]> git.gag.com Git - fw/openocd/blob - src/target/target.c
added yours sincerely for files where I feel that I've made non-trivial contributions.
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007,2008 Ã˜yvind Harboe                                      *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   This program is free software; you can redistribute it and/or modify  *
9  *   it under the terms of the GNU General Public License as published by  *
10  *   the Free Software Foundation; either version 2 of the License, or     *
11  *   (at your option) any later version.                                   *
12  *                                                                         *
13  *   This program is distributed in the hope that it will be useful,       *
14  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
15  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
16  *   GNU General Public License for more details.                          *
17  *                                                                         *
18  *   You should have received a copy of the GNU General Public License     *
19  *   along with this program; if not, write to the                         *
20  *   Free Software Foundation, Inc.,                                       *
21  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
22  ***************************************************************************/
23 #ifdef HAVE_CONFIG_H
24 #include "config.h"
25 #endif
26
27 #include "replacements.h"
28 #include "target.h"
29 #include "target_request.h"
30
31 #include "log.h"
32 #include "configuration.h"
33 #include "binarybuffer.h"
34 #include "jtag.h"
35
36 #include <string.h>
37 #include <stdlib.h>
38 #include <inttypes.h>
39
40 #include <sys/types.h>
41 #include <sys/stat.h>
42 #include <unistd.h>
43 #include <errno.h>
44
45 #include <sys/time.h>
46 #include <time.h>
47
48 #include <time_support.h>
49
50 #include <fileio.h>
51 #include <image.h>
52
53 int cli_target_callback_event_handler(struct target_s *target, enum target_event event, void *priv);
54
55 int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
56 int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
57
58 int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
59 int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
60
61 int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
62 int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
63 int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
64 int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
65 int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
66 int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
67 int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
68 int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
69 int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
70 int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
71 int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
72 int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
73 int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
74 int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
75 int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
76 int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
77 int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
78 int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc);
79 int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
80 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
81 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
82
83
84 /* targets */
85 extern target_type_t arm7tdmi_target;
86 extern target_type_t arm720t_target;
87 extern target_type_t arm9tdmi_target;
88 extern target_type_t arm920t_target;
89 extern target_type_t arm966e_target;
90 extern target_type_t arm926ejs_target;
91 extern target_type_t feroceon_target;
92 extern target_type_t xscale_target;
93 extern target_type_t cortexm3_target;
94 extern target_type_t arm11_target;
95
96 target_type_t *target_types[] =
97 {
98         &arm7tdmi_target,
99         &arm9tdmi_target,
100         &arm920t_target,
101         &arm720t_target,
102         &arm966e_target,
103         &arm926ejs_target,
104         &feroceon_target,
105         &xscale_target,
106         &cortexm3_target,
107         &arm11_target,
108         NULL,
109 };
110
111 target_t *targets = NULL;
112 target_event_callback_t *target_event_callbacks = NULL;
113 target_timer_callback_t *target_timer_callbacks = NULL;
114
115 char *target_state_strings[] =
116 {
117         "unknown",
118         "running",
119         "halted",
120         "reset",
121         "debug_running",
122 };
123
124 char *target_debug_reason_strings[] =
125 {
126         "debug request", "breakpoint", "watchpoint",
127         "watchpoint and breakpoint", "single step",
128         "target not halted", "undefined"
129 };
130
131 char *target_endianess_strings[] =
132 {
133         "big endian",
134         "little endian",
135 };
136
137 static int target_continous_poll = 1;
138
139 /* read a u32 from a buffer in target memory endianness */
140 u32 target_buffer_get_u32(target_t *target, u8 *buffer)
141 {
142         if (target->endianness == TARGET_LITTLE_ENDIAN)
143                 return le_to_h_u32(buffer);
144         else
145                 return be_to_h_u32(buffer);
146 }
147
148 /* read a u16 from a buffer in target memory endianness */
149 u16 target_buffer_get_u16(target_t *target, u8 *buffer)
150 {
151         if (target->endianness == TARGET_LITTLE_ENDIAN)
152                 return le_to_h_u16(buffer);
153         else
154                 return be_to_h_u16(buffer);
155 }
156
157 /* write a u32 to a buffer in target memory endianness */
158 void target_buffer_set_u32(target_t *target, u8 *buffer, u32 value)
159 {
160         if (target->endianness == TARGET_LITTLE_ENDIAN)
161                 h_u32_to_le(buffer, value);
162         else
163                 h_u32_to_be(buffer, value);
164 }
165
166 /* write a u16 to a buffer in target memory endianness */
167 void target_buffer_set_u16(target_t *target, u8 *buffer, u16 value)
168 {
169         if (target->endianness == TARGET_LITTLE_ENDIAN)
170                 h_u16_to_le(buffer, value);
171         else
172                 h_u16_to_be(buffer, value);
173 }
174
175 /* returns a pointer to the n-th configured target */
176 target_t* get_target_by_num(int num)
177 {
178         target_t *target = targets;
179         int i = 0;
180
181         while (target)
182         {
183                 if (num == i)
184                         return target;
185                 target = target->next;
186                 i++;
187         }
188
189         return NULL;
190 }
191
192 int get_num_by_target(target_t *query_target)
193 {
194         target_t *target = targets;
195         int i = 0;      
196         
197         while (target)
198         {
199                 if (target == query_target)
200                         return i;
201                 target = target->next;
202                 i++;
203         }
204         
205         return -1;
206 }
207
208 target_t* get_current_target(command_context_t *cmd_ctx)
209 {
210         target_t *target = get_target_by_num(cmd_ctx->current_target);
211         
212         if (target == NULL)
213         {
214                 LOG_ERROR("BUG: current_target out of bounds");
215                 exit(-1);
216         }
217         
218         return target;
219 }
220
221 /* Process target initialization, when target entered debug out of reset
222  * the handler is unregistered at the end of this function, so it's only called once
223  */
224 int target_init_handler(struct target_s *target, enum target_event event, void *priv)
225 {
226         struct command_context_s *cmd_ctx = priv;
227         
228         if (event == TARGET_EVENT_HALTED)
229         {
230                 target_unregister_event_callback(target_init_handler, priv);
231                 target_invoke_script(cmd_ctx, target, "post_reset");
232                 jtag_execute_queue();
233         }
234         
235         return ERROR_OK;
236 }
237
238 int target_run_and_halt_handler(void *priv)
239 {
240         target_t *target = priv;
241         
242         target_halt(target);
243         
244         return ERROR_OK;
245 }
246
247 int target_poll(struct target_s *target)
248 {
249         /* We can't poll until after examine */
250         if (!target->type->examined)
251         {
252                 /* Fail silently lest we pollute the log */
253                 return ERROR_FAIL;
254         }
255         return target->type->poll(target);
256 }
257
258 int target_halt(struct target_s *target)
259 {
260         /* We can't poll until after examine */
261         if (!target->type->examined)
262         {
263                 LOG_ERROR("Target not examined yet");
264                 return ERROR_FAIL;
265         }
266         return target->type->halt(target);
267 }
268
269 int target_resume(struct target_s *target, int current, u32 address, int handle_breakpoints, int debug_execution)
270 {
271         int retval;
272         
273         /* We can't poll until after examine */
274         if (!target->type->examined)
275         {
276                 LOG_ERROR("Target not examined yet");
277                 return ERROR_FAIL;
278         }
279         
280         /* note that resume *must* be asynchronous. The CPU can halt before we poll. The CPU can
281          * even halt at the current PC as a result of a software breakpoint being inserted by (a bug?)
282          * the application.
283          */
284         if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
285                 return retval;
286         
287         return retval;
288 }
289
290 int target_process_reset(struct command_context_s *cmd_ctx, enum target_reset_mode reset_mode)
291 {
292         int retval = ERROR_OK;
293         target_t *target;
294         struct timeval timeout, now;
295
296         target = targets;
297         while (target)
298         {
299                 target_invoke_script(cmd_ctx, target, "pre_reset");
300                 target = target->next;
301         }
302         
303         if ((retval = jtag_init_reset(cmd_ctx)) != ERROR_OK)
304                 return retval;
305         
306         keep_alive(); /* we might be running on a very slow JTAG clk */
307         
308         /* First time this is executed after launching OpenOCD, it will read out 
309          * the type of CPU, etc. and init Embedded ICE registers in host
310          * memory. 
311          * 
312          * It will also set up ICE registers in the target.
313          * 
314          * However, if we assert TRST later, we need to set up the registers again. 
315          * 
316          * For the "reset halt/init" case we must only set up the registers here.
317          */
318         if ((retval = target_examine(cmd_ctx)) != ERROR_OK)
319                 return retval;
320         
321         keep_alive(); /* we might be running on a very slow JTAG clk */
322                 
323         target = targets;
324         while (target)
325         {
326                 /* we have no idea what state the target is in, so we
327                  * have to drop working areas
328                  */
329                 target_free_all_working_areas_restore(target, 0);
330                 target->reset_halt=((reset_mode==RESET_HALT)||(reset_mode==RESET_INIT));
331                 target->type->assert_reset(target);
332                 target = target->next;
333         }
334         if ((retval = jtag_execute_queue()) != ERROR_OK)
335         {
336                 LOG_WARNING("JTAG communication failed asserting reset.");
337                 retval = ERROR_OK;
338         }
339         
340         /* request target halt if necessary, and schedule further action */
341         target = targets;
342         while (target)
343         {
344                 switch (reset_mode)
345                 {
346                         case RESET_RUN:
347                                 /* nothing to do if target just wants to be run */
348                                 break;
349                         case RESET_RUN_AND_HALT:
350                                 /* schedule halt */
351                                 target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target);
352                                 break;
353                         case RESET_RUN_AND_INIT:
354                                 /* schedule halt */
355                                 target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target);
356                                 target_register_event_callback(target_init_handler, cmd_ctx);
357                                 break;
358                         case RESET_HALT:
359                                 if ((jtag_reset_config & RESET_SRST_PULLS_TRST)==0)
360                                         target_halt(target);
361                                 break;
362                         case RESET_INIT:
363                                 if ((jtag_reset_config & RESET_SRST_PULLS_TRST)==0)
364                                         target_halt(target);
365                                 target_register_event_callback(target_init_handler, cmd_ctx);
366                                 break;
367                         default:
368                                 LOG_ERROR("BUG: unknown target->reset_mode");
369                 }
370                 target = target->next;
371         }
372         
373         if ((retval = jtag_execute_queue()) != ERROR_OK)
374         {
375                 LOG_WARNING("JTAG communication failed while reset was asserted. Consider using srst_only for reset_config.");
376                 retval = ERROR_OK;              
377         }
378         
379         target = targets;
380         while (target)
381         {
382                 target->type->deassert_reset(target);
383                 /* We can fail to bring the target into the halted state  */
384                 target_poll(target);
385                 if (target->reset_halt&&((target->state != TARGET_HALTED)))
386                 {
387                         LOG_WARNING("Failed to reset target into halted mode - issuing halt");
388                         target->type->halt(target);
389                 }
390                 
391                 target = target->next;
392         }
393         
394         if ((retval = jtag_execute_queue()) != ERROR_OK)
395         {
396                 LOG_WARNING("JTAG communication failed while deasserting reset.");
397                 retval = ERROR_OK;
398         }
399
400         if (jtag_reset_config & RESET_SRST_PULLS_TRST)
401         {
402                 /* If TRST was asserted we need to set up registers again */
403                 if ((retval = target_examine(cmd_ctx)) != ERROR_OK)
404                         return retval;
405         }               
406         
407         LOG_DEBUG("Waiting for halted stated as appropriate");
408         
409         /* Wait for reset to complete, maximum 5 seconds. */    
410         gettimeofday(&timeout, NULL);
411         timeval_add_time(&timeout, 5, 0);
412         for(;;)
413         {
414                 gettimeofday(&now, NULL);
415                 
416                 target_call_timer_callbacks_now();
417                 
418                 target = targets;
419                 while (target)
420                 {
421                         LOG_DEBUG("Polling target");
422                         target_poll(target);
423                         if ((reset_mode == RESET_RUN_AND_INIT) || 
424                                         (reset_mode == RESET_RUN_AND_HALT) ||
425                                         (reset_mode == RESET_HALT) ||
426                                         (reset_mode == RESET_INIT))
427                         {
428                                 if (target->state != TARGET_HALTED)
429                                 {
430                                         if ((now.tv_sec > timeout.tv_sec) || ((now.tv_sec == timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
431                                         {
432                                                 LOG_USER("Timed out waiting for halt after reset");
433                                                 goto done;
434                                         }
435                                         /* this will send alive messages on e.g. GDB remote protocol. */
436                                         usleep(500*1000); 
437                                         LOG_USER_N("%s", ""); /* avoid warning about zero length formatting message*/ 
438                                         goto again;
439                                 }
440                         }
441                         target = target->next;
442                 }
443                 /* All targets we're waiting for are halted */
444                 break;
445                 
446                 again:;
447         }
448         done:
449         
450         
451         /* We want any events to be processed before the prompt */
452         target_call_timer_callbacks_now();
453
454         /* if we timed out we need to unregister these handlers */
455         target = targets;
456         while (target)
457         {
458                 target_unregister_timer_callback(target_run_and_halt_handler, target);
459                 target = target->next;
460         }
461         target_unregister_event_callback(target_init_handler, cmd_ctx);
462         
463         return retval;
464 }
465
466 static int default_virt2phys(struct target_s *target, u32 virtual, u32 *physical)
467 {
468         *physical = virtual;
469         return ERROR_OK;
470 }
471
472 static int default_mmu(struct target_s *target, int *enabled)
473 {
474         *enabled = 0;
475         return ERROR_OK;
476 }
477
478 static int default_examine(struct command_context_s *cmd_ctx, struct target_s *target)
479 {
480         target->type->examined = 1;
481         return ERROR_OK;
482 }
483
484
485 /* Targets that correctly implement init+examine, i.e.
486  * no communication with target during init:
487  * 
488  * XScale 
489  */
490 int target_examine(struct command_context_s *cmd_ctx)
491 {
492         int retval = ERROR_OK;
493         target_t *target = targets;
494         while (target)
495         {
496                 if ((retval = target->type->examine(cmd_ctx, target))!=ERROR_OK)
497                         return retval;
498                 target = target->next;
499         }
500         return retval;
501 }
502
503 static int target_write_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
504 {
505         if (!target->type->examined)
506         {
507                 LOG_ERROR("Target not examined yet");
508                 return ERROR_FAIL;
509         }
510         return target->type->write_memory_imp(target, address, size, count, buffer);
511 }
512
513 static int target_read_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
514 {
515         if (!target->type->examined)
516         {
517                 LOG_ERROR("Target not examined yet");
518                 return ERROR_FAIL;
519         }
520         return target->type->read_memory_imp(target, address, size, count, buffer);
521 }
522
523 static int target_soft_reset_halt_imp(struct target_s *target)
524 {
525         if (!target->type->examined)
526         {
527                 LOG_ERROR("Target not examined yet");
528                 return ERROR_FAIL;
529         }
530         return target->type->soft_reset_halt_imp(target);
531 }
532
533 static int target_run_algorithm_imp(struct target_s *target, int num_mem_params, mem_param_t *mem_params, int num_reg_params, reg_param_t *reg_param, u32 entry_point, u32 exit_point, int timeout_ms, void *arch_info)
534 {
535         if (!target->type->examined)
536         {
537                 LOG_ERROR("Target not examined yet");
538                 return ERROR_FAIL;
539         }
540         return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
541 }
542
543 int target_init(struct command_context_s *cmd_ctx)
544 {
545         target_t *target = targets;
546         
547         while (target)
548         {
549                 target->type->examined = 0;
550                 if (target->type->examine == NULL)
551                 {
552                         target->type->examine = default_examine;
553                 }
554                 
555                 if (target->type->init_target(cmd_ctx, target) != ERROR_OK)
556                 {
557                         LOG_ERROR("target '%s' init failed", target->type->name);
558                         exit(-1);
559                 }
560                 
561                 /* Set up default functions if none are provided by target */
562                 if (target->type->virt2phys == NULL)
563                 {
564                         target->type->virt2phys = default_virt2phys;
565                 }
566                 target->type->virt2phys = default_virt2phys;
567                 /* a non-invasive way(in terms of patches) to add some code that
568                  * runs before the type->write/read_memory implementation
569                  */
570                 target->type->write_memory_imp = target->type->write_memory;
571                 target->type->write_memory = target_write_memory_imp;
572                 target->type->read_memory_imp = target->type->read_memory;
573                 target->type->read_memory = target_read_memory_imp;
574                 target->type->soft_reset_halt_imp = target->type->soft_reset_halt;
575                 target->type->soft_reset_halt = target_soft_reset_halt_imp;
576                 target->type->run_algorithm_imp = target->type->run_algorithm;
577                 target->type->run_algorithm = target_run_algorithm_imp;
578
579                 
580                 if (target->type->mmu == NULL)
581                 {
582                         target->type->mmu = default_mmu;
583                 }
584                 target = target->next;
585         }
586         
587         if (targets)
588         {
589                 target_register_user_commands(cmd_ctx);
590                 target_register_timer_callback(handle_target, 100, 1, NULL);
591         }
592                 
593         return ERROR_OK;
594 }
595
596 int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
597 {
598         target_event_callback_t **callbacks_p = &target_event_callbacks;
599         
600         if (callback == NULL)
601         {
602                 return ERROR_INVALID_ARGUMENTS;
603         }
604         
605         if (*callbacks_p)
606         {
607                 while ((*callbacks_p)->next)
608                         callbacks_p = &((*callbacks_p)->next);
609                 callbacks_p = &((*callbacks_p)->next);
610         }
611         
612         (*callbacks_p) = malloc(sizeof(target_event_callback_t));
613         (*callbacks_p)->callback = callback;
614         (*callbacks_p)->priv = priv;
615         (*callbacks_p)->next = NULL;
616         
617         return ERROR_OK;
618 }
619
620 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
621 {
622         target_timer_callback_t **callbacks_p = &target_timer_callbacks;
623         struct timeval now;
624         
625         if (callback == NULL)
626         {
627                 return ERROR_INVALID_ARGUMENTS;
628         }
629         
630         if (*callbacks_p)
631         {
632                 while ((*callbacks_p)->next)
633                         callbacks_p = &((*callbacks_p)->next);
634                 callbacks_p = &((*callbacks_p)->next);
635         }
636         
637         (*callbacks_p) = malloc(sizeof(target_timer_callback_t));
638         (*callbacks_p)->callback = callback;
639         (*callbacks_p)->periodic = periodic;
640         (*callbacks_p)->time_ms = time_ms;
641         
642         gettimeofday(&now, NULL);
643         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
644         time_ms -= (time_ms % 1000);
645         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
646         if ((*callbacks_p)->when.tv_usec > 1000000)
647         {
648                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
649                 (*callbacks_p)->when.tv_sec += 1;
650         }
651         
652         (*callbacks_p)->priv = priv;
653         (*callbacks_p)->next = NULL;
654         
655         return ERROR_OK;
656 }
657
658 int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
659 {
660         target_event_callback_t **p = &target_event_callbacks;
661         target_event_callback_t *c = target_event_callbacks;
662         
663         if (callback == NULL)
664         {
665                 return ERROR_INVALID_ARGUMENTS;
666         }
667                 
668         while (c)
669         {
670                 target_event_callback_t *next = c->next;
671                 if ((c->callback == callback) && (c->priv == priv))
672                 {
673                         *p = next;
674                         free(c);
675                         return ERROR_OK;
676                 }
677                 else
678                         p = &(c->next);
679                 c = next;
680         }
681         
682         return ERROR_OK;
683 }
684
685 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
686 {
687         target_timer_callback_t **p = &target_timer_callbacks;
688         target_timer_callback_t *c = target_timer_callbacks;
689         
690         if (callback == NULL)
691         {
692                 return ERROR_INVALID_ARGUMENTS;
693         }
694                 
695         while (c)
696         {
697                 target_timer_callback_t *next = c->next;
698                 if ((c->callback == callback) && (c->priv == priv))
699                 {
700                         *p = next;
701                         free(c);
702                         return ERROR_OK;
703                 }
704                 else
705                         p = &(c->next);
706                 c = next;
707         }
708         
709         return ERROR_OK;
710 }
711
712 int target_call_event_callbacks(target_t *target, enum target_event event)
713 {
714         target_event_callback_t *callback = target_event_callbacks;
715         target_event_callback_t *next_callback;
716         
717         LOG_DEBUG("target event %i", event);
718         
719         while (callback)
720         {
721                 next_callback = callback->next;
722                 callback->callback(target, event, callback->priv);
723                 callback = next_callback;
724         }
725         
726         return ERROR_OK;
727 }
728
729 static int target_call_timer_callbacks_check_time(int checktime)
730 {
731         target_timer_callback_t *callback = target_timer_callbacks;
732         target_timer_callback_t *next_callback;
733         struct timeval now;
734
735         keep_alive();
736         
737         gettimeofday(&now, NULL);
738         
739         while (callback)
740         {
741                 next_callback = callback->next;
742                 
743                 if ((!checktime&&callback->periodic)||
744                                 (((now.tv_sec >= callback->when.tv_sec) && (now.tv_usec >= callback->when.tv_usec))
745                                                 || (now.tv_sec > callback->when.tv_sec)))
746                 {
747                         if(callback->callback != NULL)
748                         {
749                                 callback->callback(callback->priv);
750                                 if (callback->periodic)
751                                 {
752                                         int time_ms = callback->time_ms;
753                                         callback->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
754                                         time_ms -= (time_ms % 1000);
755                                         callback->when.tv_sec = now.tv_sec + time_ms / 1000;
756                                         if (callback->when.tv_usec > 1000000)
757                                         {
758                                                 callback->when.tv_usec = callback->when.tv_usec - 1000000;
759                                                 callback->when.tv_sec += 1;
760                                         }
761                                 }
762                                 else
763                                         target_unregister_timer_callback(callback->callback, callback->priv);
764                         }
765                 }
766                         
767                 callback = next_callback;
768         }
769         
770         return ERROR_OK;
771 }
772
773 int target_call_timer_callbacks()
774 {
775         return target_call_timer_callbacks_check_time(1);
776 }
777
778 /* invoke periodic callbacks immediately */
779 int target_call_timer_callbacks_now()
780 {
781         return target_call_timer_callbacks(0);
782 }
783
784 int target_alloc_working_area(struct target_s *target, u32 size, working_area_t **area)
785 {
786         working_area_t *c = target->working_areas;
787         working_area_t *new_wa = NULL;
788         
789         /* Reevaluate working area address based on MMU state*/
790         if (target->working_areas == NULL)
791         {
792                 int retval;
793                 int enabled;
794                 retval = target->type->mmu(target, &enabled);
795                 if (retval != ERROR_OK)
796                 {
797                         return retval;
798                 }
799                 if (enabled)
800                 {
801                         target->working_area = target->working_area_virt;
802                 }
803                 else
804                 {
805                         target->working_area = target->working_area_phys;
806                 }
807         }
808         
809         /* only allocate multiples of 4 byte */
810         if (size % 4)
811         {
812                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes, padding");
813                 size = CEIL(size, 4);
814         }
815         
816         /* see if there's already a matching working area */
817         while (c)
818         {
819                 if ((c->free) && (c->size == size))
820                 {
821                         new_wa = c;
822                         break;
823                 }
824                 c = c->next;
825         }
826         
827         /* if not, allocate a new one */
828         if (!new_wa)
829         {
830                 working_area_t **p = &target->working_areas;
831                 u32 first_free = target->working_area;
832                 u32 free_size = target->working_area_size;
833                 
834                 LOG_DEBUG("allocating new working area");
835                 
836                 c = target->working_areas;
837                 while (c)
838                 {
839                         first_free += c->size;
840                         free_size -= c->size;
841                         p = &c->next;
842                         c = c->next;
843                 }
844                 
845                 if (free_size < size)
846                 {
847                         LOG_WARNING("not enough working area available(requested %d, free %d)", size, free_size);
848                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
849                 }
850                 
851                 new_wa = malloc(sizeof(working_area_t));
852                 new_wa->next = NULL;
853                 new_wa->size = size;
854                 new_wa->address = first_free;
855                 
856                 if (target->backup_working_area)
857                 {
858                         new_wa->backup = malloc(new_wa->size);
859                         target->type->read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup);
860                 }
861                 else
862                 {
863                         new_wa->backup = NULL;
864                 }
865                 
866                 /* put new entry in list */
867                 *p = new_wa;
868         }
869         
870         /* mark as used, and return the new (reused) area */
871         new_wa->free = 0;
872         *area = new_wa;
873         
874         /* user pointer */
875         new_wa->user = area;
876         
877         return ERROR_OK;
878 }
879
880 int target_free_working_area_restore(struct target_s *target, working_area_t *area, int restore)
881 {
882         if (area->free)
883                 return ERROR_OK;
884         
885         if (restore&&target->backup_working_area)
886                 target->type->write_memory(target, area->address, 4, area->size / 4, area->backup);
887         
888         area->free = 1;
889         
890         /* mark user pointer invalid */
891         *area->user = NULL;
892         area->user = NULL;
893         
894         return ERROR_OK;
895 }
896
897 int target_free_working_area(struct target_s *target, working_area_t *area)
898 {
899         return target_free_working_area_restore(target, area, 1);
900 }
901
902 int target_free_all_working_areas_restore(struct target_s *target, int restore)
903 {
904         working_area_t *c = target->working_areas;
905
906         while (c)
907         {
908                 working_area_t *next = c->next;
909                 target_free_working_area_restore(target, c, restore);
910                 
911                 if (c->backup)
912                         free(c->backup);
913                 
914                 free(c);
915                 
916                 c = next;
917         }
918         
919         target->working_areas = NULL;
920         
921         return ERROR_OK;
922 }
923
924 int target_free_all_working_areas(struct target_s *target)
925 {
926         return target_free_all_working_areas_restore(target, 1); 
927 }
928
929 int target_register_commands(struct command_context_s *cmd_ctx)
930 {
931         register_command(cmd_ctx, NULL, "target", handle_target_command, COMMAND_CONFIG, "target <cpu> [reset_init default - DEPRECATED] <chainpos> <endianness> <variant> [cpu type specifc args]");
932         register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, NULL);
933         register_command(cmd_ctx, NULL, "run_and_halt_time", handle_run_and_halt_time_command, COMMAND_CONFIG, "<target> <run time ms>");
934         register_command(cmd_ctx, NULL, "working_area", handle_working_area_command, COMMAND_ANY, "working_area <target#> <address> <size> <'backup'|'nobackup'> [virtual address]");
935         register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "virt2phys <virtual address>");
936         register_command(cmd_ctx, NULL, "profile", handle_profile_command, COMMAND_EXEC, "PRELIMINARY! - profile <seconds> <gmon.out>");
937
938
939         /* script procedures */
940         register_jim(cmd_ctx, "ocd_mem2array", jim_mem2array, "read memory and return as a TCL array for script processing");
941         register_jim(cmd_ctx, "ocd_array2mem", jim_array2mem, "convert a TCL array to memory locations and write the values");
942         return ERROR_OK;
943 }
944
945 int target_arch_state(struct target_s *target)
946 {
947         int retval;
948         if (target==NULL)
949         {
950                 LOG_USER("No target has been configured");
951                 return ERROR_OK;
952         }
953         
954         LOG_USER("target state: %s", target_state_strings[target->state]);
955         
956         if (target->state!=TARGET_HALTED)
957                 return ERROR_OK;
958         
959         retval=target->type->arch_state(target);
960         return retval;
961 }
962
963 /* Single aligned words are guaranteed to use 16 or 32 bit access 
964  * mode respectively, otherwise data is handled as quickly as 
965  * possible
966  */
967 int target_write_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
968 {
969         int retval;
970         if (!target->type->examined)
971         {
972                 LOG_ERROR("Target not examined yet");
973                 return ERROR_FAIL;
974         }
975         
976         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x", size, address);
977         
978         if (((address % 2) == 0) && (size == 2))
979         {
980                 return target->type->write_memory(target, address, 2, 1, buffer);
981         }
982         
983         /* handle unaligned head bytes */
984         if (address % 4)
985         {
986                 int unaligned = 4 - (address % 4);
987                 
988                 if (unaligned > size)
989                         unaligned = size;
990
991                 if ((retval = target->type->write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
992                         return retval;
993                 
994                 buffer += unaligned;
995                 address += unaligned;
996                 size -= unaligned;
997         }
998                 
999         /* handle aligned words */
1000         if (size >= 4)
1001         {
1002                 int aligned = size - (size % 4);
1003         
1004                 /* use bulk writes above a certain limit. This may have to be changed */
1005                 if (aligned > 128)
1006                 {
1007                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1008                                 return retval;
1009                 }
1010                 else
1011                 {
1012                         if ((retval = target->type->write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1013                                 return retval;
1014                 }
1015                 
1016                 buffer += aligned;
1017                 address += aligned;
1018                 size -= aligned;
1019         }
1020         
1021         /* handle tail writes of less than 4 bytes */
1022         if (size > 0)
1023         {
1024                 if ((retval = target->type->write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1025                         return retval;
1026         }
1027         
1028         return ERROR_OK;
1029 }
1030
1031
1032 /* Single aligned words are guaranteed to use 16 or 32 bit access 
1033  * mode respectively, otherwise data is handled as quickly as 
1034  * possible
1035  */
1036 int target_read_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
1037 {
1038         int retval;
1039         if (!target->type->examined)
1040         {
1041                 LOG_ERROR("Target not examined yet");
1042                 return ERROR_FAIL;
1043         }
1044
1045         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x", size, address);
1046         
1047         if (((address % 2) == 0) && (size == 2))
1048         {
1049                 return target->type->read_memory(target, address, 2, 1, buffer);
1050         }
1051         
1052         /* handle unaligned head bytes */
1053         if (address % 4)
1054         {
1055                 int unaligned = 4 - (address % 4);
1056                 
1057                 if (unaligned > size)
1058                         unaligned = size;
1059
1060                 if ((retval = target->type->read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1061                         return retval;
1062                 
1063                 buffer += unaligned;
1064                 address += unaligned;
1065                 size -= unaligned;
1066         }
1067                 
1068         /* handle aligned words */
1069         if (size >= 4)
1070         {
1071                 int aligned = size - (size % 4);
1072         
1073                 if ((retval = target->type->read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1074                         return retval;
1075                 
1076                 buffer += aligned;
1077                 address += aligned;
1078                 size -= aligned;
1079         }
1080         
1081         /* handle tail writes of less than 4 bytes */
1082         if (size > 0)
1083         {
1084                 if ((retval = target->type->read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1085                         return retval;
1086         }
1087         
1088         return ERROR_OK;
1089 }
1090
1091 int target_checksum_memory(struct target_s *target, u32 address, u32 size, u32* crc)
1092 {
1093         u8 *buffer;
1094         int retval;
1095         int i;
1096         u32 checksum = 0;
1097         if (!target->type->examined)
1098         {
1099                 LOG_ERROR("Target not examined yet");
1100                 return ERROR_FAIL;
1101         }
1102         
1103         if ((retval = target->type->checksum_memory(target, address,
1104                 size, &checksum)) == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1105         {
1106                 buffer = malloc(size);
1107                 if (buffer == NULL)
1108                 {
1109                         LOG_ERROR("error allocating buffer for section (%d bytes)", size);
1110                         return ERROR_INVALID_ARGUMENTS;
1111                 }
1112                 retval = target_read_buffer(target, address, size, buffer);
1113                 if (retval != ERROR_OK)
1114                 {
1115                         free(buffer);
1116                         return retval;
1117                 }
1118
1119                 /* convert to target endianess */
1120                 for (i = 0; i < (size/sizeof(u32)); i++)
1121                 {
1122                         u32 target_data;
1123                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(u32)]);
1124                         target_buffer_set_u32(target, &buffer[i*sizeof(u32)], target_data);
1125                 }
1126
1127                 retval = image_calculate_checksum( buffer, size, &checksum );
1128                 free(buffer);
1129         }
1130         
1131         *crc = checksum;
1132         
1133         return retval;
1134 }
1135
1136 int target_blank_check_memory(struct target_s *target, u32 address, u32 size, u32* blank)
1137 {
1138         int retval;
1139         if (!target->type->examined)
1140         {
1141                 LOG_ERROR("Target not examined yet");
1142                 return ERROR_FAIL;
1143         }
1144         
1145         if (target->type->blank_check_memory == 0)
1146                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1147         
1148         retval = target->type->blank_check_memory(target, address, size, blank);
1149                         
1150         return retval;
1151 }
1152
1153 int target_read_u32(struct target_s *target, u32 address, u32 *value)
1154 {
1155         u8 value_buf[4];
1156         if (!target->type->examined)
1157         {
1158                 LOG_ERROR("Target not examined yet");
1159                 return ERROR_FAIL;
1160         }
1161
1162         int retval = target->type->read_memory(target, address, 4, 1, value_buf);
1163         
1164         if (retval == ERROR_OK)
1165         {
1166                 *value = target_buffer_get_u32(target, value_buf);
1167                 LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, *value);
1168         }
1169         else
1170         {
1171                 *value = 0x0;
1172                 LOG_DEBUG("address: 0x%8.8x failed", address);
1173         }
1174         
1175         return retval;
1176 }
1177
1178 int target_read_u16(struct target_s *target, u32 address, u16 *value)
1179 {
1180         u8 value_buf[2];
1181         if (!target->type->examined)
1182         {
1183                 LOG_ERROR("Target not examined yet");
1184                 return ERROR_FAIL;
1185         }
1186
1187         int retval = target->type->read_memory(target, address, 2, 1, value_buf);
1188         
1189         if (retval == ERROR_OK)
1190         {
1191                 *value = target_buffer_get_u16(target, value_buf);
1192                 LOG_DEBUG("address: 0x%8.8x, value: 0x%4.4x", address, *value);
1193         }
1194         else
1195         {
1196                 *value = 0x0;
1197                 LOG_DEBUG("address: 0x%8.8x failed", address);
1198         }
1199         
1200         return retval;
1201 }
1202
1203 int target_read_u8(struct target_s *target, u32 address, u8 *value)
1204 {
1205         int retval = target->type->read_memory(target, address, 1, 1, value);
1206         if (!target->type->examined)
1207         {
1208                 LOG_ERROR("Target not examined yet");
1209                 return ERROR_FAIL;
1210         }
1211
1212         if (retval == ERROR_OK)
1213         {
1214                 LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, *value);
1215         }
1216         else
1217         {
1218                 *value = 0x0;
1219                 LOG_DEBUG("address: 0x%8.8x failed", address);
1220         }
1221         
1222         return retval;
1223 }
1224
1225 int target_write_u32(struct target_s *target, u32 address, u32 value)
1226 {
1227         int retval;
1228         u8 value_buf[4];
1229         if (!target->type->examined)
1230         {
1231                 LOG_ERROR("Target not examined yet");
1232                 return ERROR_FAIL;
1233         }
1234
1235         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1236
1237         target_buffer_set_u32(target, value_buf, value);        
1238         if ((retval = target->type->write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1239         {
1240                 LOG_DEBUG("failed: %i", retval);
1241         }
1242         
1243         return retval;
1244 }
1245
1246 int target_write_u16(struct target_s *target, u32 address, u16 value)
1247 {
1248         int retval;
1249         u8 value_buf[2];
1250         if (!target->type->examined)
1251         {
1252                 LOG_ERROR("Target not examined yet");
1253                 return ERROR_FAIL;
1254         }
1255
1256         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1257
1258         target_buffer_set_u16(target, value_buf, value);        
1259         if ((retval = target->type->write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1260         {
1261                 LOG_DEBUG("failed: %i", retval);
1262         }
1263         
1264         return retval;
1265 }
1266
1267 int target_write_u8(struct target_s *target, u32 address, u8 value)
1268 {
1269         int retval;
1270         if (!target->type->examined)
1271         {
1272                 LOG_ERROR("Target not examined yet");
1273                 return ERROR_FAIL;
1274         }
1275
1276         LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, value);
1277
1278         if ((retval = target->type->read_memory(target, address, 1, 1, &value)) != ERROR_OK)
1279         {
1280                 LOG_DEBUG("failed: %i", retval);
1281         }
1282         
1283         return retval;
1284 }
1285
1286 int target_register_user_commands(struct command_context_s *cmd_ctx)
1287 {
1288         register_command(cmd_ctx,  NULL, "reg", handle_reg_command, COMMAND_EXEC, NULL);
1289         register_command(cmd_ctx,  NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state");
1290         register_command(cmd_ctx,  NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]");
1291         register_command(cmd_ctx,  NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target");
1292         register_command(cmd_ctx,  NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]");
1293         register_command(cmd_ctx,  NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]");
1294         register_command(cmd_ctx,  NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run|halt|init|run_and_halt|run_and_init]");
1295         register_command(cmd_ctx,  NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset");
1296
1297         register_command(cmd_ctx,  NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words <addr> [count]");
1298         register_command(cmd_ctx,  NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words <addr> [count]");
1299         register_command(cmd_ctx,  NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes <addr> [count]");
1300         
1301         register_command(cmd_ctx,  NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word <addr> <value> [count]");
1302         register_command(cmd_ctx,  NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word <addr> <value> [count]");
1303         register_command(cmd_ctx,  NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte <addr> <value> [count]");
1304         
1305         register_command(cmd_ctx,  NULL, "bp", handle_bp_command, COMMAND_EXEC, "set breakpoint <address> <length> [hw]");      
1306         register_command(cmd_ctx,  NULL, "rbp", handle_rbp_command, COMMAND_EXEC, "remove breakpoint <adress>");
1307         register_command(cmd_ctx,  NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint <address> <length> <r/w/a> [value] [mask]");    
1308         register_command(cmd_ctx,  NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint <adress>");
1309         
1310         register_command(cmd_ctx,  NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> ['bin'|'ihex'|'elf'|'s19']");
1311         register_command(cmd_ctx,  NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>");
1312         register_command(cmd_ctx,  NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image <file> [offset] [type]");
1313         register_command(cmd_ctx,  NULL, "load_binary", handle_load_image_command, COMMAND_EXEC, "[DEPRECATED] load_binary <file> <address>");
1314         register_command(cmd_ctx,  NULL, "dump_binary", handle_dump_image_command, COMMAND_EXEC, "[DEPRECATED] dump_binary <file> <address> <size>");
1315         
1316         target_request_register_commands(cmd_ctx);
1317         trace_register_commands(cmd_ctx);
1318         
1319         return ERROR_OK;
1320 }
1321
1322 int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1323 {
1324         target_t *target = targets;
1325         int count = 0;
1326         
1327         if (argc == 1)
1328         {
1329                 int num = strtoul(args[0], NULL, 0);
1330                 
1331                 while (target)
1332                 {
1333                         count++;
1334                         target = target->next;
1335                 }
1336                 
1337                 if (num < count)
1338                         cmd_ctx->current_target = num;
1339                 else
1340                         command_print(cmd_ctx, "%i is out of bounds, only %i targets are configured", num, count);
1341                         
1342                 return ERROR_OK;
1343         }
1344                 
1345         while (target)
1346         {
1347                 command_print(cmd_ctx, "%i: %s (%s), state: %s", count++, target->type->name, target_endianess_strings[target->endianness], target_state_strings[target->state]);
1348                 target = target->next;
1349         }
1350         
1351         return ERROR_OK;
1352 }
1353
1354 int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1355 {
1356         int i;
1357         int found = 0;
1358         
1359         if (argc < 3)
1360         {
1361                 return ERROR_COMMAND_SYNTAX_ERROR;
1362         }
1363         
1364         /* search for the specified target */
1365         if (args[0] && (args[0][0] != 0))
1366         {
1367                 for (i = 0; target_types[i]; i++)
1368                 {
1369                         if (strcmp(args[0], target_types[i]->name) == 0)
1370                         {
1371                                 target_t **last_target_p = &targets;
1372                                 
1373                                 /* register target specific commands */
1374                                 if (target_types[i]->register_commands(cmd_ctx) != ERROR_OK)
1375                                 {
1376                                         LOG_ERROR("couldn't register '%s' commands", args[0]);
1377                                         exit(-1);
1378                                 }
1379
1380                                 if (*last_target_p)
1381                                 {
1382                                         while ((*last_target_p)->next)
1383                                                 last_target_p = &((*last_target_p)->next);
1384                                         last_target_p = &((*last_target_p)->next);
1385                                 }
1386
1387                                 *last_target_p = malloc(sizeof(target_t));
1388                                 
1389                                 /* allocate memory for each unique target type */
1390                                 (*last_target_p)->type = (target_type_t*)malloc(sizeof(target_type_t));
1391                                 *((*last_target_p)->type) = *target_types[i]; 
1392                                 
1393                                 if (strcmp(args[1], "big") == 0)
1394                                         (*last_target_p)->endianness = TARGET_BIG_ENDIAN;
1395                                 else if (strcmp(args[1], "little") == 0)
1396                                         (*last_target_p)->endianness = TARGET_LITTLE_ENDIAN;
1397                                 else
1398                                 {
1399                                         LOG_ERROR("endianness must be either 'little' or 'big', not '%s'", args[1]);
1400                                         return ERROR_COMMAND_SYNTAX_ERROR;
1401                                 }
1402                                 
1403                                 if (strcmp(args[2], "reset_halt") == 0)
1404                                 {
1405                                         LOG_WARNING("reset_mode argument is obsolete.");
1406                                         return ERROR_COMMAND_SYNTAX_ERROR;
1407                                 }
1408                                 else if (strcmp(args[2], "reset_run") == 0)
1409                                 {
1410                                         LOG_WARNING("reset_mode argument is obsolete.");
1411                                         return ERROR_COMMAND_SYNTAX_ERROR;
1412                                 }
1413                                 else if (strcmp(args[2], "reset_init") == 0)
1414                                 {
1415                                         LOG_WARNING("reset_mode argument is obsolete.");
1416                                         return ERROR_COMMAND_SYNTAX_ERROR;
1417                                 }
1418                                 else if (strcmp(args[2], "run_and_halt") == 0)
1419                                 {
1420                                         LOG_WARNING("reset_mode argument is obsolete.");
1421                                         return ERROR_COMMAND_SYNTAX_ERROR;
1422                                 }
1423                                 else if (strcmp(args[2], "run_and_init") == 0)
1424                                 {
1425                                         LOG_WARNING("reset_mode argument is obsolete.");
1426                                         return ERROR_COMMAND_SYNTAX_ERROR;
1427                                 }
1428                                 else
1429                                 {
1430                                         /* Kludge! we want to make this reset arg optional while remaining compatible! */
1431                                         args--;
1432                                         argc++;
1433                                 }
1434                                 (*last_target_p)->run_and_halt_time = 1000; /* default 1s */
1435                                 
1436                                 (*last_target_p)->working_area = 0x0;
1437                                 (*last_target_p)->working_area_size = 0x0;
1438                                 (*last_target_p)->working_areas = NULL;
1439                                 (*last_target_p)->backup_working_area = 0;
1440                                 
1441                                 (*last_target_p)->state = TARGET_UNKNOWN;
1442                                 (*last_target_p)->debug_reason = DBG_REASON_UNDEFINED;
1443                                 (*last_target_p)->reg_cache = NULL;
1444                                 (*last_target_p)->breakpoints = NULL;
1445                                 (*last_target_p)->watchpoints = NULL;
1446                                 (*last_target_p)->next = NULL;
1447                                 (*last_target_p)->arch_info = NULL;
1448                                 
1449                                 /* initialize trace information */
1450                                 (*last_target_p)->trace_info = malloc(sizeof(trace_t));
1451                                 (*last_target_p)->trace_info->num_trace_points = 0;
1452                                 (*last_target_p)->trace_info->trace_points_size = 0;
1453                                 (*last_target_p)->trace_info->trace_points = NULL;
1454                                 (*last_target_p)->trace_info->trace_history_size = 0;
1455                                 (*last_target_p)->trace_info->trace_history = NULL;
1456                                 (*last_target_p)->trace_info->trace_history_pos = 0;
1457                                 (*last_target_p)->trace_info->trace_history_overflowed = 0;
1458                                 
1459                                 (*last_target_p)->dbgmsg = NULL;
1460                                 (*last_target_p)->dbg_msg_enabled = 0;
1461                                                                 
1462                                 (*last_target_p)->type->target_command(cmd_ctx, cmd, args, argc, *last_target_p);
1463                                 
1464                                 found = 1;
1465                                 break;
1466                         }
1467                 }
1468         }
1469         
1470         /* no matching target found */
1471         if (!found)
1472         {
1473                 LOG_ERROR("target '%s' not found", args[0]);
1474                 return ERROR_COMMAND_SYNTAX_ERROR;
1475         }
1476
1477         return ERROR_OK;
1478 }
1479
1480 int target_invoke_script(struct command_context_s *cmd_ctx, target_t *target, char *name)
1481 {
1482         return command_run_linef(cmd_ctx, " if {[catch {info body target_%d_%s} t]==0} {target_%d_%s}", 
1483                         get_num_by_target(target), name, 
1484                         get_num_by_target(target), name);
1485 }
1486
1487 int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1488 {
1489         target_t *target = NULL;
1490         
1491         if (argc < 2)
1492         {
1493                 return ERROR_COMMAND_SYNTAX_ERROR;
1494         }
1495         
1496         target = get_target_by_num(strtoul(args[0], NULL, 0));
1497         if (!target)
1498         {
1499                 return ERROR_COMMAND_SYNTAX_ERROR;
1500         }
1501         
1502         target->run_and_halt_time = strtoul(args[1], NULL, 0);
1503         
1504         return ERROR_OK;
1505 }
1506
1507 int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1508 {
1509         target_t *target = NULL;
1510         
1511         if ((argc < 4) || (argc > 5))
1512         {
1513                 return ERROR_COMMAND_SYNTAX_ERROR;
1514         }
1515         
1516         target = get_target_by_num(strtoul(args[0], NULL, 0));
1517         if (!target)
1518         {
1519                 return ERROR_COMMAND_SYNTAX_ERROR;
1520         }
1521         target_free_all_working_areas(target);
1522         
1523         target->working_area_phys = target->working_area_virt = strtoul(args[1], NULL, 0);
1524         if (argc == 5)
1525         {
1526                 target->working_area_virt = strtoul(args[4], NULL, 0);
1527         }
1528         target->working_area_size = strtoul(args[2], NULL, 0);
1529         
1530         if (strcmp(args[3], "backup") == 0)
1531         {
1532                 target->backup_working_area = 1;
1533         }
1534         else if (strcmp(args[3], "nobackup") == 0)
1535         {
1536                 target->backup_working_area = 0;
1537         }
1538         else
1539         {
1540                 LOG_ERROR("unrecognized <backup|nobackup> argument (%s)", args[3]);
1541                 return ERROR_COMMAND_SYNTAX_ERROR;
1542         }
1543         
1544         return ERROR_OK;
1545 }
1546
1547
1548 /* process target state changes */
1549 int handle_target(void *priv)
1550 {
1551         target_t *target = targets;
1552         
1553         while (target)
1554         {
1555                 if (target_continous_poll)
1556                 {
1557                         /* polling may fail silently until the target has been examined */
1558                         target_poll(target);
1559                 }
1560         
1561                 target = target->next;
1562         }
1563         
1564         return ERROR_OK;
1565 }
1566
1567 int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1568 {
1569         target_t *target;
1570         reg_t *reg = NULL;
1571         int count = 0;
1572         char *value;
1573         
1574         LOG_DEBUG("-");
1575         
1576         target = get_current_target(cmd_ctx);
1577         
1578         /* list all available registers for the current target */
1579         if (argc == 0)
1580         {
1581                 reg_cache_t *cache = target->reg_cache;
1582                 
1583                 count = 0;
1584                 while(cache)
1585                 {
1586                         int i;
1587                         for (i = 0; i < cache->num_regs; i++)
1588                         {
1589                                 value = buf_to_str(cache->reg_list[i].value, cache->reg_list[i].size, 16);
1590                                 command_print(cmd_ctx, "(%i) %s (/%i): 0x%s (dirty: %i, valid: %i)", count++, cache->reg_list[i].name, cache->reg_list[i].size, value, cache->reg_list[i].dirty, cache->reg_list[i].valid);
1591                                 free(value);
1592                         }
1593                         cache = cache->next;
1594                 }
1595                 
1596                 return ERROR_OK;
1597         }
1598         
1599         /* access a single register by its ordinal number */
1600         if ((args[0][0] >= '0') && (args[0][0] <= '9'))
1601         {
1602                 int num = strtoul(args[0], NULL, 0);
1603                 reg_cache_t *cache = target->reg_cache;
1604                 
1605                 count = 0;
1606                 while(cache)
1607                 {
1608                         int i;
1609                         for (i = 0; i < cache->num_regs; i++)
1610                         {
1611                                 if (count++ == num)
1612                                 {
1613                                         reg = &cache->reg_list[i];
1614                                         break;
1615                                 }
1616                         }
1617                         if (reg)
1618                                 break;
1619                         cache = cache->next;
1620                 }
1621                 
1622                 if (!reg)
1623                 {
1624                         command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1625                         return ERROR_OK;
1626                 }
1627         } else /* access a single register by its name */
1628         {
1629                 reg = register_get_by_name(target->reg_cache, args[0], 1);
1630                 
1631                 if (!reg)
1632                 {
1633                         command_print(cmd_ctx, "register %s not found in current target", args[0]);
1634                         return ERROR_OK;
1635                 }
1636         }
1637
1638         /* display a register */
1639         if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
1640         {
1641                 if ((argc == 2) && (strcmp(args[1], "force") == 0))
1642                         reg->valid = 0;
1643                 
1644                 if (reg->valid == 0)
1645                 {
1646                         reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1647                         if (arch_type == NULL)
1648                         {
1649                                 LOG_ERROR("BUG: encountered unregistered arch type");
1650                                 return ERROR_OK;
1651                         }
1652                         arch_type->get(reg);
1653                 }
1654                 value = buf_to_str(reg->value, reg->size, 16);
1655                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1656                 free(value);
1657                 return ERROR_OK;
1658         }
1659         
1660         /* set register value */
1661         if (argc == 2)
1662         {
1663                 u8 *buf = malloc(CEIL(reg->size, 8));
1664                 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
1665
1666                 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1667                 if (arch_type == NULL)
1668                 {
1669                         LOG_ERROR("BUG: encountered unregistered arch type");
1670                         return ERROR_OK;
1671                 }
1672                 
1673                 arch_type->set(reg, buf);
1674                 
1675                 value = buf_to_str(reg->value, reg->size, 16);
1676                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1677                 free(value);
1678                 
1679                 free(buf);
1680                 
1681                 return ERROR_OK;
1682         }
1683         
1684         command_print(cmd_ctx, "usage: reg <#|name> [value]");
1685         
1686         return ERROR_OK;
1687 }
1688
1689
1690 int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1691 {
1692         target_t *target = get_current_target(cmd_ctx);
1693
1694         if (argc == 0)
1695         {
1696                 target_poll(target);
1697                 target_arch_state(target);
1698         }
1699         else
1700         {
1701                 if (strcmp(args[0], "on") == 0)
1702                 {
1703                         target_continous_poll = 1;
1704                 }
1705                 else if (strcmp(args[0], "off") == 0)
1706                 {
1707                         target_continous_poll = 0;
1708                 }
1709                 else
1710                 {
1711                         command_print(cmd_ctx, "arg is \"on\" or \"off\"");
1712                 }
1713         }
1714         
1715         
1716         return ERROR_OK;
1717 }
1718
1719 int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1720 {
1721         int ms = 5000;
1722         
1723         if (argc > 0)
1724         {
1725                 char *end;
1726
1727                 ms = strtoul(args[0], &end, 0) * 1000;
1728                 if (*end)
1729                 {
1730                         command_print(cmd_ctx, "usage: %s [seconds]", cmd);
1731                         return ERROR_OK;
1732                 }
1733         }
1734         target_t *target = get_current_target(cmd_ctx);
1735
1736         return target_wait_state(target, TARGET_HALTED, ms); 
1737 }
1738
1739 int target_wait_state(target_t *target, enum target_state state, int ms)
1740 {
1741         int retval;
1742         struct timeval timeout, now;
1743         int once=1;
1744         gettimeofday(&timeout, NULL);
1745         timeval_add_time(&timeout, 0, ms * 1000);
1746         
1747         for (;;)
1748         {
1749                 if ((retval=target_poll(target))!=ERROR_OK)
1750                         return retval;
1751                 target_call_timer_callbacks_now();
1752                 if (target->state == state)
1753                 {
1754                         break;
1755                 }
1756                 if (once)
1757                 {
1758                         once=0;
1759                         LOG_USER("waiting for target %s...", target_state_strings[state]);
1760                 }
1761                 
1762                 gettimeofday(&now, NULL);
1763                 if ((now.tv_sec > timeout.tv_sec) || ((now.tv_sec == timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
1764                 {
1765                         LOG_ERROR("timed out while waiting for target %s", target_state_strings[state]);
1766                         break;
1767                 }
1768         }
1769         
1770         return ERROR_OK;
1771 }
1772
1773 int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1774 {
1775         int retval;
1776         target_t *target = get_current_target(cmd_ctx);
1777
1778         LOG_DEBUG("-");
1779
1780         if ((retval = target_halt(target)) != ERROR_OK)
1781         {
1782                 return retval;
1783         }
1784         
1785         return handle_wait_halt_command(cmd_ctx, cmd, args, argc);
1786 }
1787
1788 int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1789 {
1790         target_t *target = get_current_target(cmd_ctx);
1791         
1792         LOG_USER("requesting target halt and executing a soft reset");
1793         
1794         target->type->soft_reset_halt(target);
1795         
1796         return ERROR_OK;
1797 }
1798
1799 int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1800 {
1801         target_t *target = get_current_target(cmd_ctx);
1802         enum target_reset_mode reset_mode = RESET_RUN;
1803         
1804         LOG_DEBUG("-");
1805         
1806         if (argc >= 1)
1807         {
1808                 if (strcmp("run", args[0]) == 0)
1809                         reset_mode = RESET_RUN;
1810                 else if (strcmp("halt", args[0]) == 0)
1811                         reset_mode = RESET_HALT;
1812                 else if (strcmp("init", args[0]) == 0)
1813                         reset_mode = RESET_INIT;
1814                 else if (strcmp("run_and_halt", args[0]) == 0)
1815                 {
1816                         reset_mode = RESET_RUN_AND_HALT;
1817                         if (argc >= 2)
1818                         {
1819                                 target->run_and_halt_time = strtoul(args[1], NULL, 0);
1820                         }
1821                 }
1822                 else if (strcmp("run_and_init", args[0]) == 0)
1823                 {
1824                         reset_mode = RESET_RUN_AND_INIT;
1825                         if (argc >= 2)
1826                         {
1827                                 target->run_and_halt_time = strtoul(args[1], NULL, 0);
1828                         }
1829                 }
1830                 else
1831                 {
1832                         command_print(cmd_ctx, "usage: reset ['run', 'halt', 'init', 'run_and_halt', 'run_and_init]");
1833                         return ERROR_OK;
1834                 }
1835         }
1836         
1837         /* reset *all* targets */
1838         target_process_reset(cmd_ctx, reset_mode);
1839         
1840         return ERROR_OK;
1841 }
1842
1843 int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1844 {
1845         int retval;
1846         target_t *target = get_current_target(cmd_ctx);
1847         
1848         target_invoke_script(cmd_ctx, target, "pre_resume");
1849         
1850         if (argc == 0)
1851                 retval = target_resume(target, 1, 0, 1, 0); /* current pc, addr = 0, handle breakpoints, not debugging */
1852         else if (argc == 1)
1853                 retval = target_resume(target, 0, strtoul(args[0], NULL, 0), 1, 0); /* addr = args[0], handle breakpoints, not debugging */
1854         else
1855         {
1856                 return ERROR_COMMAND_SYNTAX_ERROR;
1857         }
1858         
1859         return retval;
1860 }
1861
1862 int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1863 {
1864         target_t *target = get_current_target(cmd_ctx);
1865         
1866         LOG_DEBUG("-");
1867         
1868         if (argc == 0)
1869                 target->type->step(target, 1, 0, 1); /* current pc, addr = 0, handle breakpoints */
1870
1871         if (argc == 1)
1872                 target->type->step(target, 0, strtoul(args[0], NULL, 0), 1); /* addr = args[0], handle breakpoints */
1873         
1874         return ERROR_OK;
1875 }
1876
1877 int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1878 {
1879         const int line_bytecnt = 32;
1880         int count = 1;
1881         int size = 4;
1882         u32 address = 0;
1883         int line_modulo;
1884         int i;
1885
1886         char output[128];
1887         int output_len;
1888
1889         int retval;
1890
1891         u8 *buffer;
1892         target_t *target = get_current_target(cmd_ctx);
1893
1894         if (argc < 1)
1895                 return ERROR_OK;
1896
1897         if (argc == 2)
1898                 count = strtoul(args[1], NULL, 0);
1899
1900         address = strtoul(args[0], NULL, 0);
1901         
1902
1903         switch (cmd[2])
1904         {
1905                 case 'w':
1906                         size = 4; line_modulo = line_bytecnt / 4;
1907                         break;
1908                 case 'h':
1909                         size = 2; line_modulo = line_bytecnt / 2;
1910                         break;
1911                 case 'b':
1912                         size = 1; line_modulo = line_bytecnt / 1;
1913                         break;
1914                 default:
1915                         return ERROR_OK;
1916         }
1917
1918         buffer = calloc(count, size);
1919         retval  = target->type->read_memory(target, address, size, count, buffer);
1920         if (retval == ERROR_OK)
1921         {
1922                 output_len = 0;
1923         
1924                 for (i = 0; i < count; i++)
1925                 {
1926                         if (i%line_modulo == 0)
1927                                 output_len += snprintf(output + output_len, 128 - output_len, "0x%8.8x: ", address + (i*size));
1928                         
1929                         switch (size)
1930                         {
1931                                 case 4:
1932                                         output_len += snprintf(output + output_len, 128 - output_len, "%8.8x ", target_buffer_get_u32(target, &buffer[i*4]));
1933                                         break;
1934                                 case 2:
1935                                         output_len += snprintf(output + output_len, 128 - output_len, "%4.4x ", target_buffer_get_u16(target, &buffer[i*2]));
1936                                         break;
1937                                 case 1:
1938                                         output_len += snprintf(output + output_len, 128 - output_len, "%2.2x ", buffer[i*1]);
1939                                         break;
1940                         }
1941         
1942                         if ((i%line_modulo == line_modulo-1) || (i == count - 1))
1943                         {
1944                                 command_print(cmd_ctx, output);
1945                                 output_len = 0;
1946                         }
1947                 }
1948         }
1949
1950         free(buffer);
1951         
1952         return retval;
1953 }
1954
1955 int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1956 {
1957         u32 address = 0;
1958         u32 value = 0;
1959         int count = 1;
1960         int i;
1961         int wordsize;
1962         target_t *target = get_current_target(cmd_ctx);
1963         u8 value_buf[4];
1964
1965          if ((argc < 2) || (argc > 3))
1966                 return ERROR_COMMAND_SYNTAX_ERROR;
1967
1968         address = strtoul(args[0], NULL, 0);
1969         value = strtoul(args[1], NULL, 0);
1970         if (argc == 3)
1971                 count = strtoul(args[2], NULL, 0);
1972         
1973         switch (cmd[2])
1974         {
1975                 case 'w':
1976                         wordsize = 4;
1977                         target_buffer_set_u32(target, value_buf, value);
1978                         break;
1979                 case 'h':
1980                         wordsize = 2;
1981                         target_buffer_set_u16(target, value_buf, value);
1982                         break;
1983                 case 'b':
1984                         wordsize = 1;
1985                         value_buf[0] = value;
1986                         break;
1987                 default:
1988                         return ERROR_COMMAND_SYNTAX_ERROR;
1989         }
1990         for (i=0; i<count; i++)
1991         {
1992                 int retval;
1993                 switch (wordsize)
1994                 {
1995                         case 4:
1996                                 retval = target->type->write_memory(target, address + i*wordsize, 4, 1, value_buf);
1997                                 break;
1998                         case 2:
1999                                 retval = target->type->write_memory(target, address + i*wordsize, 2, 1, value_buf);
2000                                 break;
2001                         case 1:
2002                                 retval = target->type->write_memory(target, address + i*wordsize, 1, 1, value_buf);
2003                         break;
2004                         default:
2005                         return ERROR_OK;
2006                 }
2007                 if (retval!=ERROR_OK)
2008                 {
2009                         return retval;
2010                 }
2011         }
2012
2013         return ERROR_OK;
2014
2015 }
2016
2017 int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2018 {
2019         u8 *buffer;
2020         u32 buf_cnt;
2021         u32 image_size;
2022         int i;
2023         int retval;
2024
2025         image_t image;  
2026         
2027         duration_t duration;
2028         char *duration_text;
2029         
2030         target_t *target = get_current_target(cmd_ctx);
2031
2032         if (argc < 1)
2033         {
2034                 command_print(cmd_ctx, "usage: load_image <filename> [address] [type]");
2035                 return ERROR_OK;
2036         }
2037         
2038         /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
2039         if (argc >= 2)
2040         {
2041                 image.base_address_set = 1;
2042                 image.base_address = strtoul(args[1], NULL, 0);
2043         }
2044         else
2045         {
2046                 image.base_address_set = 0;
2047         }
2048         
2049         image.start_address_set = 0;
2050
2051         duration_start_measure(&duration);
2052         
2053         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
2054         {
2055                 return ERROR_OK;
2056         }
2057         
2058         image_size = 0x0;
2059         retval = ERROR_OK;
2060         for (i = 0; i < image.num_sections; i++)
2061         {
2062                 buffer = malloc(image.sections[i].size);
2063                 if (buffer == NULL)
2064                 {
2065                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2066                         break;
2067                 }
2068                 
2069                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2070                 {
2071                         free(buffer);
2072                         break;
2073                 }
2074                 if ((retval = target_write_buffer(target, image.sections[i].base_address, buf_cnt, buffer)) != ERROR_OK)
2075                 {
2076                         free(buffer);
2077                         break;
2078                 }
2079                 image_size += buf_cnt;
2080                 command_print(cmd_ctx, "%u byte written at address 0x%8.8x", buf_cnt, image.sections[i].base_address);
2081                 
2082                 free(buffer);
2083         }
2084
2085         duration_stop_measure(&duration, &duration_text);
2086         if (retval==ERROR_OK)
2087         {
2088                 command_print(cmd_ctx, "downloaded %u byte in %s", image_size, duration_text);
2089         }
2090         free(duration_text);
2091         
2092         image_close(&image);
2093
2094         return retval;
2095
2096 }
2097
2098 int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2099 {
2100         fileio_t fileio;
2101         
2102         u32 address;
2103         u32 size;
2104         u8 buffer[560];
2105         int retval=ERROR_OK;
2106         
2107         duration_t duration;
2108         char *duration_text;
2109         
2110         target_t *target = get_current_target(cmd_ctx);
2111
2112         if (argc != 3)
2113         {
2114                 command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
2115                 return ERROR_OK;
2116         }
2117
2118         address = strtoul(args[1], NULL, 0);
2119         size = strtoul(args[2], NULL, 0);
2120
2121         if ((address & 3) || (size & 3))
2122         {
2123                 command_print(cmd_ctx, "only 32-bit aligned address and size are supported");
2124                 return ERROR_OK;
2125         }
2126         
2127         if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2128         {
2129                 return ERROR_OK;
2130         }
2131         
2132         duration_start_measure(&duration);
2133         
2134         while (size > 0)
2135         {
2136                 u32 size_written;
2137                 u32 this_run_size = (size > 560) ? 560 : size;
2138                 
2139                 retval = target->type->read_memory(target, address, 4, this_run_size / 4, buffer);
2140                 if (retval != ERROR_OK)
2141                 {
2142                         break;
2143                 }
2144                 
2145                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2146                 if (retval != ERROR_OK)
2147                 {
2148                         break;
2149                 }
2150                 
2151                 size -= this_run_size;
2152                 address += this_run_size;
2153         }
2154
2155         fileio_close(&fileio);
2156
2157         duration_stop_measure(&duration, &duration_text);
2158         if (retval==ERROR_OK)
2159         {
2160                 command_print(cmd_ctx, "dumped %"PRIi64" byte in %s", fileio.size, duration_text);
2161         }
2162         free(duration_text);
2163         
2164         return ERROR_OK;
2165 }
2166
2167 int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2168 {
2169         u8 *buffer;
2170         u32 buf_cnt;
2171         u32 image_size;
2172         int i;
2173         int retval;
2174         u32 checksum = 0;
2175         u32 mem_checksum = 0;
2176
2177         image_t image;  
2178         
2179         duration_t duration;
2180         char *duration_text;
2181         
2182         target_t *target = get_current_target(cmd_ctx);
2183         
2184         if (argc < 1)
2185         {
2186                 return ERROR_COMMAND_SYNTAX_ERROR;
2187         }
2188         
2189         if (!target)
2190         {
2191                 LOG_ERROR("no target selected");
2192                 return ERROR_FAIL;
2193         }
2194         
2195         duration_start_measure(&duration);
2196         
2197         if (argc >= 2)
2198         {
2199                 image.base_address_set = 1;
2200                 image.base_address = strtoul(args[1], NULL, 0);
2201         }
2202         else
2203         {
2204                 image.base_address_set = 0;
2205                 image.base_address = 0x0;
2206         }
2207
2208         image.start_address_set = 0;
2209
2210         if ((retval=image_open(&image, args[0], (argc == 3) ? args[2] : NULL)) != ERROR_OK)
2211         {
2212                 return retval;
2213         }
2214         
2215         image_size = 0x0;
2216         retval=ERROR_OK;
2217         for (i = 0; i < image.num_sections; i++)
2218         {
2219                 buffer = malloc(image.sections[i].size);
2220                 if (buffer == NULL)
2221                 {
2222                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2223                         break;
2224                 }
2225                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2226                 {
2227                         free(buffer);
2228                         break;
2229                 }
2230                 
2231                 /* calculate checksum of image */
2232                 image_calculate_checksum( buffer, buf_cnt, &checksum );
2233                 
2234                 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2235                 if( retval != ERROR_OK )
2236                 {
2237                         free(buffer);
2238                         break;
2239                 }
2240                 
2241                 if( checksum != mem_checksum )
2242                 {
2243                         /* failed crc checksum, fall back to a binary compare */
2244                         u8 *data;
2245                         
2246                         command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
2247                         
2248                         data = (u8*)malloc(buf_cnt);
2249                         
2250                         /* Can we use 32bit word accesses? */
2251                         int size = 1;
2252                         int count = buf_cnt;
2253                         if ((count % 4) == 0)
2254                         {
2255                                 size *= 4;
2256                                 count /= 4;
2257                         }
2258                         retval = target->type->read_memory(target, image.sections[i].base_address, size, count, data);
2259                         if (retval == ERROR_OK)
2260                         {
2261                                 int t;
2262                                 for (t = 0; t < buf_cnt; t++)
2263                                 {
2264                                         if (data[t] != buffer[t])
2265                                         {
2266                                                 command_print(cmd_ctx, "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n", t + image.sections[i].base_address, data[t], buffer[t]);
2267                                                 free(data);
2268                                                 free(buffer);
2269                                                 retval=ERROR_FAIL;
2270                                                 goto done;
2271                                         }
2272                                 }
2273                         }
2274                         
2275                         free(data);
2276                 }
2277                 
2278                 free(buffer);
2279                 image_size += buf_cnt;
2280         }
2281 done:   
2282         duration_stop_measure(&duration, &duration_text);
2283         if (retval==ERROR_OK)
2284         {
2285                 command_print(cmd_ctx, "verified %u bytes in %s", image_size, duration_text);
2286         }
2287         free(duration_text);
2288         
2289         image_close(&image);
2290         
2291         return retval;
2292 }
2293
2294 int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2295 {
2296         int retval;
2297         target_t *target = get_current_target(cmd_ctx);
2298
2299         if (argc == 0)
2300         {
2301                 breakpoint_t *breakpoint = target->breakpoints;
2302
2303                 while (breakpoint)
2304                 {
2305                         if (breakpoint->type == BKPT_SOFT)
2306                         {
2307                                 char* buf = buf_to_str(breakpoint->orig_instr, breakpoint->length, 16);
2308                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i, 0x%s", breakpoint->address, breakpoint->length, breakpoint->set, buf);
2309                                 free(buf);
2310                         }
2311                         else
2312                         {
2313                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i", breakpoint->address, breakpoint->length, breakpoint->set);
2314                         }
2315                         breakpoint = breakpoint->next;
2316                 }
2317         }
2318         else if (argc >= 2)
2319         {
2320                 int hw = BKPT_SOFT;
2321                 u32 length = 0;
2322
2323                 length = strtoul(args[1], NULL, 0);
2324                 
2325                 if (argc >= 3)
2326                         if (strcmp(args[2], "hw") == 0)
2327                                 hw = BKPT_HARD;
2328
2329                 if ((retval = breakpoint_add(target, strtoul(args[0], NULL, 0), length, hw)) != ERROR_OK)
2330                 {
2331                         LOG_ERROR("Failure setting breakpoints");
2332                 }
2333                 else
2334                 {
2335                         command_print(cmd_ctx, "breakpoint added at address 0x%8.8x", strtoul(args[0], NULL, 0));
2336                 }
2337         }
2338         else
2339         {
2340                 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
2341         }
2342
2343         return ERROR_OK;
2344 }
2345
2346 int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2347 {
2348         target_t *target = get_current_target(cmd_ctx);
2349
2350         if (argc > 0)
2351                 breakpoint_remove(target, strtoul(args[0], NULL, 0));
2352
2353         return ERROR_OK;
2354 }
2355
2356 int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2357 {
2358         target_t *target = get_current_target(cmd_ctx);
2359         int retval;
2360
2361         if (argc == 0)
2362         {
2363                 watchpoint_t *watchpoint = target->watchpoints;
2364
2365                 while (watchpoint)
2366                 {
2367                         command_print(cmd_ctx, "address: 0x%8.8x, len: 0x%8.8x, r/w/a: %i, value: 0x%8.8x, mask: 0x%8.8x", watchpoint->address, watchpoint->length, watchpoint->rw, watchpoint->value, watchpoint->mask);
2368                         watchpoint = watchpoint->next;
2369                 }
2370         } 
2371         else if (argc >= 2)
2372         {
2373                 enum watchpoint_rw type = WPT_ACCESS;
2374                 u32 data_value = 0x0;
2375                 u32 data_mask = 0xffffffff;
2376                 
2377                 if (argc >= 3)
2378                 {
2379                         switch(args[2][0])
2380                         {
2381                                 case 'r':
2382                                         type = WPT_READ;
2383                                         break;
2384                                 case 'w':
2385                                         type = WPT_WRITE;
2386                                         break;
2387                                 case 'a':
2388                                         type = WPT_ACCESS;
2389                                         break;
2390                                 default:
2391                                         command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2392                                         return ERROR_OK;
2393                         }
2394                 }
2395                 if (argc >= 4)
2396                 {
2397                         data_value = strtoul(args[3], NULL, 0);
2398                 }
2399                 if (argc >= 5)
2400                 {
2401                         data_mask = strtoul(args[4], NULL, 0);
2402                 }
2403                 
2404                 if ((retval = watchpoint_add(target, strtoul(args[0], NULL, 0),
2405                                 strtoul(args[1], NULL, 0), type, data_value, data_mask)) != ERROR_OK)
2406                 {
2407                         LOG_ERROR("Failure setting breakpoints");
2408                 }
2409         }
2410         else
2411         {
2412                 command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2413         }
2414                 
2415         return ERROR_OK;
2416 }
2417
2418 int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2419 {
2420         target_t *target = get_current_target(cmd_ctx);
2421
2422         if (argc > 0)
2423                 watchpoint_remove(target, strtoul(args[0], NULL, 0));
2424         
2425         return ERROR_OK;
2426 }
2427
2428 int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc)
2429 {
2430         int retval;
2431         target_t *target = get_current_target(cmd_ctx);
2432         u32 va;
2433         u32 pa;
2434
2435         if (argc != 1)
2436         {
2437                 return ERROR_COMMAND_SYNTAX_ERROR;
2438         }
2439         va = strtoul(args[0], NULL, 0);
2440
2441         retval = target->type->virt2phys(target, va, &pa);
2442         if (retval == ERROR_OK)
2443         {
2444                 command_print(cmd_ctx, "Physical address 0x%08x", pa);
2445         }
2446         else
2447         {
2448                 /* lower levels will have logged a detailed error which is 
2449                  * forwarded to telnet/GDB session.  
2450                  */
2451         }
2452         return retval;
2453 }
2454 static void writeLong(FILE *f, int l)
2455 {
2456         int i;
2457         for (i=0; i<4; i++)
2458         {
2459                 char c=(l>>(i*8))&0xff;
2460                 fwrite(&c, 1, 1, f); 
2461         }
2462         
2463 }
2464 static void writeString(FILE *f, char *s)
2465 {
2466         fwrite(s, 1, strlen(s), f); 
2467 }
2468
2469
2470
2471 // Dump a gmon.out histogram file.
2472 static void writeGmon(u32 *samples, int sampleNum, char *filename)
2473 {
2474         int i;
2475         FILE *f=fopen(filename, "w");
2476         if (f==NULL)
2477                 return;
2478         fwrite("gmon", 1, 4, f);
2479         writeLong(f, 0x00000001); // Version
2480         writeLong(f, 0); // padding
2481         writeLong(f, 0); // padding
2482         writeLong(f, 0); // padding
2483                                 
2484         fwrite("", 1, 1, f);  // GMON_TAG_TIME_HIST 
2485
2486         // figure out bucket size
2487         u32 min=samples[0];
2488         u32 max=samples[0];
2489         for (i=0; i<sampleNum; i++)
2490         {
2491                 if (min>samples[i])
2492                 {
2493                         min=samples[i];
2494                 }
2495                 if (max<samples[i])
2496                 {
2497                         max=samples[i];
2498                 }
2499         }
2500
2501         int addressSpace=(max-min+1);
2502         
2503         static int const maxBuckets=256*1024; // maximum buckets.
2504         int length=addressSpace;
2505         if (length > maxBuckets)
2506         {
2507                 length=maxBuckets; 
2508         }
2509         int *buckets=malloc(sizeof(int)*length);
2510         if (buckets==NULL)
2511         {
2512                 fclose(f);
2513                 return;
2514         }
2515         memset(buckets, 0, sizeof(int)*length);
2516         for (i=0; i<sampleNum;i++)
2517         {
2518                 u32 address=samples[i];
2519                 long long a=address-min;
2520                 long long b=length-1;
2521                 long long c=addressSpace-1;
2522                 int index=(a*b)/c; // danger!!!! int32 overflows 
2523                 buckets[index]++;
2524         }
2525         
2526         //                         append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr))
2527         writeLong(f, min);                                      // low_pc
2528         writeLong(f, max);              // high_pc
2529         writeLong(f, length);           // # of samples
2530         writeLong(f, 64000000);                         // 64MHz
2531         writeString(f, "seconds");
2532         for (i=0; i<(15-strlen("seconds")); i++)
2533         {
2534                 fwrite("", 1, 1, f);  // padding
2535         }
2536         writeString(f, "s");
2537                 
2538 //                         append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size)
2539         
2540         char *data=malloc(2*length);
2541         if (data!=NULL)
2542         {
2543                 for (i=0; i<length;i++)
2544                 {
2545                         int val;
2546                         val=buckets[i];
2547                         if (val>65535)
2548                         {
2549                                 val=65535;
2550                         }
2551                         data[i*2]=val&0xff;
2552                         data[i*2+1]=(val>>8)&0xff;
2553                 }
2554                 free(buckets);
2555                 fwrite(data, 1, length*2, f);
2556                 free(data);
2557         } else
2558         {
2559                 free(buckets);
2560         }
2561
2562         fclose(f);
2563 }
2564
2565 /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
2566 int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2567 {
2568         target_t *target = get_current_target(cmd_ctx);
2569         struct timeval timeout, now;
2570         
2571         gettimeofday(&timeout, NULL);
2572         if (argc!=2)
2573         {
2574                 return ERROR_COMMAND_SYNTAX_ERROR;
2575         }
2576         char *end;
2577         timeval_add_time(&timeout, strtoul(args[0], &end, 0), 0);
2578         if (*end) 
2579         {
2580                 return ERROR_OK;
2581         }
2582         
2583         command_print(cmd_ctx, "Starting profiling. Halting and resuming the target as often as we can...");
2584
2585         static const int maxSample=10000;
2586         u32 *samples=malloc(sizeof(u32)*maxSample);
2587         if (samples==NULL)
2588                 return ERROR_OK;
2589         
2590         int numSamples=0;
2591         int retval=ERROR_OK;
2592         // hopefully it is safe to cache! We want to stop/restart as quickly as possible.
2593         reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1);
2594         
2595         for (;;)
2596         {
2597                 target_poll(target);
2598                 if (target->state == TARGET_HALTED)
2599                 {
2600                         u32 t=*((u32 *)reg->value);
2601                         samples[numSamples++]=t;
2602                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2603                         target_poll(target);
2604                         usleep(10*1000); // sleep 10ms, i.e. <100 samples/second.
2605                 } else if (target->state == TARGET_RUNNING)
2606                 {
2607                         // We want to quickly sample the PC.
2608                         target_halt(target);
2609                 } else
2610                 {
2611                         command_print(cmd_ctx, "Target not halted or running");
2612                         retval=ERROR_OK;
2613                         break;
2614                 }
2615                 if (retval!=ERROR_OK)
2616                 {
2617                         break;
2618                 }
2619                 
2620                 gettimeofday(&now, NULL);
2621                 if ((numSamples>=maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
2622                 {
2623                         command_print(cmd_ctx, "Profiling completed. %d samples.", numSamples);
2624                         target_poll(target);
2625                         if (target->state == TARGET_HALTED)
2626                         {
2627                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2628                         }
2629                         target_poll(target);
2630                         writeGmon(samples, numSamples, args[1]);
2631                         command_print(cmd_ctx, "Wrote %s", args[1]);
2632                         break;
2633                 }
2634         }
2635         free(samples);
2636         
2637         return ERROR_OK;
2638 }
2639
2640 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 val)
2641 {
2642         char *namebuf;
2643         Jim_Obj *nameObjPtr, *valObjPtr;
2644         int result;
2645
2646         namebuf = alloc_printf("%s(%d)", varname, idx);
2647         if (!namebuf)
2648                 return JIM_ERR;
2649         
2650         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
2651         valObjPtr = Jim_NewIntObj(interp, val);
2652         if (!nameObjPtr || !valObjPtr)
2653         {
2654                 free(namebuf);
2655                 return JIM_ERR;
2656         }
2657
2658         Jim_IncrRefCount(nameObjPtr);
2659         Jim_IncrRefCount(valObjPtr);
2660         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
2661         Jim_DecrRefCount(interp, nameObjPtr);
2662         Jim_DecrRefCount(interp, valObjPtr);
2663         free(namebuf);
2664         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
2665         return result;
2666 }
2667
2668 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
2669 {
2670         target_t *target;
2671         command_context_t *context;
2672         long l;
2673         u32 width;
2674         u32 len;
2675         u32 addr;
2676         u32 count;
2677         u32 v;
2678         const char *varname;
2679         u8 buffer[4096];
2680         int  i, n, e, retval;
2681
2682         /* argv[1] = name of array to receive the data
2683          * argv[2] = desired width
2684          * argv[3] = memory address 
2685          * argv[4] = count of times to read
2686          */
2687         if (argc != 5) {
2688                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
2689                 return JIM_ERR;
2690         }
2691         varname = Jim_GetString(argv[1], &len);
2692         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
2693
2694         e = Jim_GetLong(interp, argv[2], &l);
2695         width = l;
2696         if (e != JIM_OK) {
2697                 return e;
2698         }
2699         
2700         e = Jim_GetLong(interp, argv[3], &l);
2701         addr = l;
2702         if (e != JIM_OK) {
2703                 return e;
2704         }
2705         e = Jim_GetLong(interp, argv[4], &l);
2706         len = l;
2707         if (e != JIM_OK) {
2708                 return e;
2709         }
2710         switch (width) {
2711                 case 8:
2712                         width = 1;
2713                         break;
2714                 case 16:
2715                         width = 2;
2716                         break;
2717                 case 32:
2718                         width = 4;
2719                         break;
2720                 default:
2721                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2722                         Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
2723                         return JIM_ERR;
2724         }
2725         if (len == 0) {
2726                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2727                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
2728                 return JIM_ERR;
2729         }
2730         if ((addr + (len * width)) < addr) {
2731                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2732                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
2733                 return JIM_ERR;
2734         }
2735         /* absurd transfer size? */
2736         if (len > 65536) {
2737                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2738                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
2739                 return JIM_ERR;
2740         }               
2741                 
2742         if ((width == 1) ||
2743                 ((width == 2) && ((addr & 1) == 0)) ||
2744                 ((width == 4) && ((addr & 3) == 0))) {
2745                 /* all is well */
2746         } else {
2747                 char buf[100];
2748                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2749                 sprintf(buf, "mem2array address: 0x%08x is not aligned for %d byte reads", addr, width); 
2750                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
2751                 return JIM_ERR;
2752         }
2753
2754         context = Jim_GetAssocData(interp, "context");
2755         if (context == NULL)
2756         {
2757                 LOG_ERROR("mem2array: no command context");
2758                 return JIM_ERR;
2759         }
2760         target = get_current_target(context);
2761         if (target == NULL)
2762         {
2763                 LOG_ERROR("mem2array: no current target");
2764                 return JIM_ERR;
2765         }
2766         
2767         /* Transfer loop */
2768
2769         /* index counter */
2770         n = 0;
2771         /* assume ok */
2772         e = JIM_OK;
2773         while (len) {
2774                 /* Slurp... in buffer size chunks */
2775                 
2776                 count = len; /* in objects.. */
2777                 if (count > (sizeof(buffer)/width)) {
2778                         count = (sizeof(buffer)/width);
2779                 }
2780                 
2781                 retval = target->type->read_memory( target, addr, width, count, buffer );
2782                 if (retval != ERROR_OK) {
2783                         /* BOO !*/
2784                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
2785                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2786                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
2787                         e = JIM_ERR;
2788                         len = 0;
2789                 } else {
2790                         v = 0; /* shut up gcc */
2791                         for (i = 0 ;i < count ;i++, n++) {
2792                                 switch (width) {
2793                                         case 4:
2794                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
2795                                                 break;
2796                                         case 2:
2797                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
2798                                                 break;
2799                                         case 1:
2800                                                 v = buffer[i] & 0x0ff;
2801                                                 break;
2802                                 }
2803                                 new_int_array_element(interp, varname, n, v);
2804                         }
2805                         len -= count;
2806                 }
2807         }
2808         
2809         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2810
2811         return JIM_OK;
2812 }
2813
2814 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 *val)
2815 {
2816         char *namebuf;
2817         Jim_Obj *nameObjPtr, *valObjPtr;
2818         int result;
2819         long l;
2820
2821         namebuf = alloc_printf("%s(%d)", varname, idx);
2822         if (!namebuf)
2823                 return JIM_ERR;
2824
2825         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
2826         if (!nameObjPtr)
2827         {
2828                 free(namebuf);
2829                 return JIM_ERR;
2830         }
2831
2832         Jim_IncrRefCount(nameObjPtr);
2833         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
2834         Jim_DecrRefCount(interp, nameObjPtr);
2835         free(namebuf);
2836         if (valObjPtr == NULL)
2837                 return JIM_ERR;
2838
2839         result = Jim_GetLong(interp, valObjPtr, &l);
2840         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
2841         *val = l;
2842         return result;
2843 }
2844
2845 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
2846 {
2847         target_t *target;
2848         command_context_t *context;
2849         long l;
2850         u32 width;
2851         u32 len;
2852         u32 addr;
2853         u32 count;
2854         u32 v;
2855         const char *varname;
2856         u8 buffer[4096];
2857         int  i, n, e, retval;
2858
2859         /* argv[1] = name of array to get the data
2860          * argv[2] = desired width
2861          * argv[3] = memory address 
2862          * argv[4] = count to write
2863          */
2864         if (argc != 5) {
2865                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
2866                 return JIM_ERR;
2867         }
2868         varname = Jim_GetString(argv[1], &len);
2869         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
2870
2871         e = Jim_GetLong(interp, argv[2], &l);
2872         width = l;
2873         if (e != JIM_OK) {
2874                 return e;
2875         }
2876         
2877         e = Jim_GetLong(interp, argv[3], &l);
2878         addr = l;
2879         if (e != JIM_OK) {
2880                 return e;
2881         }
2882         e = Jim_GetLong(interp, argv[4], &l);
2883         len = l;
2884         if (e != JIM_OK) {
2885                 return e;
2886         }
2887         switch (width) {
2888                 case 8:
2889                         width = 1;
2890                         break;
2891                 case 16:
2892                         width = 2;
2893                         break;
2894                 case 32:
2895                         width = 4;
2896                         break;
2897                 default:
2898                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2899                         Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
2900                         return JIM_ERR;
2901         }
2902         if (len == 0) {
2903                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2904                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
2905                 return JIM_ERR;
2906         }
2907         if ((addr + (len * width)) < addr) {
2908                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2909                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
2910                 return JIM_ERR;
2911         }
2912         /* absurd transfer size? */
2913         if (len > 65536) {
2914                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2915                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
2916                 return JIM_ERR;
2917         }               
2918                 
2919         if ((width == 1) ||
2920                 ((width == 2) && ((addr & 1) == 0)) ||
2921                 ((width == 4) && ((addr & 3) == 0))) {
2922                 /* all is well */
2923         } else {
2924                 char buf[100];
2925                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2926                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads", addr, width); 
2927                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
2928                 return JIM_ERR;
2929         }
2930
2931         context = Jim_GetAssocData(interp, "context");
2932         if (context == NULL)
2933         {
2934                 LOG_ERROR("array2mem: no command context");
2935                 return JIM_ERR;
2936         }
2937         target = get_current_target(context);
2938         if (target == NULL)
2939         {
2940                 LOG_ERROR("array2mem: no current target");
2941                 return JIM_ERR;
2942         }
2943         
2944         /* Transfer loop */
2945
2946         /* index counter */
2947         n = 0;
2948         /* assume ok */
2949         e = JIM_OK;
2950         while (len) {
2951                 /* Slurp... in buffer size chunks */
2952                 
2953                 count = len; /* in objects.. */
2954                 if (count > (sizeof(buffer)/width)) {
2955                         count = (sizeof(buffer)/width);
2956                 }
2957
2958                 v = 0; /* shut up gcc */
2959                 for (i = 0 ;i < count ;i++, n++) {
2960                         get_int_array_element(interp, varname, n, &v);
2961                         switch (width) {
2962                         case 4:
2963                                 target_buffer_set_u32(target, &buffer[i*width], v);
2964                                 break;
2965                         case 2:
2966                                 target_buffer_set_u16(target, &buffer[i*width], v);
2967                                 break;
2968                         case 1:
2969                                 buffer[i] = v & 0x0ff;
2970                                 break;
2971                         }
2972                 }
2973                 len -= count;
2974
2975                 retval = target->type->write_memory(target, addr, width, count, buffer);
2976                 if (retval != ERROR_OK) {
2977                         /* BOO !*/
2978                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
2979                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2980                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
2981                         e = JIM_ERR;
2982                         len = 0;
2983                 }
2984         }
2985         
2986         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2987
2988         return JIM_OK;
2989 }