.h"
53 #include "trace.h"
54 #include "image.h"
55 #include "rtos/rtos.h"
56 #include "transport/transport.h"
57 #include "arm_cti.h"
58
59 /* default halt wait timeout (ms) */
60 #define DEFAULT_HALT_TIMEOUT 5000
61
62 static int target_read_buffer_default(struct target *target, target_addr_t address,
63                 uint32_t count, uint8_t *buffer);
64 static int target_write_buffer_default(struct target *target, target_addr_t address,
65                 uint32_t count, const uint8_t *buffer);
66 static int target_array2mem(Jim_Interp *interp, struct target *target,
67                 int argc, Jim_Obj * const *argv);
68 static int target_mem2array(Jim_Interp *interp, struct target *target,
69                 int argc, Jim_Obj * const *argv);
70 static int target_register_user_commands(struct command_context *cmd_ctx);
71 static int target_get_gdb_fileio_info_default(struct target *target,
72                 struct gdb_fileio_info *fileio_info);
73 static int target_gdb_fileio_end_default(struct target *target, int retcode,
74                 int fileio_errno, bool ctrl_c);
75 static int target_profiling_default(struct target *target, uint32_t *samples,
76                 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds);
77
78 /* targets */
79 extern struct target_type arm7tdmi_target;
80 extern struct target_type arm720t_target;
81 extern struct target_type arm9tdmi_target;
82 extern struct target_type arm920t_target;
83 extern struct target_type arm966e_target;
84 extern struct target_type arm946e_target;
85 extern struct target_type arm926ejs_target;
86 extern struct target_type fa526_target;
87 extern struct target_type feroceon_target;
88 extern struct target_type dragonite_target;
89 extern struct target_type xscale_target;
90 extern struct target_type cortexm_target;
91 extern struct target_type cortexa_target;
92 extern struct target_type aarch64_target;
93 extern struct target_type cortexr4_target;
94 extern struct target_type arm11_target;
95 extern struct target_type ls1_sap_target;
96 extern struct target_type mips_m4k_target;
97 extern struct target_type avr_target;
98 extern struct target_type dsp563xx_target;
99 extern struct target_type dsp5680xx_target;
100 extern struct target_type testee_target;
101 extern struct target_type avr32_ap7k_target;
102 extern struct target_type hla_target;
103 extern struct target_type nds32_v2_target;
104 extern struct target_type nds32_v3_target;
105 extern struct target_type nds32_v3m_target;
106 extern struct target_type or1k_target;
107 extern struct target_type quark_x10xx_target;
108 extern struct target_type quark_d20xx_target;
109 extern struct target_type stm8_target;
110 extern struct target_type riscv_target;
111 extern struct target_type mem_ap_target;
112 extern struct target_type esirisc_target;
113
114 static struct target_type *target_types[] = {
115         &arm7tdmi_target,
116         &arm9tdmi_target,
117         &arm920t_target,
118         &arm720t_target,
119         &arm966e_target,
120         &arm946e_target,
121         &arm926ejs_target,
122         &fa526_target,
123         &feroceon_target,
124         &dragonite_target,
125         &xscale_target,
126         &cortexm_target,
127         &cortexa_target,
128         &cortexr4_target,
129         &arm11_target,
130         &ls1_sap_target,
131         &mips_m4k_target,
132         &avr_target,
133         &dsp563xx_target,
134         &dsp5680xx_target,
135         &testee_target,
136         &avr32_ap7k_target,
137         &hla_target,
138         &nds32_v2_target,
139         &nds32_v3_target,
140         &nds32_v3m_target,
141         &or1k_target,
142         &quark_x10xx_target,
143         &quark_d20xx_target,
144         &stm8_target,
145         &riscv_target,
146         &mem_ap_target,
147         &esirisc_target,
148 #if BUILD_TARGET64
149         &aarch64_target,
150 #endif
151         NULL,
152 };
153
154 struct target *all_targets;
155 static struct target_event_callback *target_event_callbacks;
156 static struct target_timer_callback *target_timer_callbacks;
157 LIST_HEAD(target_reset_callback_list);
158 LIST_HEAD(target_trace_callback_list);
159 static const int polling_interval = 100;
160
161 static const Jim_Nvp nvp_assert[] = {
162         { .name = "assert", NVP_ASSERT },
163         { .name = "deassert", NVP_DEASSERT },
164         { .name = "T", NVP_ASSERT },
165         { .name = "F", NVP_DEASSERT },
166         { .name = "t", NVP_ASSERT },
167         { .name = "f", NVP_DEASSERT },
168         { .name = NULL, .value = -1 }
169 };
170
171 static const Jim_Nvp nvp_error_target[] = {
172         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
173         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
174         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
175         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
176         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
177         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
178         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
179         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
180         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
181         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
182         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
183         { .value = -1, .name = NULL }
184 };
185
186 static const char *target_strerror_safe(int err)
187 {
188         const Jim_Nvp *n;
189
190         n = Jim_Nvp_value2name_simple(nvp_error_target, err);
191         if (n->name == NULL)
192                 return "unknown";
193         else
194                 return n->name;
195 }
196
197 static const Jim_Nvp nvp_target_event[] = {
198
199         { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
200         { .value = TARGET_EVENT_HALTED, .name = "halted" },
201         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
202         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
203         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
204
205         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
206         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
207
208         { .value = TARGET_EVENT_RESET_START,         .name = "reset-start" },
209         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
210         { .value = TARGET_EVENT_RESET_ASSERT,        .name = "reset-assert" },
211         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
212         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
213         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
214         { .value = TARGET_EVENT_RESET_INIT,          .name = "reset-init" },
215         { .value = TARGET_EVENT_RESET_END,           .name = "reset-end" },
216
217         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
218         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
219
220         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
221         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
222
223         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
224         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
225
226         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
227         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
228
229         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
230         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
231
232         { .value = TARGET_EVENT_TRACE_CONFIG, .name = "trace-config" },
233
234         { .name = NULL, .value = -1 }
235 };
236
237 static const Jim_Nvp nvp_target_state[] = {
238         { .name = "unknown", .value = TARGET_UNKNOWN },
239         { .name = "running", .value = TARGET_RUNNING },
240         { .name = "halted",  .value = TARGET_HALTED },
241         { .name = "reset",   .value = TARGET_RESET },
242         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
243         { .name = NULL, .value = -1 },
244 };
245
246 static const Jim_Nvp nvp_target_debug_reason[] = {
247         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
248         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
249         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
250         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
251         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
252         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
253         { .name = "program-exit"             , .value = DBG_REASON_EXIT },
254         { .name = "exception-catch"          , .value = DBG_REASON_EXC_CATCH },
255         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
256         { .name = NULL, .value = -1 },
257 };
258
259 static const Jim_Nvp nvp_target_endian[] = {
260         { .name = "big",    .value = TARGET_BIG_ENDIAN },
261         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
262         { .name = "be",     .value = TARGET_BIG_ENDIAN },
263         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
264         { .name = NULL,     .value = -1 },
265 };
266
267 static const Jim_Nvp nvp_reset_modes[] = {
268         { .name = "unknown", .value = RESET_UNKNOWN },
269         { .name = "run"    , .value = RESET_RUN },
270         { .name = "halt"   , .value = RESET_HALT },
271         { .name = "init"   , .value = RESET_INIT },
272         { .name = NULL     , .value = -1 },
273 };
274
275 const char *debug_reason_name(struct target *t)
276 {
277         const char *cp;
278
279         cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
280                         t->debug_reason)->name;
281         if (!cp) {
282                 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
283                 cp = "(*BUG*unknown*BUG*)";
284         }
285         return cp;
286 }
287
288 const char *target_state_name(struct target *t)
289 {
290         const char *cp;
291         cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
292         if (!cp) {
293                 LOG_ERROR("Invalid target state: %d", (int)(t->state));
294                 cp = "(*BUG*unknown*BUG*)";
295         }
296
297         if (!target_was_examined(t) && t->defer_examine)
298                 cp = "examine deferred";
299
300         return cp;
301 }
302
303 const char *target_event_name(enum target_event event)
304 {
305         const char *cp;
306         cp = Jim_Nvp_value2name_simple(nvp_target_event, event)->name;
307         if (!cp) {
308                 LOG_ERROR("Invalid target event: %d", (int)(event));
309                 cp = "(*BUG*unknown*BUG*)";
310         }
311         return cp;
312 }
313
314 const char *target_reset_mode_name(enum target_reset_mode reset_mode)
315 {
316         const char *cp;
317         cp = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name;
318         if (!cp) {
319                 LOG_ERROR("Invalid target reset mode: %d", (int)(reset_mode));
320                 cp = "(*BUG*unknown*BUG*)";
321         }
322         return cp;
323 }
324
325 /* determine the number of the new target */
326 static int new_target_number(void)
327 {
328         struct target *t;
329         int x;
330
331         /* number is 0 based */
332         x = -1;
333         t = all_targets;
334         while (t) {
335                 if (x < t->target_number)
336                         x = t->target_number;
337                 t = t->next;
338         }
339         return x + 1;
340 }
341
342 /* read a uint64_t from a buffer in target memory endianness */
343 uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
344 {
345         if (target->endianness == TARGET_LITTLE_ENDIAN)
346                 return le_to_h_u64(buffer);
347         else
348                 return be_to_h_u64(buffer);
349 }
350
351 /* read a uint32_t from a buffer in target memory endianness */
352 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
353 {
354         if (target->endianness == TARGET_LITTLE_ENDIAN)
355                 return le_to_h_u32(buffer);
356         else
357                 return be_to_h_u32(buffer);
358 }
359
360 /* read a uint24_t from a buffer in target memory endianness */
361 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
362 {
363         if (target->endianness == TARGET_LITTLE_ENDIAN)
364                 return le_to_h_u24(buffer);
365         else
366                 return be_to_h_u24(buffer);
367 }
368
369 /* read a uint16_t from a buffer in target memory endianness */
370 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
371 {
372         if (target->endianness == TARGET_LITTLE_ENDIAN)
373                 return le_to_h_u16(buffer);
374         else
375                 return be_to_h_u16(buffer);
376 }
377
378 /* write a uint64_t to a buffer in target memory endianness */
379 void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
380 {
381         if (target->endianness == TARGET_LITTLE_ENDIAN)
382                 h_u64_to_le(buffer, value);
383         else
384                 h_u64_to_be(buffer, value);
385 }
386
387 /* write a uint32_t to a buffer in target memory endianness */
388 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
389 {
390         if (target->endianness == TARGET_LITTLE_ENDIAN)
391                 h_u32_to_le(buffer, value);
392         else
393                 h_u32_to_be(buffer, value);
394 }
395
396 /* write a uint24_t to a buffer in target memory endianness */
397 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
398 {
399         if (target->endianness == TARGET_LITTLE_ENDIAN)
400                 h_u24_to_le(buffer, value);
401         else
402                 h_u24_to_be(buffer, value);
403 }
404
405 /* write a uint16_t to a buffer in target memory endianness */
406 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
407 {
408         if (target->endianness == TARGET_LITTLE_ENDIAN)
409                 h_u16_to_le(buffer, value);
410         else
411                 h_u16_to_be(buffer, value);
412 }
413
414 /* write a uint8_t to a buffer in target memory endianness */
415 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
416 {
417         *buffer = value;
418 }
419
420 /* write a uint64_t array to a buffer in target memory endianness */
421 void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf)
422 {
423         uint32_t i;
424         for (i = 0; i < count; i++)
425                 dstbuf[i] = target_buffer_get_u64(target, &buffer[i * 8]);
426 }
427
428 /* write a uint32_t array to a buffer in target memory endianness */
429 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
430 {
431         uint32_t i;
432         for (i = 0; i < count; i++)
433                 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
434 }
435
436 /* write a uint16_t array to a buffer in target memory endianness */
437 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
438 {
439         uint32_t i;
440         for (i = 0; i < count; i++)
441                 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
442 }
443
444 /* write a uint64_t array to a buffer in target memory endianness */
445 void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf)
446 {
447         uint32_t i;
448         for (i = 0; i < count; i++)
449                 target_buffer_set_u64(target, &buffer[i * 8], srcbuf[i]);
450 }
451
452 /* write a uint32_t array to a buffer in target memory endianness */
453 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
454 {
455         uint32_t i;
456         for (i = 0; i < count; i++)
457                 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
458 }
459
460 /* write a uint16_t array to a buffer in target memory endianness */
461 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf)
462 {
463         uint32_t i;
464         for (i = 0; i < count; i++)
465                 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
466 }
467
468 /* return a pointer to a configured target; id is name or number */
469 struct target *get_target(const char *id)
470 {
471         struct target *target;
472
473         /* try as tcltarget name */
474         for (target = all_targets; target; target = target->next) {
475                 if (target_name(target) == NULL)
476                         continue;
477                 if (strcmp(id, target_name(target)) == 0)
478                         return target;
479         }
480
481         /* It's OK to remove this fallback sometime after August 2010 or so */
482
483         /* no match, try as number */
484         unsigned num;
485         if (parse_uint(id, &num) != ERROR_OK)
486                 return NULL;
487
488         for (target = all_targets; target; target = target->next) {
489                 if (target->target_number == (int)num) {
490                         LOG_WARNING("use '%s' as target identifier, not '%u'",
491                                         target_name(target), num);
492                         return target;
493                 }
494         }
495
496         return NULL;
497 }
498
499 /* returns a pointer to the n-th configured target */
500 struct target *get_target_by_num(int num)
501 {
502         struct target *target = all_targets;
503
504         while (target) {
505                 if (target->target_number == num)
506                         return target;
507                 target = target->next;
508         }
509
510         return NULL;
511 }
512
513 struct target *get_current_target(struct command_context *cmd_ctx)
514 {
515         struct target *target = get_current_target_or_null(cmd_ctx);
516
517         if (target == NULL) {
518                 LOG_ERROR("BUG: current_target out of bounds");
519                 exit(-1);
520         }
521
522         return target;
523 }
524
525 struct target *get_current_target_or_null(struct command_context *cmd_ctx)
526 {
527         return cmd_ctx->current_target_override
528                 ? cmd_ctx->current_target_override
529                 : cmd_ctx->current_target;
530 }
531
532 int target_poll(struct target *target)
533 {
534         int retval;
535
536         /* We can't poll until after examine */
537         if (!target_was_examined(target)) {
538                 /* Fail silently lest we pollute the log */
539                 return ERROR_FAIL;
540         }
541
542         retval = target->type->poll(target);
543         if (retval != ERROR_OK)
544                 return retval;
545
546         if (target->halt_issued) {
547                 if (target->state == TARGET_HALTED)
548                         target->halt_issued = false;
549                 else {
550                         int64_t t = timeval_ms() - target->halt_issued_time;
551                         if (t > DEFAULT_HALT_TIMEOUT) {
552                                 target->halt_issued = false;
553                                 LOG_INFO("Halt timed out, wake up GDB.");
554                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
555                         }
556                 }
557         }
558
559         return ERROR_OK;
560 }
561
562 int target_halt(struct target *target)
563 {
564         int retval;
565         /* We can't poll until after examine */
566         if (!target_was_examined(target)) {
567                 LOG_ERROR("Target not examined yet");
568                 return ERROR_FAIL;
569         }
570
571         retval = target->type->halt(target);
572         if (retval != ERROR_OK)
573                 return retval;
574
575         target->halt_issued = true;
576         target->halt_issued_time = timeval_ms();
577
578         return ERROR_OK;
579 }
580
581 /**
582  * Make the target (re)start executing using its saved execution
583  * context (possibly with some modifications).
584  *
585  * @param target Which target should start executing.
586  * @param current True to use the target's saved program counter instead
587  *      of the address parameter
588  * @param address Optionally used as the program counter.
589  * @param handle_breakpoints True iff breakpoints at the resumption PC
590  *      should be skipped.  (For example, maybe execution was stopped by
591  *      such a breakpoint, in which case it would be counterprodutive to
592  *      let it re-trigger.
593  * @param debug_execution False if all working areas allocated by OpenOCD
594  *      should be released and/or restored to their original contents.
595  *      (This would for example be true to run some downloaded "helper"
596  *      algorithm code, which resides in one such working buffer and uses
597  *      another for data storage.)
598  *
599  * @todo Resolve the ambiguity about what the "debug_execution" flag
600  * signifies.  For example, Target implementations don't agree on how
601  * it relates to invalidation of the register cache, or to whether
602  * breakpoints and watchpoints should be enabled.  (It would seem wrong
603  * to enable breakpoints when running downloaded "helper" algorithms
604  * (debug_execution true), since the breakpoints would be set to match
605  * target firmware being debugged, not the helper algorithm.... and
606  * enabling them could cause such helpers to malfunction (for example,
607  * by overwriting data with a breakpoint instruction.  On the other
608  * hand the infrastructure for running such helpers might use this
609  * procedure but rely on hardware breakpoint to detect termination.)
610  */
611 int target_resume(struct target *target, int current, target_addr_t address,
612                 int handle_breakpoints, int debug_execution)
613 {
614         int retval;
615
616         /* We can't poll until after examine */
617         if (!target_was_examined(target)) {
618                 LOG_ERROR("Target not examined yet");
619                 return ERROR_FAIL;
620         }
621
622         target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
623
624         /* note that resume *must* be asynchronous. The CPU can halt before
625          * we poll. The CPU can even halt at the current PC as a result of
626          * a software breakpoint being inserted by (a bug?) the application.
627          */
628         retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
629         if (retval != ERROR_OK)
630                 return retval;
631
632         target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
633
634         return retval;
635 }
636
637 static int target_process_reset(struct command_invocation *cmd, enum target_reset_mode reset_mode)
638 {
639         char buf[100];
640         int retval;
641         Jim_Nvp *n;
642         n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
643         if (n->name == NULL) {
644                 LOG_ERROR("invalid reset mode");
645                 return ERROR_FAIL;
646         }
647
648         struct target *target;
649         for (target = all_targets; target; target = target->next)
650                 target_call_reset_callbacks(target, reset_mode);
651
652         /* disable polling during reset to make reset event scripts
653          * more predictable, i.e. dr/irscan & pathmove in events will
654          * not have JTAG operations injected into the middle of a sequence.
655          */
656         bool save_poll = jtag_poll_get_enabled();
657
658         jtag_poll_set_enabled(false);
659
660         sprintf(buf, "ocd_process_reset %s", n->name);
661         retval = Jim_Eval(cmd->ctx->interp, buf);
662
663         jtag_poll_set_enabled(save_poll);
664
665         if (retval != JIM_OK) {
666                 Jim_MakeErrorMessage(cmd->ctx->interp);
667                 command_print(cmd, "%s", Jim_GetString(Jim_GetResult(cmd->ctx->interp), NULL));
668                 return ERROR_FAIL;
669         }
670
671         /* We want any events to be processed before the prompt */
672         retval = target_call_timer_callbacks_now();
673
674         for (target = all_targets; target; target = target->next) {
675                 target->type->check_reset(target);
676                 target->running_alg = false;
677         }
678
679         return retval;
680 }
681
682 static int identity_virt2phys(struct target *target,
683                 target_addr_t virtual, target_addr_t *physical)
684 {
685         *physical = virtual;
686         return ERROR_OK;
687 }
688
689 static int no_mmu(struct target *target, int *enabled)
690 {
691         *enabled = 0;
692         return ERROR_OK;
693 }
694
695 static int default_examine(struct target *target)
696 {
697         target_set_examined(target);
698         return ERROR_OK;
699 }
700
701 /* no check by default */
702 static int default_check_reset(struct target *target)
703 {
704         return ERROR_OK;
705 }
706
707 int target_examine_one(struct target *target)
708 {
709         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
710
711         int retval = target->type->examine(target);
712         if (retval != ERROR_OK)
713                 return retval;
714
715         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
716
717         return ERROR_OK;
718 }
719
720 static int jtag_enable_callback(enum jtag_event event, void *priv)
721 {
722         struct target *target = priv;
723
724         if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
725                 return ERROR_OK;
726
727         jtag_unregister_event_callback(jtag_enable_callback, target);
728
729         return target_examine_one(target);
730 }
731
732 /* Targets that correctly implement init + examine, i.e.
733  * no communication with target during init:
734  *
735  * XScale
736  */
737 int target_examine(void)
738 {
739         int retval = ERROR_OK;
740         struct target *target;
741
742         for (target = all_targets; target; target = target->next) {
743                 /* defer examination, but don't skip it */
744                 if (!target->tap->enabled) {
745                         jtag_register_event_callback(jtag_enable_callback,
746                                         target);
747                         continue;
748                 }
749
750                 if (target->defer_examine)
751                         continue;
752
753                 retval = target_examine_one(target);
754                 if (retval != ERROR_OK)
755                         return retval;
756         }
757         return retval;
758 }
759
760 const char *target_type_name(struct target *target)
761 {
762         return target->type->name;
763 }
764
765 static int target_soft_reset_halt(struct target *target)
766 {
767         if (!target_was_examined(target)) {
768                 LOG_ERROR("Target not examined yet");
769                 return ERROR_FAIL;
770         }
771         if (!target->type->soft_reset_halt) {
772                 LOG_ERROR("Target %s does not support soft_reset_halt",
773                                 target_name(target));
774                 return ERROR_FAIL;
775         }
776         return target->type->soft_reset_halt(target);
777 }
778
779 /**
780  * Downloads a target-specific native code algorithm to the target,
781  * and executes it.  * Note that some targets may need to set up, enable,
782  * and tear down a breakpoint (hard or * soft) to detect algorithm
783  * termination, while others may support  lower overhead schemes where
784  * soft breakpoints embedded in the algorithm automatically terminate the
785  * algorithm.
786  *
787  * @param target used to run the algorithm
788  * @param arch_info target-specific description of the algorithm.
789  */
790 int target_run_algorithm(struct target *target,
791                 int num_mem_params, struct mem_param *mem_params,
792                 int num_reg_params, struct reg_param *reg_param,
793                 uint32_t entry_point, uint32_t exit_point,
794                 int timeout_ms, void *arch_info)
795 {
796         int retval = ERROR_FAIL;
797
798         if (!target_was_examined(target)) {
799                 LOG_ERROR("Target not examined yet");
800                 goto done;
801         }
802         if (!target->type->run_algorithm) {
803                 LOG_ERROR("Target type '%s' does not support %s",
804                                 target_type_name(target), __func__);
805                 goto done;
806         }
807
808         target->running_alg = true;
809         retval = target->type->run_algorithm(target,
810                         num_mem_params, mem_params,
811                         num_reg_params, reg_param,
812                         entry_point, exit_point, timeout_ms, arch_info);
813         target->running_alg = false;
814
815 done:
816         return retval;
817 }
818
819 /**
820  * Executes a target-specific native code algorithm and leaves it running.
821  *
822  * @param target used to run the algorithm
823  * @param arch_info target-specific description of the algorithm.
824  */
825 int target_start_algorithm(struct target *target,
826                 int num_mem_params, struct mem_param *mem_params,
827                 int num_reg_params, struct reg_param *reg_params,
828                 uint32_t entry_point, uint32_t exit_point,
829                 void *arch_info)
830 {
831         int retval = ERROR_FAIL;
832
833         if (!target_was_examined(target)) {
834                 LOG_ERROR("Target not examined yet");
835                 goto done;
836         }
837         if (!target->type->start_algorithm) {
838                 LOG_ERROR("Target type '%s' does not support %s",
839                                 target_type_name(target), __func__);
840                 goto done;
841         }
842         if (target->running_alg) {
843                 LOG_ERROR("Target is already running an algorithm");
844                 goto done;
845         }
846
847         target->running_alg = true;
848         retval = target->type->start_algorithm(target,
849                         num_mem_params, mem_params,
850                         num_reg_params, reg_params,
851                         entry_point, exit_point, arch_info);
852
853 done:
854         return retval;
855 }
856
857 /**
858  * Waits for an algorithm started with target_start_algorithm() to complete.
859  *
860  * @param target used to run the algorithm
861  * @param arch_info target-specific description of the algorithm.
862  */
863 int target_wait_algorithm(struct target *target,
864                 int num_mem_params, struct mem_param *mem_params,
865                 int num_reg_params, struct reg_param *reg_params,
866                 uint32_t exit_point, int timeout_ms,
867                 void *arch_info)
868 {
869         int retval = ERROR_FAIL;
870
871         if (!target->type->wait_algorithm) {
872                 LOG_ERROR("Target type '%s' does not support %s",
873                                 target_type_name(target), __func__);
874                 goto done;
875         }
876         if (!target->running_alg) {
877                 LOG_ERROR("Target is not running an algorithm");
878                 goto done;
879         }
880
881         retval = target->type->wait_algorithm(target,
882                         num_mem_params, mem_params,
883                         num_reg_params, reg_params,
884                         exit_point, timeout_ms, arch_info);
885         if (retval != ERROR_TARGET_TIMEOUT)
886                 target->running_alg = false;
887
888 done:
889         return retval;
890 }
891
892 /**
893  * Streams data to a circular buffer on target intended for consumption by code
894  * running asynchronously on target.
895  *
896  * This is intended for applications where target-specific native code runs
897  * on the target, receives data from the circular buffer, does something with
898  * it (most likely writing it to a flash memory), and advances the circular
899  * buffer pointer.
900  *
901  * This assumes that the helper algorithm has already been loaded to the target,
902  * but has not been started yet. Given memory and register parameters are passed
903  * to the algorithm.
904  *
905  * The buffer is defined by (buffer_start, buffer_size) arguments and has the
906  * following format:
907  *
908  *     [buffer_start + 0, buffer_start + 4):
909  *         Write Pointer address (aka head). Written and updated by this
910  *         routine when new data is written to the circular buffer.
911  *     [buffer_start + 4, buffer_start + 8):
912  *         Read Pointer address (aka tail). Updated by code running on the
913  *         target after it consumes data.
914  *     [buffer_start + 8, buffer_start + buffer_size):
915  *         Circular buffer contents.
916  *
917  * See contrib/loaders/flash/stm32f1x.S for an example.
918  *
919  * @param target used to run the algorithm
920  * @param buffer address on the host where data to be sent is located
921  * @param count number of blocks to send
922  * @param block_size size in bytes of each block
923  * @param num_mem_params count of memory-based params to pass to algorithm
924  * @param mem_params memory-based params to pass to algorithm
925  * @param num_reg_params count of register-based params to pass to algorithm
926  * @param reg_params memory-based params to pass to algorithm
927  * @param buffer_start address on the target of the circular buffer structure
928  * @param buffer_size size of the circular buffer structure
929  * @param entry_point address on the target to execute to start the algorithm
930  * @param exit_point address at which to set a breakpoint to catch the
931  *     end of the algorithm; can be 0 if target triggers a breakpoint itself
932  */
933
934 int target_run_flash_async_algorithm(struct target *target,
935                 const uint8_t *buffer, uint32_t count, int block_size,
936                 int num_mem_params, struct mem_param *mem_params,
937                 int num_reg_params, struct reg_param *reg_params,
938                 uint32_t buffer_start, uint32_t buffer_size,
939                 uint32_t entry_point, uint32_t exit_point, void *arch_info)
940 {
941         int retval;
942         int timeout = 0;
943
944         const uint8_t *buffer_orig = buffer;
945
946         /* Set up working area. First word is write pointer, second word is read pointer,
947          * rest is fifo data area. */
948         uint32_t wp_addr = buffer_start;
949         uint32_t rp_addr = buffer_start + 4;
950         uint32_t fifo_start_addr = buffer_start + 8;
951         uint32_t fifo_end_addr = buffer_start + buffer_size;
952
953         uint32_t wp = fifo_start_addr;
954         uint32_t rp = fifo_start_addr;
955
956         /* validate block_size is 2^n */
957         assert(!block_size || !(block_size & (block_size - 1)));
958
959         retval = target_write_u32(target, wp_addr, wp);
960         if (retval != ERROR_OK)
961                 return retval;
962         retval = target_write_u32(target, rp_addr, rp);
963         if (retval != ERROR_OK)
964                 return retval;
965
966         /* Start up algorithm on target and let it idle while writing the first chunk */
967         retval = target_start_algorithm(target, num_mem_params, mem_params,
968                         num_reg_params, reg_params,
969                         entry_point,
970                         exit_point,
971                         arch_info);
972
973         if (retval != ERROR_OK) {
974                 LOG_ERROR("error starting target flash write algorithm");
975                 return retval;
976         }
977
978         while (count > 0) {
979
980                 retval = target_read_u32(target, rp_addr, &rp);
981                 if (retval != ERROR_OK) {
982                         LOG_ERROR("failed to get read pointer");
983                         break;
984                 }
985
986                 LOG_DEBUG("offs 0x%zx count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32,
987                         (size_t) (buffer - buffer_orig), count, wp, rp);
988
989                 if (rp == 0) {
990                         LOG_ERROR("flash write algorithm aborted by target");
991                         retval = ERROR_FLASH_OPERATION_FAILED;
992                         break;
993                 }
994
995                 if (((rp - fifo_start_addr) & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
996                         LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
997                         break;
998                 }
999
1000                 /* Count the number of bytes available in the fifo without
1001                  * crossing the wrap around. Make sure to not fill it completely,
1002                  * because that would make wp == rp and that's the empty condition. */
1003                 uint32_t thisrun_bytes;
1004                 if (rp > wp)
1005                         thisrun_bytes = rp - wp - block_size;
1006                 else if (rp > fifo_start_addr)
1007                         thisrun_bytes = fifo_end_addr - wp;
1008                 else
1009                         thisrun_bytes = fifo_end_addr - wp - block_size;
1010
1011                 if (thisrun_bytes == 0) {
1012                         /* Throttle polling a bit if transfer is (much) faster than flash
1013                          * programming. The exact delay shouldn't matter as long as it's
1014                          * less than buffer size / flash speed. This is very unlikely to
1015                          * run when using high latency connections such as USB. */
1016                         alive_sleep(10);
1017
1018                         /* to stop an infinite loop on some targets check and increment a timeout
1019                          * this issue was observed on a stellaris using the new ICDI interface */
1020                         if (timeout++ >= 500) {
1021                                 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
1022                                 return ERROR_FLASH_OPERATION_FAILED;
1023                         }
1024                         continue;
1025                 }
1026
1027                 /* reset our timeout */
1028                 timeout = 0;
1029
1030                 /* Limit to the amount of data we actually want to write */
1031                 if (thisrun_bytes > count * block_size)
1032                         thisrun_bytes = count * block_size;
1033
1034                 /* Write data to fifo */
1035                 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
1036                 if (retval != ERROR_OK)
1037                         break;
1038
1039                 /* Update counters and wrap write pointer */
1040                 buffer += thisrun_bytes;
1041                 count -= thisrun_bytes / block_size;
1042                 wp += thisrun_bytes;
1043                 if (wp >= fifo_end_addr)
1044                         wp = fifo_start_addr;
1045
1046                 /* Store updated write pointer to target */
1047                 retval = target_write_u32(target, wp_addr, wp);
1048                 if (retval != ERROR_OK)
1049                         break;
1050
1051                 /* Avoid GDB timeouts */
1052                 keep_alive();
1053         }
1054
1055         if (retval != ERROR_OK) {
1056                 /* abort flash write algorithm on target */
1057                 target_write_u32(target, wp_addr, 0);
1058         }
1059
1060         int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
1061                         num_reg_params, reg_params,
1062                         exit_point,
1063                         10000,
1064                         arch_info);
1065
1066         if (retval2 != ERROR_OK) {
1067                 LOG_ERROR("error waiting for target flash write algorithm");
1068                 retval = retval2;
1069         }
1070
1071         if (retval == ERROR_OK) {
1072                 /* check if algorithm set rp = 0 after fifo writer loop finished */
1073                 retval = target_read_u32(target, rp_addr, &rp);
1074                 if (retval == ERROR_OK && rp == 0) {
1075                         LOG_ERROR("flash write algorithm aborted by target");
1076                         retval = ERROR_FLASH_OPERATION_FAILED;
1077                 }
1078         }
1079
1080         return retval;
1081 }
1082
1083 int target_read_memory(struct target *target,
1084                 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1085 {
1086         if (!target_was_examined(target)) {
1087                 LOG_ERROR("Target not examined yet");
1088                 return ERROR_FAIL;
1089         }
1090         if (!target->type->read_memory) {
1091                 LOG_ERROR("Target %s doesn't support read_memory", target_name(target));
1092                 return ERROR_FAIL;
1093         }
1094         return target->type->read_memory(target, address, size, count, buffer);
1095 }
1096
1097 int target_read_phys_memory(struct target *target,
1098                 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1099 {
1100         if (!target_was_examined(target)) {
1101                 LOG_ERROR("Target not examined yet");
1102                 return ERROR_FAIL;
1103         }
1104         if (!target->type->read_phys_memory) {
1105                 LOG_ERROR("Target %s doesn't support read_phys_memory", target_name(target));
1106                 return ERROR_FAIL;
1107         }
1108         return target->type->read_phys_memory(target, address, size, count, buffer);
1109 }
1110
1111 int target_write_memory(struct target *target,
1112                 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1113 {
1114         if (!target_was_examined(target)) {
1115                 LOG_ERROR("Target not examined yet");
1116                 return ERROR_FAIL;
1117         }
1118         if (!target->type->write_memory) {
1119                 LOG_ERROR("Target %s doesn't support write_memory", target_name(target));
1120                 return ERROR_FAIL;
1121         }
1122         return target->type->write_memory(target, address, size, count, buffer);
1123 }
1124
1125 int target_write_phys_memory(struct target *target,
1126                 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1127 {
1128         if (!target_was_examined(target)) {
1129                 LOG_ERROR("Target not examined yet");
1130                 return ERROR_FAIL;
1131         }
1132         if (!target->type->write_phys_memory) {
1133                 LOG_ERROR("Target %s doesn't support write_phys_memory", target_name(target));
1134                 return ERROR_FAIL;
1135         }
1136         return target->type->write_phys_memory(target, address, size, count, buffer);
1137 }
1138
1139 int target_add_breakpoint(struct target *target,
1140                 struct breakpoint *breakpoint)
1141 {
1142         if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
1143                 LOG_WARNING("target %s is not halted (add breakpoint)", target_name(target));
1144                 return ERROR_TARGET_NOT_HALTED;
1145         }
1146         return target->type->add_breakpoint(target, breakpoint);
1147 }
1148
1149 int target_add_context_breakpoint(struct target *target,
1150                 struct breakpoint *breakpoint)
1151 {
1152         if (target->state != TARGET_HALTED) {
1153                 LOG_WARNING("target %s is not halted (add context breakpoint)", target_name(target));
1154                 return ERROR_TARGET_NOT_HALTED;
1155         }
1156         return target->type->add_context_breakpoint(target, breakpoint);
1157 }
1158
1159 int target_add_hybrid_breakpoint(struct target *target,
1160                 struct breakpoint *breakpoint)
1161 {
1162         if (target->state != TARGET_HALTED) {
1163                 LOG_WARNING("target %s is not halted (add hybrid breakpoint)", target_name(target));
1164                 return ERROR_TARGET_NOT_HALTED;
1165         }
1166         return target->type->add_hybrid_breakpoint(target, breakpoint);
1167 }
1168
1169 int target_remove_breakpoint(struct target *target,
1170                 struct breakpoint *breakpoint)
1171 {
1172         return target->type->remove_breakpoint(target, breakpoint);
1173 }
1174
1175 int target_add_watchpoint(struct target *target,
1176                 struct watchpoint *watchpoint)
1177 {
1178         if (target->state != TARGET_HALTED) {
1179                 LOG_WARNING("target %s is not halted (add watchpoint)", target_name(target));
1180                 return ERROR_TARGET_NOT_HALTED;
1181         }
1182         return target->type->add_watchpoint(target, watchpoint);
1183 }
1184 int target_remove_watchpoint(struct target *target,
1185                 struct watchpoint *watchpoint)
1186 {
1187         return target->type->remove_watchpoint(target, watchpoint);
1188 }
1189 int target_hit_watchpoint(struct target *target,
1190                 struct watchpoint **hit_watchpoint)
1191 {
1192         if (target->state != TARGET_HALTED) {
1193                 LOG_WARNING("target %s is not halted (hit watchpoint)", target->cmd_name);
1194                 return ERROR_TARGET_NOT_HALTED;
1195         }
1196
1197         if (target->type->hit_watchpoint == NULL) {
1198                 /* For backward compatible, if hit_watchpoint is not implemented,
1199                  * return ERROR_FAIL such that gdb_server will not take the nonsense
1200                  * information. */
1201                 return ERROR_FAIL;
1202         }
1203
1204         return target->type->hit_watchpoint(target, hit_watchpoint);
1205 }
1206
1207 const char *target_get_gdb_arch(struct target *target)
1208 {
1209         if (target->type->get_gdb_arch == NULL)
1210                 return NULL;
1211         return target->type->get_gdb_arch(target);
1212 }
1213
1214 int target_get_gdb_reg_list(struct target *target,
1215                 struct reg **reg_list[], int *reg_list_size,
1216                 enum target_register_class reg_class)
1217 {
1218         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1219 }
1220
1221 bool target_supports_gdb_connection(struct target *target)
1222 {
1223         /*
1224          * based on current code, we can simply exclude all the targets that
1225          * don't provide get_gdb_reg_list; this could change with new targets.
1226          */
1227         return !!target->type->get_gdb_reg_list;
1228 }
1229
1230 int target_step(struct target *target,
1231                 int current, target_addr_t address, int handle_breakpoints)
1232 {
1233         return target->type->step(target, current, address, handle_breakpoints);
1234 }
1235
1236 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1237 {
1238         if (target->state != TARGET_HALTED) {
1239                 LOG_WARNING("target %s is not halted (gdb fileio)", target->cmd_name);
1240                 return ERROR_TARGET_NOT_HALTED;
1241         }
1242         return target->type->get_gdb_fileio_info(target, fileio_info);
1243 }
1244
1245 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1246 {
1247         if (target->state != TARGET_HALTED) {
1248                 LOG_WARNING("target %s is not halted (gdb fileio end)", target->cmd_name);
1249                 return ERROR_TARGET_NOT_HALTED;
1250         }
1251         return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1252 }
1253
1254 target_addr_t target_address_max(struct target *target)
1255 {
1256         unsigned bits = target_address_bits(target);
1257         if (sizeof(target_addr_t) * 8 == bits)
1258                 return (target_addr_t) -1;
1259         else
1260                 return (((target_addr_t) 1) << bits) - 1;
1261 }
1262
1263 unsigned target_address_bits(struct target *target)
1264 {
1265         if (target->type->address_bits)
1266                 return target->type->address_bits(target);
1267         return 32;
1268 }
1269
1270 int target_profiling(struct target *target, uint32_t *samples,
1271                         uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1272 {
1273         if (target->state != TARGET_HALTED) {
1274                 LOG_WARNING("target %s is not halted (profiling)", target->cmd_name);
1275                 return ERROR_TARGET_NOT_HALTED;
1276         }
1277         return target->type->profiling(target, samples, max_num_samples,
1278                         num_samples, seconds);
1279 }
1280
1281 /**
1282  * Reset the @c examined flag for the given target.
1283  * Pure paranoia -- targets are zeroed on allocation.
1284  */
1285 static void target_reset_examined(struct target *target)
1286 {
1287         target->examined = false;
1288 }
1289
1290 static int handle_target(void *priv);
1291
1292 static int target_init_one(struct command_context *cmd_ctx,
1293                 struct target *target)
1294 {
1295         target_reset_examined(target);
1296
1297         struct target_type *type = target->type;
1298         if (type->examine == NULL)
1299                 type->examine = default_examine;
1300
1301         if (type->check_reset == NULL)
1302                 type->check_reset = default_check_reset;
1303
1304         assert(type->init_target != NULL);
1305
1306         int retval = type->init_target(cmd_ctx, target);
1307         if (ERROR_OK != retval) {
1308                 LOG_ERROR("target '%s' init failed", target_name(target));
1309                 return retval;
1310         }
1311
1312         /* Sanity-check MMU support ... stub in what we must, to help
1313          * implement it in stages, but warn if we need to do so.
1314          */
1315         if (type->mmu) {
1316                 if (type->virt2phys == NULL) {
1317                         LOG_ERROR("type '%s' is missing virt2phys", type->name);
1318                         type->virt2phys = identity_virt2phys;
1319                 }
1320         } else {
1321                 /* Make sure no-MMU targets all behave the same:  make no
1322                  * distinction between physical and virtual addresses, and
1323                  * ensure that virt2phys() is always an identity mapping.
1324                  */
1325                 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1326                         LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1327
1328                 type->mmu = no_mmu;
1329                 type->write_phys_memory = type->write_memory;
1330                 type->read_phys_memory = type->read_memory;
1331                 type->virt2phys = identity_virt2phys;
1332         }
1333
1334         if (target->type->read_buffer == NULL)
1335                 target->type->read_buffer = target_read_buffer_default;
1336
1337         if (target->type->write_buffer == NULL)
1338                 target->type->write_buffer = target_write_buffer_default;
1339
1340         if (target->type->get_gdb_fileio_info == NULL)
1341                 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1342
1343         if (target->type->gdb_fileio_end == NULL)
1344                 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1345
1346         if (target->type->profiling == NULL)
1347                 target->type->profiling = target_profiling_default;
1348
1349         return ERROR_OK;
1350 }
1351
1352 static int target_init(struct command_context *cmd_ctx)
1353 {
1354         struct target *target;
1355         int retval;
1356
1357         for (target = all_targets; target; target = target->next) {
1358                 retval = target_init_one(cmd_ctx, target);
1359                 if (ERROR_OK != retval)
1360                         return retval;
1361         }
1362
1363         if (!all_targets)
1364                 return ERROR_OK;
1365
1366         retval = target_register_user_commands(cmd_ctx);
1367         if (ERROR_OK != retval)
1368                 return retval;
1369
1370         retval = target_register_timer_callback(&handle_target,
1371                         polling_interval, TARGET_TIMER_TYPE_PERIODIC, cmd_ctx->interp);
1372         if (ERROR_OK != retval)
1373                 return retval;
1374
1375         return ERROR_OK;
1376 }
1377
1378 COMMAND_HANDLER(handle_target_init_command)
1379 {
1380         int retval;
1381
1382         if (CMD_ARGC != 0)
1383                 return ERROR_COMMAND_SYNTAX_ERROR;
1384
1385         static bool target_initialized;
1386         if (target_initialized) {
1387                 LOG_INFO("'target init' has already been called");
1388                 return ERROR_OK;
1389         }
1390         target_initialized = true;
1391
1392         retval = command_run_line(CMD_CTX, "init_targets");
1393         if (ERROR_OK != retval)
1394                 return retval;
1395
1396         retval = command_run_line(CMD_CTX, "init_target_events");
1397         if (ERROR_OK != retval)
1398                 return retval;
1399
1400         retval = command_run_line(CMD_CTX, "init_board");
1401         if (ERROR_OK != retval)
1402                 return retval;
1403
1404         LOG_DEBUG("Initializing targets...");
1405         return target_init(CMD_CTX);
1406 }
1407
1408 int target_register_event_callback(int (*callback)(struct target *target,
1409                 enum target_event event, void *priv), void *priv)
1410 {
1411         struct target_event_callback **callbacks_p = &target_event_callbacks;
1412
1413         if (callback == NULL)
1414                 return ERROR_COMMAND_SYNTAX_ERROR;
1415
1416         if (*callbacks_p) {
1417                 while ((*callbacks_p)->next)
1418                         callbacks_p = &((*callbacks_p)->next);
1419                 callbacks_p = &((*callbacks_p)->next);
1420         }
1421
1422         (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1423         (*callbacks_p)->callback = callback;
1424         (*callbacks_p)->priv = priv;
1425         (*callbacks_p)->next = NULL;
1426
1427         return ERROR_OK;
1428 }
1429
1430 int target_register_reset_callback(int (*callback)(struct target *target,
1431                 enum target_reset_mode reset_mode, void *priv), void *priv)
1432 {
1433         struct target_reset_callback *entry;
1434
1435         if (callback == NULL)
1436                 return ERROR_COMMAND_SYNTAX_ERROR;
1437
1438         entry = malloc(sizeof(struct target_reset_callback));
1439         if (entry == NULL) {
1440                 LOG_ERROR("error allocating buffer for reset callback entry");
1441                 return ERROR_COMMAND_SYNTAX_ERROR;
1442         }
1443
1444         entry->callback = callback;
1445         entry->priv = priv;
1446         list_add(&entry->list, &target_reset_callback_list);
1447
1448
1449         return ERROR_OK;
1450 }
1451
1452 int target_register_trace_callback(int (*callback)(struct target *target,
1453                 size_t len, uint8_t *data, void *priv), void *priv)
1454 {
1455         struct target_trace_callback *entry;
1456
1457         if (callback == NULL)
1458                 return ERROR_COMMAND_SYNTAX_ERROR;
1459
1460         entry = malloc(sizeof(struct target_trace_callback));
1461         if (entry == NULL) {
1462                 LOG_ERROR("error allocating buffer for trace callback entry");
1463                 return ERROR_COMMAND_SYNTAX_ERROR;
1464         }
1465
1466         entry->callback = callback;
1467         entry->priv = priv;
1468         list_add(&entry->list, &target_trace_callback_list);
1469
1470
1471         return ERROR_OK;
1472 }
1473
1474 int target_register_timer_callback(int (*callback)(void *priv),
1475                 unsigned int time_ms, enum target_timer_type type, void *priv)
1476 {
1477         struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1478
1479         if (callback == NULL)
1480                 return ERROR_COMMAND_SYNTAX_ERROR;
1481
1482         if (*callbacks_p) {
1483                 while ((*callbacks_p)->next)
1484                         callbacks_p = &((*callbacks_p)->next);
1485                 callbacks_p = &((*callbacks_p)->next);
1486         }
1487
1488         (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1489         (*callbacks_p)->callback = callback;
1490         (*callbacks_p)->type = type;
1491         (*callbacks_p)->time_ms = time_ms;
1492         (*callbacks_p)->removed = false;
1493
1494         gettimeofday(&(*callbacks_p)->when, NULL);
1495         timeval_add_time(&(*callbacks_p)->when, 0, time_ms * 1000);
1496
1497         (*callbacks_p)->priv = priv;
1498         (*callbacks_p)->next = NULL;
1499
1500         return ERROR_OK;
1501 }
1502
1503 int target_unregister_event_callback(int (*callback)(struct target *target,
1504                 enum target_event event, void *priv), void *priv)
1505 {
1506         struct target_event_callback **p = &target_event_callbacks;
1507         struct target_event_callback *c = target_event_callbacks;
1508
1509         if (callback == NULL)
1510                 return ERROR_COMMAND_SYNTAX_ERROR;
1511
1512         while (c) {
1513                 struct target_event_callback *next = c->next;
1514                 if ((c->callback == callback) && (c->priv == priv)) {
1515                         *p = next;
1516                         free(c);
1517                         return ERROR_OK;
1518                 } else
1519                         p = &(c->next);
1520                 c = next;
1521         }
1522
1523         return ERROR_OK;
1524 }
1525
1526 int target_unregister_reset_callback(int (*callback)(struct target *target,
1527                 enum target_reset_mode reset_mode, void *priv), void *priv)
1528 {
1529         struct target_reset_callback *entry;
1530
1531         if (callback == NULL)
1532                 return ERROR_COMMAND_SYNTAX_ERROR;
1533
1534         list_for_each_entry(entry, &target_reset_callback_list, list) {
1535                 if (entry->callback == callback && entry->priv == priv) {
1536                         list_del(&entry->list);
1537                         free(entry);
1538                         break;
1539                 }
1540         }
1541
1542         return ERROR_OK;
1543 }
1544
1545 int target_unregister_trace_callback(int (*callback)(struct target *target,
1546                 size_t len, uint8_t *data, void *priv), void *priv)
1547 {
1548         struct target_trace_callback *entry;
1549
1550         if (callback == NULL)
1551                 return ERROR_COMMAND_SYNTAX_ERROR;
1552
1553         list_for_each_entry(entry, &target_trace_callback_list, list) {
1554                 if (entry->callback == callback && entry->priv == priv) {
1555                         list_del(&entry->list);
1556                         free(entry);
1557                         break;
1558                 }
1559         }
1560
1561         return ERROR_OK;
1562 }
1563
1564 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1565 {
1566         if (callback == NULL)
1567                 return ERROR_COMMAND_SYNTAX_ERROR;
1568
1569         for (struct target_timer_callback *c = target_timer_callbacks;
1570              c; c = c->next) {
1571                 if ((c->callback == callback) && (c->priv == priv)) {
1572                         c->removed = true;
1573                         return ERROR_OK;
1574                 }
1575         }
1576
1577         return ERROR_FAIL;
1578 }
1579
1580 int target_call_event_callbacks(struct target *target, enum target_event event)
1581 {
1582         struct target_event_callback *callback = target_event_callbacks;
1583         struct target_event_callback *next_callback;
1584
1585         if (event == TARGET_EVENT_HALTED) {
1586                 /* execute early halted first */
1587                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1588         }
1589
1590         LOG_DEBUG("target event %i (%s)", event,
1591                         Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1592
1593         target_handle_event(target, event);
1594
1595         while (callback) {
1596                 next_callback = callback->next;
1597                 callback->callback(target, event, callback->priv);
1598                 callback = next_callback;
1599         }
1600
1601         return ERROR_OK;
1602 }
1603
1604 int target_call_reset_callbacks(struct target *target, enum target_reset_mode reset_mode)
1605 {
1606         struct target_reset_callback *callback;
1607
1608         LOG_DEBUG("target reset %i (%s)", reset_mode,
1609                         Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name);
1610
1611         list_for_each_entry(callback, &target_reset_callback_list, list)
1612                 callback->callback(target, reset_mode, callback->priv);
1613
1614         return ERROR_OK;
1615 }
1616
1617 int target_call_trace_callbacks(struct target *target, size_t len, uint8_t *data)
1618 {
1619         struct target_trace_callback *callback;
1620
1621         list_for_each_entry(callback, &target_trace_callback_list, list)
1622                 callback->callback(target, len, data, callback->priv);
1623
1624         return ERROR_OK;
1625 }
1626
1627 static int target_timer_callback_periodic_restart(
1628                 struct target_timer_callback *cb, struct timeval *now)
1629 {
1630         cb->when = *now;
1631         timeval_add_time(&cb->when, 0, cb->time_ms * 1000L);
1632         return ERROR_OK;
1633 }
1634
1635 static int target_call_timer_callback(struct target_timer_callback *cb,
1636                 struct timeval *now)
1637 {
1638         cb->callback(cb->priv);
1639
1640         if (cb->type == TARGET_TIMER_TYPE_PERIODIC)
1641                 return target_timer_callback_periodic_restart(cb, now);
1642
1643         return target_unregister_timer_callback(cb->callback, cb->priv);
1644 }
1645
1646 static int target_call_timer_callbacks_check_time(int checktime)
1647 {
1648         static bool callback_processing;
1649
1650         /* Do not allow nesting */
1651         if (callback_processing)
1652                 return ERROR_OK;
1653
1654         callback_processing = true;
1655
1656         keep_alive();
1657
1658         struct timeval now;
1659         gettimeofday(&now, NULL);
1660
1661         /* Store an address of the place containing a pointer to the
1662          * next item; initially, that's a standalone "root of the
1663          * list" variable. */
1664         struct target_timer_callback **callback = &target_timer_callbacks;
1665         while (*callback) {
1666                 if ((*callback)->removed) {
1667                         struct target_timer_callback *p = *callback;
1668                         *callback = (*callback)->next;
1669                         free(p);
1670                         continue;
1671                 }
1672
1673                 bool call_it = (*callback)->callback &&
1674                         ((!checktime && (*callback)->type == TARGET_TIMER_TYPE_PERIODIC) ||
1675                          timeval_compare(&now, &(*callback)->when) >= 0);
1676
1677                 if (call_it)
1678                         target_call_timer_callback(*callback, &now);
1679
1680                 callback = &(*callback)->next;
1681         }
1682
1683         callback_processing = false;
1684         return ERROR_OK;
1685 }
1686
1687 int target_call_timer_callbacks(void)
1688 {
1689         return target_call_timer_callbacks_check_time(1);
1690 }
1691
1692 /* invoke periodic callbacks immediately */
1693 int target_call_timer_callbacks_now(void)
1694 {
1695         return target_call_timer_callbacks_check_time(0);
1696 }
1697
1698 /* Prints the working area layout for debug purposes */
1699 static void print_wa_layout(struct target *target)
1700 {
1701         struct working_area *c = target->working_areas;
1702
1703         while (c) {
1704                 LOG_DEBUG("%c%c " TARGET_ADDR_FMT "-" TARGET_ADDR_FMT " (%" PRIu32 " bytes)",
1705                         c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1706                         c->address, c->address + c->size - 1, c->size);
1707                 c = c->next;
1708         }
1709 }
1710
1711 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1712 static void target_split_working_area(struct working_area *area, uint32_t size)
1713 {
1714         assert(area->free); /* Shouldn't split an allocated area */
1715         assert(size <= area->size); /* Caller should guarantee this */
1716
1717         /* Split only if not already the right size */
1718         if (size < area->size) {
1719                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1720
1721                 if (new_wa == NULL)
1722                         return;
1723
1724                 new_wa->next = area->next;
1725                 new_wa->size = area->size - size;
1726                 new_wa->address = area->address + size;
1727                 new_wa->backup = NULL;
1728                 new_wa->user = NULL;
1729                 new_wa->free = true;
1730
1731                 area->next = new_wa;
1732                 area->size = size;
1733
1734                 /* If backup memory was allocated to this area, it has the wrong size
1735                  * now so free it and it will be reallocated if/when needed */
1736                 if (area->backup) {
1737                         free(area->backup);
1738                         area->backup = NULL;
1739                 }
1740         }
1741 }
1742
1743 /* Merge all adjacent free areas into one */
1744 static void target_merge_working_areas(struct target *target)
1745 {
1746         struct working_area *c = target->working_areas;
1747
1748         while (c && c->next) {
1749                 assert(c->next->address == c->address + c->size); /* This is an invariant */
1750
1751                 /* Find two adjacent free areas */
1752                 if (c->free && c->next->free) {
1753                         /* Merge the last into the first */
1754                         c->size += c->next->size;
1755
1756                         /* Remove the last */
1757                         struct working_area *to_be_freed = c->next;
1758                         c->next = c->next->next;
1759                         if (to_be_freed->backup)
1760                                 free(to_be_freed->backup);
1761                         free(to_be_freed);
1762
1763                         /* If backup memory was allocated to the remaining area, it's has
1764                          * the wrong size now */
1765                         if (c->backup) {
1766                                 free(c->backup);
1767                                 c->backup = NULL;
1768                         }
1769                 } else {
1770                         c = c->next;
1771                 }
1772         }
1773 }
1774
1775 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1776 {
1777         /* Reevaluate working area address based on MMU state*/
1778         if (target->working_areas == NULL) {
1779                 int retval;
1780                 int enabled;
1781
1782                 retval = target->type->mmu(target, &enabled);
1783                 if (retval != ERROR_OK)
1784                         return retval;
1785
1786                 if (!enabled) {
1787                         if (target->working_area_phys_spec) {
1788                                 LOG_DEBUG("MMU disabled, using physical "
1789                                         "address for working memory " TARGET_ADDR_FMT,
1790                                         target->working_area_phys);
1791                                 target->working_area = target->working_area_phys;
1792                         } else {
1793                                 LOG_ERROR("No working memory available. "
1794                                         "Specify -work-area-phys to target.");
1795                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1796                         }
1797                 } else {
1798                         if (target->working_area_virt_spec) {
1799                                 LOG_DEBUG("MMU enabled, using virtual "
1800                                         "address for working memory " TARGET_ADDR_FMT,
1801                                         target->working_area_virt);
1802                                 target->working_area = target->working_area_virt;
1803                         } else {
1804                                 LOG_ERROR("No working memory available. "
1805                                         "Specify -work-area-virt to target.");
1806                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1807                         }
1808                 }
1809
1810                 /* Set up initial working area on first call */
1811                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1812                 if (new_wa) {
1813                         new_wa->next = NULL;
1814                         new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1815                         new_wa->address = target->working_area;
1816                         new_wa->backup = NULL;
1817                         new_wa->user = NULL;
1818                         new_wa->free = true;
1819                 }
1820
1821                 target->working_areas = new_wa;
1822         }
1823
1824         /* only allocate multiples of 4 byte */
1825         if (size % 4)
1826                 size = (size + 3) & (~3UL);
1827
1828         struct working_area *c = target->working_areas;
1829
1830         /* Find the first large enough working area */
1831         while (c) {
1832                 if (c->free && c->size >= size)
1833                         break;
1834                 c = c->next;
1835         }
1836
1837         if (c == NULL)
1838                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1839
1840         /* Split the working area into the requested size */
1841         target_split_working_area(c, size);
1842
1843         LOG_DEBUG("allocated new working area of %" PRIu32 " bytes at address " TARGET_ADDR_FMT,
1844                           size, c->address);
1845
1846         if (target->backup_working_area) {
1847                 if (c->backup == NULL) {
1848                         c->backup = malloc(c->size);
1849                         if (c->backup == NULL)
1850                                 return ERROR_FAIL;
1851                 }
1852
1853                 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1854                 if (retval != ERROR_OK)
1855                         return retval;
1856         }
1857
1858         /* mark as used, and return the new (reused) area */
1859         c->free = false;
1860         *area = c;
1861
1862         /* user pointer */
1863         c->user = area;
1864
1865         print_wa_layout(target);
1866
1867         return ERROR_OK;
1868 }
1869
1870 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1871 {
1872         int retval;
1873
1874         retval = target_alloc_working_area_try(target, size, area);
1875         if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1876                 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1877         return retval;
1878
1879 }
1880
1881 static int target_restore_working_area(struct target *target, struct working_area *area)
1882 {
1883         int retval = ERROR_OK;
1884
1885         if (target->backup_working_area && area->backup != NULL) {
1886                 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1887                 if (retval != ERROR_OK)
1888                         LOG_ERROR("failed to restore %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1889                                         area->size, area->address);
1890         }
1891
1892         return retval;
1893 }
1894
1895 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1896 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1897 {
1898         int retval = ERROR_OK;
1899
1900         if (area->free)
1901                 return retval;
1902
1903         if (restore) {
1904                 retval = target_restore_working_area(target, area);
1905                 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1906                 if (retval != ERROR_OK)
1907                         return retval;
1908         }
1909
1910         area->free = true;
1911
1912         LOG_DEBUG("freed %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1913                         area->size, area->address);
1914
1915         /* mark user pointer invalid */
1916         /* TODO: Is this really safe? It points to some previous caller's memory.
1917          * How could we know that the area pointer is still in that place and not
1918          * some other vital data? What's the purpose of this, anyway? */
1919         *area->user = NULL;
1920         area->user = NULL;
1921
1922         target_merge_working_areas(target);
1923
1924         print_wa_layout(target);
1925
1926         return retval;
1927 }
1928
1929 int target_free_working_area(struct target *target, struct working_area *area)
1930 {
1931         return target_free_working_area_restore(target, area, 1);
1932 }
1933
1934 /* free resources and restore memory, if restoring memory fails,
1935  * free up resources anyway
1936  */
1937 static void target_free_all_working_areas_restore(struct target *target, int restore)
1938 {
1939         struct working_area *c = target->working_areas;
1940
1941         LOG_DEBUG("freeing all working areas");
1942
1943         /* Loop through all areas, restoring the allocated ones and marking them as free */
1944         while (c) {
1945                 if (!c->free) {
1946                         if (restore)
1947                                 target_restore_working_area(target, c);
1948                         c->free = true;
1949                         *c->user = NULL; /* Same as above */
1950                         c->user = NULL;
1951                 }
1952                 c = c->next;
1953         }
1954
1955         /* Run a merge pass to combine all areas into one */
1956         target_merge_working_areas(target);
1957
1958         print_wa_layout(target);
1959 }
1960
1961 void target_free_all_working_areas(struct target *target)
1962 {
1963         target_free_all_working_areas_restore(target, 1);
1964
1965         /* Now we have none or only one working area marked as free */
1966         if (target->working_areas) {
1967                 /* Free the last one to allow on-the-fly moving and resizing */
1968                 free(target->working_areas->backup);
1969                 free(target->working_areas);
1970                 target->working_areas = NULL;
1971         }
1972 }
1973
1974 /* Find the largest number of bytes that can be allocated */
1975 uint32_t target_get_working_area_avail(struct target *target)
1976 {
1977         struct working_area *c = target->working_areas;
1978         uint32_t max_size = 0;
1979
1980         if (c == NULL)
1981                 return target->working_area_size;
1982
1983         while (c) {
1984                 if (c->free && max_size < c->size)
1985                         max_size = c->size;
1986
1987                 c = c->next;
1988         }
1989
1990         return max_size;
1991 }
1992
1993 static void target_destroy(struct target *target)
1994 {
1995         if (target->type->deinit_target)
1996                 target->type->deinit_target(target);
1997
1998         if (target->semihosting)
1999                 free(target->semihosting);
2000
2001         jtag_unregister_event_callback(jtag_enable_callback, target);
2002
2003         struct target_event_action *teap = target->event_action;
2004         while (teap) {
2005                 struct target_event_action *next = teap->next;
2006                 Jim_DecrRefCount(teap->interp, teap->body);
2007                 free(teap);
2008                 teap = next;
2009         }
2010
2011         target_free_all_working_areas(target);
2012
2013         /* release the targets SMP list */
2014         if (target->smp) {
2015                 struct target_list *head = target->head;
2016                 while (head != NULL) {
2017                         struct target_list *pos = head->next;
2018                         head->target->smp = 0;
2019                         free(head);
2020                         head = pos;
2021                 }
2022                 target->smp = 0;
2023         }
2024
2025         free(target->gdb_port_override);
2026         free(target->type);
2027         free(target->trace_info);
2028         free(target->fileio_info);
2029         free(target->cmd_name);
2030         free(target);
2031 }
2032
2033 void target_quit(void)
2034 {
2035         struct target_event_callback *pe = target_event_callbacks;
2036         while (pe) {
2037                 struct target_event_callback *t = pe->next;
2038                 free(pe);
2039                 pe = t;
2040         }
2041         target_event_callbacks = NULL;
2042
2043         struct target_timer_callback *pt = target_timer_callbacks;
2044         while (pt) {
2045                 struct target_timer_callback *t = pt->next;
2046                 free(pt);
2047                 pt = t;
2048         }
2049         target_timer_callbacks = NULL;
2050
2051         for (struct target *target = all_targets; target;) {
2052                 struct target *tmp;
2053
2054                 tmp = target->next;
2055                 target_destroy(target);
2056                 target = tmp;
2057         }
2058
2059         all_targets = NULL;
2060 }
2061
2062 int target_arch_state(struct target *target)
2063 {
2064         int retval;
2065         if (target == NULL) {
2066                 LOG_WARNING("No target has been configured");
2067                 return ERROR_OK;
2068         }
2069
2070         if (target->state != TARGET_HALTED)
2071                 return ERROR_OK;
2072
2073         retval = target->type->arch_state(target);
2074         return retval;
2075 }
2076
2077 static int target_get_gdb_fileio_info_default(struct target *target,
2078                 struct gdb_fileio_info *fileio_info)
2079 {
2080         /* If target does not support semi-hosting function, target
2081            has no need to provide .get_gdb_fileio_info callback.
2082            It just return ERROR_FAIL and gdb_server will return "Txx"
2083            as target halted every time.  */
2084         return ERROR_FAIL;
2085 }
2086
2087 static int target_gdb_fileio_end_default(struct target *target,
2088                 int retcode, int fileio_errno, bool ctrl_c)
2089 {
2090         return ERROR_OK;
2091 }
2092
2093 static int target_profiling_default(struct target *target, uint32_t *samples,
2094                 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
2095 {
2096         struct timeval timeout, now;
2097
2098         gettimeofday(&timeout, NULL);
2099         timeval_add_time(&timeout, seconds, 0);
2100
2101         LOG_INFO("Starting profiling. Halting and resuming the"
2102                         " target as often as we can...");
2103
2104         uint32_t sample_count = 0;
2105         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2106         struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
2107
2108         int retval = ERROR_OK;
2109         for (;;) {
2110                 target_poll(target);
2111                 if (target->state == TARGET_HALTED) {
2112                         uint32_t t = buf_get_u32(reg->value, 0, 32);
2113                         samples[sample_count++] = t;
2114                         /* current pc, addr = 0, do not handle breakpoints, not debugging */
2115                         retval = target_resume(target, 1, 0, 0, 0);
2116                         target_poll(target);
2117                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2118                 } else if (target->state == TARGET_RUNNING) {
2119                         /* We want to quickly sample the PC. */
2120                         retval = target_halt(target);
2121                 } else {
2122                         LOG_INFO("Target not halted or running");
2123                         retval = ERROR_OK;
2124                         break;
2125                 }
2126
2127                 if (retval != ERROR_OK)
2128                         break;
2129
2130                 gettimeofday(&now, NULL);
2131                 if ((sample_count >= max_num_samples) || timeval_compare(&now, &timeout) >= 0) {
2132                         LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
2133                         break;
2134                 }
2135         }
2136
2137         *num_samples = sample_count;
2138         return retval;
2139 }
2140
2141 /* Single aligned words are guaranteed to use 16 or 32 bit access
2142  * mode respectively, otherwise data is handled as quickly as
2143  * possible
2144  */
2145 int target_write_buffer(struct target *target, target_addr_t address, uint32_t size, const uint8_t *buffer)
2146 {
2147         LOG_DEBUG("writing buffer of %" PRIi32 " byte at " TARGET_ADDR_FMT,
2148                           size, address);
2149
2150         if (!target_was_examined(target)) {
2151                 LOG_ERROR("Target not examined yet");
2152                 return ERROR_FAIL;
2153         }
2154
2155         if (size == 0)
2156                 return ERROR_OK;
2157
2158         if ((address + size - 1) < address) {
2159                 /* GDB can request this when e.g. PC is 0xfffffffc */
2160                 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2161                                   address,
2162                                   size);
2163                 return ERROR_FAIL;
2164         }
2165
2166         return target->type->write_buffer(target, address, size, buffer);
2167 }
2168
2169 static int target_write_buffer_default(struct target *target,
2170         target_addr_t address, uint32_t count, const uint8_t *buffer)
2171 {
2172         uint32_t size;
2173
2174         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2175          * will have something to do with the size we leave to it. */
2176         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2177                 if (address & size) {
2178                         int retval = target_write_memory(target, address, size, 1, buffer);
2179                         if (retval != ERROR_OK)
2180                                 return retval;
2181                         address += size;
2182                         count -= size;
2183                         buffer += size;
2184                 }
2185         }
2186
2187         /* Write the data with as large access size as possible. */
2188         for (; size > 0; size /= 2) {
2189                 uint32_t aligned = count - count % size;
2190                 if (aligned > 0) {
2191                         int retval = target_write_memory(target, address, size, aligned / size, buffer);
2192                         if (retval != ERROR_OK)
2193                                 return retval;
2194                         address += aligned;
2195                         count -= aligned;
2196                         buffer += aligned;
2197                 }
2198         }
2199
2200         return ERROR_OK;
2201 }
2202
2203 /* Single aligned words are guaranteed to use 16 or 32 bit access
2204  * mode respectively, otherwise data is handled as quickly as
2205  * possible
2206  */
2207 int target_read_buffer(struct target *target, target_addr_t address, uint32_t size, uint8_t *buffer)
2208 {
2209         LOG_DEBUG("reading buffer of %" PRIi32 " byte at " TARGET_ADDR_FMT,
2210                           size, address);
2211
2212         if (!target_was_examined(target)) {
2213                 LOG_ERROR("Target not examined yet");
2214                 return ERROR_FAIL;
2215         }
2216
2217         if (size == 0)
2218                 return ERROR_OK;
2219
2220         if ((address + size - 1) < address) {
2221                 /* GDB can request this when e.g. PC is 0xfffffffc */
2222                 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2223                                   address,
2224                                   size);
2225                 return ERROR_FAIL;
2226         }
2227
2228         return target->type->read_buffer(target, address, size, buffer);
2229 }
2230
2231 static int target_read_buffer_default(struct target *target, target_addr_t address, uint32_t count, uint8_t *buffer)
2232 {
2233         uint32_t size;
2234
2235         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2236          * will have something to do with the size we leave to it. */
2237         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2238                 if (address & size) {
2239                         int retval = target_read_memory(target, address, size, 1, buffer);
2240                         if (retval != ERROR_OK)
2241                                 return retval;
2242                         address += size;
2243                         count -= size;
2244                         buffer += size;
2245                 }
2246         }
2247
2248         /* Read the data with as large access size as possible. */
2249         for (; size > 0; size /= 2) {
2250                 uint32_t aligned = count - count % size;
2251                 if (aligned > 0) {
2252                         int retval = target_read_memory(target, address, size, aligned / size, buffer);
2253                         if (retval != ERROR_OK)
2254                                 return retval;
2255                         address += aligned;
2256                         count -= aligned;
2257                         buffer += aligned;
2258                 }
2259         }
2260
2261         return ERROR_OK;
2262 }
2263
2264 int target_checksum_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t* crc)
2265 {
2266         uint8_t *buffer;
2267         int retval;
2268         uint32_t i;
2269         uint32_t checksum = 0;
2270         if (!target_was_examined(target)) {
2271                 LOG_ERROR("Target not examined yet");
2272                 return ERROR_FAIL;
2273         }
2274
2275         retval = target->type->checksum_memory(target, address, size, &checksum);
2276         if (retval != ERROR_OK) {
2277                 buffer = malloc(size);
2278                 if (buffer == NULL) {
2279                         LOG_ERROR("error allocating buffer for section (%" PRId32 " bytes)", size);
2280                         return ERROR_COMMAND_SYNTAX_ERROR;
2281                 }
2282                 retval = target_read_buffer(target, address, size, buffer);
2283                 if (retval != ERROR_OK) {
2284                         free(buffer);
2285                         return retval;
2286                 }
2287
2288                 /* convert to target endianness */
2289                 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
2290                         uint32_t target_data;
2291                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
2292                         target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
2293                 }
2294
2295                 retval = image_calculate_checksum(buffer, size, &checksum);
2296                 free(buffer);
2297         }
2298
2299         *crc = checksum;
2300
2301         return retval;
2302 }
2303
2304 int target_blank_check_memory(struct target *target,
2305         struct target_memory_check_block *blocks, int num_blocks,
2306         uint8_t erased_value)
2307 {
2308         if (!target_was_examined(target)) {
2309                 LOG_ERROR("Target not examined yet");
2310                 return ERROR_FAIL;
2311         }
2312
2313         if (target->type->blank_check_memory == NULL)
2314                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2315
2316         return target->type->blank_check_memory(target, blocks, num_blocks, erased_value);
2317 }
2318
2319 int target_read_u64(struct target *target, target_addr_t address, uint64_t *value)
2320 {
2321         uint8_t value_buf[8];
2322         if (!target_was_examined(target)) {
2323                 LOG_ERROR("Target not examined yet");
2324                 return ERROR_FAIL;
2325         }
2326
2327         int retval = target_read_memory(target, address, 8, 1, value_buf);
2328
2329         if (retval == ERROR_OK) {
2330                 *value = target_buffer_get_u64(target, value_buf);
2331                 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2332                                   address,
2333                                   *value);
2334         } else {
2335                 *value = 0x0;
2336                 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2337                                   address);
2338         }
2339
2340         return retval;
2341 }
2342
2343 int target_read_u32(struct target *target, target_addr_t address, uint32_t *value)
2344 {
2345         uint8_t value_buf[4];
2346         if (!target_was_examined(target)) {
2347                 LOG_ERROR("Target not examined yet");
2348                 return ERROR_FAIL;
2349         }
2350
2351         int retval = target_read_memory(target, address, 4, 1, value_buf);
2352
2353         if (retval == ERROR_OK) {
2354                 *value = target_buffer_get_u32(target, value_buf);
2355                 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2356                                   address,
2357                                   *value);
2358         } else {
2359                 *value = 0x0;
2360                 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2361                                   address);
2362         }
2363
2364         return retval;
2365 }
2366
2367 int target_read_u16(struct target *target, target_addr_t address, uint16_t *value)
2368 {
2369         uint8_t value_buf[2];
2370         if (!target_was_examined(target)) {
2371                 LOG_ERROR("Target not examined yet");
2372                 return ERROR_FAIL;
2373         }
2374
2375         int retval = target_read_memory(target, address, 2, 1, value_buf);
2376
2377         if (retval == ERROR_OK) {
2378                 *value = target_buffer_get_u16(target, value_buf);
2379                 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%4.4" PRIx16,
2380                                   address,
2381                                   *value);
2382         } else {
2383                 *value = 0x0;
2384                 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2385                                   address);
2386         }
2387
2388         return retval;
2389 }
2390
2391 int target_read_u8(struct target *target, target_addr_t address, uint8_t *value)
2392 {
2393         if (!target_was_examined(target)) {
2394                 LOG_ERROR("Target not examined yet");
2395                 return ERROR_FAIL;
2396         }
2397
2398         int retval = target_read_memory(target, address, 1, 1, value);
2399
2400         if (retval == ERROR_OK) {
2401                 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2402                                   address,
2403                                   *value);
2404         } else {
2405                 *value = 0x0;
2406                 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2407                                   address);
2408         }
2409
2410         return retval;
2411 }
2412
2413 int target_write_u64(struct target *target, target_addr_t address, uint64_t value)
2414 {
2415         int retval;
2416         uint8_t value_buf[8];
2417         if (!target_was_examined(target)) {
2418                 LOG_ERROR("Target not examined yet");
2419                 return ERROR_FAIL;
2420         }
2421
2422         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2423                           address,
2424                           value);
2425
2426         target_buffer_set_u64(target, value_buf, value);
2427         retval = target_write_memory(target, address, 8, 1, value_buf);
2428         if (retval != ERROR_OK)
2429                 LOG_DEBUG("failed: %i", retval);
2430
2431         return retval;
2432 }
2433
2434 int target_write_u32(struct target *target, target_addr_t address, uint32_t value)
2435 {
2436         int retval;
2437         uint8_t value_buf[4];
2438         if (!target_was_examined(target)) {
2439                 LOG_ERROR("Target not examined yet");
2440                 return ERROR_FAIL;
2441         }
2442
2443         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2444                           address,
2445                           value);
2446
2447         target_buffer_set_u32(target, value_buf, value);
2448         retval = target_write_memory(target, address, 4, 1, value_buf);
2449         if (retval != ERROR_OK)
2450                 LOG_DEBUG("failed: %i", retval);
2451
2452         return retval;
2453 }
2454
2455 int target_write_u16(struct target *target, target_addr_t address, uint16_t value)
2456 {
2457         int retval;
2458         uint8_t value_buf[2];
2459         if (!target_was_examined(target)) {
2460                 LOG_ERROR("Target not examined yet");
2461                 return ERROR_FAIL;
2462         }
2463
2464         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2465                           address,
2466                           value);
2467
2468         target_buffer_set_u16(target, value_buf, value);
2469         retval = target_write_memory(target, address, 2, 1, value_buf);
2470         if (retval != ERROR_OK)
2471                 LOG_DEBUG("failed: %i", retval);
2472
2473         return retval;
2474 }
2475
2476 int target_write_u8(struct target *target, target_addr_t address, uint8_t value)
2477 {
2478         int retval;
2479         if (!target_was_examined(target)) {
2480                 LOG_ERROR("Target not examined yet");
2481                 return ERROR_FAIL;
2482         }
2483
2484         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2485                           address, value);
2486
2487         retval = target_write_memory(target, address, 1, 1, &value);
2488         if (retval != ERROR_OK)
2489                 LOG_DEBUG("failed: %i", retval);
2490
2491         return retval;
2492 }
2493
2494 int target_write_phys_u64(struct target *target, target_addr_t address, uint64_t value)
2495 {
2496         int retval;
2497         uint8_t value_buf[8];
2498         if (!target_was_examined(target)) {
2499                 LOG_ERROR("Target not examined yet");
2500                 return ERROR_FAIL;
2501         }
2502
2503         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2504                           address,
2505                           value);
2506
2507         target_buffer_set_u64(target, value_buf, value);
2508         retval = target_write_phys_memory(target, address, 8, 1, value_buf);
2509         if (retval != ERROR_OK)
2510                 LOG_DEBUG("failed: %i", retval);
2511
2512         return retval;
2513 }
2514
2515 int target_write_phys_u32(struct target *target, target_addr_t address, uint32_t value)
2516 {
2517         int retval;
2518         uint8_t value_buf[4];
2519         if (!target_was_examined(target)) {
2520                 LOG_ERROR("Target not examined yet");
2521                 return ERROR_FAIL;
2522         }
2523
2524         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2525                           address,
2526                           value);
2527
2528         target_buffer_set_u32(target, value_buf, value);
2529         retval = target_write_phys_memory(target, address, 4, 1, value_buf);
2530         if (retval != ERROR_OK)
2531                 LOG_DEBUG("failed: %i", retval);
2532
2533         return retval;
2534 }
2535
2536 int target_write_phys_u16(struct target *target, target_addr_t address, uint16_t value)
2537 {
2538         int retval;
2539         uint8_t value_buf[2];
2540         if (!target_was_examined(target)) {
2541                 LOG_ERROR("Target not examined yet");
2542                 return ERROR_FAIL;
2543         }
2544
2545         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2546                           address,
2547                           value);
2548
2549         target_buffer_set_u16(target, value_buf, value);
2550         retval = target_write_phys_memory(target, address, 2, 1, value_buf);
2551         if (retval != ERROR_OK)
2552                 LOG_DEBUG("failed: %i", retval);
2553
2554         return retval;
2555 }
2556
2557 int target_write_phys_u8(struct target *target, target_addr_t address, uint8_t value)
2558 {
2559         int retval;
2560         if (!target_was_examined(target)) {
2561                 LOG_ERROR("Target not examined yet");
2562                 return ERROR_FAIL;
2563         }
2564
2565         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2566                           address, value);
2567
2568         retval = target_write_phys_memory(target, address, 1, 1, &value);
2569         if (retval != ERROR_OK)
2570                 LOG_DEBUG("failed: %i", retval);
2571
2572         return retval;
2573 }
2574
2575 static int find_target(struct command_invocation *cmd, const char *name)
2576 {
2577         struct target *target = get_target(name);
2578         if (target == NULL) {
2579                 command_print(cmd, "Target: %s is unknown, try one of:\n", name);
2580                 return ERROR_FAIL;
2581         }
2582         if (!target->tap->enabled) {
2583                 command_print(cmd, "Target: TAP %s is disabled, "
2584                          "can't be the current target\n",
2585                          target->tap->dotted_name);
2586                 return ERROR_FAIL;
2587         }
2588
2589         cmd->ctx->current_target = target;
2590         if (cmd->ctx->current_target_override)
2591                 cmd->ctx->current_target_override = target;
2592
2593         return ERROR_OK;
2594 }
2595
2596
2597 COMMAND_HANDLER(handle_targets_command)
2598 {
2599         int retval = ERROR_OK;
2600         if (CMD_ARGC == 1) {
2601                 retval = find_target(CMD, CMD_ARGV[0]);
2602                 if (retval == ERROR_OK) {
2603                         /* we're done! */
2604                         return retval;
2605                 }
2606         }
2607
2608         struct target *target = all_targets;
2609         command_print(CMD, "    TargetName         Type       Endian TapName            State       ");
2610         command_print(CMD, "--  ------------------ ---------- ------ ------------------ ------------");
2611         while (target) {
2612                 const char *state;
2613                 char marker = ' ';
2614
2615                 if (target->tap->enabled)
2616                         state = target_state_name(target);
2617                 else
2618                         state = "tap-disabled";
2619
2620                 if (CMD_CTX->current_target == target)
2621                         marker = '*';
2622
2623                 /* keep columns lined up to match the headers above */
2624                 command_print(CMD,
2625                                 "%2d%c %-18s %-10s %-6s %-18s %s",
2626                                 target->target_number,
2627                                 marker,
2628                                 target_name(target),
2629                                 target_type_name(target),
2630                                 Jim_Nvp_value2name_simple(nvp_target_endian,
2631                                         target->endianness)->name,
2632                                 target->tap->dotted_name,
2633                                 state);
2634                 target = target->next;
2635         }
2636
2637         return retval;
2638 }
2639
2640 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2641
2642 static int powerDropout;
2643 static int srstAsserted;
2644
2645 static int runPowerRestore;
2646 static int runPowerDropout;
2647 static int runSrstAsserted;
2648 static int runSrstDeasserted;
2649
2650 static int sense_handler(void)
2651 {
2652         static int prevSrstAsserted;
2653         static int prevPowerdropout;
2654
2655         int retval = jtag_power_dropout(&powerDropout);
2656         if (retval != ERROR_OK)
2657                 return retval;
2658
2659         int powerRestored;
2660         powerRestored = prevPowerdropout && !powerDropout;
2661         if (powerRestored)
2662                 runPowerRestore = 1;
2663
2664         int64_t current = timeval_ms();
2665         static int64_t lastPower;
2666         bool waitMore = lastPower + 2000 > current;
2667         if (powerDropout && !waitMore) {
2668                 runPowerDropout = 1;
2669                 lastPower = current;
2670         }
2671
2672         retval = jtag_srst_asserted(&srstAsserted);
2673         if (retval != ERROR_OK)
2674                 return retval;
2675
2676         int srstDeasserted;
2677         srstDeasserted = prevSrstAsserted && !srstAsserted;
2678
2679         static int64_t lastSrst;
2680         waitMore = lastSrst + 2000 > current;
2681         if (srstDeasserted && !waitMore) {
2682                 runSrstDeasserted = 1;
2683                 lastSrst = current;
2684         }
2685
2686         if (!prevSrstAsserted && srstAsserted)
2687                 runSrstAsserted = 1;
2688
2689         prevSrstAsserted = srstAsserted;
2690         prevPowerdropout = powerDropout;
2691
2692         if (srstDeasserted || powerRestored) {
2693                 /* Other than logging the event we can't do anything here.
2694                  * Issuing a reset is a particularly bad idea as we might
2695                  * be inside a reset already.
2696                  */
2697         }
2698
2699         return ERROR_OK;
2700 }
2701
2702 /* process target state changes */
2703 static int handle_target(void *priv)
2704 {
2705         Jim_Interp *interp = (Jim_Interp *)priv;
2706         int retval = ERROR_OK;
2707
2708         if (!is_jtag_poll_safe()) {
2709                 /* polling is disabled currently */
2710                 return ERROR_OK;
2711         }
2712
2713         /* we do not want to recurse here... */
2714         static int recursive;
2715         if (!recursive) {
2716                 recursive = 1;
2717                 sense_handler();
2718                 /* danger! running these procedures can trigger srst assertions and power dropouts.
2719                  * We need to avoid an infinite loop/recursion here and we do that by
2720                  * clearing the flags after running these events.
2721                  */
2722                 int did_something = 0;
2723                 if (runSrstAsserted) {
2724                         LOG_INFO("srst asserted detected, running srst_asserted proc.");
2725                         Jim_Eval(interp, "srst_asserted");
2726                         did_something = 1;
2727                 }
2728                 if (runSrstDeasserted) {
2729                         Jim_Eval(interp, "srst_deasserted");
2730                         did_something = 1;
2731                 }
2732                 if (runPowerDropout) {
2733                         LOG_INFO("Power dropout detected, running power_dropout proc.");
2734                         Jim_Eval(interp, "power_dropout");
2735                         did_something = 1;
2736                 }
2737                 if (runPowerRestore) {
2738                         Jim_Eval(interp, "power_restore");
2739                         did_something = 1;
2740                 }
2741
2742                 if (did_something) {
2743                         /* clear detect flags */
2744                         sense_handler();
2745                 }
2746
2747                 /* clear action flags */
2748
2749                 runSrstAsserted = 0;
2750                 runSrstDeasserted = 0;
2751                 runPowerRestore = 0;
2752                 runPowerDropout = 0;
2753
2754                 recursive = 0;
2755         }
2756
2757         /* Poll targets for state changes unless that's globally disabled.
2758          * Skip targets that are currently disabled.
2759          */
2760         for (struct target *target = all_targets;
2761                         is_jtag_poll_safe() && target;
2762                         target = target->next) {
2763
2764                 if (!target_was_examined(target))
2765                         continue;
2766
2767                 if (!target->tap->enabled)
2768                         continue;
2769
2770                 if (target->backoff.times > target->backoff.count) {
2771                         /* do not poll this time as we failed previously */
2772                         target->backoff.count++;
2773                         continue;
2774                 }
2775                 target->backoff.count = 0;
2776
2777                 /* only poll target if we've got power and srst isn't asserted */
2778                 if (!powerDropout && !srstAsserted) {
2779                         /* polling may fail silently until the target has been examined */
2780                         retval = target_poll(target);
2781                         if (retval != ERROR_OK) {
2782                                 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2783                                 if (target->backoff.times * polling_interval < 5000) {
2784                                         target->backoff.times *= 2;
2785                                         target->backoff.times++;
2786                                 }
2787
2788                                 /* Tell GDB to halt the debugger. This allows the user to
2789                                  * run monitor commands to handle the situation.
2790                                  */
2791                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2792                         }
2793                         if (target->backoff.times > 0) {
2794                                 LOG_USER("Polling target %s failed, trying to reexamine", target_name(target));
2795                                 target_reset_examined(target);
2796                                 retval = target_examine_one(target);
2797                                 /* Target examination could have failed due to unstable connection,
2798                                  * but we set the examined flag anyway to repoll it later */
2799                                 if (retval != ERROR_OK) {
2800                                         target->examined = true;
2801                                         LOG_USER("Examination failed, GDB will be halted. Polling again in %dms",
2802                                                  target->backoff.times * polling_interval);
2803                                         return retval;
2804                                 }
2805                         }
2806
2807                         /* Since we succeeded, we reset backoff count */
2808                         target->backoff.times = 0;
2809                 }
2810         }
2811
2812         return retval;
2813 }
2814
2815 COMMAND_HANDLER(handle_reg_command)
2816 {
2817         struct target *target;
2818         struct reg *reg = NULL;
2819         unsigned count = 0;
2820         char *value;
2821
2822         LOG_DEBUG("-");
2823
2824         target = get_current_target(CMD_CTX);
2825
2826         /* list all available registers for the current target */
2827         if (CMD_ARGC == 0) {
2828                 struct reg_cache *cache = target->reg_cache;
2829
2830                 count = 0;
2831                 while (cache) {
2832                         unsigned i;
2833
2834                         command_print(CMD, "===== %s", cache->name);
2835
2836                         for (i = 0, reg = cache->reg_list;
2837                                         i < cache->num_regs;
2838                                         i++, reg++, count++) {
2839                                 if (reg->exist == false)
2840                                         continue;
2841                                 /* only print cached values if they are valid */
2842                                 if (reg->valid) {
2843                                         value = buf_to_str(reg->value,
2844                                                         reg->size, 16);
2845                                         command_print(CMD,
2846                                                         "(%i) %s (/%" PRIu32 "): 0x%s%s",
2847                                                         count, reg->name,
2848                                                         reg->size, value,
2849                                                         reg->dirty
2850                                                                 ? " (dirty)"
2851                                                                 : "");
2852                                         free(value);
2853                                 } else {
2854                                         command_print(CMD, "(%i) %s (/%" PRIu32 ")",
2855                                                           count, reg->name,
2856                                                           reg->size) ;
2857                                 }
2858                         }
2859                         cache = cache->next;
2860                 }
2861
2862                 return ERROR_OK;
2863         }
2864
2865         /* access a single register by its ordinal number */
2866         if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2867                 unsigned num;
2868                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2869
2870                 struct reg_cache *cache = target->reg_cache;
2871                 count = 0;
2872                 while (cache) {
2873                         unsigned i;
2874                         for (i = 0; i < cache->num_regs; i++) {
2875                                 if (count++ == num) {
2876                                         reg = &cache->reg_list[i];
2877                                         break;
2878                                 }
2879                         }
2880                         if (reg)
2881                                 break;
2882                         cache = cache->next;
2883                 }
2884
2885                 if (!reg) {
2886                         command_print(CMD, "%i is out of bounds, the current target "
2887                                         "has only %i registers (0 - %i)", num, count, count - 1);
2888                         return ERROR_OK;
2889                 }
2890         } else {
2891                 /* access a single register by its name */
2892                 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2893
2894                 if (!reg)
2895                         goto not_found;
2896         }
2897
2898         assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2899
2900         if (!reg->exist)
2901                 goto not_found;
2902
2903         /* display a register */
2904         if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2905                         && (CMD_ARGV[1][0] <= '9')))) {
2906                 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2907                         reg->valid = 0;
2908
2909                 if (reg->valid == 0)
2910                         reg->type->get(reg);
2911                 value = buf_to_str(reg->value, reg->size, 16);
2912                 command_print(CMD, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2913                 free(value);
2914                 return ERROR_OK;
2915         }
2916
2917         /* set register value */
2918         if (CMD_ARGC == 2) {
2919                 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2920                 if (buf == NULL)
2921                         return ERROR_FAIL;
2922                 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2923
2924                 reg->type->set(reg, buf);
2925
2926                 value = buf_to_str(reg->value, reg->size, 16);
2927                 command_print(CMD, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2928                 free(value);
2929
2930                 free(buf);
2931
2932                 return ERROR_OK;
2933         }
2934
2935         return ERROR_COMMAND_SYNTAX_ERROR;
2936
2937 not_found:
2938         command_print(CMD, "register %s not found in current target", CMD_ARGV[0]);
2939         return ERROR_OK;
2940 }
2941
2942 COMMAND_HANDLER(handle_poll_command)
2943 {
2944         int retval = ERROR_OK;
2945         struct target *target = get_current_target(CMD_CTX);
2946
2947         if (CMD_ARGC == 0) {
2948                 command_print(CMD, "background polling: %s",
2949                                 jtag_poll_get_enabled() ? "on" : "off");
2950                 command_print(CMD, "TAP: %s (%s)",
2951                                 target->tap->dotted_name,
2952                                 target->tap->enabled ? "enabled" : "disabled");
2953                 if (!target->tap->enabled)
2954                         return ERROR_OK;
2955                 retval = target_poll(target);
2956                 if (retval != ERROR_OK)
2957                         return retval;
2958                 retval = target_arch_state(target);
2959                 if (retval != ERROR_OK)
2960                         return retval;
2961         } else if (CMD_ARGC == 1) {
2962                 bool enable;
2963                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2964                 jtag_poll_set_enabled(enable);
2965         } else
2966                 return ERROR_COMMAND_SYNTAX_ERROR;
2967
2968         return retval;
2969 }
2970
2971 COMMAND_HANDLER(handle_wait_halt_command)
2972 {
2973         if (CMD_ARGC > 1)
2974                 return ERROR_COMMAND_SYNTAX_ERROR;
2975
2976         unsigned ms = DEFAULT_HALT_TIMEOUT;
2977         if (1 == CMD_ARGC) {
2978                 int retval = parse_uint(CMD_ARGV[0], &ms);
2979                 if (ERROR_OK != retval)
2980                         return ERROR_COMMAND_SYNTAX_ERROR;
2981         }
2982
2983         struct target *target = get_current_target(CMD_CTX);
2984         return target_wait_state(target, TARGET_HALTED, ms);
2985 }
2986
2987 /* wait for target state to change. The trick here is to have a low
2988  * latency for short waits and not to suck up all the CPU time
2989  * on longer waits.
2990  *
2991  * After 500ms, keep_alive() is invoked
2992  */
2993 int target_wait_state(struct target *target, enum target_state state, int ms)
2994 {
2995         int retval;
2996         int64_t then = 0, cur;
2997         bool once = true;
2998
2999         for (;;) {
3000                 retval = target_poll(target);
3001                 if (retval != ERROR_OK)
3002                         return retval;
3003                 if (target->state == state)
3004                         break;
3005                 cur = timeval_ms();
3006                 if (once) {
3007                         once = false;
3008                         then = timeval_ms();
3009                         LOG_DEBUG("waiting for target %s...",
3010                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
3011                 }
3012
3013                 if (cur-then > 500)
3014                         keep_alive();
3015
3016                 if ((cur-then) > ms) {
3017                         LOG_ERROR("timed out while waiting for target %s",
3018                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
3019                         return ERROR_FAIL;
3020                 }
3021         }
3022
3023         return ERROR_OK;
3024 }
3025
3026 COMMAND_HANDLER(handle_halt_command)
3027 {
3028         LOG_DEBUG("-");
3029
3030         struct target *target = get_current_target(CMD_CTX);
3031
3032         target->verbose_halt_msg = true;
3033
3034         int retval = target_halt(target);
3035         if (ERROR_OK != retval)
3036                 return retval;
3037
3038         if (CMD_ARGC == 1) {
3039                 unsigned wait_local;
3040                 retval = parse_uint(CMD_ARGV[0], &wait_local);
3041                 if (ERROR_OK != retval)
3042                         return ERROR_COMMAND_SYNTAX_ERROR;
3043                 if (!wait_local)
3044                         return ERROR_OK;
3045         }
3046
3047         return CALL_COMMAND_HANDLER(handle_wait_halt_command);
3048 }
3049
3050 COMMAND_HANDLER(handle_soft_reset_halt_command)
3051 {
3052         struct target *target = get_current_target(CMD_CTX);
3053
3054         LOG_USER("requesting target halt and executing a soft reset");
3055
3056         target_soft_reset_halt(target);
3057
3058         return ERROR_OK;
3059 }
3060
3061 COMMAND_HANDLER(handle_reset_command)
3062 {
3063         if (CMD_ARGC > 1)
3064                 return ERROR_COMMAND_SYNTAX_ERROR;
3065
3066         enum target_reset_mode reset_mode = RESET_RUN;
3067         if (CMD_ARGC == 1) {
3068                 const Jim_Nvp *n;
3069                 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
3070                 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
3071                         return ERROR_COMMAND_SYNTAX_ERROR;
3072                 reset_mode = n->value;
3073         }
3074
3075         /* reset *all* targets */
3076         return target_process_reset(CMD, reset_mode);
3077 }
3078
3079
3080 COMMAND_HANDLER(handle_resume_command)
3081 {
3082         int current = 1;
3083         if (CMD_ARGC > 1)
3084                 return ERROR_COMMAND_SYNTAX_ERROR;
3085
3086         struct target *target = get_current_target(CMD_CTX);
3087
3088         /* with no CMD_ARGV, resume from current pc, addr = 0,
3089          * with one arguments, addr = CMD_ARGV[0],
3090          * handle breakpoints, not debugging */
3091         target_addr_t addr = 0;
3092         if (CMD_ARGC == 1) {
3093                 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3094                 current = 0;
3095         }
3096
3097         return target_resume(target, current, addr, 1, 0);
3098 }
3099
3100 COMMAND_HANDLER(handle_step_command)
3101 {
3102         if (CMD_ARGC > 1)
3103                 return ERROR_COMMAND_SYNTAX_ERROR;
3104
3105         LOG_DEBUG("-");
3106
3107         /* with no CMD_ARGV, step from current pc, addr = 0,
3108          * with one argument addr = CMD_ARGV[0],
3109          * handle breakpoints, debugging */
3110         target_addr_t addr = 0;
3111         int current_pc = 1;
3112         if (CMD_ARGC == 1) {
3113                 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3114                 current_pc = 0;
3115         }
3116
3117         struct target *target = get_current_target(CMD_CTX);
3118
3119         return target->type->step(target, current_pc, addr, 1);
3120 }
3121
3122 static void handle_md_output(struct command_invocation *cmd,
3123                 struct target *target, target_addr_t address, unsigned size,
3124                 unsigned count, const uint8_t *buffer)
3125 {
3126         const unsigned line_bytecnt = 32;
3127         unsigned line_modulo = line_bytecnt / size;
3128
3129         char output[line_bytecnt * 4 + 1];
3130         unsigned output_len = 0;
3131
3132         const char *value_fmt;
3133         switch (size) {
3134         case 8:
3135                 value_fmt = "%16.16"PRIx64" ";
3136                 break;
3137         case 4:
3138                 value_fmt = "%8.8"PRIx64" ";
3139                 break;
3140         case 2:
3141                 value_fmt = "%4.4"PRIx64" ";
3142                 break;
3143         case 1:
3144                 value_fmt = "%2.2"PRIx64" ";
3145                 break;
3146         default:
3147                 /* "can't happen", caller checked */
3148                 LOG_ERROR("invalid memory read size: %u", size);
3149                 return;
3150         }
3151
3152         for (unsigned i = 0; i < count; i++) {
3153                 if (i % line_modulo == 0) {
3154                         output_len += snprintf(output + output_len,
3155                                         sizeof(output) - output_len,
3156                                         TARGET_ADDR_FMT ": ",
3157                                         (address + (i * size)));
3158                 }
3159
3160                 uint64_t value = 0;
3161                 const uint8_t *value_ptr = buffer + i * size;
3162                 switch (size) {
3163                 case 8:
3164                         value = target_buffer_get_u64(target, value_ptr);
3165                         break;
3166                 case 4:
3167                         value = target_buffer_get_u32(target, value_ptr);
3168                         break;
3169                 case 2:
3170                         value = target_buffer_get_u16(target, value_ptr);
3171                         break;
3172                 case 1:
3173                         value = *value_ptr;
3174                 }
3175                 output_len += snprintf(output + output_len,
3176                                 sizeof(output) - output_len,
3177                                 value_fmt, value);
3178
3179                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
3180                         command_print(cmd, "%s", output);
3181                         output_len = 0;
3182                 }
3183         }
3184 }
3185
3186 COMMAND_HANDLER(handle_md_command)
3187 {
3188         if (CMD_ARGC < 1)
3189                 return ERROR_COMMAND_SYNTAX_ERROR;
3190
3191         unsigned size = 0;
3192         switch (CMD_NAME[2]) {
3193         case 'd':
3194                 size = 8;
3195                 break;
3196         case 'w':
3197                 size = 4;
3198                 break;
3199         case 'h':
3200                 size = 2;
3201                 break;
3202         case 'b':
3203                 size = 1;
3204                 break;
3205         default:
3206                 return ERROR_COMMAND_SYNTAX_ERROR;
3207         }
3208
3209         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3210         int (*fn)(struct target *target,
3211                         target_addr_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
3212         if (physical) {
3213                 CMD_ARGC--;
3214                 CMD_ARGV++;
3215                 fn = target_read_phys_memory;
3216         } else
3217                 fn = target_read_memory;
3218         if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
3219                 return ERROR_COMMAND_SYNTAX_ERROR;
3220
3221         target_addr_t address;
3222         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3223
3224         unsigned count = 1;
3225         if (CMD_ARGC == 2)
3226                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
3227
3228         uint8_t *buffer = calloc(count, size);
3229         if (buffer == NULL) {
3230                 LOG_ERROR("Failed to allocate md read buffer");
3231                 return ERROR_FAIL;
3232         }
3233
3234         struct target *target = get_current_target(CMD_CTX);
3235         int retval = fn(target, address, size, count, buffer);
3236         if (ERROR_OK == retval)
3237                 handle_md_output(CMD, target, address, size, count, buffer);
3238
3239         free(buffer);
3240
3241         return retval;
3242 }
3243
3244 typedef int (*target_write_fn)(struct target *target,
3245                 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
3246
3247 static int target_fill_mem(struct target *target,
3248                 target_addr_t address,
3249                 target_write_fn fn,
3250                 unsigned data_size,
3251                 /* value */
3252                 uint64_t b,
3253                 /* count */
3254                 unsigned c)
3255 {
3256         /* We have to write in reasonably large chunks to be able
3257          * to fill large memory areas with any sane speed */
3258         const unsigned chunk_size = 16384;
3259         uint8_t *target_buf = malloc(chunk_size * data_size);
3260         if (target_buf == NULL) {
3261                 LOG_ERROR("Out of memory");
3262                 return ERROR_FAIL;
3263         }
3264
3265         for (unsigned i = 0; i < chunk_size; i++) {
3266                 switch (data_size) {
3267                 case 8:
3268                         target_buffer_set_u64(target, target_buf + i * data_size, b);
3269                         break;
3270                 case 4:
3271                         target_buffer_set_u32(target, target_buf + i * data_size, b);
3272                         break;
3273                 case 2:
3274                         target_buffer_set_u16(target, target_buf + i * data_size, b);
3275                         break;
3276                 case 1:
3277                         target_buffer_set_u8(target, target_buf + i * data_size, b);
3278                         break;
3279                 default:
3280                         exit(-1);
3281                 }
3282         }
3283
3284         int retval = ERROR_OK;
3285
3286         for (unsigned x = 0; x < c; x += chunk_size) {
3287                 unsigned current;
3288                 current = c - x;
3289                 if (current > chunk_size)
3290                         current = chunk_size;
3291                 retval = fn(target, address + x * data_size, data_size, current, target_buf);
3292                 if (retval != ERROR_OK)
3293                         break;
3294                 /* avoid GDB timeouts */
3295                 keep_alive();
3296         }
3297         free(target_buf);
3298
3299         return retval;
3300 }
3301
3302
3303 COMMAND_HANDLER(handle_mw_command)
3304 {
3305         if (CMD_ARGC < 2)
3306                 return ERROR_COMMAND_SYNTAX_ERROR;
3307         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3308         target_write_fn fn;
3309         if (physical) {
3310                 CMD_ARGC--;
3311                 CMD_ARGV++;
3312                 fn = target_write_phys_memory;
3313         } else
3314                 fn = target_write_memory;
3315         if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
3316                 return ERROR_COMMAND_SYNTAX_ERROR;
3317
3318         target_addr_t address;
3319         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3320
3321         target_addr_t value;
3322         COMMAND_PARSE_ADDRESS(CMD_ARGV[1], value);
3323
3324         unsigned count = 1;
3325         if (CMD_ARGC == 3)
3326                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
3327
3328         struct target *target = get_current_target(CMD_CTX);
3329         unsigned wordsize;
3330         switch (CMD_NAME[2]) {
3331                 case 'd':
3332                         wordsize = 8;
3333                         break;
3334                 case 'w':
3335                         wordsize = 4;
3336                         break;
3337                 case 'h':
3338                         wordsize = 2;
3339                         break;
3340                 case 'b':
3341                         wordsize = 1;
3342                         break;
3343                 default:
3344                         return ERROR_COMMAND_SYNTAX_ERROR;
3345         }
3346
3347         return target_fill_mem(target, address, fn, wordsize, value, count);
3348 }
3349
3350 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
3351                 target_addr_t *min_address, target_addr_t *max_address)
3352 {
3353         if (CMD_ARGC < 1 || CMD_ARGC > 5)
3354                 return ERROR_COMMAND_SYNTAX_ERROR;
3355
3356         /* a base address isn't always necessary,
3357          * default to 0x0 (i.e. don't relocate) */
3358         if (CMD_ARGC >= 2) {
3359                 target_addr_t addr;
3360                 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3361                 image->base_address = addr;
3362                 image->base_address_set = 1;
3363         } else
3364                 image->base_address_set = 0;
3365
3366         image->start_address_set = 0;
3367
3368         if (CMD_ARGC >= 4)
3369                 COMMAND_PARSE_ADDRESS(CMD_ARGV[3], *min_address);
3370         if (CMD_ARGC == 5) {
3371                 COMMAND_PARSE_ADDRESS(CMD_ARGV[4], *max_address);
3372                 /* use size (given) to find max (required) */
3373                 *max_address += *min_address;
3374         }
3375
3376         if (*min_address > *max_address)
3377                 return ERROR_COMMAND_SYNTAX_ERROR;
3378
3379         return ERROR_OK;
3380 }
3381
3382 COMMAND_HANDLER(handle_load_image_command)
3383 {
3384         uint8_t *buffer;
3385         size_t buf_cnt;
3386         uint32_t image_size;
3387         target_addr_t min_address = 0;
3388         target_addr_t max_address = -1;
3389         int i;
3390         struct image image;
3391
3392         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
3393                         &image, &min_address, &max_address);
3394         if (ERROR_OK != retval)
3395                 return retval;
3396
3397         struct target *target = get_current_target(CMD_CTX);
3398
3399         struct duration bench;
3400         duration_start(&bench);
3401
3402         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
3403                 return ERROR_FAIL;
3404
3405         image_size = 0x0;
3406         retval = ERROR_OK;
3407         for (i = 0; i < image.num_sections; i++) {
3408                 buffer = malloc(image.sections[i].size);
3409                 if (buffer == NULL) {
3410                         command_print(CMD,
3411                                                   "error allocating buffer for section (%d bytes)",
3412                                                   (int)(image.sections[i].size));
3413                         retval = ERROR_FAIL;
3414                         break;
3415                 }
3416
3417                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3418                 if (retval != ERROR_OK) {
3419                         free(buffer);
3420                         break;
3421                 }
3422
3423                 uint32_t offset = 0;
3424                 uint32_t length = buf_cnt;
3425
3426                 /* DANGER!!! beware of unsigned comparision here!!! */
3427
3428                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
3429                                 (image.sections[i].base_address < max_address)) {
3430
3431                         if (image.sections[i].base_address < min_address) {
3432                                 /* clip addresses below */
3433                                 offset += min_address-image.sections[i].base_address;
3434                                 length -= offset;
3435                         }
3436
3437                         if (image.sections[i].base_address + buf_cnt > max_address)
3438                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
3439
3440                         retval = target_write_buffer(target,
3441                                         image.sections[i].base_address + offset, length, buffer + offset);
3442                         if (retval != ERROR_OK) {
3443                                 free(buffer);
3444                                 break;
3445                         }
3446                         image_size += length;
3447                         command_print(CMD, "%u bytes written at address " TARGET_ADDR_FMT "",
3448                                         (unsigned int)length,
3449                                         image.sections[i].base_address + offset);
3450                 }
3451
3452                 free(buffer);
3453         }
3454
3455         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3456                 command_print(CMD, "downloaded %" PRIu32 " bytes "
3457                                 "in %fs (%0.3f KiB/s)", image_size,
3458                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3459         }
3460
3461         image_close(&image);
3462
3463         return retval;
3464
3465 }
3466
3467 COMMAND_HANDLER(handle_dump_image_command)
3468 {
3469         struct fileio *fileio;
3470         uint8_t *buffer;
3471         int retval, retvaltemp;
3472         target_addr_t address, size;
3473         struct duration bench;
3474         struct target *target = get_current_target(CMD_CTX);
3475
3476         if (CMD_ARGC != 3)
3477                 return ERROR_COMMAND_SYNTAX_ERROR;
3478
3479         COMMAND_PARSE_ADDRESS(CMD_ARGV[1], address);
3480         COMMAND_PARSE_ADDRESS(CMD_ARGV[2], size);
3481
3482         uint32_t buf_size = (size > 4096) ? 4096 : size;
3483         buffer = malloc(buf_size);
3484         if (!buffer)
3485                 return ERROR_FAIL;
3486
3487         retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
3488         if (retval != ERROR_OK) {
3489                 free(buffer);
3490                 return retval;
3491         }
3492
3493         duration_start(&bench);
3494
3495         while (size > 0) {
3496                 size_t size_written;
3497                 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
3498                 retval = target_read_buffer(target, address, this_run_size, buffer);
3499                 if (retval != ERROR_OK)
3500                         break;
3501
3502                 retval = fileio_write(fileio, this_run_size, buffer, &size_written);
3503                 if (retval != ERROR_OK)
3504                         break;
3505
3506                 size -= this_run_size;
3507                 address += this_run_size;
3508         }
3509
3510         free(buffer);
3511
3512         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3513                 size_t filesize;
3514                 retval = fileio_size(fileio, &filesize);
3515                 if (retval != ERROR_OK)
3516                         return retval;
3517                 command_print(CMD,
3518                                 "dumped %zu bytes in %fs (%0.3f KiB/s)", filesize,
3519                                 duration_elapsed(&bench), duration_kbps(&bench, filesize));
3520         }
3521
3522         retvaltemp = fileio_close(fileio);
3523         if (retvaltemp != ERROR_OK)
3524                 return retvaltemp;
3525
3526         return retval;
3527 }
3528
3529 enum verify_mode {
3530         IMAGE_TEST = 0,
3531         IMAGE_VERIFY = 1,
3532         IMAGE_CHECKSUM_ONLY = 2
3533 };
3534
3535 static COMMAND_HELPER(handle_verify_image_command_internal, enum verify_mode verify)
3536 {
3537         uint8_t *buffer;
3538         size_t buf_cnt;
3539         uint32_t image_size;
3540         int i;
3541         int retval;
3542         uint32_t checksum = 0;
3543         uint32_t mem_checksum = 0;
3544
3545         struct image image;
3546
3547         struct target *target = get_current_target(CMD_CTX);
3548
3549         if (CMD_ARGC < 1)
3550                 return ERROR_COMMAND_SYNTAX_ERROR;
3551
3552         if (!target) {
3553                 LOG_ERROR("no target selected");
3554                 return ERROR_FAIL;
3555         }
3556
3557         struct duration bench;
3558         duration_start(&bench);
3559
3560         if (CMD_ARGC >= 2) {
3561                 target_addr_t addr;
3562                 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3563                 image.base_address = addr;
3564                 image.base_address_set = 1;
3565         } else {
3566                 image.base_address_set = 0;
3567                 image.base_address = 0x0;
3568         }
3569
3570         image.start_address_set = 0;
3571
3572         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
3573         if (retval != ERROR_OK)
3574                 return retval;
3575
3576         image_size = 0x0;
3577         int diffs = 0;
3578         retval = ERROR_OK;
3579         for (i = 0; i < image.num_sections; i++) {
3580                 buffer = malloc(image.sections[i].size);
3581                 if (buffer == NULL) {
3582                         command_print(CMD,
3583                                         "error allocating buffer for section (%d bytes)",
3584                                         (int)(image.sections[i].size));
3585                         break;
3586                 }
3587                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3588                 if (retval != ERROR_OK) {
3589                         free(buffer);
3590                         break;
3591                 }
3592
3593                 if (verify >= IMAGE_VERIFY) {
3594                         /* calculate checksum of image */
3595                         retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3596                         if (retval != ERROR_OK) {
3597                                 free(buffer);
3598                                 break;
3599                         }
3600
3601                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3602                         if (retval != ERROR_OK) {
3603                                 free(buffer);
3604                                 break;
3605                         }
3606                         if ((checksum != mem_checksum) && (verify == IMAGE_CHECKSUM_ONLY)) {
3607                                 LOG_ERROR("checksum mismatch");
3608                                 free(buffer);
3609                                 retval = ERROR_FAIL;
3610                                 goto done;
3611                         }
3612                         if (checksum != mem_checksum) {
3613                                 /* failed crc checksum, fall back to a binary compare */
3614                                 uint8_t *data;
3615
3616                                 if (diffs == 0)
3617                                         LOG_ERROR("checksum mismatch - attempting binary compare");
3618
3619                                 data = malloc(buf_cnt);
3620
3621                                 /* Can we use 32bit word accesses? */
3622                                 int size = 1;
3623                                 int count = buf_cnt;
3624                                 if ((count % 4) == 0) {
3625                                         size *= 4;
3626                                         count /= 4;
3627                                 }
3628                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3629                                 if (retval == ERROR_OK) {
3630                                         uint32_t t;
3631                                         for (t = 0; t < buf_cnt; t++) {
3632                                                 if (data[t] != buffer[t]) {
3633                                                         command_print(CMD,
3634                                                                                   "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3635                                                                                   diffs,
3636                                                                                   (unsigned)(t + image.sections[i].base_address),
3637                                                                                   data[t],
3638                                                                                   buffer[t]);
3639                                                         if (diffs++ >= 127) {
3640                                                                 command_print(CMD, "More than 128 errors, the rest are not printed.");
3641                                                                 free(data);
3642                                                                 free(buffer);
3643                                                                 goto done;
3644                                                         }
3645                                                 }
3646                                                 keep_alive();
3647                                         }
3648                                 }
3649                                 free(data);
3650                         }
3651                 } else {
3652                         command_print(CMD, "address " TARGET_ADDR_FMT " length 0x%08zx",
3653                                                   image.sections[i].base_address,
3654                                                   buf_cnt);
3655                 }
3656
3657                 free(buffer);
3658                 image_size += buf_cnt;
3659         }
3660         if (diffs > 0)
3661                 command_print(CMD, "No more differences found.");
3662 done:
3663         if (diffs > 0)
3664                 retval = ERROR_FAIL;
3665         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3666                 command_print(CMD, "verified %" PRIu32 " bytes "
3667                                 "in %fs (%0.3f KiB/s)", image_size,
3668                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3669         }
3670
3671         image_close(&image);
3672
3673         return retval;
3674 }
3675
3676 COMMAND_HANDLER(handle_verify_image_checksum_command)
3677 {
3678         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_CHECKSUM_ONLY);
3679 }
3680
3681 COMMAND_HANDLER(handle_verify_image_command)
3682 {
3683         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_VERIFY);
3684 }
3685
3686 COMMAND_HANDLER(handle_test_image_command)
3687 {
3688         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_TEST);
3689 }
3690
3691 static int handle_bp_command_list(struct command_invocation *cmd)
3692 {
3693         struct target *target = get_current_target(cmd->ctx);
3694         struct breakpoint *breakpoint = target->breakpoints;
3695         while (breakpoint) {
3696                 if (breakpoint->type == BKPT_SOFT) {
3697                         char *buf = buf_to_str(breakpoint->orig_instr,
3698                                         breakpoint->length, 16);
3699                         command_print(cmd, "IVA breakpoint: " TARGET_ADDR_FMT ", 0x%x, %i, 0x%s",
3700                                         breakpoint->address,
3701                                         breakpoint->length,
3702                                         breakpoint->set, buf);
3703                         free(buf);
3704                 } else {
3705                         if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3706                                 command_print(cmd, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3707                                                         breakpoint->asid,
3708                                                         breakpoint->length, breakpoint->set);
3709                         else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3710                                 command_print(cmd, "Hybrid breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %i",
3711                                                         breakpoint->address,
3712                                                         breakpoint->length, breakpoint->set);
3713                                 command_print(cmd, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3714                                                         breakpoint->asid);
3715                         } else
3716                                 command_print(cmd, "Breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %i",
3717                                                         breakpoint->address,
3718                                                         breakpoint->length, breakpoint->set);
3719                 }
3720
3721                 breakpoint = breakpoint->next;
3722         }
3723         return ERROR_OK;
3724 }
3725
3726 static int handle_bp_command_set(struct command_invocation *cmd,
3727                 target_addr_t addr, uint32_t asid, uint32_t length, int hw)
3728 {
3729         struct target *target = get_current_target(cmd->ctx);
3730         int retval;
3731
3732         if (asid == 0) {
3733                 retval = breakpoint_add(target, addr, length, hw);
3734                 /* error is always logged in breakpoint_add(), do not print it again */
3735                 if (ERROR_OK == retval)
3736                         command_print(cmd, "breakpoint set at " TARGET_ADDR_FMT "", addr);
3737
3738         } else if (addr == 0) {
3739                 if (target->type->add_context_breakpoint == NULL) {
3740                         LOG_ERROR("Context breakpoint not available");
3741                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
3742                 }
3743                 retval = context_breakpoint_add(target, asid, length, hw);
3744                 /* error is always logged in context_breakpoint_add(), do not print it again */
3745                 if (ERROR_OK == retval)
3746                         command_print(cmd, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3747
3748         } else {
3749                 if (target->type->add_hybrid_breakpoint == NULL) {
3750                         LOG_ERROR("Hybrid breakpoint not available");
3751                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
3752                 }
3753                 retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3754                 /* error is always logged in hybrid_breakpoint_add(), do not print it again */
3755                 if (ERROR_OK == retval)
3756                         command_print(cmd, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3757         }
3758         return retval;
3759 }
3760
3761 COMMAND_HANDLER(handle_bp_command)
3762 {
3763         target_addr_t addr;
3764         uint32_t asid;
3765         uint32_t length;
3766         int hw = BKPT_SOFT;
3767
3768         switch (CMD_ARGC) {
3769                 case 0:
3770                         return handle_bp_command_list(CMD);
3771
3772                 case 2:
3773                         asid = 0;
3774                         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3775                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3776                         return handle_bp_command_set(CMD, addr, asid, length, hw);
3777
3778                 case 3:
3779                         if (strcmp(CMD_ARGV[2], "hw") == 0) {
3780                                 hw = BKPT_HARD;
3781                                 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3782                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3783                                 asid = 0;
3784                                 return handle_bp_command_set(CMD, addr, asid, length, hw);
3785                         } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
3786                                 hw = BKPT_HARD;
3787                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3788                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3789                                 addr = 0;
3790                                 return handle_bp_command_set(CMD, addr, asid, length, hw);
3791                         }
3792                         /* fallthrough */
3793                 case 4:
3794                         hw = BKPT_HARD;
3795                         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3796                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3797                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3798                         return handle_bp_command_set(CMD, addr, asid, length, hw);
3799
3800                 default:
3801                         return ERROR_COMMAND_SYNTAX_ERROR;
3802         }
3803 }
3804
3805 COMMAND_HANDLER(handle_rbp_command)
3806 {
3807         if (CMD_ARGC != 1)
3808                 return ERROR_COMMAND_SYNTAX_ERROR;
3809
3810         target_addr_t addr;
3811         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3812
3813         struct target *target = get_current_target(CMD_CTX);
3814         breakpoint_remove(target, addr);
3815
3816         return ERROR_OK;
3817 }
3818
3819 COMMAND_HANDLER(handle_wp_command)
3820 {
3821         struct target *target = get_current_target(CMD_CTX);
3822
3823         if (CMD_ARGC == 0) {
3824                 struct watchpoint *watchpoint = target->watchpoints;
3825
3826                 while (watchpoint) {
3827                         command_print(CMD, "address: " TARGET_ADDR_FMT
3828                                         ", len: 0x%8.8" PRIx32
3829                                         ", r/w/a: %i, value: 0x%8.8" PRIx32
3830                                         ", mask: 0x%8.8" PRIx32,
3831                                         watchpoint->address,
3832                                         watchpoint->length,
3833                                         (int)watchpoint->rw,
3834                                         watchpoint->value,
3835                                         watchpoint->mask);
3836                         watchpoint = watchpoint->next;
3837                 }
3838                 return ERROR_OK;
3839         }
3840
3841         enum watchpoint_rw type = WPT_ACCESS;
3842         uint32_t addr = 0;
3843         uint32_t length = 0;
3844         uint32_t data_value = 0x0;
3845         uint32_t data_mask = 0xffffffff;
3846
3847         switch (CMD_ARGC) {
3848         case 5:
3849                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3850                 /* fall through */
3851         case 4:
3852                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3853                 /* fall through */
3854         case 3:
3855                 switch (CMD_ARGV[2][0]) {
3856                 case 'r':
3857                         type = WPT_READ;
3858                         break;
3859                 case 'w':
3860                         type = WPT_WRITE;
3861                         break;
3862                 case 'a':
3863                         type = WPT_ACCESS;
3864                         break;
3865                 default:
3866                         LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3867                         return ERROR_COMMAND_SYNTAX_ERROR;
3868                 }
3869                 /* fall through */
3870         case 2:
3871                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3872                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3873                 break;
3874
3875         default:
3876                 return ERROR_COMMAND_SYNTAX_ERROR;
3877         }
3878
3879         int retval = watchpoint_add(target, addr, length, type,
3880                         data_value, data_mask);
3881         if (ERROR_OK != retval)
3882                 LOG_ERROR("Failure setting watchpoints");
3883
3884         return retval;
3885 }
3886
3887 COMMAND_HANDLER(handle_rwp_command)
3888 {
3889         if (CMD_ARGC != 1)
3890                 return ERROR_COMMAND_SYNTAX_ERROR;
3891
3892         uint32_t addr;
3893         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3894
3895         struct target *target = get_current_target(CMD_CTX);
3896         watchpoint_remove(target, addr);
3897
3898         return ERROR_OK;
3899 }
3900
3901 /**
3902  * Translate a virtual address to a physical address.
3903  *
3904  * The low-level target implementation must have logged a detailed error
3905  * which is forwarded to telnet/GDB session.
3906  */
3907 COMMAND_HANDLER(handle_virt2phys_command)
3908 {
3909         if (CMD_ARGC != 1)
3910                 return ERROR_COMMAND_SYNTAX_ERROR;
3911
3912         target_addr_t va;
3913         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], va);
3914         target_addr_t pa;
3915
3916         struct target *target = get_current_target(CMD_CTX);
3917         int retval = target->type->virt2phys(target, va, &pa);
3918         if (retval == ERROR_OK)
3919                 command_print(CMD, "Physical address " TARGET_ADDR_FMT "", pa);
3920
3921         return retval;
3922 }
3923
3924 static void writeData(FILE *f, const void *data, size_t len)
3925 {
3926         size_t written = fwrite(data, 1, len, f);
3927         if (written != len)
3928                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3929 }
3930
3931 static void writeLong(FILE *f, int l, struct target *target)
3932 {
3933         uint8_t val[4];
3934
3935         target_buffer_set_u32(target, val, l);
3936         writeData(f, val, 4);
3937 }
3938
3939 static void writeString(FILE *f, char *s)
3940 {
3941         writeData(f, s, strlen(s));
3942 }
3943
3944 typedef unsigned char UNIT[2];  /* unit of profiling */
3945
3946 /* Dump a gmon.out histogram file. */
3947 static void write_gmon(uint32_t *samples, uint32_t sampleNum, const char *filename, bool with_range,
3948                         uint32_t start_address, uint32_t end_address, struct target *target, uint32_t duration_ms)
3949 {
3950         uint32_t i;
3951         FILE *f = fopen(filename, "w");
3952         if (f == NULL)
3953                 return;
3954         writeString(f, "gmon");
3955         writeLong(f, 0x00000001, target); /* Version */
3956         writeLong(f, 0, target); /* padding */
3957         writeLong(f, 0, target); /* padding */
3958         writeLong(f, 0, target); /* padding */
3959
3960         uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
3961         writeData(f, &zero, 1);
3962
3963         /* figure out bucket size */
3964         uint32_t min;
3965         uint32_t max;
3966         if (with_range) {
3967                 min = start_address;
3968                 max = end_address;
3969         } else {
3970                 min = samples[0];
3971                 max = samples[0];
3972                 for (i = 0; i < sampleNum; i++) {
3973                         if (min > samples[i])
3974                                 min = samples[i];
3975                         if (max < samples[i])
3976                                 max = samples[i];
3977                 }
3978
3979                 /* max should be (largest sample + 1)
3980                  * Refer to binutils/gprof/hist.c (find_histogram_for_pc) */
3981                 max++;
3982         }
3983
3984         int addressSpace = max - min;
3985         assert(addressSpace >= 2);
3986
3987         /* FIXME: What is the reasonable number of buckets?
3988          * The profiling result will be more accurate if there are enough buckets. */
3989         static const uint32_t maxBuckets = 128 * 1024; /* maximum buckets. */
3990         uint32_t numBuckets = addressSpace / sizeof(UNIT);
3991         if (numBuckets > maxBuckets)
3992                 numBuckets = maxBuckets;
3993         int *buckets = malloc(sizeof(int) * numBuckets);
3994         if (buckets == NULL) {
3995                 fclose(f);
3996                 return;
3997         }
3998         memset(buckets, 0, sizeof(int) * numBuckets);
3999         for (i = 0; i < sampleNum; i++) {
4000                 uint32_t address = samples[i];
4001
4002                 if ((address < min) || (max <= address))
4003                         continue;
4004
4005                 long long a = address - min;
4006                 long long b = numBuckets;
4007                 long long c = addressSpace;
4008                 int index_t = (a * b) / c; /* danger!!!! int32 overflows */
4009                 buckets[index_t]++;
4010         }
4011
4012         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
4013         writeLong(f, min, target);                      /* low_pc */
4014         writeLong(f, max, target);                      /* high_pc */
4015         writeLong(f, numBuckets, target);       /* # of buckets */
4016         float sample_rate = sampleNum / (duration_ms / 1000.0);
4017         writeLong(f, sample_rate, target);
4018         writeString(f, "seconds");
4019         for (i = 0; i < (15-strlen("seconds")); i++)
4020                 writeData(f, &zero, 1);
4021         writeString(f, "s");
4022
4023         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
4024
4025         char *data = malloc(2 * numBuckets);
4026         if (data != NULL) {
4027                 for (i = 0; i < numBuckets; i++) {
4028                         int val;
4029                         val = buckets[i];
4030                         if (val > 65535)
4031                                 val = 65535;
4032                         data[i * 2] = val&0xff;
4033                         data[i * 2 + 1] = (val >> 8) & 0xff;
4034                 }
4035                 free(buckets);
4036                 writeData(f, data, numBuckets * 2);
4037                 free(data);
4038         } else
4039                 free(buckets);
4040
4041         fclose(f);
4042 }
4043
4044 /* profiling samples the CPU PC as quickly as OpenOCD is able,
4045  * which will be used as a random sampling of PC */
4046 COMMAND_HANDLER(handle_profile_command)
4047 {
4048         struct target *target = get_current_target(CMD_CTX);
4049
4050         if ((CMD_ARGC != 2) && (CMD_ARGC != 4))
4051                 return ERROR_COMMAND_SYNTAX_ERROR;
4052
4053         const uint32_t MAX_PROFILE_SAMPLE_NUM = 10000;
4054         uint32_t offset;
4055         uint32_t num_of_samples;
4056         int retval = ERROR_OK;
4057
4058         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], offset);
4059
4060         uint32_t *samples = malloc(sizeof(uint32_t) * MAX_PROFILE_SAMPLE_NUM);
4061         if (samples == NULL) {
4062                 LOG_ERROR("No memory to store samples.");
4063                 return ERROR_FAIL;
4064         }
4065
4066         uint64_t timestart_ms = timeval_ms();
4067         /**
4068          * Some cores let us sample the PC without the
4069          * annoying halt/resume step; for example, ARMv7 PCSR.
4070          * Provide a way to use that more efficient mechanism.
4071          */
4072         retval = target_profiling(target, samples, MAX_PROFILE_SAMPLE_NUM,
4073                                 &num_of_samples, offset);
4074         if (retval != ERROR_OK) {
4075                 free(samples);
4076                 return retval;
4077         }
4078         uint32_t duration_ms = timeval_ms() - timestart_ms;
4079
4080         assert(num_of_samples <= MAX_PROFILE_SAMPLE_NUM);
4081
4082         retval = target_poll(target);
4083         if (retval != ERROR_OK) {
4084                 free(samples);
4085                 return retval;
4086         }
4087         if (target->state == TARGET_RUNNING) {
4088                 retval = target_halt(target);
4089                 if (retval != ERROR_OK) {
4090                         free(samples);
4091                         return retval;
4092                 }
4093         }
4094
4095         retval = target_poll(target);
4096         if (retval != ERROR_OK) {
4097                 free(samples);
4098                 return retval;
4099         }
4100
4101         uint32_t start_address = 0;
4102         uint32_t end_address = 0;
4103         bool with_range = false;
4104         if (CMD_ARGC == 4) {
4105                 with_range = true;
4106                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], start_address);
4107                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], end_address);
4108         }
4109
4110         write_gmon(samples, num_of_samples, CMD_ARGV[1],
4111                    with_range, start_address, end_address, target, duration_ms);
4112         command_print(CMD, "Wrote %s", CMD_ARGV[1]);
4113
4114         free(samples);
4115         return retval;
4116 }
4117
4118 static int new_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t val)
4119 {
4120         char *namebuf;
4121         Jim_Obj *nameObjPtr, *valObjPtr;
4122         int result;
4123
4124         namebuf = alloc_printf("%s(%d)", varname, idx);
4125         if (!namebuf)
4126                 return JIM_ERR;
4127
4128         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
4129         valObjPtr = Jim_NewIntObj(interp, val);
4130         if (!nameObjPtr || !valObjPtr) {
4131                 free(namebuf);
4132                 return JIM_ERR;
4133         }
4134
4135         Jim_IncrRefCount(nameObjPtr);
4136         Jim_IncrRefCount(valObjPtr);
4137         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
4138         Jim_DecrRefCount(interp, nameObjPtr);
4139         Jim_DecrRefCount(interp, valObjPtr);
4140         free(namebuf);
4141         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
4142         return result;
4143 }
4144
4145 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4146 {
4147         struct command_context *context;
4148         struct target *target;
4149
4150         context = current_command_context(interp);
4151         assert(context != NULL);
4152
4153         target = get_current_target(context);
4154         if (target == NULL) {
4155                 LOG_ERROR("mem2array: no current target");
4156                 return JIM_ERR;
4157         }
4158
4159         return target_mem2array(interp, target, argc - 1, argv + 1);
4160 }
4161
4162 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
4163 {
4164         long l;
4165         uint32_t width;
4166         int len;
4167         uint32_t addr;
4168         uint32_t count;
4169         uint32_t v;
4170         const char *varname;
4171         const char *phys;
4172         bool is_phys;
4173         int  n, e, retval;
4174         uint32_t i;
4175
4176         /* argv[1] = name of array to receive the data
4177          * argv[2] = desired width
4178          * argv[3] = memory address
4179          * argv[4] = count of times to read
4180          */
4181
4182         if (argc < 4 || argc > 5) {
4183                 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems [phys]");
4184                 return JIM_ERR;
4185         }
4186         varname = Jim_GetString(argv[0], &len);
4187         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
4188
4189         e = Jim_GetLong(interp, argv[1], &l);
4190         width = l;
4191         if (e != JIM_OK)
4192                 return e;
4193
4194         e = Jim_GetLong(interp, argv[2], &l);
4195         addr = l;
4196         if (e != JIM_OK)
4197                 return e;
4198         e = Jim_GetLong(interp, argv[3], &l);
4199         len = l;
4200         if (e != JIM_OK)
4201                 return e;
4202         is_phys = false;
4203         if (argc > 4) {
4204                 phys = Jim_GetString(argv[4], &n);
4205                 if (!strncmp(phys, "phys", n))
4206                         is_phys = true;
4207                 else
4208                         return JIM_ERR;
4209         }
4210         switch (width) {
4211                 case 8:
4212                         width = 1;
4213                         break;
4214                 case 16:
4215                         width = 2;
4216                         break;
4217                 case 32:
4218                         width = 4;
4219                         break;
4220                 default:
4221                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4222                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
4223                         return JIM_ERR;
4224         }
4225         if (len == 0) {
4226                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4227                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
4228                 return JIM_ERR;
4229         }
4230         if ((addr + (len * width)) < addr) {
4231                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4232                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
4233                 return JIM_ERR;
4234         }
4235         /* absurd transfer size? */
4236         if (len > 65536) {
4237                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4238                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
4239                 return JIM_ERR;
4240         }
4241
4242         if ((width == 1) ||
4243                 ((width == 2) && ((addr & 1) == 0)) ||
4244                 ((width == 4) && ((addr & 3) == 0))) {
4245                 /* all is well */
4246         } else {
4247                 char buf[100];
4248                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4249                 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
4250                                 addr,
4251                                 width);
4252                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
4253                 return JIM_ERR;
4254         }
4255
4256         /* Transfer loop */
4257
4258         /* index counter */
4259         n = 0;
4260
4261         size_t buffersize = 4096;
4262         uint8_t *buffer = malloc(buffersize);
4263         if (buffer == NULL)
4264                 return JIM_ERR;
4265
4266         /* assume ok */
4267         e = JIM_OK;
4268         while (len) {
4269                 /* Slurp... in buffer size chunks */
4270
4271                 count = len; /* in objects.. */
4272                 if (count > (buffersize / width))
4273                         count = (buffersize / width);
4274
4275                 if (is_phys)
4276                         retval = target_read_phys_memory(target, addr, width, count, buffer);
4277                 else
4278                         retval = target_read_memory(target, addr, width, count, buffer);
4279                 if (retval != ERROR_OK) {
4280                         /* BOO !*/
4281                         LOG_ERROR("mem2array: Read @ 0x%08" PRIx32 ", w=%" PRId32 ", cnt=%" PRId32 ", failed",
4282                                           addr,
4283                                           width,
4284                                           count);
4285                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4286                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
4287                         e = JIM_ERR;
4288                         break;
4289                 } else {
4290                         v = 0; /* shut up gcc */
4291                         for (i = 0; i < count ; i++, n++) {
4292                                 switch (width) {
4293                                         case 4:
4294                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
4295                                                 break;
4296                                         case 2:
4297                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
4298                                                 break;
4299                                         case 1:
4300                                                 v = buffer[i] & 0x0ff;
4301                                                 break;
4302                                 }
4303                                 new_int_array_element(interp, varname, n, v);
4304                         }
4305                         len -= count;
4306                         addr += count * width;
4307                 }
4308         }
4309
4310         free(buffer);
4311
4312         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4313
4314         return e;
4315 }
4316
4317 static int get_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t *val)
4318 {
4319         char *namebuf;
4320         Jim_Obj *nameObjPtr, *valObjPtr;
4321         int result;
4322         long l;
4323
4324         namebuf = alloc_printf("%s(%d)", varname, idx);
4325         if (!namebuf)
4326                 return JIM_ERR;
4327
4328         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
4329         if (!nameObjPtr) {
4330                 free(namebuf);
4331                 return JIM_ERR;
4332         }
4333
4334         Jim_IncrRefCount(nameObjPtr);
4335         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
4336         Jim_DecrRefCount(interp, nameObjPtr);
4337         free(namebuf);
4338         if (valObjPtr == NULL)
4339                 return JIM_ERR;
4340
4341         result = Jim_GetLong(interp, valObjPtr, &l);
4342         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
4343         *val = l;
4344         return result;
4345 }
4346
4347 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4348 {
4349         struct command_context *context;
4350         struct target *target;
4351
4352         context = current_command_context(interp);
4353         assert(context != NULL);
4354
4355         target = get_current_target(context);
4356         if (target == NULL) {
4357                 LOG_ERROR("array2mem: no current target");
4358                 return JIM_ERR;
4359         }
4360
4361         return target_array2mem(interp, target, argc-1, argv + 1);
4362 }
4363
4364 static int target_array2mem(Jim_Interp *interp, struct target *target,
4365                 int argc, Jim_Obj *const *argv)
4366 {
4367         long l;
4368         uint32_t width;
4369         int len;
4370         uint32_t addr;
4371         uint32_t count;
4372         uint32_t v;
4373         const char *varname;
4374         const char *phys;
4375         bool is_phys;
4376         int  n, e, retval;
4377         uint32_t i;
4378
4379         /* argv[1] = name of array to get the data
4380          * argv[2] = desired width
4381          * argv[3] = memory address
4382          * argv[4] = count to write
4383          */
4384         if (argc < 4 || argc > 5) {
4385                 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems [phys]");
4386                 return JIM_ERR;
4387         }
4388         varname = Jim_GetString(argv[0], &len);
4389         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
4390
4391         e = Jim_GetLong(interp, argv[1], &l);
4392         width = l;
4393         if (e != JIM_OK)
4394                 return e;
4395
4396         e = Jim_GetLong(interp, argv[2], &l);
4397         addr = l;
4398         if (e != JIM_OK)
4399                 return e;
4400         e = Jim_GetLong(interp, argv[3], &l);
4401         len = l;
4402         if (e != JIM_OK)
4403                 return e;
4404         is_phys = false;
4405         if (argc > 4) {
4406                 phys = Jim_GetString(argv[4], &n);
4407                 if (!strncmp(phys, "phys", n))
4408                         is_phys = true;
4409                 else
4410                         return JIM_ERR;
4411         }
4412         switch (width) {
4413                 case 8:
4414                         width = 1;
4415                         break;
4416                 case 16:
4417                         width = 2;
4418                         break;
4419                 case 32:
4420                         width = 4;
4421                         break;
4422                 default:
4423                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4424                         Jim_AppendStrings(interp, Jim_GetResult(interp),
4425                                         "Invalid width param, must be 8/16/32", NULL);
4426                         return JIM_ERR;
4427         }
4428         if (len == 0) {
4429                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4430                 Jim_AppendStrings(interp, Jim_GetResult(interp),
4431                                 "array2mem: zero width read?", NULL);
4432                 return JIM_ERR;
4433         }
4434         if ((addr + (len * width)) < addr) {
4435                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4436                 Jim_AppendStrings(interp, Jim_GetResult(interp),
4437                                 "array2mem: addr + len - wraps to zero?", NULL);
4438                 return JIM_ERR;
4439         }
4440         /* absurd transfer size? */
4441         if (len > 65536) {
4442                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4443                 Jim_AppendStrings(interp, Jim_GetResult(interp),
4444                                 "array2mem: absurd > 64K item request", NULL);
4445                 return JIM_ERR;
4446         }
4447
4448         if ((width == 1) ||
4449                 ((width == 2) && ((addr & 1) == 0)) ||
4450                 ((width == 4) && ((addr & 3) == 0))) {
4451                 /* all is well */
4452         } else {
4453                 char buf[100];
4454                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4455                 sprintf(buf, "array2mem address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
4456                                 addr,
4457                                 width);
4458                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
4459                 return JIM_ERR;
4460         }
4461
4462         /* Transfer loop */
4463
4464         /* index counter */
4465         n = 0;
4466         /* assume ok */
4467         e = JIM_OK;
4468
4469         size_t buffersize = 4096;
4470         uint8_t *buffer = malloc(buffersize);
4471         if (buffer == NULL)
4472                 return JIM_ERR;
4473
4474         while (len) {
4475                 /* Slurp... in buffer size chunks */
4476
4477                 count = len; /* in objects.. */
4478                 if (count > (buffersize / width))
4479                         count = (buffersize / width);
4480
4481                 v = 0; /* shut up gcc */
4482                 for (i = 0; i < count; i++, n++) {
4483                         get_int_array_element(interp, varname, n, &v);
4484                         switch (width) {
4485                         case 4:
4486                                 target_buffer_set_u32(target, &buffer[i * width], v);
4487                                 break;
4488                         case 2:
4489                                 target_buffer_set_u16(target, &buffer[i * width], v);
4490                                 break;
4491                         case 1:
4492                                 buffer[i] = v & 0x0ff;
4493                                 break;
4494                         }
4495                 }
4496                 len -= count;
4497
4498                 if (is_phys)
4499                         retval = target_write_phys_memory(target, addr, width, count, buffer);
4500                 else
4501                         retval = target_write_memory(target, addr, width, count, buffer);
4502                 if (retval != ERROR_OK) {
4503                         /* BOO !*/
4504                         LOG_ERROR("array2mem: Write @ 0x%08" PRIx32 ", w=%" PRId32 ", cnt=%" PRId32 ", failed",
4505                                           addr,
4506                                           width,
4507                                           count);
4508                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4509                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
4510                         e = JIM_ERR;
4511                         break;
4512                 }
4513                 addr += count * width;
4514         }
4515
4516         free(buffer);
4517
4518         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4519
4520         return e;
4521 }
4522
4523 /* FIX? should we propagate errors here rather than printing them
4524  * and continuing?
4525  */
4526 void target_handle_event(struct target *target, enum target_event e)
4527 {
4528         struct target_event_action *teap;
4529
4530         for (teap = target->event_action; teap != NULL; teap = teap->next) {
4531                 if (teap->event == e) {
4532                         LOG_DEBUG("target(%d): %s (%s) event: %d (%s) action: %s",
4533                                            target->target_number,
4534                                            target_name(target),
4535                                            target_type_name(target),
4536                                            e,
4537                                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
4538                                            Jim_GetString(teap->body, NULL));
4539
4540                         /* Override current target by the target an event
4541                          * is issued from (lot of scripts need it).
4542                          * Return back to previous override as soon
4543                          * as the handler processing is done */
4544                         struct command_context *cmd_ctx = current_command_context(teap->interp);
4545                         struct target *saved_target_override = cmd_ctx->current_target_override;
4546                         cmd_ctx->current_target_override = target;
4547
4548                         if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK) {
4549                                 Jim_MakeErrorMessage(teap->interp);
4550                                 LOG_USER("Error executing event %s on target %s:\n%s",
4551                                                   Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
4552                                                   target_name(target),
4553                                                   Jim_GetString(Jim_GetResult(teap->interp), NULL));
4554                                 /* clean both error code and stacktrace before return */
4555                                 Jim_Eval(teap->interp, "error \"\" \"\"");
4556                         }
4557
4558                         cmd_ctx->current_target_override = saved_target_override;
4559                 }
4560         }
4561 }
4562
4563 /**
4564  * Returns true only if the target has a handler for the specified event.
4565  */
4566 bool target_has_event_action(struct target *target, enum target_event event)
4567 {
4568         struct target_event_action *teap;
4569
4570         for (teap = target->event_action; teap != NULL; teap = teap->next) {
4571                 if (teap->event == event)
4572                         return true;
4573         }
4574         return false;
4575 }
4576
4577 enum target_cfg_param {
4578         TCFG_TYPE,
4579         TCFG_EVENT,
4580         TCFG_WORK_AREA_VIRT,
4581         TCFG_WORK_AREA_PHYS,
4582         TCFG_WORK_AREA_SIZE,
4583         TCFG_WORK_AREA_BACKUP,
4584         TCFG_ENDIAN,
4585         TCFG_COREID,
4586         TCFG_CHAIN_POSITION,
4587         TCFG_DBGBASE,
4588         TCFG_RTOS,
4589         TCFG_DEFER_EXAMINE,
4590         TCFG_GDB_PORT,
4591 };
4592
4593 static Jim_Nvp nvp_config_opts[] = {
4594         { .name = "-type",             .value = TCFG_TYPE },
4595         { .name = "-event",            .value = TCFG_EVENT },
4596         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
4597         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
4598         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
4599         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
4600         { .name = "-endian" ,          .value = TCFG_ENDIAN },
4601         { .name = "-coreid",           .value = TCFG_COREID },
4602         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
4603         { .name = "-dbgbase",          .value = TCFG_DBGBASE },
4604         { .name = "-rtos",             .value = TCFG_RTOS },
4605         { .name = "-defer-examine",    .value = TCFG_DEFER_EXAMINE },
4606         { .name = "-gdb-port",         .value = TCFG_GDB_PORT },
4607         { .name = NULL, .value = -1 }
4608 };
4609
4610 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
4611 {
4612         Jim_Nvp *n;
4613         Jim_Obj *o;
4614         jim_wide w;
4615         int e;
4616
4617         /* parse config or cget options ... */
4618         while (goi->argc > 0) {
4619                 Jim_SetEmptyResult(goi->interp);
4620                 /* Jim_GetOpt_Debug(goi); */
4621
4622                 if (target->type->target_jim_configure) {
4623                         /* target defines a configure function */
4624                         /* target gets first dibs on parameters */
4625                         e = (*(target->type->target_jim_configure))(target, goi);
4626                         if (e == JIM_OK) {
4627                                 /* more? */
4628                                 continue;
4629                         }
4630                         if (e == JIM_ERR) {
4631                                 /* An error */
4632                                 return e;
4633                         }
4634                         /* otherwise we 'continue' below */
4635                 }
4636                 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
4637                 if (e != JIM_OK) {
4638                         Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
4639                         return e;
4640                 }
4641                 switch (n->value) {
4642                 case TCFG_TYPE:
4643                         /* not setable */
4644                         if (goi->isconfigure) {
4645                                 Jim_SetResultFormatted(goi->interp,
4646                                                 "not settable: %s", n->name);
4647                                 return JIM_ERR;
4648                         } else {
4649 no_params:
4650                                 if (goi->argc != 0) {
4651                                         Jim_WrongNumArgs(goi->interp,
4652                                                         goi->argc, goi->argv,
4653                                                         "NO PARAMS");
4654                                         return JIM_ERR;
4655                                 }
4656                         }
4657                         Jim_SetResultString(goi->interp,
4658                                         target_type_name(target), -1);
4659                         /* loop for more */
4660                         break;
4661                 case TCFG_EVENT:
4662                         if (goi->argc == 0) {
4663                                 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
4664                                 return JIM_ERR;
4665                         }
4666
4667                         e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
4668                         if (e != JIM_OK) {
4669                                 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
4670                                 return e;
4671                         }
4672
4673                         if (goi->isconfigure) {
4674                                 if (goi->argc != 1) {
4675                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
4676                                         return JIM_ERR;
4677                                 }
4678                         } else {
4679                                 if (goi->argc != 0) {
4680                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
4681                                         return JIM_ERR;
4682                                 }
4683                         }
4684
4685                         {
4686                                 struct target_event_action *teap;
4687
4688                                 teap = target->event_action;
4689                                 /* replace existing? */
4690                                 while (teap) {
4691                                         if (teap->event == (enum target_event)n->value)
4692                                                 break;
4693                                         teap = teap->next;
4694                                 }
4695
4696                                 if (goi->isconfigure) {
4697                                         bool replace = true;
4698                                         if (teap == NULL) {
4699                                                 /* create new */
4700                                                 teap = calloc(1, sizeof(*teap));
4701                                                 replace = false;
4702                                         }
4703                                         teap->event = n->value;
4704                                         teap->interp = goi->interp;
4705                                         Jim_GetOpt_Obj(goi, &o);
4706                                         if (teap->body)
4707                                                 Jim_DecrRefCount(teap->interp, teap->body);
4708                                         teap->body  = Jim_DuplicateObj(goi->interp, o);
4709                                         /*
4710                                          * FIXME:
4711                                          *     Tcl/TK - "tk events" have a nice feature.
4712                                          *     See the "BIND" command.
4713                                          *    We should support that here.
4714                                          *     You can specify %X and %Y in the event code.
4715                                          *     The idea is: %T - target name.
4716                                          *     The idea is: %N - target number
4717                                          *     The idea is: %E - event name.
4718                                          */
4719                                         Jim_IncrRefCount(teap->body);
4720
4721                                         if (!replace) {
4722                                                 /* add to head of event list */
4723                                                 teap->next = target->event_action;
4724                                                 target->event_action = teap;
4725                                         }
4726                                         Jim_SetEmptyResult(goi->interp);
4727                                 } else {
4728                                         /* get */
4729                                         if (teap == NULL)
4730                                                 Jim_SetEmptyResult(goi->interp);
4731                                         else
4732                                                 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
4733                                 }
4734                         }
4735                         /* loop for more */
4736                         break;
4737
4738                 case TCFG_WORK_AREA_VIRT:
4739                         if (goi->isconfigure) {
4740                                 target_free_all_working_areas(target);
4741                                 e = Jim_GetOpt_Wide(goi, &w);
4742                                 if (e != JIM_OK)
4743                                         return e;
4744                                 target->working_area_virt = w;
4745                                 target->working_area_virt_spec = true;
4746                         } else {
4747                                 if (goi->argc != 0)
4748                                         goto no_params;
4749                         }
4750                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
4751                         /* loop for more */
4752                         break;
4753
4754                 case TCFG_WORK_AREA_PHYS:
4755                         if (goi->isconfigure) {
4756                                 target_free_all_working_areas(target);
4757                                 e = Jim_GetOpt_Wide(goi, &w);
4758                                 if (e != JIM_OK)
4759                                         return e;
4760                                 target->working_area_phys = w;
4761                                 target->working_area_phys_spec = true;
4762                         } else {
4763                                 if (goi->argc != 0)
4764                                         goto no_params;
4765                         }
4766                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
4767                         /* loop for more */
4768                         break;
4769
4770                 case TCFG_WORK_AREA_SIZE:
4771                         if (goi->isconfigure) {
4772                                 target_free_all_working_areas(target);
4773                                 e = Jim_GetOpt_Wide(goi, &w);
4774                                 if (e != JIM_OK)
4775                                         return e;
4776                                 target->working_area_size = w;
4777                         } else {
4778                                 if (goi->argc != 0)
4779                                         goto no_params;
4780                         }
4781                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4782                         /* loop for more */
4783                         break;
4784
4785                 case TCFG_WORK_AREA_BACKUP:
4786                         if (goi->isconfigure) {
4787                                 target_free_all_working_areas(target);
4788                                 e = Jim_GetOpt_Wide(goi, &w);
4789                                 if (e != JIM_OK)
4790                                         return e;
4791                                 /* make this exactly 1 or 0 */
4792                                 target->backup_working_area = (!!w);
4793                         } else {
4794                                 if (goi->argc != 0)
4795                                         goto no_params;
4796                         }
4797                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
4798                         /* loop for more e*/
4799                         break;
4800
4801
4802                 case TCFG_ENDIAN:
4803                         if (goi->isconfigure) {
4804                                 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
4805                                 if (e != JIM_OK) {
4806                                         Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
4807                                         return e;
4808                                 }
4809                                 target->endianness = n->value;
4810                         } else {
4811                                 if (goi->argc != 0)
4812                                         goto no_params;
4813                         }
4814                         n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4815                         if (n->name == NULL) {
4816                                 target->endianness = TARGET_LITTLE_ENDIAN;
4817                                 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4818                         }
4819                         Jim_SetResultString(goi->interp, n->name, -1);
4820                         /* loop for more */
4821                         break;
4822
4823                 case TCFG_COREID:
4824                         if (goi->isconfigure) {
4825                                 e = Jim_GetOpt_Wide(goi, &w);
4826                                 if (e != JIM_OK)
4827                                         return e;
4828                                 target->coreid = (int32_t)w;
4829                         } else {
4830                                 if (goi->argc != 0)
4831                                         goto no_params;
4832                         }
4833                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->coreid));
4834                         /* loop for more */
4835                         break;
4836
4837                 case TCFG_CHAIN_POSITION:
4838                         if (goi->isconfigure) {
4839                                 Jim_Obj *o_t;
4840                                 struct jtag_tap *tap;
4841
4842                                 if (target->has_dap) {
4843                                         Jim_SetResultString(goi->interp,
4844                                                 "target requires -dap parameter instead of -chain-position!", -1);
4845                                         return JIM_ERR;
4846                                 }
4847
4848                                 target_free_all_working_areas(target);
4849                                 e = Jim_GetOpt_Obj(goi, &o_t);
4850                                 if (e != JIM_OK)
4851                                         return e;
4852                                 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
4853                                 if (tap == NULL)
4854                                         return JIM_ERR;
4855                                 target->tap = tap;
4856                                 target->tap_configured = true;
4857                         } else {
4858                                 if (goi->argc != 0)
4859                                         goto no_params;
4860                         }
4861                         Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
4862                         /* loop for more e*/
4863                         break;
4864                 case TCFG_DBGBASE:
4865                         if (goi->isconfigure) {
4866                                 e = Jim_GetOpt_Wide(goi, &w);
4867                                 if (e != JIM_OK)
4868                                         return e;
4869                                 target->dbgbase = (uint32_t)w;
4870                                 target->dbgbase_set = true;
4871                         } else {
4872                                 if (goi->argc != 0)
4873                                         goto no_params;
4874                         }
4875                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
4876                         /* loop for more */
4877                         break;
4878                 case TCFG_RTOS:
4879                         /* RTOS */
4880                         {
4881                                 int result = rtos_create(goi, target);
4882                                 if (result != JIM_OK)
4883                                         return result;
4884                         }
4885                         /* loop for more */
4886                         break;
4887
4888                 case TCFG_DEFER_EXAMINE:
4889                         /* DEFER_EXAMINE */
4890                         target->defer_examine = true;
4891                         /* loop for more */
4892                         break;
4893
4894                 case TCFG_GDB_PORT:
4895                         if (goi->isconfigure) {
4896                                 const char *s;
4897                                 e = Jim_GetOpt_String(goi, &s, NULL);
4898                                 if (e != JIM_OK)
4899                                         return e;
4900                                 target->gdb_port_override = strdup(s);
4901                         } else {
4902                                 if (goi->argc != 0)
4903                                         goto no_params;
4904                         }
4905                         Jim_SetResultString(goi->interp, target->gdb_port_override ? : "undefined", -1);
4906                         /* loop for more */
4907                         break;
4908                 }
4909         } /* while (goi->argc) */
4910
4911
4912                 /* done - we return */
4913         return JIM_OK;
4914 }
4915
4916 static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
4917 {
4918         Jim_GetOptInfo goi;
4919
4920         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4921         goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
4922         if (goi.argc < 1) {
4923                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4924                                  "missing: -option ...");
4925                 return JIM_ERR;
4926         }
4927         struct target *target = Jim_CmdPrivData(goi.interp);
4928         return target_configure(&goi, target);
4929 }
4930
4931 static int jim_target_mem2array(Jim_Interp *interp,
4932                 int argc, Jim_Obj *const *argv)
4933 {
4934         struct target *target = Jim_CmdPrivData(interp);
4935         return target_mem2array(interp, target, argc - 1, argv + 1);
4936 }
4937
4938 static int jim_target_array2mem(Jim_Interp *interp,
4939                 int argc, Jim_Obj *const *argv)
4940 {
4941         struct target *target = Jim_CmdPrivData(interp);
4942         return target_array2mem(interp, target, argc - 1, argv + 1);
4943 }
4944
4945 static int jim_target_tap_disabled(Jim_Interp *interp)
4946 {
4947         Jim_SetResultFormatted(interp, "[TAP is disabled]");
4948         return JIM_ERR;
4949 }
4950
4951 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4952 {
4953         bool allow_defer = false;
4954
4955         Jim_GetOptInfo goi;
4956         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4957         if (goi.argc > 1) {
4958                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4959                 Jim_SetResultFormatted(goi.interp,
4960                                 "usage: %s ['allow-defer']", cmd_name);
4961                 return JIM_ERR;
4962         }
4963         if (goi.argc > 0 &&
4964             strcmp(Jim_GetString(argv[1], NULL), "allow-defer") == 0) {
4965                 /* consume it */
4966                 struct Jim_Obj *obj;
4967                 int e = Jim_GetOpt_Obj(&goi, &obj);
4968                 if (e != JIM_OK)
4969                         return e;
4970                 allow_defer = true;
4971         }
4972
4973         struct target *target = Jim_CmdPrivData(interp);
4974         if (!target->tap->enabled)
4975                 return jim_target_tap_disabled(interp);
4976
4977         if (allow_defer && target->defer_examine) {
4978                 LOG_INFO("Deferring arp_examine of %s", target_name(target));
4979                 LOG_INFO("Use arp_examine command to examine it manually!");
4980                 return JIM_OK;
4981         }
4982
4983         int e = target->type->examine(target);
4984         if (e != ERROR_OK)
4985                 return JIM_ERR;
4986         return JIM_OK;
4987 }
4988
4989 static int jim_target_was_examined(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
4990 {
4991         struct target *target = Jim_CmdPrivData(interp);
4992
4993         Jim_SetResultBool(interp, target_was_examined(target));
4994         return JIM_OK;
4995 }
4996
4997 static int jim_target_examine_deferred(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
4998 {
4999         struct target *target = Jim_CmdPrivData(interp);
5000
5001         Jim_SetResultBool(interp, target->defer_examine);
5002         return JIM_OK;
5003 }
5004
5005 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5006 {
5007         if (argc != 1) {
5008                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5009                 return JIM_ERR;
5010         }
5011         struct target *target = Jim_CmdPrivData(interp);
5012
5013         if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
5014                 return JIM_ERR;
5015
5016         return JIM_OK;
5017 }
5018
5019 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5020 {
5021         if (argc != 1) {
5022                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5023                 return JIM_ERR;
5024         }
5025         struct target *target = Jim_CmdPrivData(interp);
5026         if (!target->tap->enabled)
5027                 return jim_target_tap_disabled(interp);
5028
5029         int e;
5030         if (!(target_was_examined(target)))
5031                 e = ERROR_TARGET_NOT_EXAMINED;
5032         else
5033                 e = target->type->poll(target);
5034         if (e != ERROR_OK)
5035                 return JIM_ERR;
5036         return JIM_OK;
5037 }
5038
5039 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5040 {
5041         Jim_GetOptInfo goi;
5042         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5043
5044         if (goi.argc != 2) {
5045                 Jim_WrongNumArgs(interp, 0, argv,
5046                                 "([tT]|[fF]|assert|deassert) BOOL");
5047                 return JIM_ERR;
5048         }
5049
5050         Jim_Nvp *n;
5051         int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
5052         if (e != JIM_OK) {
5053                 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
5054                 return e;
5055         }
5056         /* the halt or not param */
5057         jim_wide a;
5058         e = Jim_GetOpt_Wide(&goi, &a);
5059         if (e != JIM_OK)
5060                 return e;
5061
5062         struct target *target = Jim_CmdPrivData(goi.interp);
5063         if (!target->tap->enabled)
5064                 return jim_target_tap_disabled(interp);
5065
5066         if (!target->type->assert_reset || !target->type->deassert_reset) {
5067                 Jim_SetResultFormatted(interp,
5068                                 "No target-specific reset for %s",
5069                                 target_name(target));
5070                 return JIM_ERR;
5071         }
5072
5073         if (target->defer_examine)
5074                 target_reset_examined(target);
5075
5076         /* determine if we should halt or not. */
5077         target->reset_halt = !!a;
5078         /* When this happens - all workareas are invalid. */
5079         target_free_all_working_areas_restore(target, 0);
5080
5081         /* do the assert */
5082         if (n->value == NVP_ASSERT)
5083                 e = target->type->assert_reset(target);
5084         else
5085                 e = target->type->deassert_reset(target);
5086         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
5087 }
5088
5089 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5090 {
5091         if (argc != 1) {
5092                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5093                 return JIM_ERR;
5094         }
5095         struct target *target = Jim_CmdPrivData(interp);
5096         if (!target->tap->enabled)
5097                 return jim_target_tap_disabled(interp);
5098         int e = target->type->halt(target);
5099         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
5100 }
5101
5102 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5103 {
5104         Jim_GetOptInfo goi;
5105         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5106
5107         /* params:  <name>  statename timeoutmsecs */
5108         if (goi.argc != 2) {
5109                 const char *cmd_name = Jim_GetString(argv[0], NULL);
5110                 Jim_SetResultFormatted(goi.interp,
5111                                 "%s <state_name> <timeout_in_msec>", cmd_name);
5112                 return JIM_ERR;
5113         }
5114
5115         Jim_Nvp *n;
5116         int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
5117         if (e != JIM_OK) {
5118                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state, 1);
5119                 return e;
5120         }
5121         jim_wide a;
5122         e = Jim_GetOpt_Wide(&goi, &a);
5123         if (e != JIM_OK)
5124                 return e;
5125         struct target *target = Jim_CmdPrivData(interp);
5126         if (!target->tap->enabled)
5127                 return jim_target_tap_disabled(interp);
5128
5129         e = target_wait_state(target, n->value, a);
5130         if (e != ERROR_OK) {
5131                 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
5132                 Jim_SetResultFormatted(goi.interp,
5133                                 "target: %s wait %s fails (%#s) %s",
5134                                 target_name(target), n->name,
5135                                 eObj, target_strerror_safe(e));
5136                 Jim_FreeNewObj(interp, eObj);
5137                 return JIM_ERR;
5138         }
5139         return JIM_OK;
5140 }
5141 /* List for human, Events defined for this target.
5142  * scripts/programs should use 'name cget -event NAME'
5143  */
5144 COMMAND_HANDLER(handle_target_event_list)
5145 {
5146         struct target *target = get_current_target(CMD_CTX);
5147         struct target_event_action *teap = target->event_action;
5148
5149         command_print(CMD, "Event actions for target (%d) %s\n",
5150                                    target->target_number,
5151                                    target_name(target));
5152         command_print(CMD, "%-25s | Body", "Event");
5153         command_print(CMD, "------------------------- | "
5154                         "----------------------------------------");
5155         while (teap) {
5156                 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
5157                 command_print(CMD, "%-25s | %s",
5158                                 opt->name, Jim_GetString(teap->body, NULL));
5159                 teap = teap->next;
5160         }
5161         command_print(CMD, "***END***");
5162         return ERROR_OK;
5163 }
5164 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5165 {
5166         if (argc != 1) {
5167                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5168                 return JIM_ERR;
5169         }
5170         struct target *target = Jim_CmdPrivData(interp);
5171         Jim_SetResultString(interp, target_state_name(target), -1);
5172         return JIM_OK;
5173 }
5174 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5175 {
5176         Jim_GetOptInfo goi;
5177         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5178         if (goi.argc != 1) {
5179                 const char *cmd_name = Jim_GetString(argv[0], NULL);
5180                 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
5181                 return JIM_ERR;
5182         }
5183         Jim_Nvp *n;
5184         int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
5185         if (e != JIM_OK) {
5186                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
5187                 return e;
5188         }
5189         struct target *target = Jim_CmdPrivData(interp);
5190         target_handle_event(target, n->value);
5191         return JIM_OK;
5192 }
5193
5194 static const struct command_registration target_instance_command_handlers[] = {
5195         {
5196                 .name = "configure",
5197                 .mode = COMMAND_CONFIG,
5198                 .jim_handler = jim_target_configure,
5199                 .help  = "configure a new target for use",
5200                 .usage = "[target_attribute ...]",
5201         },
5202         {
5203                 .name = "cget",
5204                 .mode = COMMAND_ANY,
5205                 .jim_handler = jim_target_configure,
5206                 .help  = "returns the specified target attribute",
5207                 .usage = "target_attribute",
5208         },
5209         {
5210                 .name = "mwd",
5211                 .handler = handle_mw_command,
5212                 .mode = COMMAND_EXEC,
5213                 .help = "Write 64-bit word(s) to target memory",
5214                 .usage = "address data [count]",
5215         },
5216         {
5217                 .name = "mww",
5218                 .handler = handle_mw_command,
5219                 .mode = COMMAND_EXEC,
5220                 .help = "Write 32-bit word(s) to target memory",
5221                 .usage = "address data [count]",
5222         },
5223         {
5224                 .name = "mwh",
5225                 .handler = handle_mw_command,
5226                 .mode = COMMAND_EXEC,
5227                 .help = "Write 16-bit half-word(s) to target memory",
5228                 .usage = "address data [count]",
5229         },
5230         {
5231                 .name = "mwb",
5232                 .handler = handle_mw_command,
5233                 .mode = COMMAND_EXEC,
5234                 .help = "Write byte(s) to target memory",
5235                 .usage = "address data [count]",
5236         },
5237         {
5238                 .name = "mdd",
5239                 .handler = handle_md_command,
5240                 .mode = COMMAND_EXEC,
5241                 .help = "Display target memory as 64-bit words",
5242                 .usage = "address [count]",
5243         },
5244         {
5245                 .name = "mdw",
5246                 .handler = handle_md_command,
5247                 .mode = COMMAND_EXEC,
5248                 .help = "Display target memory as 32-bit words",
5249                 .usage = "address [count]",
5250         },
5251         {
5252                 .name = "mdh",
5253                 .handler = handle_md_command,
5254                 .mode = COMMAND_EXEC,
5255                 .help = "Display target memory as 16-bit half-words",
5256                 .usage = "address [count]",
5257         },
5258         {
5259                 .name = "mdb",
5260                 .handler = handle_md_command,
5261                 .mode = COMMAND_EXEC,
5262                 .help = "Display target memory as 8-bit bytes",
5263                 .usage = "address [count]",
5264         },
5265         {
5266                 .name = "array2mem",
5267                 .mode = COMMAND_EXEC,
5268                 .jim_handler = jim_target_array2mem,
5269                 .help = "Writes Tcl array of 8/16/32 bit numbers "
5270                         "to target memory",
5271                 .usage = "arrayname bitwidth address count",
5272         },
5273         {
5274                 .name = "mem2array",
5275                 .mode = COMMAND_EXEC,
5276                 .jim_handler = jim_target_mem2array,
5277                 .help = "Loads Tcl array of 8/16/32 bit numbers "
5278                         "from target memory",
5279                 .usage = "arrayname bitwidth address count",
5280         },
5281         {
5282                 .name = "eventlist",
5283                 .handler = handle_target_event_list,
5284                 .mode = COMMAND_EXEC,
5285                 .help = "displays a table of events defined for this target",
5286                 .usage = "",
5287         },
5288         {
5289                 .name = "curstate",
5290                 .mode = COMMAND_EXEC,
5291                 .jim_handler = jim_target_current_state,
5292                 .help = "displays the current state of this target",
5293         },
5294         {
5295                 .name = "arp_examine",
5296                 .mode = COMMAND_EXEC,
5297                 .jim_handler = jim_target_examine,
5298                 .help = "used internally for reset processing",
5299                 .usage = "['allow-defer']",
5300         },
5301         {
5302                 .name = "was_examined",
5303                 .mode = COMMAND_EXEC,
5304                 .jim_handler = jim_target_was_examined,
5305                 .help = "used internally for reset processing",
5306         },
5307         {
5308                 .name = "examine_deferred",
5309                 .mode = COMMAND_EXEC,
5310                 .jim_handler = jim_target_examine_deferred,
5311                 .help = "used internally for reset processing",
5312         },
5313         {
5314                 .name = "arp_halt_gdb",
5315                 .mode = COMMAND_EXEC,
5316                 .jim_handler = jim_target_halt_gdb,
5317                 .help = "used internally for reset processing to halt GDB",
5318         },
5319         {
5320                 .name = "arp_poll",
5321                 .mode = COMMAND_EXEC,
5322                 .jim_handler = jim_target_poll,
5323                 .help = "used internally for reset processing",
5324         },
5325         {
5326                 .name = "arp_reset",
5327                 .mode = COMMAND_EXEC,
5328                 .jim_handler = jim_target_reset,
5329                 .help = "used internally for reset processing",
5330         },
5331         {
5332                 .name = "arp_halt",
5333                 .mode = COMMAND_EXEC,
5334                 .jim_handler = jim_target_halt,
5335                 .help = "used internally for reset processing",
5336         },
5337         {
5338                 .name = "arp_waitstate",
5339                 .mode = COMMAND_EXEC,
5340                 .jim_handler = jim_target_wait_state,
5341                 .help = "used internally for reset processing",
5342         },
5343         {
5344                 .name = "invoke-event",
5345                 .mode = COMMAND_EXEC,
5346                 .jim_handler = jim_target_invoke_event,
5347                 .help = "invoke handler for specified event",
5348                 .usage = "event_name",
5349         },
5350         COMMAND_REGISTRATION_DONE
5351 };
5352
5353 static int target_create(Jim_GetOptInfo *goi)
5354 {
5355         Jim_Obj *new_cmd;
5356         Jim_Cmd *cmd;
5357         const char *cp;
5358         int e;
5359         int x;
5360         struct target *target;
5361         struct command_context *cmd_ctx;
5362
5363         cmd_ctx = current_command_context(goi->interp);
5364         assert(cmd_ctx != NULL);
5365
5366         if (goi->argc < 3) {
5367                 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
5368                 return JIM_ERR;
5369         }
5370
5371         /* COMMAND */
5372         Jim_GetOpt_Obj(goi, &new_cmd);
5373         /* does this command exist? */
5374         cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
5375         if (cmd) {
5376                 cp = Jim_GetString(new_cmd, NULL);
5377                 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
5378                 return JIM_ERR;
5379         }
5380
5381         /* TYPE */
5382         e = Jim_GetOpt_String(goi, &cp, NULL);
5383         if (e != JIM_OK)
5384                 return e;
5385         struct transport *tr = get_current_transport();
5386         if (tr->override_target) {
5387                 e = tr->override_target(&cp);
5388                 if (e != ERROR_OK) {
5389                         LOG_ERROR("The selected transport doesn't support this target");
5390                         return JIM_ERR;
5391                 }
5392                 LOG_INFO("The selected transport took over low-level target control. The results might differ compared to plain JTAG/SWD");
5393         }
5394         /* now does target type exist */
5395         for (x = 0 ; target_types[x] ; x++) {
5396                 if (0 == strcmp(cp, target_types[x]->name)) {
5397                         /* found */
5398                         break;
5399                 }
5400
5401                 /* check for deprecated name */
5402                 if (target_types[x]->deprecated_name) {
5403                         if (0 == strcmp(cp, target_types[x]->deprecated_name)) {
5404                                 /* found */
5405                                 LOG_WARNING("target name is deprecated use: \'%s\'", target_types[x]->name);
5406                                 break;
5407                         }
5408                 }
5409         }
5410         if (target_types[x] == NULL) {
5411                 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
5412                 for (x = 0 ; target_types[x] ; x++) {
5413                         if (target_types[x + 1]) {
5414                                 Jim_AppendStrings(goi->interp,
5415                                                                    Jim_GetResult(goi->interp),
5416                                                                    target_types[x]->name,
5417                                                                    ", ", NULL);
5418                         } else {
5419                                 Jim_AppendStrings(goi->interp,
5420                                                                    Jim_GetResult(goi->interp),
5421                                                                    " or ",
5422                                                                    target_types[x]->name, NULL);
5423                         }
5424                 }
5425                 return JIM_ERR;
5426         }
5427
5428         /* Create it */
5429         target = calloc(1, sizeof(struct target));
5430         /* set target number */
5431         target->target_number = new_target_number();
5432         cmd_ctx->current_target = target;
5433
5434         /* allocate memory for each unique target type */
5435         target->type = calloc(1, sizeof(struct target_type));
5436
5437         memcpy(target->type, target_types[x], sizeof(struct target_type));
5438
5439         /* will be set by "-endian" */
5440         target->endianness = TARGET_ENDIAN_UNKNOWN;
5441
5442         /* default to first core, override with -coreid */
5443         target->coreid = 0;
5444
5445         target->working_area        = 0x0;
5446         target->working_area_size   = 0x0;
5447         target->working_areas       = NULL;
5448         target->backup_working_area = 0;
5449
5450         target->state               = TARGET_UNKNOWN;
5451         target->debug_reason        = DBG_REASON_UNDEFINED;
5452         target->reg_cache           = NULL;
5453         target->breakpoints         = NULL;
5454         target->watchpoints         = NULL;
5455         target->next                = NULL;
5456         target->arch_info           = NULL;
5457
5458         target->verbose_halt_msg        = true;
5459
5460         target->halt_issued                     = false;
5461
5462         /* initialize trace information */
5463         target->trace_info = calloc(1, sizeof(struct trace));
5464
5465         target->dbgmsg          = NULL;
5466         target->dbg_msg_enabled = 0;
5467
5468         target->endianness = TARGET_ENDIAN_UNKNOWN;
5469
5470         target->rtos = NULL;
5471         target->rtos_auto_detect = false;
5472
5473         target->gdb_port_override = NULL;
5474
5475         /* Do the rest as "configure" options */
5476         goi->isconfigure = 1;
5477         e = target_configure(goi, target);
5478
5479         if (e == JIM_OK) {
5480                 if (target->has_dap) {
5481                         if (!target->dap_configured) {
5482                                 Jim_SetResultString(goi->interp, "-dap ?name? required when creating target", -1);
5483                                 e = JIM_ERR;
5484                         }
5485                 } else {
5486                         if (!target->tap_configured) {
5487                                 Jim_SetResultString(goi->interp, "-chain-position ?name? required when creating target", -1);
5488                                 e = JIM_ERR;
5489                         }
5490                 }
5491                 /* tap must be set after target was configured */
5492                 if (target->tap == NULL)
5493                         e = JIM_ERR;
5494         }
5495
5496         if (e != JIM_OK) {
5497                 free(target->gdb_port_override);
5498                 free(target->type);
5499                 free(target);
5500                 return e;
5501         }
5502
5503         if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
5504                 /* default endian to little if not specified */
5505                 target->endianness = TARGET_LITTLE_ENDIAN;
5506         }
5507
5508         cp = Jim_GetString(new_cmd, NULL);
5509         target->cmd_name = strdup(cp);
5510
5511         if (target->type->target_create) {
5512                 e = (*(target->type->target_create))(target, goi->interp);
5513                 if (e != ERROR_OK) {
5514                         LOG_DEBUG("target_create failed");
5515                         free(target->gdb_port_override);
5516                         free(target->type);
5517                         free(target->cmd_name);
5518                         free(target);
5519                         return JIM_ERR;
5520                 }
5521         }
5522
5523         /* create the target specific commands */
5524         if (target->type->commands) {
5525                 e = register_commands(cmd_ctx, NULL, target->type->commands);
5526                 if (ERROR_OK != e)
5527                         LOG_ERROR("unable to register '%s' commands", cp);
5528         }
5529
5530         /* append to end of list */
5531         {
5532                 struct target **tpp;
5533                 tpp = &(all_targets);
5534                 while (*tpp)
5535                         tpp = &((*tpp)->next);
5536                 *tpp = target;
5537         }
5538
5539         /* now - create the new target name command */
5540         const struct command_registration target_subcommands[] = {
5541                 {
5542                         .chain = target_instance_command_handlers,
5543                 },
5544                 {
5545                         .chain = target->type->commands,
5546                 },
5547                 COMMAND_REGISTRATION_DONE
5548         };
5549         const struct command_registration target_commands[] = {
5550                 {
5551                         .name = cp,
5552                         .mode = COMMAND_ANY,
5553                         .help = "target command group",
5554                         .usage = "",
5555                         .chain = target_subcommands,
5556                 },
5557                 COMMAND_REGISTRATION_DONE
5558         };
5559         e = register_commands(cmd_ctx, NULL, target_commands);
5560         if (ERROR_OK != e)
5561                 return JIM_ERR;
5562
5563         struct command *c = command_find_in_context(cmd_ctx, cp);
5564         assert(c);
5565         command_set_handler_data(c, target);
5566
5567         return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
5568 }
5569
5570 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5571 {
5572         if (argc != 1) {
5573                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5574                 return JIM_ERR;
5575         }
5576         struct command_context *cmd_ctx = current_command_context(interp);
5577         assert(cmd_ctx != NULL);
5578
5579         Jim_SetResultString(interp, target_name(get_current_target(cmd_ctx)), -1);
5580         return JIM_OK;
5581 }
5582
5583 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5584 {
5585         if (argc != 1) {
5586                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5587                 return JIM_ERR;
5588         }
5589         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5590         for (unsigned x = 0; NULL != target_types[x]; x++) {
5591                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5592                         Jim_NewStringObj(interp, target_types[x]->name, -1));
5593         }
5594         return JIM_OK;
5595 }
5596
5597 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5598 {
5599         if (argc != 1) {
5600                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5601                 return JIM_ERR;
5602         }
5603         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5604         struct target *target = all_targets;
5605         while (target) {
5606                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5607                         Jim_NewStringObj(interp, target_name(target), -1));
5608                 target = target->next;
5609         }
5610         return JIM_OK;
5611 }
5612
5613 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5614 {
5615         int i;
5616         const char *targetname;
5617         int retval, len;
5618         struct target *target = (struct target *) NULL;
5619         struct target_list *head, *curr, *new;
5620         curr = (struct target_list *) NULL;
5621         head = (struct target_list *) NULL;
5622
5623         retval = 0;
5624         LOG_DEBUG("%d", argc);
5625         /* argv[1] = target to associate in smp
5626          * argv[2] = target to assoicate in smp
5627          * argv[3] ...
5628          */
5629
5630         for (i = 1; i < argc; i++) {
5631
5632                 targetname = Jim_GetString(argv[i], &len);
5633                 target = get_target(targetname);
5634                 LOG_DEBUG("%s ", targetname);
5635                 if (target) {
5636                         new = malloc(sizeof(struct target_list));
5637                         new->target = target;
5638                         new->next = (struct target_list *)NULL;
5639                         if (head == (struct target_list *)NULL) {
5640                                 head = new;
5641                                 curr = head;
5642                         } else {
5643                                 curr->next = new;
5644                                 curr = new;
5645                         }
5646                 }
5647         }
5648         /*  now parse the list of cpu and put the target in smp mode*/
5649         curr = head;
5650
5651         while (curr != (struct target_list *)NULL) {
5652                 target = curr->target;
5653                 target->smp = 1;
5654                 target->head = head;
5655                 curr = curr->next;
5656         }
5657
5658         if (target && target->rtos)
5659                 retval = rtos_smp_init(head->target);
5660
5661         return retval;
5662 }
5663
5664
5665 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5666 {
5667         Jim_GetOptInfo goi;
5668         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5669         if (goi.argc < 3) {
5670                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5671                         "<name> <target_type> [<target_options> ...]");
5672                 return JIM_ERR;
5673         }
5674         return target_create(&goi);
5675 }
5676
5677 static const struct command_registration target_subcommand_handlers[] = {
5678         {
5679                 .name = "init",
5680                 .mode = COMMAND_CONFIG,
5681                 .handler = handle_target_init_command,
5682                 .help = "initialize targets",
5683                 .usage = "",
5684         },
5685         {
5686                 .name = "create",
5687                 .mode = COMMAND_CONFIG,
5688                 .jim_handler = jim_target_create,
5689                 .usage = "name type '-chain-position' name [options ...]",
5690                 .help = "Creates and selects a new target",
5691         },
5692         {
5693                 .name = "current",
5694                 .mode = COMMAND_ANY,
5695                 .jim_handler = jim_target_current,
5696                 .help = "Returns the currently selected target",
5697         },
5698         {
5699                 .name = "types",
5700                 .mode = COMMAND_ANY,
5701                 .jim_handler = jim_target_types,
5702                 .help = "Returns the available target types as "
5703                                 "a list of strings",
5704         },
5705         {
5706                 .name = "names",
5707                 .mode = COMMAND_ANY,
5708                 .jim_handler = jim_target_names,
5709                 .help = "Returns the names of all targets as a list of strings",
5710         },
5711         {
5712                 .name = "smp",
5713                 .mode = COMMAND_ANY,
5714                 .jim_handler = jim_target_smp,
5715                 .usage = "targetname1 targetname2 ...",
5716                 .help = "gather several target in a smp list"
5717         },
5718
5719         COMMAND_REGISTRATION_DONE
5720 };
5721
5722 struct FastLoad {
5723         target_addr_t address;
5724         uint8_t *data;
5725         int length;
5726
5727 };
5728
5729 static int fastload_num;
5730 static struct FastLoad *fastload;
5731
5732 static void free_fastload(void)
5733 {
5734         if (fastload != NULL) {
5735                 int i;
5736                 for (i = 0; i < fastload_num; i++) {
5737                         if (fastload[i].data)
5738                                 free(fastload[i].data);
5739                 }
5740                 free(fastload);
5741                 fastload = NULL;
5742         }
5743 }
5744
5745 COMMAND_HANDLER(handle_fast_load_image_command)
5746 {
5747         uint8_t *buffer;
5748         size_t buf_cnt;
5749         uint32_t image_size;
5750         target_addr_t min_address = 0;
5751         target_addr_t max_address = -1;
5752         int i;
5753
5754         struct image image;
5755
5756         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
5757                         &image, &min_address, &max_address);
5758         if (ERROR_OK != retval)
5759                 return retval;
5760
5761         struct duration bench;
5762         duration_start(&bench);
5763
5764         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
5765         if (retval != ERROR_OK)
5766                 return retval;
5767
5768         image_size = 0x0;
5769         retval = ERROR_OK;
5770         fastload_num = image.num_sections;
5771         fastload = malloc(sizeof(struct FastLoad)*image.num_sections);
5772         if (fastload == NULL) {
5773                 command_print(CMD, "out of memory");
5774                 image_close(&image);
5775                 return ERROR_FAIL;
5776         }
5777         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
5778         for (i = 0; i < image.num_sections; i++) {
5779                 buffer = malloc(image.sections[i].size);
5780                 if (buffer == NULL) {
5781                         command_print(CMD, "error allocating buffer for section (%d bytes)",
5782                                                   (int)(image.sections[i].size));
5783                         retval = ERROR_FAIL;
5784                         break;
5785                 }
5786
5787                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
5788                 if (retval != ERROR_OK) {
5789                         free(buffer);
5790                         break;
5791                 }
5792
5793                 uint32_t offset = 0;
5794                 uint32_t length = buf_cnt;
5795
5796                 /* DANGER!!! beware of unsigned comparision here!!! */
5797
5798                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
5799                                 (image.sections[i].base_address < max_address)) {
5800                         if (image.sections[i].base_address < min_address) {
5801                                 /* clip addresses below */
5802                                 offset += min_address-image.sections[i].base_address;
5803                                 length -= offset;
5804                         }
5805
5806                         if (image.sections[i].base_address + buf_cnt > max_address)
5807                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5808
5809                         fastload[i].address = image.sections[i].base_address + offset;
5810                         fastload[i].data = malloc(length);
5811                         if (fastload[i].data == NULL) {
5812                                 free(buffer);
5813                                 command_print(CMD, "error allocating buffer for section (%" PRIu32 " bytes)",
5814                                                           length);
5815                                 retval = ERROR_FAIL;
5816                                 break;
5817                         }
5818                         memcpy(fastload[i].data, buffer + offset, length);
5819                         fastload[i].length = length;
5820
5821                         image_size += length;
5822                         command_print(CMD, "%u bytes written at address 0x%8.8x",
5823                                                   (unsigned int)length,
5824                                                   ((unsigned int)(image.sections[i].base_address + offset)));
5825                 }
5826
5827                 free(buffer);
5828         }
5829
5830         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
5831                 command_print(CMD, "Loaded %" PRIu32 " bytes "
5832                                 "in %fs (%0.3f KiB/s)", image_size,
5833                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5834
5835                 command_print(CMD,
5836                                 "WARNING: image has not been loaded to target!"
5837                                 "You can issue a 'fast_load' to finish loading.");
5838         }
5839
5840         image_close(&image);
5841
5842         if (retval != ERROR_OK)
5843                 free_fastload();
5844
5845         return retval;
5846 }
5847
5848 COMMAND_HANDLER(handle_fast_load_command)
5849 {
5850         if (CMD_ARGC > 0)
5851                 return ERROR_COMMAND_SYNTAX_ERROR;
5852         if (fastload == NULL) {
5853                 LOG_ERROR("No image in memory");
5854                 return ERROR_FAIL;
5855         }
5856         int i;
5857         int64_t ms = timeval_ms();
5858         int size = 0;
5859         int retval = ERROR_OK;
5860         for (i = 0; i < fastload_num; i++) {
5861                 struct target *target = get_current_target(CMD_CTX);
5862                 command_print(CMD, "Write to 0x%08x, length 0x%08x",
5863                                           (unsigned int)(fastload[i].address),
5864                                           (unsigned int)(fastload[i].length));
5865                 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5866                 if (retval != ERROR_OK)
5867                         break;
5868                 size += fastload[i].length;
5869         }
5870         if (retval == ERROR_OK) {
5871                 int64_t after = timeval_ms();
5872                 command_print(CMD, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5873         }
5874         return retval;
5875 }
5876
5877 static const struct command_registration target_command_handlers[] = {
5878         {
5879                 .name = "targets",
5880                 .handler = handle_targets_command,
5881                 .mode = COMMAND_ANY,
5882                 .help = "change current default target (one parameter) "
5883                         "or prints table of all targets (no parameters)",
5884                 .usage = "[target]",
5885         },
5886         {
5887                 .name = "target",
5888                 .mode = COMMAND_CONFIG,
5889                 .help = "configure target",
5890                 .chain = target_subcommand_handlers,
5891                 .usage = "",
5892         },
5893         COMMAND_REGISTRATION_DONE
5894 };
5895
5896 int target_register_commands(struct command_context *cmd_ctx)
5897 {
5898         return register_commands(cmd_ctx, NULL, target_command_handlers);
5899 }
5900
5901 static bool target_reset_nag = true;
5902
5903 bool get_target_reset_nag(void)
5904 {
5905         return target_reset_nag;
5906 }
5907
5908 COMMAND_HANDLER(handle_target_reset_nag)
5909 {
5910         return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5911                         &target_reset_nag, "Nag after each reset about options to improve "
5912                         "performance");
5913 }
5914
5915 COMMAND_HANDLER(handle_ps_command)
5916 {
5917         struct target *target = get_current_target(CMD_CTX);
5918         char *display;
5919         if (target->state != TARGET_HALTED) {
5920                 LOG_INFO("target not halted !!");
5921                 return ERROR_OK;
5922         }
5923
5924         if ((target->rtos) && (target->rtos->type)
5925                         && (target->rtos->type->ps_command)) {
5926                 display = target->rtos->type->ps_command(target);
5927                 command_print(CMD, "%s", display);
5928                 free(display);
5929                 return ERROR_OK;
5930         } else {
5931                 LOG_INFO("failed");
5932                 return ERROR_TARGET_FAILURE;
5933         }
5934 }
5935
5936 static void binprint(struct command_invocation *cmd, const char *text, const uint8_t *buf, int size)
5937 {
5938         if (text != NULL)
5939                 command_print_sameline(cmd, "%s", text);
5940         for (int i = 0; i < size; i++)
5941                 command_print_sameline(cmd, " %02x", buf[i]);
5942         command_print(cmd, " ");
5943 }
5944
5945 COMMAND_HANDLER(handle_test_mem_access_command)
5946 {
5947         struct target *target = get_current_target(CMD_CTX);
5948         uint32_t test_size;
5949         int retval = ERROR_OK;
5950
5951         if (target->state != TARGET_HALTED) {
5952                 LOG_INFO("target not halted !!");
5953                 return ERROR_FAIL;
5954         }
5955
5956         if (CMD_ARGC != 1)
5957                 return ERROR_COMMAND_SYNTAX_ERROR;
5958
5959         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], test_size);
5960
5961         /* Test reads */
5962         size_t num_bytes = test_size + 4;
5963
5964         struct working_area *wa = NULL;
5965         retval = target_alloc_working_area(target, num_bytes, &wa);
5966         if (retval != ERROR_OK) {
5967                 LOG_ERROR("Not enough working area");
5968                 return ERROR_FAIL;
5969         }
5970
5971         uint8_t *test_pattern = malloc(num_bytes);
5972
5973         for (size_t i = 0; i < num_bytes; i++)
5974                 test_pattern[i] = rand();
5975
5976         retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
5977         if (retval != ERROR_OK) {
5978                 LOG_ERROR("Test pattern write failed");
5979                 goto out;
5980         }
5981
5982         for (int host_offset = 0; host_offset <= 1; host_offset++) {
5983                 for (int size = 1; size <= 4; size *= 2) {
5984                         for (int offset = 0; offset < 4; offset++) {
5985                                 uint32_t count = test_size / size;
5986                                 size_t host_bufsiz = (count + 2) * size + host_offset;
5987                                 uint8_t *read_ref = malloc(host_bufsiz);
5988                                 uint8_t *read_buf = malloc(host_bufsiz);
5989
5990                                 for (size_t i = 0; i < host_bufsiz; i++) {
5991                                         read_ref[i] = rand();
5992                                         read_buf[i] = read_ref[i];
5993                                 }
5994                                 command_print_sameline(CMD,
5995                                                 "Test read %" PRIu32 " x %d @ %d to %saligned buffer: ", count,
5996                                                 size, offset, host_offset ? "un" : "");
5997
5998                                 struct duration bench;
5999                                 duration_start(&bench);
6000
6001                                 retval = target_read_memory(target, wa->address + offset, size, count,
6002                                                 read_buf + size + host_offset);
6003
6004                                 duration_measure(&bench);
6005
6006                                 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
6007                                         command_print(CMD, "Unsupported alignment");
6008                                         goto next;
6009                                 } else if (retval != ERROR_OK) {
6010                                         command_print(CMD, "Memory read failed");
6011                                         goto next;
6012                                 }
6013
6014                                 /* replay on host */
6015                                 memcpy(read_ref + size + host_offset, test_pattern + offset, count * size);
6016
6017                                 /* check result */
6018                                 int result = memcmp(read_ref, read_buf, host_bufsiz);
6019                                 if (result == 0) {
6020                                         command_print(CMD, "Pass in %fs (%0.3f KiB/s)",
6021                                                         duration_elapsed(&bench),
6022                                                         duration_kbps(&bench, count * size));
6023                                 } else {
6024                                         command_print(CMD, "Compare failed");
6025                                         binprint(CMD, "ref:", read_ref, host_bufsiz);
6026                                         binprint(CMD, "buf:", read_buf, host_bufsiz);
6027                                 }
6028 next:
6029                                 free(read_ref);
6030                                 free(read_buf);
6031                         }
6032                 }
6033         }
6034
6035 out:
6036         free(test_pattern);
6037
6038         if (wa != NULL)
6039                 target_free_working_area(target, wa);
6040
6041         /* Test writes */
6042         num_bytes = test_size + 4 + 4 + 4;
6043
6044         retval = target_alloc_working_area(target, num_bytes, &wa);
6045         if (retval != ERROR_OK) {
6046                 LOG_ERROR("Not enough working area");
6047                 return ERROR_FAIL;
6048         }
6049
6050         test_pattern = malloc(num_bytes);
6051
6052         for (size_t i = 0; i < num_bytes; i++)
6053                 test_pattern[i] = rand();
6054
6055         for (int host_offset = 0; host_offset <= 1; host_offset++) {
6056                 for (int size = 1; size <= 4; size *= 2) {
6057                         for (int offset = 0; offset < 4; offset++) {
6058                                 uint32_t count = test_size / size;
6059                                 size_t host_bufsiz = count * size + host_offset;
6060                                 uint8_t *read_ref = malloc(num_bytes);
6061                                 uint8_t *read_buf = malloc(num_bytes);
6062                                 uint8_t *write_buf = malloc(host_bufsiz);
6063
6064                                 for (size_t i = 0; i < host_bufsiz; i++)
6065                                         write_buf[i] = rand();
6066                                 command_print_sameline(CMD,
6067                                                 "Test write %" PRIu32 " x %d @ %d from %saligned buffer: ", count,
6068                                                 size, offset, host_offset ? "un" : "");
6069
6070                                 retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
6071                                 if (retval != ERROR_OK) {
6072                                         command_print(CMD, "Test pattern write failed");
6073                                         goto nextw;
6074                                 }
6075
6076                                 /* replay on host */
6077                                 memcpy(read_ref, test_pattern, num_bytes);
6078                                 memcpy(read_ref + size + offset, write_buf + host_offset, count * size);
6079
6080                                 struct duration bench;
6081                                 duration_start(&bench);
6082
6083                                 retval = target_write_memory(target, wa->address + size + offset, size, count,
6084                                                 write_buf + host_offset);
6085
6086                                 duration_measure(&bench);
6087
6088                                 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
6089                                         command_print(CMD, "Unsupported alignment");
6090                                         goto nextw;
6091                                 } else if (retval != ERROR_OK) {
6092                                         command_print(CMD, "Memory write failed");
6093                                         goto nextw;
6094                                 }
6095
6096                                 /* read back */
6097                                 retval = target_read_memory(target, wa->address, 1, num_bytes, read_buf);
6098                                 if (retval != ERROR_OK) {
6099                                         command_print(CMD, "Test pattern write failed");
6100                                         goto nextw;
6101                                 }
6102
6103                                 /* check result */
6104                                 int result = memcmp(read_ref, read_buf, num_bytes);
6105                                 if (result == 0) {
6106                                         command_print(CMD, "Pass in %fs (%0.3f KiB/s)",
6107                                                         duration_elapsed(&bench),
6108                                                         duration_kbps(&bench, count * size));
6109                                 } else {
6110                                         command_print(CMD, "Compare failed");
6111                                         binprint(CMD, "ref:", read_ref, num_bytes);
6112                                         binprint(CMD, "buf:", read_buf, num_bytes);
6113                                 }
6114 nextw:
6115                                 free(read_ref);
6116                                 free(read_buf);
6117                         }
6118                 }
6119         }
6120
6121         free(test_pattern);
6122
6123         if (wa != NULL)
6124                 target_free_working_area(target, wa);
6125         return retval;
6126 }
6127
6128 static const struct command_registration target_exec_command_handlers[] = {
6129         {
6130                 .name = "fast_load_image",
6131                 .handler = handle_fast_load_image_command,
6132                 .mode = COMMAND_ANY,
6133                 .help = "Load image into server memory for later use by "
6134                         "fast_load; primarily for profiling",
6135                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6136                         "[min_address [max_length]]",
6137         },
6138         {
6139                 .name = "fast_load",
6140                 .handler = handle_fast_load_command,
6141                 .mode = COMMAND_EXEC,
6142                 .help = "loads active fast load image to current target "
6143                         "- mainly for profiling purposes",
6144                 .usage = "",
6145         },
6146         {
6147                 .name = "profile",
6148                 .handler = handle_profile_command,
6149                 .mode = COMMAND_EXEC,
6150                 .usage = "seconds filename [start end]",
6151                 .help = "profiling samples the CPU PC",
6152         },
6153         /** @todo don't register virt2phys() unless target supports it */
6154         {
6155                 .name = "virt2phys",
6156                 .handler = handle_virt2phys_command,
6157                 .mode = COMMAND_ANY,
6158                 .help = "translate a virtual address into a physical address",
6159                 .usage = "virtual_address",
6160         },
6161         {
6162                 .name = "reg",
6163                 .handler = handle_reg_command,
6164                 .mode = COMMAND_EXEC,
6165                 .help = "display (reread from target with \"force\") or set a register; "
6166                         "with no arguments, displays all registers and their values",
6167                 .usage = "[(register_number|register_name) [(value|'force')]]",
6168         },
6169         {
6170                 .name = "poll",
6171                 .handler = handle_poll_command,
6172                 .mode = COMMAND_EXEC,
6173                 .help = "poll target state; or reconfigure background polling",
6174                 .usage = "['on'|'off']",
6175         },
6176         {
6177                 .name = "wait_halt",
6178                 .handler = handle_wait_halt_command,
6179                 .mode = COMMAND_EXEC,
6180                 .help = "wait up to the specified number of milliseconds "
6181                         "(default 5000) for a previously requested halt",
6182                 .usage = "[milliseconds]",
6183         },
6184         {
6185                 .name = "halt",
6186                 .handler = handle_halt_command,
6187                 .mode = COMMAND_EXEC,
6188                 .help = "request target to halt, then wait up to the specified"
6189                         "number of milliseconds (default 5000) for it to complete",
6190                 .usage = "[milliseconds]",
6191         },
6192         {
6193                 .name = "resume",
6194                 .handler = handle_resume_command,
6195                 .mode = COMMAND_EXEC,
6196                 .help = "resume target execution from current PC or address",
6197                 .usage = "[address]",
6198         },
6199         {
6200                 .name = "reset",
6201                 .handler = handle_reset_command,
6202                 .mode = COMMAND_EXEC,
6203                 .usage = "[run|halt|init]",
6204                 .help = "Reset all targets into the specified mode."
6205                         "Default reset mode is run, if not given.",
6206         },
6207         {
6208                 .name = "soft_reset_halt",
6209                 .handler = handle_soft_reset_halt_command,
6210                 .mode = COMMAND_EXEC,
6211                 .usage = "",
6212                 .help = "halt the target and do a soft reset",
6213         },
6214         {
6215                 .name = "step",
6216                 .handler = handle_step_command,
6217                 .mode = COMMAND_EXEC,
6218                 .help = "step one instruction from current PC or address",
6219                 .usage = "[address]",
6220         },
6221         {
6222                 .name = "mdd",
6223                 .handler = handle_md_command,
6224                 .mode = COMMAND_EXEC,
6225                 .help = "display memory double-words",
6226                 .usage = "['phys'] address [count]",
6227         },
6228         {
6229                 .name = "mdw",
6230                 .handler = handle_md_command,
6231                 .mode = COMMAND_EXEC,
6232                 .help = "display memory words",
6233                 .usage = "['phys'] address [count]",
6234         },
6235         {
6236                 .name = "mdh",
6237                 .handler = handle_md_command,
6238                 .mode = COMMAND_EXEC,
6239                 .help = "display memory half-words",
6240                 .usage = "['phys'] address [count]",
6241         },
6242         {
6243                 .name = "mdb",
6244                 .handler = handle_md_command,
6245                 .mode = COMMAND_EXEC,
6246                 .help = "display memory bytes",
6247                 .usage = "['phys'] address [count]",
6248         },
6249         {
6250                 .name = "mwd",
6251                 .handler = handle_mw_command,
6252                 .mode = COMMAND_EXEC,
6253                 .help = "write memory double-word",
6254                 .usage = "['phys'] address value [count]",
6255         },
6256         {
6257                 .name = "mww",
6258                 .handler = handle_mw_command,
6259                 .mode = COMMAND_EXEC,
6260                 .help = "write memory word",
6261                 .usage = "['phys'] address value [count]",
6262         },
6263         {
6264                 .name = "mwh",
6265                 .handler = handle_mw_command,
6266                 .mode = COMMAND_EXEC,
6267                 .help = "write memory half-word",
6268                 .usage = "['phys'] address value [count]",
6269         },
6270         {
6271                 .name = "mwb",
6272                 .handler = handle_mw_command,
6273                 .mode = COMMAND_EXEC,
6274                 .help = "write memory byte",
6275                 .usage = "['phys'] address value [count]",
6276         },
6277         {
6278                 .name = "bp",
6279                 .handler = handle_bp_command,
6280                 .mode = COMMAND_EXEC,
6281                 .help = "list or set hardware or software breakpoint",
6282                 .usage = "[<address> [<asid>] <length> ['hw'|'hw_ctx']]",
6283         },
6284         {
6285                 .name = "rbp",
6286                 .handler = handle_rbp_command,
6287                 .mode = COMMAND_EXEC,
6288                 .help = "remove breakpoint",
6289                 .usage = "address",
6290         },
6291         {
6292                 .name = "wp",
6293                 .handler = handle_wp_command,
6294                 .mode = COMMAND_EXEC,
6295                 .help = "list (no params) or create watchpoints",
6296                 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
6297         },
6298         {
6299                 .name = "rwp",
6300                 .handler = handle_rwp_command,
6301                 .mode = COMMAND_EXEC,
6302                 .help = "remove watchpoint",
6303                 .usage = "address",
6304         },
6305         {
6306                 .name = "load_image",
6307                 .handler = handle_load_image_command,
6308                 .mode = COMMAND_EXEC,
6309                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6310                         "[min_address] [max_length]",
6311         },
6312         {
6313                 .name = "dump_image",
6314                 .handler = handle_dump_image_command,
6315                 .mode = COMMAND_EXEC,
6316                 .usage = "filename address size",
6317         },
6318         {
6319                 .name = "verify_image_checksum",
6320                 .handler = handle_verify_image_checksum_command,
6321                 .mode = COMMAND_EXEC,
6322                 .usage = "filename [offset [type]]",
6323         },
6324         {
6325                 .name = "verify_image",
6326                 .handler = handle_verify_image_command,
6327                 .mode = COMMAND_EXEC,
6328                 .usage = "filename [offset [type]]",
6329         },
6330         {
6331                 .name = "test_image",
6332                 .handler = handle_test_image_command,
6333                 .mode = COMMAND_EXEC,
6334                 .usage = "filename [offset [type]]",
6335         },
6336         {
6337                 .name = "mem2array",
6338                 .mode = COMMAND_EXEC,
6339                 .jim_handler = jim_mem2array,
6340                 .help = "read 8/16/32 bit memory and return as a TCL array "
6341                         "for script processing",
6342                 .usage = "arrayname bitwidth address count",
6343         },
6344         {
6345                 .name = "array2mem",
6346                 .mode = COMMAND_EXEC,
6347                 .jim_handler = jim_array2mem,
6348                 .help = "convert a TCL array to memory locations "
6349                         "and write the 8/16/32 bit values",
6350                 .usage = "arrayname bitwidth address count",
6351         },
6352         {
6353                 .name = "reset_nag",
6354                 .handler = handle_target_reset_nag,
6355                 .mode = COMMAND_ANY,
6356                 .help = "Nag after each reset about options that could have been "
6357                                 "enabled to improve performance. ",
6358                 .usage = "['enable'|'disable']",
6359         },
6360         {
6361                 .name = "ps",
6362                 .handler = handle_ps_command,
6363                 .mode = COMMAND_EXEC,
6364                 .help = "list all tasks ",
6365                 .usage = " ",
6366         },
6367         {
6368                 .name = "test_mem_access",
6369                 .handler = handle_test_mem_access_command,
6370                 .mode = COMMAND_EXEC,
6371                 .help = "Test the target's memory access functions",
6372                 .usage = "size",
6373         },
6374
6375         COMMAND_REGISTRATION_DONE
6376 };
6377 static int target_register_user_commands(struct command_context *cmd_ctx)
6378 {
6379         int retval = ERROR_OK;
6380         retval = target_request_register_commands(cmd_ctx);
6381         if (retval != ERROR_OK)
6382                 return retval;
6383
6384         retval = trace_register_commands(cmd_ctx);
6385         if (retval != ERROR_OK)
6386                 return retval;
6387
6388
6389         return register_commands(cmd_ctx, NULL, target_exec_command_handlers);
6390 }