target: Add 64-bit target address support
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2010 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   Copyright (C) 2011 by Broadcom Corporation                            *
18  *   Evan Hunter - ehunter@broadcom.com                                    *
19  *                                                                         *
20  *   Copyright (C) ST-Ericsson SA 2011                                     *
21  *   michel.jaouen@stericsson.com : smp minimum support                    *
22  *                                                                         *
23  *   Copyright (C) 2011 Andreas Fritiofson                                 *
24  *   andreas.fritiofson@gmail.com                                          *
25  *                                                                         *
26  *   This program is free software; you can redistribute it and/or modify  *
27  *   it under the terms of the GNU General Public License as published by  *
28  *   the Free Software Foundation; either version 2 of the License, or     *
29  *   (at your option) any later version.                                   *
30  *                                                                         *
31  *   This program is distributed in the hope that it will be useful,       *
32  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
33  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
34  *   GNU General Public License for more details.                          *
35  *                                                                         *
36  *   You should have received a copy of the GNU General Public License     *
37  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
38  ***************************************************************************/
39
40 #ifdef HAVE_CONFIG_H
41 #include "config.h"
42 #endif
43
44 #include <helper/time_support.h>
45 #include <jtag/jtag.h>
46 #include <flash/nor/core.h>
47
48 #include "target.h"
49 #include "target_type.h"
50 #include "target_request.h"
51 #include "breakpoints.h"
52 #include "register.h"
53 #include "trace.h"
54 #include "image.h"
55 #include "rtos/rtos.h"
56 #include "transport/transport.h"
57
58 /* default halt wait timeout (ms) */
59 #define DEFAULT_HALT_TIMEOUT 5000
60
61 static int target_read_buffer_default(struct target *target, target_addr_t address,
62                 uint32_t count, uint8_t *buffer);
63 static int target_write_buffer_default(struct target *target, target_addr_t address,
64                 uint32_t count, const uint8_t *buffer);
65 static int target_array2mem(Jim_Interp *interp, struct target *target,
66                 int argc, Jim_Obj * const *argv);
67 static int target_mem2array(Jim_Interp *interp, struct target *target,
68                 int argc, Jim_Obj * const *argv);
69 static int target_register_user_commands(struct command_context *cmd_ctx);
70 static int target_get_gdb_fileio_info_default(struct target *target,
71                 struct gdb_fileio_info *fileio_info);
72 static int target_gdb_fileio_end_default(struct target *target, int retcode,
73                 int fileio_errno, bool ctrl_c);
74 static int target_profiling_default(struct target *target, uint32_t *samples,
75                 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds);
76
77 /* targets */
78 extern struct target_type arm7tdmi_target;
79 extern struct target_type arm720t_target;
80 extern struct target_type arm9tdmi_target;
81 extern struct target_type arm920t_target;
82 extern struct target_type arm966e_target;
83 extern struct target_type arm946e_target;
84 extern struct target_type arm926ejs_target;
85 extern struct target_type fa526_target;
86 extern struct target_type feroceon_target;
87 extern struct target_type dragonite_target;
88 extern struct target_type xscale_target;
89 extern struct target_type cortexm_target;
90 extern struct target_type cortexa_target;
91 extern struct target_type cortexr4_target;
92 extern struct target_type arm11_target;
93 extern struct target_type ls1_sap_target;
94 extern struct target_type mips_m4k_target;
95 extern struct target_type avr_target;
96 extern struct target_type dsp563xx_target;
97 extern struct target_type dsp5680xx_target;
98 extern struct target_type testee_target;
99 extern struct target_type avr32_ap7k_target;
100 extern struct target_type hla_target;
101 extern struct target_type nds32_v2_target;
102 extern struct target_type nds32_v3_target;
103 extern struct target_type nds32_v3m_target;
104 extern struct target_type or1k_target;
105 extern struct target_type quark_x10xx_target;
106 extern struct target_type quark_d20xx_target;
107
108 static struct target_type *target_types[] = {
109         &arm7tdmi_target,
110         &arm9tdmi_target,
111         &arm920t_target,
112         &arm720t_target,
113         &arm966e_target,
114         &arm946e_target,
115         &arm926ejs_target,
116         &fa526_target,
117         &feroceon_target,
118         &dragonite_target,
119         &xscale_target,
120         &cortexm_target,
121         &cortexa_target,
122         &cortexr4_target,
123         &arm11_target,
124         &ls1_sap_target,
125         &mips_m4k_target,
126         &avr_target,
127         &dsp563xx_target,
128         &dsp5680xx_target,
129         &testee_target,
130         &avr32_ap7k_target,
131         &hla_target,
132         &nds32_v2_target,
133         &nds32_v3_target,
134         &nds32_v3m_target,
135         &or1k_target,
136         &quark_x10xx_target,
137         &quark_d20xx_target,
138         NULL,
139 };
140
141 struct target *all_targets;
142 static struct target_event_callback *target_event_callbacks;
143 static struct target_timer_callback *target_timer_callbacks;
144 LIST_HEAD(target_reset_callback_list);
145 LIST_HEAD(target_trace_callback_list);
146 static const int polling_interval = 100;
147
148 static const Jim_Nvp nvp_assert[] = {
149         { .name = "assert", NVP_ASSERT },
150         { .name = "deassert", NVP_DEASSERT },
151         { .name = "T", NVP_ASSERT },
152         { .name = "F", NVP_DEASSERT },
153         { .name = "t", NVP_ASSERT },
154         { .name = "f", NVP_DEASSERT },
155         { .name = NULL, .value = -1 }
156 };
157
158 static const Jim_Nvp nvp_error_target[] = {
159         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
160         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
161         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
162         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
163         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
164         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
165         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
166         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
167         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
168         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
169         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
170         { .value = -1, .name = NULL }
171 };
172
173 static const char *target_strerror_safe(int err)
174 {
175         const Jim_Nvp *n;
176
177         n = Jim_Nvp_value2name_simple(nvp_error_target, err);
178         if (n->name == NULL)
179                 return "unknown";
180         else
181                 return n->name;
182 }
183
184 static const Jim_Nvp nvp_target_event[] = {
185
186         { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
187         { .value = TARGET_EVENT_HALTED, .name = "halted" },
188         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
189         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
190         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
191
192         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
193         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
194
195         { .value = TARGET_EVENT_RESET_START,         .name = "reset-start" },
196         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
197         { .value = TARGET_EVENT_RESET_ASSERT,        .name = "reset-assert" },
198         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
199         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
200         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
201         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
202         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
203         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
204         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
205         { .value = TARGET_EVENT_RESET_INIT,          .name = "reset-init" },
206         { .value = TARGET_EVENT_RESET_END,           .name = "reset-end" },
207
208         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
209         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
210
211         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
212         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
213
214         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
215         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
216
217         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
218         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
219
220         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
221         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
222
223         { .value = TARGET_EVENT_TRACE_CONFIG, .name = "trace-config" },
224
225         { .name = NULL, .value = -1 }
226 };
227
228 static const Jim_Nvp nvp_target_state[] = {
229         { .name = "unknown", .value = TARGET_UNKNOWN },
230         { .name = "running", .value = TARGET_RUNNING },
231         { .name = "halted",  .value = TARGET_HALTED },
232         { .name = "reset",   .value = TARGET_RESET },
233         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
234         { .name = NULL, .value = -1 },
235 };
236
237 static const Jim_Nvp nvp_target_debug_reason[] = {
238         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
239         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
240         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
241         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
242         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
243         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
244         { .name = "program-exit"             , .value = DBG_REASON_EXIT },
245         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
246         { .name = NULL, .value = -1 },
247 };
248
249 static const Jim_Nvp nvp_target_endian[] = {
250         { .name = "big",    .value = TARGET_BIG_ENDIAN },
251         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
252         { .name = "be",     .value = TARGET_BIG_ENDIAN },
253         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
254         { .name = NULL,     .value = -1 },
255 };
256
257 static const Jim_Nvp nvp_reset_modes[] = {
258         { .name = "unknown", .value = RESET_UNKNOWN },
259         { .name = "run"    , .value = RESET_RUN },
260         { .name = "halt"   , .value = RESET_HALT },
261         { .name = "init"   , .value = RESET_INIT },
262         { .name = NULL     , .value = -1 },
263 };
264
265 const char *debug_reason_name(struct target *t)
266 {
267         const char *cp;
268
269         cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
270                         t->debug_reason)->name;
271         if (!cp) {
272                 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
273                 cp = "(*BUG*unknown*BUG*)";
274         }
275         return cp;
276 }
277
278 const char *target_state_name(struct target *t)
279 {
280         const char *cp;
281         cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
282         if (!cp) {
283                 LOG_ERROR("Invalid target state: %d", (int)(t->state));
284                 cp = "(*BUG*unknown*BUG*)";
285         }
286
287         if (!target_was_examined(t) && t->defer_examine)
288                 cp = "examine deferred";
289
290         return cp;
291 }
292
293 const char *target_event_name(enum target_event event)
294 {
295         const char *cp;
296         cp = Jim_Nvp_value2name_simple(nvp_target_event, event)->name;
297         if (!cp) {
298                 LOG_ERROR("Invalid target event: %d", (int)(event));
299                 cp = "(*BUG*unknown*BUG*)";
300         }
301         return cp;
302 }
303
304 const char *target_reset_mode_name(enum target_reset_mode reset_mode)
305 {
306         const char *cp;
307         cp = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name;
308         if (!cp) {
309                 LOG_ERROR("Invalid target reset mode: %d", (int)(reset_mode));
310                 cp = "(*BUG*unknown*BUG*)";
311         }
312         return cp;
313 }
314
315 /* determine the number of the new target */
316 static int new_target_number(void)
317 {
318         struct target *t;
319         int x;
320
321         /* number is 0 based */
322         x = -1;
323         t = all_targets;
324         while (t) {
325                 if (x < t->target_number)
326                         x = t->target_number;
327                 t = t->next;
328         }
329         return x + 1;
330 }
331
332 /* read a uint64_t from a buffer in target memory endianness */
333 uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
334 {
335         if (target->endianness == TARGET_LITTLE_ENDIAN)
336                 return le_to_h_u64(buffer);
337         else
338                 return be_to_h_u64(buffer);
339 }
340
341 /* read a uint32_t from a buffer in target memory endianness */
342 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
343 {
344         if (target->endianness == TARGET_LITTLE_ENDIAN)
345                 return le_to_h_u32(buffer);
346         else
347                 return be_to_h_u32(buffer);
348 }
349
350 /* read a uint24_t from a buffer in target memory endianness */
351 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
352 {
353         if (target->endianness == TARGET_LITTLE_ENDIAN)
354                 return le_to_h_u24(buffer);
355         else
356                 return be_to_h_u24(buffer);
357 }
358
359 /* read a uint16_t from a buffer in target memory endianness */
360 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
361 {
362         if (target->endianness == TARGET_LITTLE_ENDIAN)
363                 return le_to_h_u16(buffer);
364         else
365                 return be_to_h_u16(buffer);
366 }
367
368 /* read a uint8_t from a buffer in target memory endianness */
369 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
370 {
371         return *buffer & 0x0ff;
372 }
373
374 /* write a uint64_t to a buffer in target memory endianness */
375 void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
376 {
377         if (target->endianness == TARGET_LITTLE_ENDIAN)
378                 h_u64_to_le(buffer, value);
379         else
380                 h_u64_to_be(buffer, value);
381 }
382
383 /* write a uint32_t to a buffer in target memory endianness */
384 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
385 {
386         if (target->endianness == TARGET_LITTLE_ENDIAN)
387                 h_u32_to_le(buffer, value);
388         else
389                 h_u32_to_be(buffer, value);
390 }
391
392 /* write a uint24_t to a buffer in target memory endianness */
393 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
394 {
395         if (target->endianness == TARGET_LITTLE_ENDIAN)
396                 h_u24_to_le(buffer, value);
397         else
398                 h_u24_to_be(buffer, value);
399 }
400
401 /* write a uint16_t to a buffer in target memory endianness */
402 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
403 {
404         if (target->endianness == TARGET_LITTLE_ENDIAN)
405                 h_u16_to_le(buffer, value);
406         else
407                 h_u16_to_be(buffer, value);
408 }
409
410 /* write a uint8_t to a buffer in target memory endianness */
411 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
412 {
413         *buffer = value;
414 }
415
416 /* write a uint64_t array to a buffer in target memory endianness */
417 void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf)
418 {
419         uint32_t i;
420         for (i = 0; i < count; i++)
421                 dstbuf[i] = target_buffer_get_u64(target, &buffer[i * 8]);
422 }
423
424 /* write a uint32_t array to a buffer in target memory endianness */
425 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
426 {
427         uint32_t i;
428         for (i = 0; i < count; i++)
429                 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
430 }
431
432 /* write a uint16_t array to a buffer in target memory endianness */
433 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
434 {
435         uint32_t i;
436         for (i = 0; i < count; i++)
437                 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
438 }
439
440 /* write a uint64_t array to a buffer in target memory endianness */
441 void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf)
442 {
443         uint32_t i;
444         for (i = 0; i < count; i++)
445                 target_buffer_set_u64(target, &buffer[i * 8], srcbuf[i]);
446 }
447
448 /* write a uint32_t array to a buffer in target memory endianness */
449 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
450 {
451         uint32_t i;
452         for (i = 0; i < count; i++)
453                 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
454 }
455
456 /* write a uint16_t array to a buffer in target memory endianness */
457 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf)
458 {
459         uint32_t i;
460         for (i = 0; i < count; i++)
461                 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
462 }
463
464 /* return a pointer to a configured target; id is name or number */
465 struct target *get_target(const char *id)
466 {
467         struct target *target;
468
469         /* try as tcltarget name */
470         for (target = all_targets; target; target = target->next) {
471                 if (target_name(target) == NULL)
472                         continue;
473                 if (strcmp(id, target_name(target)) == 0)
474                         return target;
475         }
476
477         /* It's OK to remove this fallback sometime after August 2010 or so */
478
479         /* no match, try as number */
480         unsigned num;
481         if (parse_uint(id, &num) != ERROR_OK)
482                 return NULL;
483
484         for (target = all_targets; target; target = target->next) {
485                 if (target->target_number == (int)num) {
486                         LOG_WARNING("use '%s' as target identifier, not '%u'",
487                                         target_name(target), num);
488                         return target;
489                 }
490         }
491
492         return NULL;
493 }
494
495 /* returns a pointer to the n-th configured target */
496 struct target *get_target_by_num(int num)
497 {
498         struct target *target = all_targets;
499
500         while (target) {
501                 if (target->target_number == num)
502                         return target;
503                 target = target->next;
504         }
505
506         return NULL;
507 }
508
509 struct target *get_current_target(struct command_context *cmd_ctx)
510 {
511         struct target *target = get_target_by_num(cmd_ctx->current_target);
512
513         if (target == NULL) {
514                 LOG_ERROR("BUG: current_target out of bounds");
515                 exit(-1);
516         }
517
518         return target;
519 }
520
521 int target_poll(struct target *target)
522 {
523         int retval;
524
525         /* We can't poll until after examine */
526         if (!target_was_examined(target)) {
527                 /* Fail silently lest we pollute the log */
528                 return ERROR_FAIL;
529         }
530
531         retval = target->type->poll(target);
532         if (retval != ERROR_OK)
533                 return retval;
534
535         if (target->halt_issued) {
536                 if (target->state == TARGET_HALTED)
537                         target->halt_issued = false;
538                 else {
539                         int64_t t = timeval_ms() - target->halt_issued_time;
540                         if (t > DEFAULT_HALT_TIMEOUT) {
541                                 target->halt_issued = false;
542                                 LOG_INFO("Halt timed out, wake up GDB.");
543                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
544                         }
545                 }
546         }
547
548         return ERROR_OK;
549 }
550
551 int target_halt(struct target *target)
552 {
553         int retval;
554         /* We can't poll until after examine */
555         if (!target_was_examined(target)) {
556                 LOG_ERROR("Target not examined yet");
557                 return ERROR_FAIL;
558         }
559
560         retval = target->type->halt(target);
561         if (retval != ERROR_OK)
562                 return retval;
563
564         target->halt_issued = true;
565         target->halt_issued_time = timeval_ms();
566
567         return ERROR_OK;
568 }
569
570 /**
571  * Make the target (re)start executing using its saved execution
572  * context (possibly with some modifications).
573  *
574  * @param target Which target should start executing.
575  * @param current True to use the target's saved program counter instead
576  *      of the address parameter
577  * @param address Optionally used as the program counter.
578  * @param handle_breakpoints True iff breakpoints at the resumption PC
579  *      should be skipped.  (For example, maybe execution was stopped by
580  *      such a breakpoint, in which case it would be counterprodutive to
581  *      let it re-trigger.
582  * @param debug_execution False if all working areas allocated by OpenOCD
583  *      should be released and/or restored to their original contents.
584  *      (This would for example be true to run some downloaded "helper"
585  *      algorithm code, which resides in one such working buffer and uses
586  *      another for data storage.)
587  *
588  * @todo Resolve the ambiguity about what the "debug_execution" flag
589  * signifies.  For example, Target implementations don't agree on how
590  * it relates to invalidation of the register cache, or to whether
591  * breakpoints and watchpoints should be enabled.  (It would seem wrong
592  * to enable breakpoints when running downloaded "helper" algorithms
593  * (debug_execution true), since the breakpoints would be set to match
594  * target firmware being debugged, not the helper algorithm.... and
595  * enabling them could cause such helpers to malfunction (for example,
596  * by overwriting data with a breakpoint instruction.  On the other
597  * hand the infrastructure for running such helpers might use this
598  * procedure but rely on hardware breakpoint to detect termination.)
599  */
600 int target_resume(struct target *target, int current, target_addr_t address,
601                 int handle_breakpoints, int debug_execution)
602 {
603         int retval;
604
605         /* We can't poll until after examine */
606         if (!target_was_examined(target)) {
607                 LOG_ERROR("Target not examined yet");
608                 return ERROR_FAIL;
609         }
610
611         target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
612
613         /* note that resume *must* be asynchronous. The CPU can halt before
614          * we poll. The CPU can even halt at the current PC as a result of
615          * a software breakpoint being inserted by (a bug?) the application.
616          */
617         retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
618         if (retval != ERROR_OK)
619                 return retval;
620
621         target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
622
623         return retval;
624 }
625
626 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
627 {
628         char buf[100];
629         int retval;
630         Jim_Nvp *n;
631         n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
632         if (n->name == NULL) {
633                 LOG_ERROR("invalid reset mode");
634                 return ERROR_FAIL;
635         }
636
637         struct target *target;
638         for (target = all_targets; target; target = target->next)
639                 target_call_reset_callbacks(target, reset_mode);
640
641         /* disable polling during reset to make reset event scripts
642          * more predictable, i.e. dr/irscan & pathmove in events will
643          * not have JTAG operations injected into the middle of a sequence.
644          */
645         bool save_poll = jtag_poll_get_enabled();
646
647         jtag_poll_set_enabled(false);
648
649         sprintf(buf, "ocd_process_reset %s", n->name);
650         retval = Jim_Eval(cmd_ctx->interp, buf);
651
652         jtag_poll_set_enabled(save_poll);
653
654         if (retval != JIM_OK) {
655                 Jim_MakeErrorMessage(cmd_ctx->interp);
656                 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
657                 return ERROR_FAIL;
658         }
659
660         /* We want any events to be processed before the prompt */
661         retval = target_call_timer_callbacks_now();
662
663         for (target = all_targets; target; target = target->next) {
664                 target->type->check_reset(target);
665                 target->running_alg = false;
666         }
667
668         return retval;
669 }
670
671 static int identity_virt2phys(struct target *target,
672                 target_addr_t virtual, target_addr_t *physical)
673 {
674         *physical = virtual;
675         return ERROR_OK;
676 }
677
678 static int no_mmu(struct target *target, int *enabled)
679 {
680         *enabled = 0;
681         return ERROR_OK;
682 }
683
684 static int default_examine(struct target *target)
685 {
686         target_set_examined(target);
687         return ERROR_OK;
688 }
689
690 /* no check by default */
691 static int default_check_reset(struct target *target)
692 {
693         return ERROR_OK;
694 }
695
696 int target_examine_one(struct target *target)
697 {
698         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
699
700         int retval = target->type->examine(target);
701         if (retval != ERROR_OK)
702                 return retval;
703
704         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
705
706         return ERROR_OK;
707 }
708
709 static int jtag_enable_callback(enum jtag_event event, void *priv)
710 {
711         struct target *target = priv;
712
713         if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
714                 return ERROR_OK;
715
716         jtag_unregister_event_callback(jtag_enable_callback, target);
717
718         return target_examine_one(target);
719 }
720
721 /* Targets that correctly implement init + examine, i.e.
722  * no communication with target during init:
723  *
724  * XScale
725  */
726 int target_examine(void)
727 {
728         int retval = ERROR_OK;
729         struct target *target;
730
731         for (target = all_targets; target; target = target->next) {
732                 /* defer examination, but don't skip it */
733                 if (!target->tap->enabled) {
734                         jtag_register_event_callback(jtag_enable_callback,
735                                         target);
736                         continue;
737                 }
738
739                 if (target->defer_examine)
740                         continue;
741
742                 retval = target_examine_one(target);
743                 if (retval != ERROR_OK)
744                         return retval;
745         }
746         return retval;
747 }
748
749 const char *target_type_name(struct target *target)
750 {
751         return target->type->name;
752 }
753
754 static int target_soft_reset_halt(struct target *target)
755 {
756         if (!target_was_examined(target)) {
757                 LOG_ERROR("Target not examined yet");
758                 return ERROR_FAIL;
759         }
760         if (!target->type->soft_reset_halt) {
761                 LOG_ERROR("Target %s does not support soft_reset_halt",
762                                 target_name(target));
763                 return ERROR_FAIL;
764         }
765         return target->type->soft_reset_halt(target);
766 }
767
768 /**
769  * Downloads a target-specific native code algorithm to the target,
770  * and executes it.  * Note that some targets may need to set up, enable,
771  * and tear down a breakpoint (hard or * soft) to detect algorithm
772  * termination, while others may support  lower overhead schemes where
773  * soft breakpoints embedded in the algorithm automatically terminate the
774  * algorithm.
775  *
776  * @param target used to run the algorithm
777  * @param arch_info target-specific description of the algorithm.
778  */
779 int target_run_algorithm(struct target *target,
780                 int num_mem_params, struct mem_param *mem_params,
781                 int num_reg_params, struct reg_param *reg_param,
782                 uint32_t entry_point, uint32_t exit_point,
783                 int timeout_ms, void *arch_info)
784 {
785         int retval = ERROR_FAIL;
786
787         if (!target_was_examined(target)) {
788                 LOG_ERROR("Target not examined yet");
789                 goto done;
790         }
791         if (!target->type->run_algorithm) {
792                 LOG_ERROR("Target type '%s' does not support %s",
793                                 target_type_name(target), __func__);
794                 goto done;
795         }
796
797         target->running_alg = true;
798         retval = target->type->run_algorithm(target,
799                         num_mem_params, mem_params,
800                         num_reg_params, reg_param,
801                         entry_point, exit_point, timeout_ms, arch_info);
802         target->running_alg = false;
803
804 done:
805         return retval;
806 }
807
808 /**
809  * Downloads a target-specific native code algorithm to the target,
810  * executes and leaves it running.
811  *
812  * @param target used to run the algorithm
813  * @param arch_info target-specific description of the algorithm.
814  */
815 int target_start_algorithm(struct target *target,
816                 int num_mem_params, struct mem_param *mem_params,
817                 int num_reg_params, struct reg_param *reg_params,
818                 uint32_t entry_point, uint32_t exit_point,
819                 void *arch_info)
820 {
821         int retval = ERROR_FAIL;
822
823         if (!target_was_examined(target)) {
824                 LOG_ERROR("Target not examined yet");
825                 goto done;
826         }
827         if (!target->type->start_algorithm) {
828                 LOG_ERROR("Target type '%s' does not support %s",
829                                 target_type_name(target), __func__);
830                 goto done;
831         }
832         if (target->running_alg) {
833                 LOG_ERROR("Target is already running an algorithm");
834                 goto done;
835         }
836
837         target->running_alg = true;
838         retval = target->type->start_algorithm(target,
839                         num_mem_params, mem_params,
840                         num_reg_params, reg_params,
841                         entry_point, exit_point, arch_info);
842
843 done:
844         return retval;
845 }
846
847 /**
848  * Waits for an algorithm started with target_start_algorithm() to complete.
849  *
850  * @param target used to run the algorithm
851  * @param arch_info target-specific description of the algorithm.
852  */
853 int target_wait_algorithm(struct target *target,
854                 int num_mem_params, struct mem_param *mem_params,
855                 int num_reg_params, struct reg_param *reg_params,
856                 uint32_t exit_point, int timeout_ms,
857                 void *arch_info)
858 {
859         int retval = ERROR_FAIL;
860
861         if (!target->type->wait_algorithm) {
862                 LOG_ERROR("Target type '%s' does not support %s",
863                                 target_type_name(target), __func__);
864                 goto done;
865         }
866         if (!target->running_alg) {
867                 LOG_ERROR("Target is not running an algorithm");
868                 goto done;
869         }
870
871         retval = target->type->wait_algorithm(target,
872                         num_mem_params, mem_params,
873                         num_reg_params, reg_params,
874                         exit_point, timeout_ms, arch_info);
875         if (retval != ERROR_TARGET_TIMEOUT)
876                 target->running_alg = false;
877
878 done:
879         return retval;
880 }
881
882 /**
883  * Executes a target-specific native code algorithm in the target.
884  * It differs from target_run_algorithm in that the algorithm is asynchronous.
885  * Because of this it requires an compliant algorithm:
886  * see contrib/loaders/flash/stm32f1x.S for example.
887  *
888  * @param target used to run the algorithm
889  */
890
891 int target_run_flash_async_algorithm(struct target *target,
892                 const uint8_t *buffer, uint32_t count, int block_size,
893                 int num_mem_params, struct mem_param *mem_params,
894                 int num_reg_params, struct reg_param *reg_params,
895                 uint32_t buffer_start, uint32_t buffer_size,
896                 uint32_t entry_point, uint32_t exit_point, void *arch_info)
897 {
898         int retval;
899         int timeout = 0;
900
901         const uint8_t *buffer_orig = buffer;
902
903         /* Set up working area. First word is write pointer, second word is read pointer,
904          * rest is fifo data area. */
905         uint32_t wp_addr = buffer_start;
906         uint32_t rp_addr = buffer_start + 4;
907         uint32_t fifo_start_addr = buffer_start + 8;
908         uint32_t fifo_end_addr = buffer_start + buffer_size;
909
910         uint32_t wp = fifo_start_addr;
911         uint32_t rp = fifo_start_addr;
912
913         /* validate block_size is 2^n */
914         assert(!block_size || !(block_size & (block_size - 1)));
915
916         retval = target_write_u32(target, wp_addr, wp);
917         if (retval != ERROR_OK)
918                 return retval;
919         retval = target_write_u32(target, rp_addr, rp);
920         if (retval != ERROR_OK)
921                 return retval;
922
923         /* Start up algorithm on target and let it idle while writing the first chunk */
924         retval = target_start_algorithm(target, num_mem_params, mem_params,
925                         num_reg_params, reg_params,
926                         entry_point,
927                         exit_point,
928                         arch_info);
929
930         if (retval != ERROR_OK) {
931                 LOG_ERROR("error starting target flash write algorithm");
932                 return retval;
933         }
934
935         while (count > 0) {
936
937                 retval = target_read_u32(target, rp_addr, &rp);
938                 if (retval != ERROR_OK) {
939                         LOG_ERROR("failed to get read pointer");
940                         break;
941                 }
942
943                 LOG_DEBUG("offs 0x%zx count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32,
944                         (size_t) (buffer - buffer_orig), count, wp, rp);
945
946                 if (rp == 0) {
947                         LOG_ERROR("flash write algorithm aborted by target");
948                         retval = ERROR_FLASH_OPERATION_FAILED;
949                         break;
950                 }
951
952                 if (((rp - fifo_start_addr) & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
953                         LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
954                         break;
955                 }
956
957                 /* Count the number of bytes available in the fifo without
958                  * crossing the wrap around. Make sure to not fill it completely,
959                  * because that would make wp == rp and that's the empty condition. */
960                 uint32_t thisrun_bytes;
961                 if (rp > wp)
962                         thisrun_bytes = rp - wp - block_size;
963                 else if (rp > fifo_start_addr)
964                         thisrun_bytes = fifo_end_addr - wp;
965                 else
966                         thisrun_bytes = fifo_end_addr - wp - block_size;
967
968                 if (thisrun_bytes == 0) {
969                         /* Throttle polling a bit if transfer is (much) faster than flash
970                          * programming. The exact delay shouldn't matter as long as it's
971                          * less than buffer size / flash speed. This is very unlikely to
972                          * run when using high latency connections such as USB. */
973                         alive_sleep(10);
974
975                         /* to stop an infinite loop on some targets check and increment a timeout
976                          * this issue was observed on a stellaris using the new ICDI interface */
977                         if (timeout++ >= 500) {
978                                 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
979                                 return ERROR_FLASH_OPERATION_FAILED;
980                         }
981                         continue;
982                 }
983
984                 /* reset our timeout */
985                 timeout = 0;
986
987                 /* Limit to the amount of data we actually want to write */
988                 if (thisrun_bytes > count * block_size)
989                         thisrun_bytes = count * block_size;
990
991                 /* Write data to fifo */
992                 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
993                 if (retval != ERROR_OK)
994                         break;
995
996                 /* Update counters and wrap write pointer */
997                 buffer += thisrun_bytes;
998                 count -= thisrun_bytes / block_size;
999                 wp += thisrun_bytes;
1000                 if (wp >= fifo_end_addr)
1001                         wp = fifo_start_addr;
1002
1003                 /* Store updated write pointer to target */
1004                 retval = target_write_u32(target, wp_addr, wp);
1005                 if (retval != ERROR_OK)
1006                         break;
1007         }
1008
1009         if (retval != ERROR_OK) {
1010                 /* abort flash write algorithm on target */
1011                 target_write_u32(target, wp_addr, 0);
1012         }
1013
1014         int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
1015                         num_reg_params, reg_params,
1016                         exit_point,
1017                         10000,
1018                         arch_info);
1019
1020         if (retval2 != ERROR_OK) {
1021                 LOG_ERROR("error waiting for target flash write algorithm");
1022                 retval = retval2;
1023         }
1024
1025         if (retval == ERROR_OK) {
1026                 /* check if algorithm set rp = 0 after fifo writer loop finished */
1027                 retval = target_read_u32(target, rp_addr, &rp);
1028                 if (retval == ERROR_OK && rp == 0) {
1029                         LOG_ERROR("flash write algorithm aborted by target");
1030                         retval = ERROR_FLASH_OPERATION_FAILED;
1031                 }
1032         }
1033
1034         return retval;
1035 }
1036
1037 int target_read_memory(struct target *target,
1038                 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1039 {
1040         if (!target_was_examined(target)) {
1041                 LOG_ERROR("Target not examined yet");
1042                 return ERROR_FAIL;
1043         }
1044         if (!target->type->read_memory) {
1045                 LOG_ERROR("Target %s doesn't support read_memory", target_name(target));
1046                 return ERROR_FAIL;
1047         }
1048         return target->type->read_memory(target, address, size, count, buffer);
1049 }
1050
1051 int target_read_phys_memory(struct target *target,
1052                 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1053 {
1054         if (!target_was_examined(target)) {
1055                 LOG_ERROR("Target not examined yet");
1056                 return ERROR_FAIL;
1057         }
1058         if (!target->type->read_phys_memory) {
1059                 LOG_ERROR("Target %s doesn't support read_phys_memory", target_name(target));
1060                 return ERROR_FAIL;
1061         }
1062         return target->type->read_phys_memory(target, address, size, count, buffer);
1063 }
1064
1065 int target_write_memory(struct target *target,
1066                 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1067 {
1068         if (!target_was_examined(target)) {
1069                 LOG_ERROR("Target not examined yet");
1070                 return ERROR_FAIL;
1071         }
1072         if (!target->type->write_memory) {
1073                 LOG_ERROR("Target %s doesn't support write_memory", target_name(target));
1074                 return ERROR_FAIL;
1075         }
1076         return target->type->write_memory(target, address, size, count, buffer);
1077 }
1078
1079 int target_write_phys_memory(struct target *target,
1080                 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1081 {
1082         if (!target_was_examined(target)) {
1083                 LOG_ERROR("Target not examined yet");
1084                 return ERROR_FAIL;
1085         }
1086         if (!target->type->write_phys_memory) {
1087                 LOG_ERROR("Target %s doesn't support write_phys_memory", target_name(target));
1088                 return ERROR_FAIL;
1089         }
1090         return target->type->write_phys_memory(target, address, size, count, buffer);
1091 }
1092
1093 int target_add_breakpoint(struct target *target,
1094                 struct breakpoint *breakpoint)
1095 {
1096         if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
1097                 LOG_WARNING("target %s is not halted", target_name(target));
1098                 return ERROR_TARGET_NOT_HALTED;
1099         }
1100         return target->type->add_breakpoint(target, breakpoint);
1101 }
1102
1103 int target_add_context_breakpoint(struct target *target,
1104                 struct breakpoint *breakpoint)
1105 {
1106         if (target->state != TARGET_HALTED) {
1107                 LOG_WARNING("target %s is not halted", target_name(target));
1108                 return ERROR_TARGET_NOT_HALTED;
1109         }
1110         return target->type->add_context_breakpoint(target, breakpoint);
1111 }
1112
1113 int target_add_hybrid_breakpoint(struct target *target,
1114                 struct breakpoint *breakpoint)
1115 {
1116         if (target->state != TARGET_HALTED) {
1117                 LOG_WARNING("target %s is not halted", target_name(target));
1118                 return ERROR_TARGET_NOT_HALTED;
1119         }
1120         return target->type->add_hybrid_breakpoint(target, breakpoint);
1121 }
1122
1123 int target_remove_breakpoint(struct target *target,
1124                 struct breakpoint *breakpoint)
1125 {
1126         return target->type->remove_breakpoint(target, breakpoint);
1127 }
1128
1129 int target_add_watchpoint(struct target *target,
1130                 struct watchpoint *watchpoint)
1131 {
1132         if (target->state != TARGET_HALTED) {
1133                 LOG_WARNING("target %s is not halted", target_name(target));
1134                 return ERROR_TARGET_NOT_HALTED;
1135         }
1136         return target->type->add_watchpoint(target, watchpoint);
1137 }
1138 int target_remove_watchpoint(struct target *target,
1139                 struct watchpoint *watchpoint)
1140 {
1141         return target->type->remove_watchpoint(target, watchpoint);
1142 }
1143 int target_hit_watchpoint(struct target *target,
1144                 struct watchpoint **hit_watchpoint)
1145 {
1146         if (target->state != TARGET_HALTED) {
1147                 LOG_WARNING("target %s is not halted", target->cmd_name);
1148                 return ERROR_TARGET_NOT_HALTED;
1149         }
1150
1151         if (target->type->hit_watchpoint == NULL) {
1152                 /* For backward compatible, if hit_watchpoint is not implemented,
1153                  * return ERROR_FAIL such that gdb_server will not take the nonsense
1154                  * information. */
1155                 return ERROR_FAIL;
1156         }
1157
1158         return target->type->hit_watchpoint(target, hit_watchpoint);
1159 }
1160
1161 int target_get_gdb_reg_list(struct target *target,
1162                 struct reg **reg_list[], int *reg_list_size,
1163                 enum target_register_class reg_class)
1164 {
1165         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1166 }
1167 int target_step(struct target *target,
1168                 int current, target_addr_t address, int handle_breakpoints)
1169 {
1170         return target->type->step(target, current, address, handle_breakpoints);
1171 }
1172
1173 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1174 {
1175         if (target->state != TARGET_HALTED) {
1176                 LOG_WARNING("target %s is not halted", target->cmd_name);
1177                 return ERROR_TARGET_NOT_HALTED;
1178         }
1179         return target->type->get_gdb_fileio_info(target, fileio_info);
1180 }
1181
1182 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1183 {
1184         if (target->state != TARGET_HALTED) {
1185                 LOG_WARNING("target %s is not halted", target->cmd_name);
1186                 return ERROR_TARGET_NOT_HALTED;
1187         }
1188         return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1189 }
1190
1191 int target_profiling(struct target *target, uint32_t *samples,
1192                         uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1193 {
1194         if (target->state != TARGET_HALTED) {
1195                 LOG_WARNING("target %s is not halted", target->cmd_name);
1196                 return ERROR_TARGET_NOT_HALTED;
1197         }
1198         return target->type->profiling(target, samples, max_num_samples,
1199                         num_samples, seconds);
1200 }
1201
1202 /**
1203  * Reset the @c examined flag for the given target.
1204  * Pure paranoia -- targets are zeroed on allocation.
1205  */
1206 static void target_reset_examined(struct target *target)
1207 {
1208         target->examined = false;
1209 }
1210
1211 static int handle_target(void *priv);
1212
1213 static int target_init_one(struct command_context *cmd_ctx,
1214                 struct target *target)
1215 {
1216         target_reset_examined(target);
1217
1218         struct target_type *type = target->type;
1219         if (type->examine == NULL)
1220                 type->examine = default_examine;
1221
1222         if (type->check_reset == NULL)
1223                 type->check_reset = default_check_reset;
1224
1225         assert(type->init_target != NULL);
1226
1227         int retval = type->init_target(cmd_ctx, target);
1228         if (ERROR_OK != retval) {
1229                 LOG_ERROR("target '%s' init failed", target_name(target));
1230                 return retval;
1231         }
1232
1233         /* Sanity-check MMU support ... stub in what we must, to help
1234          * implement it in stages, but warn if we need to do so.
1235          */
1236         if (type->mmu) {
1237                 if (type->virt2phys == NULL) {
1238                         LOG_ERROR("type '%s' is missing virt2phys", type->name);
1239                         type->virt2phys = identity_virt2phys;
1240                 }
1241         } else {
1242                 /* Make sure no-MMU targets all behave the same:  make no
1243                  * distinction between physical and virtual addresses, and
1244                  * ensure that virt2phys() is always an identity mapping.
1245                  */
1246                 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1247                         LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1248
1249                 type->mmu = no_mmu;
1250                 type->write_phys_memory = type->write_memory;
1251                 type->read_phys_memory = type->read_memory;
1252                 type->virt2phys = identity_virt2phys;
1253         }
1254
1255         if (target->type->read_buffer == NULL)
1256                 target->type->read_buffer = target_read_buffer_default;
1257
1258         if (target->type->write_buffer == NULL)
1259                 target->type->write_buffer = target_write_buffer_default;
1260
1261         if (target->type->get_gdb_fileio_info == NULL)
1262                 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1263
1264         if (target->type->gdb_fileio_end == NULL)
1265                 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1266
1267         if (target->type->profiling == NULL)
1268                 target->type->profiling = target_profiling_default;
1269
1270         return ERROR_OK;
1271 }
1272
1273 static int target_init(struct command_context *cmd_ctx)
1274 {
1275         struct target *target;
1276         int retval;
1277
1278         for (target = all_targets; target; target = target->next) {
1279                 retval = target_init_one(cmd_ctx, target);
1280                 if (ERROR_OK != retval)
1281                         return retval;
1282         }
1283
1284         if (!all_targets)
1285                 return ERROR_OK;
1286
1287         retval = target_register_user_commands(cmd_ctx);
1288         if (ERROR_OK != retval)
1289                 return retval;
1290
1291         retval = target_register_timer_callback(&handle_target,
1292                         polling_interval, 1, cmd_ctx->interp);
1293         if (ERROR_OK != retval)
1294                 return retval;
1295
1296         return ERROR_OK;
1297 }
1298
1299 COMMAND_HANDLER(handle_target_init_command)
1300 {
1301         int retval;
1302
1303         if (CMD_ARGC != 0)
1304                 return ERROR_COMMAND_SYNTAX_ERROR;
1305
1306         static bool target_initialized;
1307         if (target_initialized) {
1308                 LOG_INFO("'target init' has already been called");
1309                 return ERROR_OK;
1310         }
1311         target_initialized = true;
1312
1313         retval = command_run_line(CMD_CTX, "init_targets");
1314         if (ERROR_OK != retval)
1315                 return retval;
1316
1317         retval = command_run_line(CMD_CTX, "init_target_events");
1318         if (ERROR_OK != retval)
1319                 return retval;
1320
1321         retval = command_run_line(CMD_CTX, "init_board");
1322         if (ERROR_OK != retval)
1323                 return retval;
1324
1325         LOG_DEBUG("Initializing targets...");
1326         return target_init(CMD_CTX);
1327 }
1328
1329 int target_register_event_callback(int (*callback)(struct target *target,
1330                 enum target_event event, void *priv), void *priv)
1331 {
1332         struct target_event_callback **callbacks_p = &target_event_callbacks;
1333
1334         if (callback == NULL)
1335                 return ERROR_COMMAND_SYNTAX_ERROR;
1336
1337         if (*callbacks_p) {
1338                 while ((*callbacks_p)->next)
1339                         callbacks_p = &((*callbacks_p)->next);
1340                 callbacks_p = &((*callbacks_p)->next);
1341         }
1342
1343         (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1344         (*callbacks_p)->callback = callback;
1345         (*callbacks_p)->priv = priv;
1346         (*callbacks_p)->next = NULL;
1347
1348         return ERROR_OK;
1349 }
1350
1351 int target_register_reset_callback(int (*callback)(struct target *target,
1352                 enum target_reset_mode reset_mode, void *priv), void *priv)
1353 {
1354         struct target_reset_callback *entry;
1355
1356         if (callback == NULL)
1357                 return ERROR_COMMAND_SYNTAX_ERROR;
1358
1359         entry = malloc(sizeof(struct target_reset_callback));
1360         if (entry == NULL) {
1361                 LOG_ERROR("error allocating buffer for reset callback entry");
1362                 return ERROR_COMMAND_SYNTAX_ERROR;
1363         }
1364
1365         entry->callback = callback;
1366         entry->priv = priv;
1367         list_add(&entry->list, &target_reset_callback_list);
1368
1369
1370         return ERROR_OK;
1371 }
1372
1373 int target_register_trace_callback(int (*callback)(struct target *target,
1374                 size_t len, uint8_t *data, void *priv), void *priv)
1375 {
1376         struct target_trace_callback *entry;
1377
1378         if (callback == NULL)
1379                 return ERROR_COMMAND_SYNTAX_ERROR;
1380
1381         entry = malloc(sizeof(struct target_trace_callback));
1382         if (entry == NULL) {
1383                 LOG_ERROR("error allocating buffer for trace callback entry");
1384                 return ERROR_COMMAND_SYNTAX_ERROR;
1385         }
1386
1387         entry->callback = callback;
1388         entry->priv = priv;
1389         list_add(&entry->list, &target_trace_callback_list);
1390
1391
1392         return ERROR_OK;
1393 }
1394
1395 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1396 {
1397         struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1398         struct timeval now;
1399
1400         if (callback == NULL)
1401                 return ERROR_COMMAND_SYNTAX_ERROR;
1402
1403         if (*callbacks_p) {
1404                 while ((*callbacks_p)->next)
1405                         callbacks_p = &((*callbacks_p)->next);
1406                 callbacks_p = &((*callbacks_p)->next);
1407         }
1408
1409         (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1410         (*callbacks_p)->callback = callback;
1411         (*callbacks_p)->periodic = periodic;
1412         (*callbacks_p)->time_ms = time_ms;
1413         (*callbacks_p)->removed = false;
1414
1415         gettimeofday(&now, NULL);
1416         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
1417         time_ms -= (time_ms % 1000);
1418         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
1419         if ((*callbacks_p)->when.tv_usec > 1000000) {
1420                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
1421                 (*callbacks_p)->when.tv_sec += 1;
1422         }
1423
1424         (*callbacks_p)->priv = priv;
1425         (*callbacks_p)->next = NULL;
1426
1427         return ERROR_OK;
1428 }
1429
1430 int target_unregister_event_callback(int (*callback)(struct target *target,
1431                 enum target_event event, void *priv), void *priv)
1432 {
1433         struct target_event_callback **p = &target_event_callbacks;
1434         struct target_event_callback *c = target_event_callbacks;
1435
1436         if (callback == NULL)
1437                 return ERROR_COMMAND_SYNTAX_ERROR;
1438
1439         while (c) {
1440                 struct target_event_callback *next = c->next;
1441                 if ((c->callback == callback) && (c->priv == priv)) {
1442                         *p = next;
1443                         free(c);
1444                         return ERROR_OK;
1445                 } else
1446                         p = &(c->next);
1447                 c = next;
1448         }
1449
1450         return ERROR_OK;
1451 }
1452
1453 int target_unregister_reset_callback(int (*callback)(struct target *target,
1454                 enum target_reset_mode reset_mode, void *priv), void *priv)
1455 {
1456         struct target_reset_callback *entry;
1457
1458         if (callback == NULL)
1459                 return ERROR_COMMAND_SYNTAX_ERROR;
1460
1461         list_for_each_entry(entry, &target_reset_callback_list, list) {
1462                 if (entry->callback == callback && entry->priv == priv) {
1463                         list_del(&entry->list);
1464                         free(entry);
1465                         break;
1466                 }
1467         }
1468
1469         return ERROR_OK;
1470 }
1471
1472 int target_unregister_trace_callback(int (*callback)(struct target *target,
1473                 size_t len, uint8_t *data, void *priv), void *priv)
1474 {
1475         struct target_trace_callback *entry;
1476
1477         if (callback == NULL)
1478                 return ERROR_COMMAND_SYNTAX_ERROR;
1479
1480         list_for_each_entry(entry, &target_trace_callback_list, list) {
1481                 if (entry->callback == callback && entry->priv == priv) {
1482                         list_del(&entry->list);
1483                         free(entry);
1484                         break;
1485                 }
1486         }
1487
1488         return ERROR_OK;
1489 }
1490
1491 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1492 {
1493         if (callback == NULL)
1494                 return ERROR_COMMAND_SYNTAX_ERROR;
1495
1496         for (struct target_timer_callback *c = target_timer_callbacks;
1497              c; c = c->next) {
1498                 if ((c->callback == callback) && (c->priv == priv)) {
1499                         c->removed = true;
1500                         return ERROR_OK;
1501                 }
1502         }
1503
1504         return ERROR_FAIL;
1505 }
1506
1507 int target_call_event_callbacks(struct target *target, enum target_event event)
1508 {
1509         struct target_event_callback *callback = target_event_callbacks;
1510         struct target_event_callback *next_callback;
1511
1512         if (event == TARGET_EVENT_HALTED) {
1513                 /* execute early halted first */
1514                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1515         }
1516
1517         LOG_DEBUG("target event %i (%s)", event,
1518                         Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1519
1520         target_handle_event(target, event);
1521
1522         while (callback) {
1523                 next_callback = callback->next;
1524                 callback->callback(target, event, callback->priv);
1525                 callback = next_callback;
1526         }
1527
1528         return ERROR_OK;
1529 }
1530
1531 int target_call_reset_callbacks(struct target *target, enum target_reset_mode reset_mode)
1532 {
1533         struct target_reset_callback *callback;
1534
1535         LOG_DEBUG("target reset %i (%s)", reset_mode,
1536                         Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name);
1537
1538         list_for_each_entry(callback, &target_reset_callback_list, list)
1539                 callback->callback(target, reset_mode, callback->priv);
1540
1541         return ERROR_OK;
1542 }
1543
1544 int target_call_trace_callbacks(struct target *target, size_t len, uint8_t *data)
1545 {
1546         struct target_trace_callback *callback;
1547
1548         list_for_each_entry(callback, &target_trace_callback_list, list)
1549                 callback->callback(target, len, data, callback->priv);
1550
1551         return ERROR_OK;
1552 }
1553
1554 static int target_timer_callback_periodic_restart(
1555                 struct target_timer_callback *cb, struct timeval *now)
1556 {
1557         int time_ms = cb->time_ms;
1558         cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1559         time_ms -= (time_ms % 1000);
1560         cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1561         if (cb->when.tv_usec > 1000000) {
1562                 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1563                 cb->when.tv_sec += 1;
1564         }
1565         return ERROR_OK;
1566 }
1567
1568 static int target_call_timer_callback(struct target_timer_callback *cb,
1569                 struct timeval *now)
1570 {
1571         cb->callback(cb->priv);
1572
1573         if (cb->periodic)
1574                 return target_timer_callback_periodic_restart(cb, now);
1575
1576         return target_unregister_timer_callback(cb->callback, cb->priv);
1577 }
1578
1579 static int target_call_timer_callbacks_check_time(int checktime)
1580 {
1581         static bool callback_processing;
1582
1583         /* Do not allow nesting */
1584         if (callback_processing)
1585                 return ERROR_OK;
1586
1587         callback_processing = true;
1588
1589         keep_alive();
1590
1591         struct timeval now;
1592         gettimeofday(&now, NULL);
1593
1594         /* Store an address of the place containing a pointer to the
1595          * next item; initially, that's a standalone "root of the
1596          * list" variable. */
1597         struct target_timer_callback **callback = &target_timer_callbacks;
1598         while (*callback) {
1599                 if ((*callback)->removed) {
1600                         struct target_timer_callback *p = *callback;
1601                         *callback = (*callback)->next;
1602                         free(p);
1603                         continue;
1604                 }
1605
1606                 bool call_it = (*callback)->callback &&
1607                         ((!checktime && (*callback)->periodic) ||
1608                          now.tv_sec > (*callback)->when.tv_sec ||
1609                          (now.tv_sec == (*callback)->when.tv_sec &&
1610                           now.tv_usec >= (*callback)->when.tv_usec));
1611
1612                 if (call_it)
1613                         target_call_timer_callback(*callback, &now);
1614
1615                 callback = &(*callback)->next;
1616         }
1617
1618         callback_processing = false;
1619         return ERROR_OK;
1620 }
1621
1622 int target_call_timer_callbacks(void)
1623 {
1624         return target_call_timer_callbacks_check_time(1);
1625 }
1626
1627 /* invoke periodic callbacks immediately */
1628 int target_call_timer_callbacks_now(void)
1629 {
1630         return target_call_timer_callbacks_check_time(0);
1631 }
1632
1633 /* Prints the working area layout for debug purposes */
1634 static void print_wa_layout(struct target *target)
1635 {
1636         struct working_area *c = target->working_areas;
1637
1638         while (c) {
1639                 LOG_DEBUG("%c%c " TARGET_ADDR_FMT "-" TARGET_ADDR_FMT " (%" PRIu32 " bytes)",
1640                         c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1641                         c->address, c->address + c->size - 1, c->size);
1642                 c = c->next;
1643         }
1644 }
1645
1646 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1647 static void target_split_working_area(struct working_area *area, uint32_t size)
1648 {
1649         assert(area->free); /* Shouldn't split an allocated area */
1650         assert(size <= area->size); /* Caller should guarantee this */
1651
1652         /* Split only if not already the right size */
1653         if (size < area->size) {
1654                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1655
1656                 if (new_wa == NULL)
1657                         return;
1658
1659                 new_wa->next = area->next;
1660                 new_wa->size = area->size - size;
1661                 new_wa->address = area->address + size;
1662                 new_wa->backup = NULL;
1663                 new_wa->user = NULL;
1664                 new_wa->free = true;
1665
1666                 area->next = new_wa;
1667                 area->size = size;
1668
1669                 /* If backup memory was allocated to this area, it has the wrong size
1670                  * now so free it and it will be reallocated if/when needed */
1671                 if (area->backup) {
1672                         free(area->backup);
1673                         area->backup = NULL;
1674                 }
1675         }
1676 }
1677
1678 /* Merge all adjacent free areas into one */
1679 static void target_merge_working_areas(struct target *target)
1680 {
1681         struct working_area *c = target->working_areas;
1682
1683         while (c && c->next) {
1684                 assert(c->next->address == c->address + c->size); /* This is an invariant */
1685
1686                 /* Find two adjacent free areas */
1687                 if (c->free && c->next->free) {
1688                         /* Merge the last into the first */
1689                         c->size += c->next->size;
1690
1691                         /* Remove the last */
1692                         struct working_area *to_be_freed = c->next;
1693                         c->next = c->next->next;
1694                         if (to_be_freed->backup)
1695                                 free(to_be_freed->backup);
1696                         free(to_be_freed);
1697
1698                         /* If backup memory was allocated to the remaining area, it's has
1699                          * the wrong size now */
1700                         if (c->backup) {
1701                                 free(c->backup);
1702                                 c->backup = NULL;
1703                         }
1704                 } else {
1705                         c = c->next;
1706                 }
1707         }
1708 }
1709
1710 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1711 {
1712         /* Reevaluate working area address based on MMU state*/
1713         if (target->working_areas == NULL) {
1714                 int retval;
1715                 int enabled;
1716
1717                 retval = target->type->mmu(target, &enabled);
1718                 if (retval != ERROR_OK)
1719                         return retval;
1720
1721                 if (!enabled) {
1722                         if (target->working_area_phys_spec) {
1723                                 LOG_DEBUG("MMU disabled, using physical "
1724                                         "address for working memory " TARGET_ADDR_FMT,
1725                                         target->working_area_phys);
1726                                 target->working_area = target->working_area_phys;
1727                         } else {
1728                                 LOG_ERROR("No working memory available. "
1729                                         "Specify -work-area-phys to target.");
1730                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1731                         }
1732                 } else {
1733                         if (target->working_area_virt_spec) {
1734                                 LOG_DEBUG("MMU enabled, using virtual "
1735                                         "address for working memory " TARGET_ADDR_FMT,
1736                                         target->working_area_virt);
1737                                 target->working_area = target->working_area_virt;
1738                         } else {
1739                                 LOG_ERROR("No working memory available. "
1740                                         "Specify -work-area-virt to target.");
1741                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1742                         }
1743                 }
1744
1745                 /* Set up initial working area on first call */
1746                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1747                 if (new_wa) {
1748                         new_wa->next = NULL;
1749                         new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1750                         new_wa->address = target->working_area;
1751                         new_wa->backup = NULL;
1752                         new_wa->user = NULL;
1753                         new_wa->free = true;
1754                 }
1755
1756                 target->working_areas = new_wa;
1757         }
1758
1759         /* only allocate multiples of 4 byte */
1760         if (size % 4)
1761                 size = (size + 3) & (~3UL);
1762
1763         struct working_area *c = target->working_areas;
1764
1765         /* Find the first large enough working area */
1766         while (c) {
1767                 if (c->free && c->size >= size)
1768                         break;
1769                 c = c->next;
1770         }
1771
1772         if (c == NULL)
1773                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1774
1775         /* Split the working area into the requested size */
1776         target_split_working_area(c, size);
1777
1778         LOG_DEBUG("allocated new working area of %" PRIu32 " bytes at address " TARGET_ADDR_FMT,
1779                           size, c->address);
1780
1781         if (target->backup_working_area) {
1782                 if (c->backup == NULL) {
1783                         c->backup = malloc(c->size);
1784                         if (c->backup == NULL)
1785                                 return ERROR_FAIL;
1786                 }
1787
1788                 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1789                 if (retval != ERROR_OK)
1790                         return retval;
1791         }
1792
1793         /* mark as used, and return the new (reused) area */
1794         c->free = false;
1795         *area = c;
1796
1797         /* user pointer */
1798         c->user = area;
1799
1800         print_wa_layout(target);
1801
1802         return ERROR_OK;
1803 }
1804
1805 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1806 {
1807         int retval;
1808
1809         retval = target_alloc_working_area_try(target, size, area);
1810         if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1811                 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1812         return retval;
1813
1814 }
1815
1816 static int target_restore_working_area(struct target *target, struct working_area *area)
1817 {
1818         int retval = ERROR_OK;
1819
1820         if (target->backup_working_area && area->backup != NULL) {
1821                 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1822                 if (retval != ERROR_OK)
1823                         LOG_ERROR("failed to restore %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1824                                         area->size, area->address);
1825         }
1826
1827         return retval;
1828 }
1829
1830 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1831 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1832 {
1833         int retval = ERROR_OK;
1834
1835         if (area->free)
1836                 return retval;
1837
1838         if (restore) {
1839                 retval = target_restore_working_area(target, area);
1840                 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1841                 if (retval != ERROR_OK)
1842                         return retval;
1843         }
1844
1845         area->free = true;
1846
1847         LOG_DEBUG("freed %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1848                         area->size, area->address);
1849
1850         /* mark user pointer invalid */
1851         /* TODO: Is this really safe? It points to some previous caller's memory.
1852          * How could we know that the area pointer is still in that place and not
1853          * some other vital data? What's the purpose of this, anyway? */
1854         *area->user = NULL;
1855         area->user = NULL;
1856
1857         target_merge_working_areas(target);
1858
1859         print_wa_layout(target);
1860
1861         return retval;
1862 }
1863
1864 int target_free_working_area(struct target *target, struct working_area *area)
1865 {
1866         return target_free_working_area_restore(target, area, 1);
1867 }
1868
1869 void target_quit(void)
1870 {
1871         struct target_event_callback *pe = target_event_callbacks;
1872         while (pe) {
1873                 struct target_event_callback *t = pe->next;
1874                 free(pe);
1875                 pe = t;
1876         }
1877         target_event_callbacks = NULL;
1878
1879         struct target_timer_callback *pt = target_timer_callbacks;
1880         while (pt) {
1881                 struct target_timer_callback *t = pt->next;
1882                 free(pt);
1883                 pt = t;
1884         }
1885         target_timer_callbacks = NULL;
1886
1887         for (struct target *target = all_targets;
1888              target; target = target->next) {
1889                 if (target->type->deinit_target)
1890                         target->type->deinit_target(target);
1891         }
1892 }
1893
1894 /* free resources and restore memory, if restoring memory fails,
1895  * free up resources anyway
1896  */
1897 static void target_free_all_working_areas_restore(struct target *target, int restore)
1898 {
1899         struct working_area *c = target->working_areas;
1900
1901         LOG_DEBUG("freeing all working areas");
1902
1903         /* Loop through all areas, restoring the allocated ones and marking them as free */
1904         while (c) {
1905                 if (!c->free) {
1906                         if (restore)
1907                                 target_restore_working_area(target, c);
1908                         c->free = true;
1909                         *c->user = NULL; /* Same as above */
1910                         c->user = NULL;
1911                 }
1912                 c = c->next;
1913         }
1914
1915         /* Run a merge pass to combine all areas into one */
1916         target_merge_working_areas(target);
1917
1918         print_wa_layout(target);
1919 }
1920
1921 void target_free_all_working_areas(struct target *target)
1922 {
1923         target_free_all_working_areas_restore(target, 1);
1924 }
1925
1926 /* Find the largest number of bytes that can be allocated */
1927 uint32_t target_get_working_area_avail(struct target *target)
1928 {
1929         struct working_area *c = target->working_areas;
1930         uint32_t max_size = 0;
1931
1932         if (c == NULL)
1933                 return target->working_area_size;
1934
1935         while (c) {
1936                 if (c->free && max_size < c->size)
1937                         max_size = c->size;
1938
1939                 c = c->next;
1940         }
1941
1942         return max_size;
1943 }
1944
1945 int target_arch_state(struct target *target)
1946 {
1947         int retval;
1948         if (target == NULL) {
1949                 LOG_WARNING("No target has been configured");
1950                 return ERROR_OK;
1951         }
1952
1953         if (target->state != TARGET_HALTED)
1954                 return ERROR_OK;
1955
1956         retval = target->type->arch_state(target);
1957         return retval;
1958 }
1959
1960 static int target_get_gdb_fileio_info_default(struct target *target,
1961                 struct gdb_fileio_info *fileio_info)
1962 {
1963         /* If target does not support semi-hosting function, target
1964            has no need to provide .get_gdb_fileio_info callback.
1965            It just return ERROR_FAIL and gdb_server will return "Txx"
1966            as target halted every time.  */
1967         return ERROR_FAIL;
1968 }
1969
1970 static int target_gdb_fileio_end_default(struct target *target,
1971                 int retcode, int fileio_errno, bool ctrl_c)
1972 {
1973         return ERROR_OK;
1974 }
1975
1976 static int target_profiling_default(struct target *target, uint32_t *samples,
1977                 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1978 {
1979         struct timeval timeout, now;
1980
1981         gettimeofday(&timeout, NULL);
1982         timeval_add_time(&timeout, seconds, 0);
1983
1984         LOG_INFO("Starting profiling. Halting and resuming the"
1985                         " target as often as we can...");
1986
1987         uint32_t sample_count = 0;
1988         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
1989         struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
1990
1991         int retval = ERROR_OK;
1992         for (;;) {
1993                 target_poll(target);
1994                 if (target->state == TARGET_HALTED) {
1995                         uint32_t t = buf_get_u32(reg->value, 0, 32);
1996                         samples[sample_count++] = t;
1997                         /* current pc, addr = 0, do not handle breakpoints, not debugging */
1998                         retval = target_resume(target, 1, 0, 0, 0);
1999                         target_poll(target);
2000                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2001                 } else if (target->state == TARGET_RUNNING) {
2002                         /* We want to quickly sample the PC. */
2003                         retval = target_halt(target);
2004                 } else {
2005                         LOG_INFO("Target not halted or running");
2006                         retval = ERROR_OK;
2007                         break;
2008                 }
2009
2010                 if (retval != ERROR_OK)
2011                         break;
2012
2013                 gettimeofday(&now, NULL);
2014                 if ((sample_count >= max_num_samples) ||
2015                         ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec))) {
2016                         LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
2017                         break;
2018                 }
2019         }
2020
2021         *num_samples = sample_count;
2022         return retval;
2023 }
2024
2025 /* Single aligned words are guaranteed to use 16 or 32 bit access
2026  * mode respectively, otherwise data is handled as quickly as
2027  * possible
2028  */
2029 int target_write_buffer(struct target *target, target_addr_t address, uint32_t size, const uint8_t *buffer)
2030 {
2031         LOG_DEBUG("writing buffer of %" PRIi32 " byte at " TARGET_ADDR_FMT,
2032                           size, address);
2033
2034         if (!target_was_examined(target)) {
2035                 LOG_ERROR("Target not examined yet");
2036                 return ERROR_FAIL;
2037         }
2038
2039         if (size == 0)
2040                 return ERROR_OK;
2041
2042         if ((address + size - 1) < address) {
2043                 /* GDB can request this when e.g. PC is 0xfffffffc */
2044                 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2045                                   address,
2046                                   size);
2047                 return ERROR_FAIL;
2048         }
2049
2050         return target->type->write_buffer(target, address, size, buffer);
2051 }
2052
2053 static int target_write_buffer_default(struct target *target,
2054         target_addr_t address, uint32_t count, const uint8_t *buffer)
2055 {
2056         uint32_t size;
2057
2058         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2059          * will have something to do with the size we leave to it. */
2060         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2061                 if (address & size) {
2062                         int retval = target_write_memory(target, address, size, 1, buffer);
2063                         if (retval != ERROR_OK)
2064                                 return retval;
2065                         address += size;
2066                         count -= size;
2067                         buffer += size;
2068                 }
2069         }
2070
2071         /* Write the data with as large access size as possible. */
2072         for (; size > 0; size /= 2) {
2073                 uint32_t aligned = count - count % size;
2074                 if (aligned > 0) {
2075                         int retval = target_write_memory(target, address, size, aligned / size, buffer);
2076                         if (retval != ERROR_OK)
2077                                 return retval;
2078                         address += aligned;
2079                         count -= aligned;
2080                         buffer += aligned;
2081                 }
2082         }
2083
2084         return ERROR_OK;
2085 }
2086
2087 /* Single aligned words are guaranteed to use 16 or 32 bit access
2088  * mode respectively, otherwise data is handled as quickly as
2089  * possible
2090  */
2091 int target_read_buffer(struct target *target, target_addr_t address, uint32_t size, uint8_t *buffer)
2092 {
2093         LOG_DEBUG("reading buffer of %" PRIi32 " byte at " TARGET_ADDR_FMT,
2094                           size, address);
2095
2096         if (!target_was_examined(target)) {
2097                 LOG_ERROR("Target not examined yet");
2098                 return ERROR_FAIL;
2099         }
2100
2101         if (size == 0)
2102                 return ERROR_OK;
2103
2104         if ((address + size - 1) < address) {
2105                 /* GDB can request this when e.g. PC is 0xfffffffc */
2106                 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2107                                   address,
2108                                   size);
2109                 return ERROR_FAIL;
2110         }
2111
2112         return target->type->read_buffer(target, address, size, buffer);
2113 }
2114
2115 static int target_read_buffer_default(struct target *target, target_addr_t address, uint32_t count, uint8_t *buffer)
2116 {
2117         uint32_t size;
2118
2119         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2120          * will have something to do with the size we leave to it. */
2121         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2122                 if (address & size) {
2123                         int retval = target_read_memory(target, address, size, 1, buffer);
2124                         if (retval != ERROR_OK)
2125                                 return retval;
2126                         address += size;
2127                         count -= size;
2128                         buffer += size;
2129                 }
2130         }
2131
2132         /* Read the data with as large access size as possible. */
2133         for (; size > 0; size /= 2) {
2134                 uint32_t aligned = count - count % size;
2135                 if (aligned > 0) {
2136                         int retval = target_read_memory(target, address, size, aligned / size, buffer);
2137                         if (retval != ERROR_OK)
2138                                 return retval;
2139                         address += aligned;
2140                         count -= aligned;
2141                         buffer += aligned;
2142                 }
2143         }
2144
2145         return ERROR_OK;
2146 }
2147
2148 int target_checksum_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t* crc)
2149 {
2150         uint8_t *buffer;
2151         int retval;
2152         uint32_t i;
2153         uint32_t checksum = 0;
2154         if (!target_was_examined(target)) {
2155                 LOG_ERROR("Target not examined yet");
2156                 return ERROR_FAIL;
2157         }
2158
2159         retval = target->type->checksum_memory(target, address, size, &checksum);
2160         if (retval != ERROR_OK) {
2161                 buffer = malloc(size);
2162                 if (buffer == NULL) {
2163                         LOG_ERROR("error allocating buffer for section (%" PRId32 " bytes)", size);
2164                         return ERROR_COMMAND_SYNTAX_ERROR;
2165                 }
2166                 retval = target_read_buffer(target, address, size, buffer);
2167                 if (retval != ERROR_OK) {
2168                         free(buffer);
2169                         return retval;
2170                 }
2171
2172                 /* convert to target endianness */
2173                 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
2174                         uint32_t target_data;
2175                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
2176                         target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
2177                 }
2178
2179                 retval = image_calculate_checksum(buffer, size, &checksum);
2180                 free(buffer);
2181         }
2182
2183         *crc = checksum;
2184
2185         return retval;
2186 }
2187
2188 int target_blank_check_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t* blank,
2189         uint8_t erased_value)
2190 {
2191         int retval;
2192         if (!target_was_examined(target)) {
2193                 LOG_ERROR("Target not examined yet");
2194                 return ERROR_FAIL;
2195         }
2196
2197         if (target->type->blank_check_memory == 0)
2198                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2199
2200         retval = target->type->blank_check_memory(target, address, size, blank, erased_value);
2201
2202         return retval;
2203 }
2204
2205 int target_read_u64(struct target *target, target_addr_t address, uint64_t *value)
2206 {
2207         uint8_t value_buf[8];
2208         if (!target_was_examined(target)) {
2209                 LOG_ERROR("Target not examined yet");
2210                 return ERROR_FAIL;
2211         }
2212
2213         int retval = target_read_memory(target, address, 8, 1, value_buf);
2214
2215         if (retval == ERROR_OK) {
2216                 *value = target_buffer_get_u64(target, value_buf);
2217                 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2218                                   address,
2219                                   *value);
2220         } else {
2221                 *value = 0x0;
2222                 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2223                                   address);
2224         }
2225
2226         return retval;
2227 }
2228
2229 int target_read_u32(struct target *target, target_addr_t address, uint32_t *value)
2230 {
2231         uint8_t value_buf[4];
2232         if (!target_was_examined(target)) {
2233                 LOG_ERROR("Target not examined yet");
2234                 return ERROR_FAIL;
2235         }
2236
2237         int retval = target_read_memory(target, address, 4, 1, value_buf);
2238
2239         if (retval == ERROR_OK) {
2240                 *value = target_buffer_get_u32(target, value_buf);
2241                 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2242                                   address,
2243                                   *value);
2244         } else {
2245                 *value = 0x0;
2246                 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2247                                   address);
2248         }
2249
2250         return retval;
2251 }
2252
2253 int target_read_u16(struct target *target, target_addr_t address, uint16_t *value)
2254 {
2255         uint8_t value_buf[2];
2256         if (!target_was_examined(target)) {
2257                 LOG_ERROR("Target not examined yet");
2258                 return ERROR_FAIL;
2259         }
2260
2261         int retval = target_read_memory(target, address, 2, 1, value_buf);
2262
2263         if (retval == ERROR_OK) {
2264                 *value = target_buffer_get_u16(target, value_buf);
2265                 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%4.4" PRIx16,
2266                                   address,
2267                                   *value);
2268         } else {
2269                 *value = 0x0;
2270                 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2271                                   address);
2272         }
2273
2274         return retval;
2275 }
2276
2277 int target_read_u8(struct target *target, target_addr_t address, uint8_t *value)
2278 {
2279         if (!target_was_examined(target)) {
2280                 LOG_ERROR("Target not examined yet");
2281                 return ERROR_FAIL;
2282         }
2283
2284         int retval = target_read_memory(target, address, 1, 1, value);
2285
2286         if (retval == ERROR_OK) {
2287                 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2288                                   address,
2289                                   *value);
2290         } else {
2291                 *value = 0x0;
2292                 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2293                                   address);
2294         }
2295
2296         return retval;
2297 }
2298
2299 int target_write_u64(struct target *target, target_addr_t address, uint64_t value)
2300 {
2301         int retval;
2302         uint8_t value_buf[8];
2303         if (!target_was_examined(target)) {
2304                 LOG_ERROR("Target not examined yet");
2305                 return ERROR_FAIL;
2306         }
2307
2308         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2309                           address,
2310                           value);
2311
2312         target_buffer_set_u64(target, value_buf, value);
2313         retval = target_write_memory(target, address, 8, 1, value_buf);
2314         if (retval != ERROR_OK)
2315                 LOG_DEBUG("failed: %i", retval);
2316
2317         return retval;
2318 }
2319
2320 int target_write_u32(struct target *target, target_addr_t address, uint32_t value)
2321 {
2322         int retval;
2323         uint8_t value_buf[4];
2324         if (!target_was_examined(target)) {
2325                 LOG_ERROR("Target not examined yet");
2326                 return ERROR_FAIL;
2327         }
2328
2329         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2330                           address,
2331                           value);
2332
2333         target_buffer_set_u32(target, value_buf, value);
2334         retval = target_write_memory(target, address, 4, 1, value_buf);
2335         if (retval != ERROR_OK)
2336                 LOG_DEBUG("failed: %i", retval);
2337
2338         return retval;
2339 }
2340
2341 int target_write_u16(struct target *target, target_addr_t address, uint16_t value)
2342 {
2343         int retval;
2344         uint8_t value_buf[2];
2345         if (!target_was_examined(target)) {
2346                 LOG_ERROR("Target not examined yet");
2347                 return ERROR_FAIL;
2348         }
2349
2350         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2351                           address,
2352                           value);
2353
2354         target_buffer_set_u16(target, value_buf, value);
2355         retval = target_write_memory(target, address, 2, 1, value_buf);
2356         if (retval != ERROR_OK)
2357                 LOG_DEBUG("failed: %i", retval);
2358
2359         return retval;
2360 }
2361
2362 int target_write_u8(struct target *target, target_addr_t address, uint8_t value)
2363 {
2364         int retval;
2365         if (!target_was_examined(target)) {
2366                 LOG_ERROR("Target not examined yet");
2367                 return ERROR_FAIL;
2368         }
2369
2370         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2371                           address, value);
2372
2373         retval = target_write_memory(target, address, 1, 1, &value);
2374         if (retval != ERROR_OK)
2375                 LOG_DEBUG("failed: %i", retval);
2376
2377         return retval;
2378 }
2379
2380 int target_write_phys_u64(struct target *target, target_addr_t address, uint64_t value)
2381 {
2382         int retval;
2383         uint8_t value_buf[8];
2384         if (!target_was_examined(target)) {
2385                 LOG_ERROR("Target not examined yet");
2386                 return ERROR_FAIL;
2387         }
2388
2389         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2390                           address,
2391                           value);
2392
2393         target_buffer_set_u64(target, value_buf, value);
2394         retval = target_write_phys_memory(target, address, 8, 1, value_buf);
2395         if (retval != ERROR_OK)
2396                 LOG_DEBUG("failed: %i", retval);
2397
2398         return retval;
2399 }
2400
2401 int target_write_phys_u32(struct target *target, target_addr_t address, uint32_t value)
2402 {
2403         int retval;
2404         uint8_t value_buf[4];
2405         if (!target_was_examined(target)) {
2406                 LOG_ERROR("Target not examined yet");
2407                 return ERROR_FAIL;
2408         }
2409
2410         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2411                           address,
2412                           value);
2413
2414         target_buffer_set_u32(target, value_buf, value);
2415         retval = target_write_phys_memory(target, address, 4, 1, value_buf);
2416         if (retval != ERROR_OK)
2417                 LOG_DEBUG("failed: %i", retval);
2418
2419         return retval;
2420 }
2421
2422 int target_write_phys_u16(struct target *target, target_addr_t address, uint16_t value)
2423 {
2424         int retval;
2425         uint8_t value_buf[2];
2426         if (!target_was_examined(target)) {
2427                 LOG_ERROR("Target not examined yet");
2428                 return ERROR_FAIL;
2429         }
2430
2431         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2432                           address,
2433                           value);
2434
2435         target_buffer_set_u16(target, value_buf, value);
2436         retval = target_write_phys_memory(target, address, 2, 1, value_buf);
2437         if (retval != ERROR_OK)
2438                 LOG_DEBUG("failed: %i", retval);
2439
2440         return retval;
2441 }
2442
2443 int target_write_phys_u8(struct target *target, target_addr_t address, uint8_t value)
2444 {
2445         int retval;
2446         if (!target_was_examined(target)) {
2447                 LOG_ERROR("Target not examined yet");
2448                 return ERROR_FAIL;
2449         }
2450
2451         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2452                           address, value);
2453
2454         retval = target_write_phys_memory(target, address, 1, 1, &value);
2455         if (retval != ERROR_OK)
2456                 LOG_DEBUG("failed: %i", retval);
2457
2458         return retval;
2459 }
2460
2461 static int find_target(struct command_context *cmd_ctx, const char *name)
2462 {
2463         struct target *target = get_target(name);
2464         if (target == NULL) {
2465                 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2466                 return ERROR_FAIL;
2467         }
2468         if (!target->tap->enabled) {
2469                 LOG_USER("Target: TAP %s is disabled, "
2470                          "can't be the current target\n",
2471                          target->tap->dotted_name);
2472                 return ERROR_FAIL;
2473         }
2474
2475         cmd_ctx->current_target = target->target_number;
2476         return ERROR_OK;
2477 }
2478
2479
2480 COMMAND_HANDLER(handle_targets_command)
2481 {
2482         int retval = ERROR_OK;
2483         if (CMD_ARGC == 1) {
2484                 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2485                 if (retval == ERROR_OK) {
2486                         /* we're done! */
2487                         return retval;
2488                 }
2489         }
2490
2491         struct target *target = all_targets;
2492         command_print(CMD_CTX, "    TargetName         Type       Endian TapName            State       ");
2493         command_print(CMD_CTX, "--  ------------------ ---------- ------ ------------------ ------------");
2494         while (target) {
2495                 const char *state;
2496                 char marker = ' ';
2497
2498                 if (target->tap->enabled)
2499                         state = target_state_name(target);
2500                 else
2501                         state = "tap-disabled";
2502
2503                 if (CMD_CTX->current_target == target->target_number)
2504                         marker = '*';
2505
2506                 /* keep columns lined up to match the headers above */
2507                 command_print(CMD_CTX,
2508                                 "%2d%c %-18s %-10s %-6s %-18s %s",
2509                                 target->target_number,
2510                                 marker,
2511                                 target_name(target),
2512                                 target_type_name(target),
2513                                 Jim_Nvp_value2name_simple(nvp_target_endian,
2514                                         target->endianness)->name,
2515                                 target->tap->dotted_name,
2516                                 state);
2517                 target = target->next;
2518         }
2519
2520         return retval;
2521 }
2522
2523 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2524
2525 static int powerDropout;
2526 static int srstAsserted;
2527
2528 static int runPowerRestore;
2529 static int runPowerDropout;
2530 static int runSrstAsserted;
2531 static int runSrstDeasserted;
2532
2533 static int sense_handler(void)
2534 {
2535         static int prevSrstAsserted;
2536         static int prevPowerdropout;
2537
2538         int retval = jtag_power_dropout(&powerDropout);
2539         if (retval != ERROR_OK)
2540                 return retval;
2541
2542         int powerRestored;
2543         powerRestored = prevPowerdropout && !powerDropout;
2544         if (powerRestored)
2545                 runPowerRestore = 1;
2546
2547         int64_t current = timeval_ms();
2548         static int64_t lastPower;
2549         bool waitMore = lastPower + 2000 > current;
2550         if (powerDropout && !waitMore) {
2551                 runPowerDropout = 1;
2552                 lastPower = current;
2553         }
2554
2555         retval = jtag_srst_asserted(&srstAsserted);
2556         if (retval != ERROR_OK)
2557                 return retval;
2558
2559         int srstDeasserted;
2560         srstDeasserted = prevSrstAsserted && !srstAsserted;
2561
2562         static int64_t lastSrst;
2563         waitMore = lastSrst + 2000 > current;
2564         if (srstDeasserted && !waitMore) {
2565                 runSrstDeasserted = 1;
2566                 lastSrst = current;
2567         }
2568
2569         if (!prevSrstAsserted && srstAsserted)
2570                 runSrstAsserted = 1;
2571
2572         prevSrstAsserted = srstAsserted;
2573         prevPowerdropout = powerDropout;
2574
2575         if (srstDeasserted || powerRestored) {
2576                 /* Other than logging the event we can't do anything here.
2577                  * Issuing a reset is a particularly bad idea as we might
2578                  * be inside a reset already.
2579                  */
2580         }
2581
2582         return ERROR_OK;
2583 }
2584
2585 /* process target state changes */
2586 static int handle_target(void *priv)
2587 {
2588         Jim_Interp *interp = (Jim_Interp *)priv;
2589         int retval = ERROR_OK;
2590
2591         if (!is_jtag_poll_safe()) {
2592                 /* polling is disabled currently */
2593                 return ERROR_OK;
2594         }
2595
2596         /* we do not want to recurse here... */
2597         static int recursive;
2598         if (!recursive) {
2599                 recursive = 1;
2600                 sense_handler();
2601                 /* danger! running these procedures can trigger srst assertions and power dropouts.
2602                  * We need to avoid an infinite loop/recursion here and we do that by
2603                  * clearing the flags after running these events.
2604                  */
2605                 int did_something = 0;
2606                 if (runSrstAsserted) {
2607                         LOG_INFO("srst asserted detected, running srst_asserted proc.");
2608                         Jim_Eval(interp, "srst_asserted");
2609                         did_something = 1;
2610                 }
2611                 if (runSrstDeasserted) {
2612                         Jim_Eval(interp, "srst_deasserted");
2613                         did_something = 1;
2614                 }
2615                 if (runPowerDropout) {
2616                         LOG_INFO("Power dropout detected, running power_dropout proc.");
2617                         Jim_Eval(interp, "power_dropout");
2618                         did_something = 1;
2619                 }
2620                 if (runPowerRestore) {
2621                         Jim_Eval(interp, "power_restore");
2622                         did_something = 1;
2623                 }
2624
2625                 if (did_something) {
2626                         /* clear detect flags */
2627                         sense_handler();
2628                 }
2629
2630                 /* clear action flags */
2631
2632                 runSrstAsserted = 0;
2633                 runSrstDeasserted = 0;
2634                 runPowerRestore = 0;
2635                 runPowerDropout = 0;
2636
2637                 recursive = 0;
2638         }
2639
2640         /* Poll targets for state changes unless that's globally disabled.
2641          * Skip targets that are currently disabled.
2642          */
2643         for (struct target *target = all_targets;
2644                         is_jtag_poll_safe() && target;
2645                         target = target->next) {
2646
2647                 if (!target_was_examined(target))
2648                         continue;
2649
2650                 if (!target->tap->enabled)
2651                         continue;
2652
2653                 if (target->backoff.times > target->backoff.count) {
2654                         /* do not poll this time as we failed previously */
2655                         target->backoff.count++;
2656                         continue;
2657                 }
2658                 target->backoff.count = 0;
2659
2660                 /* only poll target if we've got power and srst isn't asserted */
2661                 if (!powerDropout && !srstAsserted) {
2662                         /* polling may fail silently until the target has been examined */
2663                         retval = target_poll(target);
2664                         if (retval != ERROR_OK) {
2665                                 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2666                                 if (target->backoff.times * polling_interval < 5000) {
2667                                         target->backoff.times *= 2;
2668                                         target->backoff.times++;
2669                                 }
2670
2671                                 /* Tell GDB to halt the debugger. This allows the user to
2672                                  * run monitor commands to handle the situation.
2673                                  */
2674                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2675                         }
2676                         if (target->backoff.times > 0) {
2677                                 LOG_USER("Polling target %s failed, trying to reexamine", target_name(target));
2678                                 target_reset_examined(target);
2679                                 retval = target_examine_one(target);
2680                                 /* Target examination could have failed due to unstable connection,
2681                                  * but we set the examined flag anyway to repoll it later */
2682                                 if (retval != ERROR_OK) {
2683                                         target->examined = true;
2684                                         LOG_USER("Examination failed, GDB will be halted. Polling again in %dms",
2685                                                  target->backoff.times * polling_interval);
2686                                         return retval;
2687                                 }
2688                         }
2689
2690                         /* Since we succeeded, we reset backoff count */
2691                         target->backoff.times = 0;
2692                 }
2693         }
2694
2695         return retval;
2696 }
2697
2698 COMMAND_HANDLER(handle_reg_command)
2699 {
2700         struct target *target;
2701         struct reg *reg = NULL;
2702         unsigned count = 0;
2703         char *value;
2704
2705         LOG_DEBUG("-");
2706
2707         target = get_current_target(CMD_CTX);
2708
2709         /* list all available registers for the current target */
2710         if (CMD_ARGC == 0) {
2711                 struct reg_cache *cache = target->reg_cache;
2712
2713                 count = 0;
2714                 while (cache) {
2715                         unsigned i;
2716
2717                         command_print(CMD_CTX, "===== %s", cache->name);
2718
2719                         for (i = 0, reg = cache->reg_list;
2720                                         i < cache->num_regs;
2721                                         i++, reg++, count++) {
2722                                 /* only print cached values if they are valid */
2723                                 if (reg->valid) {
2724                                         value = buf_to_str(reg->value,
2725                                                         reg->size, 16);
2726                                         command_print(CMD_CTX,
2727                                                         "(%i) %s (/%" PRIu32 "): 0x%s%s",
2728                                                         count, reg->name,
2729                                                         reg->size, value,
2730                                                         reg->dirty
2731                                                                 ? " (dirty)"
2732                                                                 : "");
2733                                         free(value);
2734                                 } else {
2735                                         command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2736                                                           count, reg->name,
2737                                                           reg->size) ;
2738                                 }
2739                         }
2740                         cache = cache->next;
2741                 }
2742
2743                 return ERROR_OK;
2744         }
2745
2746         /* access a single register by its ordinal number */
2747         if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2748                 unsigned num;
2749                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2750
2751                 struct reg_cache *cache = target->reg_cache;
2752                 count = 0;
2753                 while (cache) {
2754                         unsigned i;
2755                         for (i = 0; i < cache->num_regs; i++) {
2756                                 if (count++ == num) {
2757                                         reg = &cache->reg_list[i];
2758                                         break;
2759                                 }
2760                         }
2761                         if (reg)
2762                                 break;
2763                         cache = cache->next;
2764                 }
2765
2766                 if (!reg) {
2767                         command_print(CMD_CTX, "%i is out of bounds, the current target "
2768                                         "has only %i registers (0 - %i)", num, count, count - 1);
2769                         return ERROR_OK;
2770                 }
2771         } else {
2772                 /* access a single register by its name */
2773                 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2774
2775                 if (!reg) {
2776                         command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2777                         return ERROR_OK;
2778                 }
2779         }
2780
2781         assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2782
2783         /* display a register */
2784         if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2785                         && (CMD_ARGV[1][0] <= '9')))) {
2786                 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2787                         reg->valid = 0;
2788
2789                 if (reg->valid == 0)
2790                         reg->type->get(reg);
2791                 value = buf_to_str(reg->value, reg->size, 16);
2792                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2793                 free(value);
2794                 return ERROR_OK;
2795         }
2796
2797         /* set register value */
2798         if (CMD_ARGC == 2) {
2799                 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2800                 if (buf == NULL)
2801                         return ERROR_FAIL;
2802                 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2803
2804                 reg->type->set(reg, buf);
2805
2806                 value = buf_to_str(reg->value, reg->size, 16);
2807                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2808                 free(value);
2809
2810                 free(buf);
2811
2812                 return ERROR_OK;
2813         }
2814
2815         return ERROR_COMMAND_SYNTAX_ERROR;
2816 }
2817
2818 COMMAND_HANDLER(handle_poll_command)
2819 {
2820         int retval = ERROR_OK;
2821         struct target *target = get_current_target(CMD_CTX);
2822
2823         if (CMD_ARGC == 0) {
2824                 command_print(CMD_CTX, "background polling: %s",
2825                                 jtag_poll_get_enabled() ? "on" : "off");
2826                 command_print(CMD_CTX, "TAP: %s (%s)",
2827                                 target->tap->dotted_name,
2828                                 target->tap->enabled ? "enabled" : "disabled");
2829                 if (!target->tap->enabled)
2830                         return ERROR_OK;
2831                 retval = target_poll(target);
2832                 if (retval != ERROR_OK)
2833                         return retval;
2834                 retval = target_arch_state(target);
2835                 if (retval != ERROR_OK)
2836                         return retval;
2837         } else if (CMD_ARGC == 1) {
2838                 bool enable;
2839                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2840                 jtag_poll_set_enabled(enable);
2841         } else
2842                 return ERROR_COMMAND_SYNTAX_ERROR;
2843
2844         return retval;
2845 }
2846
2847 COMMAND_HANDLER(handle_wait_halt_command)
2848 {
2849         if (CMD_ARGC > 1)
2850                 return ERROR_COMMAND_SYNTAX_ERROR;
2851
2852         unsigned ms = DEFAULT_HALT_TIMEOUT;
2853         if (1 == CMD_ARGC) {
2854                 int retval = parse_uint(CMD_ARGV[0], &ms);
2855                 if (ERROR_OK != retval)
2856                         return ERROR_COMMAND_SYNTAX_ERROR;
2857         }
2858
2859         struct target *target = get_current_target(CMD_CTX);
2860         return target_wait_state(target, TARGET_HALTED, ms);
2861 }
2862
2863 /* wait for target state to change. The trick here is to have a low
2864  * latency for short waits and not to suck up all the CPU time
2865  * on longer waits.
2866  *
2867  * After 500ms, keep_alive() is invoked
2868  */
2869 int target_wait_state(struct target *target, enum target_state state, int ms)
2870 {
2871         int retval;
2872         int64_t then = 0, cur;
2873         bool once = true;
2874
2875         for (;;) {
2876                 retval = target_poll(target);
2877                 if (retval != ERROR_OK)
2878                         return retval;
2879                 if (target->state == state)
2880                         break;
2881                 cur = timeval_ms();
2882                 if (once) {
2883                         once = false;
2884                         then = timeval_ms();
2885                         LOG_DEBUG("waiting for target %s...",
2886                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2887                 }
2888
2889                 if (cur-then > 500)
2890                         keep_alive();
2891
2892                 if ((cur-then) > ms) {
2893                         LOG_ERROR("timed out while waiting for target %s",
2894                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2895                         return ERROR_FAIL;
2896                 }
2897         }
2898
2899         return ERROR_OK;
2900 }
2901
2902 COMMAND_HANDLER(handle_halt_command)
2903 {
2904         LOG_DEBUG("-");
2905
2906         struct target *target = get_current_target(CMD_CTX);
2907         int retval = target_halt(target);
2908         if (ERROR_OK != retval)
2909                 return retval;
2910
2911         if (CMD_ARGC == 1) {
2912                 unsigned wait_local;
2913                 retval = parse_uint(CMD_ARGV[0], &wait_local);
2914                 if (ERROR_OK != retval)
2915                         return ERROR_COMMAND_SYNTAX_ERROR;
2916                 if (!wait_local)
2917                         return ERROR_OK;
2918         }
2919
2920         return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2921 }
2922
2923 COMMAND_HANDLER(handle_soft_reset_halt_command)
2924 {
2925         struct target *target = get_current_target(CMD_CTX);
2926
2927         LOG_USER("requesting target halt and executing a soft reset");
2928
2929         target_soft_reset_halt(target);
2930
2931         return ERROR_OK;
2932 }
2933
2934 COMMAND_HANDLER(handle_reset_command)
2935 {
2936         if (CMD_ARGC > 1)
2937                 return ERROR_COMMAND_SYNTAX_ERROR;
2938
2939         enum target_reset_mode reset_mode = RESET_RUN;
2940         if (CMD_ARGC == 1) {
2941                 const Jim_Nvp *n;
2942                 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2943                 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
2944                         return ERROR_COMMAND_SYNTAX_ERROR;
2945                 reset_mode = n->value;
2946         }
2947
2948         /* reset *all* targets */
2949         return target_process_reset(CMD_CTX, reset_mode);
2950 }
2951
2952
2953 COMMAND_HANDLER(handle_resume_command)
2954 {
2955         int current = 1;
2956         if (CMD_ARGC > 1)
2957                 return ERROR_COMMAND_SYNTAX_ERROR;
2958
2959         struct target *target = get_current_target(CMD_CTX);
2960
2961         /* with no CMD_ARGV, resume from current pc, addr = 0,
2962          * with one arguments, addr = CMD_ARGV[0],
2963          * handle breakpoints, not debugging */
2964         target_addr_t addr = 0;
2965         if (CMD_ARGC == 1) {
2966                 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
2967                 current = 0;
2968         }
2969
2970         return target_resume(target, current, addr, 1, 0);
2971 }
2972
2973 COMMAND_HANDLER(handle_step_command)
2974 {
2975         if (CMD_ARGC > 1)
2976                 return ERROR_COMMAND_SYNTAX_ERROR;
2977
2978         LOG_DEBUG("-");
2979
2980         /* with no CMD_ARGV, step from current pc, addr = 0,
2981          * with one argument addr = CMD_ARGV[0],
2982          * handle breakpoints, debugging */
2983         target_addr_t addr = 0;
2984         int current_pc = 1;
2985         if (CMD_ARGC == 1) {
2986                 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
2987                 current_pc = 0;
2988         }
2989
2990         struct target *target = get_current_target(CMD_CTX);
2991
2992         return target->type->step(target, current_pc, addr, 1);
2993 }
2994
2995 static void handle_md_output(struct command_context *cmd_ctx,
2996                 struct target *target, target_addr_t address, unsigned size,
2997                 unsigned count, const uint8_t *buffer)
2998 {
2999         const unsigned line_bytecnt = 32;
3000         unsigned line_modulo = line_bytecnt / size;
3001
3002         char output[line_bytecnt * 4 + 1];
3003         unsigned output_len = 0;
3004
3005         const char *value_fmt;
3006         switch (size) {
3007         case 8:
3008                 value_fmt = "%16.16llx ";
3009                 break;
3010         case 4:
3011                 value_fmt = "%8.8x ";
3012                 break;
3013         case 2:
3014                 value_fmt = "%4.4x ";
3015                 break;
3016         case 1:
3017                 value_fmt = "%2.2x ";
3018                 break;
3019         default:
3020                 /* "can't happen", caller checked */
3021                 LOG_ERROR("invalid memory read size: %u", size);
3022                 return;
3023         }
3024
3025         for (unsigned i = 0; i < count; i++) {
3026                 if (i % line_modulo == 0) {
3027                         output_len += snprintf(output + output_len,
3028                                         sizeof(output) - output_len,
3029                                         TARGET_ADDR_FMT ": ",
3030                                         (address + (i * size)));
3031                 }
3032
3033                 uint64_t value = 0;
3034                 const uint8_t *value_ptr = buffer + i * size;
3035                 switch (size) {
3036                 case 8:
3037                         value = target_buffer_get_u64(target, value_ptr);
3038                         break;
3039                 case 4:
3040                         value = target_buffer_get_u32(target, value_ptr);
3041                         break;
3042                 case 2:
3043                         value = target_buffer_get_u16(target, value_ptr);
3044                         break;
3045                 case 1:
3046                         value = *value_ptr;
3047                 }
3048                 output_len += snprintf(output + output_len,
3049                                 sizeof(output) - output_len,
3050                                 value_fmt, value);
3051
3052                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
3053                         command_print(cmd_ctx, "%s", output);
3054                         output_len = 0;
3055                 }
3056         }
3057 }
3058
3059 COMMAND_HANDLER(handle_md_command)
3060 {
3061         if (CMD_ARGC < 1)
3062                 return ERROR_COMMAND_SYNTAX_ERROR;
3063
3064         unsigned size = 0;
3065         switch (CMD_NAME[2]) {
3066         case 'd':
3067                 size = 8;
3068                 break;
3069         case 'w':
3070                 size = 4;
3071                 break;
3072         case 'h':
3073                 size = 2;
3074                 break;
3075         case 'b':
3076                 size = 1;
3077                 break;
3078         default:
3079                 return ERROR_COMMAND_SYNTAX_ERROR;
3080         }
3081
3082         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3083         int (*fn)(struct target *target,
3084                         target_addr_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
3085         if (physical) {
3086                 CMD_ARGC--;
3087                 CMD_ARGV++;
3088                 fn = target_read_phys_memory;
3089         } else
3090                 fn = target_read_memory;
3091         if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
3092                 return ERROR_COMMAND_SYNTAX_ERROR;
3093
3094         target_addr_t address;
3095         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3096
3097         unsigned count = 1;
3098         if (CMD_ARGC == 2)
3099                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
3100
3101         uint8_t *buffer = calloc(count, size);
3102
3103         struct target *target = get_current_target(CMD_CTX);
3104         int retval = fn(target, address, size, count, buffer);
3105         if (ERROR_OK == retval)
3106                 handle_md_output(CMD_CTX, target, address, size, count, buffer);
3107
3108         free(buffer);
3109
3110         return retval;
3111 }
3112
3113 typedef int (*target_write_fn)(struct target *target,
3114                 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
3115
3116 static int target_fill_mem(struct target *target,
3117                 target_addr_t address,
3118                 target_write_fn fn,
3119                 unsigned data_size,
3120                 /* value */
3121                 uint64_t b,
3122                 /* count */
3123                 unsigned c)
3124 {
3125         /* We have to write in reasonably large chunks to be able
3126          * to fill large memory areas with any sane speed */
3127         const unsigned chunk_size = 16384;
3128         uint8_t *target_buf = malloc(chunk_size * data_size);
3129         if (target_buf == NULL) {
3130                 LOG_ERROR("Out of memory");
3131                 return ERROR_FAIL;
3132         }
3133
3134         for (unsigned i = 0; i < chunk_size; i++) {
3135                 switch (data_size) {
3136                 case 8:
3137                         target_buffer_set_u64(target, target_buf + i * data_size, b);
3138                         break;
3139                 case 4:
3140                         target_buffer_set_u32(target, target_buf + i * data_size, b);
3141                         break;
3142                 case 2:
3143                         target_buffer_set_u16(target, target_buf + i * data_size, b);
3144                         break;
3145                 case 1:
3146                         target_buffer_set_u8(target, target_buf + i * data_size, b);
3147                         break;
3148                 default:
3149                         exit(-1);
3150                 }
3151         }
3152
3153         int retval = ERROR_OK;
3154
3155         for (unsigned x = 0; x < c; x += chunk_size) {
3156                 unsigned current;
3157                 current = c - x;
3158                 if (current > chunk_size)
3159                         current = chunk_size;
3160                 retval = fn(target, address + x * data_size, data_size, current, target_buf);
3161                 if (retval != ERROR_OK)
3162                         break;
3163                 /* avoid GDB timeouts */
3164                 keep_alive();
3165         }
3166         free(target_buf);
3167
3168         return retval;
3169 }
3170
3171
3172 COMMAND_HANDLER(handle_mw_command)
3173 {
3174         if (CMD_ARGC < 2)
3175                 return ERROR_COMMAND_SYNTAX_ERROR;
3176         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3177         target_write_fn fn;
3178         if (physical) {
3179                 CMD_ARGC--;
3180                 CMD_ARGV++;
3181                 fn = target_write_phys_memory;
3182         } else
3183                 fn = target_write_memory;
3184         if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
3185                 return ERROR_COMMAND_SYNTAX_ERROR;
3186
3187         target_addr_t address;
3188         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3189
3190         target_addr_t value;
3191         COMMAND_PARSE_ADDRESS(CMD_ARGV[1], value);
3192
3193         unsigned count = 1;
3194         if (CMD_ARGC == 3)
3195                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
3196
3197         struct target *target = get_current_target(CMD_CTX);
3198         unsigned wordsize;
3199         switch (CMD_NAME[2]) {
3200                 case 'd':
3201                         wordsize = 8;
3202                         break;
3203                 case 'w':
3204                         wordsize = 4;
3205                         break;
3206                 case 'h':
3207                         wordsize = 2;
3208                         break;
3209                 case 'b':
3210                         wordsize = 1;
3211                         break;
3212                 default:
3213                         return ERROR_COMMAND_SYNTAX_ERROR;
3214         }
3215
3216         return target_fill_mem(target, address, fn, wordsize, value, count);
3217 }
3218
3219 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
3220                 target_addr_t *min_address, target_addr_t *max_address)
3221 {
3222         if (CMD_ARGC < 1 || CMD_ARGC > 5)
3223                 return ERROR_COMMAND_SYNTAX_ERROR;
3224
3225         /* a base address isn't always necessary,
3226          * default to 0x0 (i.e. don't relocate) */
3227         if (CMD_ARGC >= 2) {
3228                 target_addr_t addr;
3229                 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3230                 image->base_address = addr;
3231                 image->base_address_set = 1;
3232         } else
3233                 image->base_address_set = 0;
3234
3235         image->start_address_set = 0;
3236
3237         if (CMD_ARGC >= 4)
3238                 COMMAND_PARSE_ADDRESS(CMD_ARGV[3], *min_address);
3239         if (CMD_ARGC == 5) {
3240                 COMMAND_PARSE_ADDRESS(CMD_ARGV[4], *max_address);
3241                 /* use size (given) to find max (required) */
3242                 *max_address += *min_address;
3243         }
3244
3245         if (*min_address > *max_address)
3246                 return ERROR_COMMAND_SYNTAX_ERROR;
3247
3248         return ERROR_OK;
3249 }
3250
3251 COMMAND_HANDLER(handle_load_image_command)
3252 {
3253         uint8_t *buffer;
3254         size_t buf_cnt;
3255         uint32_t image_size;
3256         target_addr_t min_address = 0;
3257         target_addr_t max_address = -1;
3258         int i;
3259         struct image image;
3260
3261         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
3262                         &image, &min_address, &max_address);
3263         if (ERROR_OK != retval)
3264                 return retval;
3265
3266         struct target *target = get_current_target(CMD_CTX);
3267
3268         struct duration bench;
3269         duration_start(&bench);
3270
3271         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
3272                 return ERROR_FAIL;
3273
3274         image_size = 0x0;
3275         retval = ERROR_OK;
3276         for (i = 0; i < image.num_sections; i++) {
3277                 buffer = malloc(image.sections[i].size);
3278                 if (buffer == NULL) {
3279                         command_print(CMD_CTX,
3280                                                   "error allocating buffer for section (%d bytes)",
3281                                                   (int)(image.sections[i].size));
3282                         retval = ERROR_FAIL;
3283                         break;
3284                 }
3285
3286                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3287                 if (retval != ERROR_OK) {
3288                         free(buffer);
3289                         break;
3290                 }
3291
3292                 uint32_t offset = 0;
3293                 uint32_t length = buf_cnt;
3294
3295                 /* DANGER!!! beware of unsigned comparision here!!! */
3296
3297                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
3298                                 (image.sections[i].base_address < max_address)) {
3299
3300                         if (image.sections[i].base_address < min_address) {
3301                                 /* clip addresses below */
3302                                 offset += min_address-image.sections[i].base_address;
3303                                 length -= offset;
3304                         }
3305
3306                         if (image.sections[i].base_address + buf_cnt > max_address)
3307                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
3308
3309                         retval = target_write_buffer(target,
3310                                         image.sections[i].base_address + offset, length, buffer + offset);
3311                         if (retval != ERROR_OK) {
3312                                 free(buffer);
3313                                 break;
3314                         }
3315                         image_size += length;
3316                         command_print(CMD_CTX, "%u bytes written at address " TARGET_ADDR_FMT "",
3317                                         (unsigned int)length,
3318                                         image.sections[i].base_address + offset);
3319                 }
3320
3321                 free(buffer);
3322         }
3323
3324         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3325                 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
3326                                 "in %fs (%0.3f KiB/s)", image_size,
3327                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3328         }
3329
3330         image_close(&image);
3331
3332         return retval;
3333
3334 }
3335
3336 COMMAND_HANDLER(handle_dump_image_command)
3337 {
3338         struct fileio *fileio;
3339         uint8_t *buffer;
3340         int retval, retvaltemp;
3341         target_addr_t address, size;
3342         struct duration bench;
3343         struct target *target = get_current_target(CMD_CTX);
3344
3345         if (CMD_ARGC != 3)
3346                 return ERROR_COMMAND_SYNTAX_ERROR;
3347
3348         COMMAND_PARSE_ADDRESS(CMD_ARGV[1], address);
3349         COMMAND_PARSE_ADDRESS(CMD_ARGV[2], size);
3350
3351         uint32_t buf_size = (size > 4096) ? 4096 : size;
3352         buffer = malloc(buf_size);
3353         if (!buffer)
3354                 return ERROR_FAIL;
3355
3356         retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
3357         if (retval != ERROR_OK) {
3358                 free(buffer);
3359                 return retval;
3360         }
3361
3362         duration_start(&bench);
3363
3364         while (size > 0) {
3365                 size_t size_written;
3366                 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
3367                 retval = target_read_buffer(target, address, this_run_size, buffer);
3368                 if (retval != ERROR_OK)
3369                         break;
3370
3371                 retval = fileio_write(fileio, this_run_size, buffer, &size_written);
3372                 if (retval != ERROR_OK)
3373                         break;
3374
3375                 size -= this_run_size;
3376                 address += this_run_size;
3377         }
3378
3379         free(buffer);
3380
3381         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3382                 size_t filesize;
3383                 retval = fileio_size(fileio, &filesize);
3384                 if (retval != ERROR_OK)
3385                         return retval;
3386                 command_print(CMD_CTX,
3387                                 "dumped %zu bytes in %fs (%0.3f KiB/s)", filesize,
3388                                 duration_elapsed(&bench), duration_kbps(&bench, filesize));
3389         }
3390
3391         retvaltemp = fileio_close(fileio);
3392         if (retvaltemp != ERROR_OK)
3393                 return retvaltemp;
3394
3395         return retval;
3396 }
3397
3398 enum verify_mode {
3399         IMAGE_TEST = 0,
3400         IMAGE_VERIFY = 1,
3401         IMAGE_CHECKSUM_ONLY = 2
3402 };
3403
3404 static COMMAND_HELPER(handle_verify_image_command_internal, enum verify_mode verify)
3405 {
3406         uint8_t *buffer;
3407         size_t buf_cnt;
3408         uint32_t image_size;
3409         int i;
3410         int retval;
3411         uint32_t checksum = 0;
3412         uint32_t mem_checksum = 0;
3413
3414         struct image image;
3415
3416         struct target *target = get_current_target(CMD_CTX);
3417
3418         if (CMD_ARGC < 1)
3419                 return ERROR_COMMAND_SYNTAX_ERROR;
3420
3421         if (!target) {
3422                 LOG_ERROR("no target selected");
3423                 return ERROR_FAIL;
3424         }
3425
3426         struct duration bench;
3427         duration_start(&bench);
3428
3429         if (CMD_ARGC >= 2) {
3430                 target_addr_t addr;
3431                 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3432                 image.base_address = addr;
3433                 image.base_address_set = 1;
3434         } else {
3435                 image.base_address_set = 0;
3436                 image.base_address = 0x0;
3437         }
3438
3439         image.start_address_set = 0;
3440
3441         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
3442         if (retval != ERROR_OK)
3443                 return retval;
3444
3445         image_size = 0x0;
3446         int diffs = 0;
3447         retval = ERROR_OK;
3448         for (i = 0; i < image.num_sections; i++) {
3449                 buffer = malloc(image.sections[i].size);
3450                 if (buffer == NULL) {
3451                         command_print(CMD_CTX,
3452                                         "error allocating buffer for section (%d bytes)",
3453                                         (int)(image.sections[i].size));
3454                         break;
3455                 }
3456                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3457                 if (retval != ERROR_OK) {
3458                         free(buffer);
3459                         break;
3460                 }
3461
3462                 if (verify >= IMAGE_VERIFY) {
3463                         /* calculate checksum of image */
3464                         retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3465                         if (retval != ERROR_OK) {
3466                                 free(buffer);
3467                                 break;
3468                         }
3469
3470                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3471                         if (retval != ERROR_OK) {
3472                                 free(buffer);
3473                                 break;
3474                         }
3475                         if ((checksum != mem_checksum) && (verify == IMAGE_CHECKSUM_ONLY)) {
3476                                 LOG_ERROR("checksum mismatch");
3477                                 free(buffer);
3478                                 retval = ERROR_FAIL;
3479                                 goto done;
3480                         }
3481                         if (checksum != mem_checksum) {
3482                                 /* failed crc checksum, fall back to a binary compare */
3483                                 uint8_t *data;
3484
3485                                 if (diffs == 0)
3486                                         LOG_ERROR("checksum mismatch - attempting binary compare");
3487
3488                                 data = malloc(buf_cnt);
3489
3490                                 /* Can we use 32bit word accesses? */
3491                                 int size = 1;
3492                                 int count = buf_cnt;
3493                                 if ((count % 4) == 0) {
3494                                         size *= 4;
3495                                         count /= 4;
3496                                 }
3497                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3498                                 if (retval == ERROR_OK) {
3499                                         uint32_t t;
3500                                         for (t = 0; t < buf_cnt; t++) {
3501                                                 if (data[t] != buffer[t]) {
3502                                                         command_print(CMD_CTX,
3503                                                                                   "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3504                                                                                   diffs,
3505                                                                                   (unsigned)(t + image.sections[i].base_address),
3506                                                                                   data[t],
3507                                                                                   buffer[t]);
3508                                                         if (diffs++ >= 127) {
3509                                                                 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3510                                                                 free(data);
3511                                                                 free(buffer);
3512                                                                 goto done;
3513                                                         }
3514                                                 }
3515                                                 keep_alive();
3516                                         }
3517                                 }
3518                                 free(data);
3519                         }
3520                 } else {
3521                         command_print(CMD_CTX, "address " TARGET_ADDR_FMT " length 0x%08zx",
3522                                                   image.sections[i].base_address,
3523                                                   buf_cnt);
3524                 }
3525
3526                 free(buffer);
3527                 image_size += buf_cnt;
3528         }
3529         if (diffs > 0)
3530                 command_print(CMD_CTX, "No more differences found.");
3531 done:
3532         if (diffs > 0)
3533                 retval = ERROR_FAIL;
3534         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3535                 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3536                                 "in %fs (%0.3f KiB/s)", image_size,
3537                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3538         }
3539
3540         image_close(&image);
3541
3542         return retval;
3543 }
3544
3545 COMMAND_HANDLER(handle_verify_image_checksum_command)
3546 {
3547         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_CHECKSUM_ONLY);
3548 }
3549
3550 COMMAND_HANDLER(handle_verify_image_command)
3551 {
3552         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_VERIFY);
3553 }
3554
3555 COMMAND_HANDLER(handle_test_image_command)
3556 {
3557         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_TEST);
3558 }
3559
3560 static int handle_bp_command_list(struct command_context *cmd_ctx)
3561 {
3562         struct target *target = get_current_target(cmd_ctx);
3563         struct breakpoint *breakpoint = target->breakpoints;
3564         while (breakpoint) {
3565                 if (breakpoint->type == BKPT_SOFT) {
3566                         char *buf = buf_to_str(breakpoint->orig_instr,
3567                                         breakpoint->length, 16);
3568                         command_print(cmd_ctx, "IVA breakpoint: " TARGET_ADDR_FMT ", 0x%x, %i, 0x%s",
3569                                         breakpoint->address,
3570                                         breakpoint->length,
3571                                         breakpoint->set, buf);
3572                         free(buf);
3573                 } else {
3574                         if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3575                                 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3576                                                         breakpoint->asid,
3577                                                         breakpoint->length, breakpoint->set);
3578                         else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3579                                 command_print(cmd_ctx, "Hybrid breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %i",
3580                                                         breakpoint->address,
3581                                                         breakpoint->length, breakpoint->set);
3582                                 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3583                                                         breakpoint->asid);
3584                         } else
3585                                 command_print(cmd_ctx, "Breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %i",
3586                                                         breakpoint->address,
3587                                                         breakpoint->length, breakpoint->set);
3588                 }
3589
3590                 breakpoint = breakpoint->next;
3591         }
3592         return ERROR_OK;
3593 }
3594
3595 static int handle_bp_command_set(struct command_context *cmd_ctx,
3596                 target_addr_t addr, uint32_t asid, uint32_t length, int hw)
3597 {
3598         struct target *target = get_current_target(cmd_ctx);
3599         int retval;
3600
3601         if (asid == 0) {
3602                 retval = breakpoint_add(target, addr, length, hw);
3603                 if (ERROR_OK == retval)
3604                         command_print(cmd_ctx, "breakpoint set at " TARGET_ADDR_FMT "", addr);
3605                 else {
3606                         LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3607                         return retval;
3608                 }
3609         } else if (addr == 0) {
3610                 if (target->type->add_context_breakpoint == NULL) {
3611                         LOG_WARNING("Context breakpoint not available");
3612                         return ERROR_OK;
3613                 }
3614                 retval = context_breakpoint_add(target, asid, length, hw);
3615                 if (ERROR_OK == retval)
3616                         command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3617                 else {
3618                         LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3619                         return retval;
3620                 }
3621         } else {
3622                 if (target->type->add_hybrid_breakpoint == NULL) {
3623                         LOG_WARNING("Hybrid breakpoint not available");
3624                         return ERROR_OK;
3625                 }
3626                 retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3627                 if (ERROR_OK == retval)
3628                         command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3629                 else {
3630                         LOG_ERROR("Failure setting breakpoint, the same address is already used");
3631                         return retval;
3632                 }
3633         }
3634         return ERROR_OK;
3635 }
3636
3637 COMMAND_HANDLER(handle_bp_command)
3638 {
3639         target_addr_t addr;
3640         uint32_t asid;
3641         uint32_t length;
3642         int hw = BKPT_SOFT;
3643
3644         switch (CMD_ARGC) {
3645                 case 0:
3646                         return handle_bp_command_list(CMD_CTX);
3647
3648                 case 2:
3649                         asid = 0;
3650                         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3651                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3652                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3653
3654                 case 3:
3655                         if (strcmp(CMD_ARGV[2], "hw") == 0) {
3656                                 hw = BKPT_HARD;
3657                                 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3658                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3659                                 asid = 0;
3660                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3661                         } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
3662                                 hw = BKPT_HARD;
3663                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3664                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3665                                 addr = 0;
3666                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3667                         }
3668
3669                 case 4:
3670                         hw = BKPT_HARD;
3671                         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3672                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3673                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3674                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3675
3676                 default:
3677                         return ERROR_COMMAND_SYNTAX_ERROR;
3678         }
3679 }
3680
3681 COMMAND_HANDLER(handle_rbp_command)
3682 {
3683         if (CMD_ARGC != 1)
3684                 return ERROR_COMMAND_SYNTAX_ERROR;
3685
3686         target_addr_t addr;
3687         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3688
3689         struct target *target = get_current_target(CMD_CTX);
3690         breakpoint_remove(target, addr);
3691
3692         return ERROR_OK;
3693 }
3694
3695 COMMAND_HANDLER(handle_wp_command)
3696 {
3697         struct target *target = get_current_target(CMD_CTX);
3698
3699         if (CMD_ARGC == 0) {
3700                 struct watchpoint *watchpoint = target->watchpoints;
3701
3702                 while (watchpoint) {
3703                         command_print(CMD_CTX, "address: " TARGET_ADDR_FMT
3704                                         ", len: 0x%8.8" PRIx32
3705                                         ", r/w/a: %i, value: 0x%8.8" PRIx32
3706                                         ", mask: 0x%8.8" PRIx32,
3707                                         watchpoint->address,
3708                                         watchpoint->length,
3709                                         (int)watchpoint->rw,
3710                                         watchpoint->value,
3711                                         watchpoint->mask);
3712                         watchpoint = watchpoint->next;
3713                 }
3714                 return ERROR_OK;
3715         }
3716
3717         enum watchpoint_rw type = WPT_ACCESS;
3718         uint32_t addr = 0;
3719         uint32_t length = 0;
3720         uint32_t data_value = 0x0;
3721         uint32_t data_mask = 0xffffffff;
3722
3723         switch (CMD_ARGC) {
3724         case 5:
3725                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3726                 /* fall through */
3727         case 4:
3728                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3729                 /* fall through */
3730         case 3:
3731                 switch (CMD_ARGV[2][0]) {
3732                 case 'r':
3733                         type = WPT_READ;
3734                         break;
3735                 case 'w':
3736                         type = WPT_WRITE;
3737                         break;
3738                 case 'a':
3739                         type = WPT_ACCESS;
3740                         break;
3741                 default:
3742                         LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3743                         return ERROR_COMMAND_SYNTAX_ERROR;
3744                 }
3745                 /* fall through */
3746         case 2:
3747                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3748                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3749                 break;
3750
3751         default:
3752                 return ERROR_COMMAND_SYNTAX_ERROR;
3753         }
3754
3755         int retval = watchpoint_add(target, addr, length, type,
3756                         data_value, data_mask);
3757         if (ERROR_OK != retval)
3758                 LOG_ERROR("Failure setting watchpoints");
3759
3760         return retval;
3761 }
3762
3763 COMMAND_HANDLER(handle_rwp_command)
3764 {
3765         if (CMD_ARGC != 1)
3766                 return ERROR_COMMAND_SYNTAX_ERROR;
3767
3768         uint32_t addr;
3769         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3770
3771         struct target *target = get_current_target(CMD_CTX);
3772         watchpoint_remove(target, addr);
3773
3774         return ERROR_OK;
3775 }
3776
3777 /**
3778  * Translate a virtual address to a physical address.
3779  *
3780  * The low-level target implementation must have logged a detailed error
3781  * which is forwarded to telnet/GDB session.
3782  */
3783 COMMAND_HANDLER(handle_virt2phys_command)
3784 {
3785         if (CMD_ARGC != 1)
3786                 return ERROR_COMMAND_SYNTAX_ERROR;
3787
3788         target_addr_t va;
3789         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], va);
3790         target_addr_t pa;
3791
3792         struct target *target = get_current_target(CMD_CTX);
3793         int retval = target->type->virt2phys(target, va, &pa);
3794         if (retval == ERROR_OK)
3795                 command_print(CMD_CTX, "Physical address " TARGET_ADDR_FMT "", pa);
3796
3797         return retval;
3798 }
3799
3800 static void writeData(FILE *f, const void *data, size_t len)
3801 {
3802         size_t written = fwrite(data, 1, len, f);
3803         if (written != len)
3804                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3805 }
3806
3807 static void writeLong(FILE *f, int l, struct target *target)
3808 {
3809         uint8_t val[4];
3810
3811         target_buffer_set_u32(target, val, l);
3812         writeData(f, val, 4);
3813 }
3814
3815 static void writeString(FILE *f, char *s)
3816 {
3817         writeData(f, s, strlen(s));
3818 }
3819
3820 typedef unsigned char UNIT[2];  /* unit of profiling */
3821
3822 /* Dump a gmon.out histogram file. */
3823 static void write_gmon(uint32_t *samples, uint32_t sampleNum, const char *filename, bool with_range,
3824                         uint32_t start_address, uint32_t end_address, struct target *target)
3825 {
3826         uint32_t i;
3827         FILE *f = fopen(filename, "w");
3828         if (f == NULL)
3829                 return;
3830         writeString(f, "gmon");
3831         writeLong(f, 0x00000001, target); /* Version */
3832         writeLong(f, 0, target); /* padding */
3833         writeLong(f, 0, target); /* padding */
3834         writeLong(f, 0, target); /* padding */
3835
3836         uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
3837         writeData(f, &zero, 1);
3838
3839         /* figure out bucket size */
3840         uint32_t min;
3841         uint32_t max;
3842         if (with_range) {
3843                 min = start_address;
3844                 max = end_address;
3845         } else {
3846                 min = samples[0];
3847                 max = samples[0];
3848                 for (i = 0; i < sampleNum; i++) {
3849                         if (min > samples[i])
3850                                 min = samples[i];
3851                         if (max < samples[i])
3852                                 max = samples[i];
3853                 }
3854
3855                 /* max should be (largest sample + 1)
3856                  * Refer to binutils/gprof/hist.c (find_histogram_for_pc) */
3857                 max++;
3858         }
3859
3860         int addressSpace = max - min;
3861         assert(addressSpace >= 2);
3862
3863         /* FIXME: What is the reasonable number of buckets?
3864          * The profiling result will be more accurate if there are enough buckets. */
3865         static const uint32_t maxBuckets = 128 * 1024; /* maximum buckets. */
3866         uint32_t numBuckets = addressSpace / sizeof(UNIT);
3867         if (numBuckets > maxBuckets)
3868                 numBuckets = maxBuckets;
3869         int *buckets = malloc(sizeof(int) * numBuckets);
3870         if (buckets == NULL) {
3871                 fclose(f);
3872                 return;
3873         }
3874         memset(buckets, 0, sizeof(int) * numBuckets);
3875         for (i = 0; i < sampleNum; i++) {
3876                 uint32_t address = samples[i];
3877
3878                 if ((address < min) || (max <= address))
3879                         continue;
3880
3881                 long long a = address - min;
3882                 long long b = numBuckets;
3883                 long long c = addressSpace;
3884                 int index_t = (a * b) / c; /* danger!!!! int32 overflows */
3885                 buckets[index_t]++;
3886         }
3887
3888         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3889         writeLong(f, min, target);                      /* low_pc */
3890         writeLong(f, max, target);                      /* high_pc */
3891         writeLong(f, numBuckets, target);       /* # of buckets */
3892         writeLong(f, 100, target);                      /* KLUDGE! We lie, ca. 100Hz best case. */
3893         writeString(f, "seconds");
3894         for (i = 0; i < (15-strlen("seconds")); i++)
3895                 writeData(f, &zero, 1);
3896         writeString(f, "s");
3897
3898         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3899
3900         char *data = malloc(2 * numBuckets);
3901         if (data != NULL) {
3902                 for (i = 0; i < numBuckets; i++) {
3903                         int val;
3904                         val = buckets[i];
3905                         if (val > 65535)
3906                                 val = 65535;
3907                         data[i * 2] = val&0xff;
3908                         data[i * 2 + 1] = (val >> 8) & 0xff;
3909                 }
3910                 free(buckets);
3911                 writeData(f, data, numBuckets * 2);
3912                 free(data);
3913         } else
3914                 free(buckets);
3915
3916         fclose(f);
3917 }
3918
3919 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3920  * which will be used as a random sampling of PC */
3921 COMMAND_HANDLER(handle_profile_command)
3922 {
3923         struct target *target = get_current_target(CMD_CTX);
3924
3925         if ((CMD_ARGC != 2) && (CMD_ARGC != 4))
3926                 return ERROR_COMMAND_SYNTAX_ERROR;
3927
3928         const uint32_t MAX_PROFILE_SAMPLE_NUM = 10000;
3929         uint32_t offset;
3930         uint32_t num_of_samples;
3931         int retval = ERROR_OK;
3932
3933         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], offset);
3934
3935         uint32_t *samples = malloc(sizeof(uint32_t) * MAX_PROFILE_SAMPLE_NUM);
3936         if (samples == NULL) {
3937                 LOG_ERROR("No memory to store samples.");
3938                 return ERROR_FAIL;
3939         }
3940
3941         /**
3942          * Some cores let us sample the PC without the
3943          * annoying halt/resume step; for example, ARMv7 PCSR.
3944          * Provide a way to use that more efficient mechanism.
3945          */
3946         retval = target_profiling(target, samples, MAX_PROFILE_SAMPLE_NUM,
3947                                 &num_of_samples, offset);
3948         if (retval != ERROR_OK) {
3949                 free(samples);
3950                 return retval;
3951         }
3952
3953         assert(num_of_samples <= MAX_PROFILE_SAMPLE_NUM);
3954
3955         retval = target_poll(target);
3956         if (retval != ERROR_OK) {
3957                 free(samples);
3958                 return retval;
3959         }
3960         if (target->state == TARGET_RUNNING) {
3961                 retval = target_halt(target);
3962                 if (retval != ERROR_OK) {
3963                         free(samples);
3964                         return retval;
3965                 }
3966         }
3967
3968         retval = target_poll(target);
3969         if (retval != ERROR_OK) {
3970                 free(samples);
3971                 return retval;
3972         }
3973
3974         uint32_t start_address = 0;
3975         uint32_t end_address = 0;
3976         bool with_range = false;
3977         if (CMD_ARGC == 4) {
3978                 with_range = true;
3979                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], start_address);
3980                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], end_address);
3981         }
3982
3983         write_gmon(samples, num_of_samples, CMD_ARGV[1],
3984                    with_range, start_address, end_address, target);
3985         command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3986
3987         free(samples);
3988         return retval;
3989 }
3990
3991 static int new_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t val)
3992 {
3993         char *namebuf;
3994         Jim_Obj *nameObjPtr, *valObjPtr;
3995         int result;
3996
3997         namebuf = alloc_printf("%s(%d)", varname, idx);
3998         if (!namebuf)
3999                 return JIM_ERR;
4000
4001         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
4002         valObjPtr = Jim_NewIntObj(interp, val);
4003         if (!nameObjPtr || !valObjPtr) {
4004                 free(namebuf);
4005                 return JIM_ERR;
4006         }
4007
4008         Jim_IncrRefCount(nameObjPtr);
4009         Jim_IncrRefCount(valObjPtr);
4010         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
4011         Jim_DecrRefCount(interp, nameObjPtr);
4012         Jim_DecrRefCount(interp, valObjPtr);
4013         free(namebuf);
4014         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
4015         return result;
4016 }
4017
4018 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4019 {
4020         struct command_context *context;
4021         struct target *target;
4022
4023         context = current_command_context(interp);
4024         assert(context != NULL);
4025
4026         target = get_current_target(context);
4027         if (target == NULL) {
4028                 LOG_ERROR("mem2array: no current target");
4029                 return JIM_ERR;
4030         }
4031
4032         return target_mem2array(interp, target, argc - 1, argv + 1);
4033 }
4034
4035 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
4036 {
4037         long l;
4038         uint32_t width;
4039         int len;
4040         uint32_t addr;
4041         uint32_t count;
4042         uint32_t v;
4043         const char *varname;
4044         const char *phys;
4045         bool is_phys;
4046         int  n, e, retval;
4047         uint32_t i;
4048
4049         /* argv[1] = name of array to receive the data
4050          * argv[2] = desired width
4051          * argv[3] = memory address
4052          * argv[4] = count of times to read
4053          */
4054         if (argc < 4 || argc > 5) {
4055                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems [phys]");
4056                 return JIM_ERR;
4057         }
4058         varname = Jim_GetString(argv[0], &len);
4059         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
4060
4061         e = Jim_GetLong(interp, argv[1], &l);
4062         width = l;
4063         if (e != JIM_OK)
4064                 return e;
4065
4066         e = Jim_GetLong(interp, argv[2], &l);
4067         addr = l;
4068         if (e != JIM_OK)
4069                 return e;
4070         e = Jim_GetLong(interp, argv[3], &l);
4071         len = l;
4072         if (e != JIM_OK)
4073                 return e;
4074         is_phys = false;
4075         if (argc > 4) {
4076                 phys = Jim_GetString(argv[4], &n);
4077                 if (!strncmp(phys, "phys", n))
4078                         is_phys = true;
4079                 else
4080                         return JIM_ERR;
4081         }
4082         switch (width) {
4083                 case 8:
4084                         width = 1;
4085                         break;
4086                 case 16:
4087                         width = 2;
4088                         break;
4089                 case 32:
4090                         width = 4;
4091                         break;
4092                 default:
4093                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4094                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
4095                         return JIM_ERR;
4096         }
4097         if (len == 0) {
4098                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4099                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
4100                 return JIM_ERR;
4101         }
4102         if ((addr + (len * width)) < addr) {
4103                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4104                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
4105                 return JIM_ERR;
4106         }
4107         /* absurd transfer size? */
4108         if (len > 65536) {
4109                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4110                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
4111                 return JIM_ERR;
4112         }
4113
4114         if ((width == 1) ||
4115                 ((width == 2) && ((addr & 1) == 0)) ||
4116                 ((width == 4) && ((addr & 3) == 0))) {
4117                 /* all is well */
4118         } else {
4119                 char buf[100];
4120                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4121                 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
4122                                 addr,
4123                                 width);
4124                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
4125                 return JIM_ERR;
4126         }
4127
4128         /* Transfer loop */
4129
4130         /* index counter */
4131         n = 0;
4132
4133         size_t buffersize = 4096;
4134         uint8_t *buffer = malloc(buffersize);
4135         if (buffer == NULL)
4136                 return JIM_ERR;
4137
4138         /* assume ok */
4139         e = JIM_OK;
4140         while (len) {
4141                 /* Slurp... in buffer size chunks */
4142
4143                 count = len; /* in objects.. */
4144                 if (count > (buffersize / width))
4145                         count = (buffersize / width);
4146
4147                 if (is_phys)
4148                         retval = target_read_phys_memory(target, addr, width, count, buffer);
4149                 else
4150                         retval = target_read_memory(target, addr, width, count, buffer);
4151                 if (retval != ERROR_OK) {
4152                         /* BOO !*/
4153                         LOG_ERROR("mem2array: Read @ 0x%08" PRIx32 ", w=%" PRId32 ", cnt=%" PRId32 ", failed",
4154                                           addr,
4155                                           width,
4156                                           count);
4157                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4158                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
4159                         e = JIM_ERR;
4160                         break;
4161                 } else {
4162                         v = 0; /* shut up gcc */
4163                         for (i = 0; i < count ; i++, n++) {
4164                                 switch (width) {
4165                                         case 4:
4166                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
4167                                                 break;
4168                                         case 2:
4169                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
4170                                                 break;
4171                                         case 1:
4172                                                 v = buffer[i] & 0x0ff;
4173                                                 break;
4174                                 }
4175                                 new_int_array_element(interp, varname, n, v);
4176                         }
4177                         len -= count;
4178                         addr += count * width;
4179                 }
4180         }
4181
4182         free(buffer);
4183
4184         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4185
4186         return e;
4187 }
4188
4189 static int get_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t *val)
4190 {
4191         char *namebuf;
4192         Jim_Obj *nameObjPtr, *valObjPtr;
4193         int result;
4194         long l;
4195
4196         namebuf = alloc_printf("%s(%d)", varname, idx);
4197         if (!namebuf)
4198                 return JIM_ERR;
4199
4200         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
4201         if (!nameObjPtr) {
4202                 free(namebuf);
4203                 return JIM_ERR;
4204         }
4205
4206         Jim_IncrRefCount(nameObjPtr);
4207         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
4208         Jim_DecrRefCount(interp, nameObjPtr);
4209         free(namebuf);
4210         if (valObjPtr == NULL)
4211                 return JIM_ERR;
4212
4213         result = Jim_GetLong(interp, valObjPtr, &l);
4214         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
4215         *val = l;
4216         return result;
4217 }
4218
4219 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4220 {
4221         struct command_context *context;
4222         struct target *target;
4223
4224         context = current_command_context(interp);
4225         assert(context != NULL);
4226
4227         target = get_current_target(context);
4228         if (target == NULL) {
4229                 LOG_ERROR("array2mem: no current target");
4230                 return JIM_ERR;
4231         }
4232
4233         return target_array2mem(interp, target, argc-1, argv + 1);
4234 }
4235
4236 static int target_array2mem(Jim_Interp *interp, struct target *target,
4237                 int argc, Jim_Obj *const *argv)
4238 {
4239         long l;
4240         uint32_t width;
4241         int len;
4242         uint32_t addr;
4243         uint32_t count;
4244         uint32_t v;
4245         const char *varname;
4246         const char *phys;
4247         bool is_phys;
4248         int  n, e, retval;
4249         uint32_t i;
4250
4251         /* argv[1] = name of array to get the data
4252          * argv[2] = desired width
4253          * argv[3] = memory address
4254          * argv[4] = count to write
4255          */
4256         if (argc < 4 || argc > 5) {
4257                 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems [phys]");
4258                 return JIM_ERR;
4259         }
4260         varname = Jim_GetString(argv[0], &len);
4261         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
4262
4263         e = Jim_GetLong(interp, argv[1], &l);
4264         width = l;
4265         if (e != JIM_OK)
4266                 return e;
4267
4268         e = Jim_GetLong(interp, argv[2], &l);
4269         addr = l;
4270         if (e != JIM_OK)
4271                 return e;
4272         e = Jim_GetLong(interp, argv[3], &l);
4273         len = l;
4274         if (e != JIM_OK)
4275                 return e;
4276         is_phys = false;
4277         if (argc > 4) {
4278                 phys = Jim_GetString(argv[4], &n);
4279                 if (!strncmp(phys, "phys", n))
4280                         is_phys = true;
4281                 else
4282                         return JIM_ERR;
4283         }
4284         switch (width) {
4285                 case 8:
4286                         width = 1;
4287                         break;
4288                 case 16:
4289                         width = 2;
4290                         break;
4291                 case 32:
4292                         width = 4;
4293                         break;
4294                 default:
4295                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4296                         Jim_AppendStrings(interp, Jim_GetResult(interp),
4297                                         "Invalid width param, must be 8/16/32", NULL);
4298                         return JIM_ERR;
4299         }
4300         if (len == 0) {
4301                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4302                 Jim_AppendStrings(interp, Jim_GetResult(interp),
4303                                 "array2mem: zero width read?", NULL);
4304                 return JIM_ERR;
4305         }
4306         if ((addr + (len * width)) < addr) {
4307                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4308                 Jim_AppendStrings(interp, Jim_GetResult(interp),
4309                                 "array2mem: addr + len - wraps to zero?", NULL);
4310                 return JIM_ERR;
4311         }
4312         /* absurd transfer size? */
4313         if (len > 65536) {
4314                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4315                 Jim_AppendStrings(interp, Jim_GetResult(interp),
4316                                 "array2mem: absurd > 64K item request", NULL);
4317                 return JIM_ERR;
4318         }
4319
4320         if ((width == 1) ||
4321                 ((width == 2) && ((addr & 1) == 0)) ||
4322                 ((width == 4) && ((addr & 3) == 0))) {
4323                 /* all is well */
4324         } else {
4325                 char buf[100];
4326                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4327                 sprintf(buf, "array2mem address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
4328                                 addr,
4329                                 width);
4330                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
4331                 return JIM_ERR;
4332         }
4333
4334         /* Transfer loop */
4335
4336         /* index counter */
4337         n = 0;
4338         /* assume ok */
4339         e = JIM_OK;
4340
4341         size_t buffersize = 4096;
4342         uint8_t *buffer = malloc(buffersize);
4343         if (buffer == NULL)
4344                 return JIM_ERR;
4345
4346         while (len) {
4347                 /* Slurp... in buffer size chunks */
4348
4349                 count = len; /* in objects.. */
4350                 if (count > (buffersize / width))
4351                         count = (buffersize / width);
4352
4353                 v = 0; /* shut up gcc */
4354                 for (i = 0; i < count; i++, n++) {
4355                         get_int_array_element(interp, varname, n, &v);
4356                         switch (width) {
4357                         case 4:
4358                                 target_buffer_set_u32(target, &buffer[i * width], v);
4359                                 break;
4360                         case 2:
4361                                 target_buffer_set_u16(target, &buffer[i * width], v);
4362                                 break;
4363                         case 1:
4364                                 buffer[i] = v & 0x0ff;
4365                                 break;
4366                         }
4367                 }
4368                 len -= count;
4369
4370                 if (is_phys)
4371                         retval = target_write_phys_memory(target, addr, width, count, buffer);
4372                 else
4373                         retval = target_write_memory(target, addr, width, count, buffer);
4374                 if (retval != ERROR_OK) {
4375                         /* BOO !*/
4376                         LOG_ERROR("array2mem: Write @ 0x%08" PRIx32 ", w=%" PRId32 ", cnt=%" PRId32 ", failed",
4377                                           addr,
4378                                           width,
4379                                           count);
4380                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4381                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
4382                         e = JIM_ERR;
4383                         break;
4384                 }
4385                 addr += count * width;
4386         }
4387
4388         free(buffer);
4389
4390         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4391
4392         return e;
4393 }
4394
4395 /* FIX? should we propagate errors here rather than printing them
4396  * and continuing?
4397  */
4398 void target_handle_event(struct target *target, enum target_event e)
4399 {
4400         struct target_event_action *teap;
4401
4402         for (teap = target->event_action; teap != NULL; teap = teap->next) {
4403                 if (teap->event == e) {
4404                         LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
4405                                            target->target_number,
4406                                            target_name(target),
4407                                            target_type_name(target),
4408                                            e,
4409                                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
4410                                            Jim_GetString(teap->body, NULL));
4411                         if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK) {
4412                                 Jim_MakeErrorMessage(teap->interp);
4413                                 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(teap->interp), NULL));
4414                         }
4415                 }
4416         }
4417 }
4418
4419 /**
4420  * Returns true only if the target has a handler for the specified event.
4421  */
4422 bool target_has_event_action(struct target *target, enum target_event event)
4423 {
4424         struct target_event_action *teap;
4425
4426         for (teap = target->event_action; teap != NULL; teap = teap->next) {
4427                 if (teap->event == event)
4428                         return true;
4429         }
4430         return false;
4431 }
4432
4433 enum target_cfg_param {
4434         TCFG_TYPE,
4435         TCFG_EVENT,
4436         TCFG_WORK_AREA_VIRT,
4437         TCFG_WORK_AREA_PHYS,
4438         TCFG_WORK_AREA_SIZE,
4439         TCFG_WORK_AREA_BACKUP,
4440         TCFG_ENDIAN,
4441         TCFG_COREID,
4442         TCFG_CHAIN_POSITION,
4443         TCFG_DBGBASE,
4444         TCFG_RTOS,
4445         TCFG_DEFER_EXAMINE,
4446 };
4447
4448 static Jim_Nvp nvp_config_opts[] = {
4449         { .name = "-type",             .value = TCFG_TYPE },
4450         { .name = "-event",            .value = TCFG_EVENT },
4451         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
4452         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
4453         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
4454         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
4455         { .name = "-endian" ,          .value = TCFG_ENDIAN },
4456         { .name = "-coreid",           .value = TCFG_COREID },
4457         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
4458         { .name = "-dbgbase",          .value = TCFG_DBGBASE },
4459         { .name = "-rtos",             .value = TCFG_RTOS },
4460         { .name = "-defer-examine",    .value = TCFG_DEFER_EXAMINE },
4461         { .name = NULL, .value = -1 }
4462 };
4463
4464 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
4465 {
4466         Jim_Nvp *n;
4467         Jim_Obj *o;
4468         jim_wide w;
4469         int e;
4470
4471         /* parse config or cget options ... */
4472         while (goi->argc > 0) {
4473                 Jim_SetEmptyResult(goi->interp);
4474                 /* Jim_GetOpt_Debug(goi); */
4475
4476                 if (target->type->target_jim_configure) {
4477                         /* target defines a configure function */
4478                         /* target gets first dibs on parameters */
4479                         e = (*(target->type->target_jim_configure))(target, goi);
4480                         if (e == JIM_OK) {
4481                                 /* more? */
4482                                 continue;
4483                         }
4484                         if (e == JIM_ERR) {
4485                                 /* An error */
4486                                 return e;
4487                         }
4488                         /* otherwise we 'continue' below */
4489                 }
4490                 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
4491                 if (e != JIM_OK) {
4492                         Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
4493                         return e;
4494                 }
4495                 switch (n->value) {
4496                 case TCFG_TYPE:
4497                         /* not setable */
4498                         if (goi->isconfigure) {
4499                                 Jim_SetResultFormatted(goi->interp,
4500                                                 "not settable: %s", n->name);
4501                                 return JIM_ERR;
4502                         } else {
4503 no_params:
4504                                 if (goi->argc != 0) {
4505                                         Jim_WrongNumArgs(goi->interp,
4506                                                         goi->argc, goi->argv,
4507                                                         "NO PARAMS");
4508                                         return JIM_ERR;
4509                                 }
4510                         }
4511                         Jim_SetResultString(goi->interp,
4512                                         target_type_name(target), -1);
4513                         /* loop for more */
4514                         break;
4515                 case TCFG_EVENT:
4516                         if (goi->argc == 0) {
4517                                 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
4518                                 return JIM_ERR;
4519                         }
4520
4521                         e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
4522                         if (e != JIM_OK) {
4523                                 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
4524                                 return e;
4525                         }
4526
4527                         if (goi->isconfigure) {
4528                                 if (goi->argc != 1) {
4529                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
4530                                         return JIM_ERR;
4531                                 }
4532                         } else {
4533                                 if (goi->argc != 0) {
4534                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
4535                                         return JIM_ERR;
4536                                 }
4537                         }
4538
4539                         {
4540                                 struct target_event_action *teap;
4541
4542                                 teap = target->event_action;
4543                                 /* replace existing? */
4544                                 while (teap) {
4545                                         if (teap->event == (enum target_event)n->value)
4546                                                 break;
4547                                         teap = teap->next;
4548                                 }
4549
4550                                 if (goi->isconfigure) {
4551                                         bool replace = true;
4552                                         if (teap == NULL) {
4553                                                 /* create new */
4554                                                 teap = calloc(1, sizeof(*teap));
4555                                                 replace = false;
4556                                         }
4557                                         teap->event = n->value;
4558                                         teap->interp = goi->interp;
4559                                         Jim_GetOpt_Obj(goi, &o);
4560                                         if (teap->body)
4561                                                 Jim_DecrRefCount(teap->interp, teap->body);
4562                                         teap->body  = Jim_DuplicateObj(goi->interp, o);
4563                                         /*
4564                                          * FIXME:
4565                                          *     Tcl/TK - "tk events" have a nice feature.
4566                                          *     See the "BIND" command.
4567                                          *    We should support that here.
4568                                          *     You can specify %X and %Y in the event code.
4569                                          *     The idea is: %T - target name.
4570                                          *     The idea is: %N - target number
4571                                          *     The idea is: %E - event name.
4572                                          */
4573                                         Jim_IncrRefCount(teap->body);
4574
4575                                         if (!replace) {
4576                                                 /* add to head of event list */
4577                                                 teap->next = target->event_action;
4578                                                 target->event_action = teap;
4579                                         }
4580                                         Jim_SetEmptyResult(goi->interp);
4581                                 } else {
4582                                         /* get */
4583                                         if (teap == NULL)
4584                                                 Jim_SetEmptyResult(goi->interp);
4585                                         else
4586                                                 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
4587                                 }
4588                         }
4589                         /* loop for more */
4590                         break;
4591
4592                 case TCFG_WORK_AREA_VIRT:
4593                         if (goi->isconfigure) {
4594                                 target_free_all_working_areas(target);
4595                                 e = Jim_GetOpt_Wide(goi, &w);
4596                                 if (e != JIM_OK)
4597                                         return e;
4598                                 target->working_area_virt = w;
4599                                 target->working_area_virt_spec = true;
4600                         } else {
4601                                 if (goi->argc != 0)
4602                                         goto no_params;
4603                         }
4604                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
4605                         /* loop for more */
4606                         break;
4607
4608                 case TCFG_WORK_AREA_PHYS:
4609                         if (goi->isconfigure) {
4610                                 target_free_all_working_areas(target);
4611                                 e = Jim_GetOpt_Wide(goi, &w);
4612                                 if (e != JIM_OK)
4613                                         return e;
4614                                 target->working_area_phys = w;
4615                                 target->working_area_phys_spec = true;
4616                         } else {
4617                                 if (goi->argc != 0)
4618                                         goto no_params;
4619                         }
4620                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
4621                         /* loop for more */
4622                         break;
4623
4624                 case TCFG_WORK_AREA_SIZE:
4625                         if (goi->isconfigure) {
4626                                 target_free_all_working_areas(target);
4627                                 e = Jim_GetOpt_Wide(goi, &w);
4628                                 if (e != JIM_OK)
4629                                         return e;
4630                                 target->working_area_size = w;
4631                         } else {
4632                                 if (goi->argc != 0)
4633                                         goto no_params;
4634                         }
4635                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4636                         /* loop for more */
4637                         break;
4638
4639                 case TCFG_WORK_AREA_BACKUP:
4640                         if (goi->isconfigure) {
4641                                 target_free_all_working_areas(target);
4642                                 e = Jim_GetOpt_Wide(goi, &w);
4643                                 if (e != JIM_OK)
4644                                         return e;
4645                                 /* make this exactly 1 or 0 */
4646                                 target->backup_working_area = (!!w);
4647                         } else {
4648                                 if (goi->argc != 0)
4649                                         goto no_params;
4650                         }
4651                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
4652                         /* loop for more e*/
4653                         break;
4654
4655
4656                 case TCFG_ENDIAN:
4657                         if (goi->isconfigure) {
4658                                 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
4659                                 if (e != JIM_OK) {
4660                                         Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
4661                                         return e;
4662                                 }
4663                                 target->endianness = n->value;
4664                         } else {
4665                                 if (goi->argc != 0)
4666                                         goto no_params;
4667                         }
4668                         n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4669                         if (n->name == NULL) {
4670                                 target->endianness = TARGET_LITTLE_ENDIAN;
4671                                 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4672                         }
4673                         Jim_SetResultString(goi->interp, n->name, -1);
4674                         /* loop for more */
4675                         break;
4676
4677                 case TCFG_COREID:
4678                         if (goi->isconfigure) {
4679                                 e = Jim_GetOpt_Wide(goi, &w);
4680                                 if (e != JIM_OK)
4681                                         return e;
4682                                 target->coreid = (int32_t)w;
4683                         } else {
4684                                 if (goi->argc != 0)
4685                                         goto no_params;
4686                         }
4687                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4688                         /* loop for more */
4689                         break;
4690
4691                 case TCFG_CHAIN_POSITION:
4692                         if (goi->isconfigure) {
4693                                 Jim_Obj *o_t;
4694                                 struct jtag_tap *tap;
4695                                 target_free_all_working_areas(target);
4696                                 e = Jim_GetOpt_Obj(goi, &o_t);
4697                                 if (e != JIM_OK)
4698                                         return e;
4699                                 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
4700                                 if (tap == NULL)
4701                                         return JIM_ERR;
4702                                 /* make this exactly 1 or 0 */
4703                                 target->tap = tap;
4704                         } else {
4705                                 if (goi->argc != 0)
4706                                         goto no_params;
4707                         }
4708                         Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
4709                         /* loop for more e*/
4710                         break;
4711                 case TCFG_DBGBASE:
4712                         if (goi->isconfigure) {
4713                                 e = Jim_GetOpt_Wide(goi, &w);
4714                                 if (e != JIM_OK)
4715                                         return e;
4716                                 target->dbgbase = (uint32_t)w;
4717                                 target->dbgbase_set = true;
4718                         } else {
4719                                 if (goi->argc != 0)
4720                                         goto no_params;
4721                         }
4722                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
4723                         /* loop for more */
4724                         break;
4725
4726                 case TCFG_RTOS:
4727                         /* RTOS */
4728                         {
4729                                 int result = rtos_create(goi, target);
4730                                 if (result != JIM_OK)
4731                                         return result;
4732                         }
4733                         /* loop for more */
4734                         break;
4735
4736                 case TCFG_DEFER_EXAMINE:
4737                         /* DEFER_EXAMINE */
4738                         target->defer_examine = true;
4739                         /* loop for more */
4740                         break;
4741
4742                 }
4743         } /* while (goi->argc) */
4744
4745
4746                 /* done - we return */
4747         return JIM_OK;
4748 }
4749
4750 static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
4751 {
4752         Jim_GetOptInfo goi;
4753
4754         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4755         goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
4756         if (goi.argc < 1) {
4757                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4758                                  "missing: -option ...");
4759                 return JIM_ERR;
4760         }
4761         struct target *target = Jim_CmdPrivData(goi.interp);
4762         return target_configure(&goi, target);
4763 }
4764
4765 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4766 {
4767         const char *cmd_name = Jim_GetString(argv[0], NULL);
4768
4769         Jim_GetOptInfo goi;
4770         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4771
4772         if (goi.argc < 2 || goi.argc > 4) {
4773                 Jim_SetResultFormatted(goi.interp,
4774                                 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
4775                 return JIM_ERR;
4776         }
4777
4778         target_write_fn fn;
4779         fn = target_write_memory;
4780
4781         int e;
4782         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4783                 /* consume it */
4784                 struct Jim_Obj *obj;
4785                 e = Jim_GetOpt_Obj(&goi, &obj);
4786                 if (e != JIM_OK)
4787                         return e;
4788
4789                 fn = target_write_phys_memory;
4790         }
4791
4792         jim_wide a;
4793         e = Jim_GetOpt_Wide(&goi, &a);
4794         if (e != JIM_OK)
4795                 return e;
4796
4797         jim_wide b;
4798         e = Jim_GetOpt_Wide(&goi, &b);
4799         if (e != JIM_OK)
4800                 return e;
4801
4802         jim_wide c = 1;
4803         if (goi.argc == 1) {
4804                 e = Jim_GetOpt_Wide(&goi, &c);
4805                 if (e != JIM_OK)
4806                         return e;
4807         }
4808
4809         /* all args must be consumed */
4810         if (goi.argc != 0)
4811                 return JIM_ERR;
4812
4813         struct target *target = Jim_CmdPrivData(goi.interp);
4814         unsigned data_size;
4815         if (strcasecmp(cmd_name, "mww") == 0)
4816                 data_size = 4;
4817         else if (strcasecmp(cmd_name, "mwh") == 0)
4818                 data_size = 2;
4819         else if (strcasecmp(cmd_name, "mwb") == 0)
4820                 data_size = 1;
4821         else {
4822                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4823                 return JIM_ERR;
4824         }
4825
4826         return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4827 }
4828
4829 /**
4830 *  @brief Reads an array of words/halfwords/bytes from target memory starting at specified address.
4831 *
4832 *  Usage: mdw [phys] <address> [<count>] - for 32 bit reads
4833 *         mdh [phys] <address> [<count>] - for 16 bit reads
4834 *         mdb [phys] <address> [<count>] - for  8 bit reads
4835 *
4836 *  Count defaults to 1.
4837 *
4838 *  Calls target_read_memory or target_read_phys_memory depending on
4839 *  the presence of the "phys" argument
4840 *  Reads the target memory in blocks of max. 32 bytes, and returns an array of ints formatted
4841 *  to int representation in base16.
4842 *  Also outputs read data in a human readable form using command_print
4843 *
4844 *  @param phys if present target_read_phys_memory will be used instead of target_read_memory
4845 *  @param address address where to start the read. May be specified in decimal or hex using the standard "0x" prefix
4846 *  @param count optional count parameter to read an array of values. If not specified, defaults to 1.
4847 *  @returns:  JIM_ERR on error or JIM_OK on success and sets the result string to an array of ascii formatted numbers
4848 *  on success, with [<count>] number of elements.
4849 *
4850 *  In case of little endian target:
4851 *      Example1: "mdw 0x00000000"  returns "10123456"
4852 *      Exmaple2: "mdh 0x00000000 1" returns "3456"
4853 *      Example3: "mdb 0x00000000" returns "56"
4854 *      Example4: "mdh 0x00000000 2" returns "3456 1012"
4855 *      Example5: "mdb 0x00000000 3" returns "56 34 12"
4856 **/
4857 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4858 {
4859         const char *cmd_name = Jim_GetString(argv[0], NULL);
4860
4861         Jim_GetOptInfo goi;
4862         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4863
4864         if ((goi.argc < 1) || (goi.argc > 3)) {
4865                 Jim_SetResultFormatted(goi.interp,
4866                                 "usage: %s [phys] <address> [<count>]", cmd_name);
4867                 return JIM_ERR;
4868         }
4869
4870         int (*fn)(struct target *target,
4871                         target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer);
4872         fn = target_read_memory;
4873
4874         int e;
4875         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4876                 /* consume it */
4877                 struct Jim_Obj *obj;
4878                 e = Jim_GetOpt_Obj(&goi, &obj);
4879                 if (e != JIM_OK)
4880                         return e;
4881
4882                 fn = target_read_phys_memory;
4883         }
4884
4885         /* Read address parameter */
4886         jim_wide addr;
4887         e = Jim_GetOpt_Wide(&goi, &addr);
4888         if (e != JIM_OK)
4889                 return JIM_ERR;
4890
4891         /* If next parameter exists, read it out as the count parameter, if not, set it to 1 (default) */
4892         jim_wide count;
4893         if (goi.argc == 1) {
4894                 e = Jim_GetOpt_Wide(&goi, &count);
4895                 if (e != JIM_OK)
4896                         return JIM_ERR;
4897         } else
4898                 count = 1;
4899
4900         /* all args must be consumed */
4901         if (goi.argc != 0)
4902                 return JIM_ERR;
4903
4904         jim_wide dwidth = 1; /* shut up gcc */
4905         if (strcasecmp(cmd_name, "mdw") == 0)
4906                 dwidth = 4;
4907         else if (strcasecmp(cmd_name, "mdh") == 0)
4908                 dwidth = 2;
4909         else if (strcasecmp(cmd_name, "mdb") == 0)
4910                 dwidth = 1;
4911         else {
4912                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4913                 return JIM_ERR;
4914         }
4915
4916         /* convert count to "bytes" */
4917         int bytes = count * dwidth;
4918
4919         struct target *target = Jim_CmdPrivData(goi.interp);
4920         uint8_t  target_buf[32];
4921         jim_wide x, y, z;
4922         while (bytes > 0) {
4923                 y = (bytes < 16) ? bytes : 16; /* y = min(bytes, 16); */
4924
4925                 /* Try to read out next block */
4926                 e = fn(target, addr, dwidth, y / dwidth, target_buf);
4927
4928                 if (e != ERROR_OK) {
4929                         Jim_SetResultFormatted(interp, "error reading target @ 0x%08lx", (long)addr);
4930                         return JIM_ERR;
4931                 }
4932
4933                 command_print_sameline(NULL, "0x%08x ", (int)(addr));
4934                 switch (dwidth) {
4935                 case 4:
4936                         for (x = 0; x < 16 && x < y; x += 4) {
4937                                 z = target_buffer_get_u32(target, &(target_buf[x]));
4938                                 command_print_sameline(NULL, "%08x ", (int)(z));
4939                         }
4940                         for (; (x < 16) ; x += 4)
4941                                 command_print_sameline(NULL, "         ");
4942                         break;
4943                 case 2:
4944                         for (x = 0; x < 16 && x < y; x += 2) {
4945                                 z = target_buffer_get_u16(target, &(target_buf[x]));
4946                                 command_print_sameline(NULL, "%04x ", (int)(z));
4947                         }
4948                         for (; (x < 16) ; x += 2)
4949                                 command_print_sameline(NULL, "     ");
4950                         break;
4951                 case 1:
4952                 default:
4953                         for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4954                                 z = target_buffer_get_u8(target, &(target_buf[x]));
4955                                 command_print_sameline(NULL, "%02x ", (int)(z));
4956                         }
4957                         for (; (x < 16) ; x += 1)
4958                                 command_print_sameline(NULL, "   ");
4959                         break;
4960                 }
4961                 /* ascii-ify the bytes */
4962                 for (x = 0 ; x < y ; x++) {
4963                         if ((target_buf[x] >= 0x20) &&
4964                                 (target_buf[x] <= 0x7e)) {
4965                                 /* good */
4966                         } else {
4967                                 /* smack it */
4968                                 target_buf[x] = '.';
4969                         }
4970                 }
4971                 /* space pad  */
4972                 while (x < 16) {
4973                         target_buf[x] = ' ';
4974                         x++;
4975                 }
4976                 /* terminate */
4977                 target_buf[16] = 0;
4978                 /* print - with a newline */
4979                 command_print_sameline(NULL, "%s\n", target_buf);
4980                 /* NEXT... */
4981                 bytes -= 16;
4982                 addr += 16;
4983         }
4984         return JIM_OK;
4985 }
4986
4987 static int jim_target_mem2array(Jim_Interp *interp,
4988                 int argc, Jim_Obj *const *argv)
4989 {
4990         struct target *target = Jim_CmdPrivData(interp);
4991         return target_mem2array(interp, target, argc - 1, argv + 1);
4992 }
4993
4994 static int jim_target_array2mem(Jim_Interp *interp,
4995                 int argc, Jim_Obj *const *argv)
4996 {
4997         struct target *target = Jim_CmdPrivData(interp);
4998         return target_array2mem(interp, target, argc - 1, argv + 1);
4999 }
5000
5001 static int jim_target_tap_disabled(Jim_Interp *interp)
5002 {
5003         Jim_SetResultFormatted(interp, "[TAP is disabled]");
5004         return JIM_ERR;
5005 }
5006
5007 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5008 {
5009         bool allow_defer = false;
5010
5011         Jim_GetOptInfo goi;
5012         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5013         if (goi.argc > 1) {
5014                 const char *cmd_name = Jim_GetString(argv[0], NULL);
5015                 Jim_SetResultFormatted(goi.interp,
5016                                 "usage: %s ['allow-defer']", cmd_name);
5017                 return JIM_ERR;
5018         }
5019         if (goi.argc > 0 &&
5020             strcmp(Jim_GetString(argv[1], NULL), "allow-defer") == 0) {
5021                 /* consume it */
5022                 struct Jim_Obj *obj;
5023                 int e = Jim_GetOpt_Obj(&goi, &obj);
5024                 if (e != JIM_OK)
5025                         return e;
5026                 allow_defer = true;
5027         }
5028
5029         struct target *target = Jim_CmdPrivData(interp);
5030         if (!target->tap->enabled)
5031                 return jim_target_tap_disabled(interp);
5032
5033         if (allow_defer && target->defer_examine) {
5034                 LOG_INFO("Deferring arp_examine of %s", target_name(target));
5035                 LOG_INFO("Use arp_examine command to examine it manually!");
5036                 return JIM_OK;
5037         }
5038
5039         int e = target->type->examine(target);
5040         if (e != ERROR_OK)
5041                 return JIM_ERR;
5042         return JIM_OK;
5043 }
5044
5045 static int jim_target_was_examined(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
5046 {
5047         struct target *target = Jim_CmdPrivData(interp);
5048
5049         Jim_SetResultBool(interp, target_was_examined(target));
5050         return JIM_OK;
5051 }
5052
5053 static int jim_target_examine_deferred(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
5054 {
5055         struct target *target = Jim_CmdPrivData(interp);
5056
5057         Jim_SetResultBool(interp, target->defer_examine);
5058         return JIM_OK;
5059 }
5060
5061 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5062 {
5063         if (argc != 1) {
5064                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5065                 return JIM_ERR;
5066         }
5067         struct target *target = Jim_CmdPrivData(interp);
5068
5069         if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
5070                 return JIM_ERR;
5071
5072         return JIM_OK;
5073 }
5074
5075 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5076 {
5077         if (argc != 1) {
5078                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5079                 return JIM_ERR;
5080         }
5081         struct target *target = Jim_CmdPrivData(interp);
5082         if (!target->tap->enabled)
5083                 return jim_target_tap_disabled(interp);
5084
5085         int e;
5086         if (!(target_was_examined(target)))
5087                 e = ERROR_TARGET_NOT_EXAMINED;
5088         else
5089                 e = target->type->poll(target);
5090         if (e != ERROR_OK)
5091                 return JIM_ERR;
5092         return JIM_OK;
5093 }
5094
5095 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5096 {
5097         Jim_GetOptInfo goi;
5098         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5099
5100         if (goi.argc != 2) {
5101                 Jim_WrongNumArgs(interp, 0, argv,
5102                                 "([tT]|[fF]|assert|deassert) BOOL");
5103                 return JIM_ERR;
5104         }
5105
5106         Jim_Nvp *n;
5107         int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
5108         if (e != JIM_OK) {
5109                 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
5110                 return e;
5111         }
5112         /* the halt or not param */
5113         jim_wide a;
5114         e = Jim_GetOpt_Wide(&goi, &a);
5115         if (e != JIM_OK)
5116                 return e;
5117
5118         struct target *target = Jim_CmdPrivData(goi.interp);
5119         if (!target->tap->enabled)
5120                 return jim_target_tap_disabled(interp);
5121
5122         if (!target->type->assert_reset || !target->type->deassert_reset) {
5123                 Jim_SetResultFormatted(interp,
5124                                 "No target-specific reset for %s",
5125                                 target_name(target));
5126                 return JIM_ERR;
5127         }
5128
5129         if (target->defer_examine)
5130                 target_reset_examined(target);
5131
5132         /* determine if we should halt or not. */
5133         target->reset_halt = !!a;
5134         /* When this happens - all workareas are invalid. */
5135         target_free_all_working_areas_restore(target, 0);
5136
5137         /* do the assert */
5138         if (n->value == NVP_ASSERT)
5139                 e = target->type->assert_reset(target);
5140         else
5141                 e = target->type->deassert_reset(target);
5142         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
5143 }
5144
5145 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5146 {
5147         if (argc != 1) {
5148                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5149                 return JIM_ERR;
5150         }
5151         struct target *target = Jim_CmdPrivData(interp);
5152         if (!target->tap->enabled)
5153                 return jim_target_tap_disabled(interp);
5154         int e = target->type->halt(target);
5155         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
5156 }
5157
5158 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5159 {
5160         Jim_GetOptInfo goi;
5161         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5162
5163         /* params:  <name>  statename timeoutmsecs */
5164         if (goi.argc != 2) {
5165                 const char *cmd_name = Jim_GetString(argv[0], NULL);
5166                 Jim_SetResultFormatted(goi.interp,
5167                                 "%s <state_name> <timeout_in_msec>", cmd_name);
5168                 return JIM_ERR;
5169         }
5170
5171         Jim_Nvp *n;
5172         int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
5173         if (e != JIM_OK) {
5174                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state, 1);
5175                 return e;
5176         }
5177         jim_wide a;
5178         e = Jim_GetOpt_Wide(&goi, &a);
5179         if (e != JIM_OK)
5180                 return e;
5181         struct target *target = Jim_CmdPrivData(interp);
5182         if (!target->tap->enabled)
5183                 return jim_target_tap_disabled(interp);
5184
5185         e = target_wait_state(target, n->value, a);
5186         if (e != ERROR_OK) {
5187                 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
5188                 Jim_SetResultFormatted(goi.interp,
5189                                 "target: %s wait %s fails (%#s) %s",
5190                                 target_name(target), n->name,
5191                                 eObj, target_strerror_safe(e));
5192                 Jim_FreeNewObj(interp, eObj);
5193                 return JIM_ERR;
5194         }
5195         return JIM_OK;
5196 }
5197 /* List for human, Events defined for this target.
5198  * scripts/programs should use 'name cget -event NAME'
5199  */
5200 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5201 {
5202         struct command_context *cmd_ctx = current_command_context(interp);
5203         assert(cmd_ctx != NULL);
5204
5205         struct target *target = Jim_CmdPrivData(interp);
5206         struct target_event_action *teap = target->event_action;
5207         command_print(cmd_ctx, "Event actions for target (%d) %s\n",
5208                                    target->target_number,
5209                                    target_name(target));
5210         command_print(cmd_ctx, "%-25s | Body", "Event");
5211         command_print(cmd_ctx, "------------------------- | "
5212                         "----------------------------------------");
5213         while (teap) {
5214                 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
5215                 command_print(cmd_ctx, "%-25s | %s",
5216                                 opt->name, Jim_GetString(teap->body, NULL));
5217                 teap = teap->next;
5218         }
5219         command_print(cmd_ctx, "***END***");
5220         return JIM_OK;
5221 }
5222 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5223 {
5224         if (argc != 1) {
5225                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5226                 return JIM_ERR;
5227         }
5228         struct target *target = Jim_CmdPrivData(interp);
5229         Jim_SetResultString(interp, target_state_name(target), -1);
5230         return JIM_OK;
5231 }
5232 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5233 {
5234         Jim_GetOptInfo goi;
5235         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5236         if (goi.argc != 1) {
5237                 const char *cmd_name = Jim_GetString(argv[0], NULL);
5238                 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
5239                 return JIM_ERR;
5240         }
5241         Jim_Nvp *n;
5242         int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
5243         if (e != JIM_OK) {
5244                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
5245                 return e;
5246         }
5247         struct target *target = Jim_CmdPrivData(interp);
5248         target_handle_event(target, n->value);
5249         return JIM_OK;
5250 }
5251
5252 static const struct command_registration target_instance_command_handlers[] = {
5253         {
5254                 .name = "configure",
5255                 .mode = COMMAND_CONFIG,
5256                 .jim_handler = jim_target_configure,
5257                 .help  = "configure a new target for use",
5258                 .usage = "[target_attribute ...]",
5259         },
5260         {
5261                 .name = "cget",
5262                 .mode = COMMAND_ANY,
5263                 .jim_handler = jim_target_configure,
5264                 .help  = "returns the specified target attribute",
5265                 .usage = "target_attribute",
5266         },
5267         {
5268                 .name = "mww",
5269                 .mode = COMMAND_EXEC,
5270                 .jim_handler = jim_target_mw,
5271                 .help = "Write 32-bit word(s) to target memory",
5272                 .usage = "address data [count]",
5273         },
5274         {
5275                 .name = "mwh",
5276                 .mode = COMMAND_EXEC,
5277                 .jim_handler = jim_target_mw,
5278                 .help = "Write 16-bit half-word(s) to target memory",
5279                 .usage = "address data [count]",
5280         },
5281         {
5282                 .name = "mwb",
5283                 .mode = COMMAND_EXEC,
5284                 .jim_handler = jim_target_mw,
5285                 .help = "Write byte(s) to target memory",
5286                 .usage = "address data [count]",
5287         },
5288         {
5289                 .name = "mdw",
5290                 .mode = COMMAND_EXEC,
5291                 .jim_handler = jim_target_md,
5292                 .help = "Display target memory as 32-bit words",
5293                 .usage = "address [count]",
5294         },
5295         {
5296                 .name = "mdh",
5297                 .mode = COMMAND_EXEC,
5298                 .jim_handler = jim_target_md,
5299                 .help = "Display target memory as 16-bit half-words",
5300                 .usage = "address [count]",
5301         },
5302         {
5303                 .name = "mdb",
5304                 .mode = COMMAND_EXEC,
5305                 .jim_handler = jim_target_md,
5306                 .help = "Display target memory as 8-bit bytes",
5307                 .usage = "address [count]",
5308         },
5309         {
5310                 .name = "array2mem",
5311                 .mode = COMMAND_EXEC,
5312                 .jim_handler = jim_target_array2mem,
5313                 .help = "Writes Tcl array of 8/16/32 bit numbers "
5314                         "to target memory",
5315                 .usage = "arrayname bitwidth address count",
5316         },
5317         {
5318                 .name = "mem2array",
5319                 .mode = COMMAND_EXEC,
5320                 .jim_handler = jim_target_mem2array,
5321                 .help = "Loads Tcl array of 8/16/32 bit numbers "
5322                         "from target memory",
5323                 .usage = "arrayname bitwidth address count",
5324         },
5325         {
5326                 .name = "eventlist",
5327                 .mode = COMMAND_EXEC,
5328                 .jim_handler = jim_target_event_list,
5329                 .help = "displays a table of events defined for this target",
5330         },
5331         {
5332                 .name = "curstate",
5333                 .mode = COMMAND_EXEC,
5334                 .jim_handler = jim_target_current_state,
5335                 .help = "displays the current state of this target",
5336         },
5337         {
5338                 .name = "arp_examine",
5339                 .mode = COMMAND_EXEC,
5340                 .jim_handler = jim_target_examine,
5341                 .help = "used internally for reset processing",
5342                 .usage = "arp_examine ['allow-defer']",
5343         },
5344         {
5345                 .name = "was_examined",
5346                 .mode = COMMAND_EXEC,
5347                 .jim_handler = jim_target_was_examined,
5348                 .help = "used internally for reset processing",
5349                 .usage = "was_examined",
5350         },
5351         {
5352                 .name = "examine_deferred",
5353                 .mode = COMMAND_EXEC,
5354                 .jim_handler = jim_target_examine_deferred,
5355                 .help = "used internally for reset processing",
5356                 .usage = "examine_deferred",
5357         },
5358         {
5359                 .name = "arp_halt_gdb",
5360                 .mode = COMMAND_EXEC,
5361                 .jim_handler = jim_target_halt_gdb,
5362                 .help = "used internally for reset processing to halt GDB",
5363         },
5364         {
5365                 .name = "arp_poll",
5366                 .mode = COMMAND_EXEC,
5367                 .jim_handler = jim_target_poll,
5368                 .help = "used internally for reset processing",
5369         },
5370         {
5371                 .name = "arp_reset",
5372                 .mode = COMMAND_EXEC,
5373                 .jim_handler = jim_target_reset,
5374                 .help = "used internally for reset processing",
5375         },
5376         {
5377                 .name = "arp_halt",
5378                 .mode = COMMAND_EXEC,
5379                 .jim_handler = jim_target_halt,
5380                 .help = "used internally for reset processing",
5381         },
5382         {
5383                 .name = "arp_waitstate",
5384                 .mode = COMMAND_EXEC,
5385                 .jim_handler = jim_target_wait_state,
5386                 .help = "used internally for reset processing",
5387         },
5388         {
5389                 .name = "invoke-event",
5390                 .mode = COMMAND_EXEC,
5391                 .jim_handler = jim_target_invoke_event,
5392                 .help = "invoke handler for specified event",
5393                 .usage = "event_name",
5394         },
5395         COMMAND_REGISTRATION_DONE
5396 };
5397
5398 static int target_create(Jim_GetOptInfo *goi)
5399 {
5400         Jim_Obj *new_cmd;
5401         Jim_Cmd *cmd;
5402         const char *cp;
5403         int e;
5404         int x;
5405         struct target *target;
5406         struct command_context *cmd_ctx;
5407
5408         cmd_ctx = current_command_context(goi->interp);
5409         assert(cmd_ctx != NULL);
5410
5411         if (goi->argc < 3) {
5412                 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
5413                 return JIM_ERR;
5414         }
5415
5416         /* COMMAND */
5417         Jim_GetOpt_Obj(goi, &new_cmd);
5418         /* does this command exist? */
5419         cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
5420         if (cmd) {
5421                 cp = Jim_GetString(new_cmd, NULL);
5422                 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
5423                 return JIM_ERR;
5424         }
5425
5426         /* TYPE */
5427         e = Jim_GetOpt_String(goi, &cp, NULL);
5428         if (e != JIM_OK)
5429                 return e;
5430         struct transport *tr = get_current_transport();
5431         if (tr->override_target) {
5432                 e = tr->override_target(&cp);
5433                 if (e != ERROR_OK) {
5434                         LOG_ERROR("The selected transport doesn't support this target");
5435                         return JIM_ERR;
5436                 }
5437                 LOG_INFO("The selected transport took over low-level target control. The results might differ compared to plain JTAG/SWD");
5438         }
5439         /* now does target type exist */
5440         for (x = 0 ; target_types[x] ; x++) {
5441                 if (0 == strcmp(cp, target_types[x]->name)) {
5442                         /* found */
5443                         break;
5444                 }
5445
5446                 /* check for deprecated name */
5447                 if (target_types[x]->deprecated_name) {
5448                         if (0 == strcmp(cp, target_types[x]->deprecated_name)) {
5449                                 /* found */
5450                                 LOG_WARNING("target name is deprecated use: \'%s\'", target_types[x]->name);
5451                                 break;
5452                         }
5453                 }
5454         }
5455         if (target_types[x] == NULL) {
5456                 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
5457                 for (x = 0 ; target_types[x] ; x++) {
5458                         if (target_types[x + 1]) {
5459                                 Jim_AppendStrings(goi->interp,
5460                                                                    Jim_GetResult(goi->interp),
5461                                                                    target_types[x]->name,
5462                                                                    ", ", NULL);
5463                         } else {
5464                                 Jim_AppendStrings(goi->interp,
5465                                                                    Jim_GetResult(goi->interp),
5466                                                                    " or ",
5467                                                                    target_types[x]->name, NULL);
5468                         }
5469                 }
5470                 return JIM_ERR;
5471         }
5472
5473         /* Create it */
5474         target = calloc(1, sizeof(struct target));
5475         /* set target number */
5476         target->target_number = new_target_number();
5477         cmd_ctx->current_target = target->target_number;
5478
5479         /* allocate memory for each unique target type */
5480         target->type = calloc(1, sizeof(struct target_type));
5481
5482         memcpy(target->type, target_types[x], sizeof(struct target_type));
5483
5484         /* will be set by "-endian" */
5485         target->endianness = TARGET_ENDIAN_UNKNOWN;
5486
5487         /* default to first core, override with -coreid */
5488         target->coreid = 0;
5489
5490         target->working_area        = 0x0;
5491         target->working_area_size   = 0x0;
5492         target->working_areas       = NULL;
5493         target->backup_working_area = 0;
5494
5495         target->state               = TARGET_UNKNOWN;
5496         target->debug_reason        = DBG_REASON_UNDEFINED;
5497         target->reg_cache           = NULL;
5498         target->breakpoints         = NULL;
5499         target->watchpoints         = NULL;
5500         target->next                = NULL;
5501         target->arch_info           = NULL;
5502
5503         target->display             = 1;
5504
5505         target->halt_issued                     = false;
5506
5507         /* initialize trace information */
5508         target->trace_info = calloc(1, sizeof(struct trace));
5509
5510         target->dbgmsg          = NULL;
5511         target->dbg_msg_enabled = 0;
5512
5513         target->endianness = TARGET_ENDIAN_UNKNOWN;
5514
5515         target->rtos = NULL;
5516         target->rtos_auto_detect = false;
5517
5518         /* Do the rest as "configure" options */
5519         goi->isconfigure = 1;
5520         e = target_configure(goi, target);
5521
5522         if (target->tap == NULL) {
5523                 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
5524                 e = JIM_ERR;
5525         }
5526
5527         if (e != JIM_OK) {
5528                 free(target->type);
5529                 free(target);
5530                 return e;
5531         }
5532
5533         if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
5534                 /* default endian to little if not specified */
5535                 target->endianness = TARGET_LITTLE_ENDIAN;
5536         }
5537
5538         cp = Jim_GetString(new_cmd, NULL);
5539         target->cmd_name = strdup(cp);
5540
5541         /* create the target specific commands */
5542         if (target->type->commands) {
5543                 e = register_commands(cmd_ctx, NULL, target->type->commands);
5544                 if (ERROR_OK != e)
5545                         LOG_ERROR("unable to register '%s' commands", cp);
5546         }
5547         if (target->type->target_create)
5548                 (*(target->type->target_create))(target, goi->interp);
5549
5550         /* append to end of list */
5551         {
5552                 struct target **tpp;
5553                 tpp = &(all_targets);
5554                 while (*tpp)
5555                         tpp = &((*tpp)->next);
5556                 *tpp = target;
5557         }
5558
5559         /* now - create the new target name command */
5560         const struct command_registration target_subcommands[] = {
5561                 {
5562                         .chain = target_instance_command_handlers,
5563                 },
5564                 {
5565                         .chain = target->type->commands,
5566                 },
5567                 COMMAND_REGISTRATION_DONE
5568         };
5569         const struct command_registration target_commands[] = {
5570                 {
5571                         .name = cp,
5572                         .mode = COMMAND_ANY,
5573                         .help = "target command group",
5574                         .usage = "",
5575                         .chain = target_subcommands,
5576                 },
5577                 COMMAND_REGISTRATION_DONE
5578         };
5579         e = register_commands(cmd_ctx, NULL, target_commands);
5580         if (ERROR_OK != e)
5581                 return JIM_ERR;
5582
5583         struct command *c = command_find_in_context(cmd_ctx, cp);
5584         assert(c);
5585         command_set_handler_data(c, target);
5586
5587         return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
5588 }
5589
5590 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5591 {
5592         if (argc != 1) {
5593                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5594                 return JIM_ERR;
5595         }
5596         struct command_context *cmd_ctx = current_command_context(interp);
5597         assert(cmd_ctx != NULL);
5598
5599         Jim_SetResultString(interp, target_name(get_current_target(cmd_ctx)), -1);
5600         return JIM_OK;
5601 }
5602
5603 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5604 {
5605         if (argc != 1) {
5606                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5607                 return JIM_ERR;
5608         }
5609         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5610         for (unsigned x = 0; NULL != target_types[x]; x++) {
5611                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5612                         Jim_NewStringObj(interp, target_types[x]->name, -1));
5613         }
5614         return JIM_OK;
5615 }
5616
5617 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5618 {
5619         if (argc != 1) {
5620                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5621                 return JIM_ERR;
5622         }
5623         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5624         struct target *target = all_targets;
5625         while (target) {
5626                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5627                         Jim_NewStringObj(interp, target_name(target), -1));
5628                 target = target->next;
5629         }
5630         return JIM_OK;
5631 }
5632
5633 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5634 {
5635         int i;
5636         const char *targetname;
5637         int retval, len;
5638         struct target *target = (struct target *) NULL;
5639         struct target_list *head, *curr, *new;
5640         curr = (struct target_list *) NULL;
5641         head = (struct target_list *) NULL;
5642
5643         retval = 0;
5644         LOG_DEBUG("%d", argc);
5645         /* argv[1] = target to associate in smp
5646          * argv[2] = target to assoicate in smp
5647          * argv[3] ...
5648          */
5649
5650         for (i = 1; i < argc; i++) {
5651
5652                 targetname = Jim_GetString(argv[i], &len);
5653                 target = get_target(targetname);
5654                 LOG_DEBUG("%s ", targetname);
5655                 if (target) {
5656                         new = malloc(sizeof(struct target_list));
5657                         new->target = target;
5658                         new->next = (struct target_list *)NULL;
5659                         if (head == (struct target_list *)NULL) {
5660                                 head = new;
5661                                 curr = head;
5662                         } else {
5663                                 curr->next = new;
5664                                 curr = new;
5665                         }
5666                 }
5667         }
5668         /*  now parse the list of cpu and put the target in smp mode*/
5669         curr = head;
5670
5671         while (curr != (struct target_list *)NULL) {
5672                 target = curr->target;
5673                 target->smp = 1;
5674                 target->head = head;
5675                 curr = curr->next;
5676         }
5677
5678         if (target && target->rtos)
5679                 retval = rtos_smp_init(head->target);
5680
5681         return retval;
5682 }
5683
5684
5685 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5686 {
5687         Jim_GetOptInfo goi;
5688         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5689         if (goi.argc < 3) {
5690                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5691                         "<name> <target_type> [<target_options> ...]");
5692                 return JIM_ERR;
5693         }
5694         return target_create(&goi);
5695 }
5696
5697 static const struct command_registration target_subcommand_handlers[] = {
5698         {
5699                 .name = "init",
5700                 .mode = COMMAND_CONFIG,
5701                 .handler = handle_target_init_command,
5702                 .help = "initialize targets",
5703         },
5704         {
5705                 .name = "create",
5706                 /* REVISIT this should be COMMAND_CONFIG ... */
5707                 .mode = COMMAND_ANY,
5708                 .jim_handler = jim_target_create,
5709                 .usage = "name type '-chain-position' name [options ...]",
5710                 .help = "Creates and selects a new target",
5711         },
5712         {
5713                 .name = "current",
5714                 .mode = COMMAND_ANY,
5715                 .jim_handler = jim_target_current,
5716                 .help = "Returns the currently selected target",
5717         },
5718         {
5719                 .name = "types",
5720                 .mode = COMMAND_ANY,
5721                 .jim_handler = jim_target_types,
5722                 .help = "Returns the available target types as "
5723                                 "a list of strings",
5724         },
5725         {
5726                 .name = "names",
5727                 .mode = COMMAND_ANY,
5728                 .jim_handler = jim_target_names,
5729                 .help = "Returns the names of all targets as a list of strings",
5730         },
5731         {
5732                 .name = "smp",
5733                 .mode = COMMAND_ANY,
5734                 .jim_handler = jim_target_smp,
5735                 .usage = "targetname1 targetname2 ...",
5736                 .help = "gather several target in a smp list"
5737         },
5738
5739         COMMAND_REGISTRATION_DONE
5740 };
5741
5742 struct FastLoad {
5743         target_addr_t address;
5744         uint8_t *data;
5745         int length;
5746
5747 };
5748
5749 static int fastload_num;
5750 static struct FastLoad *fastload;
5751
5752 static void free_fastload(void)
5753 {
5754         if (fastload != NULL) {
5755                 int i;
5756                 for (i = 0; i < fastload_num; i++) {
5757                         if (fastload[i].data)
5758                                 free(fastload[i].data);
5759                 }
5760                 free(fastload);
5761                 fastload = NULL;
5762         }
5763 }
5764
5765 COMMAND_HANDLER(handle_fast_load_image_command)
5766 {
5767         uint8_t *buffer;
5768         size_t buf_cnt;
5769         uint32_t image_size;
5770         target_addr_t min_address = 0;
5771         target_addr_t max_address = -1;
5772         int i;
5773
5774         struct image image;
5775
5776         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
5777                         &image, &min_address, &max_address);
5778         if (ERROR_OK != retval)
5779                 return retval;
5780
5781         struct duration bench;
5782         duration_start(&bench);
5783
5784         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
5785         if (retval != ERROR_OK)
5786                 return retval;
5787
5788         image_size = 0x0;
5789         retval = ERROR_OK;
5790         fastload_num = image.num_sections;
5791         fastload = malloc(sizeof(struct FastLoad)*image.num_sections);
5792         if (fastload == NULL) {
5793                 command_print(CMD_CTX, "out of memory");
5794                 image_close(&image);
5795                 return ERROR_FAIL;
5796         }
5797         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
5798         for (i = 0; i < image.num_sections; i++) {
5799                 buffer = malloc(image.sections[i].size);
5800                 if (buffer == NULL) {
5801                         command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5802                                                   (int)(image.sections[i].size));
5803                         retval = ERROR_FAIL;
5804                         break;
5805                 }
5806
5807                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
5808                 if (retval != ERROR_OK) {
5809                         free(buffer);
5810                         break;
5811                 }
5812
5813                 uint32_t offset = 0;
5814                 uint32_t length = buf_cnt;
5815
5816                 /* DANGER!!! beware of unsigned comparision here!!! */
5817
5818                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
5819                                 (image.sections[i].base_address < max_address)) {
5820                         if (image.sections[i].base_address < min_address) {
5821                                 /* clip addresses below */
5822                                 offset += min_address-image.sections[i].base_address;
5823                                 length -= offset;
5824                         }
5825
5826                         if (image.sections[i].base_address + buf_cnt > max_address)
5827                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5828
5829                         fastload[i].address = image.sections[i].base_address + offset;
5830                         fastload[i].data = malloc(length);
5831                         if (fastload[i].data == NULL) {
5832                                 free(buffer);
5833                                 command_print(CMD_CTX, "error allocating buffer for section (%" PRIu32 " bytes)",
5834                                                           length);
5835                                 retval = ERROR_FAIL;
5836                                 break;
5837                         }
5838                         memcpy(fastload[i].data, buffer + offset, length);
5839                         fastload[i].length = length;
5840
5841                         image_size += length;
5842                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
5843                                                   (unsigned int)length,
5844                                                   ((unsigned int)(image.sections[i].base_address + offset)));
5845                 }
5846
5847                 free(buffer);
5848         }
5849
5850         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
5851                 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
5852                                 "in %fs (%0.3f KiB/s)", image_size,
5853                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5854
5855                 command_print(CMD_CTX,
5856                                 "WARNING: image has not been loaded to target!"
5857                                 "You can issue a 'fast_load' to finish loading.");
5858         }
5859
5860         image_close(&image);
5861
5862         if (retval != ERROR_OK)
5863                 free_fastload();
5864
5865         return retval;
5866 }
5867
5868 COMMAND_HANDLER(handle_fast_load_command)
5869 {
5870         if (CMD_ARGC > 0)
5871                 return ERROR_COMMAND_SYNTAX_ERROR;
5872         if (fastload == NULL) {
5873                 LOG_ERROR("No image in memory");
5874                 return ERROR_FAIL;
5875         }
5876         int i;
5877         int64_t ms = timeval_ms();
5878         int size = 0;
5879         int retval = ERROR_OK;
5880         for (i = 0; i < fastload_num; i++) {
5881                 struct target *target = get_current_target(CMD_CTX);
5882                 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
5883                                           (unsigned int)(fastload[i].address),
5884                                           (unsigned int)(fastload[i].length));
5885                 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5886                 if (retval != ERROR_OK)
5887                         break;
5888                 size += fastload[i].length;
5889         }
5890         if (retval == ERROR_OK) {
5891                 int64_t after = timeval_ms();
5892                 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5893         }
5894         return retval;
5895 }
5896
5897 static const struct command_registration target_command_handlers[] = {
5898         {
5899                 .name = "targets",
5900                 .handler = handle_targets_command,
5901                 .mode = COMMAND_ANY,
5902                 .help = "change current default target (one parameter) "
5903                         "or prints table of all targets (no parameters)",
5904                 .usage = "[target]",
5905         },
5906         {
5907                 .name = "target",
5908                 .mode = COMMAND_CONFIG,
5909                 .help = "configure target",
5910
5911                 .chain = target_subcommand_handlers,
5912         },
5913         COMMAND_REGISTRATION_DONE
5914 };
5915
5916 int target_register_commands(struct command_context *cmd_ctx)
5917 {
5918         return register_commands(cmd_ctx, NULL, target_command_handlers);
5919 }
5920
5921 static bool target_reset_nag = true;
5922
5923 bool get_target_reset_nag(void)
5924 {
5925         return target_reset_nag;
5926 }
5927
5928 COMMAND_HANDLER(handle_target_reset_nag)
5929 {
5930         return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5931                         &target_reset_nag, "Nag after each reset about options to improve "
5932                         "performance");
5933 }
5934
5935 COMMAND_HANDLER(handle_ps_command)
5936 {
5937         struct target *target = get_current_target(CMD_CTX);
5938         char *display;
5939         if (target->state != TARGET_HALTED) {
5940                 LOG_INFO("target not halted !!");
5941                 return ERROR_OK;
5942         }
5943
5944         if ((target->rtos) && (target->rtos->type)
5945                         && (target->rtos->type->ps_command)) {
5946                 display = target->rtos->type->ps_command(target);
5947                 command_print(CMD_CTX, "%s", display);
5948                 free(display);
5949                 return ERROR_OK;
5950         } else {
5951                 LOG_INFO("failed");
5952                 return ERROR_TARGET_FAILURE;
5953         }
5954 }
5955
5956 static void binprint(struct command_context *cmd_ctx, const char *text, const uint8_t *buf, int size)
5957 {
5958         if (text != NULL)
5959                 command_print_sameline(cmd_ctx, "%s", text);
5960         for (int i = 0; i < size; i++)
5961                 command_print_sameline(cmd_ctx, " %02x", buf[i]);
5962         command_print(cmd_ctx, " ");
5963 }
5964
5965 COMMAND_HANDLER(handle_test_mem_access_command)
5966 {
5967         struct target *target = get_current_target(CMD_CTX);
5968         uint32_t test_size;
5969         int retval = ERROR_OK;
5970
5971         if (target->state != TARGET_HALTED) {
5972                 LOG_INFO("target not halted !!");
5973                 return ERROR_FAIL;
5974         }
5975
5976         if (CMD_ARGC != 1)
5977                 return ERROR_COMMAND_SYNTAX_ERROR;
5978
5979         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], test_size);
5980
5981         /* Test reads */
5982         size_t num_bytes = test_size + 4;
5983
5984         struct working_area *wa = NULL;
5985         retval = target_alloc_working_area(target, num_bytes, &wa);
5986         if (retval != ERROR_OK) {
5987                 LOG_ERROR("Not enough working area");
5988                 return ERROR_FAIL;
5989         }
5990
5991         uint8_t *test_pattern = malloc(num_bytes);
5992
5993         for (size_t i = 0; i < num_bytes; i++)
5994                 test_pattern[i] = rand();
5995
5996         retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
5997         if (retval != ERROR_OK) {
5998                 LOG_ERROR("Test pattern write failed");
5999                 goto out;
6000         }
6001
6002         for (int host_offset = 0; host_offset <= 1; host_offset++) {
6003                 for (int size = 1; size <= 4; size *= 2) {
6004                         for (int offset = 0; offset < 4; offset++) {
6005                                 uint32_t count = test_size / size;
6006                                 size_t host_bufsiz = (count + 2) * size + host_offset;
6007                                 uint8_t *read_ref = malloc(host_bufsiz);
6008                                 uint8_t *read_buf = malloc(host_bufsiz);
6009
6010                                 for (size_t i = 0; i < host_bufsiz; i++) {
6011                                         read_ref[i] = rand();
6012                                         read_buf[i] = read_ref[i];
6013                                 }
6014                                 command_print_sameline(CMD_CTX,
6015                                                 "Test read %" PRIu32 " x %d @ %d to %saligned buffer: ", count,
6016                                                 size, offset, host_offset ? "un" : "");
6017
6018                                 struct duration bench;
6019                                 duration_start(&bench);
6020
6021                                 retval = target_read_memory(target, wa->address + offset, size, count,
6022                                                 read_buf + size + host_offset);
6023
6024                                 duration_measure(&bench);
6025
6026                                 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
6027                                         command_print(CMD_CTX, "Unsupported alignment");
6028                                         goto next;
6029                                 } else if (retval != ERROR_OK) {
6030                                         command_print(CMD_CTX, "Memory read failed");
6031                                         goto next;
6032                                 }
6033
6034                                 /* replay on host */
6035                                 memcpy(read_ref + size + host_offset, test_pattern + offset, count * size);
6036
6037                                 /* check result */
6038                                 int result = memcmp(read_ref, read_buf, host_bufsiz);
6039                                 if (result == 0) {
6040                                         command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
6041                                                         duration_elapsed(&bench),
6042                                                         duration_kbps(&bench, count * size));
6043                                 } else {
6044                                         command_print(CMD_CTX, "Compare failed");
6045                                         binprint(CMD_CTX, "ref:", read_ref, host_bufsiz);
6046                                         binprint(CMD_CTX, "buf:", read_buf, host_bufsiz);
6047                                 }
6048 next:
6049                                 free(read_ref);
6050                                 free(read_buf);
6051                         }
6052                 }
6053         }
6054
6055 out:
6056         free(test_pattern);
6057
6058         if (wa != NULL)
6059                 target_free_working_area(target, wa);
6060
6061         /* Test writes */
6062         num_bytes = test_size + 4 + 4 + 4;
6063
6064         retval = target_alloc_working_area(target, num_bytes, &wa);
6065         if (retval != ERROR_OK) {
6066                 LOG_ERROR("Not enough working area");
6067                 return ERROR_FAIL;
6068         }
6069
6070         test_pattern = malloc(num_bytes);
6071
6072         for (size_t i = 0; i < num_bytes; i++)
6073                 test_pattern[i] = rand();
6074
6075         for (int host_offset = 0; host_offset <= 1; host_offset++) {
6076                 for (int size = 1; size <= 4; size *= 2) {
6077                         for (int offset = 0; offset < 4; offset++) {
6078                                 uint32_t count = test_size / size;
6079                                 size_t host_bufsiz = count * size + host_offset;
6080                                 uint8_t *read_ref = malloc(num_bytes);
6081                                 uint8_t *read_buf = malloc(num_bytes);
6082                                 uint8_t *write_buf = malloc(host_bufsiz);
6083
6084                                 for (size_t i = 0; i < host_bufsiz; i++)
6085                                         write_buf[i] = rand();
6086                                 command_print_sameline(CMD_CTX,
6087                                                 "Test write %" PRIu32 " x %d @ %d from %saligned buffer: ", count,
6088                                                 size, offset, host_offset ? "un" : "");
6089
6090                                 retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
6091                                 if (retval != ERROR_OK) {
6092                                         command_print(CMD_CTX, "Test pattern write failed");
6093                                         goto nextw;
6094                                 }
6095
6096                                 /* replay on host */
6097                                 memcpy(read_ref, test_pattern, num_bytes);
6098                                 memcpy(read_ref + size + offset, write_buf + host_offset, count * size);
6099
6100                                 struct duration bench;
6101                                 duration_start(&bench);
6102
6103                                 retval = target_write_memory(target, wa->address + size + offset, size, count,
6104                                                 write_buf + host_offset);
6105
6106                                 duration_measure(&bench);
6107
6108                                 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
6109                                         command_print(CMD_CTX, "Unsupported alignment");
6110                                         goto nextw;
6111                                 } else if (retval != ERROR_OK) {
6112                                         command_print(CMD_CTX, "Memory write failed");
6113                                         goto nextw;
6114                                 }
6115
6116                                 /* read back */
6117                                 retval = target_read_memory(target, wa->address, 1, num_bytes, read_buf);
6118                                 if (retval != ERROR_OK) {
6119                                         command_print(CMD_CTX, "Test pattern write failed");
6120                                         goto nextw;
6121                                 }
6122
6123                                 /* check result */
6124                                 int result = memcmp(read_ref, read_buf, num_bytes);
6125                                 if (result == 0) {
6126                                         command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
6127                                                         duration_elapsed(&bench),
6128                                                         duration_kbps(&bench, count * size));
6129                                 } else {
6130                                         command_print(CMD_CTX, "Compare failed");
6131                                         binprint(CMD_CTX, "ref:", read_ref, num_bytes);
6132                                         binprint(CMD_CTX, "buf:", read_buf, num_bytes);
6133                                 }
6134 nextw:
6135                                 free(read_ref);
6136                                 free(read_buf);
6137                         }
6138                 }
6139         }
6140
6141         free(test_pattern);
6142
6143         if (wa != NULL)
6144                 target_free_working_area(target, wa);
6145         return retval;
6146 }
6147
6148 static const struct command_registration target_exec_command_handlers[] = {
6149         {
6150                 .name = "fast_load_image",
6151                 .handler = handle_fast_load_image_command,
6152                 .mode = COMMAND_ANY,
6153                 .help = "Load image into server memory for later use by "
6154                         "fast_load; primarily for profiling",
6155                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6156                         "[min_address [max_length]]",
6157         },
6158         {
6159                 .name = "fast_load",
6160                 .handler = handle_fast_load_command,
6161                 .mode = COMMAND_EXEC,
6162                 .help = "loads active fast load image to current target "
6163                         "- mainly for profiling purposes",
6164                 .usage = "",
6165         },
6166         {
6167                 .name = "profile",
6168                 .handler = handle_profile_command,
6169                 .mode = COMMAND_EXEC,
6170                 .usage = "seconds filename [start end]",
6171                 .help = "profiling samples the CPU PC",
6172         },
6173         /** @todo don't register virt2phys() unless target supports it */
6174         {
6175                 .name = "virt2phys",
6176                 .handler = handle_virt2phys_command,
6177                 .mode = COMMAND_ANY,
6178                 .help = "translate a virtual address into a physical address",
6179                 .usage = "virtual_address",
6180         },
6181         {
6182                 .name = "reg",
6183                 .handler = handle_reg_command,
6184                 .mode = COMMAND_EXEC,
6185                 .help = "display (reread from target with \"force\") or set a register; "
6186                         "with no arguments, displays all registers and their values",
6187                 .usage = "[(register_number|register_name) [(value|'force')]]",
6188         },
6189         {
6190                 .name = "poll",
6191                 .handler = handle_poll_command,
6192                 .mode = COMMAND_EXEC,
6193                 .help = "poll target state; or reconfigure background polling",
6194                 .usage = "['on'|'off']",
6195         },
6196         {
6197                 .name = "wait_halt",
6198                 .handler = handle_wait_halt_command,
6199                 .mode = COMMAND_EXEC,
6200                 .help = "wait up to the specified number of milliseconds "
6201                         "(default 5000) for a previously requested halt",
6202                 .usage = "[milliseconds]",
6203         },
6204         {
6205                 .name = "halt",
6206                 .handler = handle_halt_command,
6207                 .mode = COMMAND_EXEC,
6208                 .help = "request target to halt, then wait up to the specified"
6209                         "number of milliseconds (default 5000) for it to complete",
6210                 .usage = "[milliseconds]",
6211         },
6212         {
6213                 .name = "resume",
6214                 .handler = handle_resume_command,
6215                 .mode = COMMAND_EXEC,
6216                 .help = "resume target execution from current PC or address",
6217                 .usage = "[address]",
6218         },
6219         {
6220                 .name = "reset",
6221                 .handler = handle_reset_command,
6222                 .mode = COMMAND_EXEC,
6223                 .usage = "[run|halt|init]",
6224                 .help = "Reset all targets into the specified mode."
6225                         "Default reset mode is run, if not given.",
6226         },
6227         {
6228                 .name = "soft_reset_halt",
6229                 .handler = handle_soft_reset_halt_command,
6230                 .mode = COMMAND_EXEC,
6231                 .usage = "",
6232                 .help = "halt the target and do a soft reset",
6233         },
6234         {
6235                 .name = "step",
6236                 .handler = handle_step_command,
6237                 .mode = COMMAND_EXEC,
6238                 .help = "step one instruction from current PC or address",
6239                 .usage = "[address]",
6240         },
6241         {
6242                 .name = "mdd",
6243                 .handler = handle_md_command,
6244                 .mode = COMMAND_EXEC,
6245                 .help = "display memory words",
6246                 .usage = "['phys'] address [count]",
6247         },
6248         {
6249                 .name = "mdw",
6250                 .handler = handle_md_command,
6251                 .mode = COMMAND_EXEC,
6252                 .help = "display memory words",
6253                 .usage = "['phys'] address [count]",
6254         },
6255         {
6256                 .name = "mdh",
6257                 .handler = handle_md_command,
6258                 .mode = COMMAND_EXEC,
6259                 .help = "display memory half-words",
6260                 .usage = "['phys'] address [count]",
6261         },
6262         {
6263                 .name = "mdb",
6264                 .handler = handle_md_command,
6265                 .mode = COMMAND_EXEC,
6266                 .help = "display memory bytes",
6267                 .usage = "['phys'] address [count]",
6268         },
6269         {
6270                 .name = "mwd",
6271                 .handler = handle_mw_command,
6272                 .mode = COMMAND_EXEC,
6273                 .help = "write memory word",
6274                 .usage = "['phys'] address value [count]",
6275         },
6276         {
6277                 .name = "mww",
6278                 .handler = handle_mw_command,
6279                 .mode = COMMAND_EXEC,
6280                 .help = "write memory word",
6281                 .usage = "['phys'] address value [count]",
6282         },
6283         {
6284                 .name = "mwh",
6285                 .handler = handle_mw_command,
6286                 .mode = COMMAND_EXEC,
6287                 .help = "write memory half-word",
6288                 .usage = "['phys'] address value [count]",
6289         },
6290         {
6291                 .name = "mwb",
6292                 .handler = handle_mw_command,
6293                 .mode = COMMAND_EXEC,
6294                 .help = "write memory byte",
6295                 .usage = "['phys'] address value [count]",
6296         },
6297         {
6298                 .name = "bp",
6299                 .handler = handle_bp_command,
6300                 .mode = COMMAND_EXEC,
6301                 .help = "list or set hardware or software breakpoint",
6302                 .usage = "<address> [<asid>]<length> ['hw'|'hw_ctx']",
6303         },
6304         {
6305                 .name = "rbp",
6306                 .handler = handle_rbp_command,
6307                 .mode = COMMAND_EXEC,
6308                 .help = "remove breakpoint",
6309                 .usage = "address",
6310         },
6311         {
6312                 .name = "wp",
6313                 .handler = handle_wp_command,
6314                 .mode = COMMAND_EXEC,
6315                 .help = "list (no params) or create watchpoints",
6316                 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
6317         },
6318         {
6319                 .name = "rwp",
6320                 .handler = handle_rwp_command,
6321                 .mode = COMMAND_EXEC,
6322                 .help = "remove watchpoint",
6323                 .usage = "address",
6324         },
6325         {
6326                 .name = "load_image",
6327                 .handler = handle_load_image_command,
6328                 .mode = COMMAND_EXEC,
6329                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6330                         "[min_address] [max_length]",
6331         },
6332         {
6333                 .name = "dump_image",
6334                 .handler = handle_dump_image_command,
6335                 .mode = COMMAND_EXEC,
6336                 .usage = "filename address size",
6337         },
6338         {
6339                 .name = "verify_image_checksum",
6340                 .handler = handle_verify_image_checksum_command,
6341                 .mode = COMMAND_EXEC,
6342                 .usage = "filename [offset [type]]",
6343         },
6344         {
6345                 .name = "verify_image",
6346                 .handler = handle_verify_image_command,
6347                 .mode = COMMAND_EXEC,
6348                 .usage = "filename [offset [type]]",
6349         },
6350         {
6351                 .name = "test_image",
6352                 .handler = handle_test_image_command,
6353                 .mode = COMMAND_EXEC,
6354                 .usage = "filename [offset [type]]",
6355         },
6356         {
6357                 .name = "mem2array",
6358                 .mode = COMMAND_EXEC,
6359                 .jim_handler = jim_mem2array,
6360                 .help = "read 8/16/32 bit memory and return as a TCL array "
6361                         "for script processing",
6362                 .usage = "arrayname bitwidth address count",
6363         },
6364         {
6365                 .name = "array2mem",
6366                 .mode = COMMAND_EXEC,
6367                 .jim_handler = jim_array2mem,
6368                 .help = "convert a TCL array to memory locations "
6369                         "and write the 8/16/32 bit values",
6370                 .usage = "arrayname bitwidth address count",
6371         },
6372         {
6373                 .name = "reset_nag",
6374                 .handler = handle_target_reset_nag,
6375                 .mode = COMMAND_ANY,
6376                 .help = "Nag after each reset about options that could have been "
6377                                 "enabled to improve performance. ",
6378                 .usage = "['enable'|'disable']",
6379         },
6380         {
6381                 .name = "ps",
6382                 .handler = handle_ps_command,
6383                 .mode = COMMAND_EXEC,
6384                 .help = "list all tasks ",
6385                 .usage = " ",
6386         },
6387         {
6388                 .name = "test_mem_access",
6389                 .handler = handle_test_mem_access_command,
6390                 .mode = COMMAND_EXEC,
6391                 .help = "Test the target's memory access functions",
6392                 .usage = "size",
6393         },
6394
6395         COMMAND_REGISTRATION_DONE
6396 };
6397 static int target_register_user_commands(struct command_context *cmd_ctx)
6398 {
6399         int retval = ERROR_OK;
6400         retval = target_request_register_commands(cmd_ctx);
6401         if (retval != ERROR_OK)
6402                 return retval;
6403
6404         retval = trace_register_commands(cmd_ctx);
6405         if (retval != ERROR_OK)
6406                 return retval;
6407
6408
6409         return register_commands(cmd_ctx, NULL, target_exec_command_handlers);
6410 }