TARGET: review unused symbols
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2010 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   This program is free software; you can redistribute it and/or modify  *
18  *   it under the terms of the GNU General Public License as published by  *
19  *   the Free Software Foundation; either version 2 of the License, or     *
20  *   (at your option) any later version.                                   *
21  *                                                                         *
22  *   This program is distributed in the hope that it will be useful,       *
23  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
24  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
25  *   GNU General Public License for more details.                          *
26  *                                                                         *
27  *   You should have received a copy of the GNU General Public License     *
28  *   along with this program; if not, write to the                         *
29  *   Free Software Foundation, Inc.,                                       *
30  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include <helper/time_support.h>
37 #include <jtag/jtag.h>
38 #include <flash/nor/core.h>
39
40 #include "target.h"
41 #include "target_type.h"
42 #include "target_request.h"
43 #include "breakpoints.h"
44 #include "register.h"
45 #include "trace.h"
46 #include "image.h"
47
48
49 static int target_array2mem(Jim_Interp *interp, struct target *target,
50                 int argc, Jim_Obj *const *argv);
51 static int target_mem2array(Jim_Interp *interp, struct target *target,
52                 int argc, Jim_Obj *const *argv);
53 static int target_register_user_commands(struct command_context *cmd_ctx);
54
55 /* targets */
56 extern struct target_type arm7tdmi_target;
57 extern struct target_type arm720t_target;
58 extern struct target_type arm9tdmi_target;
59 extern struct target_type arm920t_target;
60 extern struct target_type arm966e_target;
61 extern struct target_type arm926ejs_target;
62 extern struct target_type fa526_target;
63 extern struct target_type feroceon_target;
64 extern struct target_type dragonite_target;
65 extern struct target_type xscale_target;
66 extern struct target_type cortexm3_target;
67 extern struct target_type cortexa8_target;
68 extern struct target_type arm11_target;
69 extern struct target_type mips_m4k_target;
70 extern struct target_type avr_target;
71 extern struct target_type dsp563xx_target;
72 extern struct target_type testee_target;
73
74 static struct target_type *target_types[] =
75 {
76         &arm7tdmi_target,
77         &arm9tdmi_target,
78         &arm920t_target,
79         &arm720t_target,
80         &arm966e_target,
81         &arm926ejs_target,
82         &fa526_target,
83         &feroceon_target,
84         &dragonite_target,
85         &xscale_target,
86         &cortexm3_target,
87         &cortexa8_target,
88         &arm11_target,
89         &mips_m4k_target,
90         &avr_target,
91         &dsp563xx_target,
92         &testee_target,
93         NULL,
94 };
95
96 struct target *all_targets = NULL;
97 static struct target_event_callback *target_event_callbacks = NULL;
98 static struct target_timer_callback *target_timer_callbacks = NULL;
99
100 static const Jim_Nvp nvp_assert[] = {
101         { .name = "assert", NVP_ASSERT },
102         { .name = "deassert", NVP_DEASSERT },
103         { .name = "T", NVP_ASSERT },
104         { .name = "F", NVP_DEASSERT },
105         { .name = "t", NVP_ASSERT },
106         { .name = "f", NVP_DEASSERT },
107         { .name = NULL, .value = -1 }
108 };
109
110 static const Jim_Nvp nvp_error_target[] = {
111         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
112         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
113         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
114         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
115         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
116         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
117         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
118         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
119         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
120         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
121         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
122         { .value = -1, .name = NULL }
123 };
124
125 static const char *target_strerror_safe(int err)
126 {
127         const Jim_Nvp *n;
128
129         n = Jim_Nvp_value2name_simple(nvp_error_target, err);
130         if (n->name == NULL) {
131                 return "unknown";
132         } else {
133                 return n->name;
134         }
135 }
136
137 static const Jim_Nvp nvp_target_event[] = {
138         { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
139         { .value = TARGET_EVENT_OLD_pre_resume         , .name = "old-pre_resume" },
140
141         { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
142         { .value = TARGET_EVENT_HALTED, .name = "halted" },
143         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
144         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
145         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
146
147         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
148         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
149
150         /* historical name */
151
152         { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
153
154         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
155         { .value = TARGET_EVENT_RESET_ASSERT,        .name = "reset-assert" },
156         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
157         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
158         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
159         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
160         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
161         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
162         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
163         { .value = TARGET_EVENT_RESET_INIT,          .name = "reset-init" },
164         { .value = TARGET_EVENT_RESET_END,           .name = "reset-end" },
165
166         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
167         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
168
169         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
170         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
171
172         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
173         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
174
175         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
176         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
177
178         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
179         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
180
181         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
182         { .value = TARGET_EVENT_RESUMED     , .name = "resume-ok" },
183         { .value = TARGET_EVENT_RESUME_END  , .name = "resume-end" },
184
185         { .name = NULL, .value = -1 }
186 };
187
188 static const Jim_Nvp nvp_target_state[] = {
189         { .name = "unknown", .value = TARGET_UNKNOWN },
190         { .name = "running", .value = TARGET_RUNNING },
191         { .name = "halted",  .value = TARGET_HALTED },
192         { .name = "reset",   .value = TARGET_RESET },
193         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
194         { .name = NULL, .value = -1 },
195 };
196
197 static const Jim_Nvp nvp_target_debug_reason [] = {
198         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
199         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
200         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
201         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
202         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
203         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
204         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
205         { .name = NULL, .value = -1 },
206 };
207
208 static const Jim_Nvp nvp_target_endian[] = {
209         { .name = "big",    .value = TARGET_BIG_ENDIAN },
210         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
211         { .name = "be",     .value = TARGET_BIG_ENDIAN },
212         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
213         { .name = NULL,     .value = -1 },
214 };
215
216 static const Jim_Nvp nvp_reset_modes[] = {
217         { .name = "unknown", .value = RESET_UNKNOWN },
218         { .name = "run"    , .value = RESET_RUN },
219         { .name = "halt"   , .value = RESET_HALT },
220         { .name = "init"   , .value = RESET_INIT },
221         { .name = NULL     , .value = -1 },
222 };
223
224 const char *debug_reason_name(struct target *t)
225 {
226         const char *cp;
227
228         cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
229                         t->debug_reason)->name;
230         if (!cp) {
231                 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
232                 cp = "(*BUG*unknown*BUG*)";
233         }
234         return cp;
235 }
236
237 const char *
238 target_state_name( struct target *t )
239 {
240         const char *cp;
241         cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
242         if( !cp ){
243                 LOG_ERROR("Invalid target state: %d", (int)(t->state));
244                 cp = "(*BUG*unknown*BUG*)";
245         }
246         return cp;
247 }
248
249 /* determine the number of the new target */
250 static int new_target_number(void)
251 {
252         struct target *t;
253         int x;
254
255         /* number is 0 based */
256         x = -1;
257         t = all_targets;
258         while (t) {
259                 if (x < t->target_number) {
260                         x = t->target_number;
261                 }
262                 t = t->next;
263         }
264         return x + 1;
265 }
266
267 /* read a uint32_t from a buffer in target memory endianness */
268 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
269 {
270         if (target->endianness == TARGET_LITTLE_ENDIAN)
271                 return le_to_h_u32(buffer);
272         else
273                 return be_to_h_u32(buffer);
274 }
275
276 /* read a uint16_t from a buffer in target memory endianness */
277 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
278 {
279         if (target->endianness == TARGET_LITTLE_ENDIAN)
280                 return le_to_h_u16(buffer);
281         else
282                 return be_to_h_u16(buffer);
283 }
284
285 /* read a uint8_t from a buffer in target memory endianness */
286 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
287 {
288         return *buffer & 0x0ff;
289 }
290
291 /* write a uint32_t to a buffer in target memory endianness */
292 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
293 {
294         if (target->endianness == TARGET_LITTLE_ENDIAN)
295                 h_u32_to_le(buffer, value);
296         else
297                 h_u32_to_be(buffer, value);
298 }
299
300 /* write a uint16_t to a buffer in target memory endianness */
301 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
302 {
303         if (target->endianness == TARGET_LITTLE_ENDIAN)
304                 h_u16_to_le(buffer, value);
305         else
306                 h_u16_to_be(buffer, value);
307 }
308
309 /* write a uint8_t to a buffer in target memory endianness */
310 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
311 {
312         *buffer = value;
313 }
314
315 /* return a pointer to a configured target; id is name or number */
316 struct target *get_target(const char *id)
317 {
318         struct target *target;
319
320         /* try as tcltarget name */
321         for (target = all_targets; target; target = target->next) {
322                 if (target->cmd_name == NULL)
323                         continue;
324                 if (strcmp(id, target->cmd_name) == 0)
325                         return target;
326         }
327
328         /* It's OK to remove this fallback sometime after August 2010 or so */
329
330         /* no match, try as number */
331         unsigned num;
332         if (parse_uint(id, &num) != ERROR_OK)
333                 return NULL;
334
335         for (target = all_targets; target; target = target->next) {
336                 if (target->target_number == (int)num) {
337                         LOG_WARNING("use '%s' as target identifier, not '%u'",
338                                         target->cmd_name, num);
339                         return target;
340                 }
341         }
342
343         return NULL;
344 }
345
346 /* returns a pointer to the n-th configured target */
347 static struct target *get_target_by_num(int num)
348 {
349         struct target *target = all_targets;
350
351         while (target) {
352                 if (target->target_number == num) {
353                         return target;
354                 }
355                 target = target->next;
356         }
357
358         return NULL;
359 }
360
361 struct target* get_current_target(struct command_context *cmd_ctx)
362 {
363         struct target *target = get_target_by_num(cmd_ctx->current_target);
364
365         if (target == NULL)
366         {
367                 LOG_ERROR("BUG: current_target out of bounds");
368                 exit(-1);
369         }
370
371         return target;
372 }
373
374 int target_poll(struct target *target)
375 {
376         int retval;
377
378         /* We can't poll until after examine */
379         if (!target_was_examined(target))
380         {
381                 /* Fail silently lest we pollute the log */
382                 return ERROR_FAIL;
383         }
384
385         retval = target->type->poll(target);
386         if (retval != ERROR_OK)
387                 return retval;
388
389         if (target->halt_issued)
390         {
391                 if (target->state == TARGET_HALTED)
392                 {
393                         target->halt_issued = false;
394                 } else
395                 {
396                         long long t = timeval_ms() - target->halt_issued_time;
397                         if (t>1000)
398                         {
399                                 target->halt_issued = false;
400                                 LOG_INFO("Halt timed out, wake up GDB.");
401                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
402                         }
403                 }
404         }
405
406         return ERROR_OK;
407 }
408
409 int target_halt(struct target *target)
410 {
411         int retval;
412         /* We can't poll until after examine */
413         if (!target_was_examined(target))
414         {
415                 LOG_ERROR("Target not examined yet");
416                 return ERROR_FAIL;
417         }
418
419         retval = target->type->halt(target);
420         if (retval != ERROR_OK)
421                 return retval;
422
423         target->halt_issued = true;
424         target->halt_issued_time = timeval_ms();
425
426         return ERROR_OK;
427 }
428
429 /**
430  * Make the target (re)start executing using its saved execution
431  * context (possibly with some modifications).
432  *
433  * @param target Which target should start executing.
434  * @param current True to use the target's saved program counter instead
435  *      of the address parameter
436  * @param address Optionally used as the program counter.
437  * @param handle_breakpoints True iff breakpoints at the resumption PC
438  *      should be skipped.  (For example, maybe execution was stopped by
439  *      such a breakpoint, in which case it would be counterprodutive to
440  *      let it re-trigger.
441  * @param debug_execution False if all working areas allocated by OpenOCD
442  *      should be released and/or restored to their original contents.
443  *      (This would for example be true to run some downloaded "helper"
444  *      algorithm code, which resides in one such working buffer and uses
445  *      another for data storage.)
446  *
447  * @todo Resolve the ambiguity about what the "debug_execution" flag
448  * signifies.  For example, Target implementations don't agree on how
449  * it relates to invalidation of the register cache, or to whether
450  * breakpoints and watchpoints should be enabled.  (It would seem wrong
451  * to enable breakpoints when running downloaded "helper" algorithms
452  * (debug_execution true), since the breakpoints would be set to match
453  * target firmware being debugged, not the helper algorithm.... and
454  * enabling them could cause such helpers to malfunction (for example,
455  * by overwriting data with a breakpoint instruction.  On the other
456  * hand the infrastructure for running such helpers might use this
457  * procedure but rely on hardware breakpoint to detect termination.)
458  */
459 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
460 {
461         int retval;
462
463         /* We can't poll until after examine */
464         if (!target_was_examined(target))
465         {
466                 LOG_ERROR("Target not examined yet");
467                 return ERROR_FAIL;
468         }
469
470         /* note that resume *must* be asynchronous. The CPU can halt before
471          * we poll. The CPU can even halt at the current PC as a result of
472          * a software breakpoint being inserted by (a bug?) the application.
473          */
474         if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
475                 return retval;
476
477         /* Invalidate any cached protect/erase/... flash status, since
478          * almost all targets will now be able modify the flash by
479          * themselves.  We want flash drivers and infrastructure to
480          * be able to rely on (non-invalidated) cached state.
481          *
482          * For now we require that algorithms provided by OpenOCD are
483          * used only by code which properly maintains that  cached state.
484          * state
485          *
486          * REVISIT do the same for NAND ; maybe other flash flavors too...
487          */
488                 if (!target->running_alg)
489                 nor_resume(target);
490         return retval;
491 }
492
493 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
494 {
495         char buf[100];
496         int retval;
497         Jim_Nvp *n;
498         n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
499         if (n->name == NULL) {
500                 LOG_ERROR("invalid reset mode");
501                 return ERROR_FAIL;
502         }
503
504         /* disable polling during reset to make reset event scripts
505          * more predictable, i.e. dr/irscan & pathmove in events will
506          * not have JTAG operations injected into the middle of a sequence.
507          */
508         bool save_poll = jtag_poll_get_enabled();
509
510         jtag_poll_set_enabled(false);
511
512         sprintf(buf, "ocd_process_reset %s", n->name);
513         retval = Jim_Eval(cmd_ctx->interp, buf);
514
515         jtag_poll_set_enabled(save_poll);
516
517         if (retval != JIM_OK) {
518                 Jim_PrintErrorMessage(cmd_ctx->interp);
519                 return ERROR_FAIL;
520         }
521
522         /* We want any events to be processed before the prompt */
523         retval = target_call_timer_callbacks_now();
524
525         struct target *target;
526         for (target = all_targets; target; target = target->next) {
527                 target->type->check_reset(target);
528         }
529
530         return retval;
531 }
532
533 static int identity_virt2phys(struct target *target,
534                 uint32_t virtual, uint32_t *physical)
535 {
536         *physical = virtual;
537         return ERROR_OK;
538 }
539
540 static int no_mmu(struct target *target, int *enabled)
541 {
542         *enabled = 0;
543         return ERROR_OK;
544 }
545
546 static int default_examine(struct target *target)
547 {
548         target_set_examined(target);
549         return ERROR_OK;
550 }
551
552 /* no check by default */
553 static int default_check_reset(struct target *target)
554 {
555         return ERROR_OK;
556 }
557
558 int target_examine_one(struct target *target)
559 {
560         return target->type->examine(target);
561 }
562
563 static int jtag_enable_callback(enum jtag_event event, void *priv)
564 {
565         struct target *target = priv;
566
567         if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
568                 return ERROR_OK;
569
570         jtag_unregister_event_callback(jtag_enable_callback, target);
571         return target_examine_one(target);
572 }
573
574
575 /* Targets that correctly implement init + examine, i.e.
576  * no communication with target during init:
577  *
578  * XScale
579  */
580 int target_examine(void)
581 {
582         int retval = ERROR_OK;
583         struct target *target;
584
585         for (target = all_targets; target; target = target->next)
586         {
587                 /* defer examination, but don't skip it */
588                 if (!target->tap->enabled) {
589                         jtag_register_event_callback(jtag_enable_callback,
590                                         target);
591                         continue;
592                 }
593                 if ((retval = target_examine_one(target)) != ERROR_OK)
594                         return retval;
595         }
596         return retval;
597 }
598 const char *target_type_name(struct target *target)
599 {
600         return target->type->name;
601 }
602
603 static int target_write_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
604 {
605         if (!target_was_examined(target))
606         {
607                 LOG_ERROR("Target not examined yet");
608                 return ERROR_FAIL;
609         }
610         return target->type->write_memory_imp(target, address, size, count, buffer);
611 }
612
613 static int target_read_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
614 {
615         if (!target_was_examined(target))
616         {
617                 LOG_ERROR("Target not examined yet");
618                 return ERROR_FAIL;
619         }
620         return target->type->read_memory_imp(target, address, size, count, buffer);
621 }
622
623 static int target_soft_reset_halt_imp(struct target *target)
624 {
625         if (!target_was_examined(target))
626         {
627                 LOG_ERROR("Target not examined yet");
628                 return ERROR_FAIL;
629         }
630         if (!target->type->soft_reset_halt_imp) {
631                 LOG_ERROR("Target %s does not support soft_reset_halt",
632                                 target_name(target));
633                 return ERROR_FAIL;
634         }
635         return target->type->soft_reset_halt_imp(target);
636 }
637
638 /**
639  * Downloads a target-specific native code algorithm to the target,
640  * and executes it.  * Note that some targets may need to set up, enable,
641  * and tear down a breakpoint (hard or * soft) to detect algorithm
642  * termination, while others may support  lower overhead schemes where
643  * soft breakpoints embedded in the algorithm automatically terminate the
644  * algorithm.
645  *
646  * @param target used to run the algorithm
647  * @param arch_info target-specific description of the algorithm.
648  */
649 int target_run_algorithm(struct target *target,
650                 int num_mem_params, struct mem_param *mem_params,
651                 int num_reg_params, struct reg_param *reg_param,
652                 uint32_t entry_point, uint32_t exit_point,
653                 int timeout_ms, void *arch_info)
654 {
655         int retval = ERROR_FAIL;
656
657         if (!target_was_examined(target))
658         {
659                 LOG_ERROR("Target not examined yet");
660                 goto done;
661         }
662         if (!target->type->run_algorithm) {
663                 LOG_ERROR("Target type '%s' does not support %s",
664                                 target_type_name(target), __func__);
665                 goto done;
666         }
667
668         target->running_alg = true;
669         retval = target->type->run_algorithm(target,
670                         num_mem_params, mem_params,
671                         num_reg_params, reg_param,
672                         entry_point, exit_point, timeout_ms, arch_info);
673         target->running_alg = false;
674
675 done:
676         return retval;
677 }
678
679
680 int target_read_memory(struct target *target,
681                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
682 {
683         return target->type->read_memory(target, address, size, count, buffer);
684 }
685
686 static int target_read_phys_memory(struct target *target,
687                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
688 {
689         return target->type->read_phys_memory(target, address, size, count, buffer);
690 }
691
692 int target_write_memory(struct target *target,
693                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
694 {
695         return target->type->write_memory(target, address, size, count, buffer);
696 }
697
698 static int target_write_phys_memory(struct target *target,
699                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
700 {
701         return target->type->write_phys_memory(target, address, size, count, buffer);
702 }
703
704 int target_bulk_write_memory(struct target *target,
705                 uint32_t address, uint32_t count, uint8_t *buffer)
706 {
707         return target->type->bulk_write_memory(target, address, count, buffer);
708 }
709
710 int target_add_breakpoint(struct target *target,
711                 struct breakpoint *breakpoint)
712 {
713         if (target->state != TARGET_HALTED) {
714                 LOG_WARNING("target %s is not halted", target->cmd_name);
715                 return ERROR_TARGET_NOT_HALTED;
716         }
717         return target->type->add_breakpoint(target, breakpoint);
718 }
719 int target_remove_breakpoint(struct target *target,
720                 struct breakpoint *breakpoint)
721 {
722         return target->type->remove_breakpoint(target, breakpoint);
723 }
724
725 int target_add_watchpoint(struct target *target,
726                 struct watchpoint *watchpoint)
727 {
728         if (target->state != TARGET_HALTED) {
729                 LOG_WARNING("target %s is not halted", target->cmd_name);
730                 return ERROR_TARGET_NOT_HALTED;
731         }
732         return target->type->add_watchpoint(target, watchpoint);
733 }
734 int target_remove_watchpoint(struct target *target,
735                 struct watchpoint *watchpoint)
736 {
737         return target->type->remove_watchpoint(target, watchpoint);
738 }
739
740 int target_get_gdb_reg_list(struct target *target,
741                 struct reg **reg_list[], int *reg_list_size)
742 {
743         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
744 }
745 int target_step(struct target *target,
746                 int current, uint32_t address, int handle_breakpoints)
747 {
748         return target->type->step(target, current, address, handle_breakpoints);
749 }
750
751
752 /**
753  * Reset the @c examined flag for the given target.
754  * Pure paranoia -- targets are zeroed on allocation.
755  */
756 static void target_reset_examined(struct target *target)
757 {
758         target->examined = false;
759 }
760
761 static int
762 err_read_phys_memory(struct target *target, uint32_t address,
763                 uint32_t size, uint32_t count, uint8_t *buffer)
764 {
765         LOG_ERROR("Not implemented: %s", __func__);
766         return ERROR_FAIL;
767 }
768
769 static int
770 err_write_phys_memory(struct target *target, uint32_t address,
771                 uint32_t size, uint32_t count, uint8_t *buffer)
772 {
773         LOG_ERROR("Not implemented: %s", __func__);
774         return ERROR_FAIL;
775 }
776
777 static int handle_target(void *priv);
778
779 static int target_init_one(struct command_context *cmd_ctx,
780                 struct target *target)
781 {
782         target_reset_examined(target);
783
784         struct target_type *type = target->type;
785         if (type->examine == NULL)
786                 type->examine = default_examine;
787
788         if (type->check_reset== NULL)
789                 type->check_reset = default_check_reset;
790
791         int retval = type->init_target(cmd_ctx, target);
792         if (ERROR_OK != retval)
793         {
794                 LOG_ERROR("target '%s' init failed", target_name(target));
795                 return retval;
796         }
797
798         /**
799          * @todo get rid of those *memory_imp() methods, now that all
800          * callers are using target_*_memory() accessors ... and make
801          * sure the "physical" paths handle the same issues.
802          */
803         /* a non-invasive way(in terms of patches) to add some code that
804          * runs before the type->write/read_memory implementation
805          */
806         type->write_memory_imp = target->type->write_memory;
807         type->write_memory = target_write_memory_imp;
808
809         type->read_memory_imp = target->type->read_memory;
810         type->read_memory = target_read_memory_imp;
811
812         type->soft_reset_halt_imp = target->type->soft_reset_halt;
813         type->soft_reset_halt = target_soft_reset_halt_imp;
814
815         /* Sanity-check MMU support ... stub in what we must, to help
816          * implement it in stages, but warn if we need to do so.
817          */
818         if (type->mmu)
819         {
820                 if (type->write_phys_memory == NULL)
821                 {
822                         LOG_ERROR("type '%s' is missing write_phys_memory",
823                                         type->name);
824                         type->write_phys_memory = err_write_phys_memory;
825                 }
826                 if (type->read_phys_memory == NULL)
827                 {
828                         LOG_ERROR("type '%s' is missing read_phys_memory",
829                                         type->name);
830                         type->read_phys_memory = err_read_phys_memory;
831                 }
832                 if (type->virt2phys == NULL)
833                 {
834                         LOG_ERROR("type '%s' is missing virt2phys", type->name);
835                         type->virt2phys = identity_virt2phys;
836                 }
837         }
838         else
839         {
840                 /* Make sure no-MMU targets all behave the same:  make no
841                  * distinction between physical and virtual addresses, and
842                  * ensure that virt2phys() is always an identity mapping.
843                  */
844                 if (type->write_phys_memory || type->read_phys_memory
845                                 || type->virt2phys)
846                 {
847                         LOG_WARNING("type '%s' has bad MMU hooks", type->name);
848                 }
849
850                 type->mmu = no_mmu;
851                 type->write_phys_memory = type->write_memory;
852                 type->read_phys_memory = type->read_memory;
853                 type->virt2phys = identity_virt2phys;
854         }
855         return ERROR_OK;
856 }
857
858 static int target_init(struct command_context *cmd_ctx)
859 {
860         struct target *target;
861         int retval;
862
863         for (target = all_targets; target; target = target->next)
864         {
865                 retval = target_init_one(cmd_ctx, target);
866                 if (ERROR_OK != retval)
867                         return retval;
868         }
869
870         if (!all_targets)
871                 return ERROR_OK;
872
873         retval = target_register_user_commands(cmd_ctx);
874         if (ERROR_OK != retval)
875                 return retval;
876
877         retval = target_register_timer_callback(&handle_target,
878                         100, 1, cmd_ctx->interp);
879         if (ERROR_OK != retval)
880                 return retval;
881
882         return ERROR_OK;
883 }
884
885 COMMAND_HANDLER(handle_target_init_command)
886 {
887         if (CMD_ARGC != 0)
888                 return ERROR_COMMAND_SYNTAX_ERROR;
889
890         static bool target_initialized = false;
891         if (target_initialized)
892         {
893                 LOG_INFO("'target init' has already been called");
894                 return ERROR_OK;
895         }
896         target_initialized = true;
897
898         LOG_DEBUG("Initializing targets...");
899         return target_init(CMD_CTX);
900 }
901
902 int target_register_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
903 {
904         struct target_event_callback **callbacks_p = &target_event_callbacks;
905
906         if (callback == NULL)
907         {
908                 return ERROR_INVALID_ARGUMENTS;
909         }
910
911         if (*callbacks_p)
912         {
913                 while ((*callbacks_p)->next)
914                         callbacks_p = &((*callbacks_p)->next);
915                 callbacks_p = &((*callbacks_p)->next);
916         }
917
918         (*callbacks_p) = malloc(sizeof(struct target_event_callback));
919         (*callbacks_p)->callback = callback;
920         (*callbacks_p)->priv = priv;
921         (*callbacks_p)->next = NULL;
922
923         return ERROR_OK;
924 }
925
926 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
927 {
928         struct target_timer_callback **callbacks_p = &target_timer_callbacks;
929         struct timeval now;
930
931         if (callback == NULL)
932         {
933                 return ERROR_INVALID_ARGUMENTS;
934         }
935
936         if (*callbacks_p)
937         {
938                 while ((*callbacks_p)->next)
939                         callbacks_p = &((*callbacks_p)->next);
940                 callbacks_p = &((*callbacks_p)->next);
941         }
942
943         (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
944         (*callbacks_p)->callback = callback;
945         (*callbacks_p)->periodic = periodic;
946         (*callbacks_p)->time_ms = time_ms;
947
948         gettimeofday(&now, NULL);
949         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
950         time_ms -= (time_ms % 1000);
951         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
952         if ((*callbacks_p)->when.tv_usec > 1000000)
953         {
954                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
955                 (*callbacks_p)->when.tv_sec += 1;
956         }
957
958         (*callbacks_p)->priv = priv;
959         (*callbacks_p)->next = NULL;
960
961         return ERROR_OK;
962 }
963
964 int target_unregister_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
965 {
966         struct target_event_callback **p = &target_event_callbacks;
967         struct target_event_callback *c = target_event_callbacks;
968
969         if (callback == NULL)
970         {
971                 return ERROR_INVALID_ARGUMENTS;
972         }
973
974         while (c)
975         {
976                 struct target_event_callback *next = c->next;
977                 if ((c->callback == callback) && (c->priv == priv))
978                 {
979                         *p = next;
980                         free(c);
981                         return ERROR_OK;
982                 }
983                 else
984                         p = &(c->next);
985                 c = next;
986         }
987
988         return ERROR_OK;
989 }
990
991 static int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
992 {
993         struct target_timer_callback **p = &target_timer_callbacks;
994         struct target_timer_callback *c = target_timer_callbacks;
995
996         if (callback == NULL)
997         {
998                 return ERROR_INVALID_ARGUMENTS;
999         }
1000
1001         while (c)
1002         {
1003                 struct target_timer_callback *next = c->next;
1004                 if ((c->callback == callback) && (c->priv == priv))
1005                 {
1006                         *p = next;
1007                         free(c);
1008                         return ERROR_OK;
1009                 }
1010                 else
1011                         p = &(c->next);
1012                 c = next;
1013         }
1014
1015         return ERROR_OK;
1016 }
1017
1018 int target_call_event_callbacks(struct target *target, enum target_event event)
1019 {
1020         struct target_event_callback *callback = target_event_callbacks;
1021         struct target_event_callback *next_callback;
1022
1023         if (event == TARGET_EVENT_HALTED)
1024         {
1025                 /* execute early halted first */
1026                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1027         }
1028
1029         LOG_DEBUG("target event %i (%s)",
1030                           event,
1031                           Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1032
1033         target_handle_event(target, event);
1034
1035         while (callback)
1036         {
1037                 next_callback = callback->next;
1038                 callback->callback(target, event, callback->priv);
1039                 callback = next_callback;
1040         }
1041
1042         return ERROR_OK;
1043 }
1044
1045 static int target_timer_callback_periodic_restart(
1046                 struct target_timer_callback *cb, struct timeval *now)
1047 {
1048         int time_ms = cb->time_ms;
1049         cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1050         time_ms -= (time_ms % 1000);
1051         cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1052         if (cb->when.tv_usec > 1000000)
1053         {
1054                 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1055                 cb->when.tv_sec += 1;
1056         }
1057         return ERROR_OK;
1058 }
1059
1060 static int target_call_timer_callback(struct target_timer_callback *cb,
1061                 struct timeval *now)
1062 {
1063         cb->callback(cb->priv);
1064
1065         if (cb->periodic)
1066                 return target_timer_callback_periodic_restart(cb, now);
1067
1068         return target_unregister_timer_callback(cb->callback, cb->priv);
1069 }
1070
1071 static int target_call_timer_callbacks_check_time(int checktime)
1072 {
1073         keep_alive();
1074
1075         struct timeval now;
1076         gettimeofday(&now, NULL);
1077
1078         struct target_timer_callback *callback = target_timer_callbacks;
1079         while (callback)
1080         {
1081                 // cleaning up may unregister and free this callback
1082                 struct target_timer_callback *next_callback = callback->next;
1083
1084                 bool call_it = callback->callback &&
1085                         ((!checktime && callback->periodic) ||
1086                           now.tv_sec > callback->when.tv_sec ||
1087                          (now.tv_sec == callback->when.tv_sec &&
1088                           now.tv_usec >= callback->when.tv_usec));
1089
1090                 if (call_it)
1091                 {
1092                         int retval = target_call_timer_callback(callback, &now);
1093                         if (retval != ERROR_OK)
1094                                 return retval;
1095                 }
1096
1097                 callback = next_callback;
1098         }
1099
1100         return ERROR_OK;
1101 }
1102
1103 int target_call_timer_callbacks(void)
1104 {
1105         return target_call_timer_callbacks_check_time(1);
1106 }
1107
1108 /* invoke periodic callbacks immediately */
1109 int target_call_timer_callbacks_now(void)
1110 {
1111         return target_call_timer_callbacks_check_time(0);
1112 }
1113
1114 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1115 {
1116         struct working_area *c = target->working_areas;
1117         struct working_area *new_wa = NULL;
1118
1119         /* Reevaluate working area address based on MMU state*/
1120         if (target->working_areas == NULL)
1121         {
1122                 int retval;
1123                 int enabled;
1124
1125                 retval = target->type->mmu(target, &enabled);
1126                 if (retval != ERROR_OK)
1127                 {
1128                         return retval;
1129                 }
1130
1131                 if (!enabled) {
1132                         if (target->working_area_phys_spec) {
1133                                 LOG_DEBUG("MMU disabled, using physical "
1134                                         "address for working memory 0x%08x",
1135                                         (unsigned)target->working_area_phys);
1136                                 target->working_area = target->working_area_phys;
1137                         } else {
1138                                 LOG_ERROR("No working memory available. "
1139                                         "Specify -work-area-phys to target.");
1140                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1141                         }
1142                 } else {
1143                         if (target->working_area_virt_spec) {
1144                                 LOG_DEBUG("MMU enabled, using virtual "
1145                                         "address for working memory 0x%08x",
1146                                         (unsigned)target->working_area_virt);
1147                                 target->working_area = target->working_area_virt;
1148                         } else {
1149                                 LOG_ERROR("No working memory available. "
1150                                         "Specify -work-area-virt to target.");
1151                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1152                         }
1153                 }
1154         }
1155
1156         /* only allocate multiples of 4 byte */
1157         if (size % 4)
1158         {
1159                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes (0x%08x), padding", ((unsigned)(size)));
1160                 size = (size + 3) & (~3);
1161         }
1162
1163         /* see if there's already a matching working area */
1164         while (c)
1165         {
1166                 if ((c->free) && (c->size == size))
1167                 {
1168                         new_wa = c;
1169                         break;
1170                 }
1171                 c = c->next;
1172         }
1173
1174         /* if not, allocate a new one */
1175         if (!new_wa)
1176         {
1177                 struct working_area **p = &target->working_areas;
1178                 uint32_t first_free = target->working_area;
1179                 uint32_t free_size = target->working_area_size;
1180
1181                 c = target->working_areas;
1182                 while (c)
1183                 {
1184                         first_free += c->size;
1185                         free_size -= c->size;
1186                         p = &c->next;
1187                         c = c->next;
1188                 }
1189
1190                 if (free_size < size)
1191                 {
1192                         LOG_WARNING("not enough working area available(requested %u, free %u)",
1193                                     (unsigned)(size), (unsigned)(free_size));
1194                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1195                 }
1196
1197                 LOG_DEBUG("allocated new working area at address 0x%08x", (unsigned)first_free);
1198
1199                 new_wa = malloc(sizeof(struct working_area));
1200                 new_wa->next = NULL;
1201                 new_wa->size = size;
1202                 new_wa->address = first_free;
1203
1204                 if (target->backup_working_area)
1205                 {
1206                         int retval;
1207                         new_wa->backup = malloc(new_wa->size);
1208                         if ((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
1209                         {
1210                                 free(new_wa->backup);
1211                                 free(new_wa);
1212                                 return retval;
1213                         }
1214                 }
1215                 else
1216                 {
1217                         new_wa->backup = NULL;
1218                 }
1219
1220                 /* put new entry in list */
1221                 *p = new_wa;
1222         }
1223
1224         /* mark as used, and return the new (reused) area */
1225         new_wa->free = 0;
1226         *area = new_wa;
1227
1228         /* user pointer */
1229         new_wa->user = area;
1230
1231         return ERROR_OK;
1232 }
1233
1234 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1235 {
1236         if (area->free)
1237                 return ERROR_OK;
1238
1239         if (restore && target->backup_working_area)
1240         {
1241                 int retval;
1242                 if ((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
1243                         return retval;
1244         }
1245
1246         area->free = 1;
1247
1248         /* mark user pointer invalid */
1249         *area->user = NULL;
1250         area->user = NULL;
1251
1252         return ERROR_OK;
1253 }
1254
1255 int target_free_working_area(struct target *target, struct working_area *area)
1256 {
1257         return target_free_working_area_restore(target, area, 1);
1258 }
1259
1260 /* free resources and restore memory, if restoring memory fails,
1261  * free up resources anyway
1262  */
1263 static void target_free_all_working_areas_restore(struct target *target, int restore)
1264 {
1265         struct working_area *c = target->working_areas;
1266
1267         while (c)
1268         {
1269                 struct working_area *next = c->next;
1270                 target_free_working_area_restore(target, c, restore);
1271
1272                 if (c->backup)
1273                         free(c->backup);
1274
1275                 free(c);
1276
1277                 c = next;
1278         }
1279
1280         target->working_areas = NULL;
1281 }
1282
1283 void target_free_all_working_areas(struct target *target)
1284 {
1285         target_free_all_working_areas_restore(target, 1);
1286 }
1287
1288 int target_arch_state(struct target *target)
1289 {
1290         int retval;
1291         if (target == NULL)
1292         {
1293                 LOG_USER("No target has been configured");
1294                 return ERROR_OK;
1295         }
1296
1297         LOG_USER("target state: %s", target_state_name( target ));
1298
1299         if (target->state != TARGET_HALTED)
1300                 return ERROR_OK;
1301
1302         retval = target->type->arch_state(target);
1303         return retval;
1304 }
1305
1306 /* Single aligned words are guaranteed to use 16 or 32 bit access
1307  * mode respectively, otherwise data is handled as quickly as
1308  * possible
1309  */
1310 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1311 {
1312         int retval;
1313         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1314                   (int)size, (unsigned)address);
1315
1316         if (!target_was_examined(target))
1317         {
1318                 LOG_ERROR("Target not examined yet");
1319                 return ERROR_FAIL;
1320         }
1321
1322         if (size == 0) {
1323                 return ERROR_OK;
1324         }
1325
1326         if ((address + size - 1) < address)
1327         {
1328                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1329                 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1330                                   (unsigned)address,
1331                                   (unsigned)size);
1332                 return ERROR_FAIL;
1333         }
1334
1335         if (((address % 2) == 0) && (size == 2))
1336         {
1337                 return target_write_memory(target, address, 2, 1, buffer);
1338         }
1339
1340         /* handle unaligned head bytes */
1341         if (address % 4)
1342         {
1343                 uint32_t unaligned = 4 - (address % 4);
1344
1345                 if (unaligned > size)
1346                         unaligned = size;
1347
1348                 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1349                         return retval;
1350
1351                 buffer += unaligned;
1352                 address += unaligned;
1353                 size -= unaligned;
1354         }
1355
1356         /* handle aligned words */
1357         if (size >= 4)
1358         {
1359                 int aligned = size - (size % 4);
1360
1361                 /* use bulk writes above a certain limit. This may have to be changed */
1362                 if (aligned > 128)
1363                 {
1364                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1365                                 return retval;
1366                 }
1367                 else
1368                 {
1369                         if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1370                                 return retval;
1371                 }
1372
1373                 buffer += aligned;
1374                 address += aligned;
1375                 size -= aligned;
1376         }
1377
1378         /* handle tail writes of less than 4 bytes */
1379         if (size > 0)
1380         {
1381                 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1382                         return retval;
1383         }
1384
1385         return ERROR_OK;
1386 }
1387
1388 /* Single aligned words are guaranteed to use 16 or 32 bit access
1389  * mode respectively, otherwise data is handled as quickly as
1390  * possible
1391  */
1392 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1393 {
1394         int retval;
1395         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1396                           (int)size, (unsigned)address);
1397
1398         if (!target_was_examined(target))
1399         {
1400                 LOG_ERROR("Target not examined yet");
1401                 return ERROR_FAIL;
1402         }
1403
1404         if (size == 0) {
1405                 return ERROR_OK;
1406         }
1407
1408         if ((address + size - 1) < address)
1409         {
1410                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1411                 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1412                                   address,
1413                                   size);
1414                 return ERROR_FAIL;
1415         }
1416
1417         if (((address % 2) == 0) && (size == 2))
1418         {
1419                 return target_read_memory(target, address, 2, 1, buffer);
1420         }
1421
1422         /* handle unaligned head bytes */
1423         if (address % 4)
1424         {
1425                 uint32_t unaligned = 4 - (address % 4);
1426
1427                 if (unaligned > size)
1428                         unaligned = size;
1429
1430                 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1431                         return retval;
1432
1433                 buffer += unaligned;
1434                 address += unaligned;
1435                 size -= unaligned;
1436         }
1437
1438         /* handle aligned words */
1439         if (size >= 4)
1440         {
1441                 int aligned = size - (size % 4);
1442
1443                 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1444                         return retval;
1445
1446                 buffer += aligned;
1447                 address += aligned;
1448                 size -= aligned;
1449         }
1450
1451         /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1452         if(size >=2)
1453         {
1454                 int aligned = size - (size%2);
1455                 retval = target_read_memory(target, address, 2, aligned / 2, buffer);
1456                 if (retval != ERROR_OK)
1457                         return retval;
1458
1459                 buffer += aligned;
1460                 address += aligned;
1461                 size -= aligned;
1462         }
1463         /* handle tail writes of less than 4 bytes */
1464         if (size > 0)
1465         {
1466                 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1467                         return retval;
1468         }
1469
1470         return ERROR_OK;
1471 }
1472
1473 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1474 {
1475         uint8_t *buffer;
1476         int retval;
1477         uint32_t i;
1478         uint32_t checksum = 0;
1479         if (!target_was_examined(target))
1480         {
1481                 LOG_ERROR("Target not examined yet");
1482                 return ERROR_FAIL;
1483         }
1484
1485         if ((retval = target->type->checksum_memory(target, address,
1486                 size, &checksum)) != ERROR_OK)
1487         {
1488                 buffer = malloc(size);
1489                 if (buffer == NULL)
1490                 {
1491                         LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1492                         return ERROR_INVALID_ARGUMENTS;
1493                 }
1494                 retval = target_read_buffer(target, address, size, buffer);
1495                 if (retval != ERROR_OK)
1496                 {
1497                         free(buffer);
1498                         return retval;
1499                 }
1500
1501                 /* convert to target endianess */
1502                 for (i = 0; i < (size/sizeof(uint32_t)); i++)
1503                 {
1504                         uint32_t target_data;
1505                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1506                         target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1507                 }
1508
1509                 retval = image_calculate_checksum(buffer, size, &checksum);
1510                 free(buffer);
1511         }
1512
1513         *crc = checksum;
1514
1515         return retval;
1516 }
1517
1518 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
1519 {
1520         int retval;
1521         if (!target_was_examined(target))
1522         {
1523                 LOG_ERROR("Target not examined yet");
1524                 return ERROR_FAIL;
1525         }
1526
1527         if (target->type->blank_check_memory == 0)
1528                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1529
1530         retval = target->type->blank_check_memory(target, address, size, blank);
1531
1532         return retval;
1533 }
1534
1535 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
1536 {
1537         uint8_t value_buf[4];
1538         if (!target_was_examined(target))
1539         {
1540                 LOG_ERROR("Target not examined yet");
1541                 return ERROR_FAIL;
1542         }
1543
1544         int retval = target_read_memory(target, address, 4, 1, value_buf);
1545
1546         if (retval == ERROR_OK)
1547         {
1548                 *value = target_buffer_get_u32(target, value_buf);
1549                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1550                                   address,
1551                                   *value);
1552         }
1553         else
1554         {
1555                 *value = 0x0;
1556                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1557                                   address);
1558         }
1559
1560         return retval;
1561 }
1562
1563 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
1564 {
1565         uint8_t value_buf[2];
1566         if (!target_was_examined(target))
1567         {
1568                 LOG_ERROR("Target not examined yet");
1569                 return ERROR_FAIL;
1570         }
1571
1572         int retval = target_read_memory(target, address, 2, 1, value_buf);
1573
1574         if (retval == ERROR_OK)
1575         {
1576                 *value = target_buffer_get_u16(target, value_buf);
1577                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
1578                                   address,
1579                                   *value);
1580         }
1581         else
1582         {
1583                 *value = 0x0;
1584                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1585                                   address);
1586         }
1587
1588         return retval;
1589 }
1590
1591 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
1592 {
1593         int retval = target_read_memory(target, address, 1, 1, value);
1594         if (!target_was_examined(target))
1595         {
1596                 LOG_ERROR("Target not examined yet");
1597                 return ERROR_FAIL;
1598         }
1599
1600         if (retval == ERROR_OK)
1601         {
1602                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1603                                   address,
1604                                   *value);
1605         }
1606         else
1607         {
1608                 *value = 0x0;
1609                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1610                                   address);
1611         }
1612
1613         return retval;
1614 }
1615
1616 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
1617 {
1618         int retval;
1619         uint8_t value_buf[4];
1620         if (!target_was_examined(target))
1621         {
1622                 LOG_ERROR("Target not examined yet");
1623                 return ERROR_FAIL;
1624         }
1625
1626         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1627                           address,
1628                           value);
1629
1630         target_buffer_set_u32(target, value_buf, value);
1631         if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1632         {
1633                 LOG_DEBUG("failed: %i", retval);
1634         }
1635
1636         return retval;
1637 }
1638
1639 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
1640 {
1641         int retval;
1642         uint8_t value_buf[2];
1643         if (!target_was_examined(target))
1644         {
1645                 LOG_ERROR("Target not examined yet");
1646                 return ERROR_FAIL;
1647         }
1648
1649         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
1650                           address,
1651                           value);
1652
1653         target_buffer_set_u16(target, value_buf, value);
1654         if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1655         {
1656                 LOG_DEBUG("failed: %i", retval);
1657         }
1658
1659         return retval;
1660 }
1661
1662 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
1663 {
1664         int retval;
1665         if (!target_was_examined(target))
1666         {
1667                 LOG_ERROR("Target not examined yet");
1668                 return ERROR_FAIL;
1669         }
1670
1671         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1672                           address, value);
1673
1674         if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1675         {
1676                 LOG_DEBUG("failed: %i", retval);
1677         }
1678
1679         return retval;
1680 }
1681
1682 COMMAND_HANDLER(handle_targets_command)
1683 {
1684         struct target *target = all_targets;
1685
1686         if (CMD_ARGC == 1)
1687         {
1688                 target = get_target(CMD_ARGV[0]);
1689                 if (target == NULL) {
1690                         command_print(CMD_CTX,"Target: %s is unknown, try one of:\n", CMD_ARGV[0]);
1691                         goto DumpTargets;
1692                 }
1693                 if (!target->tap->enabled) {
1694                         command_print(CMD_CTX,"Target: TAP %s is disabled, "
1695                                         "can't be the current target\n",
1696                                         target->tap->dotted_name);
1697                         return ERROR_FAIL;
1698                 }
1699
1700                 CMD_CTX->current_target = target->target_number;
1701                 return ERROR_OK;
1702         }
1703 DumpTargets:
1704
1705         target = all_targets;
1706         command_print(CMD_CTX, "    TargetName         Type       Endian TapName            State       ");
1707         command_print(CMD_CTX, "--  ------------------ ---------- ------ ------------------ ------------");
1708         while (target)
1709         {
1710                 const char *state;
1711                 char marker = ' ';
1712
1713                 if (target->tap->enabled)
1714                         state = target_state_name( target );
1715                 else
1716                         state = "tap-disabled";
1717
1718                 if (CMD_CTX->current_target == target->target_number)
1719                         marker = '*';
1720
1721                 /* keep columns lined up to match the headers above */
1722                 command_print(CMD_CTX, "%2d%c %-18s %-10s %-6s %-18s %s",
1723                                           target->target_number,
1724                                           marker,
1725                                           target_name(target),
1726                                           target_type_name(target),
1727                                           Jim_Nvp_value2name_simple(nvp_target_endian,
1728                                                                 target->endianness)->name,
1729                                           target->tap->dotted_name,
1730                                           state);
1731                 target = target->next;
1732         }
1733
1734         return ERROR_OK;
1735 }
1736
1737 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1738
1739 static int powerDropout;
1740 static int srstAsserted;
1741
1742 static int runPowerRestore;
1743 static int runPowerDropout;
1744 static int runSrstAsserted;
1745 static int runSrstDeasserted;
1746
1747 static int sense_handler(void)
1748 {
1749         static int prevSrstAsserted = 0;
1750         static int prevPowerdropout = 0;
1751
1752         int retval;
1753         if ((retval = jtag_power_dropout(&powerDropout)) != ERROR_OK)
1754                 return retval;
1755
1756         int powerRestored;
1757         powerRestored = prevPowerdropout && !powerDropout;
1758         if (powerRestored)
1759         {
1760                 runPowerRestore = 1;
1761         }
1762
1763         long long current = timeval_ms();
1764         static long long lastPower = 0;
1765         int waitMore = lastPower + 2000 > current;
1766         if (powerDropout && !waitMore)
1767         {
1768                 runPowerDropout = 1;
1769                 lastPower = current;
1770         }
1771
1772         if ((retval = jtag_srst_asserted(&srstAsserted)) != ERROR_OK)
1773                 return retval;
1774
1775         int srstDeasserted;
1776         srstDeasserted = prevSrstAsserted && !srstAsserted;
1777
1778         static long long lastSrst = 0;
1779         waitMore = lastSrst + 2000 > current;
1780         if (srstDeasserted && !waitMore)
1781         {
1782                 runSrstDeasserted = 1;
1783                 lastSrst = current;
1784         }
1785
1786         if (!prevSrstAsserted && srstAsserted)
1787         {
1788                 runSrstAsserted = 1;
1789         }
1790
1791         prevSrstAsserted = srstAsserted;
1792         prevPowerdropout = powerDropout;
1793
1794         if (srstDeasserted || powerRestored)
1795         {
1796                 /* Other than logging the event we can't do anything here.
1797                  * Issuing a reset is a particularly bad idea as we might
1798                  * be inside a reset already.
1799                  */
1800         }
1801
1802         return ERROR_OK;
1803 }
1804
1805 /* process target state changes */
1806 static int handle_target(void *priv)
1807 {
1808         Jim_Interp *interp = (Jim_Interp *)priv;
1809         int retval = ERROR_OK;
1810
1811         if (!is_jtag_poll_safe())
1812         {
1813                 /* polling is disabled currently */
1814                 return ERROR_OK;
1815         }
1816
1817         /* we do not want to recurse here... */
1818         static int recursive = 0;
1819         if (! recursive)
1820         {
1821                 recursive = 1;
1822                 sense_handler();
1823                 /* danger! running these procedures can trigger srst assertions and power dropouts.
1824                  * We need to avoid an infinite loop/recursion here and we do that by
1825                  * clearing the flags after running these events.
1826                  */
1827                 int did_something = 0;
1828                 if (runSrstAsserted)
1829                 {
1830                         LOG_INFO("srst asserted detected, running srst_asserted proc.");
1831                         Jim_Eval(interp, "srst_asserted");
1832                         did_something = 1;
1833                 }
1834                 if (runSrstDeasserted)
1835                 {
1836                         Jim_Eval(interp, "srst_deasserted");
1837                         did_something = 1;
1838                 }
1839                 if (runPowerDropout)
1840                 {
1841                         LOG_INFO("Power dropout detected, running power_dropout proc.");
1842                         Jim_Eval(interp, "power_dropout");
1843                         did_something = 1;
1844                 }
1845                 if (runPowerRestore)
1846                 {
1847                         Jim_Eval(interp, "power_restore");
1848                         did_something = 1;
1849                 }
1850
1851                 if (did_something)
1852                 {
1853                         /* clear detect flags */
1854                         sense_handler();
1855                 }
1856
1857                 /* clear action flags */
1858
1859                 runSrstAsserted = 0;
1860                 runSrstDeasserted = 0;
1861                 runPowerRestore = 0;
1862                 runPowerDropout = 0;
1863
1864                 recursive = 0;
1865         }
1866
1867         /* Poll targets for state changes unless that's globally disabled.
1868          * Skip targets that are currently disabled.
1869          */
1870         for (struct target *target = all_targets;
1871                         is_jtag_poll_safe() && target;
1872                         target = target->next)
1873         {
1874                 if (!target->tap->enabled)
1875                         continue;
1876
1877                 /* only poll target if we've got power and srst isn't asserted */
1878                 if (!powerDropout && !srstAsserted)
1879                 {
1880                         /* polling may fail silently until the target has been examined */
1881                         if ((retval = target_poll(target)) != ERROR_OK)
1882                         {
1883                                 /* FIX!!!!! If we add a LOG_INFO() here to output a line in GDB
1884                                  * *why* we are aborting GDB, then we'll spam telnet when the
1885                                  * poll is failing persistently.
1886                                  *
1887                                  * If we could implement an event that detected the
1888                                  * target going from non-pollable to pollable, we could issue
1889                                  * an error only upon the transition.
1890                                  */
1891                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1892                                 return retval;
1893                         }
1894                 }
1895         }
1896
1897         return retval;
1898 }
1899
1900 COMMAND_HANDLER(handle_reg_command)
1901 {
1902         struct target *target;
1903         struct reg *reg = NULL;
1904         unsigned count = 0;
1905         char *value;
1906
1907         LOG_DEBUG("-");
1908
1909         target = get_current_target(CMD_CTX);
1910
1911         /* list all available registers for the current target */
1912         if (CMD_ARGC == 0)
1913         {
1914                 struct reg_cache *cache = target->reg_cache;
1915
1916                 count = 0;
1917                 while (cache)
1918                 {
1919                         unsigned i;
1920
1921                         command_print(CMD_CTX, "===== %s", cache->name);
1922
1923                         for (i = 0, reg = cache->reg_list;
1924                                         i < cache->num_regs;
1925                                         i++, reg++, count++)
1926                         {
1927                                 /* only print cached values if they are valid */
1928                                 if (reg->valid) {
1929                                         value = buf_to_str(reg->value,
1930                                                         reg->size, 16);
1931                                         command_print(CMD_CTX,
1932                                                         "(%i) %s (/%" PRIu32 "): 0x%s%s",
1933                                                         count, reg->name,
1934                                                         reg->size, value,
1935                                                         reg->dirty
1936                                                                 ? " (dirty)"
1937                                                                 : "");
1938                                         free(value);
1939                                 } else {
1940                                         command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
1941                                                           count, reg->name,
1942                                                           reg->size) ;
1943                                 }
1944                         }
1945                         cache = cache->next;
1946                 }
1947
1948                 return ERROR_OK;
1949         }
1950
1951         /* access a single register by its ordinal number */
1952         if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9'))
1953         {
1954                 unsigned num;
1955                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
1956
1957                 struct reg_cache *cache = target->reg_cache;
1958                 count = 0;
1959                 while (cache)
1960                 {
1961                         unsigned i;
1962                         for (i = 0; i < cache->num_regs; i++)
1963                         {
1964                                 if (count++ == num)
1965                                 {
1966                                         reg = &cache->reg_list[i];
1967                                         break;
1968                                 }
1969                         }
1970                         if (reg)
1971                                 break;
1972                         cache = cache->next;
1973                 }
1974
1975                 if (!reg)
1976                 {
1977                         command_print(CMD_CTX, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1978                         return ERROR_OK;
1979                 }
1980         } else /* access a single register by its name */
1981         {
1982                 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
1983
1984                 if (!reg)
1985                 {
1986                         command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
1987                         return ERROR_OK;
1988                 }
1989         }
1990
1991         /* display a register */
1992         if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0') && (CMD_ARGV[1][0] <= '9'))))
1993         {
1994                 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
1995                         reg->valid = 0;
1996
1997                 if (reg->valid == 0)
1998                 {
1999                         reg->type->get(reg);
2000                 }
2001                 value = buf_to_str(reg->value, reg->size, 16);
2002                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2003                 free(value);
2004                 return ERROR_OK;
2005         }
2006
2007         /* set register value */
2008         if (CMD_ARGC == 2)
2009         {
2010                 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2011                 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2012
2013                 reg->type->set(reg, buf);
2014
2015                 value = buf_to_str(reg->value, reg->size, 16);
2016                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2017                 free(value);
2018
2019                 free(buf);
2020
2021                 return ERROR_OK;
2022         }
2023
2024         command_print(CMD_CTX, "usage: reg <#|name> [value]");
2025
2026         return ERROR_OK;
2027 }
2028
2029 COMMAND_HANDLER(handle_poll_command)
2030 {
2031         int retval = ERROR_OK;
2032         struct target *target = get_current_target(CMD_CTX);
2033
2034         if (CMD_ARGC == 0)
2035         {
2036                 command_print(CMD_CTX, "background polling: %s",
2037                                 jtag_poll_get_enabled() ? "on" : "off");
2038                 command_print(CMD_CTX, "TAP: %s (%s)",
2039                                 target->tap->dotted_name,
2040                                 target->tap->enabled ? "enabled" : "disabled");
2041                 if (!target->tap->enabled)
2042                         return ERROR_OK;
2043                 if ((retval = target_poll(target)) != ERROR_OK)
2044                         return retval;
2045                 if ((retval = target_arch_state(target)) != ERROR_OK)
2046                         return retval;
2047         }
2048         else if (CMD_ARGC == 1)
2049         {
2050                 bool enable;
2051                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2052                 jtag_poll_set_enabled(enable);
2053         }
2054         else
2055         {
2056                 return ERROR_COMMAND_SYNTAX_ERROR;
2057         }
2058
2059         return retval;
2060 }
2061
2062 COMMAND_HANDLER(handle_wait_halt_command)
2063 {
2064         if (CMD_ARGC > 1)
2065                 return ERROR_COMMAND_SYNTAX_ERROR;
2066
2067         unsigned ms = 5000;
2068         if (1 == CMD_ARGC)
2069         {
2070                 int retval = parse_uint(CMD_ARGV[0], &ms);
2071                 if (ERROR_OK != retval)
2072                 {
2073                         command_print(CMD_CTX, "usage: %s [seconds]", CMD_NAME);
2074                         return ERROR_COMMAND_SYNTAX_ERROR;
2075                 }
2076                 // convert seconds (given) to milliseconds (needed)
2077                 ms *= 1000;
2078         }
2079
2080         struct target *target = get_current_target(CMD_CTX);
2081         return target_wait_state(target, TARGET_HALTED, ms);
2082 }
2083
2084 /* wait for target state to change. The trick here is to have a low
2085  * latency for short waits and not to suck up all the CPU time
2086  * on longer waits.
2087  *
2088  * After 500ms, keep_alive() is invoked
2089  */
2090 int target_wait_state(struct target *target, enum target_state state, int ms)
2091 {
2092         int retval;
2093         long long then = 0, cur;
2094         int once = 1;
2095
2096         for (;;)
2097         {
2098                 if ((retval = target_poll(target)) != ERROR_OK)
2099                         return retval;
2100                 if (target->state == state)
2101                 {
2102                         break;
2103                 }
2104                 cur = timeval_ms();
2105                 if (once)
2106                 {
2107                         once = 0;
2108                         then = timeval_ms();
2109                         LOG_DEBUG("waiting for target %s...",
2110                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2111                 }
2112
2113                 if (cur-then > 500)
2114                 {
2115                         keep_alive();
2116                 }
2117
2118                 if ((cur-then) > ms)
2119                 {
2120                         LOG_ERROR("timed out while waiting for target %s",
2121                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2122                         return ERROR_FAIL;
2123                 }
2124         }
2125
2126         return ERROR_OK;
2127 }
2128
2129 COMMAND_HANDLER(handle_halt_command)
2130 {
2131         LOG_DEBUG("-");
2132
2133         struct target *target = get_current_target(CMD_CTX);
2134         int retval = target_halt(target);
2135         if (ERROR_OK != retval)
2136                 return retval;
2137
2138         if (CMD_ARGC == 1)
2139         {
2140                 unsigned wait;
2141                 retval = parse_uint(CMD_ARGV[0], &wait);
2142                 if (ERROR_OK != retval)
2143                         return ERROR_COMMAND_SYNTAX_ERROR;
2144                 if (!wait)
2145                         return ERROR_OK;
2146         }
2147
2148         return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2149 }
2150
2151 COMMAND_HANDLER(handle_soft_reset_halt_command)
2152 {
2153         struct target *target = get_current_target(CMD_CTX);
2154
2155         LOG_USER("requesting target halt and executing a soft reset");
2156
2157         target->type->soft_reset_halt(target);
2158
2159         return ERROR_OK;
2160 }
2161
2162 COMMAND_HANDLER(handle_reset_command)
2163 {
2164         if (CMD_ARGC > 1)
2165                 return ERROR_COMMAND_SYNTAX_ERROR;
2166
2167         enum target_reset_mode reset_mode = RESET_RUN;
2168         if (CMD_ARGC == 1)
2169         {
2170                 const Jim_Nvp *n;
2171                 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2172                 if ((n->name == NULL) || (n->value == RESET_UNKNOWN)) {
2173                         return ERROR_COMMAND_SYNTAX_ERROR;
2174                 }
2175                 reset_mode = n->value;
2176         }
2177
2178         /* reset *all* targets */
2179         return target_process_reset(CMD_CTX, reset_mode);
2180 }
2181
2182
2183 COMMAND_HANDLER(handle_resume_command)
2184 {
2185         int current = 1;
2186         if (CMD_ARGC > 1)
2187                 return ERROR_COMMAND_SYNTAX_ERROR;
2188
2189         struct target *target = get_current_target(CMD_CTX);
2190         target_handle_event(target, TARGET_EVENT_OLD_pre_resume);
2191
2192         /* with no CMD_ARGV, resume from current pc, addr = 0,
2193          * with one arguments, addr = CMD_ARGV[0],
2194          * handle breakpoints, not debugging */
2195         uint32_t addr = 0;
2196         if (CMD_ARGC == 1)
2197         {
2198                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2199                 current = 0;
2200         }
2201
2202         return target_resume(target, current, addr, 1, 0);
2203 }
2204
2205 COMMAND_HANDLER(handle_step_command)
2206 {
2207         if (CMD_ARGC > 1)
2208                 return ERROR_COMMAND_SYNTAX_ERROR;
2209
2210         LOG_DEBUG("-");
2211
2212         /* with no CMD_ARGV, step from current pc, addr = 0,
2213          * with one argument addr = CMD_ARGV[0],
2214          * handle breakpoints, debugging */
2215         uint32_t addr = 0;
2216         int current_pc = 1;
2217         if (CMD_ARGC == 1)
2218         {
2219                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2220                 current_pc = 0;
2221         }
2222
2223         struct target *target = get_current_target(CMD_CTX);
2224
2225         return target->type->step(target, current_pc, addr, 1);
2226 }
2227
2228 static void handle_md_output(struct command_context *cmd_ctx,
2229                 struct target *target, uint32_t address, unsigned size,
2230                 unsigned count, const uint8_t *buffer)
2231 {
2232         const unsigned line_bytecnt = 32;
2233         unsigned line_modulo = line_bytecnt / size;
2234
2235         char output[line_bytecnt * 4 + 1];
2236         unsigned output_len = 0;
2237
2238         const char *value_fmt;
2239         switch (size) {
2240         case 4: value_fmt = "%8.8x "; break;
2241         case 2: value_fmt = "%4.4x "; break;
2242         case 1: value_fmt = "%2.2x "; break;
2243         default:
2244                 /* "can't happen", caller checked */
2245                 LOG_ERROR("invalid memory read size: %u", size);
2246                 return;
2247         }
2248
2249         for (unsigned i = 0; i < count; i++)
2250         {
2251                 if (i % line_modulo == 0)
2252                 {
2253                         output_len += snprintf(output + output_len,
2254                                         sizeof(output) - output_len,
2255                                         "0x%8.8x: ",
2256                                         (unsigned)(address + (i*size)));
2257                 }
2258
2259                 uint32_t value = 0;
2260                 const uint8_t *value_ptr = buffer + i * size;
2261                 switch (size) {
2262                 case 4: value = target_buffer_get_u32(target, value_ptr); break;
2263                 case 2: value = target_buffer_get_u16(target, value_ptr); break;
2264                 case 1: value = *value_ptr;
2265                 }
2266                 output_len += snprintf(output + output_len,
2267                                 sizeof(output) - output_len,
2268                                 value_fmt, value);
2269
2270                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
2271                 {
2272                         command_print(cmd_ctx, "%s", output);
2273                         output_len = 0;
2274                 }
2275         }
2276 }
2277
2278 COMMAND_HANDLER(handle_md_command)
2279 {
2280         if (CMD_ARGC < 1)
2281                 return ERROR_COMMAND_SYNTAX_ERROR;
2282
2283         unsigned size = 0;
2284         switch (CMD_NAME[2]) {
2285         case 'w': size = 4; break;
2286         case 'h': size = 2; break;
2287         case 'b': size = 1; break;
2288         default: return ERROR_COMMAND_SYNTAX_ERROR;
2289         }
2290
2291         bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2292         int (*fn)(struct target *target,
2293                         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2294         if (physical)
2295         {
2296                 CMD_ARGC--;
2297                 CMD_ARGV++;
2298                 fn=target_read_phys_memory;
2299         } else
2300         {
2301                 fn=target_read_memory;
2302         }
2303         if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2304         {
2305                 return ERROR_COMMAND_SYNTAX_ERROR;
2306         }
2307
2308         uint32_t address;
2309         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2310
2311         unsigned count = 1;
2312         if (CMD_ARGC == 2)
2313                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2314
2315         uint8_t *buffer = calloc(count, size);
2316
2317         struct target *target = get_current_target(CMD_CTX);
2318         int retval = fn(target, address, size, count, buffer);
2319         if (ERROR_OK == retval)
2320                 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2321
2322         free(buffer);
2323
2324         return retval;
2325 }
2326
2327 typedef int (*target_write_fn)(struct target *target,
2328                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2329
2330 static int target_write_memory_fast(struct target *target,
2331                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2332 {
2333         return target_write_buffer(target, address, size * count, buffer);
2334 }
2335
2336 static int target_fill_mem(struct target *target,
2337                 uint32_t address,
2338                 target_write_fn fn,
2339                 unsigned data_size,
2340                 /* value */
2341                 uint32_t b,
2342                 /* count */
2343                 unsigned c)
2344 {
2345         /* We have to write in reasonably large chunks to be able
2346          * to fill large memory areas with any sane speed */
2347         const unsigned chunk_size = 16384;
2348         uint8_t *target_buf = malloc(chunk_size * data_size);
2349         if (target_buf == NULL)
2350         {
2351                 LOG_ERROR("Out of memory");
2352                 return ERROR_FAIL;
2353         }
2354
2355         for (unsigned i = 0; i < chunk_size; i ++)
2356         {
2357                 switch (data_size)
2358                 {
2359                 case 4:
2360                         target_buffer_set_u32(target, target_buf + i*data_size, b);
2361                         break;
2362                 case 2:
2363                         target_buffer_set_u16(target, target_buf + i*data_size, b);
2364                         break;
2365                 case 1:
2366                         target_buffer_set_u8(target, target_buf + i*data_size, b);
2367                         break;
2368                 default:
2369                         exit(-1);
2370                 }
2371         }
2372
2373         int retval = ERROR_OK;
2374
2375         for (unsigned x = 0; x < c; x += chunk_size)
2376         {
2377                 unsigned current;
2378                 current = c - x;
2379                 if (current > chunk_size)
2380                 {
2381                         current = chunk_size;
2382                 }
2383                 int retval = fn(target, address + x * data_size, data_size, current, target_buf);
2384                 if (retval != ERROR_OK)
2385                 {
2386                         break;
2387                 }
2388                 /* avoid GDB timeouts */
2389                 keep_alive();
2390         }
2391         free(target_buf);
2392
2393         return retval;
2394 }
2395
2396
2397 COMMAND_HANDLER(handle_mw_command)
2398 {
2399         if (CMD_ARGC < 2)
2400         {
2401                 return ERROR_COMMAND_SYNTAX_ERROR;
2402         }
2403         bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2404         target_write_fn fn;
2405         if (physical)
2406         {
2407                 CMD_ARGC--;
2408                 CMD_ARGV++;
2409                 fn=target_write_phys_memory;
2410         } else
2411         {
2412                 fn = target_write_memory_fast;
2413         }
2414         if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2415                 return ERROR_COMMAND_SYNTAX_ERROR;
2416
2417         uint32_t address;
2418         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2419
2420         uint32_t value;
2421         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2422
2423         unsigned count = 1;
2424         if (CMD_ARGC == 3)
2425                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2426
2427         struct target *target = get_current_target(CMD_CTX);
2428         unsigned wordsize;
2429         switch (CMD_NAME[2])
2430         {
2431                 case 'w':
2432                         wordsize = 4;
2433                         break;
2434                 case 'h':
2435                         wordsize = 2;
2436                         break;
2437                 case 'b':
2438                         wordsize = 1;
2439                         break;
2440                 default:
2441                         return ERROR_COMMAND_SYNTAX_ERROR;
2442         }
2443
2444         return target_fill_mem(target, address, fn, wordsize, value, count);
2445 }
2446
2447 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2448                 uint32_t *min_address, uint32_t *max_address)
2449 {
2450         if (CMD_ARGC < 1 || CMD_ARGC > 5)
2451                 return ERROR_COMMAND_SYNTAX_ERROR;
2452
2453         /* a base address isn't always necessary,
2454          * default to 0x0 (i.e. don't relocate) */
2455         if (CMD_ARGC >= 2)
2456         {
2457                 uint32_t addr;
2458                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2459                 image->base_address = addr;
2460                 image->base_address_set = 1;
2461         }
2462         else
2463                 image->base_address_set = 0;
2464
2465         image->start_address_set = 0;
2466
2467         if (CMD_ARGC >= 4)
2468         {
2469                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2470         }
2471         if (CMD_ARGC == 5)
2472         {
2473                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2474                 // use size (given) to find max (required)
2475                 *max_address += *min_address;
2476         }
2477
2478         if (*min_address > *max_address)
2479                 return ERROR_COMMAND_SYNTAX_ERROR;
2480
2481         return ERROR_OK;
2482 }
2483
2484 COMMAND_HANDLER(handle_load_image_command)
2485 {
2486         uint8_t *buffer;
2487         size_t buf_cnt;
2488         uint32_t image_size;
2489         uint32_t min_address = 0;
2490         uint32_t max_address = 0xffffffff;
2491         int i;
2492         struct image image;
2493
2494         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2495                         &image, &min_address, &max_address);
2496         if (ERROR_OK != retval)
2497                 return retval;
2498
2499         struct target *target = get_current_target(CMD_CTX);
2500
2501         struct duration bench;
2502         duration_start(&bench);
2503
2504         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2505         {
2506                 return ERROR_OK;
2507         }
2508
2509         image_size = 0x0;
2510         retval = ERROR_OK;
2511         for (i = 0; i < image.num_sections; i++)
2512         {
2513                 buffer = malloc(image.sections[i].size);
2514                 if (buffer == NULL)
2515                 {
2516                         command_print(CMD_CTX,
2517                                                   "error allocating buffer for section (%d bytes)",
2518                                                   (int)(image.sections[i].size));
2519                         break;
2520                 }
2521
2522                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2523                 {
2524                         free(buffer);
2525                         break;
2526                 }
2527
2528                 uint32_t offset = 0;
2529                 uint32_t length = buf_cnt;
2530
2531                 /* DANGER!!! beware of unsigned comparision here!!! */
2532
2533                 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
2534                                 (image.sections[i].base_address < max_address))
2535                 {
2536                         if (image.sections[i].base_address < min_address)
2537                         {
2538                                 /* clip addresses below */
2539                                 offset += min_address-image.sections[i].base_address;
2540                                 length -= offset;
2541                         }
2542
2543                         if (image.sections[i].base_address + buf_cnt > max_address)
2544                         {
2545                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2546                         }
2547
2548                         if ((retval = target_write_buffer(target, image.sections[i].base_address + offset, length, buffer + offset)) != ERROR_OK)
2549                         {
2550                                 free(buffer);
2551                                 break;
2552                         }
2553                         image_size += length;
2554                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
2555                                                   (unsigned int)length,
2556                                                   image.sections[i].base_address + offset);
2557                 }
2558
2559                 free(buffer);
2560         }
2561
2562         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2563         {
2564                 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
2565                                 "in %fs (%0.3f kb/s)", image_size,
2566                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2567         }
2568
2569         image_close(&image);
2570
2571         return retval;
2572
2573 }
2574
2575 COMMAND_HANDLER(handle_dump_image_command)
2576 {
2577         struct fileio fileio;
2578
2579         uint8_t buffer[560];
2580         int retvaltemp;
2581
2582
2583         struct target *target = get_current_target(CMD_CTX);
2584
2585         if (CMD_ARGC != 3)
2586         {
2587                 command_print(CMD_CTX, "usage: dump_image <filename> <address> <size>");
2588                 return ERROR_OK;
2589         }
2590
2591         uint32_t address;
2592         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
2593         uint32_t size;
2594         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
2595
2596         if (fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2597         {
2598                 return ERROR_OK;
2599         }
2600
2601         struct duration bench;
2602         duration_start(&bench);
2603
2604         int retval = ERROR_OK;
2605         while (size > 0)
2606         {
2607                 size_t size_written;
2608                 uint32_t this_run_size = (size > 560) ? 560 : size;
2609                 retval = target_read_buffer(target, address, this_run_size, buffer);
2610                 if (retval != ERROR_OK)
2611                 {
2612                         break;
2613                 }
2614
2615                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2616                 if (retval != ERROR_OK)
2617                 {
2618                         break;
2619                 }
2620
2621                 size -= this_run_size;
2622                 address += this_run_size;
2623         }
2624
2625         if ((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2626                 return retvaltemp;
2627
2628         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2629         {
2630                 command_print(CMD_CTX,
2631                                 "dumped %ld bytes in %fs (%0.3f kb/s)", (long)fileio.size,
2632                                 duration_elapsed(&bench), duration_kbps(&bench, fileio.size));
2633         }
2634
2635         return retval;
2636 }
2637
2638 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
2639 {
2640         uint8_t *buffer;
2641         size_t buf_cnt;
2642         uint32_t image_size;
2643         int i;
2644         int retval;
2645         uint32_t checksum = 0;
2646         uint32_t mem_checksum = 0;
2647
2648         struct image image;
2649
2650         struct target *target = get_current_target(CMD_CTX);
2651
2652         if (CMD_ARGC < 1)
2653         {
2654                 return ERROR_COMMAND_SYNTAX_ERROR;
2655         }
2656
2657         if (!target)
2658         {
2659                 LOG_ERROR("no target selected");
2660                 return ERROR_FAIL;
2661         }
2662
2663         struct duration bench;
2664         duration_start(&bench);
2665
2666         if (CMD_ARGC >= 2)
2667         {
2668                 uint32_t addr;
2669                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2670                 image.base_address = addr;
2671                 image.base_address_set = 1;
2672         }
2673         else
2674         {
2675                 image.base_address_set = 0;
2676                 image.base_address = 0x0;
2677         }
2678
2679         image.start_address_set = 0;
2680
2681         if ((retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL)) != ERROR_OK)
2682         {
2683                 return retval;
2684         }
2685
2686         image_size = 0x0;
2687         retval = ERROR_OK;
2688         for (i = 0; i < image.num_sections; i++)
2689         {
2690                 buffer = malloc(image.sections[i].size);
2691                 if (buffer == NULL)
2692                 {
2693                         command_print(CMD_CTX,
2694                                                   "error allocating buffer for section (%d bytes)",
2695                                                   (int)(image.sections[i].size));
2696                         break;
2697                 }
2698                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2699                 {
2700                         free(buffer);
2701                         break;
2702                 }
2703
2704                 if (verify)
2705                 {
2706                         /* calculate checksum of image */
2707                         image_calculate_checksum(buffer, buf_cnt, &checksum);
2708
2709                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2710                         if (retval != ERROR_OK)
2711                         {
2712                                 free(buffer);
2713                                 break;
2714                         }
2715
2716                         if (checksum != mem_checksum)
2717                         {
2718                                 /* failed crc checksum, fall back to a binary compare */
2719                                 uint8_t *data;
2720
2721                                 command_print(CMD_CTX, "checksum mismatch - attempting binary compare");
2722
2723                                 data = (uint8_t*)malloc(buf_cnt);
2724
2725                                 /* Can we use 32bit word accesses? */
2726                                 int size = 1;
2727                                 int count = buf_cnt;
2728                                 if ((count % 4) == 0)
2729                                 {
2730                                         size *= 4;
2731                                         count /= 4;
2732                                 }
2733                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2734                                 if (retval == ERROR_OK)
2735                                 {
2736                                         uint32_t t;
2737                                         for (t = 0; t < buf_cnt; t++)
2738                                         {
2739                                                 if (data[t] != buffer[t])
2740                                                 {
2741                                                         command_print(CMD_CTX,
2742                                                                                   "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n",
2743                                                                                   (unsigned)(t + image.sections[i].base_address),
2744                                                                                   data[t],
2745                                                                                   buffer[t]);
2746                                                         free(data);
2747                                                         free(buffer);
2748                                                         retval = ERROR_FAIL;
2749                                                         goto done;
2750                                                 }
2751                                                 if ((t%16384) == 0)
2752                                                 {
2753                                                         keep_alive();
2754                                                 }
2755                                         }
2756                                 }
2757
2758                                 free(data);
2759                         }
2760                 } else
2761                 {
2762                         command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
2763                                                   image.sections[i].base_address,
2764                                                   buf_cnt);
2765                 }
2766
2767                 free(buffer);
2768                 image_size += buf_cnt;
2769         }
2770 done:
2771         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2772         {
2773                 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
2774                                 "in %fs (%0.3f kb/s)", image_size,
2775                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2776         }
2777
2778         image_close(&image);
2779
2780         return retval;
2781 }
2782
2783 COMMAND_HANDLER(handle_verify_image_command)
2784 {
2785         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
2786 }
2787
2788 COMMAND_HANDLER(handle_test_image_command)
2789 {
2790         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
2791 }
2792
2793 static int handle_bp_command_list(struct command_context *cmd_ctx)
2794 {
2795         struct target *target = get_current_target(cmd_ctx);
2796         struct breakpoint *breakpoint = target->breakpoints;
2797         while (breakpoint)
2798         {
2799                 if (breakpoint->type == BKPT_SOFT)
2800                 {
2801                         char* buf = buf_to_str(breakpoint->orig_instr,
2802                                         breakpoint->length, 16);
2803                         command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
2804                                         breakpoint->address,
2805                                         breakpoint->length,
2806                                         breakpoint->set, buf);
2807                         free(buf);
2808                 }
2809                 else
2810                 {
2811                         command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i",
2812                                                   breakpoint->address,
2813                                                   breakpoint->length, breakpoint->set);
2814                 }
2815
2816                 breakpoint = breakpoint->next;
2817         }
2818         return ERROR_OK;
2819 }
2820
2821 static int handle_bp_command_set(struct command_context *cmd_ctx,
2822                 uint32_t addr, uint32_t length, int hw)
2823 {
2824         struct target *target = get_current_target(cmd_ctx);
2825         int retval = breakpoint_add(target, addr, length, hw);
2826         if (ERROR_OK == retval)
2827                 command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
2828         else
2829                 LOG_ERROR("Failure setting breakpoint");
2830         return retval;
2831 }
2832
2833 COMMAND_HANDLER(handle_bp_command)
2834 {
2835         if (CMD_ARGC == 0)
2836                 return handle_bp_command_list(CMD_CTX);
2837
2838         if (CMD_ARGC < 2 || CMD_ARGC > 3)
2839         {
2840                 command_print(CMD_CTX, "usage: bp <address> <length> ['hw']");
2841                 return ERROR_COMMAND_SYNTAX_ERROR;
2842         }
2843
2844         uint32_t addr;
2845         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2846         uint32_t length;
2847         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
2848
2849         int hw = BKPT_SOFT;
2850         if (CMD_ARGC == 3)
2851         {
2852                 if (strcmp(CMD_ARGV[2], "hw") == 0)
2853                         hw = BKPT_HARD;
2854                 else
2855                         return ERROR_COMMAND_SYNTAX_ERROR;
2856         }
2857
2858         return handle_bp_command_set(CMD_CTX, addr, length, hw);
2859 }
2860
2861 COMMAND_HANDLER(handle_rbp_command)
2862 {
2863         if (CMD_ARGC != 1)
2864                 return ERROR_COMMAND_SYNTAX_ERROR;
2865
2866         uint32_t addr;
2867         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2868
2869         struct target *target = get_current_target(CMD_CTX);
2870         breakpoint_remove(target, addr);
2871
2872         return ERROR_OK;
2873 }
2874
2875 COMMAND_HANDLER(handle_wp_command)
2876 {
2877         struct target *target = get_current_target(CMD_CTX);
2878
2879         if (CMD_ARGC == 0)
2880         {
2881                 struct watchpoint *watchpoint = target->watchpoints;
2882
2883                 while (watchpoint)
2884                 {
2885                         command_print(CMD_CTX, "address: 0x%8.8" PRIx32
2886                                         ", len: 0x%8.8" PRIx32
2887                                         ", r/w/a: %i, value: 0x%8.8" PRIx32
2888                                         ", mask: 0x%8.8" PRIx32,
2889                                         watchpoint->address,
2890                                         watchpoint->length,
2891                                         (int)watchpoint->rw,
2892                                         watchpoint->value,
2893                                         watchpoint->mask);
2894                         watchpoint = watchpoint->next;
2895                 }
2896                 return ERROR_OK;
2897         }
2898
2899         enum watchpoint_rw type = WPT_ACCESS;
2900         uint32_t addr = 0;
2901         uint32_t length = 0;
2902         uint32_t data_value = 0x0;
2903         uint32_t data_mask = 0xffffffff;
2904
2905         switch (CMD_ARGC)
2906         {
2907         case 5:
2908                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
2909                 // fall through
2910         case 4:
2911                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
2912                 // fall through
2913         case 3:
2914                 switch (CMD_ARGV[2][0])
2915                 {
2916                 case 'r':
2917                         type = WPT_READ;
2918                         break;
2919                 case 'w':
2920                         type = WPT_WRITE;
2921                         break;
2922                 case 'a':
2923                         type = WPT_ACCESS;
2924                         break;
2925                 default:
2926                         LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
2927                         return ERROR_COMMAND_SYNTAX_ERROR;
2928                 }
2929                 // fall through
2930         case 2:
2931                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
2932                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2933                 break;
2934
2935         default:
2936                 command_print(CMD_CTX, "usage: wp [address length "
2937                                 "[(r|w|a) [value [mask]]]]");
2938                 return ERROR_COMMAND_SYNTAX_ERROR;
2939         }
2940
2941         int retval = watchpoint_add(target, addr, length, type,
2942                         data_value, data_mask);
2943         if (ERROR_OK != retval)
2944                 LOG_ERROR("Failure setting watchpoints");
2945
2946         return retval;
2947 }
2948
2949 COMMAND_HANDLER(handle_rwp_command)
2950 {
2951         if (CMD_ARGC != 1)
2952                 return ERROR_COMMAND_SYNTAX_ERROR;
2953
2954         uint32_t addr;
2955         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2956
2957         struct target *target = get_current_target(CMD_CTX);
2958         watchpoint_remove(target, addr);
2959
2960         return ERROR_OK;
2961 }
2962
2963
2964 /**
2965  * Translate a virtual address to a physical address.
2966  *
2967  * The low-level target implementation must have logged a detailed error
2968  * which is forwarded to telnet/GDB session.
2969  */
2970 COMMAND_HANDLER(handle_virt2phys_command)
2971 {
2972         if (CMD_ARGC != 1)
2973                 return ERROR_COMMAND_SYNTAX_ERROR;
2974
2975         uint32_t va;
2976         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
2977         uint32_t pa;
2978
2979         struct target *target = get_current_target(CMD_CTX);
2980         int retval = target->type->virt2phys(target, va, &pa);
2981         if (retval == ERROR_OK)
2982                 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
2983
2984         return retval;
2985 }
2986
2987 static void writeData(FILE *f, const void *data, size_t len)
2988 {
2989         size_t written = fwrite(data, 1, len, f);
2990         if (written != len)
2991                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
2992 }
2993
2994 static void writeLong(FILE *f, int l)
2995 {
2996         int i;
2997         for (i = 0; i < 4; i++)
2998         {
2999                 char c = (l >> (i*8))&0xff;
3000                 writeData(f, &c, 1);
3001         }
3002
3003 }
3004
3005 static void writeString(FILE *f, char *s)
3006 {
3007         writeData(f, s, strlen(s));
3008 }
3009
3010 /* Dump a gmon.out histogram file. */
3011 static void writeGmon(uint32_t *samples, uint32_t sampleNum, const char *filename)
3012 {
3013         uint32_t i;
3014         FILE *f = fopen(filename, "w");
3015         if (f == NULL)
3016                 return;
3017         writeString(f, "gmon");
3018         writeLong(f, 0x00000001); /* Version */
3019         writeLong(f, 0); /* padding */
3020         writeLong(f, 0); /* padding */
3021         writeLong(f, 0); /* padding */
3022
3023         uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
3024         writeData(f, &zero, 1);
3025
3026         /* figure out bucket size */
3027         uint32_t min = samples[0];
3028         uint32_t max = samples[0];
3029         for (i = 0; i < sampleNum; i++)
3030         {
3031                 if (min > samples[i])
3032                 {
3033                         min = samples[i];
3034                 }
3035                 if (max < samples[i])
3036                 {
3037                         max = samples[i];
3038                 }
3039         }
3040
3041         int addressSpace = (max-min + 1);
3042
3043         static const uint32_t maxBuckets = 256 * 1024; /* maximum buckets. */
3044         uint32_t length = addressSpace;
3045         if (length > maxBuckets)
3046         {
3047                 length = maxBuckets;
3048         }
3049         int *buckets = malloc(sizeof(int)*length);
3050         if (buckets == NULL)
3051         {
3052                 fclose(f);
3053                 return;
3054         }
3055         memset(buckets, 0, sizeof(int)*length);
3056         for (i = 0; i < sampleNum;i++)
3057         {
3058                 uint32_t address = samples[i];
3059                 long long a = address-min;
3060                 long long b = length-1;
3061                 long long c = addressSpace-1;
3062                 int index = (a*b)/c; /* danger!!!! int32 overflows */
3063                 buckets[index]++;
3064         }
3065
3066         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3067         writeLong(f, min);                      /* low_pc */
3068         writeLong(f, max);                      /* high_pc */
3069         writeLong(f, length);           /* # of samples */
3070         writeLong(f, 64000000);         /* 64MHz */
3071         writeString(f, "seconds");
3072         for (i = 0; i < (15-strlen("seconds")); i++)
3073                 writeData(f, &zero, 1);
3074         writeString(f, "s");
3075
3076         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3077
3078         char *data = malloc(2*length);
3079         if (data != NULL)
3080         {
3081                 for (i = 0; i < length;i++)
3082                 {
3083                         int val;
3084                         val = buckets[i];
3085                         if (val > 65535)
3086                         {
3087                                 val = 65535;
3088                         }
3089                         data[i*2]=val&0xff;
3090                         data[i*2 + 1]=(val >> 8)&0xff;
3091                 }
3092                 free(buckets);
3093                 writeData(f, data, length * 2);
3094                 free(data);
3095         } else
3096         {
3097                 free(buckets);
3098         }
3099
3100         fclose(f);
3101 }
3102
3103 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3104  * which will be used as a random sampling of PC */
3105 COMMAND_HANDLER(handle_profile_command)
3106 {
3107         struct target *target = get_current_target(CMD_CTX);
3108         struct timeval timeout, now;
3109
3110         gettimeofday(&timeout, NULL);
3111         if (CMD_ARGC != 2)
3112         {
3113                 return ERROR_COMMAND_SYNTAX_ERROR;
3114         }
3115         unsigned offset;
3116         COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], offset);
3117
3118         timeval_add_time(&timeout, offset, 0);
3119
3120         /**
3121          * @todo: Some cores let us sample the PC without the
3122          * annoying halt/resume step; for example, ARMv7 PCSR.
3123          * Provide a way to use that more efficient mechanism.
3124          */
3125
3126         command_print(CMD_CTX, "Starting profiling. Halting and resuming the target as often as we can...");
3127
3128         static const int maxSample = 10000;
3129         uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
3130         if (samples == NULL)
3131                 return ERROR_OK;
3132
3133         int numSamples = 0;
3134         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
3135         struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
3136
3137         for (;;)
3138         {
3139                 int retval;
3140                 target_poll(target);
3141                 if (target->state == TARGET_HALTED)
3142                 {
3143                         uint32_t t=*((uint32_t *)reg->value);
3144                         samples[numSamples++]=t;
3145                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3146                         target_poll(target);
3147                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
3148                 } else if (target->state == TARGET_RUNNING)
3149                 {
3150                         /* We want to quickly sample the PC. */
3151                         if ((retval = target_halt(target)) != ERROR_OK)
3152                         {
3153                                 free(samples);
3154                                 return retval;
3155                         }
3156                 } else
3157                 {
3158                         command_print(CMD_CTX, "Target not halted or running");
3159                         retval = ERROR_OK;
3160                         break;
3161                 }
3162                 if (retval != ERROR_OK)
3163                 {
3164                         break;
3165                 }
3166
3167                 gettimeofday(&now, NULL);
3168                 if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
3169                 {
3170                         command_print(CMD_CTX, "Profiling completed. %d samples.", numSamples);
3171                         if ((retval = target_poll(target)) != ERROR_OK)
3172                         {
3173                                 free(samples);
3174                                 return retval;
3175                         }
3176                         if (target->state == TARGET_HALTED)
3177                         {
3178                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3179                         }
3180                         if ((retval = target_poll(target)) != ERROR_OK)
3181                         {
3182                                 free(samples);
3183                                 return retval;
3184                         }
3185                         writeGmon(samples, numSamples, CMD_ARGV[1]);
3186                         command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3187                         break;
3188                 }
3189         }
3190         free(samples);
3191
3192         return ERROR_OK;
3193 }
3194
3195 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t val)
3196 {
3197         char *namebuf;
3198         Jim_Obj *nameObjPtr, *valObjPtr;
3199         int result;
3200
3201         namebuf = alloc_printf("%s(%d)", varname, idx);
3202         if (!namebuf)
3203                 return JIM_ERR;
3204
3205         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3206         valObjPtr = Jim_NewIntObj(interp, val);
3207         if (!nameObjPtr || !valObjPtr)
3208         {
3209                 free(namebuf);
3210                 return JIM_ERR;
3211         }
3212
3213         Jim_IncrRefCount(nameObjPtr);
3214         Jim_IncrRefCount(valObjPtr);
3215         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3216         Jim_DecrRefCount(interp, nameObjPtr);
3217         Jim_DecrRefCount(interp, valObjPtr);
3218         free(namebuf);
3219         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3220         return result;
3221 }
3222
3223 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3224 {
3225         struct command_context *context;
3226         struct target *target;
3227
3228         context = Jim_GetAssocData(interp, "context");
3229         if (context == NULL)
3230         {
3231                 LOG_ERROR("mem2array: no command context");
3232                 return JIM_ERR;
3233         }
3234         target = get_current_target(context);
3235         if (target == NULL)
3236         {
3237                 LOG_ERROR("mem2array: no current target");
3238                 return JIM_ERR;
3239         }
3240
3241         return  target_mem2array(interp, target, argc-1, argv + 1);
3242 }
3243
3244 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3245 {
3246         long l;
3247         uint32_t width;
3248         int len;
3249         uint32_t addr;
3250         uint32_t count;
3251         uint32_t v;
3252         const char *varname;
3253         int  n, e, retval;
3254         uint32_t i;
3255
3256         /* argv[1] = name of array to receive the data
3257          * argv[2] = desired width
3258          * argv[3] = memory address
3259          * argv[4] = count of times to read
3260          */
3261         if (argc != 4) {
3262                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3263                 return JIM_ERR;
3264         }
3265         varname = Jim_GetString(argv[0], &len);
3266         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3267
3268         e = Jim_GetLong(interp, argv[1], &l);
3269         width = l;
3270         if (e != JIM_OK) {
3271                 return e;
3272         }
3273
3274         e = Jim_GetLong(interp, argv[2], &l);
3275         addr = l;
3276         if (e != JIM_OK) {
3277                 return e;
3278         }
3279         e = Jim_GetLong(interp, argv[3], &l);
3280         len = l;
3281         if (e != JIM_OK) {
3282                 return e;
3283         }
3284         switch (width) {
3285                 case 8:
3286                         width = 1;
3287                         break;
3288                 case 16:
3289                         width = 2;
3290                         break;
3291                 case 32:
3292                         width = 4;
3293                         break;
3294                 default:
3295                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3296                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3297                         return JIM_ERR;
3298         }
3299         if (len == 0) {
3300                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3301                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3302                 return JIM_ERR;
3303         }
3304         if ((addr + (len * width)) < addr) {
3305                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3306                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3307                 return JIM_ERR;
3308         }
3309         /* absurd transfer size? */
3310         if (len > 65536) {
3311                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3312                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3313                 return JIM_ERR;
3314         }
3315
3316         if ((width == 1) ||
3317                 ((width == 2) && ((addr & 1) == 0)) ||
3318                 ((width == 4) && ((addr & 3) == 0))) {
3319                 /* all is well */
3320         } else {
3321                 char buf[100];
3322                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3323                 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3324                                 addr,
3325                                 width);
3326                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3327                 return JIM_ERR;
3328         }
3329
3330         /* Transfer loop */
3331
3332         /* index counter */
3333         n = 0;
3334
3335         size_t buffersize = 4096;
3336         uint8_t *buffer = malloc(buffersize);
3337         if (buffer == NULL)
3338                 return JIM_ERR;
3339
3340         /* assume ok */
3341         e = JIM_OK;
3342         while (len) {
3343                 /* Slurp... in buffer size chunks */
3344
3345                 count = len; /* in objects.. */
3346                 if (count > (buffersize/width)) {
3347                         count = (buffersize/width);
3348                 }
3349
3350                 retval = target_read_memory(target, addr, width, count, buffer);
3351                 if (retval != ERROR_OK) {
3352                         /* BOO !*/
3353                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3354                                           (unsigned int)addr,
3355                                           (int)width,
3356                                           (int)count);
3357                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3358                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3359                         e = JIM_ERR;
3360                         len = 0;
3361                 } else {
3362                         v = 0; /* shut up gcc */
3363                         for (i = 0 ;i < count ;i++, n++) {
3364                                 switch (width) {
3365                                         case 4:
3366                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
3367                                                 break;
3368                                         case 2:
3369                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
3370                                                 break;
3371                                         case 1:
3372                                                 v = buffer[i] & 0x0ff;
3373                                                 break;
3374                                 }
3375                                 new_int_array_element(interp, varname, n, v);
3376                         }
3377                         len -= count;
3378                 }
3379         }
3380
3381         free(buffer);
3382
3383         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3384
3385         return JIM_OK;
3386 }
3387
3388 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t *val)
3389 {
3390         char *namebuf;
3391         Jim_Obj *nameObjPtr, *valObjPtr;
3392         int result;
3393         long l;
3394
3395         namebuf = alloc_printf("%s(%d)", varname, idx);
3396         if (!namebuf)
3397                 return JIM_ERR;
3398
3399         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3400         if (!nameObjPtr)
3401         {
3402                 free(namebuf);
3403                 return JIM_ERR;
3404         }
3405
3406         Jim_IncrRefCount(nameObjPtr);
3407         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3408         Jim_DecrRefCount(interp, nameObjPtr);
3409         free(namebuf);
3410         if (valObjPtr == NULL)
3411                 return JIM_ERR;
3412
3413         result = Jim_GetLong(interp, valObjPtr, &l);
3414         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3415         *val = l;
3416         return result;
3417 }
3418
3419 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3420 {
3421         struct command_context *context;
3422         struct target *target;
3423
3424         context = Jim_GetAssocData(interp, "context");
3425         if (context == NULL) {
3426                 LOG_ERROR("array2mem: no command context");
3427                 return JIM_ERR;
3428         }
3429         target = get_current_target(context);
3430         if (target == NULL) {
3431                 LOG_ERROR("array2mem: no current target");
3432                 return JIM_ERR;
3433         }
3434
3435         return target_array2mem(interp,target, argc-1, argv + 1);
3436 }
3437
3438 static int target_array2mem(Jim_Interp *interp, struct target *target,
3439                 int argc, Jim_Obj *const *argv)
3440 {
3441         long l;
3442         uint32_t width;
3443         int len;
3444         uint32_t addr;
3445         uint32_t count;
3446         uint32_t v;
3447         const char *varname;
3448         int  n, e, retval;
3449         uint32_t i;
3450
3451         /* argv[1] = name of array to get the data
3452          * argv[2] = desired width
3453          * argv[3] = memory address
3454          * argv[4] = count to write
3455          */
3456         if (argc != 4) {
3457                 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems");
3458                 return JIM_ERR;
3459         }
3460         varname = Jim_GetString(argv[0], &len);
3461         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3462
3463         e = Jim_GetLong(interp, argv[1], &l);
3464         width = l;
3465         if (e != JIM_OK) {
3466                 return e;
3467         }
3468
3469         e = Jim_GetLong(interp, argv[2], &l);
3470         addr = l;
3471         if (e != JIM_OK) {
3472                 return e;
3473         }
3474         e = Jim_GetLong(interp, argv[3], &l);
3475         len = l;
3476         if (e != JIM_OK) {
3477                 return e;
3478         }
3479         switch (width) {
3480                 case 8:
3481                         width = 1;
3482                         break;
3483                 case 16:
3484                         width = 2;
3485                         break;
3486                 case 32:
3487                         width = 4;
3488                         break;
3489                 default:
3490                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3491                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3492                         return JIM_ERR;
3493         }
3494         if (len == 0) {
3495                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3496                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
3497                 return JIM_ERR;
3498         }
3499         if ((addr + (len * width)) < addr) {
3500                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3501                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
3502                 return JIM_ERR;
3503         }
3504         /* absurd transfer size? */
3505         if (len > 65536) {
3506                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3507                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
3508                 return JIM_ERR;
3509         }
3510
3511         if ((width == 1) ||
3512                 ((width == 2) && ((addr & 1) == 0)) ||
3513                 ((width == 4) && ((addr & 3) == 0))) {
3514                 /* all is well */
3515         } else {
3516                 char buf[100];
3517                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3518                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
3519                                 (unsigned int)addr,
3520                                 (int)width);
3521                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3522                 return JIM_ERR;
3523         }
3524
3525         /* Transfer loop */
3526
3527         /* index counter */
3528         n = 0;
3529         /* assume ok */
3530         e = JIM_OK;
3531
3532         size_t buffersize = 4096;
3533         uint8_t *buffer = malloc(buffersize);
3534         if (buffer == NULL)
3535                 return JIM_ERR;
3536
3537         while (len) {
3538                 /* Slurp... in buffer size chunks */
3539
3540                 count = len; /* in objects.. */
3541                 if (count > (buffersize/width)) {
3542                         count = (buffersize/width);
3543                 }
3544
3545                 v = 0; /* shut up gcc */
3546                 for (i = 0 ;i < count ;i++, n++) {
3547                         get_int_array_element(interp, varname, n, &v);
3548                         switch (width) {
3549                         case 4:
3550                                 target_buffer_set_u32(target, &buffer[i*width], v);
3551                                 break;
3552                         case 2:
3553                                 target_buffer_set_u16(target, &buffer[i*width], v);
3554                                 break;
3555                         case 1:
3556                                 buffer[i] = v & 0x0ff;
3557                                 break;
3558                         }
3559                 }
3560                 len -= count;
3561
3562                 retval = target_write_memory(target, addr, width, count, buffer);
3563                 if (retval != ERROR_OK) {
3564                         /* BOO !*/
3565                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
3566                                           (unsigned int)addr,
3567                                           (int)width,
3568                                           (int)count);
3569                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3570                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3571                         e = JIM_ERR;
3572                         len = 0;
3573                 }
3574         }
3575
3576         free(buffer);
3577
3578         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3579
3580         return JIM_OK;
3581 }
3582
3583 /* FIX? should we propagate errors here rather than printing them
3584  * and continuing?
3585  */
3586 void target_handle_event(struct target *target, enum target_event e)
3587 {
3588         struct target_event_action *teap;
3589
3590         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3591                 if (teap->event == e) {
3592                         LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
3593                                            target->target_number,
3594                                            target_name(target),
3595                                            target_type_name(target),
3596                                            e,
3597                                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
3598                                            Jim_GetString(teap->body, NULL));
3599                         if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK)
3600                         {
3601                                 Jim_PrintErrorMessage(teap->interp);
3602                         }
3603                 }
3604         }
3605 }
3606
3607 /**
3608  * Returns true only if the target has a handler for the specified event.
3609  */
3610 bool target_has_event_action(struct target *target, enum target_event event)
3611 {
3612         struct target_event_action *teap;
3613
3614         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3615                 if (teap->event == event)
3616                         return true;
3617         }
3618         return false;
3619 }
3620
3621 enum target_cfg_param {
3622         TCFG_TYPE,
3623         TCFG_EVENT,
3624         TCFG_WORK_AREA_VIRT,
3625         TCFG_WORK_AREA_PHYS,
3626         TCFG_WORK_AREA_SIZE,
3627         TCFG_WORK_AREA_BACKUP,
3628         TCFG_ENDIAN,
3629         TCFG_VARIANT,
3630         TCFG_CHAIN_POSITION,
3631 };
3632
3633 static Jim_Nvp nvp_config_opts[] = {
3634         { .name = "-type",             .value = TCFG_TYPE },
3635         { .name = "-event",            .value = TCFG_EVENT },
3636         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
3637         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
3638         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
3639         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3640         { .name = "-endian" ,          .value = TCFG_ENDIAN },
3641         { .name = "-variant",          .value = TCFG_VARIANT },
3642         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
3643
3644         { .name = NULL, .value = -1 }
3645 };
3646
3647 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
3648 {
3649         Jim_Nvp *n;
3650         Jim_Obj *o;
3651         jim_wide w;
3652         char *cp;
3653         int e;
3654
3655         /* parse config or cget options ... */
3656         while (goi->argc > 0) {
3657                 Jim_SetEmptyResult(goi->interp);
3658                 /* Jim_GetOpt_Debug(goi); */
3659
3660                 if (target->type->target_jim_configure) {
3661                         /* target defines a configure function */
3662                         /* target gets first dibs on parameters */
3663                         e = (*(target->type->target_jim_configure))(target, goi);
3664                         if (e == JIM_OK) {
3665                                 /* more? */
3666                                 continue;
3667                         }
3668                         if (e == JIM_ERR) {
3669                                 /* An error */
3670                                 return e;
3671                         }
3672                         /* otherwise we 'continue' below */
3673                 }
3674                 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
3675                 if (e != JIM_OK) {
3676                         Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
3677                         return e;
3678                 }
3679                 switch (n->value) {
3680                 case TCFG_TYPE:
3681                         /* not setable */
3682                         if (goi->isconfigure) {
3683                                 Jim_SetResult_sprintf(goi->interp,
3684                                                 "not settable: %s", n->name);
3685                                 return JIM_ERR;
3686                         } else {
3687                         no_params:
3688                                 if (goi->argc != 0) {
3689                                         Jim_WrongNumArgs(goi->interp,
3690                                                         goi->argc, goi->argv,
3691                                                         "NO PARAMS");
3692                                         return JIM_ERR;
3693                                 }
3694                         }
3695                         Jim_SetResultString(goi->interp,
3696                                         target_type_name(target), -1);
3697                         /* loop for more */
3698                         break;
3699                 case TCFG_EVENT:
3700                         if (goi->argc == 0) {
3701                                 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
3702                                 return JIM_ERR;
3703                         }
3704
3705                         e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
3706                         if (e != JIM_OK) {
3707                                 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
3708                                 return e;
3709                         }
3710
3711                         if (goi->isconfigure) {
3712                                 if (goi->argc != 1) {
3713                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
3714                                         return JIM_ERR;
3715                                 }
3716                         } else {
3717                                 if (goi->argc != 0) {
3718                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
3719                                         return JIM_ERR;
3720                                 }
3721                         }
3722
3723                         {
3724                                 struct target_event_action *teap;
3725
3726                                 teap = target->event_action;
3727                                 /* replace existing? */
3728                                 while (teap) {
3729                                         if (teap->event == (enum target_event)n->value) {
3730                                                 break;
3731                                         }
3732                                         teap = teap->next;
3733                                 }
3734
3735                                 if (goi->isconfigure) {
3736                                         bool replace = true;
3737                                         if (teap == NULL) {
3738                                                 /* create new */
3739                                                 teap = calloc(1, sizeof(*teap));
3740                                                 replace = false;
3741                                         }
3742                                         teap->event = n->value;
3743                                         teap->interp = goi->interp;
3744                                         Jim_GetOpt_Obj(goi, &o);
3745                                         if (teap->body) {
3746                                                 Jim_DecrRefCount(teap->interp, teap->body);
3747                                         }
3748                                         teap->body  = Jim_DuplicateObj(goi->interp, o);
3749                                         /*
3750                                          * FIXME:
3751                                          *     Tcl/TK - "tk events" have a nice feature.
3752                                          *     See the "BIND" command.
3753                                          *    We should support that here.
3754                                          *     You can specify %X and %Y in the event code.
3755                                          *     The idea is: %T - target name.
3756                                          *     The idea is: %N - target number
3757                                          *     The idea is: %E - event name.
3758                                          */
3759                                         Jim_IncrRefCount(teap->body);
3760
3761                                         if (!replace)
3762                                         {
3763                                                 /* add to head of event list */
3764                                                 teap->next = target->event_action;
3765                                                 target->event_action = teap;
3766                                         }
3767                                         Jim_SetEmptyResult(goi->interp);
3768                                 } else {
3769                                         /* get */
3770                                         if (teap == NULL) {
3771                                                 Jim_SetEmptyResult(goi->interp);
3772                                         } else {
3773                                                 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
3774                                         }
3775                                 }
3776                         }
3777                         /* loop for more */
3778                         break;
3779
3780                 case TCFG_WORK_AREA_VIRT:
3781                         if (goi->isconfigure) {
3782                                 target_free_all_working_areas(target);
3783                                 e = Jim_GetOpt_Wide(goi, &w);
3784                                 if (e != JIM_OK) {
3785                                         return e;
3786                                 }
3787                                 target->working_area_virt = w;
3788                                 target->working_area_virt_spec = true;
3789                         } else {
3790                                 if (goi->argc != 0) {
3791                                         goto no_params;
3792                                 }
3793                         }
3794                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
3795                         /* loop for more */
3796                         break;
3797
3798                 case TCFG_WORK_AREA_PHYS:
3799                         if (goi->isconfigure) {
3800                                 target_free_all_working_areas(target);
3801                                 e = Jim_GetOpt_Wide(goi, &w);
3802                                 if (e != JIM_OK) {
3803                                         return e;
3804                                 }
3805                                 target->working_area_phys = w;
3806                                 target->working_area_phys_spec = true;
3807                         } else {
3808                                 if (goi->argc != 0) {
3809                                         goto no_params;
3810                                 }
3811                         }
3812                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
3813                         /* loop for more */
3814                         break;
3815
3816                 case TCFG_WORK_AREA_SIZE:
3817                         if (goi->isconfigure) {
3818                                 target_free_all_working_areas(target);
3819                                 e = Jim_GetOpt_Wide(goi, &w);
3820                                 if (e != JIM_OK) {
3821                                         return e;
3822                                 }
3823                                 target->working_area_size = w;
3824                         } else {
3825                                 if (goi->argc != 0) {
3826                                         goto no_params;
3827                                 }
3828                         }
3829                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
3830                         /* loop for more */
3831                         break;
3832
3833                 case TCFG_WORK_AREA_BACKUP:
3834                         if (goi->isconfigure) {
3835                                 target_free_all_working_areas(target);
3836                                 e = Jim_GetOpt_Wide(goi, &w);
3837                                 if (e != JIM_OK) {
3838                                         return e;
3839                                 }
3840                                 /* make this exactly 1 or 0 */
3841                                 target->backup_working_area = (!!w);
3842                         } else {
3843                                 if (goi->argc != 0) {
3844                                         goto no_params;
3845                                 }
3846                         }
3847                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
3848                         /* loop for more e*/
3849                         break;
3850
3851                 case TCFG_ENDIAN:
3852                         if (goi->isconfigure) {
3853                                 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
3854                                 if (e != JIM_OK) {
3855                                         Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
3856                                         return e;
3857                                 }
3858                                 target->endianness = n->value;
3859                         } else {
3860                                 if (goi->argc != 0) {
3861                                         goto no_params;
3862                                 }
3863                         }
3864                         n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3865                         if (n->name == NULL) {
3866                                 target->endianness = TARGET_LITTLE_ENDIAN;
3867                                 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3868                         }
3869                         Jim_SetResultString(goi->interp, n->name, -1);
3870                         /* loop for more */
3871                         break;
3872
3873                 case TCFG_VARIANT:
3874                         if (goi->isconfigure) {
3875                                 if (goi->argc < 1) {
3876                                         Jim_SetResult_sprintf(goi->interp,
3877                                                                                    "%s ?STRING?",
3878                                                                                    n->name);
3879                                         return JIM_ERR;
3880                                 }
3881                                 if (target->variant) {
3882                                         free((void *)(target->variant));
3883                                 }
3884                                 e = Jim_GetOpt_String(goi, &cp, NULL);
3885                                 target->variant = strdup(cp);
3886                         } else {
3887                                 if (goi->argc != 0) {
3888                                         goto no_params;
3889                                 }
3890                         }
3891                         Jim_SetResultString(goi->interp, target->variant,-1);
3892                         /* loop for more */
3893                         break;
3894                 case TCFG_CHAIN_POSITION:
3895                         if (goi->isconfigure) {
3896                                 Jim_Obj *o;
3897                                 struct jtag_tap *tap;
3898                                 target_free_all_working_areas(target);
3899                                 e = Jim_GetOpt_Obj(goi, &o);
3900                                 if (e != JIM_OK) {
3901                                         return e;
3902                                 }
3903                                 tap = jtag_tap_by_jim_obj(goi->interp, o);
3904                                 if (tap == NULL) {
3905                                         return JIM_ERR;
3906                                 }
3907                                 /* make this exactly 1 or 0 */
3908                                 target->tap = tap;
3909                         } else {
3910                                 if (goi->argc != 0) {
3911                                         goto no_params;
3912                                 }
3913                         }
3914                         Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
3915                         /* loop for more e*/
3916                         break;
3917                 }
3918         } /* while (goi->argc) */
3919
3920
3921                 /* done - we return */
3922         return JIM_OK;
3923 }
3924
3925 static int
3926 jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3927 {
3928         Jim_GetOptInfo goi;
3929
3930         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
3931         goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
3932         int need_args = 1 + goi.isconfigure;
3933         if (goi.argc < need_args)
3934         {
3935                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
3936                         goi.isconfigure
3937                                 ? "missing: -option VALUE ..."
3938                                 : "missing: -option ...");
3939                 return JIM_ERR;
3940         }
3941         struct target *target = Jim_CmdPrivData(goi.interp);
3942         return target_configure(&goi, target);
3943 }
3944
3945 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3946 {
3947         const char *cmd_name = Jim_GetString(argv[0], NULL);
3948
3949         Jim_GetOptInfo goi;
3950         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
3951
3952         /* danger! goi.argc will be modified below! */
3953         argc = goi.argc;
3954
3955         if (argc != 2 && argc != 3)
3956         {
3957                 Jim_SetResult_sprintf(goi.interp,
3958                                 "usage: %s <address> <data> [<count>]", cmd_name);
3959                 return JIM_ERR;
3960         }
3961
3962
3963         jim_wide a;
3964         int e = Jim_GetOpt_Wide(&goi, &a);
3965         if (e != JIM_OK)
3966                 return e;
3967
3968         jim_wide b;
3969         e = Jim_GetOpt_Wide(&goi, &b);
3970         if (e != JIM_OK)
3971                 return e;
3972
3973         jim_wide c = 1;
3974         if (argc == 3)
3975         {
3976                 e = Jim_GetOpt_Wide(&goi, &c);
3977                 if (e != JIM_OK)
3978                         return e;
3979         }
3980
3981         struct target *target = Jim_CmdPrivData(goi.interp);
3982         unsigned data_size;
3983         if (strcasecmp(cmd_name, "mww") == 0) {
3984                 data_size = 4;
3985         }
3986         else if (strcasecmp(cmd_name, "mwh") == 0) {
3987                 data_size = 2;
3988         }
3989         else if (strcasecmp(cmd_name, "mwb") == 0) {
3990                 data_size = 1;
3991         } else {
3992                 LOG_ERROR("command '%s' unknown: ", cmd_name);
3993                 return JIM_ERR;
3994         }
3995
3996         return (target_fill_mem(target, a, target_write_memory_fast, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
3997 }
3998
3999 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4000 {
4001         const char *cmd_name = Jim_GetString(argv[0], NULL);
4002
4003         Jim_GetOptInfo goi;
4004         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4005
4006         /* danger! goi.argc will be modified below! */
4007         argc = goi.argc;
4008
4009         if ((argc != 1) && (argc != 2))
4010         {
4011                 Jim_SetResult_sprintf(goi.interp,
4012                                 "usage: %s <address> [<count>]", cmd_name);
4013                 return JIM_ERR;
4014         }
4015
4016         jim_wide a;
4017         int e = Jim_GetOpt_Wide(&goi, &a);
4018         if (e != JIM_OK) {
4019                 return JIM_ERR;
4020         }
4021         jim_wide c;
4022         if (argc == 2) {
4023                 e = Jim_GetOpt_Wide(&goi, &c);
4024                 if (e != JIM_OK) {
4025                         return JIM_ERR;
4026                 }
4027         } else {
4028                 c = 1;
4029         }
4030         jim_wide b = 1; /* shut up gcc */
4031         if (strcasecmp(cmd_name, "mdw") == 0)
4032                 b = 4;
4033         else if (strcasecmp(cmd_name, "mdh") == 0)
4034                 b = 2;
4035         else if (strcasecmp(cmd_name, "mdb") == 0)
4036                 b = 1;
4037         else {
4038                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4039                 return JIM_ERR;
4040         }
4041
4042         /* convert count to "bytes" */
4043         c = c * b;
4044
4045         struct target *target = Jim_CmdPrivData(goi.interp);
4046         uint8_t  target_buf[32];
4047         jim_wide x, y, z;
4048         while (c > 0) {
4049                 y = c;
4050                 if (y > 16) {
4051                         y = 16;
4052                 }
4053                 e = target_read_memory(target, a, b, y / b, target_buf);
4054                 if (e != ERROR_OK) {
4055                         Jim_SetResult_sprintf(interp, "error reading target @ 0x%08lx", (int)(a));
4056                         return JIM_ERR;
4057                 }
4058
4059                 Jim_fprintf(interp, interp->cookie_stdout, "0x%08x ", (int)(a));
4060                 switch (b) {
4061                 case 4:
4062                         for (x = 0; x < 16 && x < y; x += 4)
4063                         {
4064                                 z = target_buffer_get_u32(target, &(target_buf[ x ]));
4065                                 Jim_fprintf(interp, interp->cookie_stdout, "%08x ", (int)(z));
4066                         }
4067                         for (; (x < 16) ; x += 4) {
4068                                 Jim_fprintf(interp, interp->cookie_stdout, "         ");
4069                         }
4070                         break;
4071                 case 2:
4072                         for (x = 0; x < 16 && x < y; x += 2)
4073                         {
4074                                 z = target_buffer_get_u16(target, &(target_buf[ x ]));
4075                                 Jim_fprintf(interp, interp->cookie_stdout, "%04x ", (int)(z));
4076                         }
4077                         for (; (x < 16) ; x += 2) {
4078                                 Jim_fprintf(interp, interp->cookie_stdout, "     ");
4079                         }
4080                         break;
4081                 case 1:
4082                 default:
4083                         for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4084                                 z = target_buffer_get_u8(target, &(target_buf[ x ]));
4085                                 Jim_fprintf(interp, interp->cookie_stdout, "%02x ", (int)(z));
4086                         }
4087                         for (; (x < 16) ; x += 1) {
4088                                 Jim_fprintf(interp, interp->cookie_stdout, "   ");
4089                         }
4090                         break;
4091                 }
4092                 /* ascii-ify the bytes */
4093                 for (x = 0 ; x < y ; x++) {
4094                         if ((target_buf[x] >= 0x20) &&
4095                                 (target_buf[x] <= 0x7e)) {
4096                                 /* good */
4097                         } else {
4098                                 /* smack it */
4099                                 target_buf[x] = '.';
4100                         }
4101                 }
4102                 /* space pad  */
4103                 while (x < 16) {
4104                         target_buf[x] = ' ';
4105                         x++;
4106                 }
4107                 /* terminate */
4108                 target_buf[16] = 0;
4109                 /* print - with a newline */
4110                 Jim_fprintf(interp, interp->cookie_stdout, "%s\n", target_buf);
4111                 /* NEXT... */
4112                 c -= 16;
4113                 a += 16;
4114         }
4115         return JIM_OK;
4116 }
4117
4118 static int jim_target_mem2array(Jim_Interp *interp,
4119                 int argc, Jim_Obj *const *argv)
4120 {
4121         struct target *target = Jim_CmdPrivData(interp);
4122         return target_mem2array(interp, target, argc - 1, argv + 1);
4123 }
4124
4125 static int jim_target_array2mem(Jim_Interp *interp,
4126                 int argc, Jim_Obj *const *argv)
4127 {
4128         struct target *target = Jim_CmdPrivData(interp);
4129         return target_array2mem(interp, target, argc - 1, argv + 1);
4130 }
4131
4132 static int jim_target_tap_disabled(Jim_Interp *interp)
4133 {
4134         Jim_SetResult_sprintf(interp, "[TAP is disabled]");
4135         return JIM_ERR;
4136 }
4137
4138 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4139 {
4140         if (argc != 1)
4141         {
4142                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4143                 return JIM_ERR;
4144         }
4145         struct target *target = Jim_CmdPrivData(interp);
4146         if (!target->tap->enabled)
4147                 return jim_target_tap_disabled(interp);
4148
4149         int e = target->type->examine(target);
4150         if (e != ERROR_OK)
4151         {
4152                 Jim_SetResult_sprintf(interp, "examine-fails: %d", e);
4153                 return JIM_ERR;
4154         }
4155         return JIM_OK;
4156 }
4157
4158 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4159 {
4160         if (argc != 1)
4161         {
4162                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4163                 return JIM_ERR;
4164         }
4165         struct target *target = Jim_CmdPrivData(interp);
4166
4167         if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
4168                 return JIM_ERR;
4169
4170         return JIM_OK;
4171 }
4172
4173 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4174 {
4175         if (argc != 1)
4176         {
4177                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4178                 return JIM_ERR;
4179         }
4180         struct target *target = Jim_CmdPrivData(interp);
4181         if (!target->tap->enabled)
4182                 return jim_target_tap_disabled(interp);
4183
4184         int e;
4185         if (!(target_was_examined(target))) {
4186                 e = ERROR_TARGET_NOT_EXAMINED;
4187         } else {
4188                 e = target->type->poll(target);
4189         }
4190         if (e != ERROR_OK)
4191         {
4192                 Jim_SetResult_sprintf(interp, "poll-fails: %d", e);
4193                 return JIM_ERR;
4194         }
4195         return JIM_OK;
4196 }
4197
4198 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4199 {
4200         Jim_GetOptInfo goi;
4201         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4202
4203         if (goi.argc != 2)
4204         {
4205                 Jim_WrongNumArgs(interp, 0, argv,
4206                                 "([tT]|[fF]|assert|deassert) BOOL");
4207                 return JIM_ERR;
4208         }
4209
4210         Jim_Nvp *n;
4211         int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4212         if (e != JIM_OK)
4213         {
4214                 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4215                 return e;
4216         }
4217         /* the halt or not param */
4218         jim_wide a;
4219         e = Jim_GetOpt_Wide(&goi, &a);
4220         if (e != JIM_OK)
4221                 return e;
4222
4223         struct target *target = Jim_CmdPrivData(goi.interp);
4224         if (!target->tap->enabled)
4225                 return jim_target_tap_disabled(interp);
4226         if (!(target_was_examined(target)))
4227         {
4228                 LOG_ERROR("Target not examined yet");
4229                 return ERROR_TARGET_NOT_EXAMINED;
4230         }
4231         if (!target->type->assert_reset || !target->type->deassert_reset)
4232         {
4233                 Jim_SetResult_sprintf(interp,
4234                                 "No target-specific reset for %s",
4235                                 target_name(target));
4236                 return JIM_ERR;
4237         }
4238         /* determine if we should halt or not. */
4239         target->reset_halt = !!a;
4240         /* When this happens - all workareas are invalid. */
4241         target_free_all_working_areas_restore(target, 0);
4242
4243         /* do the assert */
4244         if (n->value == NVP_ASSERT) {
4245                 e = target->type->assert_reset(target);
4246         } else {
4247                 e = target->type->deassert_reset(target);
4248         }
4249         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4250 }
4251
4252 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4253 {
4254         if (argc != 1) {
4255                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4256                 return JIM_ERR;
4257         }
4258         struct target *target = Jim_CmdPrivData(interp);
4259         if (!target->tap->enabled)
4260                 return jim_target_tap_disabled(interp);
4261         int e = target->type->halt(target);
4262         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4263 }
4264
4265 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4266 {
4267         Jim_GetOptInfo goi;
4268         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4269
4270         /* params:  <name>  statename timeoutmsecs */
4271         if (goi.argc != 2)
4272         {
4273                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4274                 Jim_SetResult_sprintf(goi.interp,
4275                                 "%s <state_name> <timeout_in_msec>", cmd_name);
4276                 return JIM_ERR;
4277         }
4278
4279         Jim_Nvp *n;
4280         int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4281         if (e != JIM_OK) {
4282                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state,1);
4283                 return e;
4284         }
4285         jim_wide a;
4286         e = Jim_GetOpt_Wide(&goi, &a);
4287         if (e != JIM_OK) {
4288                 return e;
4289         }
4290         struct target *target = Jim_CmdPrivData(interp);
4291         if (!target->tap->enabled)
4292                 return jim_target_tap_disabled(interp);
4293
4294         e = target_wait_state(target, n->value, a);
4295         if (e != ERROR_OK)
4296         {
4297                 Jim_SetResult_sprintf(goi.interp,
4298                                 "target: %s wait %s fails (%d) %s",
4299                                 target_name(target), n->name,
4300                                 e, target_strerror_safe(e));
4301                 return JIM_ERR;
4302         }
4303         return JIM_OK;
4304 }
4305 /* List for human, Events defined for this target.
4306  * scripts/programs should use 'name cget -event NAME'
4307  */
4308 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4309 {
4310         struct command_context *cmd_ctx = Jim_GetAssocData(interp, "context");
4311         struct target *target = Jim_CmdPrivData(interp);
4312         struct target_event_action *teap = target->event_action;
4313         command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4314                                    target->target_number,
4315                                    target_name(target));
4316         command_print(cmd_ctx, "%-25s | Body", "Event");
4317         command_print(cmd_ctx, "------------------------- | "
4318                         "----------------------------------------");
4319         while (teap)
4320         {
4321                 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
4322                 command_print(cmd_ctx, "%-25s | %s",
4323                                 opt->name, Jim_GetString(teap->body, NULL));
4324                 teap = teap->next;
4325         }
4326         command_print(cmd_ctx, "***END***");
4327         return JIM_OK;
4328 }
4329 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4330 {
4331         if (argc != 1)
4332         {
4333                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4334                 return JIM_ERR;
4335         }
4336         struct target *target = Jim_CmdPrivData(interp);
4337         Jim_SetResultString(interp, target_state_name(target), -1);
4338         return JIM_OK;
4339 }
4340 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4341 {
4342         Jim_GetOptInfo goi;
4343         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4344         if (goi.argc != 1)
4345         {
4346                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4347                 Jim_SetResult_sprintf(goi.interp, "%s <eventname>", cmd_name);
4348                 return JIM_ERR;
4349         }
4350         Jim_Nvp *n;
4351         int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4352         if (e != JIM_OK)
4353         {
4354                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4355                 return e;
4356         }
4357         struct target *target = Jim_CmdPrivData(interp);
4358         target_handle_event(target, n->value);
4359         return JIM_OK;
4360 }
4361
4362 static const struct command_registration target_instance_command_handlers[] = {
4363         {
4364                 .name = "configure",
4365                 .mode = COMMAND_CONFIG,
4366                 .jim_handler = jim_target_configure,
4367                 .help  = "configure a new target for use",
4368                 .usage = "[target_attribute ...]",
4369         },
4370         {
4371                 .name = "cget",
4372                 .mode = COMMAND_ANY,
4373                 .jim_handler = jim_target_configure,
4374                 .help  = "returns the specified target attribute",
4375                 .usage = "target_attribute",
4376         },
4377         {
4378                 .name = "mww",
4379                 .mode = COMMAND_EXEC,
4380                 .jim_handler = jim_target_mw,
4381                 .help = "Write 32-bit word(s) to target memory",
4382                 .usage = "address data [count]",
4383         },
4384         {
4385                 .name = "mwh",
4386                 .mode = COMMAND_EXEC,
4387                 .jim_handler = jim_target_mw,
4388                 .help = "Write 16-bit half-word(s) to target memory",
4389                 .usage = "address data [count]",
4390         },
4391         {
4392                 .name = "mwb",
4393                 .mode = COMMAND_EXEC,
4394                 .jim_handler = jim_target_mw,
4395                 .help = "Write byte(s) to target memory",
4396                 .usage = "address data [count]",
4397         },
4398         {
4399                 .name = "mdw",
4400                 .mode = COMMAND_EXEC,
4401                 .jim_handler = jim_target_md,
4402                 .help = "Display target memory as 32-bit words",
4403                 .usage = "address [count]",
4404         },
4405         {
4406                 .name = "mdh",
4407                 .mode = COMMAND_EXEC,
4408                 .jim_handler = jim_target_md,
4409                 .help = "Display target memory as 16-bit half-words",
4410                 .usage = "address [count]",
4411         },
4412         {
4413                 .name = "mdb",
4414                 .mode = COMMAND_EXEC,
4415                 .jim_handler = jim_target_md,
4416                 .help = "Display target memory as 8-bit bytes",
4417                 .usage = "address [count]",
4418         },
4419         {
4420                 .name = "array2mem",
4421                 .mode = COMMAND_EXEC,
4422                 .jim_handler = jim_target_array2mem,
4423                 .help = "Writes Tcl array of 8/16/32 bit numbers "
4424                         "to target memory",
4425                 .usage = "arrayname bitwidth address count",
4426         },
4427         {
4428                 .name = "mem2array",
4429                 .mode = COMMAND_EXEC,
4430                 .jim_handler = jim_target_mem2array,
4431                 .help = "Loads Tcl array of 8/16/32 bit numbers "
4432                         "from target memory",
4433                 .usage = "arrayname bitwidth address count",
4434         },
4435         {
4436                 .name = "eventlist",
4437                 .mode = COMMAND_EXEC,
4438                 .jim_handler = jim_target_event_list,
4439                 .help = "displays a table of events defined for this target",
4440         },
4441         {
4442                 .name = "curstate",
4443                 .mode = COMMAND_EXEC,
4444                 .jim_handler = jim_target_current_state,
4445                 .help = "displays the current state of this target",
4446         },
4447         {
4448                 .name = "arp_examine",
4449                 .mode = COMMAND_EXEC,
4450                 .jim_handler = jim_target_examine,
4451                 .help = "used internally for reset processing",
4452         },
4453         {
4454                 .name = "arp_halt_gdb",
4455                 .mode = COMMAND_EXEC,
4456                 .jim_handler = jim_target_halt_gdb,
4457                 .help = "used internally for reset processing to halt GDB",
4458         },
4459         {
4460                 .name = "arp_poll",
4461                 .mode = COMMAND_EXEC,
4462                 .jim_handler = jim_target_poll,
4463                 .help = "used internally for reset processing",
4464         },
4465         {
4466                 .name = "arp_reset",
4467                 .mode = COMMAND_EXEC,
4468                 .jim_handler = jim_target_reset,
4469                 .help = "used internally for reset processing",
4470         },
4471         {
4472                 .name = "arp_halt",
4473                 .mode = COMMAND_EXEC,
4474                 .jim_handler = jim_target_halt,
4475                 .help = "used internally for reset processing",
4476         },
4477         {
4478                 .name = "arp_waitstate",
4479                 .mode = COMMAND_EXEC,
4480                 .jim_handler = jim_target_wait_state,
4481                 .help = "used internally for reset processing",
4482         },
4483         {
4484                 .name = "invoke-event",
4485                 .mode = COMMAND_EXEC,
4486                 .jim_handler = jim_target_invoke_event,
4487                 .help = "invoke handler for specified event",
4488                 .usage = "event_name",
4489         },
4490         COMMAND_REGISTRATION_DONE
4491 };
4492
4493 static int target_create(Jim_GetOptInfo *goi)
4494 {
4495         Jim_Obj *new_cmd;
4496         Jim_Cmd *cmd;
4497         const char *cp;
4498         char *cp2;
4499         int e;
4500         int x;
4501         struct target *target;
4502         struct command_context *cmd_ctx;
4503
4504         cmd_ctx = Jim_GetAssocData(goi->interp, "context");
4505         if (goi->argc < 3) {
4506                 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
4507                 return JIM_ERR;
4508         }
4509
4510         /* COMMAND */
4511         Jim_GetOpt_Obj(goi, &new_cmd);
4512         /* does this command exist? */
4513         cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
4514         if (cmd) {
4515                 cp = Jim_GetString(new_cmd, NULL);
4516                 Jim_SetResult_sprintf(goi->interp, "Command/target: %s Exists", cp);
4517                 return JIM_ERR;
4518         }
4519
4520         /* TYPE */
4521         e = Jim_GetOpt_String(goi, &cp2, NULL);
4522         cp = cp2;
4523         /* now does target type exist */
4524         for (x = 0 ; target_types[x] ; x++) {
4525                 if (0 == strcmp(cp, target_types[x]->name)) {
4526                         /* found */
4527                         break;
4528                 }
4529         }
4530         if (target_types[x] == NULL) {
4531                 Jim_SetResult_sprintf(goi->interp, "Unknown target type %s, try one of ", cp);
4532                 for (x = 0 ; target_types[x] ; x++) {
4533                         if (target_types[x + 1]) {
4534                                 Jim_AppendStrings(goi->interp,
4535                                                                    Jim_GetResult(goi->interp),
4536                                                                    target_types[x]->name,
4537                                                                    ", ", NULL);
4538                         } else {
4539                                 Jim_AppendStrings(goi->interp,
4540                                                                    Jim_GetResult(goi->interp),
4541                                                                    " or ",
4542                                                                    target_types[x]->name,NULL);
4543                         }
4544                 }
4545                 return JIM_ERR;
4546         }
4547
4548         /* Create it */
4549         target = calloc(1,sizeof(struct target));
4550         /* set target number */
4551         target->target_number = new_target_number();
4552
4553         /* allocate memory for each unique target type */
4554         target->type = (struct target_type*)calloc(1,sizeof(struct target_type));
4555
4556         memcpy(target->type, target_types[x], sizeof(struct target_type));
4557
4558         /* will be set by "-endian" */
4559         target->endianness = TARGET_ENDIAN_UNKNOWN;
4560
4561         target->working_area        = 0x0;
4562         target->working_area_size   = 0x0;
4563         target->working_areas       = NULL;
4564         target->backup_working_area = 0;
4565
4566         target->state               = TARGET_UNKNOWN;
4567         target->debug_reason        = DBG_REASON_UNDEFINED;
4568         target->reg_cache           = NULL;
4569         target->breakpoints         = NULL;
4570         target->watchpoints         = NULL;
4571         target->next                = NULL;
4572         target->arch_info           = NULL;
4573
4574         target->display             = 1;
4575
4576         target->halt_issued                     = false;
4577
4578         /* initialize trace information */
4579         target->trace_info = malloc(sizeof(struct trace));
4580         target->trace_info->num_trace_points         = 0;
4581         target->trace_info->trace_points_size        = 0;
4582         target->trace_info->trace_points             = NULL;
4583         target->trace_info->trace_history_size       = 0;
4584         target->trace_info->trace_history            = NULL;
4585         target->trace_info->trace_history_pos        = 0;
4586         target->trace_info->trace_history_overflowed = 0;
4587
4588         target->dbgmsg          = NULL;
4589         target->dbg_msg_enabled = 0;
4590
4591         target->endianness = TARGET_ENDIAN_UNKNOWN;
4592
4593         /* Do the rest as "configure" options */
4594         goi->isconfigure = 1;
4595         e = target_configure(goi, target);
4596
4597         if (target->tap == NULL)
4598         {
4599                 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
4600                 e = JIM_ERR;
4601         }
4602
4603         if (e != JIM_OK) {
4604                 free(target->type);
4605                 free(target);
4606                 return e;
4607         }
4608
4609         if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
4610                 /* default endian to little if not specified */
4611                 target->endianness = TARGET_LITTLE_ENDIAN;
4612         }
4613
4614         /* incase variant is not set */
4615         if (!target->variant)
4616                 target->variant = strdup("");
4617
4618         cp = Jim_GetString(new_cmd, NULL);
4619         target->cmd_name = strdup(cp);
4620
4621         /* create the target specific commands */
4622         if (target->type->commands) {
4623                 e = register_commands(cmd_ctx, NULL, target->type->commands);
4624                 if (ERROR_OK != e)
4625                         LOG_ERROR("unable to register '%s' commands", cp);
4626         }
4627         if (target->type->target_create) {
4628                 (*(target->type->target_create))(target, goi->interp);
4629         }
4630
4631         /* append to end of list */
4632         {
4633                 struct target **tpp;
4634                 tpp = &(all_targets);
4635                 while (*tpp) {
4636                         tpp = &((*tpp)->next);
4637                 }
4638                 *tpp = target;
4639         }
4640
4641         /* now - create the new target name command */
4642         const const struct command_registration target_subcommands[] = {
4643                 {
4644                         .chain = target_instance_command_handlers,
4645                 },
4646                 {
4647                         .chain = target->type->commands,
4648                 },
4649                 COMMAND_REGISTRATION_DONE
4650         };
4651         const const struct command_registration target_commands[] = {
4652                 {
4653                         .name = cp,
4654                         .mode = COMMAND_ANY,
4655                         .help = "target command group",
4656                         .chain = target_subcommands,
4657                 },
4658                 COMMAND_REGISTRATION_DONE
4659         };
4660         e = register_commands(cmd_ctx, NULL, target_commands);
4661         if (ERROR_OK != e)
4662                 return JIM_ERR;
4663
4664         struct command *c = command_find_in_context(cmd_ctx, cp);
4665         assert(c);
4666         command_set_handler_data(c, target);
4667
4668         return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
4669 }
4670
4671 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4672 {
4673         if (argc != 1)
4674         {
4675                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4676                 return JIM_ERR;
4677         }
4678         struct command_context *cmd_ctx = Jim_GetAssocData(interp, "context");
4679         Jim_SetResultString(interp, get_current_target(cmd_ctx)->cmd_name, -1);
4680         return JIM_OK;
4681 }
4682
4683 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4684 {
4685         if (argc != 1)
4686         {
4687                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4688                 return JIM_ERR;
4689         }
4690         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
4691         for (unsigned x = 0; NULL != target_types[x]; x++)
4692         {
4693                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
4694                         Jim_NewStringObj(interp, target_types[x]->name, -1));
4695         }
4696         return JIM_OK;
4697 }
4698
4699 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4700 {
4701         if (argc != 1)
4702         {
4703                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4704                 return JIM_ERR;
4705         }
4706         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
4707         struct target *target = all_targets;
4708         while (target)
4709         {
4710                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
4711                         Jim_NewStringObj(interp, target_name(target), -1));
4712                 target = target->next;
4713         }
4714         return JIM_OK;
4715 }
4716
4717 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4718 {
4719         Jim_GetOptInfo goi;
4720         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4721         if (goi.argc < 3)
4722         {
4723                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4724                         "<name> <target_type> [<target_options> ...]");
4725                 return JIM_ERR;
4726         }
4727         return target_create(&goi);
4728 }
4729
4730 static int jim_target_number(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4731 {
4732         Jim_GetOptInfo goi;
4733         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4734
4735         /* It's OK to remove this mechanism sometime after August 2010 or so */
4736         LOG_WARNING("don't use numbers as target identifiers; use names");
4737         if (goi.argc != 1)
4738         {
4739                 Jim_SetResult_sprintf(goi.interp, "usage: target number <number>");
4740                 return JIM_ERR;
4741         }
4742         jim_wide w;
4743         int e = Jim_GetOpt_Wide(&goi, &w);
4744         if (e != JIM_OK)
4745                 return JIM_ERR;
4746
4747         struct target *target;
4748         for (target = all_targets; NULL != target; target = target->next)
4749         {
4750                 if (target->target_number != w)
4751                         continue;
4752
4753                 Jim_SetResultString(goi.interp, target_name(target), -1);
4754                 return JIM_OK;
4755         }
4756         Jim_SetResult_sprintf(goi.interp,
4757                         "Target: number %d does not exist", (int)(w));
4758         return JIM_ERR;
4759 }
4760
4761 static int jim_target_count(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4762 {
4763         if (argc != 1)
4764         {
4765                 Jim_WrongNumArgs(interp, 1, argv, "<no parameters>");
4766                 return JIM_ERR;
4767         }
4768         unsigned count = 0;
4769         struct target *target = all_targets;
4770         while (NULL != target)
4771         {
4772                 target = target->next;
4773                 count++;
4774         }
4775         Jim_SetResult(interp, Jim_NewIntObj(interp, count));
4776         return JIM_OK;
4777 }
4778
4779 static const struct command_registration target_subcommand_handlers[] = {
4780         {
4781                 .name = "init",
4782                 .mode = COMMAND_CONFIG,
4783                 .handler = handle_target_init_command,
4784                 .help = "initialize targets",
4785         },
4786         {
4787                 .name = "create",
4788                 /* REVISIT this should be COMMAND_CONFIG ... */
4789                 .mode = COMMAND_ANY,
4790                 .jim_handler = jim_target_create,
4791                 .usage = "name type '-chain-position' name [options ...]",
4792                 .help = "Creates and selects a new target",
4793         },
4794         {
4795                 .name = "current",
4796                 .mode = COMMAND_ANY,
4797                 .jim_handler = jim_target_current,
4798                 .help = "Returns the currently selected target",
4799         },
4800         {
4801                 .name = "types",
4802                 .mode = COMMAND_ANY,
4803                 .jim_handler = jim_target_types,
4804                 .help = "Returns the available target types as "
4805                                 "a list of strings",
4806         },
4807         {
4808                 .name = "names",
4809                 .mode = COMMAND_ANY,
4810                 .jim_handler = jim_target_names,
4811                 .help = "Returns the names of all targets as a list of strings",
4812         },
4813         {
4814                 .name = "number",
4815                 .mode = COMMAND_ANY,
4816                 .jim_handler = jim_target_number,
4817                 .usage = "number",
4818                 .help = "Returns the name of the numbered target "
4819                         "(DEPRECATED)",
4820         },
4821         {
4822                 .name = "count",
4823                 .mode = COMMAND_ANY,
4824                 .jim_handler = jim_target_count,
4825                 .help = "Returns the number of targets as an integer "
4826                         "(DEPRECATED)",
4827         },
4828         COMMAND_REGISTRATION_DONE
4829 };
4830
4831 struct FastLoad
4832 {
4833         uint32_t address;
4834         uint8_t *data;
4835         int length;
4836
4837 };
4838
4839 static int fastload_num;
4840 static struct FastLoad *fastload;
4841
4842 static void free_fastload(void)
4843 {
4844         if (fastload != NULL)
4845         {
4846                 int i;
4847                 for (i = 0; i < fastload_num; i++)
4848                 {
4849                         if (fastload[i].data)
4850                                 free(fastload[i].data);
4851                 }
4852                 free(fastload);
4853                 fastload = NULL;
4854         }
4855 }
4856
4857
4858
4859
4860 COMMAND_HANDLER(handle_fast_load_image_command)
4861 {
4862         uint8_t *buffer;
4863         size_t buf_cnt;
4864         uint32_t image_size;
4865         uint32_t min_address = 0;
4866         uint32_t max_address = 0xffffffff;
4867         int i;
4868
4869         struct image image;
4870
4871         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
4872                         &image, &min_address, &max_address);
4873         if (ERROR_OK != retval)
4874                 return retval;
4875
4876         struct duration bench;
4877         duration_start(&bench);
4878
4879         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
4880         {
4881                 return ERROR_OK;
4882         }
4883
4884         image_size = 0x0;
4885         retval = ERROR_OK;
4886         fastload_num = image.num_sections;
4887         fastload = (struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
4888         if (fastload == NULL)
4889         {
4890                 image_close(&image);
4891                 return ERROR_FAIL;
4892         }
4893         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
4894         for (i = 0; i < image.num_sections; i++)
4895         {
4896                 buffer = malloc(image.sections[i].size);
4897                 if (buffer == NULL)
4898                 {
4899                         command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
4900                                                   (int)(image.sections[i].size));
4901                         break;
4902                 }
4903
4904                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
4905                 {
4906                         free(buffer);
4907                         break;
4908                 }
4909
4910                 uint32_t offset = 0;
4911                 uint32_t length = buf_cnt;
4912
4913
4914                 /* DANGER!!! beware of unsigned comparision here!!! */
4915
4916                 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
4917                                 (image.sections[i].base_address < max_address))
4918                 {
4919                         if (image.sections[i].base_address < min_address)
4920                         {
4921                                 /* clip addresses below */
4922                                 offset += min_address-image.sections[i].base_address;
4923                                 length -= offset;
4924                         }
4925
4926                         if (image.sections[i].base_address + buf_cnt > max_address)
4927                         {
4928                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
4929                         }
4930
4931                         fastload[i].address = image.sections[i].base_address + offset;
4932                         fastload[i].data = malloc(length);
4933                         if (fastload[i].data == NULL)
4934                         {
4935                                 free(buffer);
4936                                 break;
4937                         }
4938                         memcpy(fastload[i].data, buffer + offset, length);
4939                         fastload[i].length = length;
4940
4941                         image_size += length;
4942                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
4943                                                   (unsigned int)length,
4944                                                   ((unsigned int)(image.sections[i].base_address + offset)));
4945                 }
4946
4947                 free(buffer);
4948         }
4949
4950         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
4951         {
4952                 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
4953                                 "in %fs (%0.3f kb/s)", image_size, 
4954                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
4955
4956                 command_print(CMD_CTX,
4957                                 "WARNING: image has not been loaded to target!"
4958                                 "You can issue a 'fast_load' to finish loading.");
4959         }
4960
4961         image_close(&image);
4962
4963         if (retval != ERROR_OK)
4964         {
4965                 free_fastload();
4966         }
4967
4968         return retval;
4969 }
4970
4971 COMMAND_HANDLER(handle_fast_load_command)
4972 {
4973         if (CMD_ARGC > 0)
4974                 return ERROR_COMMAND_SYNTAX_ERROR;
4975         if (fastload == NULL)
4976         {
4977                 LOG_ERROR("No image in memory");
4978                 return ERROR_FAIL;
4979         }
4980         int i;
4981         int ms = timeval_ms();
4982         int size = 0;
4983         int retval = ERROR_OK;
4984         for (i = 0; i < fastload_num;i++)
4985         {
4986                 struct target *target = get_current_target(CMD_CTX);
4987                 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
4988                                           (unsigned int)(fastload[i].address),
4989                                           (unsigned int)(fastload[i].length));
4990                 if (retval == ERROR_OK)
4991                 {
4992                         retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
4993                 }
4994                 size += fastload[i].length;
4995         }
4996         int after = timeval_ms();
4997         command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
4998         return retval;
4999 }
5000
5001 static const struct command_registration target_command_handlers[] = {
5002         {
5003                 .name = "targets",
5004                 .handler = handle_targets_command,
5005                 .mode = COMMAND_ANY,
5006                 .help = "change current default target (one parameter) "
5007                         "or prints table of all targets (no parameters)",
5008                 .usage = "[target]",
5009         },
5010         {
5011                 .name = "target",
5012                 .mode = COMMAND_CONFIG,
5013                 .help = "configure target",
5014
5015                 .chain = target_subcommand_handlers,
5016         },
5017         COMMAND_REGISTRATION_DONE
5018 };
5019
5020 int target_register_commands(struct command_context *cmd_ctx)
5021 {
5022         return register_commands(cmd_ctx, NULL, target_command_handlers);
5023 }
5024
5025 static bool target_reset_nag = true;
5026
5027 bool get_target_reset_nag(void)
5028 {
5029         return target_reset_nag;
5030 }
5031
5032 COMMAND_HANDLER(handle_target_reset_nag)
5033 {
5034         return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5035                         &target_reset_nag, "Nag after each reset about options to improve "
5036                         "performance");
5037 }
5038
5039 static const struct command_registration target_exec_command_handlers[] = {
5040         {
5041                 .name = "fast_load_image",
5042                 .handler = handle_fast_load_image_command,
5043                 .mode = COMMAND_ANY,
5044                 .help = "Load image into server memory for later use by "
5045                         "fast_load; primarily for profiling",
5046                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5047                         "[min_address [max_length]]",
5048         },
5049         {
5050                 .name = "fast_load",
5051                 .handler = handle_fast_load_command,
5052                 .mode = COMMAND_EXEC,
5053                 .help = "loads active fast load image to current target "
5054                         "- mainly for profiling purposes",
5055         },
5056         {
5057                 .name = "profile",
5058                 .handler = handle_profile_command,
5059                 .mode = COMMAND_EXEC,
5060                 .help = "profiling samples the CPU PC",
5061         },
5062         /** @todo don't register virt2phys() unless target supports it */
5063         {
5064                 .name = "virt2phys",
5065                 .handler = handle_virt2phys_command,
5066                 .mode = COMMAND_ANY,
5067                 .help = "translate a virtual address into a physical address",
5068                 .usage = "virtual_address",
5069         },
5070         {
5071                 .name = "reg",
5072                 .handler = handle_reg_command,
5073                 .mode = COMMAND_EXEC,
5074                 .help = "display or set a register; with no arguments, "
5075                         "displays all registers and their values",
5076                 .usage = "[(register_name|register_number) [value]]",
5077         },
5078         {
5079                 .name = "poll",
5080                 .handler = handle_poll_command,
5081                 .mode = COMMAND_EXEC,
5082                 .help = "poll target state; or reconfigure background polling",
5083                 .usage = "['on'|'off']",
5084         },
5085         {
5086                 .name = "wait_halt",
5087                 .handler = handle_wait_halt_command,
5088                 .mode = COMMAND_EXEC,
5089                 .help = "wait up to the specified number of milliseconds "
5090                         "(default 5) for a previously requested halt",
5091                 .usage = "[milliseconds]",
5092         },
5093         {
5094                 .name = "halt",
5095                 .handler = handle_halt_command,
5096                 .mode = COMMAND_EXEC,
5097                 .help = "request target to halt, then wait up to the specified"
5098                         "number of milliseconds (default 5) for it to complete",
5099                 .usage = "[milliseconds]",
5100         },
5101         {
5102                 .name = "resume",
5103                 .handler = handle_resume_command,
5104                 .mode = COMMAND_EXEC,
5105                 .help = "resume target execution from current PC or address",
5106                 .usage = "[address]",
5107         },
5108         {
5109                 .name = "reset",
5110                 .handler = handle_reset_command,
5111                 .mode = COMMAND_EXEC,
5112                 .usage = "[run|halt|init]",
5113                 .help = "Reset all targets into the specified mode."
5114                         "Default reset mode is run, if not given.",
5115         },
5116         {
5117                 .name = "soft_reset_halt",
5118                 .handler = handle_soft_reset_halt_command,
5119                 .mode = COMMAND_EXEC,
5120                 .help = "halt the target and do a soft reset",
5121         },
5122         {
5123                 .name = "step",
5124                 .handler = handle_step_command,
5125                 .mode = COMMAND_EXEC,
5126                 .help = "step one instruction from current PC or address",
5127                 .usage = "[address]",
5128         },
5129         {
5130                 .name = "mdw",
5131                 .handler = handle_md_command,
5132                 .mode = COMMAND_EXEC,
5133                 .help = "display memory words",
5134                 .usage = "['phys'] address [count]",
5135         },
5136         {
5137                 .name = "mdh",
5138                 .handler = handle_md_command,
5139                 .mode = COMMAND_EXEC,
5140                 .help = "display memory half-words",
5141                 .usage = "['phys'] address [count]",
5142         },
5143         {
5144                 .name = "mdb",
5145                 .handler = handle_md_command,
5146                 .mode = COMMAND_EXEC,
5147                 .help = "display memory bytes",
5148                 .usage = "['phys'] address [count]",
5149         },
5150         {
5151                 .name = "mww",
5152                 .handler = handle_mw_command,
5153                 .mode = COMMAND_EXEC,
5154                 .help = "write memory word",
5155                 .usage = "['phys'] address value [count]",
5156         },
5157         {
5158                 .name = "mwh",
5159                 .handler = handle_mw_command,
5160                 .mode = COMMAND_EXEC,
5161                 .help = "write memory half-word",
5162                 .usage = "['phys'] address value [count]",
5163         },
5164         {
5165                 .name = "mwb",
5166                 .handler = handle_mw_command,
5167                 .mode = COMMAND_EXEC,
5168                 .help = "write memory byte",
5169                 .usage = "['phys'] address value [count]",
5170         },
5171         {
5172                 .name = "bp",
5173                 .handler = handle_bp_command,
5174                 .mode = COMMAND_EXEC,
5175                 .help = "list or set hardware or software breakpoint",
5176                 .usage = "[address length ['hw']]",
5177         },
5178         {
5179                 .name = "rbp",
5180                 .handler = handle_rbp_command,
5181                 .mode = COMMAND_EXEC,
5182                 .help = "remove breakpoint",
5183                 .usage = "address",
5184         },
5185         {
5186                 .name = "wp",
5187                 .handler = handle_wp_command,
5188                 .mode = COMMAND_EXEC,
5189                 .help = "list (no params) or create watchpoints",
5190                 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
5191         },
5192         {
5193                 .name = "rwp",
5194                 .handler = handle_rwp_command,
5195                 .mode = COMMAND_EXEC,
5196                 .help = "remove watchpoint",
5197                 .usage = "address",
5198         },
5199         {
5200                 .name = "load_image",
5201                 .handler = handle_load_image_command,
5202                 .mode = COMMAND_EXEC,
5203                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5204                         "[min_address] [max_length]",
5205         },
5206         {
5207                 .name = "dump_image",
5208                 .handler = handle_dump_image_command,
5209                 .mode = COMMAND_EXEC,
5210                 .usage = "filename address size",
5211         },
5212         {
5213                 .name = "verify_image",
5214                 .handler = handle_verify_image_command,
5215                 .mode = COMMAND_EXEC,
5216                 .usage = "filename [offset [type]]",
5217         },
5218         {
5219                 .name = "test_image",
5220                 .handler = handle_test_image_command,
5221                 .mode = COMMAND_EXEC,
5222                 .usage = "filename [offset [type]]",
5223         },
5224         {
5225                 .name = "ocd_mem2array",
5226                 .mode = COMMAND_EXEC,
5227                 .jim_handler = jim_mem2array,
5228                 .help = "read 8/16/32 bit memory and return as a TCL array "
5229                         "for script processing",
5230                 .usage = "arrayname bitwidth address count",
5231         },
5232         {
5233                 .name = "ocd_array2mem",
5234                 .mode = COMMAND_EXEC,
5235                 .jim_handler = jim_array2mem,
5236                 .help = "convert a TCL array to memory locations "
5237                         "and write the 8/16/32 bit values",
5238                 .usage = "arrayname bitwidth address count",
5239         },
5240         {
5241                 .name = "reset_nag",
5242                 .handler = handle_target_reset_nag,
5243                 .mode = COMMAND_ANY,
5244                 .help = "Nag after each reset about options that could have been "
5245                                 "enabled to improve performance. ",
5246                 .usage = "['enable'|'disable']",
5247         },
5248         COMMAND_REGISTRATION_DONE
5249 };
5250 static int target_register_user_commands(struct command_context *cmd_ctx)
5251 {
5252         int retval = ERROR_OK;
5253         if ((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
5254                 return retval;
5255
5256         if ((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
5257                 return retval;
5258
5259
5260         return register_commands(cmd_ctx, NULL, target_exec_command_handlers);
5261 }