target: check args to mrc/mcr.
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2009 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   This program is free software; you can redistribute it and/or modify  *
18  *   it under the terms of the GNU General Public License as published by  *
19  *   the Free Software Foundation; either version 2 of the License, or     *
20  *   (at your option) any later version.                                   *
21  *                                                                         *
22  *   This program is distributed in the hope that it will be useful,       *
23  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
24  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
25  *   GNU General Public License for more details.                          *
26  *                                                                         *
27  *   You should have received a copy of the GNU General Public License     *
28  *   along with this program; if not, write to the                         *
29  *   Free Software Foundation, Inc.,                                       *
30  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "target.h"
37 #include "target_type.h"
38 #include "target_request.h"
39 #include "time_support.h"
40 #include "register.h"
41 #include "trace.h"
42 #include "image.h"
43 #include "jtag.h"
44
45
46 static int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
47
48 static int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
49 static int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
50 static int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
51 static int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
52 static int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
53 static int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
54 static int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
55 static int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
56 static int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
57 static int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
58 static int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
59 static int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
60 static int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
61 static int handle_test_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
62 static int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
63 static int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
64 static int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
65 static int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
66 static int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc);
67 static int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
68 static int handle_fast_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
69 static int handle_fast_load_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
70
71 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
72 static int jim_mcrmrc(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
73 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
74 static int jim_target(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
75
76 static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv);
77 static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv);
78
79 /* targets */
80 extern target_type_t arm7tdmi_target;
81 extern target_type_t arm720t_target;
82 extern target_type_t arm9tdmi_target;
83 extern target_type_t arm920t_target;
84 extern target_type_t arm966e_target;
85 extern target_type_t arm926ejs_target;
86 extern target_type_t fa526_target;
87 extern target_type_t feroceon_target;
88 extern target_type_t dragonite_target;
89 extern target_type_t xscale_target;
90 extern target_type_t cortexm3_target;
91 extern target_type_t cortexa8_target;
92 extern target_type_t arm11_target;
93 extern target_type_t mips_m4k_target;
94 extern target_type_t avr_target;
95
96 target_type_t *target_types[] =
97 {
98         &arm7tdmi_target,
99         &arm9tdmi_target,
100         &arm920t_target,
101         &arm720t_target,
102         &arm966e_target,
103         &arm926ejs_target,
104         &fa526_target,
105         &feroceon_target,
106         &dragonite_target,
107         &xscale_target,
108         &cortexm3_target,
109         &cortexa8_target,
110         &arm11_target,
111         &mips_m4k_target,
112         &avr_target,
113         NULL,
114 };
115
116 target_t *all_targets = NULL;
117 target_event_callback_t *target_event_callbacks = NULL;
118 target_timer_callback_t *target_timer_callbacks = NULL;
119
120 const Jim_Nvp nvp_assert[] = {
121         { .name = "assert", NVP_ASSERT },
122         { .name = "deassert", NVP_DEASSERT },
123         { .name = "T", NVP_ASSERT },
124         { .name = "F", NVP_DEASSERT },
125         { .name = "t", NVP_ASSERT },
126         { .name = "f", NVP_DEASSERT },
127         { .name = NULL, .value = -1 }
128 };
129
130 const Jim_Nvp nvp_error_target[] = {
131         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
132         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
133         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
134         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
135         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
136         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
137         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
138         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
139         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
140         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
141         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
142         { .value = -1, .name = NULL }
143 };
144
145 const char *target_strerror_safe(int err)
146 {
147         const Jim_Nvp *n;
148
149         n = Jim_Nvp_value2name_simple(nvp_error_target, err);
150         if (n->name == NULL) {
151                 return "unknown";
152         } else {
153                 return n->name;
154         }
155 }
156
157 static const Jim_Nvp nvp_target_event[] = {
158         { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
159         { .value = TARGET_EVENT_OLD_pre_resume         , .name = "old-pre_resume" },
160
161         { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
162         { .value = TARGET_EVENT_HALTED, .name = "halted" },
163         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
164         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
165         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
166
167         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
168         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
169
170         /* historical name */
171
172         { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
173
174         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
175         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
176         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
177         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
178         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
179         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
180         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
181         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
182         { .value = TARGET_EVENT_RESET_INIT , .name = "reset-init" },
183         { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
184
185         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
186         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
187
188         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
189         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
190
191         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
192         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
193
194         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
195         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
196
197         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
198         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
199
200         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
201         { .value = TARGET_EVENT_RESUMED     , .name = "resume-ok" },
202         { .value = TARGET_EVENT_RESUME_END  , .name = "resume-end" },
203
204         { .name = NULL, .value = -1 }
205 };
206
207 const Jim_Nvp nvp_target_state[] = {
208         { .name = "unknown", .value = TARGET_UNKNOWN },
209         { .name = "running", .value = TARGET_RUNNING },
210         { .name = "halted",  .value = TARGET_HALTED },
211         { .name = "reset",   .value = TARGET_RESET },
212         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
213         { .name = NULL, .value = -1 },
214 };
215
216 const Jim_Nvp nvp_target_debug_reason [] = {
217         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
218         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
219         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
220         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
221         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
222         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
223         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
224         { .name = NULL, .value = -1 },
225 };
226
227 const Jim_Nvp nvp_target_endian[] = {
228         { .name = "big",    .value = TARGET_BIG_ENDIAN },
229         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
230         { .name = "be",     .value = TARGET_BIG_ENDIAN },
231         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
232         { .name = NULL,     .value = -1 },
233 };
234
235 const Jim_Nvp nvp_reset_modes[] = {
236         { .name = "unknown", .value = RESET_UNKNOWN },
237         { .name = "run"    , .value = RESET_RUN },
238         { .name = "halt"   , .value = RESET_HALT },
239         { .name = "init"   , .value = RESET_INIT },
240         { .name = NULL     , .value = -1 },
241 };
242
243 const char *
244 target_state_name( target_t *t )
245 {
246         const char *cp;
247         cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
248         if( !cp ){
249                 LOG_ERROR("Invalid target state: %d", (int)(t->state));
250                 cp = "(*BUG*unknown*BUG*)";
251         }
252         return cp;
253 }
254
255 /* determine the number of the new target */
256 static int new_target_number(void)
257 {
258         target_t *t;
259         int x;
260
261         /* number is 0 based */
262         x = -1;
263         t = all_targets;
264         while (t) {
265                 if (x < t->target_number) {
266                         x = t->target_number;
267                 }
268                 t = t->next;
269         }
270         return x + 1;
271 }
272
273 /* read a uint32_t from a buffer in target memory endianness */
274 uint32_t target_buffer_get_u32(target_t *target, const uint8_t *buffer)
275 {
276         if (target->endianness == TARGET_LITTLE_ENDIAN)
277                 return le_to_h_u32(buffer);
278         else
279                 return be_to_h_u32(buffer);
280 }
281
282 /* read a uint16_t from a buffer in target memory endianness */
283 uint16_t target_buffer_get_u16(target_t *target, const uint8_t *buffer)
284 {
285         if (target->endianness == TARGET_LITTLE_ENDIAN)
286                 return le_to_h_u16(buffer);
287         else
288                 return be_to_h_u16(buffer);
289 }
290
291 /* read a uint8_t from a buffer in target memory endianness */
292 uint8_t target_buffer_get_u8(target_t *target, const uint8_t *buffer)
293 {
294         return *buffer & 0x0ff;
295 }
296
297 /* write a uint32_t to a buffer in target memory endianness */
298 void target_buffer_set_u32(target_t *target, uint8_t *buffer, uint32_t value)
299 {
300         if (target->endianness == TARGET_LITTLE_ENDIAN)
301                 h_u32_to_le(buffer, value);
302         else
303                 h_u32_to_be(buffer, value);
304 }
305
306 /* write a uint16_t to a buffer in target memory endianness */
307 void target_buffer_set_u16(target_t *target, uint8_t *buffer, uint16_t value)
308 {
309         if (target->endianness == TARGET_LITTLE_ENDIAN)
310                 h_u16_to_le(buffer, value);
311         else
312                 h_u16_to_be(buffer, value);
313 }
314
315 /* write a uint8_t to a buffer in target memory endianness */
316 void target_buffer_set_u8(target_t *target, uint8_t *buffer, uint8_t value)
317 {
318         *buffer = value;
319 }
320
321 /* return a pointer to a configured target; id is name or number */
322 target_t *get_target(const char *id)
323 {
324         target_t *target;
325
326         /* try as tcltarget name */
327         for (target = all_targets; target; target = target->next) {
328                 if (target->cmd_name == NULL)
329                         continue;
330                 if (strcmp(id, target->cmd_name) == 0)
331                         return target;
332         }
333
334         /* It's OK to remove this fallback sometime after August 2010 or so */
335
336         /* no match, try as number */
337         unsigned num;
338         if (parse_uint(id, &num) != ERROR_OK)
339                 return NULL;
340
341         for (target = all_targets; target; target = target->next) {
342                 if (target->target_number == (int)num) {
343                         LOG_WARNING("use '%s' as target identifier, not '%u'",
344                                         target->cmd_name, num);
345                         return target;
346                 }
347         }
348
349         return NULL;
350 }
351
352 /* returns a pointer to the n-th configured target */
353 static target_t *get_target_by_num(int num)
354 {
355         target_t *target = all_targets;
356
357         while (target) {
358                 if (target->target_number == num) {
359                         return target;
360                 }
361                 target = target->next;
362         }
363
364         return NULL;
365 }
366
367 target_t* get_current_target(command_context_t *cmd_ctx)
368 {
369         target_t *target = get_target_by_num(cmd_ctx->current_target);
370
371         if (target == NULL)
372         {
373                 LOG_ERROR("BUG: current_target out of bounds");
374                 exit(-1);
375         }
376
377         return target;
378 }
379
380 int target_poll(struct target_s *target)
381 {
382         int retval;
383
384         /* We can't poll until after examine */
385         if (!target_was_examined(target))
386         {
387                 /* Fail silently lest we pollute the log */
388                 return ERROR_FAIL;
389         }
390
391         retval = target->type->poll(target);
392         if (retval != ERROR_OK)
393                 return retval;
394
395         if (target->halt_issued)
396         {
397                 if (target->state == TARGET_HALTED)
398                 {
399                         target->halt_issued = false;
400                 } else
401                 {
402                         long long t = timeval_ms() - target->halt_issued_time;
403                         if (t>1000)
404                         {
405                                 target->halt_issued = false;
406                                 LOG_INFO("Halt timed out, wake up GDB.");
407                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
408                         }
409                 }
410         }
411
412         return ERROR_OK;
413 }
414
415 int target_halt(struct target_s *target)
416 {
417         int retval;
418         /* We can't poll until after examine */
419         if (!target_was_examined(target))
420         {
421                 LOG_ERROR("Target not examined yet");
422                 return ERROR_FAIL;
423         }
424
425         retval = target->type->halt(target);
426         if (retval != ERROR_OK)
427                 return retval;
428
429         target->halt_issued = true;
430         target->halt_issued_time = timeval_ms();
431
432         return ERROR_OK;
433 }
434
435 int target_resume(struct target_s *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
436 {
437         int retval;
438
439         /* We can't poll until after examine */
440         if (!target_was_examined(target))
441         {
442                 LOG_ERROR("Target not examined yet");
443                 return ERROR_FAIL;
444         }
445
446         /* note that resume *must* be asynchronous. The CPU can halt before we poll. The CPU can
447          * even halt at the current PC as a result of a software breakpoint being inserted by (a bug?)
448          * the application.
449          */
450         if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
451                 return retval;
452
453         return retval;
454 }
455
456 int target_process_reset(struct command_context_s *cmd_ctx, enum target_reset_mode reset_mode)
457 {
458         char buf[100];
459         int retval;
460         Jim_Nvp *n;
461         n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
462         if (n->name == NULL) {
463                 LOG_ERROR("invalid reset mode");
464                 return ERROR_FAIL;
465         }
466
467         /* disable polling during reset to make reset event scripts
468          * more predictable, i.e. dr/irscan & pathmove in events will
469          * not have JTAG operations injected into the middle of a sequence.
470          */
471         bool save_poll = jtag_poll_get_enabled();
472
473         jtag_poll_set_enabled(false);
474
475         sprintf(buf, "ocd_process_reset %s", n->name);
476         retval = Jim_Eval(interp, buf);
477
478         jtag_poll_set_enabled(save_poll);
479
480         if (retval != JIM_OK) {
481                 Jim_PrintErrorMessage(interp);
482                 return ERROR_FAIL;
483         }
484
485         /* We want any events to be processed before the prompt */
486         retval = target_call_timer_callbacks_now();
487
488         return retval;
489 }
490
491 static int default_virt2phys(struct target_s *target, uint32_t virtual, uint32_t *physical)
492 {
493         *physical = virtual;
494         return ERROR_OK;
495 }
496
497 static int default_mmu(struct target_s *target, int *enabled)
498 {
499         LOG_ERROR("Not implemented.");
500         return ERROR_FAIL;
501 }
502
503 static int default_has_mmu(struct target_s *target, bool *has_mmu)
504 {
505         *has_mmu = true;
506         return ERROR_OK;
507 }
508
509 static int default_examine(struct target_s *target)
510 {
511         target_set_examined(target);
512         return ERROR_OK;
513 }
514
515 int target_examine_one(struct target_s *target)
516 {
517         return target->type->examine(target);
518 }
519
520 static int jtag_enable_callback(enum jtag_event event, void *priv)
521 {
522         target_t *target = priv;
523
524         if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
525                 return ERROR_OK;
526
527         jtag_unregister_event_callback(jtag_enable_callback, target);
528         return target_examine_one(target);
529 }
530
531
532 /* Targets that correctly implement init + examine, i.e.
533  * no communication with target during init:
534  *
535  * XScale
536  */
537 int target_examine(void)
538 {
539         int retval = ERROR_OK;
540         target_t *target;
541
542         for (target = all_targets; target; target = target->next)
543         {
544                 /* defer examination, but don't skip it */
545                 if (!target->tap->enabled) {
546                         jtag_register_event_callback(jtag_enable_callback,
547                                         target);
548                         continue;
549                 }
550                 if ((retval = target_examine_one(target)) != ERROR_OK)
551                         return retval;
552         }
553         return retval;
554 }
555 const char *target_get_name(struct target_s *target)
556 {
557         return target->type->name;
558 }
559
560 static int target_write_memory_imp(struct target_s *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
561 {
562         if (!target_was_examined(target))
563         {
564                 LOG_ERROR("Target not examined yet");
565                 return ERROR_FAIL;
566         }
567         return target->type->write_memory_imp(target, address, size, count, buffer);
568 }
569
570 static int target_read_memory_imp(struct target_s *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
571 {
572         if (!target_was_examined(target))
573         {
574                 LOG_ERROR("Target not examined yet");
575                 return ERROR_FAIL;
576         }
577         return target->type->read_memory_imp(target, address, size, count, buffer);
578 }
579
580 static int target_soft_reset_halt_imp(struct target_s *target)
581 {
582         if (!target_was_examined(target))
583         {
584                 LOG_ERROR("Target not examined yet");
585                 return ERROR_FAIL;
586         }
587         if (!target->type->soft_reset_halt_imp) {
588                 LOG_ERROR("Target %s does not support soft_reset_halt",
589                                 target->cmd_name);
590                 return ERROR_FAIL;
591         }
592         return target->type->soft_reset_halt_imp(target);
593 }
594
595 static int target_run_algorithm_imp(struct target_s *target, int num_mem_params, mem_param_t *mem_params, int num_reg_params, reg_param_t *reg_param, uint32_t entry_point, uint32_t exit_point, int timeout_ms, void *arch_info)
596 {
597         if (!target_was_examined(target))
598         {
599                 LOG_ERROR("Target not examined yet");
600                 return ERROR_FAIL;
601         }
602         return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
603 }
604
605 int target_read_memory(struct target_s *target,
606                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
607 {
608         return target->type->read_memory(target, address, size, count, buffer);
609 }
610
611 int target_read_phys_memory(struct target_s *target,
612                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
613 {
614         return target->type->read_phys_memory(target, address, size, count, buffer);
615 }
616
617 int target_write_memory(struct target_s *target,
618                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
619 {
620         return target->type->write_memory(target, address, size, count, buffer);
621 }
622
623 int target_write_phys_memory(struct target_s *target,
624                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
625 {
626         return target->type->write_phys_memory(target, address, size, count, buffer);
627 }
628
629 int target_bulk_write_memory(struct target_s *target,
630                 uint32_t address, uint32_t count, uint8_t *buffer)
631 {
632         return target->type->bulk_write_memory(target, address, count, buffer);
633 }
634
635 int target_add_breakpoint(struct target_s *target,
636                 struct breakpoint_s *breakpoint)
637 {
638         return target->type->add_breakpoint(target, breakpoint);
639 }
640 int target_remove_breakpoint(struct target_s *target,
641                 struct breakpoint_s *breakpoint)
642 {
643         return target->type->remove_breakpoint(target, breakpoint);
644 }
645
646 int target_add_watchpoint(struct target_s *target,
647                 struct watchpoint_s *watchpoint)
648 {
649         return target->type->add_watchpoint(target, watchpoint);
650 }
651 int target_remove_watchpoint(struct target_s *target,
652                 struct watchpoint_s *watchpoint)
653 {
654         return target->type->remove_watchpoint(target, watchpoint);
655 }
656
657 int target_get_gdb_reg_list(struct target_s *target,
658                 struct reg_s **reg_list[], int *reg_list_size)
659 {
660         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
661 }
662 int target_step(struct target_s *target,
663                 int current, uint32_t address, int handle_breakpoints)
664 {
665         return target->type->step(target, current, address, handle_breakpoints);
666 }
667
668
669 int target_run_algorithm(struct target_s *target,
670                 int num_mem_params, mem_param_t *mem_params,
671                 int num_reg_params, reg_param_t *reg_param,
672                 uint32_t entry_point, uint32_t exit_point,
673                 int timeout_ms, void *arch_info)
674 {
675         return target->type->run_algorithm(target,
676                         num_mem_params, mem_params, num_reg_params, reg_param,
677                         entry_point, exit_point, timeout_ms, arch_info);
678 }
679
680 /// @returns @c true if the target has been examined.
681 bool target_was_examined(struct target_s *target)
682 {
683         return target->type->examined;
684 }
685 /// Sets the @c examined flag for the given target.
686 void target_set_examined(struct target_s *target)
687 {
688         target->type->examined = true;
689 }
690 // Reset the @c examined flag for the given target.
691 void target_reset_examined(struct target_s *target)
692 {
693         target->type->examined = false;
694 }
695
696
697
698 static int default_mrc(struct target_s *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t *value)
699 {
700         LOG_ERROR("Not implemented");
701         return ERROR_FAIL;
702 }
703
704 static int default_mcr(struct target_s *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t value)
705 {
706         LOG_ERROR("Not implemented");
707         return ERROR_FAIL;
708 }
709
710 static int arm_cp_check(struct target_s *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm)
711 {
712         /* basic check */
713         if (!target_was_examined(target))
714         {
715                 LOG_ERROR("Target not examined yet");
716                 return ERROR_FAIL;
717         }
718
719         if ((cpnum <0) || (cpnum > 15))
720         {
721                 LOG_ERROR("Illegal co-processor %d", cpnum);
722                 return ERROR_FAIL;
723         }
724
725         if (op1>7)
726         {
727                 LOG_ERROR("Illegal op1");
728                 return ERROR_FAIL;
729         }
730
731         if (op2>7)
732         {
733                 LOG_ERROR("Illegal op2");
734                 return ERROR_FAIL;
735         }
736
737         if (CRn>15)
738         {
739                 LOG_ERROR("Illegal CRn");
740                 return ERROR_FAIL;
741         }
742
743         if (CRm>7)
744         {
745                 LOG_ERROR("Illegal CRm");
746                 return ERROR_FAIL;
747         }
748
749         return ERROR_OK;
750 }
751
752 int target_mrc(struct target_s *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t *value)
753 {
754         int retval;
755
756         retval = arm_cp_check(target, cpnum, op1, op2, CRn, CRm);
757         if (retval != ERROR_OK)
758                 return retval;
759
760         return target->type->mrc(target, cpnum, op1, op2, CRn, CRm, value);
761 }
762
763 int target_mcr(struct target_s *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t value)
764 {
765         int retval;
766
767         retval = arm_cp_check(target, cpnum, op1, op2, CRn, CRm);
768         if (retval != ERROR_OK)
769                 return retval;
770
771         return target->type->mcr(target, cpnum, op1, op2, CRn, CRm, value);
772 }
773
774 static int default_read_phys_memory(struct target_s *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
775 {
776         int retval;
777         bool mmu;
778         retval = target->type->has_mmu(target, &mmu);
779         if (retval != ERROR_OK)
780                 return retval;
781         if (mmu)
782         {
783                 LOG_ERROR("Not implemented");
784                 return ERROR_FAIL;
785         }
786         return target_read_memory(target, address, size, count, buffer);
787 }
788
789 static int default_write_phys_memory(struct target_s *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
790 {
791         int retval;
792         bool mmu;
793         retval = target->type->has_mmu(target, &mmu);
794         if (retval != ERROR_OK)
795                 return retval;
796         if (mmu)
797         {
798                 LOG_ERROR("Not implemented");
799                 return ERROR_FAIL;
800         }
801         return target_write_memory(target, address, size, count, buffer);
802 }
803
804
805 int target_init(struct command_context_s *cmd_ctx)
806 {
807         target_t *target = all_targets;
808         int retval;
809
810         while (target)
811         {
812                 target_reset_examined(target);
813                 if (target->type->examine == NULL)
814                 {
815                         target->type->examine = default_examine;
816                 }
817
818                 if ((retval = target->type->init_target(cmd_ctx, target)) != ERROR_OK)
819                 {
820                         LOG_ERROR("target '%s' init failed", target_get_name(target));
821                         return retval;
822                 }
823
824                 /* Set up default functions if none are provided by target */
825                 if (target->type->virt2phys == NULL)
826                 {
827                         target->type->virt2phys = default_virt2phys;
828                 }
829
830                 if (target->type->read_phys_memory == NULL)
831                 {
832                         target->type->read_phys_memory = default_read_phys_memory;
833                 }
834
835                 if (target->type->write_phys_memory == NULL)
836                 {
837                         target->type->write_phys_memory = default_write_phys_memory;
838                 }
839
840                 if (target->type->mcr == NULL)
841                 {
842                         target->type->mcr = default_mcr;
843                 } else
844                 {
845                         /* FIX! multiple targets will generally register global commands
846                          * multiple times. Only register this one if *one* of the
847                          * targets need the command. Hmm... make it a command on the
848                          * Jim Tcl target object?
849                          */
850                         register_jim(cmd_ctx, "mcr", jim_mcrmrc, "write coprocessor <cpnum> <op1> <op2> <CRn> <CRm> <value>");
851                 }
852
853                 if (target->type->mrc == NULL)
854                 {
855                         target->type->mrc = default_mrc;
856                 } else
857                 {
858                         register_jim(cmd_ctx, "mrc", jim_mcrmrc, "read coprocessor <cpnum> <op1> <op2> <CRn> <CRm>");
859                 }
860
861
862                 /* a non-invasive way(in terms of patches) to add some code that
863                  * runs before the type->write/read_memory implementation
864                  */
865                 target->type->write_memory_imp = target->type->write_memory;
866                 target->type->write_memory = target_write_memory_imp;
867                 target->type->read_memory_imp = target->type->read_memory;
868                 target->type->read_memory = target_read_memory_imp;
869                 target->type->soft_reset_halt_imp = target->type->soft_reset_halt;
870                 target->type->soft_reset_halt = target_soft_reset_halt_imp;
871                 target->type->run_algorithm_imp = target->type->run_algorithm;
872                 target->type->run_algorithm = target_run_algorithm_imp;
873
874                 if (target->type->mmu == NULL)
875                 {
876                         target->type->mmu = default_mmu;
877                 }
878                 if (target->type->has_mmu == NULL)
879                 {
880                         target->type->has_mmu = default_has_mmu;
881                 }
882                 target = target->next;
883         }
884
885         if (all_targets)
886         {
887                 if ((retval = target_register_user_commands(cmd_ctx)) != ERROR_OK)
888                         return retval;
889                 if ((retval = target_register_timer_callback(handle_target, 100, 1, NULL)) != ERROR_OK)
890                         return retval;
891         }
892
893         return ERROR_OK;
894 }
895
896 int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
897 {
898         target_event_callback_t **callbacks_p = &target_event_callbacks;
899
900         if (callback == NULL)
901         {
902                 return ERROR_INVALID_ARGUMENTS;
903         }
904
905         if (*callbacks_p)
906         {
907                 while ((*callbacks_p)->next)
908                         callbacks_p = &((*callbacks_p)->next);
909                 callbacks_p = &((*callbacks_p)->next);
910         }
911
912         (*callbacks_p) = malloc(sizeof(target_event_callback_t));
913         (*callbacks_p)->callback = callback;
914         (*callbacks_p)->priv = priv;
915         (*callbacks_p)->next = NULL;
916
917         return ERROR_OK;
918 }
919
920 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
921 {
922         target_timer_callback_t **callbacks_p = &target_timer_callbacks;
923         struct timeval now;
924
925         if (callback == NULL)
926         {
927                 return ERROR_INVALID_ARGUMENTS;
928         }
929
930         if (*callbacks_p)
931         {
932                 while ((*callbacks_p)->next)
933                         callbacks_p = &((*callbacks_p)->next);
934                 callbacks_p = &((*callbacks_p)->next);
935         }
936
937         (*callbacks_p) = malloc(sizeof(target_timer_callback_t));
938         (*callbacks_p)->callback = callback;
939         (*callbacks_p)->periodic = periodic;
940         (*callbacks_p)->time_ms = time_ms;
941
942         gettimeofday(&now, NULL);
943         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
944         time_ms -= (time_ms % 1000);
945         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
946         if ((*callbacks_p)->when.tv_usec > 1000000)
947         {
948                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
949                 (*callbacks_p)->when.tv_sec += 1;
950         }
951
952         (*callbacks_p)->priv = priv;
953         (*callbacks_p)->next = NULL;
954
955         return ERROR_OK;
956 }
957
958 int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
959 {
960         target_event_callback_t **p = &target_event_callbacks;
961         target_event_callback_t *c = target_event_callbacks;
962
963         if (callback == NULL)
964         {
965                 return ERROR_INVALID_ARGUMENTS;
966         }
967
968         while (c)
969         {
970                 target_event_callback_t *next = c->next;
971                 if ((c->callback == callback) && (c->priv == priv))
972                 {
973                         *p = next;
974                         free(c);
975                         return ERROR_OK;
976                 }
977                 else
978                         p = &(c->next);
979                 c = next;
980         }
981
982         return ERROR_OK;
983 }
984
985 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
986 {
987         target_timer_callback_t **p = &target_timer_callbacks;
988         target_timer_callback_t *c = target_timer_callbacks;
989
990         if (callback == NULL)
991         {
992                 return ERROR_INVALID_ARGUMENTS;
993         }
994
995         while (c)
996         {
997                 target_timer_callback_t *next = c->next;
998                 if ((c->callback == callback) && (c->priv == priv))
999                 {
1000                         *p = next;
1001                         free(c);
1002                         return ERROR_OK;
1003                 }
1004                 else
1005                         p = &(c->next);
1006                 c = next;
1007         }
1008
1009         return ERROR_OK;
1010 }
1011
1012 int target_call_event_callbacks(target_t *target, enum target_event event)
1013 {
1014         target_event_callback_t *callback = target_event_callbacks;
1015         target_event_callback_t *next_callback;
1016
1017         if (event == TARGET_EVENT_HALTED)
1018         {
1019                 /* execute early halted first */
1020                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1021         }
1022
1023         LOG_DEBUG("target event %i (%s)",
1024                           event,
1025                           Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1026
1027         target_handle_event(target, event);
1028
1029         while (callback)
1030         {
1031                 next_callback = callback->next;
1032                 callback->callback(target, event, callback->priv);
1033                 callback = next_callback;
1034         }
1035
1036         return ERROR_OK;
1037 }
1038
1039 static int target_timer_callback_periodic_restart(
1040                 target_timer_callback_t *cb, struct timeval *now)
1041 {
1042         int time_ms = cb->time_ms;
1043         cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1044         time_ms -= (time_ms % 1000);
1045         cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1046         if (cb->when.tv_usec > 1000000)
1047         {
1048                 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1049                 cb->when.tv_sec += 1;
1050         }
1051         return ERROR_OK;
1052 }
1053
1054 static int target_call_timer_callback(target_timer_callback_t *cb,
1055                 struct timeval *now)
1056 {
1057         cb->callback(cb->priv);
1058
1059         if (cb->periodic)
1060                 return target_timer_callback_periodic_restart(cb, now);
1061
1062         return target_unregister_timer_callback(cb->callback, cb->priv);
1063 }
1064
1065 static int target_call_timer_callbacks_check_time(int checktime)
1066 {
1067         keep_alive();
1068
1069         struct timeval now;
1070         gettimeofday(&now, NULL);
1071
1072         target_timer_callback_t *callback = target_timer_callbacks;
1073         while (callback)
1074         {
1075                 // cleaning up may unregister and free this callback
1076                 target_timer_callback_t *next_callback = callback->next;
1077
1078                 bool call_it = callback->callback &&
1079                         ((!checktime && callback->periodic) ||
1080                           now.tv_sec > callback->when.tv_sec ||
1081                          (now.tv_sec == callback->when.tv_sec &&
1082                           now.tv_usec >= callback->when.tv_usec));
1083
1084                 if (call_it)
1085                 {
1086                         int retval = target_call_timer_callback(callback, &now);
1087                         if (retval != ERROR_OK)
1088                                 return retval;
1089                 }
1090
1091                 callback = next_callback;
1092         }
1093
1094         return ERROR_OK;
1095 }
1096
1097 int target_call_timer_callbacks(void)
1098 {
1099         return target_call_timer_callbacks_check_time(1);
1100 }
1101
1102 /* invoke periodic callbacks immediately */
1103 int target_call_timer_callbacks_now(void)
1104 {
1105         return target_call_timer_callbacks_check_time(0);
1106 }
1107
1108 int target_alloc_working_area(struct target_s *target, uint32_t size, working_area_t **area)
1109 {
1110         working_area_t *c = target->working_areas;
1111         working_area_t *new_wa = NULL;
1112
1113         /* Reevaluate working area address based on MMU state*/
1114         if (target->working_areas == NULL)
1115         {
1116                 int retval;
1117                 int enabled;
1118                 retval = target->type->mmu(target, &enabled);
1119                 if (retval != ERROR_OK)
1120                 {
1121                         return retval;
1122                 }
1123
1124                 if (enabled)
1125                 {
1126                         if (target->working_area_phys_spec)
1127                         {
1128                                 LOG_DEBUG("MMU disabled, using physical address for working memory 0x%08x", (unsigned)target->working_area_phys);
1129                                 target->working_area = target->working_area_phys;
1130                         } else
1131                         {
1132                                 LOG_ERROR("No working memory available. Specify -work-area-phys to target.");
1133                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1134                         }
1135                 } else
1136                 {
1137                         if (target->working_area_virt_spec)
1138                         {
1139                                 LOG_DEBUG("MMU enabled, using virtual address for working memory 0x%08x", (unsigned)target->working_area_virt);
1140                                 target->working_area = target->working_area_virt;
1141                         } else
1142                         {
1143                                 LOG_ERROR("No working memory available. Specify -work-area-virt to target.");
1144                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1145                         }
1146                 }
1147         }
1148
1149         /* only allocate multiples of 4 byte */
1150         if (size % 4)
1151         {
1152                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes (0x%08x), padding", ((unsigned)(size)));
1153                 size = (size + 3) & (~3);
1154         }
1155
1156         /* see if there's already a matching working area */
1157         while (c)
1158         {
1159                 if ((c->free) && (c->size == size))
1160                 {
1161                         new_wa = c;
1162                         break;
1163                 }
1164                 c = c->next;
1165         }
1166
1167         /* if not, allocate a new one */
1168         if (!new_wa)
1169         {
1170                 working_area_t **p = &target->working_areas;
1171                 uint32_t first_free = target->working_area;
1172                 uint32_t free_size = target->working_area_size;
1173
1174                 c = target->working_areas;
1175                 while (c)
1176                 {
1177                         first_free += c->size;
1178                         free_size -= c->size;
1179                         p = &c->next;
1180                         c = c->next;
1181                 }
1182
1183                 if (free_size < size)
1184                 {
1185                         LOG_WARNING("not enough working area available(requested %u, free %u)",
1186                                     (unsigned)(size), (unsigned)(free_size));
1187                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1188                 }
1189
1190                 LOG_DEBUG("allocated new working area at address 0x%08x", (unsigned)first_free);
1191
1192                 new_wa = malloc(sizeof(working_area_t));
1193                 new_wa->next = NULL;
1194                 new_wa->size = size;
1195                 new_wa->address = first_free;
1196
1197                 if (target->backup_working_area)
1198                 {
1199                         int retval;
1200                         new_wa->backup = malloc(new_wa->size);
1201                         if ((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
1202                         {
1203                                 free(new_wa->backup);
1204                                 free(new_wa);
1205                                 return retval;
1206                         }
1207                 }
1208                 else
1209                 {
1210                         new_wa->backup = NULL;
1211                 }
1212
1213                 /* put new entry in list */
1214                 *p = new_wa;
1215         }
1216
1217         /* mark as used, and return the new (reused) area */
1218         new_wa->free = 0;
1219         *area = new_wa;
1220
1221         /* user pointer */
1222         new_wa->user = area;
1223
1224         return ERROR_OK;
1225 }
1226
1227 int target_free_working_area_restore(struct target_s *target, working_area_t *area, int restore)
1228 {
1229         if (area->free)
1230                 return ERROR_OK;
1231
1232         if (restore && target->backup_working_area)
1233         {
1234                 int retval;
1235                 if ((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
1236                         return retval;
1237         }
1238
1239         area->free = 1;
1240
1241         /* mark user pointer invalid */
1242         *area->user = NULL;
1243         area->user = NULL;
1244
1245         return ERROR_OK;
1246 }
1247
1248 int target_free_working_area(struct target_s *target, working_area_t *area)
1249 {
1250         return target_free_working_area_restore(target, area, 1);
1251 }
1252
1253 /* free resources and restore memory, if restoring memory fails,
1254  * free up resources anyway
1255  */
1256 void target_free_all_working_areas_restore(struct target_s *target, int restore)
1257 {
1258         working_area_t *c = target->working_areas;
1259
1260         while (c)
1261         {
1262                 working_area_t *next = c->next;
1263                 target_free_working_area_restore(target, c, restore);
1264
1265                 if (c->backup)
1266                         free(c->backup);
1267
1268                 free(c);
1269
1270                 c = next;
1271         }
1272
1273         target->working_areas = NULL;
1274 }
1275
1276 void target_free_all_working_areas(struct target_s *target)
1277 {
1278         target_free_all_working_areas_restore(target, 1);
1279 }
1280
1281 int target_register_commands(struct command_context_s *cmd_ctx)
1282 {
1283
1284         register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, "change the current command line target (one parameter) or lists targets (with no parameter)");
1285
1286
1287
1288
1289         register_jim(cmd_ctx, "target", jim_target, "configure target");
1290
1291         return ERROR_OK;
1292 }
1293
1294 int target_arch_state(struct target_s *target)
1295 {
1296         int retval;
1297         if (target == NULL)
1298         {
1299                 LOG_USER("No target has been configured");
1300                 return ERROR_OK;
1301         }
1302
1303         LOG_USER("target state: %s", target_state_name( target ));
1304
1305         if (target->state != TARGET_HALTED)
1306                 return ERROR_OK;
1307
1308         retval = target->type->arch_state(target);
1309         return retval;
1310 }
1311
1312 /* Single aligned words are guaranteed to use 16 or 32 bit access
1313  * mode respectively, otherwise data is handled as quickly as
1314  * possible
1315  */
1316 int target_write_buffer(struct target_s *target, uint32_t address, uint32_t size, uint8_t *buffer)
1317 {
1318         int retval;
1319         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1320                   (int)size, (unsigned)address);
1321
1322         if (!target_was_examined(target))
1323         {
1324                 LOG_ERROR("Target not examined yet");
1325                 return ERROR_FAIL;
1326         }
1327
1328         if (size == 0) {
1329                 return ERROR_OK;
1330         }
1331
1332         if ((address + size - 1) < address)
1333         {
1334                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1335                 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1336                                   (unsigned)address,
1337                                   (unsigned)size);
1338                 return ERROR_FAIL;
1339         }
1340
1341         if (((address % 2) == 0) && (size == 2))
1342         {
1343                 return target_write_memory(target, address, 2, 1, buffer);
1344         }
1345
1346         /* handle unaligned head bytes */
1347         if (address % 4)
1348         {
1349                 uint32_t unaligned = 4 - (address % 4);
1350
1351                 if (unaligned > size)
1352                         unaligned = size;
1353
1354                 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1355                         return retval;
1356
1357                 buffer += unaligned;
1358                 address += unaligned;
1359                 size -= unaligned;
1360         }
1361
1362         /* handle aligned words */
1363         if (size >= 4)
1364         {
1365                 int aligned = size - (size % 4);
1366
1367                 /* use bulk writes above a certain limit. This may have to be changed */
1368                 if (aligned > 128)
1369                 {
1370                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1371                                 return retval;
1372                 }
1373                 else
1374                 {
1375                         if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1376                                 return retval;
1377                 }
1378
1379                 buffer += aligned;
1380                 address += aligned;
1381                 size -= aligned;
1382         }
1383
1384         /* handle tail writes of less than 4 bytes */
1385         if (size > 0)
1386         {
1387                 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1388                         return retval;
1389         }
1390
1391         return ERROR_OK;
1392 }
1393
1394 /* Single aligned words are guaranteed to use 16 or 32 bit access
1395  * mode respectively, otherwise data is handled as quickly as
1396  * possible
1397  */
1398 int target_read_buffer(struct target_s *target, uint32_t address, uint32_t size, uint8_t *buffer)
1399 {
1400         int retval;
1401         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1402                           (int)size, (unsigned)address);
1403
1404         if (!target_was_examined(target))
1405         {
1406                 LOG_ERROR("Target not examined yet");
1407                 return ERROR_FAIL;
1408         }
1409
1410         if (size == 0) {
1411                 return ERROR_OK;
1412         }
1413
1414         if ((address + size - 1) < address)
1415         {
1416                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1417                 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1418                                   address,
1419                                   size);
1420                 return ERROR_FAIL;
1421         }
1422
1423         if (((address % 2) == 0) && (size == 2))
1424         {
1425                 return target_read_memory(target, address, 2, 1, buffer);
1426         }
1427
1428         /* handle unaligned head bytes */
1429         if (address % 4)
1430         {
1431                 uint32_t unaligned = 4 - (address % 4);
1432
1433                 if (unaligned > size)
1434                         unaligned = size;
1435
1436                 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1437                         return retval;
1438
1439                 buffer += unaligned;
1440                 address += unaligned;
1441                 size -= unaligned;
1442         }
1443
1444         /* handle aligned words */
1445         if (size >= 4)
1446         {
1447                 int aligned = size - (size % 4);
1448
1449                 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1450                         return retval;
1451
1452                 buffer += aligned;
1453                 address += aligned;
1454                 size -= aligned;
1455         }
1456
1457         /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1458         if(size >=2)
1459         {
1460                 int aligned = size - (size%2);
1461                 retval = target_read_memory(target, address, 2, aligned / 2, buffer);
1462                 if (retval != ERROR_OK)
1463                         return retval;
1464
1465                 buffer += aligned;
1466                 address += aligned;
1467                 size -= aligned;
1468         }
1469         /* handle tail writes of less than 4 bytes */
1470         if (size > 0)
1471         {
1472                 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1473                         return retval;
1474         }
1475
1476         return ERROR_OK;
1477 }
1478
1479 int target_checksum_memory(struct target_s *target, uint32_t address, uint32_t size, uint32_t* crc)
1480 {
1481         uint8_t *buffer;
1482         int retval;
1483         uint32_t i;
1484         uint32_t checksum = 0;
1485         if (!target_was_examined(target))
1486         {
1487                 LOG_ERROR("Target not examined yet");
1488                 return ERROR_FAIL;
1489         }
1490
1491         if ((retval = target->type->checksum_memory(target, address,
1492                 size, &checksum)) != ERROR_OK)
1493         {
1494                 buffer = malloc(size);
1495                 if (buffer == NULL)
1496                 {
1497                         LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1498                         return ERROR_INVALID_ARGUMENTS;
1499                 }
1500                 retval = target_read_buffer(target, address, size, buffer);
1501                 if (retval != ERROR_OK)
1502                 {
1503                         free(buffer);
1504                         return retval;
1505                 }
1506
1507                 /* convert to target endianess */
1508                 for (i = 0; i < (size/sizeof(uint32_t)); i++)
1509                 {
1510                         uint32_t target_data;
1511                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1512                         target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1513                 }
1514
1515                 retval = image_calculate_checksum(buffer, size, &checksum);
1516                 free(buffer);
1517         }
1518
1519         *crc = checksum;
1520
1521         return retval;
1522 }
1523
1524 int target_blank_check_memory(struct target_s *target, uint32_t address, uint32_t size, uint32_t* blank)
1525 {
1526         int retval;
1527         if (!target_was_examined(target))
1528         {
1529                 LOG_ERROR("Target not examined yet");
1530                 return ERROR_FAIL;
1531         }
1532
1533         if (target->type->blank_check_memory == 0)
1534                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1535
1536         retval = target->type->blank_check_memory(target, address, size, blank);
1537
1538         return retval;
1539 }
1540
1541 int target_read_u32(struct target_s *target, uint32_t address, uint32_t *value)
1542 {
1543         uint8_t value_buf[4];
1544         if (!target_was_examined(target))
1545         {
1546                 LOG_ERROR("Target not examined yet");
1547                 return ERROR_FAIL;
1548         }
1549
1550         int retval = target_read_memory(target, address, 4, 1, value_buf);
1551
1552         if (retval == ERROR_OK)
1553         {
1554                 *value = target_buffer_get_u32(target, value_buf);
1555                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1556                                   address,
1557                                   *value);
1558         }
1559         else
1560         {
1561                 *value = 0x0;
1562                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1563                                   address);
1564         }
1565
1566         return retval;
1567 }
1568
1569 int target_read_u16(struct target_s *target, uint32_t address, uint16_t *value)
1570 {
1571         uint8_t value_buf[2];
1572         if (!target_was_examined(target))
1573         {
1574                 LOG_ERROR("Target not examined yet");
1575                 return ERROR_FAIL;
1576         }
1577
1578         int retval = target_read_memory(target, address, 2, 1, value_buf);
1579
1580         if (retval == ERROR_OK)
1581         {
1582                 *value = target_buffer_get_u16(target, value_buf);
1583                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
1584                                   address,
1585                                   *value);
1586         }
1587         else
1588         {
1589                 *value = 0x0;
1590                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1591                                   address);
1592         }
1593
1594         return retval;
1595 }
1596
1597 int target_read_u8(struct target_s *target, uint32_t address, uint8_t *value)
1598 {
1599         int retval = target_read_memory(target, address, 1, 1, value);
1600         if (!target_was_examined(target))
1601         {
1602                 LOG_ERROR("Target not examined yet");
1603                 return ERROR_FAIL;
1604         }
1605
1606         if (retval == ERROR_OK)
1607         {
1608                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1609                                   address,
1610                                   *value);
1611         }
1612         else
1613         {
1614                 *value = 0x0;
1615                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1616                                   address);
1617         }
1618
1619         return retval;
1620 }
1621
1622 int target_write_u32(struct target_s *target, uint32_t address, uint32_t value)
1623 {
1624         int retval;
1625         uint8_t value_buf[4];
1626         if (!target_was_examined(target))
1627         {
1628                 LOG_ERROR("Target not examined yet");
1629                 return ERROR_FAIL;
1630         }
1631
1632         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1633                           address,
1634                           value);
1635
1636         target_buffer_set_u32(target, value_buf, value);
1637         if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1638         {
1639                 LOG_DEBUG("failed: %i", retval);
1640         }
1641
1642         return retval;
1643 }
1644
1645 int target_write_u16(struct target_s *target, uint32_t address, uint16_t value)
1646 {
1647         int retval;
1648         uint8_t value_buf[2];
1649         if (!target_was_examined(target))
1650         {
1651                 LOG_ERROR("Target not examined yet");
1652                 return ERROR_FAIL;
1653         }
1654
1655         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
1656                           address,
1657                           value);
1658
1659         target_buffer_set_u16(target, value_buf, value);
1660         if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1661         {
1662                 LOG_DEBUG("failed: %i", retval);
1663         }
1664
1665         return retval;
1666 }
1667
1668 int target_write_u8(struct target_s *target, uint32_t address, uint8_t value)
1669 {
1670         int retval;
1671         if (!target_was_examined(target))
1672         {
1673                 LOG_ERROR("Target not examined yet");
1674                 return ERROR_FAIL;
1675         }
1676
1677         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1678                           address, value);
1679
1680         if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1681         {
1682                 LOG_DEBUG("failed: %i", retval);
1683         }
1684
1685         return retval;
1686 }
1687
1688 int target_register_user_commands(struct command_context_s *cmd_ctx)
1689 {
1690         int retval = ERROR_OK;
1691
1692
1693         /* script procedures */
1694         register_command(cmd_ctx, NULL, "profile", handle_profile_command, COMMAND_EXEC, "profiling samples the CPU PC");
1695         register_jim(cmd_ctx, "ocd_mem2array", jim_mem2array, "read memory and return as a TCL array for script processing <ARRAYNAME> <WIDTH = 32/16/8> <ADDRESS> <COUNT>");
1696         register_jim(cmd_ctx, "ocd_array2mem", jim_array2mem, "convert a TCL array to memory locations and write the values  <ARRAYNAME> <WIDTH = 32/16/8> <ADDRESS> <COUNT>");
1697
1698         register_command(cmd_ctx, NULL, "fast_load_image", handle_fast_load_image_command, COMMAND_ANY,
1699                         "same args as load_image, image stored in memory - mainly for profiling purposes");
1700
1701         register_command(cmd_ctx, NULL, "fast_load", handle_fast_load_command, COMMAND_ANY,
1702                         "loads active fast load image to current target - mainly for profiling purposes");
1703
1704
1705         register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "translate a virtual address into a physical address");
1706         register_command(cmd_ctx,  NULL, "reg", handle_reg_command, COMMAND_EXEC, "display or set a register");
1707         register_command(cmd_ctx,  NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state");
1708         register_command(cmd_ctx,  NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]");
1709         register_command(cmd_ctx,  NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target");
1710         register_command(cmd_ctx,  NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]");
1711         register_command(cmd_ctx,  NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]");
1712         register_command(cmd_ctx,  NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run | halt | init] - default is run");
1713         register_command(cmd_ctx,  NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset");
1714
1715         register_command(cmd_ctx,  NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words [phys] <addr> [count]");
1716         register_command(cmd_ctx,  NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words [phys] <addr> [count]");
1717         register_command(cmd_ctx,  NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes [phys] <addr> [count]");
1718
1719         register_command(cmd_ctx,  NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word [phys]  <addr> <value> [count]");
1720         register_command(cmd_ctx,  NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word [phys]  <addr> <value> [count]");
1721         register_command(cmd_ctx,  NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte [phys] <addr> <value> [count]");
1722
1723         register_command(cmd_ctx,  NULL, "bp",
1724                         handle_bp_command, COMMAND_EXEC,
1725                         "list or set breakpoint [<address> <length> [hw]]");
1726         register_command(cmd_ctx,  NULL, "rbp",
1727                         handle_rbp_command, COMMAND_EXEC,
1728                         "remove breakpoint <address>");
1729         register_command(cmd_ctx,  NULL, "wp",
1730                         handle_wp_command, COMMAND_EXEC,
1731                         "list or set watchpoint "
1732                                 "[<address> <length> <r/w/a> [value] [mask]]");
1733         register_command(cmd_ctx,  NULL, "rwp",
1734                         handle_rwp_command, COMMAND_EXEC,
1735                         "remove watchpoint <address>");
1736
1737         register_command(cmd_ctx,  NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> ['bin'|'ihex'|'elf'|'s19'] [min_address] [max_length]");
1738         register_command(cmd_ctx,  NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>");
1739         register_command(cmd_ctx,  NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image <file> [offset] [type]");
1740         register_command(cmd_ctx,  NULL, "test_image", handle_test_image_command, COMMAND_EXEC, "test_image <file> [offset] [type]");
1741
1742         if ((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
1743                 return retval;
1744         if ((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
1745                 return retval;
1746
1747         return retval;
1748 }
1749
1750 static int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1751 {
1752         target_t *target = all_targets;
1753
1754         if (argc == 1)
1755         {
1756                 target = get_target(args[0]);
1757                 if (target == NULL) {
1758                         command_print(cmd_ctx,"Target: %s is unknown, try one of:\n", args[0]);
1759                         goto DumpTargets;
1760                 }
1761                 if (!target->tap->enabled) {
1762                         command_print(cmd_ctx,"Target: TAP %s is disabled, "
1763                                         "can't be the current target\n",
1764                                         target->tap->dotted_name);
1765                         return ERROR_FAIL;
1766                 }
1767
1768                 cmd_ctx->current_target = target->target_number;
1769                 return ERROR_OK;
1770         }
1771 DumpTargets:
1772
1773         target = all_targets;
1774         command_print(cmd_ctx, "    TargetName         Type       Endian TapName            State       ");
1775         command_print(cmd_ctx, "--  ------------------ ---------- ------ ------------------ ------------");
1776         while (target)
1777         {
1778                 const char *state;
1779                 char marker = ' ';
1780
1781                 if (target->tap->enabled)
1782                         state = target_state_name( target );
1783                 else
1784                         state = "tap-disabled";
1785
1786                 if (cmd_ctx->current_target == target->target_number)
1787                         marker = '*';
1788
1789                 /* keep columns lined up to match the headers above */
1790                 command_print(cmd_ctx, "%2d%c %-18s %-10s %-6s %-18s %s",
1791                                           target->target_number,
1792                                           marker,
1793                                           target->cmd_name,
1794                                           target_get_name(target),
1795                                           Jim_Nvp_value2name_simple(nvp_target_endian,
1796                                                                 target->endianness)->name,
1797                                           target->tap->dotted_name,
1798                                           state);
1799                 target = target->next;
1800         }
1801
1802         return ERROR_OK;
1803 }
1804
1805 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1806
1807 static int powerDropout;
1808 static int srstAsserted;
1809
1810 static int runPowerRestore;
1811 static int runPowerDropout;
1812 static int runSrstAsserted;
1813 static int runSrstDeasserted;
1814
1815 static int sense_handler(void)
1816 {
1817         static int prevSrstAsserted = 0;
1818         static int prevPowerdropout = 0;
1819
1820         int retval;
1821         if ((retval = jtag_power_dropout(&powerDropout)) != ERROR_OK)
1822                 return retval;
1823
1824         int powerRestored;
1825         powerRestored = prevPowerdropout && !powerDropout;
1826         if (powerRestored)
1827         {
1828                 runPowerRestore = 1;
1829         }
1830
1831         long long current = timeval_ms();
1832         static long long lastPower = 0;
1833         int waitMore = lastPower + 2000 > current;
1834         if (powerDropout && !waitMore)
1835         {
1836                 runPowerDropout = 1;
1837                 lastPower = current;
1838         }
1839
1840         if ((retval = jtag_srst_asserted(&srstAsserted)) != ERROR_OK)
1841                 return retval;
1842
1843         int srstDeasserted;
1844         srstDeasserted = prevSrstAsserted && !srstAsserted;
1845
1846         static long long lastSrst = 0;
1847         waitMore = lastSrst + 2000 > current;
1848         if (srstDeasserted && !waitMore)
1849         {
1850                 runSrstDeasserted = 1;
1851                 lastSrst = current;
1852         }
1853
1854         if (!prevSrstAsserted && srstAsserted)
1855         {
1856                 runSrstAsserted = 1;
1857         }
1858
1859         prevSrstAsserted = srstAsserted;
1860         prevPowerdropout = powerDropout;
1861
1862         if (srstDeasserted || powerRestored)
1863         {
1864                 /* Other than logging the event we can't do anything here.
1865                  * Issuing a reset is a particularly bad idea as we might
1866                  * be inside a reset already.
1867                  */
1868         }
1869
1870         return ERROR_OK;
1871 }
1872
1873 static void target_call_event_callbacks_all(enum target_event e) {
1874         target_t *target;
1875         target = all_targets;
1876         while (target) {
1877                 target_call_event_callbacks(target, e);
1878                 target = target->next;
1879         }
1880 }
1881
1882 /* process target state changes */
1883 int handle_target(void *priv)
1884 {
1885         int retval = ERROR_OK;
1886
1887         /* we do not want to recurse here... */
1888         static int recursive = 0;
1889         if (! recursive)
1890         {
1891                 recursive = 1;
1892                 sense_handler();
1893                 /* danger! running these procedures can trigger srst assertions and power dropouts.
1894                  * We need to avoid an infinite loop/recursion here and we do that by
1895                  * clearing the flags after running these events.
1896                  */
1897                 int did_something = 0;
1898                 if (runSrstAsserted)
1899                 {
1900                         target_call_event_callbacks_all(TARGET_EVENT_GDB_HALT);
1901                         Jim_Eval(interp, "srst_asserted");
1902                         did_something = 1;
1903                 }
1904                 if (runSrstDeasserted)
1905                 {
1906                         Jim_Eval(interp, "srst_deasserted");
1907                         did_something = 1;
1908                 }
1909                 if (runPowerDropout)
1910                 {
1911                         target_call_event_callbacks_all(TARGET_EVENT_GDB_HALT);
1912                         Jim_Eval(interp, "power_dropout");
1913                         did_something = 1;
1914                 }
1915                 if (runPowerRestore)
1916                 {
1917                         Jim_Eval(interp, "power_restore");
1918                         did_something = 1;
1919                 }
1920
1921                 if (did_something)
1922                 {
1923                         /* clear detect flags */
1924                         sense_handler();
1925                 }
1926
1927                 /* clear action flags */
1928
1929                 runSrstAsserted = 0;
1930                 runSrstDeasserted = 0;
1931                 runPowerRestore = 0;
1932                 runPowerDropout = 0;
1933
1934                 recursive = 0;
1935         }
1936
1937         /* Poll targets for state changes unless that's globally disabled.
1938          * Skip targets that are currently disabled.
1939          */
1940         for (target_t *target = all_targets;
1941                         is_jtag_poll_safe() && target;
1942                         target = target->next)
1943         {
1944                 if (!target->tap->enabled)
1945                         continue;
1946
1947                 /* only poll target if we've got power and srst isn't asserted */
1948                 if (!powerDropout && !srstAsserted)
1949                 {
1950                         /* polling may fail silently until the target has been examined */
1951                         if ((retval = target_poll(target)) != ERROR_OK)
1952                         {
1953                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1954                                 return retval;
1955                         }
1956                 }
1957         }
1958
1959         return retval;
1960 }
1961
1962 static int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1963 {
1964         target_t *target;
1965         reg_t *reg = NULL;
1966         int count = 0;
1967         char *value;
1968
1969         LOG_DEBUG("-");
1970
1971         target = get_current_target(cmd_ctx);
1972
1973         /* list all available registers for the current target */
1974         if (argc == 0)
1975         {
1976                 reg_cache_t *cache = target->reg_cache;
1977
1978                 count = 0;
1979                 while (cache)
1980                 {
1981                         int i;
1982
1983                         command_print(cmd_ctx, "===== %s", cache->name);
1984
1985                         for (i = 0, reg = cache->reg_list;
1986                                         i < cache->num_regs;
1987                                         i++, reg++, count++)
1988                         {
1989                                 /* only print cached values if they are valid */
1990                                 if (reg->valid) {
1991                                         value = buf_to_str(reg->value,
1992                                                         reg->size, 16);
1993                                         command_print(cmd_ctx,
1994                                                         "(%i) %s (/%" PRIu32 "): 0x%s%s",
1995                                                         count, reg->name,
1996                                                         reg->size, value,
1997                                                         reg->dirty
1998                                                                 ? " (dirty)"
1999                                                                 : "");
2000                                         free(value);
2001                                 } else {
2002                                         command_print(cmd_ctx, "(%i) %s (/%" PRIu32 ")",
2003                                                           count, reg->name,
2004                                                           reg->size) ;
2005                                 }
2006                         }
2007                         cache = cache->next;
2008                 }
2009
2010                 return ERROR_OK;
2011         }
2012
2013         /* access a single register by its ordinal number */
2014         if ((args[0][0] >= '0') && (args[0][0] <= '9'))
2015         {
2016                 unsigned num;
2017                 int retval = parse_uint(args[0], &num);
2018                 if (ERROR_OK != retval)
2019                         return ERROR_COMMAND_SYNTAX_ERROR;
2020
2021                 reg_cache_t *cache = target->reg_cache;
2022                 count = 0;
2023                 while (cache)
2024                 {
2025                         int i;
2026                         for (i = 0; i < cache->num_regs; i++)
2027                         {
2028                                 if (count++ == (int)num)
2029                                 {
2030                                         reg = &cache->reg_list[i];
2031                                         break;
2032                                 }
2033                         }
2034                         if (reg)
2035                                 break;
2036                         cache = cache->next;
2037                 }
2038
2039                 if (!reg)
2040                 {
2041                         command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
2042                         return ERROR_OK;
2043                 }
2044         } else /* access a single register by its name */
2045         {
2046                 reg = register_get_by_name(target->reg_cache, args[0], 1);
2047
2048                 if (!reg)
2049                 {
2050                         command_print(cmd_ctx, "register %s not found in current target", args[0]);
2051                         return ERROR_OK;
2052                 }
2053         }
2054
2055         /* display a register */
2056         if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
2057         {
2058                 if ((argc == 2) && (strcmp(args[1], "force") == 0))
2059                         reg->valid = 0;
2060
2061                 if (reg->valid == 0)
2062                 {
2063                         reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
2064                         arch_type->get(reg);
2065                 }
2066                 value = buf_to_str(reg->value, reg->size, 16);
2067                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2068                 free(value);
2069                 return ERROR_OK;
2070         }
2071
2072         /* set register value */
2073         if (argc == 2)
2074         {
2075                 uint8_t *buf = malloc(CEIL(reg->size, 8));
2076                 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
2077
2078                 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
2079                 arch_type->set(reg, buf);
2080
2081                 value = buf_to_str(reg->value, reg->size, 16);
2082                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2083                 free(value);
2084
2085                 free(buf);
2086
2087                 return ERROR_OK;
2088         }
2089
2090         command_print(cmd_ctx, "usage: reg <#|name> [value]");
2091
2092         return ERROR_OK;
2093 }
2094
2095 static int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2096 {
2097         int retval = ERROR_OK;
2098         target_t *target = get_current_target(cmd_ctx);
2099
2100         if (argc == 0)
2101         {
2102                 command_print(cmd_ctx, "background polling: %s",
2103                                 jtag_poll_get_enabled() ? "on" : "off");
2104                 command_print(cmd_ctx, "TAP: %s (%s)",
2105                                 target->tap->dotted_name,
2106                                 target->tap->enabled ? "enabled" : "disabled");
2107                 if (!target->tap->enabled)
2108                         return ERROR_OK;
2109                 if ((retval = target_poll(target)) != ERROR_OK)
2110                         return retval;
2111                 if ((retval = target_arch_state(target)) != ERROR_OK)
2112                         return retval;
2113
2114         }
2115         else if (argc == 1)
2116         {
2117                 if (strcmp(args[0], "on") == 0)
2118                 {
2119                         jtag_poll_set_enabled(true);
2120                 }
2121                 else if (strcmp(args[0], "off") == 0)
2122                 {
2123                         jtag_poll_set_enabled(false);
2124                 }
2125                 else
2126                 {
2127                         command_print(cmd_ctx, "arg is \"on\" or \"off\"");
2128                 }
2129         } else
2130         {
2131                 return ERROR_COMMAND_SYNTAX_ERROR;
2132         }
2133
2134         return retval;
2135 }
2136
2137 static int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2138 {
2139         if (argc > 1)
2140                 return ERROR_COMMAND_SYNTAX_ERROR;
2141
2142         unsigned ms = 5000;
2143         if (1 == argc)
2144         {
2145                 int retval = parse_uint(args[0], &ms);
2146                 if (ERROR_OK != retval)
2147                 {
2148                         command_print(cmd_ctx, "usage: %s [seconds]", cmd);
2149                         return ERROR_COMMAND_SYNTAX_ERROR;
2150                 }
2151                 // convert seconds (given) to milliseconds (needed)
2152                 ms *= 1000;
2153         }
2154
2155         target_t *target = get_current_target(cmd_ctx);
2156         return target_wait_state(target, TARGET_HALTED, ms);
2157 }
2158
2159 /* wait for target state to change. The trick here is to have a low
2160  * latency for short waits and not to suck up all the CPU time
2161  * on longer waits.
2162  *
2163  * After 500ms, keep_alive() is invoked
2164  */
2165 int target_wait_state(target_t *target, enum target_state state, int ms)
2166 {
2167         int retval;
2168         long long then = 0, cur;
2169         int once = 1;
2170
2171         for (;;)
2172         {
2173                 if ((retval = target_poll(target)) != ERROR_OK)
2174                         return retval;
2175                 if (target->state == state)
2176                 {
2177                         break;
2178                 }
2179                 cur = timeval_ms();
2180                 if (once)
2181                 {
2182                         once = 0;
2183                         then = timeval_ms();
2184                         LOG_DEBUG("waiting for target %s...",
2185                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2186                 }
2187
2188                 if (cur-then > 500)
2189                 {
2190                         keep_alive();
2191                 }
2192
2193                 if ((cur-then) > ms)
2194                 {
2195                         LOG_ERROR("timed out while waiting for target %s",
2196                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2197                         return ERROR_FAIL;
2198                 }
2199         }
2200
2201         return ERROR_OK;
2202 }
2203
2204 static int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2205 {
2206         LOG_DEBUG("-");
2207
2208         target_t *target = get_current_target(cmd_ctx);
2209         int retval = target_halt(target);
2210         if (ERROR_OK != retval)
2211                 return retval;
2212
2213         if (argc == 1)
2214         {
2215                 unsigned wait;
2216                 retval = parse_uint(args[0], &wait);
2217                 if (ERROR_OK != retval)
2218                         return ERROR_COMMAND_SYNTAX_ERROR;
2219                 if (!wait)
2220                         return ERROR_OK;
2221         }
2222
2223         return handle_wait_halt_command(cmd_ctx, cmd, args, argc);
2224 }
2225
2226 static int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2227 {
2228         target_t *target = get_current_target(cmd_ctx);
2229
2230         LOG_USER("requesting target halt and executing a soft reset");
2231
2232         target->type->soft_reset_halt(target);
2233
2234         return ERROR_OK;
2235 }
2236
2237 static int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2238 {
2239         if (argc > 1)
2240                 return ERROR_COMMAND_SYNTAX_ERROR;
2241
2242         enum target_reset_mode reset_mode = RESET_RUN;
2243         if (argc == 1)
2244         {
2245                 const Jim_Nvp *n;
2246                 n = Jim_Nvp_name2value_simple(nvp_reset_modes, args[0]);
2247                 if ((n->name == NULL) || (n->value == RESET_UNKNOWN)) {
2248                         return ERROR_COMMAND_SYNTAX_ERROR;
2249                 }
2250                 reset_mode = n->value;
2251         }
2252
2253         /* reset *all* targets */
2254         return target_process_reset(cmd_ctx, reset_mode);
2255 }
2256
2257
2258 static int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2259 {
2260         int current = 1;
2261         if (argc > 1)
2262                 return ERROR_COMMAND_SYNTAX_ERROR;
2263
2264         target_t *target = get_current_target(cmd_ctx);
2265         target_handle_event(target, TARGET_EVENT_OLD_pre_resume);
2266
2267         /* with no args, resume from current pc, addr = 0,
2268          * with one arguments, addr = args[0],
2269          * handle breakpoints, not debugging */
2270         uint32_t addr = 0;
2271         if (argc == 1)
2272         {
2273                 int retval = parse_u32(args[0], &addr);
2274                 if (ERROR_OK != retval)
2275                         return retval;
2276                 current = 0;
2277         }
2278
2279         return target_resume(target, current, addr, 1, 0);
2280 }
2281
2282 static int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2283 {
2284         if (argc > 1)
2285                 return ERROR_COMMAND_SYNTAX_ERROR;
2286
2287         LOG_DEBUG("-");
2288
2289         /* with no args, step from current pc, addr = 0,
2290          * with one argument addr = args[0],
2291          * handle breakpoints, debugging */
2292         uint32_t addr = 0;
2293         int current_pc = 1;
2294         if (argc == 1)
2295         {
2296                 int retval = parse_u32(args[0], &addr);
2297                 if (ERROR_OK != retval)
2298                         return retval;
2299                 current_pc = 0;
2300         }
2301
2302         target_t *target = get_current_target(cmd_ctx);
2303
2304         return target->type->step(target, current_pc, addr, 1);
2305 }
2306
2307 static void handle_md_output(struct command_context_s *cmd_ctx,
2308                 struct target_s *target, uint32_t address, unsigned size,
2309                 unsigned count, const uint8_t *buffer)
2310 {
2311         const unsigned line_bytecnt = 32;
2312         unsigned line_modulo = line_bytecnt / size;
2313
2314         char output[line_bytecnt * 4 + 1];
2315         unsigned output_len = 0;
2316
2317         const char *value_fmt;
2318         switch (size) {
2319         case 4: value_fmt = "%8.8x "; break;
2320         case 2: value_fmt = "%4.2x "; break;
2321         case 1: value_fmt = "%2.2x "; break;
2322         default:
2323                 LOG_ERROR("invalid memory read size: %u", size);
2324                 exit(-1);
2325         }
2326
2327         for (unsigned i = 0; i < count; i++)
2328         {
2329                 if (i % line_modulo == 0)
2330                 {
2331                         output_len += snprintf(output + output_len,
2332                                         sizeof(output) - output_len,
2333                                         "0x%8.8x: ",
2334                                         (unsigned)(address + (i*size)));
2335                 }
2336
2337                 uint32_t value = 0;
2338                 const uint8_t *value_ptr = buffer + i * size;
2339                 switch (size) {
2340                 case 4: value = target_buffer_get_u32(target, value_ptr); break;
2341                 case 2: value = target_buffer_get_u16(target, value_ptr); break;
2342                 case 1: value = *value_ptr;
2343                 }
2344                 output_len += snprintf(output + output_len,
2345                                 sizeof(output) - output_len,
2346                                 value_fmt, value);
2347
2348                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
2349                 {
2350                         command_print(cmd_ctx, "%s", output);
2351                         output_len = 0;
2352                 }
2353         }
2354 }
2355
2356 static int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2357 {
2358         if (argc < 1)
2359                 return ERROR_COMMAND_SYNTAX_ERROR;
2360
2361         unsigned size = 0;
2362         switch (cmd[2]) {
2363         case 'w': size = 4; break;
2364         case 'h': size = 2; break;
2365         case 'b': size = 1; break;
2366         default: return ERROR_COMMAND_SYNTAX_ERROR;
2367         }
2368
2369         bool physical=strcmp(args[0], "phys")==0;
2370         int (*fn)(struct target_s *target,
2371                         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2372         if (physical)
2373         {
2374                 argc--;
2375                 args++;
2376                 fn=target_read_phys_memory;
2377         } else
2378         {
2379                 fn=target_read_memory;
2380         }
2381         if ((argc < 1) || (argc > 2))
2382         {
2383                 return ERROR_COMMAND_SYNTAX_ERROR;
2384         }
2385         uint32_t address;
2386         int retval = parse_u32(args[0], &address);
2387         if (ERROR_OK != retval)
2388                 return retval;
2389
2390         unsigned count = 1;
2391         if (argc == 2)
2392         {
2393                 retval = parse_uint(args[1], &count);
2394                 if (ERROR_OK != retval)
2395                         return retval;
2396         }
2397
2398         uint8_t *buffer = calloc(count, size);
2399
2400         target_t *target = get_current_target(cmd_ctx);
2401         retval = fn(target, address, size, count, buffer);
2402         if (ERROR_OK == retval)
2403                 handle_md_output(cmd_ctx, target, address, size, count, buffer);
2404
2405         free(buffer);
2406
2407         return retval;
2408 }
2409
2410 static int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2411 {
2412         if (argc < 2)
2413         {
2414                 return ERROR_COMMAND_SYNTAX_ERROR;
2415         }
2416         bool physical=strcmp(args[0], "phys")==0;
2417         int (*fn)(struct target_s *target,
2418                         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2419         if (physical)
2420         {
2421                 argc--;
2422                 args++;
2423                 fn=target_write_phys_memory;
2424         } else
2425         {
2426                 fn=target_write_memory;
2427         }
2428         if ((argc < 2) || (argc > 3))
2429                 return ERROR_COMMAND_SYNTAX_ERROR;
2430
2431         uint32_t address;
2432         int retval = parse_u32(args[0], &address);
2433         if (ERROR_OK != retval)
2434                 return retval;
2435
2436         uint32_t value;
2437         retval = parse_u32(args[1], &value);
2438         if (ERROR_OK != retval)
2439                 return retval;
2440
2441         unsigned count = 1;
2442         if (argc == 3)
2443         {
2444                 retval = parse_uint(args[2], &count);
2445                 if (ERROR_OK != retval)
2446                         return retval;
2447         }
2448
2449         target_t *target = get_current_target(cmd_ctx);
2450         unsigned wordsize;
2451         uint8_t value_buf[4];
2452         switch (cmd[2])
2453         {
2454                 case 'w':
2455                         wordsize = 4;
2456                         target_buffer_set_u32(target, value_buf, value);
2457                         break;
2458                 case 'h':
2459                         wordsize = 2;
2460                         target_buffer_set_u16(target, value_buf, value);
2461                         break;
2462                 case 'b':
2463                         wordsize = 1;
2464                         value_buf[0] = value;
2465                         break;
2466                 default:
2467                         return ERROR_COMMAND_SYNTAX_ERROR;
2468         }
2469         for (unsigned i = 0; i < count; i++)
2470         {
2471                 retval = fn(target,
2472                                 address + i * wordsize, wordsize, 1, value_buf);
2473                 if (ERROR_OK != retval)
2474                         return retval;
2475                 keep_alive();
2476         }
2477
2478         return ERROR_OK;
2479
2480 }
2481
2482 static int parse_load_image_command_args(char **args, int argc,
2483                 image_t *image, uint32_t *min_address, uint32_t *max_address)
2484 {
2485         if (argc < 1 || argc > 5)
2486                 return ERROR_COMMAND_SYNTAX_ERROR;
2487
2488         /* a base address isn't always necessary,
2489          * default to 0x0 (i.e. don't relocate) */
2490         if (argc >= 2)
2491         {
2492                 uint32_t addr;
2493                 int retval = parse_u32(args[1], &addr);
2494                 if (ERROR_OK != retval)
2495                         return ERROR_COMMAND_SYNTAX_ERROR;
2496                 image->base_address = addr;
2497                 image->base_address_set = 1;
2498         }
2499         else
2500                 image->base_address_set = 0;
2501
2502         image->start_address_set = 0;
2503
2504         if (argc >= 4)
2505         {
2506                 int retval = parse_u32(args[3], min_address);
2507                 if (ERROR_OK != retval)
2508                         return ERROR_COMMAND_SYNTAX_ERROR;
2509         }
2510         if (argc == 5)
2511         {
2512                 int retval = parse_u32(args[4], max_address);
2513                 if (ERROR_OK != retval)
2514                         return ERROR_COMMAND_SYNTAX_ERROR;
2515                 // use size (given) to find max (required)
2516                 *max_address += *min_address;
2517         }
2518
2519         if (*min_address > *max_address)
2520                 return ERROR_COMMAND_SYNTAX_ERROR;
2521
2522         return ERROR_OK;
2523 }
2524
2525 static int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2526 {
2527         uint8_t *buffer;
2528         uint32_t buf_cnt;
2529         uint32_t image_size;
2530         uint32_t min_address = 0;
2531         uint32_t max_address = 0xffffffff;
2532         int i;
2533         int retvaltemp;
2534
2535         image_t image;
2536
2537         duration_t duration;
2538         char *duration_text;
2539
2540         int retval = parse_load_image_command_args(args, argc,
2541                         &image, &min_address, &max_address);
2542         if (ERROR_OK != retval)
2543                 return retval;
2544
2545         target_t *target = get_current_target(cmd_ctx);
2546         duration_start_measure(&duration);
2547
2548         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
2549         {
2550                 return ERROR_OK;
2551         }
2552
2553         image_size = 0x0;
2554         retval = ERROR_OK;
2555         for (i = 0; i < image.num_sections; i++)
2556         {
2557                 buffer = malloc(image.sections[i].size);
2558                 if (buffer == NULL)
2559                 {
2560                         command_print(cmd_ctx,
2561                                                   "error allocating buffer for section (%d bytes)",
2562                                                   (int)(image.sections[i].size));
2563                         break;
2564                 }
2565
2566                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2567                 {
2568                         free(buffer);
2569                         break;
2570                 }
2571
2572                 uint32_t offset = 0;
2573                 uint32_t length = buf_cnt;
2574
2575                 /* DANGER!!! beware of unsigned comparision here!!! */
2576
2577                 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
2578                                 (image.sections[i].base_address < max_address))
2579                 {
2580                         if (image.sections[i].base_address < min_address)
2581                         {
2582                                 /* clip addresses below */
2583                                 offset += min_address-image.sections[i].base_address;
2584                                 length -= offset;
2585                         }
2586
2587                         if (image.sections[i].base_address + buf_cnt > max_address)
2588                         {
2589                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2590                         }
2591
2592                         if ((retval = target_write_buffer(target, image.sections[i].base_address + offset, length, buffer + offset)) != ERROR_OK)
2593                         {
2594                                 free(buffer);
2595                                 break;
2596                         }
2597                         image_size += length;
2598                         command_print(cmd_ctx, "%u bytes written at address 0x%8.8" PRIx32 "",
2599                                                   (unsigned int)length,
2600                                                   image.sections[i].base_address + offset);
2601                 }
2602
2603                 free(buffer);
2604         }
2605
2606         if ((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2607         {
2608                 image_close(&image);
2609                 return retvaltemp;
2610         }
2611
2612         if (retval == ERROR_OK)
2613         {
2614                 command_print(cmd_ctx, "downloaded %u byte in %s",
2615                                           (unsigned int)image_size,
2616                                           duration_text);
2617         }
2618         free(duration_text);
2619
2620         image_close(&image);
2621
2622         return retval;
2623
2624 }
2625
2626 static int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2627 {
2628         fileio_t fileio;
2629
2630         uint8_t buffer[560];
2631         int retvaltemp;
2632
2633         duration_t duration;
2634         char *duration_text;
2635
2636         target_t *target = get_current_target(cmd_ctx);
2637
2638         if (argc != 3)
2639         {
2640                 command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
2641                 return ERROR_OK;
2642         }
2643
2644         uint32_t address;
2645         int retval = parse_u32(args[1], &address);
2646         if (ERROR_OK != retval)
2647                 return retval;
2648
2649         uint32_t size;
2650         retval = parse_u32(args[2], &size);
2651         if (ERROR_OK != retval)
2652                 return retval;
2653
2654         if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2655         {
2656                 return ERROR_OK;
2657         }
2658
2659         duration_start_measure(&duration);
2660
2661         while (size > 0)
2662         {
2663                 uint32_t size_written;
2664                 uint32_t this_run_size = (size > 560) ? 560 : size;
2665
2666                 retval = target_read_buffer(target, address, this_run_size, buffer);
2667                 if (retval != ERROR_OK)
2668                 {
2669                         break;
2670                 }
2671
2672                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2673                 if (retval != ERROR_OK)
2674                 {
2675                         break;
2676                 }
2677
2678                 size -= this_run_size;
2679                 address += this_run_size;
2680         }
2681
2682         if ((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2683                 return retvaltemp;
2684
2685         if ((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2686                 return retvaltemp;
2687
2688         if (retval == ERROR_OK)
2689         {
2690                 command_print(cmd_ctx, "dumped %lld byte in %s",
2691                                 fileio.size, duration_text);
2692                 free(duration_text);
2693         }
2694
2695         return retval;
2696 }
2697
2698 static int handle_verify_image_command_internal(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc, int verify)
2699 {
2700         uint8_t *buffer;
2701         uint32_t buf_cnt;
2702         uint32_t image_size;
2703         int i;
2704         int retval, retvaltemp;
2705         uint32_t checksum = 0;
2706         uint32_t mem_checksum = 0;
2707
2708         image_t image;
2709
2710         duration_t duration;
2711         char *duration_text;
2712
2713         target_t *target = get_current_target(cmd_ctx);
2714
2715         if (argc < 1)
2716         {
2717                 return ERROR_COMMAND_SYNTAX_ERROR;
2718         }
2719
2720         if (!target)
2721         {
2722                 LOG_ERROR("no target selected");
2723                 return ERROR_FAIL;
2724         }
2725
2726         duration_start_measure(&duration);
2727
2728         if (argc >= 2)
2729         {
2730                 uint32_t addr;
2731                 retval = parse_u32(args[1], &addr);
2732                 if (ERROR_OK != retval)
2733                         return ERROR_COMMAND_SYNTAX_ERROR;
2734                 image.base_address = addr;
2735                 image.base_address_set = 1;
2736         }
2737         else
2738         {
2739                 image.base_address_set = 0;
2740                 image.base_address = 0x0;
2741         }
2742
2743         image.start_address_set = 0;
2744
2745         if ((retval = image_open(&image, args[0], (argc == 3) ? args[2] : NULL)) != ERROR_OK)
2746         {
2747                 return retval;
2748         }
2749
2750         image_size = 0x0;
2751         retval = ERROR_OK;
2752         for (i = 0; i < image.num_sections; i++)
2753         {
2754                 buffer = malloc(image.sections[i].size);
2755                 if (buffer == NULL)
2756                 {
2757                         command_print(cmd_ctx,
2758                                                   "error allocating buffer for section (%d bytes)",
2759                                                   (int)(image.sections[i].size));
2760                         break;
2761                 }
2762                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2763                 {
2764                         free(buffer);
2765                         break;
2766                 }
2767
2768                 if (verify)
2769                 {
2770                         /* calculate checksum of image */
2771                         image_calculate_checksum(buffer, buf_cnt, &checksum);
2772
2773                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2774                         if (retval != ERROR_OK)
2775                         {
2776                                 free(buffer);
2777                                 break;
2778                         }
2779
2780                         if (checksum != mem_checksum)
2781                         {
2782                                 /* failed crc checksum, fall back to a binary compare */
2783                                 uint8_t *data;
2784
2785                                 command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
2786
2787                                 data = (uint8_t*)malloc(buf_cnt);
2788
2789                                 /* Can we use 32bit word accesses? */
2790                                 int size = 1;
2791                                 int count = buf_cnt;
2792                                 if ((count % 4) == 0)
2793                                 {
2794                                         size *= 4;
2795                                         count /= 4;
2796                                 }
2797                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2798                                 if (retval == ERROR_OK)
2799                                 {
2800                                         uint32_t t;
2801                                         for (t = 0; t < buf_cnt; t++)
2802                                         {
2803                                                 if (data[t] != buffer[t])
2804                                                 {
2805                                                         command_print(cmd_ctx,
2806                                                                                   "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n",
2807                                                                                   (unsigned)(t + image.sections[i].base_address),
2808                                                                                   data[t],
2809                                                                                   buffer[t]);
2810                                                         free(data);
2811                                                         free(buffer);
2812                                                         retval = ERROR_FAIL;
2813                                                         goto done;
2814                                                 }
2815                                                 if ((t%16384) == 0)
2816                                                 {
2817                                                         keep_alive();
2818                                                 }
2819                                         }
2820                                 }
2821
2822                                 free(data);
2823                         }
2824                 } else
2825                 {
2826                         command_print(cmd_ctx, "address 0x%08" PRIx32 " length 0x%08" PRIx32 "",
2827                                                   image.sections[i].base_address,
2828                                                   buf_cnt);
2829                 }
2830
2831                 free(buffer);
2832                 image_size += buf_cnt;
2833         }
2834 done:
2835
2836         if ((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2837         {
2838                 image_close(&image);
2839                 return retvaltemp;
2840         }
2841
2842         if (retval == ERROR_OK)
2843         {
2844                 command_print(cmd_ctx, "verified %u bytes in %s",
2845                                           (unsigned int)image_size,
2846                                           duration_text);
2847         }
2848         free(duration_text);
2849
2850         image_close(&image);
2851
2852         return retval;
2853 }
2854
2855 static int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2856 {
2857         return handle_verify_image_command_internal(cmd_ctx, cmd, args, argc, 1);
2858 }
2859
2860 static int handle_test_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2861 {
2862         return handle_verify_image_command_internal(cmd_ctx, cmd, args, argc, 0);
2863 }
2864
2865 static int handle_bp_command_list(struct command_context_s *cmd_ctx)
2866 {
2867         target_t *target = get_current_target(cmd_ctx);
2868         breakpoint_t *breakpoint = target->breakpoints;
2869         while (breakpoint)
2870         {
2871                 if (breakpoint->type == BKPT_SOFT)
2872                 {
2873                         char* buf = buf_to_str(breakpoint->orig_instr,
2874                                         breakpoint->length, 16);
2875                         command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
2876                                         breakpoint->address,
2877                                         breakpoint->length,
2878                                         breakpoint->set, buf);
2879                         free(buf);
2880                 }
2881                 else
2882                 {
2883                         command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i",
2884                                                   breakpoint->address,
2885                                                   breakpoint->length, breakpoint->set);
2886                 }
2887
2888                 breakpoint = breakpoint->next;
2889         }
2890         return ERROR_OK;
2891 }
2892
2893 static int handle_bp_command_set(struct command_context_s *cmd_ctx,
2894                 uint32_t addr, uint32_t length, int hw)
2895 {
2896         target_t *target = get_current_target(cmd_ctx);
2897         int retval = breakpoint_add(target, addr, length, hw);
2898         if (ERROR_OK == retval)
2899                 command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
2900         else
2901                 LOG_ERROR("Failure setting breakpoint");
2902         return retval;
2903 }
2904
2905 static int handle_bp_command(struct command_context_s *cmd_ctx,
2906                 char *cmd, char **args, int argc)
2907 {
2908         if (argc == 0)
2909                 return handle_bp_command_list(cmd_ctx);
2910
2911         if (argc < 2 || argc > 3)
2912         {
2913                 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
2914                 return ERROR_COMMAND_SYNTAX_ERROR;
2915         }
2916
2917         uint32_t addr;
2918         int retval = parse_u32(args[0], &addr);
2919         if (ERROR_OK != retval)
2920                 return retval;
2921
2922         uint32_t length;
2923         retval = parse_u32(args[1], &length);
2924         if (ERROR_OK != retval)
2925                 return retval;
2926
2927         int hw = BKPT_SOFT;
2928         if (argc == 3)
2929         {
2930                 if (strcmp(args[2], "hw") == 0)
2931                         hw = BKPT_HARD;
2932                 else
2933                         return ERROR_COMMAND_SYNTAX_ERROR;
2934         }
2935
2936         return handle_bp_command_set(cmd_ctx, addr, length, hw);
2937 }
2938
2939 static int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2940 {
2941         if (argc != 1)
2942                 return ERROR_COMMAND_SYNTAX_ERROR;
2943
2944         uint32_t addr;
2945         int retval = parse_u32(args[0], &addr);
2946         if (ERROR_OK != retval)
2947                 return retval;
2948
2949         target_t *target = get_current_target(cmd_ctx);
2950         breakpoint_remove(target, addr);
2951
2952         return ERROR_OK;
2953 }
2954
2955 static int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2956 {
2957         target_t *target = get_current_target(cmd_ctx);
2958
2959         if (argc == 0)
2960         {
2961                 watchpoint_t *watchpoint = target->watchpoints;
2962
2963                 while (watchpoint)
2964                 {
2965                         command_print(cmd_ctx,
2966                                                   "address: 0x%8.8" PRIx32 ", len: 0x%8.8x, r/w/a: %i, value: 0x%8.8" PRIx32 ", mask: 0x%8.8" PRIx32 "",
2967                                                   watchpoint->address,
2968                                                   watchpoint->length,
2969                                                   (int)(watchpoint->rw),
2970                                                   watchpoint->value,
2971                                                   watchpoint->mask);
2972                         watchpoint = watchpoint->next;
2973                 }
2974                 return ERROR_OK;
2975         }
2976
2977         enum watchpoint_rw type = WPT_ACCESS;
2978         uint32_t addr = 0;
2979         uint32_t length = 0;
2980         uint32_t data_value = 0x0;
2981         uint32_t data_mask = 0xffffffff;
2982         int retval;
2983
2984         switch (argc)
2985         {
2986         case 5:
2987                 retval = parse_u32(args[4], &data_mask);
2988                 if (ERROR_OK != retval)
2989                         return retval;
2990                 // fall through
2991         case 4:
2992                 retval = parse_u32(args[3], &data_value);
2993                 if (ERROR_OK != retval)
2994                         return retval;
2995                 // fall through
2996         case 3:
2997                 switch (args[2][0])
2998                 {
2999                 case 'r':
3000                         type = WPT_READ;
3001                         break;
3002                 case 'w':
3003                         type = WPT_WRITE;
3004                         break;
3005                 case 'a':
3006                         type = WPT_ACCESS;
3007                         break;
3008                 default:
3009                         LOG_ERROR("invalid watchpoint mode ('%c')", args[2][0]);
3010                         return ERROR_COMMAND_SYNTAX_ERROR;
3011                 }
3012                 // fall through
3013         case 2:
3014                 retval = parse_u32(args[1], &length);
3015                 if (ERROR_OK != retval)
3016                         return retval;
3017                 retval = parse_u32(args[0], &addr);
3018                 if (ERROR_OK != retval)
3019                         return retval;
3020                 break;
3021
3022         default:
3023                 command_print(cmd_ctx, "usage: wp [address length "
3024                                 "[(r|w|a) [value [mask]]]]");
3025                 return ERROR_COMMAND_SYNTAX_ERROR;
3026         }
3027
3028         retval = watchpoint_add(target, addr, length, type,
3029                         data_value, data_mask);
3030         if (ERROR_OK != retval)
3031                 LOG_ERROR("Failure setting watchpoints");
3032
3033         return retval;
3034 }
3035
3036 static int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
3037 {
3038         if (argc != 1)
3039                 return ERROR_COMMAND_SYNTAX_ERROR;
3040
3041         uint32_t addr;
3042         int retval = parse_u32(args[0], &addr);
3043         if (ERROR_OK != retval)
3044                 return retval;
3045
3046         target_t *target = get_current_target(cmd_ctx);
3047         watchpoint_remove(target, addr);
3048
3049         return ERROR_OK;
3050 }
3051
3052
3053 /**
3054  * Translate a virtual address to a physical address.
3055  *
3056  * The low-level target implementation must have logged a detailed error
3057  * which is forwarded to telnet/GDB session.
3058  */
3059 static int handle_virt2phys_command(command_context_t *cmd_ctx,
3060                 char *cmd, char **args, int argc)
3061 {
3062         if (argc != 1)
3063                 return ERROR_COMMAND_SYNTAX_ERROR;
3064
3065         uint32_t va;
3066         int retval = parse_u32(args[0], &va);
3067         if (ERROR_OK != retval)
3068                 return retval;
3069         uint32_t pa;
3070
3071         target_t *target = get_current_target(cmd_ctx);
3072         retval = target->type->virt2phys(target, va, &pa);
3073         if (retval == ERROR_OK)
3074                 command_print(cmd_ctx, "Physical address 0x%08" PRIx32 "", pa);
3075
3076         return retval;
3077 }
3078
3079 static void writeData(FILE *f, const void *data, size_t len)
3080 {
3081         size_t written = fwrite(data, 1, len, f);
3082         if (written != len)
3083                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3084 }
3085
3086 static void writeLong(FILE *f, int l)
3087 {
3088         int i;
3089         for (i = 0; i < 4; i++)
3090         {
3091                 char c = (l >> (i*8))&0xff;
3092                 writeData(f, &c, 1);
3093         }
3094
3095 }
3096
3097 static void writeString(FILE *f, char *s)
3098 {
3099         writeData(f, s, strlen(s));
3100 }
3101
3102 /* Dump a gmon.out histogram file. */
3103 static void writeGmon(uint32_t *samples, uint32_t sampleNum, char *filename)
3104 {
3105         uint32_t i;
3106         FILE *f = fopen(filename, "w");
3107         if (f == NULL)
3108                 return;
3109         writeString(f, "gmon");
3110         writeLong(f, 0x00000001); /* Version */
3111         writeLong(f, 0); /* padding */
3112         writeLong(f, 0); /* padding */
3113         writeLong(f, 0); /* padding */
3114
3115         uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
3116         writeData(f, &zero, 1);
3117
3118         /* figure out bucket size */
3119         uint32_t min = samples[0];
3120         uint32_t max = samples[0];
3121         for (i = 0; i < sampleNum; i++)
3122         {
3123                 if (min > samples[i])
3124                 {
3125                         min = samples[i];
3126                 }
3127                 if (max < samples[i])
3128                 {
3129                         max = samples[i];
3130                 }
3131         }
3132
3133         int addressSpace = (max-min + 1);
3134
3135         static const uint32_t maxBuckets = 256 * 1024; /* maximum buckets. */
3136         uint32_t length = addressSpace;
3137         if (length > maxBuckets)
3138         {
3139                 length = maxBuckets;
3140         }
3141         int *buckets = malloc(sizeof(int)*length);
3142         if (buckets == NULL)
3143         {
3144                 fclose(f);
3145                 return;
3146         }
3147         memset(buckets, 0, sizeof(int)*length);
3148         for (i = 0; i < sampleNum;i++)
3149         {
3150                 uint32_t address = samples[i];
3151                 long long a = address-min;
3152                 long long b = length-1;
3153                 long long c = addressSpace-1;
3154                 int index = (a*b)/c; /* danger!!!! int32 overflows */
3155                 buckets[index]++;
3156         }
3157
3158         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3159         writeLong(f, min);                      /* low_pc */
3160         writeLong(f, max);                      /* high_pc */
3161         writeLong(f, length);           /* # of samples */
3162         writeLong(f, 64000000);         /* 64MHz */
3163         writeString(f, "seconds");
3164         for (i = 0; i < (15-strlen("seconds")); i++)
3165                 writeData(f, &zero, 1);
3166         writeString(f, "s");
3167
3168         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3169
3170         char *data = malloc(2*length);
3171         if (data != NULL)
3172         {
3173                 for (i = 0; i < length;i++)
3174                 {
3175                         int val;
3176                         val = buckets[i];
3177                         if (val > 65535)
3178                         {
3179                                 val = 65535;
3180                         }
3181                         data[i*2]=val&0xff;
3182                         data[i*2 + 1]=(val >> 8)&0xff;
3183                 }
3184                 free(buckets);
3185                 writeData(f, data, length * 2);
3186                 free(data);
3187         } else
3188         {
3189                 free(buckets);
3190         }
3191
3192         fclose(f);
3193 }
3194
3195 /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
3196 static int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
3197 {
3198         target_t *target = get_current_target(cmd_ctx);
3199         struct timeval timeout, now;
3200
3201         gettimeofday(&timeout, NULL);
3202         if (argc != 2)
3203         {
3204                 return ERROR_COMMAND_SYNTAX_ERROR;
3205         }
3206         unsigned offset;
3207         int retval = parse_uint(args[0], &offset);
3208         if (ERROR_OK != retval)
3209                 return retval;
3210
3211         timeval_add_time(&timeout, offset, 0);
3212
3213         command_print(cmd_ctx, "Starting profiling. Halting and resuming the target as often as we can...");
3214
3215         static const int maxSample = 10000;
3216         uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
3217         if (samples == NULL)
3218                 return ERROR_OK;
3219
3220         int numSamples = 0;
3221         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
3222         reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1);
3223
3224         for (;;)
3225         {
3226                 target_poll(target);
3227                 if (target->state == TARGET_HALTED)
3228                 {
3229                         uint32_t t=*((uint32_t *)reg->value);
3230                         samples[numSamples++]=t;
3231                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3232                         target_poll(target);
3233                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
3234                 } else if (target->state == TARGET_RUNNING)
3235                 {
3236                         /* We want to quickly sample the PC. */
3237                         if ((retval = target_halt(target)) != ERROR_OK)
3238                         {
3239                                 free(samples);
3240                                 return retval;
3241                         }
3242                 } else
3243                 {
3244                         command_print(cmd_ctx, "Target not halted or running");
3245                         retval = ERROR_OK;
3246                         break;
3247                 }
3248                 if (retval != ERROR_OK)
3249                 {
3250                         break;
3251                 }
3252
3253                 gettimeofday(&now, NULL);
3254                 if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
3255                 {
3256                         command_print(cmd_ctx, "Profiling completed. %d samples.", numSamples);
3257                         if ((retval = target_poll(target)) != ERROR_OK)
3258                         {
3259                                 free(samples);
3260                                 return retval;
3261                         }
3262                         if (target->state == TARGET_HALTED)
3263                         {
3264                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3265                         }
3266                         if ((retval = target_poll(target)) != ERROR_OK)
3267                         {
3268                                 free(samples);
3269                                 return retval;
3270                         }
3271                         writeGmon(samples, numSamples, args[1]);
3272                         command_print(cmd_ctx, "Wrote %s", args[1]);
3273                         break;
3274                 }
3275         }
3276         free(samples);
3277
3278         return ERROR_OK;
3279 }
3280
3281 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t val)
3282 {
3283         char *namebuf;
3284         Jim_Obj *nameObjPtr, *valObjPtr;
3285         int result;
3286
3287         namebuf = alloc_printf("%s(%d)", varname, idx);
3288         if (!namebuf)
3289                 return JIM_ERR;
3290
3291         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3292         valObjPtr = Jim_NewIntObj(interp, val);
3293         if (!nameObjPtr || !valObjPtr)
3294         {
3295                 free(namebuf);
3296                 return JIM_ERR;
3297         }
3298
3299         Jim_IncrRefCount(nameObjPtr);
3300         Jim_IncrRefCount(valObjPtr);
3301         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3302         Jim_DecrRefCount(interp, nameObjPtr);
3303         Jim_DecrRefCount(interp, valObjPtr);
3304         free(namebuf);
3305         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3306         return result;
3307 }
3308
3309 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3310 {
3311         command_context_t *context;
3312         target_t *target;
3313
3314         context = Jim_GetAssocData(interp, "context");
3315         if (context == NULL)
3316         {
3317                 LOG_ERROR("mem2array: no command context");
3318                 return JIM_ERR;
3319         }
3320         target = get_current_target(context);
3321         if (target == NULL)
3322         {
3323                 LOG_ERROR("mem2array: no current target");
3324                 return JIM_ERR;
3325         }
3326
3327         return  target_mem2array(interp, target, argc-1, argv + 1);
3328 }
3329
3330 static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv)
3331 {
3332         long l;
3333         uint32_t width;
3334         int len;
3335         uint32_t addr;
3336         uint32_t count;
3337         uint32_t v;
3338         const char *varname;
3339         uint8_t buffer[4096];
3340         int  n, e, retval;
3341         uint32_t i;
3342
3343         /* argv[1] = name of array to receive the data
3344          * argv[2] = desired width
3345          * argv[3] = memory address
3346          * argv[4] = count of times to read
3347          */
3348         if (argc != 4) {
3349                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3350                 return JIM_ERR;
3351         }
3352         varname = Jim_GetString(argv[0], &len);
3353         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3354
3355         e = Jim_GetLong(interp, argv[1], &l);
3356         width = l;
3357         if (e != JIM_OK) {
3358                 return e;
3359         }
3360
3361         e = Jim_GetLong(interp, argv[2], &l);
3362         addr = l;
3363         if (e != JIM_OK) {
3364                 return e;
3365         }
3366         e = Jim_GetLong(interp, argv[3], &l);
3367         len = l;
3368         if (e != JIM_OK) {
3369                 return e;
3370         }
3371         switch (width) {
3372                 case 8:
3373                         width = 1;
3374                         break;
3375                 case 16:
3376                         width = 2;
3377                         break;
3378                 case 32:
3379                         width = 4;
3380                         break;
3381                 default:
3382                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3383                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3384                         return JIM_ERR;
3385         }
3386         if (len == 0) {
3387                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3388                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3389                 return JIM_ERR;
3390         }
3391         if ((addr + (len * width)) < addr) {
3392                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3393                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3394                 return JIM_ERR;
3395         }
3396         /* absurd transfer size? */
3397         if (len > 65536) {
3398                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3399                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3400                 return JIM_ERR;
3401         }
3402
3403         if ((width == 1) ||
3404                 ((width == 2) && ((addr & 1) == 0)) ||
3405                 ((width == 4) && ((addr & 3) == 0))) {
3406                 /* all is well */
3407         } else {
3408                 char buf[100];
3409                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3410                 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3411                                 addr,
3412                                 width);
3413                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3414                 return JIM_ERR;
3415         }
3416
3417         /* Transfer loop */
3418
3419         /* index counter */
3420         n = 0;
3421         /* assume ok */
3422         e = JIM_OK;
3423         while (len) {
3424                 /* Slurp... in buffer size chunks */
3425
3426                 count = len; /* in objects.. */
3427                 if (count > (sizeof(buffer)/width)) {
3428                         count = (sizeof(buffer)/width);
3429                 }
3430
3431                 retval = target_read_memory(target, addr, width, count, buffer);
3432                 if (retval != ERROR_OK) {
3433                         /* BOO !*/
3434                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3435                                           (unsigned int)addr,
3436                                           (int)width,
3437                                           (int)count);
3438                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3439                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3440                         e = JIM_ERR;
3441                         len = 0;
3442                 } else {
3443                         v = 0; /* shut up gcc */
3444                         for (i = 0 ;i < count ;i++, n++) {
3445                                 switch (width) {
3446                                         case 4:
3447                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
3448                                                 break;
3449                                         case 2:
3450                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
3451                                                 break;
3452                                         case 1:
3453                                                 v = buffer[i] & 0x0ff;
3454                                                 break;
3455                                 }
3456                                 new_int_array_element(interp, varname, n, v);
3457                         }
3458                         len -= count;
3459                 }
3460         }
3461
3462         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3463
3464         return JIM_OK;
3465 }
3466
3467 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t *val)
3468 {
3469         char *namebuf;
3470         Jim_Obj *nameObjPtr, *valObjPtr;
3471         int result;
3472         long l;
3473
3474         namebuf = alloc_printf("%s(%d)", varname, idx);
3475         if (!namebuf)
3476                 return JIM_ERR;
3477
3478         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3479         if (!nameObjPtr)
3480         {
3481                 free(namebuf);
3482                 return JIM_ERR;
3483         }
3484
3485         Jim_IncrRefCount(nameObjPtr);
3486         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3487         Jim_DecrRefCount(interp, nameObjPtr);
3488         free(namebuf);
3489         if (valObjPtr == NULL)
3490                 return JIM_ERR;
3491
3492         result = Jim_GetLong(interp, valObjPtr, &l);
3493         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3494         *val = l;
3495         return result;
3496 }
3497
3498 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3499 {
3500         command_context_t *context;
3501         target_t *target;
3502
3503         context = Jim_GetAssocData(interp, "context");
3504         if (context == NULL) {
3505                 LOG_ERROR("array2mem: no command context");
3506                 return JIM_ERR;
3507         }
3508         target = get_current_target(context);
3509         if (target == NULL) {
3510                 LOG_ERROR("array2mem: no current target");
3511                 return JIM_ERR;
3512         }
3513
3514         return target_array2mem(interp,target, argc-1, argv + 1);
3515 }
3516 static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv)
3517 {
3518         long l;
3519         uint32_t width;
3520         int len;
3521         uint32_t addr;
3522         uint32_t count;
3523         uint32_t v;
3524         const char *varname;
3525         uint8_t buffer[4096];
3526         int  n, e, retval;
3527         uint32_t i;
3528
3529         /* argv[1] = name of array to get the data
3530          * argv[2] = desired width
3531          * argv[3] = memory address
3532          * argv[4] = count to write
3533          */
3534         if (argc != 4) {
3535                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3536                 return JIM_ERR;
3537         }
3538         varname = Jim_GetString(argv[0], &len);
3539         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3540
3541         e = Jim_GetLong(interp, argv[1], &l);
3542         width = l;
3543         if (e != JIM_OK) {
3544                 return e;
3545         }
3546
3547         e = Jim_GetLong(interp, argv[2], &l);
3548         addr = l;
3549         if (e != JIM_OK) {
3550                 return e;
3551         }
3552         e = Jim_GetLong(interp, argv[3], &l);
3553         len = l;
3554         if (e != JIM_OK) {
3555                 return e;
3556         }
3557         switch (width) {
3558                 case 8:
3559                         width = 1;
3560                         break;
3561                 case 16:
3562                         width = 2;
3563                         break;
3564                 case 32:
3565                         width = 4;
3566                         break;
3567                 default:
3568                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3569                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3570                         return JIM_ERR;
3571         }
3572         if (len == 0) {
3573                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3574                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
3575                 return JIM_ERR;
3576         }
3577         if ((addr + (len * width)) < addr) {
3578                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3579                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
3580                 return JIM_ERR;
3581         }
3582         /* absurd transfer size? */
3583         if (len > 65536) {
3584                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3585                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
3586                 return JIM_ERR;
3587         }
3588
3589         if ((width == 1) ||
3590                 ((width == 2) && ((addr & 1) == 0)) ||
3591                 ((width == 4) && ((addr & 3) == 0))) {
3592                 /* all is well */
3593         } else {
3594                 char buf[100];
3595                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3596                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
3597                                 (unsigned int)addr,
3598                                 (int)width);
3599                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3600                 return JIM_ERR;
3601         }
3602
3603         /* Transfer loop */
3604
3605         /* index counter */
3606         n = 0;
3607         /* assume ok */
3608         e = JIM_OK;
3609         while (len) {
3610                 /* Slurp... in buffer size chunks */
3611
3612                 count = len; /* in objects.. */
3613                 if (count > (sizeof(buffer)/width)) {
3614                         count = (sizeof(buffer)/width);
3615                 }
3616
3617                 v = 0; /* shut up gcc */
3618                 for (i = 0 ;i < count ;i++, n++) {
3619                         get_int_array_element(interp, varname, n, &v);
3620                         switch (width) {
3621                         case 4:
3622                                 target_buffer_set_u32(target, &buffer[i*width], v);
3623                                 break;
3624                         case 2:
3625                                 target_buffer_set_u16(target, &buffer[i*width], v);
3626                                 break;
3627                         case 1:
3628                                 buffer[i] = v & 0x0ff;
3629                                 break;
3630                         }
3631                 }
3632                 len -= count;
3633
3634                 retval = target_write_memory(target, addr, width, count, buffer);
3635                 if (retval != ERROR_OK) {
3636                         /* BOO !*/
3637                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
3638                                           (unsigned int)addr,
3639                                           (int)width,
3640                                           (int)count);
3641                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3642                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3643                         e = JIM_ERR;
3644                         len = 0;
3645                 }
3646         }
3647
3648         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3649
3650         return JIM_OK;
3651 }
3652
3653 void target_all_handle_event(enum target_event e)
3654 {
3655         target_t *target;
3656
3657         LOG_DEBUG("**all*targets: event: %d, %s",
3658                            (int)e,
3659                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name);
3660
3661         target = all_targets;
3662         while (target) {
3663                 target_handle_event(target, e);
3664                 target = target->next;
3665         }
3666 }
3667
3668
3669 /* FIX? should we propagate errors here rather than printing them
3670  * and continuing?
3671  */
3672 void target_handle_event(target_t *target, enum target_event e)
3673 {
3674         target_event_action_t *teap;
3675
3676         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3677                 if (teap->event == e) {
3678                         LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
3679                                            target->target_number,
3680                                            target->cmd_name,
3681                                            target_get_name(target),
3682                                            e,
3683                                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
3684                                            Jim_GetString(teap->body, NULL));
3685                         if (Jim_EvalObj(interp, teap->body) != JIM_OK)
3686                         {
3687                                 Jim_PrintErrorMessage(interp);
3688                         }
3689                 }
3690         }
3691 }
3692
3693 enum target_cfg_param {
3694         TCFG_TYPE,
3695         TCFG_EVENT,
3696         TCFG_WORK_AREA_VIRT,
3697         TCFG_WORK_AREA_PHYS,
3698         TCFG_WORK_AREA_SIZE,
3699         TCFG_WORK_AREA_BACKUP,
3700         TCFG_ENDIAN,
3701         TCFG_VARIANT,
3702         TCFG_CHAIN_POSITION,
3703 };
3704
3705 static Jim_Nvp nvp_config_opts[] = {
3706         { .name = "-type",             .value = TCFG_TYPE },
3707         { .name = "-event",            .value = TCFG_EVENT },
3708         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
3709         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
3710         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
3711         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3712         { .name = "-endian" ,          .value = TCFG_ENDIAN },
3713         { .name = "-variant",          .value = TCFG_VARIANT },
3714         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
3715
3716         { .name = NULL, .value = -1 }
3717 };
3718
3719 static int target_configure(Jim_GetOptInfo *goi, target_t *target)
3720 {
3721         Jim_Nvp *n;
3722         Jim_Obj *o;
3723         jim_wide w;
3724         char *cp;
3725         int e;
3726
3727         /* parse config or cget options ... */
3728         while (goi->argc > 0) {
3729                 Jim_SetEmptyResult(goi->interp);
3730                 /* Jim_GetOpt_Debug(goi); */
3731
3732                 if (target->type->target_jim_configure) {
3733                         /* target defines a configure function */
3734                         /* target gets first dibs on parameters */
3735                         e = (*(target->type->target_jim_configure))(target, goi);
3736                         if (e == JIM_OK) {
3737                                 /* more? */
3738                                 continue;
3739                         }
3740                         if (e == JIM_ERR) {
3741                                 /* An error */
3742                                 return e;
3743                         }
3744                         /* otherwise we 'continue' below */
3745                 }
3746                 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
3747                 if (e != JIM_OK) {
3748                         Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
3749                         return e;
3750                 }
3751                 switch (n->value) {
3752                 case TCFG_TYPE:
3753                         /* not setable */
3754                         if (goi->isconfigure) {
3755                                 Jim_SetResult_sprintf(goi->interp, "not setable: %s", n->name);
3756                                 return JIM_ERR;
3757                         } else {
3758                         no_params:
3759                                 if (goi->argc != 0) {
3760                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "NO PARAMS");
3761                                         return JIM_ERR;
3762                                 }
3763                         }
3764                         Jim_SetResultString(goi->interp, target_get_name(target), -1);
3765                         /* loop for more */
3766                         break;
3767                 case TCFG_EVENT:
3768                         if (goi->argc == 0) {
3769                                 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
3770                                 return JIM_ERR;
3771                         }
3772
3773                         e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
3774                         if (e != JIM_OK) {
3775                                 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
3776                                 return e;
3777                         }
3778
3779                         if (goi->isconfigure) {
3780                                 if (goi->argc != 1) {
3781                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
3782                                         return JIM_ERR;
3783                                 }
3784                         } else {
3785                                 if (goi->argc != 0) {
3786                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
3787                                         return JIM_ERR;
3788                                 }
3789                         }
3790
3791                         {
3792                                 target_event_action_t *teap;
3793
3794                                 teap = target->event_action;
3795                                 /* replace existing? */
3796                                 while (teap) {
3797                                         if (teap->event == (enum target_event)n->value) {
3798                                                 break;
3799                                         }
3800                                         teap = teap->next;
3801                                 }
3802
3803                                 if (goi->isconfigure) {
3804                                         bool replace = true;
3805                                         if (teap == NULL) {
3806                                                 /* create new */
3807                                                 teap = calloc(1, sizeof(*teap));
3808                                                 replace = false;
3809                                         }
3810                                         teap->event = n->value;
3811                                         Jim_GetOpt_Obj(goi, &o);
3812                                         if (teap->body) {
3813                                                 Jim_DecrRefCount(interp, teap->body);
3814                                         }
3815                                         teap->body  = Jim_DuplicateObj(goi->interp, o);
3816                                         /*
3817                                          * FIXME:
3818                                          *     Tcl/TK - "tk events" have a nice feature.
3819                                          *     See the "BIND" command.
3820                                          *    We should support that here.
3821                                          *     You can specify %X and %Y in the event code.
3822                                          *     The idea is: %T - target name.
3823                                          *     The idea is: %N - target number
3824                                          *     The idea is: %E - event name.
3825                                          */
3826                                         Jim_IncrRefCount(teap->body);
3827
3828                                         if (!replace)
3829                                         {
3830                                                 /* add to head of event list */
3831                                                 teap->next = target->event_action;
3832                                                 target->event_action = teap;
3833                                         }
3834                                         Jim_SetEmptyResult(goi->interp);
3835                                 } else {
3836                                         /* get */
3837                                         if (teap == NULL) {
3838                                                 Jim_SetEmptyResult(goi->interp);
3839                                         } else {
3840                                                 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
3841                                         }
3842                                 }
3843                         }
3844                         /* loop for more */
3845                         break;
3846
3847                 case TCFG_WORK_AREA_VIRT:
3848                         if (goi->isconfigure) {
3849                                 target_free_all_working_areas(target);
3850                                 e = Jim_GetOpt_Wide(goi, &w);
3851                                 if (e != JIM_OK) {
3852                                         return e;
3853                                 }
3854                                 target->working_area_virt = w;
3855                                 target->working_area_virt_spec = true;
3856                         } else {
3857                                 if (goi->argc != 0) {
3858                                         goto no_params;
3859                                 }
3860                         }
3861                         Jim_SetResult(interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
3862                         /* loop for more */
3863                         break;
3864
3865                 case TCFG_WORK_AREA_PHYS:
3866                         if (goi->isconfigure) {
3867                                 target_free_all_working_areas(target);
3868                                 e = Jim_GetOpt_Wide(goi, &w);
3869                                 if (e != JIM_OK) {
3870                                         return e;
3871                                 }
3872                                 target->working_area_phys = w;
3873                                 target->working_area_phys_spec = true;
3874                         } else {
3875                                 if (goi->argc != 0) {
3876                                         goto no_params;
3877                                 }
3878                         }
3879                         Jim_SetResult(interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
3880                         /* loop for more */
3881                         break;
3882
3883                 case TCFG_WORK_AREA_SIZE:
3884                         if (goi->isconfigure) {
3885                                 target_free_all_working_areas(target);
3886                                 e = Jim_GetOpt_Wide(goi, &w);
3887                                 if (e != JIM_OK) {
3888                                         return e;
3889                                 }
3890                                 target->working_area_size = w;
3891                         } else {
3892                                 if (goi->argc != 0) {
3893                                         goto no_params;
3894                                 }
3895                         }
3896                         Jim_SetResult(interp, Jim_NewIntObj(goi->interp, target->working_area_size));
3897                         /* loop for more */
3898                         break;
3899
3900                 case TCFG_WORK_AREA_BACKUP:
3901                         if (goi->isconfigure) {
3902                                 target_free_all_working_areas(target);
3903                                 e = Jim_GetOpt_Wide(goi, &w);
3904                                 if (e != JIM_OK) {
3905                                         return e;
3906                                 }
3907                                 /* make this exactly 1 or 0 */
3908                                 target->backup_working_area = (!!w);
3909                         } else {
3910                                 if (goi->argc != 0) {
3911                                         goto no_params;
3912                                 }
3913                         }
3914                         Jim_SetResult(interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
3915                         /* loop for more e*/
3916                         break;
3917
3918                 case TCFG_ENDIAN:
3919                         if (goi->isconfigure) {
3920                                 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
3921                                 if (e != JIM_OK) {
3922                                         Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
3923                                         return e;
3924                                 }
3925                                 target->endianness = n->value;
3926                         } else {
3927                                 if (goi->argc != 0) {
3928                                         goto no_params;
3929                                 }
3930                         }
3931                         n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3932                         if (n->name == NULL) {
3933                                 target->endianness = TARGET_LITTLE_ENDIAN;
3934                                 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3935                         }
3936                         Jim_SetResultString(goi->interp, n->name, -1);
3937                         /* loop for more */
3938                         break;
3939
3940                 case TCFG_VARIANT:
3941                         if (goi->isconfigure) {
3942                                 if (goi->argc < 1) {
3943                                         Jim_SetResult_sprintf(goi->interp,
3944                                                                                    "%s ?STRING?",
3945                                                                                    n->name);
3946                                         return JIM_ERR;
3947                                 }
3948                                 if (target->variant) {
3949                                         free((void *)(target->variant));
3950                                 }
3951                                 e = Jim_GetOpt_String(goi, &cp, NULL);
3952                                 target->variant = strdup(cp);
3953                         } else {
3954                                 if (goi->argc != 0) {
3955                                         goto no_params;
3956                                 }
3957                         }
3958                         Jim_SetResultString(goi->interp, target->variant,-1);
3959                         /* loop for more */
3960                         break;
3961                 case TCFG_CHAIN_POSITION:
3962                         if (goi->isconfigure) {
3963                                 Jim_Obj *o;
3964                                 jtag_tap_t *tap;
3965                                 target_free_all_working_areas(target);
3966                                 e = Jim_GetOpt_Obj(goi, &o);
3967                                 if (e != JIM_OK) {
3968                                         return e;
3969                                 }
3970                                 tap = jtag_tap_by_jim_obj(goi->interp, o);
3971                                 if (tap == NULL) {
3972                                         return JIM_ERR;
3973                                 }
3974                                 /* make this exactly 1 or 0 */
3975                                 target->tap = tap;
3976                         } else {
3977                                 if (goi->argc != 0) {
3978                                         goto no_params;
3979                                 }
3980                         }
3981                         Jim_SetResultString(interp, target->tap->dotted_name, -1);
3982                         /* loop for more e*/
3983                         break;
3984                 }
3985         } /* while (goi->argc) */
3986
3987
3988                 /* done - we return */
3989         return JIM_OK;
3990 }
3991
3992 /** this is the 'tcl' handler for the target specific command */
3993 static int tcl_target_func(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3994 {
3995         Jim_GetOptInfo goi;
3996         jim_wide a,b,c;
3997         int x,y,z;
3998         uint8_t  target_buf[32];
3999         Jim_Nvp *n;
4000         target_t *target;
4001         struct command_context_s *cmd_ctx;
4002         int e;
4003
4004         enum {
4005                 TS_CMD_CONFIGURE,
4006                 TS_CMD_CGET,
4007
4008                 TS_CMD_MWW, TS_CMD_MWH, TS_CMD_MWB,
4009                 TS_CMD_MDW, TS_CMD_MDH, TS_CMD_MDB,
4010                 TS_CMD_MRW, TS_CMD_MRH, TS_CMD_MRB,
4011                 TS_CMD_MEM2ARRAY, TS_CMD_ARRAY2MEM,
4012                 TS_CMD_EXAMINE,
4013                 TS_CMD_POLL,
4014                 TS_CMD_RESET,
4015                 TS_CMD_HALT,
4016                 TS_CMD_WAITSTATE,
4017                 TS_CMD_EVENTLIST,
4018                 TS_CMD_CURSTATE,
4019                 TS_CMD_INVOKE_EVENT,
4020         };
4021
4022         static const Jim_Nvp target_options[] = {
4023                 { .name = "configure", .value = TS_CMD_CONFIGURE },
4024                 { .name = "cget", .value = TS_CMD_CGET },
4025                 { .name = "mww", .value = TS_CMD_MWW },
4026                 { .name = "mwh", .value = TS_CMD_MWH },
4027                 { .name = "mwb", .value = TS_CMD_MWB },
4028                 { .name = "mdw", .value = TS_CMD_MDW },
4029                 { .name = "mdh", .value = TS_CMD_MDH },
4030                 { .name = "mdb", .value = TS_CMD_MDB },
4031                 { .name = "mem2array", .value = TS_CMD_MEM2ARRAY },
4032                 { .name = "array2mem", .value = TS_CMD_ARRAY2MEM },
4033                 { .name = "eventlist", .value = TS_CMD_EVENTLIST },
4034                 { .name = "curstate",  .value = TS_CMD_CURSTATE },
4035
4036                 { .name = "arp_examine", .value = TS_CMD_EXAMINE },
4037                 { .name = "arp_poll", .value = TS_CMD_POLL },
4038                 { .name = "arp_reset", .value = TS_CMD_RESET },
4039                 { .name = "arp_halt", .value = TS_CMD_HALT },
4040                 { .name = "arp_waitstate", .value = TS_CMD_WAITSTATE },
4041                 { .name = "invoke-event", .value = TS_CMD_INVOKE_EVENT },
4042
4043                 { .name = NULL, .value = -1 },
4044         };
4045
4046         /* go past the "command" */
4047         Jim_GetOpt_Setup(&goi, interp, argc-1, argv + 1);
4048
4049         target = Jim_CmdPrivData(goi.interp);
4050         cmd_ctx = Jim_GetAssocData(goi.interp, "context");
4051
4052         /* commands here are in an NVP table */
4053         e = Jim_GetOpt_Nvp(&goi, target_options, &n);
4054         if (e != JIM_OK) {
4055                 Jim_GetOpt_NvpUnknown(&goi, target_options, 0);
4056                 return e;
4057         }
4058         /* Assume blank result */
4059         Jim_SetEmptyResult(goi.interp);
4060
4061         switch (n->value) {
4062         case TS_CMD_CONFIGURE:
4063                 if (goi.argc < 2) {
4064                         Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv, "missing: -option VALUE ...");
4065                         return JIM_ERR;
4066                 }
4067                 goi.isconfigure = 1;
4068                 return target_configure(&goi, target);
4069         case TS_CMD_CGET:
4070                 // some things take params
4071                 if (goi.argc < 1) {
4072                         Jim_WrongNumArgs(goi.interp, 0, goi.argv, "missing: ?-option?");
4073                         return JIM_ERR;
4074                 }
4075                 goi.isconfigure = 0;
4076                 return target_configure(&goi, target);
4077                 break;
4078         case TS_CMD_MWW:
4079         case TS_CMD_MWH:
4080         case TS_CMD_MWB:
4081                 /* argv[0] = cmd
4082                  * argv[1] = address
4083                  * argv[2] = data
4084                  * argv[3] = optional count.
4085                  */
4086
4087                 if ((goi.argc == 2) || (goi.argc == 3)) {
4088                         /* all is well */
4089                 } else {
4090                 mwx_error:
4091                         Jim_SetResult_sprintf(goi.interp, "expected: %s ADDR DATA [COUNT]", n->name);
4092                         return JIM_ERR;
4093                 }
4094
4095                 e = Jim_GetOpt_Wide(&goi, &a);
4096                 if (e != JIM_OK) {
4097                         goto mwx_error;
4098                 }
4099
4100                 e = Jim_GetOpt_Wide(&goi, &b);
4101                 if (e != JIM_OK) {
4102                         goto mwx_error;
4103                 }
4104                 if (goi.argc == 3) {
4105                         e = Jim_GetOpt_Wide(&goi, &c);
4106                         if (e != JIM_OK) {
4107                                 goto mwx_error;
4108                         }
4109                 } else {
4110                         c = 1;
4111                 }
4112
4113                 switch (n->value) {
4114                 case TS_CMD_MWW:
4115                         target_buffer_set_u32(target, target_buf, b);
4116                         b = 4;
4117                         break;
4118                 case TS_CMD_MWH:
4119                         target_buffer_set_u16(target, target_buf, b);
4120                         b = 2;
4121                         break;
4122                 case TS_CMD_MWB:
4123                         target_buffer_set_u8(target, target_buf, b);
4124                         b = 1;
4125                         break;
4126                 }
4127                 for (x = 0 ; x < c ; x++) {
4128                         e = target_write_memory(target, a, b, 1, target_buf);
4129                         if (e != ERROR_OK) {
4130                                 Jim_SetResult_sprintf(interp, "Error writing @ 0x%08x: %d\n", (int)(a), e);
4131                                 return JIM_ERR;
4132                         }
4133                         /* b = width */
4134                         a = a + b;
4135                 }
4136                 return JIM_OK;
4137                 break;
4138
4139                 /* display */
4140         case TS_CMD_MDW:
4141         case TS_CMD_MDH:
4142         case TS_CMD_MDB:
4143                 /* argv[0] = command
4144                  * argv[1] = address
4145                  * argv[2] = optional count
4146                  */
4147                 if ((goi.argc == 2) || (goi.argc == 3)) {
4148                         Jim_SetResult_sprintf(goi.interp, "expected: %s ADDR [COUNT]", n->name);
4149                         return JIM_ERR;
4150                 }
4151                 e = Jim_GetOpt_Wide(&goi, &a);
4152                 if (e != JIM_OK) {
4153                         return JIM_ERR;
4154                 }
4155                 if (goi.argc) {
4156                         e = Jim_GetOpt_Wide(&goi, &c);
4157                         if (e != JIM_OK) {
4158                                 return JIM_ERR;
4159                         }
4160                 } else {
4161                         c = 1;
4162                 }
4163                 b = 1; /* shut up gcc */
4164                 switch (n->value) {
4165                 case TS_CMD_MDW:
4166                         b =  4;
4167                         break;
4168                 case TS_CMD_MDH:
4169                         b = 2;
4170                         break;
4171                 case TS_CMD_MDB:
4172                         b = 1;
4173                         break;
4174                 }
4175
4176                 /* convert to "bytes" */
4177                 c = c * b;
4178                 /* count is now in 'BYTES' */
4179                 while (c > 0) {
4180                         y = c;
4181                         if (y > 16) {
4182                                 y = 16;
4183                         }
4184                         e = target_read_memory(target, a, b, y / b, target_buf);
4185                         if (e != ERROR_OK) {
4186                                 Jim_SetResult_sprintf(interp, "error reading target @ 0x%08lx", (int)(a));
4187                                 return JIM_ERR;
4188                         }
4189
4190                         Jim_fprintf(interp, interp->cookie_stdout, "0x%08x ", (int)(a));
4191                         switch (b) {
4192                         case 4:
4193                                 for (x = 0 ; (x < 16) && (x < y) ; x += 4) {
4194                                         z = target_buffer_get_u32(target, &(target_buf[ x * 4 ]));
4195                                         Jim_fprintf(interp, interp->cookie_stdout, "%08x ", (int)(z));
4196                                 }
4197                                 for (; (x < 16) ; x += 4) {
4198                                         Jim_fprintf(interp, interp->cookie_stdout, "         ");
4199                                 }
4200                                 break;
4201                         case 2:
4202                                 for (x = 0 ; (x < 16) && (x < y) ; x += 2) {
4203                                         z = target_buffer_get_u16(target, &(target_buf[ x * 2 ]));
4204                                         Jim_fprintf(interp, interp->cookie_stdout, "%04x ", (int)(z));
4205                                 }
4206                                 for (; (x < 16) ; x += 2) {
4207                                         Jim_fprintf(interp, interp->cookie_stdout, "     ");
4208                                 }
4209                                 break;
4210                         case 1:
4211                         default:
4212                                 for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4213                                         z = target_buffer_get_u8(target, &(target_buf[ x * 4 ]));
4214                                         Jim_fprintf(interp, interp->cookie_stdout, "%02x ", (int)(z));
4215                                 }
4216                                 for (; (x < 16) ; x += 1) {
4217                                         Jim_fprintf(interp, interp->cookie_stdout, "   ");
4218                                 }
4219                                 break;
4220                         }
4221                         /* ascii-ify the bytes */
4222                         for (x = 0 ; x < y ; x++) {
4223                                 if ((target_buf[x] >= 0x20) &&
4224                                         (target_buf[x] <= 0x7e)) {
4225                                         /* good */
4226                                 } else {
4227                                         /* smack it */
4228                                         target_buf[x] = '.';
4229                                 }
4230                         }
4231                         /* space pad  */
4232                         while (x < 16) {
4233                                 target_buf[x] = ' ';
4234                                 x++;
4235                         }
4236                         /* terminate */
4237                         target_buf[16] = 0;
4238                         /* print - with a newline */
4239                         Jim_fprintf(interp, interp->cookie_stdout, "%s\n", target_buf);
4240                         /* NEXT... */
4241                         c -= 16;
4242                         a += 16;
4243                 }
4244                 return JIM_OK;
4245         case TS_CMD_MEM2ARRAY:
4246                 return target_mem2array(goi.interp, target, goi.argc, goi.argv);
4247                 break;
4248         case TS_CMD_ARRAY2MEM:
4249                 return target_array2mem(goi.interp, target, goi.argc, goi.argv);
4250                 break;
4251         case TS_CMD_EXAMINE:
4252                 if (goi.argc) {
4253                         Jim_WrongNumArgs(goi.interp, 2, argv, "[no parameters]");
4254                         return JIM_ERR;
4255                 }
4256                 if (!target->tap->enabled)
4257                         goto err_tap_disabled;
4258                 e = target->type->examine(target);
4259                 if (e != ERROR_OK) {
4260                         Jim_SetResult_sprintf(interp, "examine-fails: %d", e);
4261                         return JIM_ERR;
4262                 }
4263                 return JIM_OK;
4264         case TS_CMD_POLL:
4265                 if (goi.argc) {
4266                         Jim_WrongNumArgs(goi.interp, 2, argv, "[no parameters]");
4267                         return JIM_ERR;
4268                 }
4269                 if (!target->tap->enabled)
4270                         goto err_tap_disabled;
4271                 if (!(target_was_examined(target))) {
4272                         e = ERROR_TARGET_NOT_EXAMINED;
4273                 } else {
4274                         e = target->type->poll(target);
4275                 }
4276                 if (e != ERROR_OK) {
4277                         Jim_SetResult_sprintf(interp, "poll-fails: %d", e);
4278                         return JIM_ERR;
4279                 } else {
4280                         return JIM_OK;
4281                 }
4282                 break;
4283         case TS_CMD_RESET:
4284                 if (goi.argc != 2) {
4285                         Jim_WrongNumArgs(interp, 2, argv,
4286                                         "([tT]|[fF]|assert|deassert) BOOL");
4287                         return JIM_ERR;
4288                 }
4289                 e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4290                 if (e != JIM_OK) {
4291                         Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4292                         return e;
4293                 }
4294                 /* the halt or not param */
4295                 e = Jim_GetOpt_Wide(&goi, &a);
4296                 if (e != JIM_OK) {
4297                         return e;
4298                 }
4299                 if (!target->tap->enabled)
4300                         goto err_tap_disabled;
4301                 if (!target->type->assert_reset
4302                                 || !target->type->deassert_reset) {
4303                         Jim_SetResult_sprintf(interp,
4304                                         "No target-specific reset for %s",
4305                                         target->cmd_name);
4306                         return JIM_ERR;
4307                 }
4308                 /* determine if we should halt or not. */
4309                 target->reset_halt = !!a;
4310                 /* When this happens - all workareas are invalid. */
4311                 target_free_all_working_areas_restore(target, 0);
4312
4313                 /* do the assert */
4314                 if (n->value == NVP_ASSERT) {
4315                         e = target->type->assert_reset(target);
4316                 } else {
4317                         e = target->type->deassert_reset(target);
4318                 }
4319                 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4320         case TS_CMD_HALT:
4321                 if (goi.argc) {
4322                         Jim_WrongNumArgs(goi.interp, 0, argv, "halt [no parameters]");
4323                         return JIM_ERR;
4324                 }
4325                 if (!target->tap->enabled)
4326                         goto err_tap_disabled;
4327                 e = target->type->halt(target);
4328                 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4329         case TS_CMD_WAITSTATE:
4330                 /* params:  <name>  statename timeoutmsecs */
4331                 if (goi.argc != 2) {
4332                         Jim_SetResult_sprintf(goi.interp, "%s STATENAME TIMEOUTMSECS", n->name);
4333                         return JIM_ERR;
4334                 }
4335                 e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4336                 if (e != JIM_OK) {
4337                         Jim_GetOpt_NvpUnknown(&goi, nvp_target_state,1);
4338                         return e;
4339                 }
4340                 e = Jim_GetOpt_Wide(&goi, &a);
4341                 if (e != JIM_OK) {
4342                         return e;
4343                 }
4344                 if (!target->tap->enabled)
4345                         goto err_tap_disabled;
4346                 e = target_wait_state(target, n->value, a);
4347                 if (e != ERROR_OK) {
4348                         Jim_SetResult_sprintf(goi.interp,
4349                                                                    "target: %s wait %s fails (%d) %s",
4350                                                                    target->cmd_name,
4351                                                                    n->name,
4352                                                                    e, target_strerror_safe(e));
4353                         return JIM_ERR;
4354                 } else {
4355                         return JIM_OK;
4356                 }
4357         case TS_CMD_EVENTLIST:
4358                 /* List for human, Events defined for this target.
4359                  * scripts/programs should use 'name cget -event NAME'
4360                  */
4361                 {
4362                         target_event_action_t *teap;
4363                         teap = target->event_action;
4364                         command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4365                                                    target->target_number,
4366                                                    target->cmd_name);
4367                         command_print(cmd_ctx, "%-25s | Body", "Event");
4368                         command_print(cmd_ctx, "------------------------- | ----------------------------------------");
4369                         while (teap) {
4370                                 command_print(cmd_ctx,
4371                                                            "%-25s | %s",
4372                                                            Jim_Nvp_value2name_simple(nvp_target_event, teap->event)->name,
4373                                                            Jim_GetString(teap->body, NULL));
4374                                 teap = teap->next;
4375                         }
4376                         command_print(cmd_ctx, "***END***");
4377                         return JIM_OK;
4378                 }
4379         case TS_CMD_CURSTATE:
4380                 if (goi.argc != 0) {
4381                         Jim_WrongNumArgs(goi.interp, 0, argv, "[no parameters]");
4382                         return JIM_ERR;
4383                 }
4384                 Jim_SetResultString(goi.interp,
4385                                                         target_state_name( target ),
4386                                                         -1);
4387                 return JIM_OK;
4388         case TS_CMD_INVOKE_EVENT:
4389                 if (goi.argc != 1) {
4390                         Jim_SetResult_sprintf(goi.interp, "%s ?EVENTNAME?",n->name);
4391                         return JIM_ERR;
4392                 }
4393                 e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4394                 if (e != JIM_OK) {
4395                         Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4396                         return e;
4397                 }
4398                 target_handle_event(target, n->value);
4399                 return JIM_OK;
4400         }
4401         return JIM_ERR;
4402
4403 err_tap_disabled:
4404         Jim_SetResult_sprintf(interp, "[TAP is disabled]");
4405         return JIM_ERR;
4406 }
4407
4408 static int target_create(Jim_GetOptInfo *goi)
4409 {
4410         Jim_Obj *new_cmd;
4411         Jim_Cmd *cmd;
4412         const char *cp;
4413         char *cp2;
4414         int e;
4415         int x;
4416         target_t *target;
4417         struct command_context_s *cmd_ctx;
4418
4419         cmd_ctx = Jim_GetAssocData(goi->interp, "context");
4420         if (goi->argc < 3) {
4421                 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
4422                 return JIM_ERR;
4423         }
4424
4425         /* COMMAND */
4426         Jim_GetOpt_Obj(goi, &new_cmd);
4427         /* does this command exist? */
4428         cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
4429         if (cmd) {
4430                 cp = Jim_GetString(new_cmd, NULL);
4431                 Jim_SetResult_sprintf(goi->interp, "Command/target: %s Exists", cp);
4432                 return JIM_ERR;
4433         }
4434
4435         /* TYPE */
4436         e = Jim_GetOpt_String(goi, &cp2, NULL);
4437         cp = cp2;
4438         /* now does target type exist */
4439         for (x = 0 ; target_types[x] ; x++) {
4440                 if (0 == strcmp(cp, target_types[x]->name)) {
4441                         /* found */
4442                         break;
4443                 }
4444         }
4445         if (target_types[x] == NULL) {
4446                 Jim_SetResult_sprintf(goi->interp, "Unknown target type %s, try one of ", cp);
4447                 for (x = 0 ; target_types[x] ; x++) {
4448                         if (target_types[x + 1]) {
4449                                 Jim_AppendStrings(goi->interp,
4450                                                                    Jim_GetResult(goi->interp),
4451                                                                    target_types[x]->name,
4452                                                                    ", ", NULL);
4453                         } else {
4454                                 Jim_AppendStrings(goi->interp,
4455                                                                    Jim_GetResult(goi->interp),
4456                                                                    " or ",
4457                                                                    target_types[x]->name,NULL);
4458                         }
4459                 }
4460                 return JIM_ERR;
4461         }
4462
4463         /* Create it */
4464         target = calloc(1,sizeof(target_t));
4465         /* set target number */
4466         target->target_number = new_target_number();
4467
4468         /* allocate memory for each unique target type */
4469         target->type = (target_type_t*)calloc(1,sizeof(target_type_t));
4470
4471         memcpy(target->type, target_types[x], sizeof(target_type_t));
4472
4473         /* will be set by "-endian" */
4474         target->endianness = TARGET_ENDIAN_UNKNOWN;
4475
4476         target->working_area        = 0x0;
4477         target->working_area_size   = 0x0;
4478         target->working_areas       = NULL;
4479         target->backup_working_area = 0;
4480
4481         target->state               = TARGET_UNKNOWN;
4482         target->debug_reason        = DBG_REASON_UNDEFINED;
4483         target->reg_cache           = NULL;
4484         target->breakpoints         = NULL;
4485         target->watchpoints         = NULL;
4486         target->next                = NULL;
4487         target->arch_info           = NULL;
4488
4489         target->display             = 1;
4490
4491         target->halt_issued                     = false;
4492
4493         /* initialize trace information */
4494         target->trace_info = malloc(sizeof(trace_t));
4495         target->trace_info->num_trace_points         = 0;
4496         target->trace_info->trace_points_size        = 0;
4497         target->trace_info->trace_points             = NULL;
4498         target->trace_info->trace_history_size       = 0;
4499         target->trace_info->trace_history            = NULL;
4500         target->trace_info->trace_history_pos        = 0;
4501         target->trace_info->trace_history_overflowed = 0;
4502
4503         target->dbgmsg          = NULL;
4504         target->dbg_msg_enabled = 0;
4505
4506         target->endianness = TARGET_ENDIAN_UNKNOWN;
4507
4508         /* Do the rest as "configure" options */
4509         goi->isconfigure = 1;
4510         e = target_configure(goi, target);
4511
4512         if (target->tap == NULL)
4513         {
4514                 Jim_SetResultString(interp, "-chain-position required when creating target", -1);
4515                 e = JIM_ERR;
4516         }
4517
4518         if (e != JIM_OK) {
4519                 free(target->type);
4520                 free(target);
4521                 return e;
4522         }
4523
4524         if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
4525                 /* default endian to little if not specified */
4526                 target->endianness = TARGET_LITTLE_ENDIAN;
4527         }
4528
4529         /* incase variant is not set */
4530         if (!target->variant)
4531                 target->variant = strdup("");
4532
4533         /* create the target specific commands */
4534         if (target->type->register_commands) {
4535                 (*(target->type->register_commands))(cmd_ctx);
4536         }
4537         if (target->type->target_create) {
4538                 (*(target->type->target_create))(target, goi->interp);
4539         }
4540
4541         /* append to end of list */
4542         {
4543                 target_t **tpp;
4544                 tpp = &(all_targets);
4545                 while (*tpp) {
4546                         tpp = &((*tpp)->next);
4547                 }
4548                 *tpp = target;
4549         }
4550
4551         cp = Jim_GetString(new_cmd, NULL);
4552         target->cmd_name = strdup(cp);
4553
4554         /* now - create the new target name command */
4555         e = Jim_CreateCommand(goi->interp,
4556                                                    /* name */
4557                                                    cp,
4558                                                    tcl_target_func, /* C function */
4559                                                    target, /* private data */
4560                                                    NULL); /* no del proc */
4561
4562         return e;
4563 }
4564
4565 static int jim_target(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4566 {
4567         int x,r,e;
4568         jim_wide w;
4569         struct command_context_s *cmd_ctx;
4570         target_t *target;
4571         Jim_GetOptInfo goi;
4572         enum tcmd {
4573                 /* TG = target generic */
4574                 TG_CMD_CREATE,
4575                 TG_CMD_TYPES,
4576                 TG_CMD_NAMES,
4577                 TG_CMD_CURRENT,
4578                 TG_CMD_NUMBER,
4579                 TG_CMD_COUNT,
4580         };
4581         const char *target_cmds[] = {
4582                 "create", "types", "names", "current", "number",
4583                 "count",
4584                 NULL /* terminate */
4585         };
4586
4587         LOG_DEBUG("Target command params:");
4588         LOG_DEBUG("%s", Jim_Debug_ArgvString(interp, argc, argv));
4589
4590         cmd_ctx = Jim_GetAssocData(interp, "context");
4591
4592         Jim_GetOpt_Setup(&goi, interp, argc-1, argv + 1);
4593
4594         if (goi.argc == 0) {
4595                 Jim_WrongNumArgs(interp, 1, argv, "missing: command ...");
4596                 return JIM_ERR;
4597         }
4598
4599         /* Jim_GetOpt_Debug(&goi); */
4600         r = Jim_GetOpt_Enum(&goi, target_cmds, &x);
4601         if (r != JIM_OK) {
4602                 return r;
4603         }
4604
4605         switch (x) {
4606         default:
4607                 Jim_Panic(goi.interp,"Why am I here?");
4608                 return JIM_ERR;
4609         case TG_CMD_CURRENT:
4610                 if (goi.argc != 0) {
4611                         Jim_WrongNumArgs(goi.interp, 1, goi.argv, "Too many parameters");
4612                         return JIM_ERR;
4613                 }
4614                 Jim_SetResultString(goi.interp, get_current_target(cmd_ctx)->cmd_name, -1);
4615                 return JIM_OK;
4616         case TG_CMD_TYPES:
4617                 if (goi.argc != 0) {
4618                         Jim_WrongNumArgs(goi.interp, 1, goi.argv, "Too many parameters");
4619                         return JIM_ERR;
4620                 }
4621                 Jim_SetResult(goi.interp, Jim_NewListObj(goi.interp, NULL, 0));
4622                 for (x = 0 ; target_types[x] ; x++) {
4623                         Jim_ListAppendElement(goi.interp,
4624                                                                    Jim_GetResult(goi.interp),
4625                                                                    Jim_NewStringObj(goi.interp, target_types[x]->name, -1));
4626                 }
4627                 return JIM_OK;
4628         case TG_CMD_NAMES:
4629                 if (goi.argc != 0) {
4630                         Jim_WrongNumArgs(goi.interp, 1, goi.argv, "Too many parameters");
4631                         return JIM_ERR;
4632                 }
4633                 Jim_SetResult(goi.interp, Jim_NewListObj(goi.interp, NULL, 0));
4634                 target = all_targets;
4635                 while (target) {
4636                         Jim_ListAppendElement(goi.interp,
4637                                                                    Jim_GetResult(goi.interp),
4638                                                                    Jim_NewStringObj(goi.interp, target->cmd_name, -1));
4639                         target = target->next;
4640                 }
4641                 return JIM_OK;
4642         case TG_CMD_CREATE:
4643                 if (goi.argc < 3) {
4644                         Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv, "?name  ... config options ...");
4645                         return JIM_ERR;
4646                 }
4647                 return target_create(&goi);
4648                 break;
4649         case TG_CMD_NUMBER:
4650                 /* It's OK to remove this mechanism sometime after August 2010 or so */
4651                 LOG_WARNING("don't use numbers as target identifiers; use names");
4652                 if (goi.argc != 1) {
4653                         Jim_SetResult_sprintf(goi.interp, "expected: target number ?NUMBER?");
4654                         return JIM_ERR;
4655                 }
4656                 e = Jim_GetOpt_Wide(&goi, &w);
4657                 if (e != JIM_OK) {
4658                         return JIM_ERR;
4659                 }
4660                 for (x = 0, target = all_targets; target; target = target->next, x++) {
4661                         if (target->target_number == w)
4662                                 break;
4663                 }
4664                 if (target == NULL) {
4665                         Jim_SetResult_sprintf(goi.interp,
4666                                         "Target: number %d does not exist", (int)(w));
4667                         return JIM_ERR;
4668                 }
4669                 Jim_SetResultString(goi.interp, target->cmd_name, -1);
4670                 return JIM_OK;
4671         case TG_CMD_COUNT:
4672                 if (goi.argc != 0) {
4673                         Jim_WrongNumArgs(goi.interp, 0, goi.argv, "<no parameters>");
4674                         return JIM_ERR;
4675                 }
4676                 for (x = 0, target = all_targets; target; target = target->next, x++)
4677                         continue;
4678                 Jim_SetResult(goi.interp, Jim_NewIntObj(goi.interp, x));
4679                 return JIM_OK;
4680         }
4681
4682         return JIM_ERR;
4683 }
4684
4685
4686 struct FastLoad
4687 {
4688         uint32_t address;
4689         uint8_t *data;
4690         int length;
4691
4692 };
4693
4694 static int fastload_num;
4695 static struct FastLoad *fastload;
4696
4697 static void free_fastload(void)
4698 {
4699         if (fastload != NULL)
4700         {
4701                 int i;
4702                 for (i = 0; i < fastload_num; i++)
4703                 {
4704                         if (fastload[i].data)
4705                                 free(fastload[i].data);
4706                 }
4707                 free(fastload);
4708                 fastload = NULL;
4709         }
4710 }
4711
4712
4713
4714
4715 static int handle_fast_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
4716 {
4717         uint8_t *buffer;
4718         uint32_t buf_cnt;
4719         uint32_t image_size;
4720         uint32_t min_address = 0;
4721         uint32_t max_address = 0xffffffff;
4722         int i;
4723
4724         image_t image;
4725
4726         duration_t duration;
4727         char *duration_text;
4728
4729         int retval = parse_load_image_command_args(args, argc,
4730                         &image, &min_address, &max_address);
4731         if (ERROR_OK != retval)
4732                 return retval;
4733
4734         duration_start_measure(&duration);
4735
4736         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
4737         {
4738                 return ERROR_OK;
4739         }
4740
4741         image_size = 0x0;
4742         retval = ERROR_OK;
4743         fastload_num = image.num_sections;
4744         fastload = (struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
4745         if (fastload == NULL)
4746         {
4747                 image_close(&image);
4748                 return ERROR_FAIL;
4749         }
4750         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
4751         for (i = 0; i < image.num_sections; i++)
4752         {
4753                 buffer = malloc(image.sections[i].size);
4754                 if (buffer == NULL)
4755                 {
4756                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)",
4757                                                   (int)(image.sections[i].size));
4758                         break;
4759                 }
4760
4761                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
4762                 {
4763                         free(buffer);
4764                         break;
4765                 }
4766
4767                 uint32_t offset = 0;
4768                 uint32_t length = buf_cnt;
4769
4770
4771                 /* DANGER!!! beware of unsigned comparision here!!! */
4772
4773                 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
4774                                 (image.sections[i].base_address < max_address))
4775                 {
4776                         if (image.sections[i].base_address < min_address)
4777                         {
4778                                 /* clip addresses below */
4779                                 offset += min_address-image.sections[i].base_address;
4780                                 length -= offset;
4781                         }
4782
4783                         if (image.sections[i].base_address + buf_cnt > max_address)
4784                         {
4785                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
4786                         }
4787
4788                         fastload[i].address = image.sections[i].base_address + offset;
4789                         fastload[i].data = malloc(length);
4790                         if (fastload[i].data == NULL)
4791                         {
4792                                 free(buffer);
4793                                 break;
4794                         }
4795                         memcpy(fastload[i].data, buffer + offset, length);
4796                         fastload[i].length = length;
4797
4798                         image_size += length;
4799                         command_print(cmd_ctx, "%u bytes written at address 0x%8.8x",
4800                                                   (unsigned int)length,
4801                                                   ((unsigned int)(image.sections[i].base_address + offset)));
4802                 }
4803
4804                 free(buffer);
4805         }
4806
4807         duration_stop_measure(&duration, &duration_text);
4808         if (retval == ERROR_OK)
4809         {
4810                 command_print(cmd_ctx, "Loaded %u bytes in %s", (unsigned int)image_size, duration_text);
4811                 command_print(cmd_ctx, "NB!!! image has not been loaded to target, issue a subsequent 'fast_load' to do so.");
4812         }
4813         free(duration_text);
4814
4815         image_close(&image);
4816
4817         if (retval != ERROR_OK)
4818         {
4819                 free_fastload();
4820         }
4821
4822         return retval;
4823 }
4824
4825 static int handle_fast_load_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
4826 {
4827         if (argc > 0)
4828                 return ERROR_COMMAND_SYNTAX_ERROR;
4829         if (fastload == NULL)
4830         {
4831                 LOG_ERROR("No image in memory");
4832                 return ERROR_FAIL;
4833         }
4834         int i;
4835         int ms = timeval_ms();
4836         int size = 0;
4837         int retval = ERROR_OK;
4838         for (i = 0; i < fastload_num;i++)
4839         {
4840                 target_t *target = get_current_target(cmd_ctx);
4841                 command_print(cmd_ctx, "Write to 0x%08x, length 0x%08x",
4842                                           (unsigned int)(fastload[i].address),
4843                                           (unsigned int)(fastload[i].length));
4844                 if (retval == ERROR_OK)
4845                 {
4846                         retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
4847                 }
4848                 size += fastload[i].length;
4849         }
4850         int after = timeval_ms();
4851         command_print(cmd_ctx, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
4852         return retval;
4853 }
4854
4855 static int jim_mcrmrc(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4856 {
4857         command_context_t *context;
4858         target_t *target;
4859         int retval;
4860
4861         context = Jim_GetAssocData(interp, "context");
4862         if (context == NULL) {
4863                 LOG_ERROR("array2mem: no command context");
4864                 return JIM_ERR;
4865         }
4866         target = get_current_target(context);
4867         if (target == NULL) {
4868                 LOG_ERROR("array2mem: no current target");
4869                 return JIM_ERR;
4870         }
4871
4872         if ((argc < 6) || (argc > 7))
4873         {
4874                 return JIM_ERR;
4875         }
4876
4877         int cpnum;
4878         uint32_t op1;
4879         uint32_t op2;
4880         uint32_t CRn;
4881         uint32_t CRm;
4882         uint32_t value;
4883
4884         int e;
4885         long l;
4886         e = Jim_GetLong(interp, argv[1], &l);
4887         if (e != JIM_OK) {
4888                 return e;
4889         }
4890         cpnum = l;
4891
4892         e = Jim_GetLong(interp, argv[2], &l);
4893         if (e != JIM_OK) {
4894                 return e;
4895         }
4896         op1 = l;
4897
4898         e = Jim_GetLong(interp, argv[3], &l);
4899         if (e != JIM_OK) {
4900                 return e;
4901         }
4902         op2 = l;
4903
4904         e = Jim_GetLong(interp, argv[4], &l);
4905         if (e != JIM_OK) {
4906                 return e;
4907         }
4908         CRn = l;
4909
4910         e = Jim_GetLong(interp, argv[5], &l);
4911         if (e != JIM_OK) {
4912                 return e;
4913         }
4914         CRm = l;
4915
4916         value = 0;
4917
4918         if (argc == 7)
4919         {
4920                 e = Jim_GetLong(interp, argv[6], &l);
4921                 if (e != JIM_OK) {
4922                         return e;
4923                 }
4924                 value = l;
4925
4926                 retval = target_mcr(target, cpnum, op1, op2, CRn, CRm, value);
4927                 if (retval != ERROR_OK)
4928                         return JIM_ERR;
4929         } else
4930         {
4931                 retval = target_mrc(target, cpnum, op1, op2, CRn, CRm, &value);
4932                 if (retval != ERROR_OK)
4933                         return JIM_ERR;
4934
4935                 Jim_SetResult(interp, Jim_NewIntObj(interp, value));
4936         }
4937
4938         return JIM_OK;
4939 }