Use timeval helpers
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2010 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   Copyright (C) 2011 by Broadcom Corporation                            *
18  *   Evan Hunter - ehunter@broadcom.com                                    *
19  *                                                                         *
20  *   Copyright (C) ST-Ericsson SA 2011                                     *
21  *   michel.jaouen@stericsson.com : smp minimum support                    *
22  *                                                                         *
23  *   Copyright (C) 2011 Andreas Fritiofson                                 *
24  *   andreas.fritiofson@gmail.com                                          *
25  *                                                                         *
26  *   This program is free software; you can redistribute it and/or modify  *
27  *   it under the terms of the GNU General Public License as published by  *
28  *   the Free Software Foundation; either version 2 of the License, or     *
29  *   (at your option) any later version.                                   *
30  *                                                                         *
31  *   This program is distributed in the hope that it will be useful,       *
32  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
33  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
34  *   GNU General Public License for more details.                          *
35  *                                                                         *
36  *   You should have received a copy of the GNU General Public License     *
37  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
38  ***************************************************************************/
39
40 #ifdef HAVE_CONFIG_H
41 #include "config.h"
42 #endif
43
44 #include <helper/time_support.h>
45 #include <jtag/jtag.h>
46 #include <flash/nor/core.h>
47
48 #include "target.h"
49 #include "target_type.h"
50 #include "target_request.h"
51 #include "breakpoints.h"
52 #include "register.h"
53 #include "trace.h"
54 #include "image.h"
55 #include "rtos/rtos.h"
56 #include "transport/transport.h"
57
58 /* default halt wait timeout (ms) */
59 #define DEFAULT_HALT_TIMEOUT 5000
60
61 static int target_read_buffer_default(struct target *target, target_addr_t address,
62                 uint32_t count, uint8_t *buffer);
63 static int target_write_buffer_default(struct target *target, target_addr_t address,
64                 uint32_t count, const uint8_t *buffer);
65 static int target_array2mem(Jim_Interp *interp, struct target *target,
66                 int argc, Jim_Obj * const *argv);
67 static int target_mem2array(Jim_Interp *interp, struct target *target,
68                 int argc, Jim_Obj * const *argv);
69 static int target_register_user_commands(struct command_context *cmd_ctx);
70 static int target_get_gdb_fileio_info_default(struct target *target,
71                 struct gdb_fileio_info *fileio_info);
72 static int target_gdb_fileio_end_default(struct target *target, int retcode,
73                 int fileio_errno, bool ctrl_c);
74 static int target_profiling_default(struct target *target, uint32_t *samples,
75                 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds);
76
77 /* targets */
78 extern struct target_type arm7tdmi_target;
79 extern struct target_type arm720t_target;
80 extern struct target_type arm9tdmi_target;
81 extern struct target_type arm920t_target;
82 extern struct target_type arm966e_target;
83 extern struct target_type arm946e_target;
84 extern struct target_type arm926ejs_target;
85 extern struct target_type fa526_target;
86 extern struct target_type feroceon_target;
87 extern struct target_type dragonite_target;
88 extern struct target_type xscale_target;
89 extern struct target_type cortexm_target;
90 extern struct target_type cortexa_target;
91 extern struct target_type aarch64_target;
92 extern struct target_type cortexr4_target;
93 extern struct target_type arm11_target;
94 extern struct target_type ls1_sap_target;
95 extern struct target_type mips_m4k_target;
96 extern struct target_type avr_target;
97 extern struct target_type dsp563xx_target;
98 extern struct target_type dsp5680xx_target;
99 extern struct target_type testee_target;
100 extern struct target_type avr32_ap7k_target;
101 extern struct target_type hla_target;
102 extern struct target_type nds32_v2_target;
103 extern struct target_type nds32_v3_target;
104 extern struct target_type nds32_v3m_target;
105 extern struct target_type or1k_target;
106 extern struct target_type quark_x10xx_target;
107 extern struct target_type quark_d20xx_target;
108 extern struct target_type stm8_target;
109
110 static struct target_type *target_types[] = {
111         &arm7tdmi_target,
112         &arm9tdmi_target,
113         &arm920t_target,
114         &arm720t_target,
115         &arm966e_target,
116         &arm946e_target,
117         &arm926ejs_target,
118         &fa526_target,
119         &feroceon_target,
120         &dragonite_target,
121         &xscale_target,
122         &cortexm_target,
123         &cortexa_target,
124         &cortexr4_target,
125         &arm11_target,
126         &ls1_sap_target,
127         &mips_m4k_target,
128         &avr_target,
129         &dsp563xx_target,
130         &dsp5680xx_target,
131         &testee_target,
132         &avr32_ap7k_target,
133         &hla_target,
134         &nds32_v2_target,
135         &nds32_v3_target,
136         &nds32_v3m_target,
137         &or1k_target,
138         &quark_x10xx_target,
139         &quark_d20xx_target,
140         &stm8_target,
141 #if BUILD_TARGET64
142         &aarch64_target,
143 #endif
144         NULL,
145 };
146
147 struct target *all_targets;
148 static struct target_event_callback *target_event_callbacks;
149 static struct target_timer_callback *target_timer_callbacks;
150 LIST_HEAD(target_reset_callback_list);
151 LIST_HEAD(target_trace_callback_list);
152 static const int polling_interval = 100;
153
154 static const Jim_Nvp nvp_assert[] = {
155         { .name = "assert", NVP_ASSERT },
156         { .name = "deassert", NVP_DEASSERT },
157         { .name = "T", NVP_ASSERT },
158         { .name = "F", NVP_DEASSERT },
159         { .name = "t", NVP_ASSERT },
160         { .name = "f", NVP_DEASSERT },
161         { .name = NULL, .value = -1 }
162 };
163
164 static const Jim_Nvp nvp_error_target[] = {
165         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
166         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
167         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
168         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
169         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
170         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
171         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
172         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
173         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
174         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
175         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
176         { .value = -1, .name = NULL }
177 };
178
179 static const char *target_strerror_safe(int err)
180 {
181         const Jim_Nvp *n;
182
183         n = Jim_Nvp_value2name_simple(nvp_error_target, err);
184         if (n->name == NULL)
185                 return "unknown";
186         else
187                 return n->name;
188 }
189
190 static const Jim_Nvp nvp_target_event[] = {
191
192         { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
193         { .value = TARGET_EVENT_HALTED, .name = "halted" },
194         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
195         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
196         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
197
198         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
199         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
200
201         { .value = TARGET_EVENT_RESET_START,         .name = "reset-start" },
202         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
203         { .value = TARGET_EVENT_RESET_ASSERT,        .name = "reset-assert" },
204         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
205         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
206         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
207         { .value = TARGET_EVENT_RESET_INIT,          .name = "reset-init" },
208         { .value = TARGET_EVENT_RESET_END,           .name = "reset-end" },
209
210         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
211         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
212
213         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
214         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
215
216         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
217         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
218
219         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
220         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
221
222         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
223         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
224
225         { .value = TARGET_EVENT_TRACE_CONFIG, .name = "trace-config" },
226
227         { .name = NULL, .value = -1 }
228 };
229
230 static const Jim_Nvp nvp_target_state[] = {
231         { .name = "unknown", .value = TARGET_UNKNOWN },
232         { .name = "running", .value = TARGET_RUNNING },
233         { .name = "halted",  .value = TARGET_HALTED },
234         { .name = "reset",   .value = TARGET_RESET },
235         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
236         { .name = NULL, .value = -1 },
237 };
238
239 static const Jim_Nvp nvp_target_debug_reason[] = {
240         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
241         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
242         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
243         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
244         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
245         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
246         { .name = "program-exit"             , .value = DBG_REASON_EXIT },
247         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
248         { .name = NULL, .value = -1 },
249 };
250
251 static const Jim_Nvp nvp_target_endian[] = {
252         { .name = "big",    .value = TARGET_BIG_ENDIAN },
253         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
254         { .name = "be",     .value = TARGET_BIG_ENDIAN },
255         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
256         { .name = NULL,     .value = -1 },
257 };
258
259 static const Jim_Nvp nvp_reset_modes[] = {
260         { .name = "unknown", .value = RESET_UNKNOWN },
261         { .name = "run"    , .value = RESET_RUN },
262         { .name = "halt"   , .value = RESET_HALT },
263         { .name = "init"   , .value = RESET_INIT },
264         { .name = NULL     , .value = -1 },
265 };
266
267 const char *debug_reason_name(struct target *t)
268 {
269         const char *cp;
270
271         cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
272                         t->debug_reason)->name;
273         if (!cp) {
274                 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
275                 cp = "(*BUG*unknown*BUG*)";
276         }
277         return cp;
278 }
279
280 const char *target_state_name(struct target *t)
281 {
282         const char *cp;
283         cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
284         if (!cp) {
285                 LOG_ERROR("Invalid target state: %d", (int)(t->state));
286                 cp = "(*BUG*unknown*BUG*)";
287         }
288
289         if (!target_was_examined(t) && t->defer_examine)
290                 cp = "examine deferred";
291
292         return cp;
293 }
294
295 const char *target_event_name(enum target_event event)
296 {
297         const char *cp;
298         cp = Jim_Nvp_value2name_simple(nvp_target_event, event)->name;
299         if (!cp) {
300                 LOG_ERROR("Invalid target event: %d", (int)(event));
301                 cp = "(*BUG*unknown*BUG*)";
302         }
303         return cp;
304 }
305
306 const char *target_reset_mode_name(enum target_reset_mode reset_mode)
307 {
308         const char *cp;
309         cp = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name;
310         if (!cp) {
311                 LOG_ERROR("Invalid target reset mode: %d", (int)(reset_mode));
312                 cp = "(*BUG*unknown*BUG*)";
313         }
314         return cp;
315 }
316
317 /* determine the number of the new target */
318 static int new_target_number(void)
319 {
320         struct target *t;
321         int x;
322
323         /* number is 0 based */
324         x = -1;
325         t = all_targets;
326         while (t) {
327                 if (x < t->target_number)
328                         x = t->target_number;
329                 t = t->next;
330         }
331         return x + 1;
332 }
333
334 /* read a uint64_t from a buffer in target memory endianness */
335 uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
336 {
337         if (target->endianness == TARGET_LITTLE_ENDIAN)
338                 return le_to_h_u64(buffer);
339         else
340                 return be_to_h_u64(buffer);
341 }
342
343 /* read a uint32_t from a buffer in target memory endianness */
344 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
345 {
346         if (target->endianness == TARGET_LITTLE_ENDIAN)
347                 return le_to_h_u32(buffer);
348         else
349                 return be_to_h_u32(buffer);
350 }
351
352 /* read a uint24_t from a buffer in target memory endianness */
353 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
354 {
355         if (target->endianness == TARGET_LITTLE_ENDIAN)
356                 return le_to_h_u24(buffer);
357         else
358                 return be_to_h_u24(buffer);
359 }
360
361 /* read a uint16_t from a buffer in target memory endianness */
362 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
363 {
364         if (target->endianness == TARGET_LITTLE_ENDIAN)
365                 return le_to_h_u16(buffer);
366         else
367                 return be_to_h_u16(buffer);
368 }
369
370 /* read a uint8_t from a buffer in target memory endianness */
371 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
372 {
373         return *buffer & 0x0ff;
374 }
375
376 /* write a uint64_t to a buffer in target memory endianness */
377 void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
378 {
379         if (target->endianness == TARGET_LITTLE_ENDIAN)
380                 h_u64_to_le(buffer, value);
381         else
382                 h_u64_to_be(buffer, value);
383 }
384
385 /* write a uint32_t to a buffer in target memory endianness */
386 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
387 {
388         if (target->endianness == TARGET_LITTLE_ENDIAN)
389                 h_u32_to_le(buffer, value);
390         else
391                 h_u32_to_be(buffer, value);
392 }
393
394 /* write a uint24_t to a buffer in target memory endianness */
395 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
396 {
397         if (target->endianness == TARGET_LITTLE_ENDIAN)
398                 h_u24_to_le(buffer, value);
399         else
400                 h_u24_to_be(buffer, value);
401 }
402
403 /* write a uint16_t to a buffer in target memory endianness */
404 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
405 {
406         if (target->endianness == TARGET_LITTLE_ENDIAN)
407                 h_u16_to_le(buffer, value);
408         else
409                 h_u16_to_be(buffer, value);
410 }
411
412 /* write a uint8_t to a buffer in target memory endianness */
413 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
414 {
415         *buffer = value;
416 }
417
418 /* write a uint64_t array to a buffer in target memory endianness */
419 void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf)
420 {
421         uint32_t i;
422         for (i = 0; i < count; i++)
423                 dstbuf[i] = target_buffer_get_u64(target, &buffer[i * 8]);
424 }
425
426 /* write a uint32_t array to a buffer in target memory endianness */
427 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
428 {
429         uint32_t i;
430         for (i = 0; i < count; i++)
431                 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
432 }
433
434 /* write a uint16_t array to a buffer in target memory endianness */
435 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
436 {
437         uint32_t i;
438         for (i = 0; i < count; i++)
439                 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
440 }
441
442 /* write a uint64_t array to a buffer in target memory endianness */
443 void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf)
444 {
445         uint32_t i;
446         for (i = 0; i < count; i++)
447                 target_buffer_set_u64(target, &buffer[i * 8], srcbuf[i]);
448 }
449
450 /* write a uint32_t array to a buffer in target memory endianness */
451 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
452 {
453         uint32_t i;
454         for (i = 0; i < count; i++)
455                 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
456 }
457
458 /* write a uint16_t array to a buffer in target memory endianness */
459 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf)
460 {
461         uint32_t i;
462         for (i = 0; i < count; i++)
463                 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
464 }
465
466 /* return a pointer to a configured target; id is name or number */
467 struct target *get_target(const char *id)
468 {
469         struct target *target;
470
471         /* try as tcltarget name */
472         for (target = all_targets; target; target = target->next) {
473                 if (target_name(target) == NULL)
474                         continue;
475                 if (strcmp(id, target_name(target)) == 0)
476                         return target;
477         }
478
479         /* It's OK to remove this fallback sometime after August 2010 or so */
480
481         /* no match, try as number */
482         unsigned num;
483         if (parse_uint(id, &num) != ERROR_OK)
484                 return NULL;
485
486         for (target = all_targets; target; target = target->next) {
487                 if (target->target_number == (int)num) {
488                         LOG_WARNING("use '%s' as target identifier, not '%u'",
489                                         target_name(target), num);
490                         return target;
491                 }
492         }
493
494         return NULL;
495 }
496
497 /* returns a pointer to the n-th configured target */
498 struct target *get_target_by_num(int num)
499 {
500         struct target *target = all_targets;
501
502         while (target) {
503                 if (target->target_number == num)
504                         return target;
505                 target = target->next;
506         }
507
508         return NULL;
509 }
510
511 struct target *get_current_target(struct command_context *cmd_ctx)
512 {
513         struct target *target = get_target_by_num(cmd_ctx->current_target);
514
515         if (target == NULL) {
516                 LOG_ERROR("BUG: current_target out of bounds");
517                 exit(-1);
518         }
519
520         return target;
521 }
522
523 int target_poll(struct target *target)
524 {
525         int retval;
526
527         /* We can't poll until after examine */
528         if (!target_was_examined(target)) {
529                 /* Fail silently lest we pollute the log */
530                 return ERROR_FAIL;
531         }
532
533         retval = target->type->poll(target);
534         if (retval != ERROR_OK)
535                 return retval;
536
537         if (target->halt_issued) {
538                 if (target->state == TARGET_HALTED)
539                         target->halt_issued = false;
540                 else {
541                         int64_t t = timeval_ms() - target->halt_issued_time;
542                         if (t > DEFAULT_HALT_TIMEOUT) {
543                                 target->halt_issued = false;
544                                 LOG_INFO("Halt timed out, wake up GDB.");
545                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
546                         }
547                 }
548         }
549
550         return ERROR_OK;
551 }
552
553 int target_halt(struct target *target)
554 {
555         int retval;
556         /* We can't poll until after examine */
557         if (!target_was_examined(target)) {
558                 LOG_ERROR("Target not examined yet");
559                 return ERROR_FAIL;
560         }
561
562         retval = target->type->halt(target);
563         if (retval != ERROR_OK)
564                 return retval;
565
566         target->halt_issued = true;
567         target->halt_issued_time = timeval_ms();
568
569         return ERROR_OK;
570 }
571
572 /**
573  * Make the target (re)start executing using its saved execution
574  * context (possibly with some modifications).
575  *
576  * @param target Which target should start executing.
577  * @param current True to use the target's saved program counter instead
578  *      of the address parameter
579  * @param address Optionally used as the program counter.
580  * @param handle_breakpoints True iff breakpoints at the resumption PC
581  *      should be skipped.  (For example, maybe execution was stopped by
582  *      such a breakpoint, in which case it would be counterprodutive to
583  *      let it re-trigger.
584  * @param debug_execution False if all working areas allocated by OpenOCD
585  *      should be released and/or restored to their original contents.
586  *      (This would for example be true to run some downloaded "helper"
587  *      algorithm code, which resides in one such working buffer and uses
588  *      another for data storage.)
589  *
590  * @todo Resolve the ambiguity about what the "debug_execution" flag
591  * signifies.  For example, Target implementations don't agree on how
592  * it relates to invalidation of the register cache, or to whether
593  * breakpoints and watchpoints should be enabled.  (It would seem wrong
594  * to enable breakpoints when running downloaded "helper" algorithms
595  * (debug_execution true), since the breakpoints would be set to match
596  * target firmware being debugged, not the helper algorithm.... and
597  * enabling them could cause such helpers to malfunction (for example,
598  * by overwriting data with a breakpoint instruction.  On the other
599  * hand the infrastructure for running such helpers might use this
600  * procedure but rely on hardware breakpoint to detect termination.)
601  */
602 int target_resume(struct target *target, int current, target_addr_t address,
603                 int handle_breakpoints, int debug_execution)
604 {
605         int retval;
606
607         /* We can't poll until after examine */
608         if (!target_was_examined(target)) {
609                 LOG_ERROR("Target not examined yet");
610                 return ERROR_FAIL;
611         }
612
613         target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
614
615         /* note that resume *must* be asynchronous. The CPU can halt before
616          * we poll. The CPU can even halt at the current PC as a result of
617          * a software breakpoint being inserted by (a bug?) the application.
618          */
619         retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
620         if (retval != ERROR_OK)
621                 return retval;
622
623         target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
624
625         return retval;
626 }
627
628 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
629 {
630         char buf[100];
631         int retval;
632         Jim_Nvp *n;
633         n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
634         if (n->name == NULL) {
635                 LOG_ERROR("invalid reset mode");
636                 return ERROR_FAIL;
637         }
638
639         struct target *target;
640         for (target = all_targets; target; target = target->next)
641                 target_call_reset_callbacks(target, reset_mode);
642
643         /* disable polling during reset to make reset event scripts
644          * more predictable, i.e. dr/irscan & pathmove in events will
645          * not have JTAG operations injected into the middle of a sequence.
646          */
647         bool save_poll = jtag_poll_get_enabled();
648
649         jtag_poll_set_enabled(false);
650
651         sprintf(buf, "ocd_process_reset %s", n->name);
652         retval = Jim_Eval(cmd_ctx->interp, buf);
653
654         jtag_poll_set_enabled(save_poll);
655
656         if (retval != JIM_OK) {
657                 Jim_MakeErrorMessage(cmd_ctx->interp);
658                 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
659                 return ERROR_FAIL;
660         }
661
662         /* We want any events to be processed before the prompt */
663         retval = target_call_timer_callbacks_now();
664
665         for (target = all_targets; target; target = target->next) {
666                 target->type->check_reset(target);
667                 target->running_alg = false;
668         }
669
670         return retval;
671 }
672
673 static int identity_virt2phys(struct target *target,
674                 target_addr_t virtual, target_addr_t *physical)
675 {
676         *physical = virtual;
677         return ERROR_OK;
678 }
679
680 static int no_mmu(struct target *target, int *enabled)
681 {
682         *enabled = 0;
683         return ERROR_OK;
684 }
685
686 static int default_examine(struct target *target)
687 {
688         target_set_examined(target);
689         return ERROR_OK;
690 }
691
692 /* no check by default */
693 static int default_check_reset(struct target *target)
694 {
695         return ERROR_OK;
696 }
697
698 int target_examine_one(struct target *target)
699 {
700         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
701
702         int retval = target->type->examine(target);
703         if (retval != ERROR_OK)
704                 return retval;
705
706         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
707
708         return ERROR_OK;
709 }
710
711 static int jtag_enable_callback(enum jtag_event event, void *priv)
712 {
713         struct target *target = priv;
714
715         if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
716                 return ERROR_OK;
717
718         jtag_unregister_event_callback(jtag_enable_callback, target);
719
720         return target_examine_one(target);
721 }
722
723 /* Targets that correctly implement init + examine, i.e.
724  * no communication with target during init:
725  *
726  * XScale
727  */
728 int target_examine(void)
729 {
730         int retval = ERROR_OK;
731         struct target *target;
732
733         for (target = all_targets; target; target = target->next) {
734                 /* defer examination, but don't skip it */
735                 if (!target->tap->enabled) {
736                         jtag_register_event_callback(jtag_enable_callback,
737                                         target);
738                         continue;
739                 }
740
741                 if (target->defer_examine)
742                         continue;
743
744                 retval = target_examine_one(target);
745                 if (retval != ERROR_OK)
746                         return retval;
747         }
748         return retval;
749 }
750
751 const char *target_type_name(struct target *target)
752 {
753         return target->type->name;
754 }
755
756 static int target_soft_reset_halt(struct target *target)
757 {
758         if (!target_was_examined(target)) {
759                 LOG_ERROR("Target not examined yet");
760                 return ERROR_FAIL;
761         }
762         if (!target->type->soft_reset_halt) {
763                 LOG_ERROR("Target %s does not support soft_reset_halt",
764                                 target_name(target));
765                 return ERROR_FAIL;
766         }
767         return target->type->soft_reset_halt(target);
768 }
769
770 /**
771  * Downloads a target-specific native code algorithm to the target,
772  * and executes it.  * Note that some targets may need to set up, enable,
773  * and tear down a breakpoint (hard or * soft) to detect algorithm
774  * termination, while others may support  lower overhead schemes where
775  * soft breakpoints embedded in the algorithm automatically terminate the
776  * algorithm.
777  *
778  * @param target used to run the algorithm
779  * @param arch_info target-specific description of the algorithm.
780  */
781 int target_run_algorithm(struct target *target,
782                 int num_mem_params, struct mem_param *mem_params,
783                 int num_reg_params, struct reg_param *reg_param,
784                 uint32_t entry_point, uint32_t exit_point,
785                 int timeout_ms, void *arch_info)
786 {
787         int retval = ERROR_FAIL;
788
789         if (!target_was_examined(target)) {
790                 LOG_ERROR("Target not examined yet");
791                 goto done;
792         }
793         if (!target->type->run_algorithm) {
794                 LOG_ERROR("Target type '%s' does not support %s",
795                                 target_type_name(target), __func__);
796                 goto done;
797         }
798
799         target->running_alg = true;
800         retval = target->type->run_algorithm(target,
801                         num_mem_params, mem_params,
802                         num_reg_params, reg_param,
803                         entry_point, exit_point, timeout_ms, arch_info);
804         target->running_alg = false;
805
806 done:
807         return retval;
808 }
809
810 /**
811  * Downloads a target-specific native code algorithm to the target,
812  * executes and leaves it running.
813  *
814  * @param target used to run the algorithm
815  * @param arch_info target-specific description of the algorithm.
816  */
817 int target_start_algorithm(struct target *target,
818                 int num_mem_params, struct mem_param *mem_params,
819                 int num_reg_params, struct reg_param *reg_params,
820                 uint32_t entry_point, uint32_t exit_point,
821                 void *arch_info)
822 {
823         int retval = ERROR_FAIL;
824
825         if (!target_was_examined(target)) {
826                 LOG_ERROR("Target not examined yet");
827                 goto done;
828         }
829         if (!target->type->start_algorithm) {
830                 LOG_ERROR("Target type '%s' does not support %s",
831                                 target_type_name(target), __func__);
832                 goto done;
833         }
834         if (target->running_alg) {
835                 LOG_ERROR("Target is already running an algorithm");
836                 goto done;
837         }
838
839         target->running_alg = true;
840         retval = target->type->start_algorithm(target,
841                         num_mem_params, mem_params,
842                         num_reg_params, reg_params,
843                         entry_point, exit_point, arch_info);
844
845 done:
846         return retval;
847 }
848
849 /**
850  * Waits for an algorithm started with target_start_algorithm() to complete.
851  *
852  * @param target used to run the algorithm
853  * @param arch_info target-specific description of the algorithm.
854  */
855 int target_wait_algorithm(struct target *target,
856                 int num_mem_params, struct mem_param *mem_params,
857                 int num_reg_params, struct reg_param *reg_params,
858                 uint32_t exit_point, int timeout_ms,
859                 void *arch_info)
860 {
861         int retval = ERROR_FAIL;
862
863         if (!target->type->wait_algorithm) {
864                 LOG_ERROR("Target type '%s' does not support %s",
865                                 target_type_name(target), __func__);
866                 goto done;
867         }
868         if (!target->running_alg) {
869                 LOG_ERROR("Target is not running an algorithm");
870                 goto done;
871         }
872
873         retval = target->type->wait_algorithm(target,
874                         num_mem_params, mem_params,
875                         num_reg_params, reg_params,
876                         exit_point, timeout_ms, arch_info);
877         if (retval != ERROR_TARGET_TIMEOUT)
878                 target->running_alg = false;
879
880 done:
881         return retval;
882 }
883
884 /**
885  * Executes a target-specific native code algorithm in the target.
886  * It differs from target_run_algorithm in that the algorithm is asynchronous.
887  * Because of this it requires an compliant algorithm:
888  * see contrib/loaders/flash/stm32f1x.S for example.
889  *
890  * @param target used to run the algorithm
891  */
892
893 int target_run_flash_async_algorithm(struct target *target,
894                 const uint8_t *buffer, uint32_t count, int block_size,
895                 int num_mem_params, struct mem_param *mem_params,
896                 int num_reg_params, struct reg_param *reg_params,
897                 uint32_t buffer_start, uint32_t buffer_size,
898                 uint32_t entry_point, uint32_t exit_point, void *arch_info)
899 {
900         int retval;
901         int timeout = 0;
902
903         const uint8_t *buffer_orig = buffer;
904
905         /* Set up working area. First word is write pointer, second word is read pointer,
906          * rest is fifo data area. */
907         uint32_t wp_addr = buffer_start;
908         uint32_t rp_addr = buffer_start + 4;
909         uint32_t fifo_start_addr = buffer_start + 8;
910         uint32_t fifo_end_addr = buffer_start + buffer_size;
911
912         uint32_t wp = fifo_start_addr;
913         uint32_t rp = fifo_start_addr;
914
915         /* validate block_size is 2^n */
916         assert(!block_size || !(block_size & (block_size - 1)));
917
918         retval = target_write_u32(target, wp_addr, wp);
919         if (retval != ERROR_OK)
920                 return retval;
921         retval = target_write_u32(target, rp_addr, rp);
922         if (retval != ERROR_OK)
923                 return retval;
924
925         /* Start up algorithm on target and let it idle while writing the first chunk */
926         retval = target_start_algorithm(target, num_mem_params, mem_params,
927                         num_reg_params, reg_params,
928                         entry_point,
929                         exit_point,
930                         arch_info);
931
932         if (retval != ERROR_OK) {
933                 LOG_ERROR("error starting target flash write algorithm");
934                 return retval;
935         }
936
937         while (count > 0) {
938
939                 retval = target_read_u32(target, rp_addr, &rp);
940                 if (retval != ERROR_OK) {
941                         LOG_ERROR("failed to get read pointer");
942                         break;
943                 }
944
945                 LOG_DEBUG("offs 0x%zx count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32,
946                         (size_t) (buffer - buffer_orig), count, wp, rp);
947
948                 if (rp == 0) {
949                         LOG_ERROR("flash write algorithm aborted by target");
950                         retval = ERROR_FLASH_OPERATION_FAILED;
951                         break;
952                 }
953
954                 if (((rp - fifo_start_addr) & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
955                         LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
956                         break;
957                 }
958
959                 /* Count the number of bytes available in the fifo without
960                  * crossing the wrap around. Make sure to not fill it completely,
961                  * because that would make wp == rp and that's the empty condition. */
962                 uint32_t thisrun_bytes;
963                 if (rp > wp)
964                         thisrun_bytes = rp - wp - block_size;
965                 else if (rp > fifo_start_addr)
966                         thisrun_bytes = fifo_end_addr - wp;
967                 else
968                         thisrun_bytes = fifo_end_addr - wp - block_size;
969
970                 if (thisrun_bytes == 0) {
971                         /* Throttle polling a bit if transfer is (much) faster than flash
972                          * programming. The exact delay shouldn't matter as long as it's
973                          * less than buffer size / flash speed. This is very unlikely to
974                          * run when using high latency connections such as USB. */
975                         alive_sleep(10);
976
977                         /* to stop an infinite loop on some targets check and increment a timeout
978                          * this issue was observed on a stellaris using the new ICDI interface */
979                         if (timeout++ >= 500) {
980                                 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
981                                 return ERROR_FLASH_OPERATION_FAILED;
982                         }
983                         continue;
984                 }
985
986                 /* reset our timeout */
987                 timeout = 0;
988
989                 /* Limit to the amount of data we actually want to write */
990                 if (thisrun_bytes > count * block_size)
991                         thisrun_bytes = count * block_size;
992
993                 /* Write data to fifo */
994                 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
995                 if (retval != ERROR_OK)
996                         break;
997
998                 /* Update counters and wrap write pointer */
999                 buffer += thisrun_bytes;
1000                 count -= thisrun_bytes / block_size;
1001                 wp += thisrun_bytes;
1002                 if (wp >= fifo_end_addr)
1003                         wp = fifo_start_addr;
1004
1005                 /* Store updated write pointer to target */
1006                 retval = target_write_u32(target, wp_addr, wp);
1007                 if (retval != ERROR_OK)
1008                         break;
1009         }
1010
1011         if (retval != ERROR_OK) {
1012                 /* abort flash write algorithm on target */
1013                 target_write_u32(target, wp_addr, 0);
1014         }
1015
1016         int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
1017                         num_reg_params, reg_params,
1018                         exit_point,
1019                         10000,
1020                         arch_info);
1021
1022         if (retval2 != ERROR_OK) {
1023                 LOG_ERROR("error waiting for target flash write algorithm");
1024                 retval = retval2;
1025         }
1026
1027         if (retval == ERROR_OK) {
1028                 /* check if algorithm set rp = 0 after fifo writer loop finished */
1029                 retval = target_read_u32(target, rp_addr, &rp);
1030                 if (retval == ERROR_OK && rp == 0) {
1031                         LOG_ERROR("flash write algorithm aborted by target");
1032                         retval = ERROR_FLASH_OPERATION_FAILED;
1033                 }
1034         }
1035
1036         return retval;
1037 }
1038
1039 int target_read_memory(struct target *target,
1040                 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1041 {
1042         if (!target_was_examined(target)) {
1043                 LOG_ERROR("Target not examined yet");
1044                 return ERROR_FAIL;
1045         }
1046         if (!target->type->read_memory) {
1047                 LOG_ERROR("Target %s doesn't support read_memory", target_name(target));
1048                 return ERROR_FAIL;
1049         }
1050         return target->type->read_memory(target, address, size, count, buffer);
1051 }
1052
1053 int target_read_phys_memory(struct target *target,
1054                 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1055 {
1056         if (!target_was_examined(target)) {
1057                 LOG_ERROR("Target not examined yet");
1058                 return ERROR_FAIL;
1059         }
1060         if (!target->type->read_phys_memory) {
1061                 LOG_ERROR("Target %s doesn't support read_phys_memory", target_name(target));
1062                 return ERROR_FAIL;
1063         }
1064         return target->type->read_phys_memory(target, address, size, count, buffer);
1065 }
1066
1067 int target_write_memory(struct target *target,
1068                 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1069 {
1070         if (!target_was_examined(target)) {
1071                 LOG_ERROR("Target not examined yet");
1072                 return ERROR_FAIL;
1073         }
1074         if (!target->type->write_memory) {
1075                 LOG_ERROR("Target %s doesn't support write_memory", target_name(target));
1076                 return ERROR_FAIL;
1077         }
1078         return target->type->write_memory(target, address, size, count, buffer);
1079 }
1080
1081 int target_write_phys_memory(struct target *target,
1082                 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1083 {
1084         if (!target_was_examined(target)) {
1085                 LOG_ERROR("Target not examined yet");
1086                 return ERROR_FAIL;
1087         }
1088         if (!target->type->write_phys_memory) {
1089                 LOG_ERROR("Target %s doesn't support write_phys_memory", target_name(target));
1090                 return ERROR_FAIL;
1091         }
1092         return target->type->write_phys_memory(target, address, size, count, buffer);
1093 }
1094
1095 int target_add_breakpoint(struct target *target,
1096                 struct breakpoint *breakpoint)
1097 {
1098         if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
1099                 LOG_WARNING("target %s is not halted (add breakpoint)", target_name(target));
1100                 return ERROR_TARGET_NOT_HALTED;
1101         }
1102         return target->type->add_breakpoint(target, breakpoint);
1103 }
1104
1105 int target_add_context_breakpoint(struct target *target,
1106                 struct breakpoint *breakpoint)
1107 {
1108         if (target->state != TARGET_HALTED) {
1109                 LOG_WARNING("target %s is not halted (add context breakpoint)", target_name(target));
1110                 return ERROR_TARGET_NOT_HALTED;
1111         }
1112         return target->type->add_context_breakpoint(target, breakpoint);
1113 }
1114
1115 int target_add_hybrid_breakpoint(struct target *target,
1116                 struct breakpoint *breakpoint)
1117 {
1118         if (target->state != TARGET_HALTED) {
1119                 LOG_WARNING("target %s is not halted (add hybrid breakpoint)", target_name(target));
1120                 return ERROR_TARGET_NOT_HALTED;
1121         }
1122         return target->type->add_hybrid_breakpoint(target, breakpoint);
1123 }
1124
1125 int target_remove_breakpoint(struct target *target,
1126                 struct breakpoint *breakpoint)
1127 {
1128         return target->type->remove_breakpoint(target, breakpoint);
1129 }
1130
1131 int target_add_watchpoint(struct target *target,
1132                 struct watchpoint *watchpoint)
1133 {
1134         if (target->state != TARGET_HALTED) {
1135                 LOG_WARNING("target %s is not halted (add watchpoint)", target_name(target));
1136                 return ERROR_TARGET_NOT_HALTED;
1137         }
1138         return target->type->add_watchpoint(target, watchpoint);
1139 }
1140 int target_remove_watchpoint(struct target *target,
1141                 struct watchpoint *watchpoint)
1142 {
1143         return target->type->remove_watchpoint(target, watchpoint);
1144 }
1145 int target_hit_watchpoint(struct target *target,
1146                 struct watchpoint **hit_watchpoint)
1147 {
1148         if (target->state != TARGET_HALTED) {
1149                 LOG_WARNING("target %s is not halted (hit watchpoint)", target->cmd_name);
1150                 return ERROR_TARGET_NOT_HALTED;
1151         }
1152
1153         if (target->type->hit_watchpoint == NULL) {
1154                 /* For backward compatible, if hit_watchpoint is not implemented,
1155                  * return ERROR_FAIL such that gdb_server will not take the nonsense
1156                  * information. */
1157                 return ERROR_FAIL;
1158         }
1159
1160         return target->type->hit_watchpoint(target, hit_watchpoint);
1161 }
1162
1163 int target_get_gdb_reg_list(struct target *target,
1164                 struct reg **reg_list[], int *reg_list_size,
1165                 enum target_register_class reg_class)
1166 {
1167         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1168 }
1169 int target_step(struct target *target,
1170                 int current, target_addr_t address, int handle_breakpoints)
1171 {
1172         return target->type->step(target, current, address, handle_breakpoints);
1173 }
1174
1175 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1176 {
1177         if (target->state != TARGET_HALTED) {
1178                 LOG_WARNING("target %s is not halted (gdb fileio)", target->cmd_name);
1179                 return ERROR_TARGET_NOT_HALTED;
1180         }
1181         return target->type->get_gdb_fileio_info(target, fileio_info);
1182 }
1183
1184 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1185 {
1186         if (target->state != TARGET_HALTED) {
1187                 LOG_WARNING("target %s is not halted (gdb fileio end)", target->cmd_name);
1188                 return ERROR_TARGET_NOT_HALTED;
1189         }
1190         return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1191 }
1192
1193 int target_profiling(struct target *target, uint32_t *samples,
1194                         uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1195 {
1196         if (target->state != TARGET_HALTED) {
1197                 LOG_WARNING("target %s is not halted (profiling)", target->cmd_name);
1198                 return ERROR_TARGET_NOT_HALTED;
1199         }
1200         return target->type->profiling(target, samples, max_num_samples,
1201                         num_samples, seconds);
1202 }
1203
1204 /**
1205  * Reset the @c examined flag for the given target.
1206  * Pure paranoia -- targets are zeroed on allocation.
1207  */
1208 static void target_reset_examined(struct target *target)
1209 {
1210         target->examined = false;
1211 }
1212
1213 static int handle_target(void *priv);
1214
1215 static int target_init_one(struct command_context *cmd_ctx,
1216                 struct target *target)
1217 {
1218         target_reset_examined(target);
1219
1220         struct target_type *type = target->type;
1221         if (type->examine == NULL)
1222                 type->examine = default_examine;
1223
1224         if (type->check_reset == NULL)
1225                 type->check_reset = default_check_reset;
1226
1227         assert(type->init_target != NULL);
1228
1229         int retval = type->init_target(cmd_ctx, target);
1230         if (ERROR_OK != retval) {
1231                 LOG_ERROR("target '%s' init failed", target_name(target));
1232                 return retval;
1233         }
1234
1235         /* Sanity-check MMU support ... stub in what we must, to help
1236          * implement it in stages, but warn if we need to do so.
1237          */
1238         if (type->mmu) {
1239                 if (type->virt2phys == NULL) {
1240                         LOG_ERROR("type '%s' is missing virt2phys", type->name);
1241                         type->virt2phys = identity_virt2phys;
1242                 }
1243         } else {
1244                 /* Make sure no-MMU targets all behave the same:  make no
1245                  * distinction between physical and virtual addresses, and
1246                  * ensure that virt2phys() is always an identity mapping.
1247                  */
1248                 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1249                         LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1250
1251                 type->mmu = no_mmu;
1252                 type->write_phys_memory = type->write_memory;
1253                 type->read_phys_memory = type->read_memory;
1254                 type->virt2phys = identity_virt2phys;
1255         }
1256
1257         if (target->type->read_buffer == NULL)
1258                 target->type->read_buffer = target_read_buffer_default;
1259
1260         if (target->type->write_buffer == NULL)
1261                 target->type->write_buffer = target_write_buffer_default;
1262
1263         if (target->type->get_gdb_fileio_info == NULL)
1264                 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1265
1266         if (target->type->gdb_fileio_end == NULL)
1267                 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1268
1269         if (target->type->profiling == NULL)
1270                 target->type->profiling = target_profiling_default;
1271
1272         return ERROR_OK;
1273 }
1274
1275 static int target_init(struct command_context *cmd_ctx)
1276 {
1277         struct target *target;
1278         int retval;
1279
1280         for (target = all_targets; target; target = target->next) {
1281                 retval = target_init_one(cmd_ctx, target);
1282                 if (ERROR_OK != retval)
1283                         return retval;
1284         }
1285
1286         if (!all_targets)
1287                 return ERROR_OK;
1288
1289         retval = target_register_user_commands(cmd_ctx);
1290         if (ERROR_OK != retval)
1291                 return retval;
1292
1293         retval = target_register_timer_callback(&handle_target,
1294                         polling_interval, 1, cmd_ctx->interp);
1295         if (ERROR_OK != retval)
1296                 return retval;
1297
1298         return ERROR_OK;
1299 }
1300
1301 COMMAND_HANDLER(handle_target_init_command)
1302 {
1303         int retval;
1304
1305         if (CMD_ARGC != 0)
1306                 return ERROR_COMMAND_SYNTAX_ERROR;
1307
1308         static bool target_initialized;
1309         if (target_initialized) {
1310                 LOG_INFO("'target init' has already been called");
1311                 return ERROR_OK;
1312         }
1313         target_initialized = true;
1314
1315         retval = command_run_line(CMD_CTX, "init_targets");
1316         if (ERROR_OK != retval)
1317                 return retval;
1318
1319         retval = command_run_line(CMD_CTX, "init_target_events");
1320         if (ERROR_OK != retval)
1321                 return retval;
1322
1323         retval = command_run_line(CMD_CTX, "init_board");
1324         if (ERROR_OK != retval)
1325                 return retval;
1326
1327         LOG_DEBUG("Initializing targets...");
1328         return target_init(CMD_CTX);
1329 }
1330
1331 int target_register_event_callback(int (*callback)(struct target *target,
1332                 enum target_event event, void *priv), void *priv)
1333 {
1334         struct target_event_callback **callbacks_p = &target_event_callbacks;
1335
1336         if (callback == NULL)
1337                 return ERROR_COMMAND_SYNTAX_ERROR;
1338
1339         if (*callbacks_p) {
1340                 while ((*callbacks_p)->next)
1341                         callbacks_p = &((*callbacks_p)->next);
1342                 callbacks_p = &((*callbacks_p)->next);
1343         }
1344
1345         (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1346         (*callbacks_p)->callback = callback;
1347         (*callbacks_p)->priv = priv;
1348         (*callbacks_p)->next = NULL;
1349
1350         return ERROR_OK;
1351 }
1352
1353 int target_register_reset_callback(int (*callback)(struct target *target,
1354                 enum target_reset_mode reset_mode, void *priv), void *priv)
1355 {
1356         struct target_reset_callback *entry;
1357
1358         if (callback == NULL)
1359                 return ERROR_COMMAND_SYNTAX_ERROR;
1360
1361         entry = malloc(sizeof(struct target_reset_callback));
1362         if (entry == NULL) {
1363                 LOG_ERROR("error allocating buffer for reset callback entry");
1364                 return ERROR_COMMAND_SYNTAX_ERROR;
1365         }
1366
1367         entry->callback = callback;
1368         entry->priv = priv;
1369         list_add(&entry->list, &target_reset_callback_list);
1370
1371
1372         return ERROR_OK;
1373 }
1374
1375 int target_register_trace_callback(int (*callback)(struct target *target,
1376                 size_t len, uint8_t *data, void *priv), void *priv)
1377 {
1378         struct target_trace_callback *entry;
1379
1380         if (callback == NULL)
1381                 return ERROR_COMMAND_SYNTAX_ERROR;
1382
1383         entry = malloc(sizeof(struct target_trace_callback));
1384         if (entry == NULL) {
1385                 LOG_ERROR("error allocating buffer for trace callback entry");
1386                 return ERROR_COMMAND_SYNTAX_ERROR;
1387         }
1388
1389         entry->callback = callback;
1390         entry->priv = priv;
1391         list_add(&entry->list, &target_trace_callback_list);
1392
1393
1394         return ERROR_OK;
1395 }
1396
1397 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1398 {
1399         struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1400
1401         if (callback == NULL)
1402                 return ERROR_COMMAND_SYNTAX_ERROR;
1403
1404         if (*callbacks_p) {
1405                 while ((*callbacks_p)->next)
1406                         callbacks_p = &((*callbacks_p)->next);
1407                 callbacks_p = &((*callbacks_p)->next);
1408         }
1409
1410         (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1411         (*callbacks_p)->callback = callback;
1412         (*callbacks_p)->periodic = periodic;
1413         (*callbacks_p)->time_ms = time_ms;
1414         (*callbacks_p)->removed = false;
1415
1416         gettimeofday(&(*callbacks_p)->when, NULL);
1417         timeval_add_time(&(*callbacks_p)->when, 0, time_ms * 1000);
1418
1419         (*callbacks_p)->priv = priv;
1420         (*callbacks_p)->next = NULL;
1421
1422         return ERROR_OK;
1423 }
1424
1425 int target_unregister_event_callback(int (*callback)(struct target *target,
1426                 enum target_event event, void *priv), void *priv)
1427 {
1428         struct target_event_callback **p = &target_event_callbacks;
1429         struct target_event_callback *c = target_event_callbacks;
1430
1431         if (callback == NULL)
1432                 return ERROR_COMMAND_SYNTAX_ERROR;
1433
1434         while (c) {
1435                 struct target_event_callback *next = c->next;
1436                 if ((c->callback == callback) && (c->priv == priv)) {
1437                         *p = next;
1438                         free(c);
1439                         return ERROR_OK;
1440                 } else
1441                         p = &(c->next);
1442                 c = next;
1443         }
1444
1445         return ERROR_OK;
1446 }
1447
1448 int target_unregister_reset_callback(int (*callback)(struct target *target,
1449                 enum target_reset_mode reset_mode, void *priv), void *priv)
1450 {
1451         struct target_reset_callback *entry;
1452
1453         if (callback == NULL)
1454                 return ERROR_COMMAND_SYNTAX_ERROR;
1455
1456         list_for_each_entry(entry, &target_reset_callback_list, list) {
1457                 if (entry->callback == callback && entry->priv == priv) {
1458                         list_del(&entry->list);
1459                         free(entry);
1460                         break;
1461                 }
1462         }
1463
1464         return ERROR_OK;
1465 }
1466
1467 int target_unregister_trace_callback(int (*callback)(struct target *target,
1468                 size_t len, uint8_t *data, void *priv), void *priv)
1469 {
1470         struct target_trace_callback *entry;
1471
1472         if (callback == NULL)
1473                 return ERROR_COMMAND_SYNTAX_ERROR;
1474
1475         list_for_each_entry(entry, &target_trace_callback_list, list) {
1476                 if (entry->callback == callback && entry->priv == priv) {
1477                         list_del(&entry->list);
1478                         free(entry);
1479                         break;
1480                 }
1481         }
1482
1483         return ERROR_OK;
1484 }
1485
1486 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1487 {
1488         if (callback == NULL)
1489                 return ERROR_COMMAND_SYNTAX_ERROR;
1490
1491         for (struct target_timer_callback *c = target_timer_callbacks;
1492              c; c = c->next) {
1493                 if ((c->callback == callback) && (c->priv == priv)) {
1494                         c->removed = true;
1495                         return ERROR_OK;
1496                 }
1497         }
1498
1499         return ERROR_FAIL;
1500 }
1501
1502 int target_call_event_callbacks(struct target *target, enum target_event event)
1503 {
1504         struct target_event_callback *callback = target_event_callbacks;
1505         struct target_event_callback *next_callback;
1506
1507         if (event == TARGET_EVENT_HALTED) {
1508                 /* execute early halted first */
1509                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1510         }
1511
1512         LOG_DEBUG("target event %i (%s)", event,
1513                         Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1514
1515         target_handle_event(target, event);
1516
1517         while (callback) {
1518                 next_callback = callback->next;
1519                 callback->callback(target, event, callback->priv);
1520                 callback = next_callback;
1521         }
1522
1523         return ERROR_OK;
1524 }
1525
1526 int target_call_reset_callbacks(struct target *target, enum target_reset_mode reset_mode)
1527 {
1528         struct target_reset_callback *callback;
1529
1530         LOG_DEBUG("target reset %i (%s)", reset_mode,
1531                         Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name);
1532
1533         list_for_each_entry(callback, &target_reset_callback_list, list)
1534                 callback->callback(target, reset_mode, callback->priv);
1535
1536         return ERROR_OK;
1537 }
1538
1539 int target_call_trace_callbacks(struct target *target, size_t len, uint8_t *data)
1540 {
1541         struct target_trace_callback *callback;
1542
1543         list_for_each_entry(callback, &target_trace_callback_list, list)
1544                 callback->callback(target, len, data, callback->priv);
1545
1546         return ERROR_OK;
1547 }
1548
1549 static int target_timer_callback_periodic_restart(
1550                 struct target_timer_callback *cb, struct timeval *now)
1551 {
1552         cb->when = *now;
1553         timeval_add_time(&cb->when, 0, cb->time_ms * 1000L);
1554         return ERROR_OK;
1555 }
1556
1557 static int target_call_timer_callback(struct target_timer_callback *cb,
1558                 struct timeval *now)
1559 {
1560         cb->callback(cb->priv);
1561
1562         if (cb->periodic)
1563                 return target_timer_callback_periodic_restart(cb, now);
1564
1565         return target_unregister_timer_callback(cb->callback, cb->priv);
1566 }
1567
1568 static int target_call_timer_callbacks_check_time(int checktime)
1569 {
1570         static bool callback_processing;
1571
1572         /* Do not allow nesting */
1573         if (callback_processing)
1574                 return ERROR_OK;
1575
1576         callback_processing = true;
1577
1578         keep_alive();
1579
1580         struct timeval now;
1581         gettimeofday(&now, NULL);
1582
1583         /* Store an address of the place containing a pointer to the
1584          * next item; initially, that's a standalone "root of the
1585          * list" variable. */
1586         struct target_timer_callback **callback = &target_timer_callbacks;
1587         while (*callback) {
1588                 if ((*callback)->removed) {
1589                         struct target_timer_callback *p = *callback;
1590                         *callback = (*callback)->next;
1591                         free(p);
1592                         continue;
1593                 }
1594
1595                 bool call_it = (*callback)->callback &&
1596                         ((!checktime && (*callback)->periodic) ||
1597                          timeval_compare(&now, &(*callback)->when) >= 0);
1598
1599                 if (call_it)
1600                         target_call_timer_callback(*callback, &now);
1601
1602                 callback = &(*callback)->next;
1603         }
1604
1605         callback_processing = false;
1606         return ERROR_OK;
1607 }
1608
1609 int target_call_timer_callbacks(void)
1610 {
1611         return target_call_timer_callbacks_check_time(1);
1612 }
1613
1614 /* invoke periodic callbacks immediately */
1615 int target_call_timer_callbacks_now(void)
1616 {
1617         return target_call_timer_callbacks_check_time(0);
1618 }
1619
1620 /* Prints the working area layout for debug purposes */
1621 static void print_wa_layout(struct target *target)
1622 {
1623         struct working_area *c = target->working_areas;
1624
1625         while (c) {
1626                 LOG_DEBUG("%c%c " TARGET_ADDR_FMT "-" TARGET_ADDR_FMT " (%" PRIu32 " bytes)",
1627                         c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1628                         c->address, c->address + c->size - 1, c->size);
1629                 c = c->next;
1630         }
1631 }
1632
1633 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1634 static void target_split_working_area(struct working_area *area, uint32_t size)
1635 {
1636         assert(area->free); /* Shouldn't split an allocated area */
1637         assert(size <= area->size); /* Caller should guarantee this */
1638
1639         /* Split only if not already the right size */
1640         if (size < area->size) {
1641                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1642
1643                 if (new_wa == NULL)
1644                         return;
1645
1646                 new_wa->next = area->next;
1647                 new_wa->size = area->size - size;
1648                 new_wa->address = area->address + size;
1649                 new_wa->backup = NULL;
1650                 new_wa->user = NULL;
1651                 new_wa->free = true;
1652
1653                 area->next = new_wa;
1654                 area->size = size;
1655
1656                 /* If backup memory was allocated to this area, it has the wrong size
1657                  * now so free it and it will be reallocated if/when needed */
1658                 if (area->backup) {
1659                         free(area->backup);
1660                         area->backup = NULL;
1661                 }
1662         }
1663 }
1664
1665 /* Merge all adjacent free areas into one */
1666 static void target_merge_working_areas(struct target *target)
1667 {
1668         struct working_area *c = target->working_areas;
1669
1670         while (c && c->next) {
1671                 assert(c->next->address == c->address + c->size); /* This is an invariant */
1672
1673                 /* Find two adjacent free areas */
1674                 if (c->free && c->next->free) {
1675                         /* Merge the last into the first */
1676                         c->size += c->next->size;
1677
1678                         /* Remove the last */
1679                         struct working_area *to_be_freed = c->next;
1680                         c->next = c->next->next;
1681                         if (to_be_freed->backup)
1682                                 free(to_be_freed->backup);
1683                         free(to_be_freed);
1684
1685                         /* If backup memory was allocated to the remaining area, it's has
1686                          * the wrong size now */
1687                         if (c->backup) {
1688                                 free(c->backup);
1689                                 c->backup = NULL;
1690                         }
1691                 } else {
1692                         c = c->next;
1693                 }
1694         }
1695 }
1696
1697 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1698 {
1699         /* Reevaluate working area address based on MMU state*/
1700         if (target->working_areas == NULL) {
1701                 int retval;
1702                 int enabled;
1703
1704                 retval = target->type->mmu(target, &enabled);
1705                 if (retval != ERROR_OK)
1706                         return retval;
1707
1708                 if (!enabled) {
1709                         if (target->working_area_phys_spec) {
1710                                 LOG_DEBUG("MMU disabled, using physical "
1711                                         "address for working memory " TARGET_ADDR_FMT,
1712                                         target->working_area_phys);
1713                                 target->working_area = target->working_area_phys;
1714                         } else {
1715                                 LOG_ERROR("No working memory available. "
1716                                         "Specify -work-area-phys to target.");
1717                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1718                         }
1719                 } else {
1720                         if (target->working_area_virt_spec) {
1721                                 LOG_DEBUG("MMU enabled, using virtual "
1722                                         "address for working memory " TARGET_ADDR_FMT,
1723                                         target->working_area_virt);
1724                                 target->working_area = target->working_area_virt;
1725                         } else {
1726                                 LOG_ERROR("No working memory available. "
1727                                         "Specify -work-area-virt to target.");
1728                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1729                         }
1730                 }
1731
1732                 /* Set up initial working area on first call */
1733                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1734                 if (new_wa) {
1735                         new_wa->next = NULL;
1736                         new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1737                         new_wa->address = target->working_area;
1738                         new_wa->backup = NULL;
1739                         new_wa->user = NULL;
1740                         new_wa->free = true;
1741                 }
1742
1743                 target->working_areas = new_wa;
1744         }
1745
1746         /* only allocate multiples of 4 byte */
1747         if (size % 4)
1748                 size = (size + 3) & (~3UL);
1749
1750         struct working_area *c = target->working_areas;
1751
1752         /* Find the first large enough working area */
1753         while (c) {
1754                 if (c->free && c->size >= size)
1755                         break;
1756                 c = c->next;
1757         }
1758
1759         if (c == NULL)
1760                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1761
1762         /* Split the working area into the requested size */
1763         target_split_working_area(c, size);
1764
1765         LOG_DEBUG("allocated new working area of %" PRIu32 " bytes at address " TARGET_ADDR_FMT,
1766                           size, c->address);
1767
1768         if (target->backup_working_area) {
1769                 if (c->backup == NULL) {
1770                         c->backup = malloc(c->size);
1771                         if (c->backup == NULL)
1772                                 return ERROR_FAIL;
1773                 }
1774
1775                 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1776                 if (retval != ERROR_OK)
1777                         return retval;
1778         }
1779
1780         /* mark as used, and return the new (reused) area */
1781         c->free = false;
1782         *area = c;
1783
1784         /* user pointer */
1785         c->user = area;
1786
1787         print_wa_layout(target);
1788
1789         return ERROR_OK;
1790 }
1791
1792 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1793 {
1794         int retval;
1795
1796         retval = target_alloc_working_area_try(target, size, area);
1797         if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1798                 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1799         return retval;
1800
1801 }
1802
1803 static int target_restore_working_area(struct target *target, struct working_area *area)
1804 {
1805         int retval = ERROR_OK;
1806
1807         if (target->backup_working_area && area->backup != NULL) {
1808                 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1809                 if (retval != ERROR_OK)
1810                         LOG_ERROR("failed to restore %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1811                                         area->size, area->address);
1812         }
1813
1814         return retval;
1815 }
1816
1817 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1818 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1819 {
1820         int retval = ERROR_OK;
1821
1822         if (area->free)
1823                 return retval;
1824
1825         if (restore) {
1826                 retval = target_restore_working_area(target, area);
1827                 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1828                 if (retval != ERROR_OK)
1829                         return retval;
1830         }
1831
1832         area->free = true;
1833
1834         LOG_DEBUG("freed %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1835                         area->size, area->address);
1836
1837         /* mark user pointer invalid */
1838         /* TODO: Is this really safe? It points to some previous caller's memory.
1839          * How could we know that the area pointer is still in that place and not
1840          * some other vital data? What's the purpose of this, anyway? */
1841         *area->user = NULL;
1842         area->user = NULL;
1843
1844         target_merge_working_areas(target);
1845
1846         print_wa_layout(target);
1847
1848         return retval;
1849 }
1850
1851 int target_free_working_area(struct target *target, struct working_area *area)
1852 {
1853         return target_free_working_area_restore(target, area, 1);
1854 }
1855
1856 static void target_destroy(struct target *target)
1857 {
1858         if (target->type->deinit_target)
1859                 target->type->deinit_target(target);
1860
1861         free(target->type);
1862         free(target->trace_info);
1863         free(target->cmd_name);
1864         free(target);
1865 }
1866
1867 void target_quit(void)
1868 {
1869         struct target_event_callback *pe = target_event_callbacks;
1870         while (pe) {
1871                 struct target_event_callback *t = pe->next;
1872                 free(pe);
1873                 pe = t;
1874         }
1875         target_event_callbacks = NULL;
1876
1877         struct target_timer_callback *pt = target_timer_callbacks;
1878         while (pt) {
1879                 struct target_timer_callback *t = pt->next;
1880                 free(pt);
1881                 pt = t;
1882         }
1883         target_timer_callbacks = NULL;
1884
1885         for (struct target *target = all_targets; target;) {
1886                 struct target *tmp;
1887
1888                 tmp = target->next;
1889                 target_destroy(target);
1890                 target = tmp;
1891         }
1892
1893         all_targets = NULL;
1894 }
1895
1896 /* free resources and restore memory, if restoring memory fails,
1897  * free up resources anyway
1898  */
1899 static void target_free_all_working_areas_restore(struct target *target, int restore)
1900 {
1901         struct working_area *c = target->working_areas;
1902
1903         LOG_DEBUG("freeing all working areas");
1904
1905         /* Loop through all areas, restoring the allocated ones and marking them as free */
1906         while (c) {
1907                 if (!c->free) {
1908                         if (restore)
1909                                 target_restore_working_area(target, c);
1910                         c->free = true;
1911                         *c->user = NULL; /* Same as above */
1912                         c->user = NULL;
1913                 }
1914                 c = c->next;
1915         }
1916
1917         /* Run a merge pass to combine all areas into one */
1918         target_merge_working_areas(target);
1919
1920         print_wa_layout(target);
1921 }
1922
1923 void target_free_all_working_areas(struct target *target)
1924 {
1925         target_free_all_working_areas_restore(target, 1);
1926 }
1927
1928 /* Find the largest number of bytes that can be allocated */
1929 uint32_t target_get_working_area_avail(struct target *target)
1930 {
1931         struct working_area *c = target->working_areas;
1932         uint32_t max_size = 0;
1933
1934         if (c == NULL)
1935                 return target->working_area_size;
1936
1937         while (c) {
1938                 if (c->free && max_size < c->size)
1939                         max_size = c->size;
1940
1941                 c = c->next;
1942         }
1943
1944         return max_size;
1945 }
1946
1947 int target_arch_state(struct target *target)
1948 {
1949         int retval;
1950         if (target == NULL) {
1951                 LOG_WARNING("No target has been configured");
1952                 return ERROR_OK;
1953         }
1954
1955         if (target->state != TARGET_HALTED)
1956                 return ERROR_OK;
1957
1958         retval = target->type->arch_state(target);
1959         return retval;
1960 }
1961
1962 static int target_get_gdb_fileio_info_default(struct target *target,
1963                 struct gdb_fileio_info *fileio_info)
1964 {
1965         /* If target does not support semi-hosting function, target
1966            has no need to provide .get_gdb_fileio_info callback.
1967            It just return ERROR_FAIL and gdb_server will return "Txx"
1968            as target halted every time.  */
1969         return ERROR_FAIL;
1970 }
1971
1972 static int target_gdb_fileio_end_default(struct target *target,
1973                 int retcode, int fileio_errno, bool ctrl_c)
1974 {
1975         return ERROR_OK;
1976 }
1977
1978 static int target_profiling_default(struct target *target, uint32_t *samples,
1979                 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1980 {
1981         struct timeval timeout, now;
1982
1983         gettimeofday(&timeout, NULL);
1984         timeval_add_time(&timeout, seconds, 0);
1985
1986         LOG_INFO("Starting profiling. Halting and resuming the"
1987                         " target as often as we can...");
1988
1989         uint32_t sample_count = 0;
1990         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
1991         struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
1992
1993         int retval = ERROR_OK;
1994         for (;;) {
1995                 target_poll(target);
1996                 if (target->state == TARGET_HALTED) {
1997                         uint32_t t = buf_get_u32(reg->value, 0, 32);
1998                         samples[sample_count++] = t;
1999                         /* current pc, addr = 0, do not handle breakpoints, not debugging */
2000                         retval = target_resume(target, 1, 0, 0, 0);
2001                         target_poll(target);
2002                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2003                 } else if (target->state == TARGET_RUNNING) {
2004                         /* We want to quickly sample the PC. */
2005                         retval = target_halt(target);
2006                 } else {
2007                         LOG_INFO("Target not halted or running");
2008                         retval = ERROR_OK;
2009                         break;
2010                 }
2011
2012                 if (retval != ERROR_OK)
2013                         break;
2014
2015                 gettimeofday(&now, NULL);
2016                 if ((sample_count >= max_num_samples) || timeval_compare(&now, &timeout) >= 0) {
2017                         LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
2018                         break;
2019                 }
2020         }
2021
2022         *num_samples = sample_count;
2023         return retval;
2024 }
2025
2026 /* Single aligned words are guaranteed to use 16 or 32 bit access
2027  * mode respectively, otherwise data is handled as quickly as
2028  * possible
2029  */
2030 int target_write_buffer(struct target *target, target_addr_t address, uint32_t size, const uint8_t *buffer)
2031 {
2032         LOG_DEBUG("writing buffer of %" PRIi32 " byte at " TARGET_ADDR_FMT,
2033                           size, address);
2034
2035         if (!target_was_examined(target)) {
2036                 LOG_ERROR("Target not examined yet");
2037                 return ERROR_FAIL;
2038         }
2039
2040         if (size == 0)
2041                 return ERROR_OK;
2042
2043         if ((address + size - 1) < address) {
2044                 /* GDB can request this when e.g. PC is 0xfffffffc */
2045                 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2046                                   address,
2047                                   size);
2048                 return ERROR_FAIL;
2049         }
2050
2051         return target->type->write_buffer(target, address, size, buffer);
2052 }
2053
2054 static int target_write_buffer_default(struct target *target,
2055         target_addr_t address, uint32_t count, const uint8_t *buffer)
2056 {
2057         uint32_t size;
2058
2059         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2060          * will have something to do with the size we leave to it. */
2061         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2062                 if (address & size) {
2063                         int retval = target_write_memory(target, address, size, 1, buffer);
2064                         if (retval != ERROR_OK)
2065                                 return retval;
2066                         address += size;
2067                         count -= size;
2068                         buffer += size;
2069                 }
2070         }
2071
2072         /* Write the data with as large access size as possible. */
2073         for (; size > 0; size /= 2) {
2074                 uint32_t aligned = count - count % size;
2075                 if (aligned > 0) {
2076                         int retval = target_write_memory(target, address, size, aligned / size, buffer);
2077                         if (retval != ERROR_OK)
2078                                 return retval;
2079                         address += aligned;
2080                         count -= aligned;
2081                         buffer += aligned;
2082                 }
2083         }
2084
2085         return ERROR_OK;
2086 }
2087
2088 /* Single aligned words are guaranteed to use 16 or 32 bit access
2089  * mode respectively, otherwise data is handled as quickly as
2090  * possible
2091  */
2092 int target_read_buffer(struct target *target, target_addr_t address, uint32_t size, uint8_t *buffer)
2093 {
2094         LOG_DEBUG("reading buffer of %" PRIi32 " byte at " TARGET_ADDR_FMT,
2095                           size, address);
2096
2097         if (!target_was_examined(target)) {
2098                 LOG_ERROR("Target not examined yet");
2099                 return ERROR_FAIL;
2100         }
2101
2102         if (size == 0)
2103                 return ERROR_OK;
2104
2105         if ((address + size - 1) < address) {
2106                 /* GDB can request this when e.g. PC is 0xfffffffc */
2107                 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2108                                   address,
2109                                   size);
2110                 return ERROR_FAIL;
2111         }
2112
2113         return target->type->read_buffer(target, address, size, buffer);
2114 }
2115
2116 static int target_read_buffer_default(struct target *target, target_addr_t address, uint32_t count, uint8_t *buffer)
2117 {
2118         uint32_t size;
2119
2120         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2121          * will have something to do with the size we leave to it. */
2122         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2123                 if (address & size) {
2124                         int retval = target_read_memory(target, address, size, 1, buffer);
2125                         if (retval != ERROR_OK)
2126                                 return retval;
2127                         address += size;
2128                         count -= size;
2129                         buffer += size;
2130                 }
2131         }
2132
2133         /* Read the data with as large access size as possible. */
2134         for (; size > 0; size /= 2) {
2135                 uint32_t aligned = count - count % size;
2136                 if (aligned > 0) {
2137                         int retval = target_read_memory(target, address, size, aligned / size, buffer);
2138                         if (retval != ERROR_OK)
2139                                 return retval;
2140                         address += aligned;
2141                         count -= aligned;
2142                         buffer += aligned;
2143                 }
2144         }
2145
2146         return ERROR_OK;
2147 }
2148
2149 int target_checksum_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t* crc)
2150 {
2151         uint8_t *buffer;
2152         int retval;
2153         uint32_t i;
2154         uint32_t checksum = 0;
2155         if (!target_was_examined(target)) {
2156                 LOG_ERROR("Target not examined yet");
2157                 return ERROR_FAIL;
2158         }
2159
2160         retval = target->type->checksum_memory(target, address, size, &checksum);
2161         if (retval != ERROR_OK) {
2162                 buffer = malloc(size);
2163                 if (buffer == NULL) {
2164                         LOG_ERROR("error allocating buffer for section (%" PRId32 " bytes)", size);
2165                         return ERROR_COMMAND_SYNTAX_ERROR;
2166                 }
2167                 retval = target_read_buffer(target, address, size, buffer);
2168                 if (retval != ERROR_OK) {
2169                         free(buffer);
2170                         return retval;
2171                 }
2172
2173                 /* convert to target endianness */
2174                 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
2175                         uint32_t target_data;
2176                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
2177                         target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
2178                 }
2179
2180                 retval = image_calculate_checksum(buffer, size, &checksum);
2181                 free(buffer);
2182         }
2183
2184         *crc = checksum;
2185
2186         return retval;
2187 }
2188
2189 int target_blank_check_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t* blank,
2190         uint8_t erased_value)
2191 {
2192         int retval;
2193         if (!target_was_examined(target)) {
2194                 LOG_ERROR("Target not examined yet");
2195                 return ERROR_FAIL;
2196         }
2197
2198         if (target->type->blank_check_memory == 0)
2199                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2200
2201         retval = target->type->blank_check_memory(target, address, size, blank, erased_value);
2202
2203         return retval;
2204 }
2205
2206 int target_read_u64(struct target *target, target_addr_t address, uint64_t *value)
2207 {
2208         uint8_t value_buf[8];
2209         if (!target_was_examined(target)) {
2210                 LOG_ERROR("Target not examined yet");
2211                 return ERROR_FAIL;
2212         }
2213
2214         int retval = target_read_memory(target, address, 8, 1, value_buf);
2215
2216         if (retval == ERROR_OK) {
2217                 *value = target_buffer_get_u64(target, value_buf);
2218                 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2219                                   address,
2220                                   *value);
2221         } else {
2222                 *value = 0x0;
2223                 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2224                                   address);
2225         }
2226
2227         return retval;
2228 }
2229
2230 int target_read_u32(struct target *target, target_addr_t address, uint32_t *value)
2231 {
2232         uint8_t value_buf[4];
2233         if (!target_was_examined(target)) {
2234                 LOG_ERROR("Target not examined yet");
2235                 return ERROR_FAIL;
2236         }
2237
2238         int retval = target_read_memory(target, address, 4, 1, value_buf);
2239
2240         if (retval == ERROR_OK) {
2241                 *value = target_buffer_get_u32(target, value_buf);
2242                 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2243                                   address,
2244                                   *value);
2245         } else {
2246                 *value = 0x0;
2247                 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2248                                   address);
2249         }
2250
2251         return retval;
2252 }
2253
2254 int target_read_u16(struct target *target, target_addr_t address, uint16_t *value)
2255 {
2256         uint8_t value_buf[2];
2257         if (!target_was_examined(target)) {
2258                 LOG_ERROR("Target not examined yet");
2259                 return ERROR_FAIL;
2260         }
2261
2262         int retval = target_read_memory(target, address, 2, 1, value_buf);
2263
2264         if (retval == ERROR_OK) {
2265                 *value = target_buffer_get_u16(target, value_buf);
2266                 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%4.4" PRIx16,
2267                                   address,
2268                                   *value);
2269         } else {
2270                 *value = 0x0;
2271                 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2272                                   address);
2273         }
2274
2275         return retval;
2276 }
2277
2278 int target_read_u8(struct target *target, target_addr_t address, uint8_t *value)
2279 {
2280         if (!target_was_examined(target)) {
2281                 LOG_ERROR("Target not examined yet");
2282                 return ERROR_FAIL;
2283         }
2284
2285         int retval = target_read_memory(target, address, 1, 1, value);
2286
2287         if (retval == ERROR_OK) {
2288                 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2289                                   address,
2290                                   *value);
2291         } else {
2292                 *value = 0x0;
2293                 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2294                                   address);
2295         }
2296
2297         return retval;
2298 }
2299
2300 int target_write_u64(struct target *target, target_addr_t address, uint64_t value)
2301 {
2302         int retval;
2303         uint8_t value_buf[8];
2304         if (!target_was_examined(target)) {
2305                 LOG_ERROR("Target not examined yet");
2306                 return ERROR_FAIL;
2307         }
2308
2309         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2310                           address,
2311                           value);
2312
2313         target_buffer_set_u64(target, value_buf, value);
2314         retval = target_write_memory(target, address, 8, 1, value_buf);
2315         if (retval != ERROR_OK)
2316                 LOG_DEBUG("failed: %i", retval);
2317
2318         return retval;
2319 }
2320
2321 int target_write_u32(struct target *target, target_addr_t address, uint32_t value)
2322 {
2323         int retval;
2324         uint8_t value_buf[4];
2325         if (!target_was_examined(target)) {
2326                 LOG_ERROR("Target not examined yet");
2327                 return ERROR_FAIL;
2328         }
2329
2330         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2331                           address,
2332                           value);
2333
2334         target_buffer_set_u32(target, value_buf, value);
2335         retval = target_write_memory(target, address, 4, 1, value_buf);
2336         if (retval != ERROR_OK)
2337                 LOG_DEBUG("failed: %i", retval);
2338
2339         return retval;
2340 }
2341
2342 int target_write_u16(struct target *target, target_addr_t address, uint16_t value)
2343 {
2344         int retval;
2345         uint8_t value_buf[2];
2346         if (!target_was_examined(target)) {
2347                 LOG_ERROR("Target not examined yet");
2348                 return ERROR_FAIL;
2349         }
2350
2351         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2352                           address,
2353                           value);
2354
2355         target_buffer_set_u16(target, value_buf, value);
2356         retval = target_write_memory(target, address, 2, 1, value_buf);
2357         if (retval != ERROR_OK)
2358                 LOG_DEBUG("failed: %i", retval);
2359
2360         return retval;
2361 }
2362
2363 int target_write_u8(struct target *target, target_addr_t address, uint8_t value)
2364 {
2365         int retval;
2366         if (!target_was_examined(target)) {
2367                 LOG_ERROR("Target not examined yet");
2368                 return ERROR_FAIL;
2369         }
2370
2371         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2372                           address, value);
2373
2374         retval = target_write_memory(target, address, 1, 1, &value);
2375         if (retval != ERROR_OK)
2376                 LOG_DEBUG("failed: %i", retval);
2377
2378         return retval;
2379 }
2380
2381 int target_write_phys_u64(struct target *target, target_addr_t address, uint64_t value)
2382 {
2383         int retval;
2384         uint8_t value_buf[8];
2385         if (!target_was_examined(target)) {
2386                 LOG_ERROR("Target not examined yet");
2387                 return ERROR_FAIL;
2388         }
2389
2390         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2391                           address,
2392                           value);
2393
2394         target_buffer_set_u64(target, value_buf, value);
2395         retval = target_write_phys_memory(target, address, 8, 1, value_buf);
2396         if (retval != ERROR_OK)
2397                 LOG_DEBUG("failed: %i", retval);
2398
2399         return retval;
2400 }
2401
2402 int target_write_phys_u32(struct target *target, target_addr_t address, uint32_t value)
2403 {
2404         int retval;
2405         uint8_t value_buf[4];
2406         if (!target_was_examined(target)) {
2407                 LOG_ERROR("Target not examined yet");
2408                 return ERROR_FAIL;
2409         }
2410
2411         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2412                           address,
2413                           value);
2414
2415         target_buffer_set_u32(target, value_buf, value);
2416         retval = target_write_phys_memory(target, address, 4, 1, value_buf);
2417         if (retval != ERROR_OK)
2418                 LOG_DEBUG("failed: %i", retval);
2419
2420         return retval;
2421 }
2422
2423 int target_write_phys_u16(struct target *target, target_addr_t address, uint16_t value)
2424 {
2425         int retval;
2426         uint8_t value_buf[2];
2427         if (!target_was_examined(target)) {
2428                 LOG_ERROR("Target not examined yet");
2429                 return ERROR_FAIL;
2430         }
2431
2432         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2433                           address,
2434                           value);
2435
2436         target_buffer_set_u16(target, value_buf, value);
2437         retval = target_write_phys_memory(target, address, 2, 1, value_buf);
2438         if (retval != ERROR_OK)
2439                 LOG_DEBUG("failed: %i", retval);
2440
2441         return retval;
2442 }
2443
2444 int target_write_phys_u8(struct target *target, target_addr_t address, uint8_t value)
2445 {
2446         int retval;
2447         if (!target_was_examined(target)) {
2448                 LOG_ERROR("Target not examined yet");
2449                 return ERROR_FAIL;
2450         }
2451
2452         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2453                           address, value);
2454
2455         retval = target_write_phys_memory(target, address, 1, 1, &value);
2456         if (retval != ERROR_OK)
2457                 LOG_DEBUG("failed: %i", retval);
2458
2459         return retval;
2460 }
2461
2462 static int find_target(struct command_context *cmd_ctx, const char *name)
2463 {
2464         struct target *target = get_target(name);
2465         if (target == NULL) {
2466                 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2467                 return ERROR_FAIL;
2468         }
2469         if (!target->tap->enabled) {
2470                 LOG_USER("Target: TAP %s is disabled, "
2471                          "can't be the current target\n",
2472                          target->tap->dotted_name);
2473                 return ERROR_FAIL;
2474         }
2475
2476         cmd_ctx->current_target = target->target_number;
2477         return ERROR_OK;
2478 }
2479
2480
2481 COMMAND_HANDLER(handle_targets_command)
2482 {
2483         int retval = ERROR_OK;
2484         if (CMD_ARGC == 1) {
2485                 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2486                 if (retval == ERROR_OK) {
2487                         /* we're done! */
2488                         return retval;
2489                 }
2490         }
2491
2492         struct target *target = all_targets;
2493         command_print(CMD_CTX, "    TargetName         Type       Endian TapName            State       ");
2494         command_print(CMD_CTX, "--  ------------------ ---------- ------ ------------------ ------------");
2495         while (target) {
2496                 const char *state;
2497                 char marker = ' ';
2498
2499                 if (target->tap->enabled)
2500                         state = target_state_name(target);
2501                 else
2502                         state = "tap-disabled";
2503
2504                 if (CMD_CTX->current_target == target->target_number)
2505                         marker = '*';
2506
2507                 /* keep columns lined up to match the headers above */
2508                 command_print(CMD_CTX,
2509                                 "%2d%c %-18s %-10s %-6s %-18s %s",
2510                                 target->target_number,
2511                                 marker,
2512                                 target_name(target),
2513                                 target_type_name(target),
2514                                 Jim_Nvp_value2name_simple(nvp_target_endian,
2515                                         target->endianness)->name,
2516                                 target->tap->dotted_name,
2517                                 state);
2518                 target = target->next;
2519         }
2520
2521         return retval;
2522 }
2523
2524 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2525
2526 static int powerDropout;
2527 static int srstAsserted;
2528
2529 static int runPowerRestore;
2530 static int runPowerDropout;
2531 static int runSrstAsserted;
2532 static int runSrstDeasserted;
2533
2534 static int sense_handler(void)
2535 {
2536         static int prevSrstAsserted;
2537         static int prevPowerdropout;
2538
2539         int retval = jtag_power_dropout(&powerDropout);
2540         if (retval != ERROR_OK)
2541                 return retval;
2542
2543         int powerRestored;
2544         powerRestored = prevPowerdropout && !powerDropout;
2545         if (powerRestored)
2546                 runPowerRestore = 1;
2547
2548         int64_t current = timeval_ms();
2549         static int64_t lastPower;
2550         bool waitMore = lastPower + 2000 > current;
2551         if (powerDropout && !waitMore) {
2552                 runPowerDropout = 1;
2553                 lastPower = current;
2554         }
2555
2556         retval = jtag_srst_asserted(&srstAsserted);
2557         if (retval != ERROR_OK)
2558                 return retval;
2559
2560         int srstDeasserted;
2561         srstDeasserted = prevSrstAsserted && !srstAsserted;
2562
2563         static int64_t lastSrst;
2564         waitMore = lastSrst + 2000 > current;
2565         if (srstDeasserted && !waitMore) {
2566                 runSrstDeasserted = 1;
2567                 lastSrst = current;
2568         }
2569
2570         if (!prevSrstAsserted && srstAsserted)
2571                 runSrstAsserted = 1;
2572
2573         prevSrstAsserted = srstAsserted;
2574         prevPowerdropout = powerDropout;
2575
2576         if (srstDeasserted || powerRestored) {
2577                 /* Other than logging the event we can't do anything here.
2578                  * Issuing a reset is a particularly bad idea as we might
2579                  * be inside a reset already.
2580                  */
2581         }
2582
2583         return ERROR_OK;
2584 }
2585
2586 /* process target state changes */
2587 static int handle_target(void *priv)
2588 {
2589         Jim_Interp *interp = (Jim_Interp *)priv;
2590         int retval = ERROR_OK;
2591
2592         if (!is_jtag_poll_safe()) {
2593                 /* polling is disabled currently */
2594                 return ERROR_OK;
2595         }
2596
2597         /* we do not want to recurse here... */
2598         static int recursive;
2599         if (!recursive) {
2600                 recursive = 1;
2601                 sense_handler();
2602                 /* danger! running these procedures can trigger srst assertions and power dropouts.
2603                  * We need to avoid an infinite loop/recursion here and we do that by
2604                  * clearing the flags after running these events.
2605                  */
2606                 int did_something = 0;
2607                 if (runSrstAsserted) {
2608                         LOG_INFO("srst asserted detected, running srst_asserted proc.");
2609                         Jim_Eval(interp, "srst_asserted");
2610                         did_something = 1;
2611                 }
2612                 if (runSrstDeasserted) {
2613                         Jim_Eval(interp, "srst_deasserted");
2614                         did_something = 1;
2615                 }
2616                 if (runPowerDropout) {
2617                         LOG_INFO("Power dropout detected, running power_dropout proc.");
2618                         Jim_Eval(interp, "power_dropout");
2619                         did_something = 1;
2620                 }
2621                 if (runPowerRestore) {
2622                         Jim_Eval(interp, "power_restore");
2623                         did_something = 1;
2624                 }
2625
2626                 if (did_something) {
2627                         /* clear detect flags */
2628                         sense_handler();
2629                 }
2630
2631                 /* clear action flags */
2632
2633                 runSrstAsserted = 0;
2634                 runSrstDeasserted = 0;
2635                 runPowerRestore = 0;
2636                 runPowerDropout = 0;
2637
2638                 recursive = 0;
2639         }
2640
2641         /* Poll targets for state changes unless that's globally disabled.
2642          * Skip targets that are currently disabled.
2643          */
2644         for (struct target *target = all_targets;
2645                         is_jtag_poll_safe() && target;
2646                         target = target->next) {
2647
2648                 if (!target_was_examined(target))
2649                         continue;
2650
2651                 if (!target->tap->enabled)
2652                         continue;
2653
2654                 if (target->backoff.times > target->backoff.count) {
2655                         /* do not poll this time as we failed previously */
2656                         target->backoff.count++;
2657                         continue;
2658                 }
2659                 target->backoff.count = 0;
2660
2661                 /* only poll target if we've got power and srst isn't asserted */
2662                 if (!powerDropout && !srstAsserted) {
2663                         /* polling may fail silently until the target has been examined */
2664                         retval = target_poll(target);
2665                         if (retval != ERROR_OK) {
2666                                 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2667                                 if (target->backoff.times * polling_interval < 5000) {
2668                                         target->backoff.times *= 2;
2669                                         target->backoff.times++;
2670                                 }
2671
2672                                 /* Tell GDB to halt the debugger. This allows the user to
2673                                  * run monitor commands to handle the situation.
2674                                  */
2675                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2676                         }
2677                         if (target->backoff.times > 0) {
2678                                 LOG_USER("Polling target %s failed, trying to reexamine", target_name(target));
2679                                 target_reset_examined(target);
2680                                 retval = target_examine_one(target);
2681                                 /* Target examination could have failed due to unstable connection,
2682                                  * but we set the examined flag anyway to repoll it later */
2683                                 if (retval != ERROR_OK) {
2684                                         target->examined = true;
2685                                         LOG_USER("Examination failed, GDB will be halted. Polling again in %dms",
2686                                                  target->backoff.times * polling_interval);
2687                                         return retval;
2688                                 }
2689                         }
2690
2691                         /* Since we succeeded, we reset backoff count */
2692                         target->backoff.times = 0;
2693                 }
2694         }
2695
2696         return retval;
2697 }
2698
2699 COMMAND_HANDLER(handle_reg_command)
2700 {
2701         struct target *target;
2702         struct reg *reg = NULL;
2703         unsigned count = 0;
2704         char *value;
2705
2706         LOG_DEBUG("-");
2707
2708         target = get_current_target(CMD_CTX);
2709
2710         /* list all available registers for the current target */
2711         if (CMD_ARGC == 0) {
2712                 struct reg_cache *cache = target->reg_cache;
2713
2714                 count = 0;
2715                 while (cache) {
2716                         unsigned i;
2717
2718                         command_print(CMD_CTX, "===== %s", cache->name);
2719
2720                         for (i = 0, reg = cache->reg_list;
2721                                         i < cache->num_regs;
2722                                         i++, reg++, count++) {
2723                                 /* only print cached values if they are valid */
2724                                 if (reg->valid) {
2725                                         value = buf_to_str(reg->value,
2726                                                         reg->size, 16);
2727                                         command_print(CMD_CTX,
2728                                                         "(%i) %s (/%" PRIu32 "): 0x%s%s",
2729                                                         count, reg->name,
2730                                                         reg->size, value,
2731                                                         reg->dirty
2732                                                                 ? " (dirty)"
2733                                                                 : "");
2734                                         free(value);
2735                                 } else {
2736                                         command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2737                                                           count, reg->name,
2738                                                           reg->size) ;
2739                                 }
2740                         }
2741                         cache = cache->next;
2742                 }
2743
2744                 return ERROR_OK;
2745         }
2746
2747         /* access a single register by its ordinal number */
2748         if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2749                 unsigned num;
2750                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2751
2752                 struct reg_cache *cache = target->reg_cache;
2753                 count = 0;
2754                 while (cache) {
2755                         unsigned i;
2756                         for (i = 0; i < cache->num_regs; i++) {
2757                                 if (count++ == num) {
2758                                         reg = &cache->reg_list[i];
2759                                         break;
2760                                 }
2761                         }
2762                         if (reg)
2763                                 break;
2764                         cache = cache->next;
2765                 }
2766
2767                 if (!reg) {
2768                         command_print(CMD_CTX, "%i is out of bounds, the current target "
2769                                         "has only %i registers (0 - %i)", num, count, count - 1);
2770                         return ERROR_OK;
2771                 }
2772         } else {
2773                 /* access a single register by its name */
2774                 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2775
2776                 if (!reg) {
2777                         command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2778                         return ERROR_OK;
2779                 }
2780         }
2781
2782         assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2783
2784         /* display a register */
2785         if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2786                         && (CMD_ARGV[1][0] <= '9')))) {
2787                 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2788                         reg->valid = 0;
2789
2790                 if (reg->valid == 0)
2791                         reg->type->get(reg);
2792                 value = buf_to_str(reg->value, reg->size, 16);
2793                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2794                 free(value);
2795                 return ERROR_OK;
2796         }
2797
2798         /* set register value */
2799         if (CMD_ARGC == 2) {
2800                 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2801                 if (buf == NULL)
2802                         return ERROR_FAIL;
2803                 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2804
2805                 reg->type->set(reg, buf);
2806
2807                 value = buf_to_str(reg->value, reg->size, 16);
2808                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2809                 free(value);
2810
2811                 free(buf);
2812
2813                 return ERROR_OK;
2814         }
2815
2816         return ERROR_COMMAND_SYNTAX_ERROR;
2817 }
2818
2819 COMMAND_HANDLER(handle_poll_command)
2820 {
2821         int retval = ERROR_OK;
2822         struct target *target = get_current_target(CMD_CTX);
2823
2824         if (CMD_ARGC == 0) {
2825                 command_print(CMD_CTX, "background polling: %s",
2826                                 jtag_poll_get_enabled() ? "on" : "off");
2827                 command_print(CMD_CTX, "TAP: %s (%s)",
2828                                 target->tap->dotted_name,
2829                                 target->tap->enabled ? "enabled" : "disabled");
2830                 if (!target->tap->enabled)
2831                         return ERROR_OK;
2832                 retval = target_poll(target);
2833                 if (retval != ERROR_OK)
2834                         return retval;
2835                 retval = target_arch_state(target);
2836                 if (retval != ERROR_OK)
2837                         return retval;
2838         } else if (CMD_ARGC == 1) {
2839                 bool enable;
2840                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2841                 jtag_poll_set_enabled(enable);
2842         } else
2843                 return ERROR_COMMAND_SYNTAX_ERROR;
2844
2845         return retval;
2846 }
2847
2848 COMMAND_HANDLER(handle_wait_halt_command)
2849 {
2850         if (CMD_ARGC > 1)
2851                 return ERROR_COMMAND_SYNTAX_ERROR;
2852
2853         unsigned ms = DEFAULT_HALT_TIMEOUT;
2854         if (1 == CMD_ARGC) {
2855                 int retval = parse_uint(CMD_ARGV[0], &ms);
2856                 if (ERROR_OK != retval)
2857                         return ERROR_COMMAND_SYNTAX_ERROR;
2858         }
2859
2860         struct target *target = get_current_target(CMD_CTX);
2861         return target_wait_state(target, TARGET_HALTED, ms);
2862 }
2863
2864 /* wait for target state to change. The trick here is to have a low
2865  * latency for short waits and not to suck up all the CPU time
2866  * on longer waits.
2867  *
2868  * After 500ms, keep_alive() is invoked
2869  */
2870 int target_wait_state(struct target *target, enum target_state state, int ms)
2871 {
2872         int retval;
2873         int64_t then = 0, cur;
2874         bool once = true;
2875
2876         for (;;) {
2877                 retval = target_poll(target);
2878                 if (retval != ERROR_OK)
2879                         return retval;
2880                 if (target->state == state)
2881                         break;
2882                 cur = timeval_ms();
2883                 if (once) {
2884                         once = false;
2885                         then = timeval_ms();
2886                         LOG_DEBUG("waiting for target %s...",
2887                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2888                 }
2889
2890                 if (cur-then > 500)
2891                         keep_alive();
2892
2893                 if ((cur-then) > ms) {
2894                         LOG_ERROR("timed out while waiting for target %s",
2895                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2896                         return ERROR_FAIL;
2897                 }
2898         }
2899
2900         return ERROR_OK;
2901 }
2902
2903 COMMAND_HANDLER(handle_halt_command)
2904 {
2905         LOG_DEBUG("-");
2906
2907         struct target *target = get_current_target(CMD_CTX);
2908         int retval = target_halt(target);
2909         if (ERROR_OK != retval)
2910                 return retval;
2911
2912         if (CMD_ARGC == 1) {
2913                 unsigned wait_local;
2914                 retval = parse_uint(CMD_ARGV[0], &wait_local);
2915                 if (ERROR_OK != retval)
2916                         return ERROR_COMMAND_SYNTAX_ERROR;
2917                 if (!wait_local)
2918                         return ERROR_OK;
2919         }
2920
2921         return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2922 }
2923
2924 COMMAND_HANDLER(handle_soft_reset_halt_command)
2925 {
2926         struct target *target = get_current_target(CMD_CTX);
2927
2928         LOG_USER("requesting target halt and executing a soft reset");
2929
2930         target_soft_reset_halt(target);
2931
2932         return ERROR_OK;
2933 }
2934
2935 COMMAND_HANDLER(handle_reset_command)
2936 {
2937         if (CMD_ARGC > 1)
2938                 return ERROR_COMMAND_SYNTAX_ERROR;
2939
2940         enum target_reset_mode reset_mode = RESET_RUN;
2941         if (CMD_ARGC == 1) {
2942                 const Jim_Nvp *n;
2943                 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2944                 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
2945                         return ERROR_COMMAND_SYNTAX_ERROR;
2946                 reset_mode = n->value;
2947         }
2948
2949         /* reset *all* targets */
2950         return target_process_reset(CMD_CTX, reset_mode);
2951 }
2952
2953
2954 COMMAND_HANDLER(handle_resume_command)
2955 {
2956         int current = 1;
2957         if (CMD_ARGC > 1)
2958                 return ERROR_COMMAND_SYNTAX_ERROR;
2959
2960         struct target *target = get_current_target(CMD_CTX);
2961
2962         /* with no CMD_ARGV, resume from current pc, addr = 0,
2963          * with one arguments, addr = CMD_ARGV[0],
2964          * handle breakpoints, not debugging */
2965         target_addr_t addr = 0;
2966         if (CMD_ARGC == 1) {
2967                 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
2968                 current = 0;
2969         }
2970
2971         return target_resume(target, current, addr, 1, 0);
2972 }
2973
2974 COMMAND_HANDLER(handle_step_command)
2975 {
2976         if (CMD_ARGC > 1)
2977                 return ERROR_COMMAND_SYNTAX_ERROR;
2978
2979         LOG_DEBUG("-");
2980
2981         /* with no CMD_ARGV, step from current pc, addr = 0,
2982          * with one argument addr = CMD_ARGV[0],
2983          * handle breakpoints, debugging */
2984         target_addr_t addr = 0;
2985         int current_pc = 1;
2986         if (CMD_ARGC == 1) {
2987                 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
2988                 current_pc = 0;
2989         }
2990
2991         struct target *target = get_current_target(CMD_CTX);
2992
2993         return target->type->step(target, current_pc, addr, 1);
2994 }
2995
2996 static void handle_md_output(struct command_context *cmd_ctx,
2997                 struct target *target, target_addr_t address, unsigned size,
2998                 unsigned count, const uint8_t *buffer)
2999 {
3000         const unsigned line_bytecnt = 32;
3001         unsigned line_modulo = line_bytecnt / size;
3002
3003         char output[line_bytecnt * 4 + 1];
3004         unsigned output_len = 0;
3005
3006         const char *value_fmt;
3007         switch (size) {
3008         case 8:
3009                 value_fmt = "%16.16"PRIx64" ";
3010                 break;
3011         case 4:
3012                 value_fmt = "%8.8"PRIx64" ";
3013                 break;
3014         case 2:
3015                 value_fmt = "%4.4"PRIx64" ";
3016                 break;
3017         case 1:
3018                 value_fmt = "%2.2"PRIx64" ";
3019                 break;
3020         default:
3021                 /* "can't happen", caller checked */
3022                 LOG_ERROR("invalid memory read size: %u", size);
3023                 return;
3024         }
3025
3026         for (unsigned i = 0; i < count; i++) {
3027                 if (i % line_modulo == 0) {
3028                         output_len += snprintf(output + output_len,
3029                                         sizeof(output) - output_len,
3030                                         TARGET_ADDR_FMT ": ",
3031                                         (address + (i * size)));
3032                 }
3033
3034                 uint64_t value = 0;
3035                 const uint8_t *value_ptr = buffer + i * size;
3036                 switch (size) {
3037                 case 8:
3038                         value = target_buffer_get_u64(target, value_ptr);
3039                         break;
3040                 case 4:
3041                         value = target_buffer_get_u32(target, value_ptr);
3042                         break;
3043                 case 2:
3044                         value = target_buffer_get_u16(target, value_ptr);
3045                         break;
3046                 case 1:
3047                         value = *value_ptr;
3048                 }
3049                 output_len += snprintf(output + output_len,
3050                                 sizeof(output) - output_len,
3051                                 value_fmt, value);
3052
3053                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
3054                         command_print(cmd_ctx, "%s", output);
3055                         output_len = 0;
3056                 }
3057         }
3058 }
3059
3060 COMMAND_HANDLER(handle_md_command)
3061 {
3062         if (CMD_ARGC < 1)
3063                 return ERROR_COMMAND_SYNTAX_ERROR;
3064
3065         unsigned size = 0;
3066         switch (CMD_NAME[2]) {
3067         case 'd':
3068                 size = 8;
3069                 break;
3070         case 'w':
3071                 size = 4;
3072                 break;
3073         case 'h':
3074                 size = 2;
3075                 break;
3076         case 'b':
3077                 size = 1;
3078                 break;
3079         default:
3080                 return ERROR_COMMAND_SYNTAX_ERROR;
3081         }
3082
3083         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3084         int (*fn)(struct target *target,
3085                         target_addr_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
3086         if (physical) {
3087                 CMD_ARGC--;
3088                 CMD_ARGV++;
3089                 fn = target_read_phys_memory;
3090         } else
3091                 fn = target_read_memory;
3092         if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
3093                 return ERROR_COMMAND_SYNTAX_ERROR;
3094
3095         target_addr_t address;
3096         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3097
3098         unsigned count = 1;
3099         if (CMD_ARGC == 2)
3100                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
3101
3102         uint8_t *buffer = calloc(count, size);
3103         if (buffer == NULL) {
3104                 LOG_ERROR("Failed to allocate md read buffer");
3105                 return ERROR_FAIL;
3106         }
3107
3108         struct target *target = get_current_target(CMD_CTX);
3109         int retval = fn(target, address, size, count, buffer);
3110         if (ERROR_OK == retval)
3111                 handle_md_output(CMD_CTX, target, address, size, count, buffer);
3112
3113         free(buffer);
3114
3115         return retval;
3116 }
3117
3118 typedef int (*target_write_fn)(struct target *target,
3119                 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
3120
3121 static int target_fill_mem(struct target *target,
3122                 target_addr_t address,
3123                 target_write_fn fn,
3124                 unsigned data_size,
3125                 /* value */
3126                 uint64_t b,
3127                 /* count */
3128                 unsigned c)
3129 {
3130         /* We have to write in reasonably large chunks to be able
3131          * to fill large memory areas with any sane speed */
3132         const unsigned chunk_size = 16384;
3133         uint8_t *target_buf = malloc(chunk_size * data_size);
3134         if (target_buf == NULL) {
3135                 LOG_ERROR("Out of memory");
3136                 return ERROR_FAIL;
3137         }
3138
3139         for (unsigned i = 0; i < chunk_size; i++) {
3140                 switch (data_size) {
3141                 case 8:
3142                         target_buffer_set_u64(target, target_buf + i * data_size, b);
3143                         break;
3144                 case 4:
3145                         target_buffer_set_u32(target, target_buf + i * data_size, b);
3146                         break;
3147                 case 2:
3148                         target_buffer_set_u16(target, target_buf + i * data_size, b);
3149                         break;
3150                 case 1:
3151                         target_buffer_set_u8(target, target_buf + i * data_size, b);
3152                         break;
3153                 default:
3154                         exit(-1);
3155                 }
3156         }
3157
3158         int retval = ERROR_OK;
3159
3160         for (unsigned x = 0; x < c; x += chunk_size) {
3161                 unsigned current;
3162                 current = c - x;
3163                 if (current > chunk_size)
3164                         current = chunk_size;
3165                 retval = fn(target, address + x * data_size, data_size, current, target_buf);
3166                 if (retval != ERROR_OK)
3167                         break;
3168                 /* avoid GDB timeouts */
3169                 keep_alive();
3170         }
3171         free(target_buf);
3172
3173         return retval;
3174 }
3175
3176
3177 COMMAND_HANDLER(handle_mw_command)
3178 {
3179         if (CMD_ARGC < 2)
3180                 return ERROR_COMMAND_SYNTAX_ERROR;
3181         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3182         target_write_fn fn;
3183         if (physical) {
3184                 CMD_ARGC--;
3185                 CMD_ARGV++;
3186                 fn = target_write_phys_memory;
3187         } else
3188                 fn = target_write_memory;
3189         if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
3190                 return ERROR_COMMAND_SYNTAX_ERROR;
3191
3192         target_addr_t address;
3193         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3194
3195         target_addr_t value;
3196         COMMAND_PARSE_ADDRESS(CMD_ARGV[1], value);
3197
3198         unsigned count = 1;
3199         if (CMD_ARGC == 3)
3200                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
3201
3202         struct target *target = get_current_target(CMD_CTX);
3203         unsigned wordsize;
3204         switch (CMD_NAME[2]) {
3205                 case 'd':
3206                         wordsize = 8;
3207                         break;
3208                 case 'w':
3209                         wordsize = 4;
3210                         break;
3211                 case 'h':
3212                         wordsize = 2;
3213                         break;
3214                 case 'b':
3215                         wordsize = 1;
3216                         break;
3217                 default:
3218                         return ERROR_COMMAND_SYNTAX_ERROR;
3219         }
3220
3221         return target_fill_mem(target, address, fn, wordsize, value, count);
3222 }
3223
3224 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
3225                 target_addr_t *min_address, target_addr_t *max_address)
3226 {
3227         if (CMD_ARGC < 1 || CMD_ARGC > 5)
3228                 return ERROR_COMMAND_SYNTAX_ERROR;
3229
3230         /* a base address isn't always necessary,
3231          * default to 0x0 (i.e. don't relocate) */
3232         if (CMD_ARGC >= 2) {
3233                 target_addr_t addr;
3234                 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3235                 image->base_address = addr;
3236                 image->base_address_set = 1;
3237         } else
3238                 image->base_address_set = 0;
3239
3240         image->start_address_set = 0;
3241
3242         if (CMD_ARGC >= 4)
3243                 COMMAND_PARSE_ADDRESS(CMD_ARGV[3], *min_address);
3244         if (CMD_ARGC == 5) {
3245                 COMMAND_PARSE_ADDRESS(CMD_ARGV[4], *max_address);
3246                 /* use size (given) to find max (required) */
3247                 *max_address += *min_address;
3248         }
3249
3250         if (*min_address > *max_address)
3251                 return ERROR_COMMAND_SYNTAX_ERROR;
3252
3253         return ERROR_OK;
3254 }
3255
3256 COMMAND_HANDLER(handle_load_image_command)
3257 {
3258         uint8_t *buffer;
3259         size_t buf_cnt;
3260         uint32_t image_size;
3261         target_addr_t min_address = 0;
3262         target_addr_t max_address = -1;
3263         int i;
3264         struct image image;
3265
3266         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
3267                         &image, &min_address, &max_address);
3268         if (ERROR_OK != retval)
3269                 return retval;
3270
3271         struct target *target = get_current_target(CMD_CTX);
3272
3273         struct duration bench;
3274         duration_start(&bench);
3275
3276         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
3277                 return ERROR_FAIL;
3278
3279         image_size = 0x0;
3280         retval = ERROR_OK;
3281         for (i = 0; i < image.num_sections; i++) {
3282                 buffer = malloc(image.sections[i].size);
3283                 if (buffer == NULL) {
3284                         command_print(CMD_CTX,
3285                                                   "error allocating buffer for section (%d bytes)",
3286                                                   (int)(image.sections[i].size));
3287                         retval = ERROR_FAIL;
3288                         break;
3289                 }
3290
3291                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3292                 if (retval != ERROR_OK) {
3293                         free(buffer);
3294                         break;
3295                 }
3296
3297                 uint32_t offset = 0;
3298                 uint32_t length = buf_cnt;
3299
3300                 /* DANGER!!! beware of unsigned comparision here!!! */
3301
3302                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
3303                                 (image.sections[i].base_address < max_address)) {
3304
3305                         if (image.sections[i].base_address < min_address) {
3306                                 /* clip addresses below */
3307                                 offset += min_address-image.sections[i].base_address;
3308                                 length -= offset;
3309                         }
3310
3311                         if (image.sections[i].base_address + buf_cnt > max_address)
3312                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
3313
3314                         retval = target_write_buffer(target,
3315                                         image.sections[i].base_address + offset, length, buffer + offset);
3316                         if (retval != ERROR_OK) {
3317                                 free(buffer);
3318                                 break;
3319                         }
3320                         image_size += length;
3321                         command_print(CMD_CTX, "%u bytes written at address " TARGET_ADDR_FMT "",
3322                                         (unsigned int)length,
3323                                         image.sections[i].base_address + offset);
3324                 }
3325
3326                 free(buffer);
3327         }
3328
3329         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3330                 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
3331                                 "in %fs (%0.3f KiB/s)", image_size,
3332                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3333         }
3334
3335         image_close(&image);
3336
3337         return retval;
3338
3339 }
3340
3341 COMMAND_HANDLER(handle_dump_image_command)
3342 {
3343         struct fileio *fileio;
3344         uint8_t *buffer;
3345         int retval, retvaltemp;
3346         target_addr_t address, size;
3347         struct duration bench;
3348         struct target *target = get_current_target(CMD_CTX);
3349
3350         if (CMD_ARGC != 3)
3351                 return ERROR_COMMAND_SYNTAX_ERROR;
3352
3353         COMMAND_PARSE_ADDRESS(CMD_ARGV[1], address);
3354         COMMAND_PARSE_ADDRESS(CMD_ARGV[2], size);
3355
3356         uint32_t buf_size = (size > 4096) ? 4096 : size;
3357         buffer = malloc(buf_size);
3358         if (!buffer)
3359                 return ERROR_FAIL;
3360
3361         retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
3362         if (retval != ERROR_OK) {
3363                 free(buffer);
3364                 return retval;
3365         }
3366
3367         duration_start(&bench);
3368
3369         while (size > 0) {
3370                 size_t size_written;
3371                 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
3372                 retval = target_read_buffer(target, address, this_run_size, buffer);
3373                 if (retval != ERROR_OK)
3374                         break;
3375
3376                 retval = fileio_write(fileio, this_run_size, buffer, &size_written);
3377                 if (retval != ERROR_OK)
3378                         break;
3379
3380                 size -= this_run_size;
3381                 address += this_run_size;
3382         }
3383
3384         free(buffer);
3385
3386         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3387                 size_t filesize;
3388                 retval = fileio_size(fileio, &filesize);
3389                 if (retval != ERROR_OK)
3390                         return retval;
3391                 command_print(CMD_CTX,
3392                                 "dumped %zu bytes in %fs (%0.3f KiB/s)", filesize,
3393                                 duration_elapsed(&bench), duration_kbps(&bench, filesize));
3394         }
3395
3396         retvaltemp = fileio_close(fileio);
3397         if (retvaltemp != ERROR_OK)
3398                 return retvaltemp;
3399
3400         return retval;
3401 }
3402
3403 enum verify_mode {
3404         IMAGE_TEST = 0,
3405         IMAGE_VERIFY = 1,
3406         IMAGE_CHECKSUM_ONLY = 2
3407 };
3408
3409 static COMMAND_HELPER(handle_verify_image_command_internal, enum verify_mode verify)
3410 {
3411         uint8_t *buffer;
3412         size_t buf_cnt;
3413         uint32_t image_size;
3414         int i;
3415         int retval;
3416         uint32_t checksum = 0;
3417         uint32_t mem_checksum = 0;
3418
3419         struct image image;
3420
3421         struct target *target = get_current_target(CMD_CTX);
3422
3423         if (CMD_ARGC < 1)
3424                 return ERROR_COMMAND_SYNTAX_ERROR;
3425
3426         if (!target) {
3427                 LOG_ERROR("no target selected");
3428                 return ERROR_FAIL;
3429         }
3430
3431         struct duration bench;
3432         duration_start(&bench);
3433
3434         if (CMD_ARGC >= 2) {
3435                 target_addr_t addr;
3436                 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3437                 image.base_address = addr;
3438                 image.base_address_set = 1;
3439         } else {
3440                 image.base_address_set = 0;
3441                 image.base_address = 0x0;
3442         }
3443
3444         image.start_address_set = 0;
3445
3446         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
3447         if (retval != ERROR_OK)
3448                 return retval;
3449
3450         image_size = 0x0;
3451         int diffs = 0;
3452         retval = ERROR_OK;
3453         for (i = 0; i < image.num_sections; i++) {
3454                 buffer = malloc(image.sections[i].size);
3455                 if (buffer == NULL) {
3456                         command_print(CMD_CTX,
3457                                         "error allocating buffer for section (%d bytes)",
3458                                         (int)(image.sections[i].size));
3459                         break;
3460                 }
3461                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3462                 if (retval != ERROR_OK) {
3463                         free(buffer);
3464                         break;
3465                 }
3466
3467                 if (verify >= IMAGE_VERIFY) {
3468                         /* calculate checksum of image */
3469                         retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3470                         if (retval != ERROR_OK) {
3471                                 free(buffer);
3472                                 break;
3473                         }
3474
3475                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3476                         if (retval != ERROR_OK) {
3477                                 free(buffer);
3478                                 break;
3479                         }
3480                         if ((checksum != mem_checksum) && (verify == IMAGE_CHECKSUM_ONLY)) {
3481                                 LOG_ERROR("checksum mismatch");
3482                                 free(buffer);
3483                                 retval = ERROR_FAIL;
3484                                 goto done;
3485                         }
3486                         if (checksum != mem_checksum) {
3487                                 /* failed crc checksum, fall back to a binary compare */
3488                                 uint8_t *data;
3489
3490                                 if (diffs == 0)
3491                                         LOG_ERROR("checksum mismatch - attempting binary compare");
3492
3493                                 data = malloc(buf_cnt);
3494
3495                                 /* Can we use 32bit word accesses? */
3496                                 int size = 1;
3497                                 int count = buf_cnt;
3498                                 if ((count % 4) == 0) {
3499                                         size *= 4;
3500                                         count /= 4;
3501                                 }
3502                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3503                                 if (retval == ERROR_OK) {
3504                                         uint32_t t;
3505                                         for (t = 0; t < buf_cnt; t++) {
3506                                                 if (data[t] != buffer[t]) {
3507                                                         command_print(CMD_CTX,
3508                                                                                   "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3509                                                                                   diffs,
3510                                                                                   (unsigned)(t + image.sections[i].base_address),
3511                                                                                   data[t],
3512                                                                                   buffer[t]);
3513                                                         if (diffs++ >= 127) {
3514                                                                 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3515                                                                 free(data);
3516                                                                 free(buffer);
3517                                                                 goto done;
3518                                                         }
3519                                                 }
3520                                                 keep_alive();
3521                                         }
3522                                 }
3523                                 free(data);
3524                         }
3525                 } else {
3526                         command_print(CMD_CTX, "address " TARGET_ADDR_FMT " length 0x%08zx",
3527                                                   image.sections[i].base_address,
3528                                                   buf_cnt);
3529                 }
3530
3531                 free(buffer);
3532                 image_size += buf_cnt;
3533         }
3534         if (diffs > 0)
3535                 command_print(CMD_CTX, "No more differences found.");
3536 done:
3537         if (diffs > 0)
3538                 retval = ERROR_FAIL;
3539         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3540                 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3541                                 "in %fs (%0.3f KiB/s)", image_size,
3542                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3543         }
3544
3545         image_close(&image);
3546
3547         return retval;
3548 }
3549
3550 COMMAND_HANDLER(handle_verify_image_checksum_command)
3551 {
3552         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_CHECKSUM_ONLY);
3553 }
3554
3555 COMMAND_HANDLER(handle_verify_image_command)
3556 {
3557         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_VERIFY);
3558 }
3559
3560 COMMAND_HANDLER(handle_test_image_command)
3561 {
3562         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_TEST);
3563 }
3564
3565 static int handle_bp_command_list(struct command_context *cmd_ctx)
3566 {
3567         struct target *target = get_current_target(cmd_ctx);
3568         struct breakpoint *breakpoint = target->breakpoints;
3569         while (breakpoint) {
3570                 if (breakpoint->type == BKPT_SOFT) {
3571                         char *buf = buf_to_str(breakpoint->orig_instr,
3572                                         breakpoint->length, 16);
3573                         command_print(cmd_ctx, "IVA breakpoint: " TARGET_ADDR_FMT ", 0x%x, %i, 0x%s",
3574                                         breakpoint->address,
3575                                         breakpoint->length,
3576                                         breakpoint->set, buf);
3577                         free(buf);
3578                 } else {
3579                         if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3580                                 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3581                                                         breakpoint->asid,
3582                                                         breakpoint->length, breakpoint->set);
3583                         else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3584                                 command_print(cmd_ctx, "Hybrid breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %i",
3585                                                         breakpoint->address,
3586                                                         breakpoint->length, breakpoint->set);
3587                                 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3588                                                         breakpoint->asid);
3589                         } else
3590                                 command_print(cmd_ctx, "Breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %i",
3591                                                         breakpoint->address,
3592                                                         breakpoint->length, breakpoint->set);
3593                 }
3594
3595                 breakpoint = breakpoint->next;
3596         }
3597         return ERROR_OK;
3598 }
3599
3600 static int handle_bp_command_set(struct command_context *cmd_ctx,
3601                 target_addr_t addr, uint32_t asid, uint32_t length, int hw)
3602 {
3603         struct target *target = get_current_target(cmd_ctx);
3604         int retval;
3605
3606         if (asid == 0) {
3607                 retval = breakpoint_add(target, addr, length, hw);
3608                 if (ERROR_OK == retval)
3609                         command_print(cmd_ctx, "breakpoint set at " TARGET_ADDR_FMT "", addr);
3610                 else {
3611                         LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3612                         return retval;
3613                 }
3614         } else if (addr == 0) {
3615                 if (target->type->add_context_breakpoint == NULL) {
3616                         LOG_WARNING("Context breakpoint not available");
3617                         return ERROR_OK;
3618                 }
3619                 retval = context_breakpoint_add(target, asid, length, hw);
3620                 if (ERROR_OK == retval)
3621                         command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3622                 else {
3623                         LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3624                         return retval;
3625                 }
3626         } else {
3627                 if (target->type->add_hybrid_breakpoint == NULL) {
3628                         LOG_WARNING("Hybrid breakpoint not available");
3629                         return ERROR_OK;
3630                 }
3631                 retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3632                 if (ERROR_OK == retval)
3633                         command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3634                 else {
3635                         LOG_ERROR("Failure setting breakpoint, the same address is already used");
3636                         return retval;
3637                 }
3638         }
3639         return ERROR_OK;
3640 }
3641
3642 COMMAND_HANDLER(handle_bp_command)
3643 {
3644         target_addr_t addr;
3645         uint32_t asid;
3646         uint32_t length;
3647         int hw = BKPT_SOFT;
3648
3649         switch (CMD_ARGC) {
3650                 case 0:
3651                         return handle_bp_command_list(CMD_CTX);
3652
3653                 case 2:
3654                         asid = 0;
3655                         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3656                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3657                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3658
3659                 case 3:
3660                         if (strcmp(CMD_ARGV[2], "hw") == 0) {
3661                                 hw = BKPT_HARD;
3662                                 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3663                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3664                                 asid = 0;
3665                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3666                         } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
3667                                 hw = BKPT_HARD;
3668                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3669                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3670                                 addr = 0;
3671                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3672                         }
3673                         /* fallthrough */
3674                 case 4:
3675                         hw = BKPT_HARD;
3676                         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3677                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3678                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3679                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3680
3681                 default:
3682                         return ERROR_COMMAND_SYNTAX_ERROR;
3683         }
3684 }
3685
3686 COMMAND_HANDLER(handle_rbp_command)
3687 {
3688         if (CMD_ARGC != 1)
3689                 return ERROR_COMMAND_SYNTAX_ERROR;
3690
3691         target_addr_t addr;
3692         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3693
3694         struct target *target = get_current_target(CMD_CTX);
3695         breakpoint_remove(target, addr);
3696
3697         return ERROR_OK;
3698 }
3699
3700 COMMAND_HANDLER(handle_wp_command)
3701 {
3702         struct target *target = get_current_target(CMD_CTX);
3703
3704         if (CMD_ARGC == 0) {
3705                 struct watchpoint *watchpoint = target->watchpoints;
3706
3707                 while (watchpoint) {
3708                         command_print(CMD_CTX, "address: " TARGET_ADDR_FMT
3709                                         ", len: 0x%8.8" PRIx32
3710                                         ", r/w/a: %i, value: 0x%8.8" PRIx32
3711                                         ", mask: 0x%8.8" PRIx32,
3712                                         watchpoint->address,
3713                                         watchpoint->length,
3714                                         (int)watchpoint->rw,
3715                                         watchpoint->value,
3716                                         watchpoint->mask);
3717                         watchpoint = watchpoint->next;
3718                 }
3719                 return ERROR_OK;
3720         }
3721
3722         enum watchpoint_rw type = WPT_ACCESS;
3723         uint32_t addr = 0;
3724         uint32_t length = 0;
3725         uint32_t data_value = 0x0;
3726         uint32_t data_mask = 0xffffffff;
3727
3728         switch (CMD_ARGC) {
3729         case 5:
3730                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3731                 /* fall through */
3732         case 4:
3733                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3734                 /* fall through */
3735         case 3:
3736                 switch (CMD_ARGV[2][0]) {
3737                 case 'r':
3738                         type = WPT_READ;
3739                         break;
3740                 case 'w':
3741                         type = WPT_WRITE;
3742                         break;
3743                 case 'a':
3744                         type = WPT_ACCESS;
3745                         break;
3746                 default:
3747                         LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3748                         return ERROR_COMMAND_SYNTAX_ERROR;
3749                 }
3750                 /* fall through */
3751         case 2:
3752                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3753                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3754                 break;
3755
3756         default:
3757                 return ERROR_COMMAND_SYNTAX_ERROR;
3758         }
3759
3760         int retval = watchpoint_add(target, addr, length, type,
3761                         data_value, data_mask);
3762         if (ERROR_OK != retval)
3763                 LOG_ERROR("Failure setting watchpoints");
3764
3765         return retval;
3766 }
3767
3768 COMMAND_HANDLER(handle_rwp_command)
3769 {
3770         if (CMD_ARGC != 1)
3771                 return ERROR_COMMAND_SYNTAX_ERROR;
3772
3773         uint32_t addr;
3774         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3775
3776         struct target *target = get_current_target(CMD_CTX);
3777         watchpoint_remove(target, addr);
3778
3779         return ERROR_OK;
3780 }
3781
3782 /**
3783  * Translate a virtual address to a physical address.
3784  *
3785  * The low-level target implementation must have logged a detailed error
3786  * which is forwarded to telnet/GDB session.
3787  */
3788 COMMAND_HANDLER(handle_virt2phys_command)
3789 {
3790         if (CMD_ARGC != 1)
3791                 return ERROR_COMMAND_SYNTAX_ERROR;
3792
3793         target_addr_t va;
3794         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], va);
3795         target_addr_t pa;
3796
3797         struct target *target = get_current_target(CMD_CTX);
3798         int retval = target->type->virt2phys(target, va, &pa);
3799         if (retval == ERROR_OK)
3800                 command_print(CMD_CTX, "Physical address " TARGET_ADDR_FMT "", pa);
3801
3802         return retval;
3803 }
3804
3805 static void writeData(FILE *f, const void *data, size_t len)
3806 {
3807         size_t written = fwrite(data, 1, len, f);
3808         if (written != len)
3809                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3810 }
3811
3812 static void writeLong(FILE *f, int l, struct target *target)
3813 {
3814         uint8_t val[4];
3815
3816         target_buffer_set_u32(target, val, l);
3817         writeData(f, val, 4);
3818 }
3819
3820 static void writeString(FILE *f, char *s)
3821 {
3822         writeData(f, s, strlen(s));
3823 }
3824
3825 typedef unsigned char UNIT[2];  /* unit of profiling */
3826
3827 /* Dump a gmon.out histogram file. */
3828 static void write_gmon(uint32_t *samples, uint32_t sampleNum, const char *filename, bool with_range,
3829                         uint32_t start_address, uint32_t end_address, struct target *target, uint32_t duration_ms)
3830 {
3831         uint32_t i;
3832         FILE *f = fopen(filename, "w");
3833         if (f == NULL)
3834                 return;
3835         writeString(f, "gmon");
3836         writeLong(f, 0x00000001, target); /* Version */
3837         writeLong(f, 0, target); /* padding */
3838         writeLong(f, 0, target); /* padding */
3839         writeLong(f, 0, target); /* padding */
3840
3841         uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
3842         writeData(f, &zero, 1);
3843
3844         /* figure out bucket size */
3845         uint32_t min;
3846         uint32_t max;
3847         if (with_range) {
3848                 min = start_address;
3849                 max = end_address;
3850         } else {
3851                 min = samples[0];
3852                 max = samples[0];
3853                 for (i = 0; i < sampleNum; i++) {
3854                         if (min > samples[i])
3855                                 min = samples[i];
3856                         if (max < samples[i])
3857                                 max = samples[i];
3858                 }
3859
3860                 /* max should be (largest sample + 1)
3861                  * Refer to binutils/gprof/hist.c (find_histogram_for_pc) */
3862                 max++;
3863         }
3864
3865         int addressSpace = max - min;
3866         assert(addressSpace >= 2);
3867
3868         /* FIXME: What is the reasonable number of buckets?
3869          * The profiling result will be more accurate if there are enough buckets. */
3870         static const uint32_t maxBuckets = 128 * 1024; /* maximum buckets. */
3871         uint32_t numBuckets = addressSpace / sizeof(UNIT);
3872         if (numBuckets > maxBuckets)
3873                 numBuckets = maxBuckets;
3874         int *buckets = malloc(sizeof(int) * numBuckets);
3875         if (buckets == NULL) {
3876                 fclose(f);
3877                 return;
3878         }
3879         memset(buckets, 0, sizeof(int) * numBuckets);
3880         for (i = 0; i < sampleNum; i++) {
3881                 uint32_t address = samples[i];
3882
3883                 if ((address < min) || (max <= address))
3884                         continue;
3885
3886                 long long a = address - min;
3887                 long long b = numBuckets;
3888                 long long c = addressSpace;
3889                 int index_t = (a * b) / c; /* danger!!!! int32 overflows */
3890                 buckets[index_t]++;
3891         }
3892
3893         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3894         writeLong(f, min, target);                      /* low_pc */
3895         writeLong(f, max, target);                      /* high_pc */
3896         writeLong(f, numBuckets, target);       /* # of buckets */
3897         float sample_rate = sampleNum / (duration_ms / 1000.0);
3898         writeLong(f, sample_rate, target);
3899         writeString(f, "seconds");
3900         for (i = 0; i < (15-strlen("seconds")); i++)
3901                 writeData(f, &zero, 1);
3902         writeString(f, "s");
3903
3904         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3905
3906         char *data = malloc(2 * numBuckets);
3907         if (data != NULL) {
3908                 for (i = 0; i < numBuckets; i++) {
3909                         int val;
3910                         val = buckets[i];
3911                         if (val > 65535)
3912                                 val = 65535;
3913                         data[i * 2] = val&0xff;
3914                         data[i * 2 + 1] = (val >> 8) & 0xff;
3915                 }
3916                 free(buckets);
3917                 writeData(f, data, numBuckets * 2);
3918                 free(data);
3919         } else
3920                 free(buckets);
3921
3922         fclose(f);
3923 }
3924
3925 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3926  * which will be used as a random sampling of PC */
3927 COMMAND_HANDLER(handle_profile_command)
3928 {
3929         struct target *target = get_current_target(CMD_CTX);
3930
3931         if ((CMD_ARGC != 2) && (CMD_ARGC != 4))
3932                 return ERROR_COMMAND_SYNTAX_ERROR;
3933
3934         const uint32_t MAX_PROFILE_SAMPLE_NUM = 10000;
3935         uint32_t offset;
3936         uint32_t num_of_samples;
3937         int retval = ERROR_OK;
3938
3939         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], offset);
3940
3941         uint32_t *samples = malloc(sizeof(uint32_t) * MAX_PROFILE_SAMPLE_NUM);
3942         if (samples == NULL) {
3943                 LOG_ERROR("No memory to store samples.");
3944                 return ERROR_FAIL;
3945         }
3946
3947         uint64_t timestart_ms = timeval_ms();
3948         /**
3949          * Some cores let us sample the PC without the
3950          * annoying halt/resume step; for example, ARMv7 PCSR.
3951          * Provide a way to use that more efficient mechanism.
3952          */
3953         retval = target_profiling(target, samples, MAX_PROFILE_SAMPLE_NUM,
3954                                 &num_of_samples, offset);
3955         if (retval != ERROR_OK) {
3956                 free(samples);
3957                 return retval;
3958         }
3959         uint32_t duration_ms = timeval_ms() - timestart_ms;
3960
3961         assert(num_of_samples <= MAX_PROFILE_SAMPLE_NUM);
3962
3963         retval = target_poll(target);
3964         if (retval != ERROR_OK) {
3965                 free(samples);
3966                 return retval;
3967         }
3968         if (target->state == TARGET_RUNNING) {
3969                 retval = target_halt(target);
3970                 if (retval != ERROR_OK) {
3971                         free(samples);
3972                         return retval;
3973                 }
3974         }
3975
3976         retval = target_poll(target);
3977         if (retval != ERROR_OK) {
3978                 free(samples);
3979                 return retval;
3980         }
3981
3982         uint32_t start_address = 0;
3983         uint32_t end_address = 0;
3984         bool with_range = false;
3985         if (CMD_ARGC == 4) {
3986                 with_range = true;
3987                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], start_address);
3988                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], end_address);
3989         }
3990
3991         write_gmon(samples, num_of_samples, CMD_ARGV[1],
3992                    with_range, start_address, end_address, target, duration_ms);
3993         command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3994
3995         free(samples);
3996         return retval;
3997 }
3998
3999 static int new_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t val)
4000 {
4001         char *namebuf;
4002         Jim_Obj *nameObjPtr, *valObjPtr;
4003         int result;
4004
4005         namebuf = alloc_printf("%s(%d)", varname, idx);
4006         if (!namebuf)
4007                 return JIM_ERR;
4008
4009         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
4010         valObjPtr = Jim_NewIntObj(interp, val);
4011         if (!nameObjPtr || !valObjPtr) {
4012                 free(namebuf);
4013                 return JIM_ERR;
4014         }
4015
4016         Jim_IncrRefCount(nameObjPtr);
4017         Jim_IncrRefCount(valObjPtr);
4018         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
4019         Jim_DecrRefCount(interp, nameObjPtr);
4020         Jim_DecrRefCount(interp, valObjPtr);
4021         free(namebuf);
4022         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
4023         return result;
4024 }
4025
4026 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4027 {
4028         struct command_context *context;
4029         struct target *target;
4030
4031         context = current_command_context(interp);
4032         assert(context != NULL);
4033
4034         target = get_current_target(context);
4035         if (target == NULL) {
4036                 LOG_ERROR("mem2array: no current target");
4037                 return JIM_ERR;
4038         }
4039
4040         return target_mem2array(interp, target, argc - 1, argv + 1);
4041 }
4042
4043 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
4044 {
4045         long l;
4046         uint32_t width;
4047         int len;
4048         uint32_t addr;
4049         uint32_t count;
4050         uint32_t v;
4051         const char *varname;
4052         const char *phys;
4053         bool is_phys;
4054         int  n, e, retval;
4055         uint32_t i;
4056
4057         /* argv[1] = name of array to receive the data
4058          * argv[2] = desired width
4059          * argv[3] = memory address
4060          * argv[4] = count of times to read
4061          */
4062         if (argc < 4 || argc > 5) {
4063                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems [phys]");
4064                 return JIM_ERR;
4065         }
4066         varname = Jim_GetString(argv[0], &len);
4067         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
4068
4069         e = Jim_GetLong(interp, argv[1], &l);
4070         width = l;
4071         if (e != JIM_OK)
4072                 return e;
4073
4074         e = Jim_GetLong(interp, argv[2], &l);
4075         addr = l;
4076         if (e != JIM_OK)
4077                 return e;
4078         e = Jim_GetLong(interp, argv[3], &l);
4079         len = l;
4080         if (e != JIM_OK)
4081                 return e;
4082         is_phys = false;
4083         if (argc > 4) {
4084                 phys = Jim_GetString(argv[4], &n);
4085                 if (!strncmp(phys, "phys", n))
4086                         is_phys = true;
4087                 else
4088                         return JIM_ERR;
4089         }
4090         switch (width) {
4091                 case 8:
4092                         width = 1;
4093                         break;
4094                 case 16:
4095                         width = 2;
4096                         break;
4097                 case 32:
4098                         width = 4;
4099                         break;
4100                 default:
4101                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4102                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
4103                         return JIM_ERR;
4104         }
4105         if (len == 0) {
4106                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4107                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
4108                 return JIM_ERR;
4109         }
4110         if ((addr + (len * width)) < addr) {
4111                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4112                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
4113                 return JIM_ERR;
4114         }
4115         /* absurd transfer size? */
4116         if (len > 65536) {
4117                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4118                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
4119                 return JIM_ERR;
4120         }
4121
4122         if ((width == 1) ||
4123                 ((width == 2) && ((addr & 1) == 0)) ||
4124                 ((width == 4) && ((addr & 3) == 0))) {
4125                 /* all is well */
4126         } else {
4127                 char buf[100];
4128                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4129                 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
4130                                 addr,
4131                                 width);
4132                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
4133                 return JIM_ERR;
4134         }
4135
4136         /* Transfer loop */
4137
4138         /* index counter */
4139         n = 0;
4140
4141         size_t buffersize = 4096;
4142         uint8_t *buffer = malloc(buffersize);
4143         if (buffer == NULL)
4144                 return JIM_ERR;
4145
4146         /* assume ok */
4147         e = JIM_OK;
4148         while (len) {
4149                 /* Slurp... in buffer size chunks */
4150
4151                 count = len; /* in objects.. */
4152                 if (count > (buffersize / width))
4153                         count = (buffersize / width);
4154
4155                 if (is_phys)
4156                         retval = target_read_phys_memory(target, addr, width, count, buffer);
4157                 else
4158                         retval = target_read_memory(target, addr, width, count, buffer);
4159                 if (retval != ERROR_OK) {
4160                         /* BOO !*/
4161                         LOG_ERROR("mem2array: Read @ 0x%08" PRIx32 ", w=%" PRId32 ", cnt=%" PRId32 ", failed",
4162                                           addr,
4163                                           width,
4164                                           count);
4165                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4166                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
4167                         e = JIM_ERR;
4168                         break;
4169                 } else {
4170                         v = 0; /* shut up gcc */
4171                         for (i = 0; i < count ; i++, n++) {
4172                                 switch (width) {
4173                                         case 4:
4174                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
4175                                                 break;
4176                                         case 2:
4177                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
4178                                                 break;
4179                                         case 1:
4180                                                 v = buffer[i] & 0x0ff;
4181                                                 break;
4182                                 }
4183                                 new_int_array_element(interp, varname, n, v);
4184                         }
4185                         len -= count;
4186                         addr += count * width;
4187                 }
4188         }
4189
4190         free(buffer);
4191
4192         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4193
4194         return e;
4195 }
4196
4197 static int get_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t *val)
4198 {
4199         char *namebuf;
4200         Jim_Obj *nameObjPtr, *valObjPtr;
4201         int result;
4202         long l;
4203
4204         namebuf = alloc_printf("%s(%d)", varname, idx);
4205         if (!namebuf)
4206                 return JIM_ERR;
4207
4208         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
4209         if (!nameObjPtr) {
4210                 free(namebuf);
4211                 return JIM_ERR;
4212         }
4213
4214         Jim_IncrRefCount(nameObjPtr);
4215         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
4216         Jim_DecrRefCount(interp, nameObjPtr);
4217         free(namebuf);
4218         if (valObjPtr == NULL)
4219                 return JIM_ERR;
4220
4221         result = Jim_GetLong(interp, valObjPtr, &l);
4222         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
4223         *val = l;
4224         return result;
4225 }
4226
4227 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4228 {
4229         struct command_context *context;
4230         struct target *target;
4231
4232         context = current_command_context(interp);
4233         assert(context != NULL);
4234
4235         target = get_current_target(context);
4236         if (target == NULL) {
4237                 LOG_ERROR("array2mem: no current target");
4238                 return JIM_ERR;
4239         }
4240
4241         return target_array2mem(interp, target, argc-1, argv + 1);
4242 }
4243
4244 static int target_array2mem(Jim_Interp *interp, struct target *target,
4245                 int argc, Jim_Obj *const *argv)
4246 {
4247         long l;
4248         uint32_t width;
4249         int len;
4250         uint32_t addr;
4251         uint32_t count;
4252         uint32_t v;
4253         const char *varname;
4254         const char *phys;
4255         bool is_phys;
4256         int  n, e, retval;
4257         uint32_t i;
4258
4259         /* argv[1] = name of array to get the data
4260          * argv[2] = desired width
4261          * argv[3] = memory address
4262          * argv[4] = count to write
4263          */
4264         if (argc < 4 || argc > 5) {
4265                 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems [phys]");
4266                 return JIM_ERR;
4267         }
4268         varname = Jim_GetString(argv[0], &len);
4269         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
4270
4271         e = Jim_GetLong(interp, argv[1], &l);
4272         width = l;
4273         if (e != JIM_OK)
4274                 return e;
4275
4276         e = Jim_GetLong(interp, argv[2], &l);
4277         addr = l;
4278         if (e != JIM_OK)
4279                 return e;
4280         e = Jim_GetLong(interp, argv[3], &l);
4281         len = l;
4282         if (e != JIM_OK)
4283                 return e;
4284         is_phys = false;
4285         if (argc > 4) {
4286                 phys = Jim_GetString(argv[4], &n);
4287                 if (!strncmp(phys, "phys", n))
4288                         is_phys = true;
4289                 else
4290                         return JIM_ERR;
4291         }
4292         switch (width) {
4293                 case 8:
4294                         width = 1;
4295                         break;
4296                 case 16:
4297                         width = 2;
4298                         break;
4299                 case 32:
4300                         width = 4;
4301                         break;
4302                 default:
4303                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4304                         Jim_AppendStrings(interp, Jim_GetResult(interp),
4305                                         "Invalid width param, must be 8/16/32", NULL);
4306                         return JIM_ERR;
4307         }
4308         if (len == 0) {
4309                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4310                 Jim_AppendStrings(interp, Jim_GetResult(interp),
4311                                 "array2mem: zero width read?", NULL);
4312                 return JIM_ERR;
4313         }
4314         if ((addr + (len * width)) < addr) {
4315                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4316                 Jim_AppendStrings(interp, Jim_GetResult(interp),
4317                                 "array2mem: addr + len - wraps to zero?", NULL);
4318                 return JIM_ERR;
4319         }
4320         /* absurd transfer size? */
4321         if (len > 65536) {
4322                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4323                 Jim_AppendStrings(interp, Jim_GetResult(interp),
4324                                 "array2mem: absurd > 64K item request", NULL);
4325                 return JIM_ERR;
4326         }
4327
4328         if ((width == 1) ||
4329                 ((width == 2) && ((addr & 1) == 0)) ||
4330                 ((width == 4) && ((addr & 3) == 0))) {
4331                 /* all is well */
4332         } else {
4333                 char buf[100];
4334                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4335                 sprintf(buf, "array2mem address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
4336                                 addr,
4337                                 width);
4338                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
4339                 return JIM_ERR;
4340         }
4341
4342         /* Transfer loop */
4343
4344         /* index counter */
4345         n = 0;
4346         /* assume ok */
4347         e = JIM_OK;
4348
4349         size_t buffersize = 4096;
4350         uint8_t *buffer = malloc(buffersize);
4351         if (buffer == NULL)
4352                 return JIM_ERR;
4353
4354         while (len) {
4355                 /* Slurp... in buffer size chunks */
4356
4357                 count = len; /* in objects.. */
4358                 if (count > (buffersize / width))
4359                         count = (buffersize / width);
4360
4361                 v = 0; /* shut up gcc */
4362                 for (i = 0; i < count; i++, n++) {
4363                         get_int_array_element(interp, varname, n, &v);
4364                         switch (width) {
4365                         case 4:
4366                                 target_buffer_set_u32(target, &buffer[i * width], v);
4367                                 break;
4368                         case 2:
4369                                 target_buffer_set_u16(target, &buffer[i * width], v);
4370                                 break;
4371                         case 1:
4372                                 buffer[i] = v & 0x0ff;
4373                                 break;
4374                         }
4375                 }
4376                 len -= count;
4377
4378                 if (is_phys)
4379                         retval = target_write_phys_memory(target, addr, width, count, buffer);
4380                 else
4381                         retval = target_write_memory(target, addr, width, count, buffer);
4382                 if (retval != ERROR_OK) {
4383                         /* BOO !*/
4384                         LOG_ERROR("array2mem: Write @ 0x%08" PRIx32 ", w=%" PRId32 ", cnt=%" PRId32 ", failed",
4385                                           addr,
4386                                           width,
4387                                           count);
4388                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4389                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
4390                         e = JIM_ERR;
4391                         break;
4392                 }
4393                 addr += count * width;
4394         }
4395
4396         free(buffer);
4397
4398         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4399
4400         return e;
4401 }
4402
4403 /* FIX? should we propagate errors here rather than printing them
4404  * and continuing?
4405  */
4406 void target_handle_event(struct target *target, enum target_event e)
4407 {
4408         struct target_event_action *teap;
4409
4410         for (teap = target->event_action; teap != NULL; teap = teap->next) {
4411                 if (teap->event == e) {
4412                         LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
4413                                            target->target_number,
4414                                            target_name(target),
4415                                            target_type_name(target),
4416                                            e,
4417                                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
4418                                            Jim_GetString(teap->body, NULL));
4419                         if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK) {
4420                                 Jim_MakeErrorMessage(teap->interp);
4421                                 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(teap->interp), NULL));
4422                         }
4423                 }
4424         }
4425 }
4426
4427 /**
4428  * Returns true only if the target has a handler for the specified event.
4429  */
4430 bool target_has_event_action(struct target *target, enum target_event event)
4431 {
4432         struct target_event_action *teap;
4433
4434         for (teap = target->event_action; teap != NULL; teap = teap->next) {
4435                 if (teap->event == event)
4436                         return true;
4437         }
4438         return false;
4439 }
4440
4441 enum target_cfg_param {
4442         TCFG_TYPE,
4443         TCFG_EVENT,
4444         TCFG_WORK_AREA_VIRT,
4445         TCFG_WORK_AREA_PHYS,
4446         TCFG_WORK_AREA_SIZE,
4447         TCFG_WORK_AREA_BACKUP,
4448         TCFG_ENDIAN,
4449         TCFG_COREID,
4450         TCFG_CHAIN_POSITION,
4451         TCFG_DBGBASE,
4452         TCFG_CTIBASE,
4453         TCFG_RTOS,
4454         TCFG_DEFER_EXAMINE,
4455 };
4456
4457 static Jim_Nvp nvp_config_opts[] = {
4458         { .name = "-type",             .value = TCFG_TYPE },
4459         { .name = "-event",            .value = TCFG_EVENT },
4460         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
4461         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
4462         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
4463         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
4464         { .name = "-endian" ,          .value = TCFG_ENDIAN },
4465         { .name = "-coreid",           .value = TCFG_COREID },
4466         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
4467         { .name = "-dbgbase",          .value = TCFG_DBGBASE },
4468         { .name = "-ctibase",          .value = TCFG_CTIBASE },
4469         { .name = "-rtos",             .value = TCFG_RTOS },
4470         { .name = "-defer-examine",    .value = TCFG_DEFER_EXAMINE },
4471         { .name = NULL, .value = -1 }
4472 };
4473
4474 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
4475 {
4476         Jim_Nvp *n;
4477         Jim_Obj *o;
4478         jim_wide w;
4479         int e;
4480
4481         /* parse config or cget options ... */
4482         while (goi->argc > 0) {
4483                 Jim_SetEmptyResult(goi->interp);
4484                 /* Jim_GetOpt_Debug(goi); */
4485
4486                 if (target->type->target_jim_configure) {
4487                         /* target defines a configure function */
4488                         /* target gets first dibs on parameters */
4489                         e = (*(target->type->target_jim_configure))(target, goi);
4490                         if (e == JIM_OK) {
4491                                 /* more? */
4492                                 continue;
4493                         }
4494                         if (e == JIM_ERR) {
4495                                 /* An error */
4496                                 return e;
4497                         }
4498                         /* otherwise we 'continue' below */
4499                 }
4500                 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
4501                 if (e != JIM_OK) {
4502                         Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
4503                         return e;
4504                 }
4505                 switch (n->value) {
4506                 case TCFG_TYPE:
4507                         /* not setable */
4508                         if (goi->isconfigure) {
4509                                 Jim_SetResultFormatted(goi->interp,
4510                                                 "not settable: %s", n->name);
4511                                 return JIM_ERR;
4512                         } else {
4513 no_params:
4514                                 if (goi->argc != 0) {
4515                                         Jim_WrongNumArgs(goi->interp,
4516                                                         goi->argc, goi->argv,
4517                                                         "NO PARAMS");
4518                                         return JIM_ERR;
4519                                 }
4520                         }
4521                         Jim_SetResultString(goi->interp,
4522                                         target_type_name(target), -1);
4523                         /* loop for more */
4524                         break;
4525                 case TCFG_EVENT:
4526                         if (goi->argc == 0) {
4527                                 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
4528                                 return JIM_ERR;
4529                         }
4530
4531                         e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
4532                         if (e != JIM_OK) {
4533                                 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
4534                                 return e;
4535                         }
4536
4537                         if (goi->isconfigure) {
4538                                 if (goi->argc != 1) {
4539                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
4540                                         return JIM_ERR;
4541                                 }
4542                         } else {
4543                                 if (goi->argc != 0) {
4544                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
4545                                         return JIM_ERR;
4546                                 }
4547                         }
4548
4549                         {
4550                                 struct target_event_action *teap;
4551
4552                                 teap = target->event_action;
4553                                 /* replace existing? */
4554                                 while (teap) {
4555                                         if (teap->event == (enum target_event)n->value)
4556                                                 break;
4557                                         teap = teap->next;
4558                                 }
4559
4560                                 if (goi->isconfigure) {
4561                                         bool replace = true;
4562                                         if (teap == NULL) {
4563                                                 /* create new */
4564                                                 teap = calloc(1, sizeof(*teap));
4565                                                 replace = false;
4566                                         }
4567                                         teap->event = n->value;
4568                                         teap->interp = goi->interp;
4569                                         Jim_GetOpt_Obj(goi, &o);
4570                                         if (teap->body)
4571                                                 Jim_DecrRefCount(teap->interp, teap->body);
4572                                         teap->body  = Jim_DuplicateObj(goi->interp, o);
4573                                         /*
4574                                          * FIXME:
4575                                          *     Tcl/TK - "tk events" have a nice feature.
4576                                          *     See the "BIND" command.
4577                                          *    We should support that here.
4578                                          *     You can specify %X and %Y in the event code.
4579                                          *     The idea is: %T - target name.
4580                                          *     The idea is: %N - target number
4581                                          *     The idea is: %E - event name.
4582                                          */
4583                                         Jim_IncrRefCount(teap->body);
4584
4585                                         if (!replace) {
4586                                                 /* add to head of event list */
4587                                                 teap->next = target->event_action;
4588                                                 target->event_action = teap;
4589                                         }
4590                                         Jim_SetEmptyResult(goi->interp);
4591                                 } else {
4592                                         /* get */
4593                                         if (teap == NULL)
4594                                                 Jim_SetEmptyResult(goi->interp);
4595                                         else
4596                                                 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
4597                                 }
4598                         }
4599                         /* loop for more */
4600                         break;
4601
4602                 case TCFG_WORK_AREA_VIRT:
4603                         if (goi->isconfigure) {
4604                                 target_free_all_working_areas(target);
4605                                 e = Jim_GetOpt_Wide(goi, &w);
4606                                 if (e != JIM_OK)
4607                                         return e;
4608                                 target->working_area_virt = w;
4609                                 target->working_area_virt_spec = true;
4610                         } else {
4611                                 if (goi->argc != 0)
4612                                         goto no_params;
4613                         }
4614                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
4615                         /* loop for more */
4616                         break;
4617
4618                 case TCFG_WORK_AREA_PHYS:
4619                         if (goi->isconfigure) {
4620                                 target_free_all_working_areas(target);
4621                                 e = Jim_GetOpt_Wide(goi, &w);
4622                                 if (e != JIM_OK)
4623                                         return e;
4624                                 target->working_area_phys = w;
4625                                 target->working_area_phys_spec = true;
4626                         } else {
4627                                 if (goi->argc != 0)
4628                                         goto no_params;
4629                         }
4630                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
4631                         /* loop for more */
4632                         break;
4633
4634                 case TCFG_WORK_AREA_SIZE:
4635                         if (goi->isconfigure) {
4636                                 target_free_all_working_areas(target);
4637                                 e = Jim_GetOpt_Wide(goi, &w);
4638                                 if (e != JIM_OK)
4639                                         return e;
4640                                 target->working_area_size = w;
4641                         } else {
4642                                 if (goi->argc != 0)
4643                                         goto no_params;
4644                         }
4645                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4646                         /* loop for more */
4647                         break;
4648
4649                 case TCFG_WORK_AREA_BACKUP:
4650                         if (goi->isconfigure) {
4651                                 target_free_all_working_areas(target);
4652                                 e = Jim_GetOpt_Wide(goi, &w);
4653                                 if (e != JIM_OK)
4654                                         return e;
4655                                 /* make this exactly 1 or 0 */
4656                                 target->backup_working_area = (!!w);
4657                         } else {
4658                                 if (goi->argc != 0)
4659                                         goto no_params;
4660                         }
4661                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
4662                         /* loop for more e*/
4663                         break;
4664
4665
4666                 case TCFG_ENDIAN:
4667                         if (goi->isconfigure) {
4668                                 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
4669                                 if (e != JIM_OK) {
4670                                         Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
4671                                         return e;
4672                                 }
4673                                 target->endianness = n->value;
4674                         } else {
4675                                 if (goi->argc != 0)
4676                                         goto no_params;
4677                         }
4678                         n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4679                         if (n->name == NULL) {
4680                                 target->endianness = TARGET_LITTLE_ENDIAN;
4681                                 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4682                         }
4683                         Jim_SetResultString(goi->interp, n->name, -1);
4684                         /* loop for more */
4685                         break;
4686
4687                 case TCFG_COREID:
4688                         if (goi->isconfigure) {
4689                                 e = Jim_GetOpt_Wide(goi, &w);
4690                                 if (e != JIM_OK)
4691                                         return e;
4692                                 target->coreid = (int32_t)w;
4693                         } else {
4694                                 if (goi->argc != 0)
4695                                         goto no_params;
4696                         }
4697                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4698                         /* loop for more */
4699                         break;
4700
4701                 case TCFG_CHAIN_POSITION:
4702                         if (goi->isconfigure) {
4703                                 Jim_Obj *o_t;
4704                                 struct jtag_tap *tap;
4705                                 target_free_all_working_areas(target);
4706                                 e = Jim_GetOpt_Obj(goi, &o_t);
4707                                 if (e != JIM_OK)
4708                                         return e;
4709                                 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
4710                                 if (tap == NULL)
4711                                         return JIM_ERR;
4712                                 /* make this exactly 1 or 0 */
4713                                 target->tap = tap;
4714                         } else {
4715                                 if (goi->argc != 0)
4716                                         goto no_params;
4717                         }
4718                         Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
4719                         /* loop for more e*/
4720                         break;
4721                 case TCFG_DBGBASE:
4722                         if (goi->isconfigure) {
4723                                 e = Jim_GetOpt_Wide(goi, &w);
4724                                 if (e != JIM_OK)
4725                                         return e;
4726                                 target->dbgbase = (uint32_t)w;
4727                                 target->dbgbase_set = true;
4728                         } else {
4729                                 if (goi->argc != 0)
4730                                         goto no_params;
4731                         }
4732                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
4733                         /* loop for more */
4734                         break;
4735                 case TCFG_CTIBASE:
4736                         if (goi->isconfigure) {
4737                                 e = Jim_GetOpt_Wide(goi, &w);
4738                                 if (e != JIM_OK)
4739                                         return e;
4740                                 target->ctibase = (uint32_t)w;
4741                                 target->ctibase_set = true;
4742                         } else {
4743                                 if (goi->argc != 0)
4744                                         goto no_params;
4745                         }
4746                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->ctibase));
4747                         /* loop for more */
4748                         break;
4749                 case TCFG_RTOS:
4750                         /* RTOS */
4751                         {
4752                                 int result = rtos_create(goi, target);
4753                                 if (result != JIM_OK)
4754                                         return result;
4755                         }
4756                         /* loop for more */
4757                         break;
4758
4759                 case TCFG_DEFER_EXAMINE:
4760                         /* DEFER_EXAMINE */
4761                         target->defer_examine = true;
4762                         /* loop for more */
4763                         break;
4764
4765                 }
4766         } /* while (goi->argc) */
4767
4768
4769                 /* done - we return */
4770         return JIM_OK;
4771 }
4772
4773 static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
4774 {
4775         Jim_GetOptInfo goi;
4776
4777         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4778         goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
4779         if (goi.argc < 1) {
4780                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4781                                  "missing: -option ...");
4782                 return JIM_ERR;
4783         }
4784         struct target *target = Jim_CmdPrivData(goi.interp);
4785         return target_configure(&goi, target);
4786 }
4787
4788 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4789 {
4790         const char *cmd_name = Jim_GetString(argv[0], NULL);
4791
4792         Jim_GetOptInfo goi;
4793         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4794
4795         if (goi.argc < 2 || goi.argc > 4) {
4796                 Jim_SetResultFormatted(goi.interp,
4797                                 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
4798                 return JIM_ERR;
4799         }
4800
4801         target_write_fn fn;
4802         fn = target_write_memory;
4803
4804         int e;
4805         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4806                 /* consume it */
4807                 struct Jim_Obj *obj;
4808                 e = Jim_GetOpt_Obj(&goi, &obj);
4809                 if (e != JIM_OK)
4810                         return e;
4811
4812                 fn = target_write_phys_memory;
4813         }
4814
4815         jim_wide a;
4816         e = Jim_GetOpt_Wide(&goi, &a);
4817         if (e != JIM_OK)
4818                 return e;
4819
4820         jim_wide b;
4821         e = Jim_GetOpt_Wide(&goi, &b);
4822         if (e != JIM_OK)
4823                 return e;
4824
4825         jim_wide c = 1;
4826         if (goi.argc == 1) {
4827                 e = Jim_GetOpt_Wide(&goi, &c);
4828                 if (e != JIM_OK)
4829                         return e;
4830         }
4831
4832         /* all args must be consumed */
4833         if (goi.argc != 0)
4834                 return JIM_ERR;
4835
4836         struct target *target = Jim_CmdPrivData(goi.interp);
4837         unsigned data_size;
4838         if (strcasecmp(cmd_name, "mww") == 0)
4839                 data_size = 4;
4840         else if (strcasecmp(cmd_name, "mwh") == 0)
4841                 data_size = 2;
4842         else if (strcasecmp(cmd_name, "mwb") == 0)
4843                 data_size = 1;
4844         else {
4845                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4846                 return JIM_ERR;
4847         }
4848
4849         return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4850 }
4851
4852 /**
4853 *  @brief Reads an array of words/halfwords/bytes from target memory starting at specified address.
4854 *
4855 *  Usage: mdw [phys] <address> [<count>] - for 32 bit reads
4856 *         mdh [phys] <address> [<count>] - for 16 bit reads
4857 *         mdb [phys] <address> [<count>] - for  8 bit reads
4858 *
4859 *  Count defaults to 1.
4860 *
4861 *  Calls target_read_memory or target_read_phys_memory depending on
4862 *  the presence of the "phys" argument
4863 *  Reads the target memory in blocks of max. 32 bytes, and returns an array of ints formatted
4864 *  to int representation in base16.
4865 *  Also outputs read data in a human readable form using command_print
4866 *
4867 *  @param phys if present target_read_phys_memory will be used instead of target_read_memory
4868 *  @param address address where to start the read. May be specified in decimal or hex using the standard "0x" prefix
4869 *  @param count optional count parameter to read an array of values. If not specified, defaults to 1.
4870 *  @returns:  JIM_ERR on error or JIM_OK on success and sets the result string to an array of ascii formatted numbers
4871 *  on success, with [<count>] number of elements.
4872 *
4873 *  In case of little endian target:
4874 *      Example1: "mdw 0x00000000"  returns "10123456"
4875 *      Exmaple2: "mdh 0x00000000 1" returns "3456"
4876 *      Example3: "mdb 0x00000000" returns "56"
4877 *      Example4: "mdh 0x00000000 2" returns "3456 1012"
4878 *      Example5: "mdb 0x00000000 3" returns "56 34 12"
4879 **/
4880 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4881 {
4882         const char *cmd_name = Jim_GetString(argv[0], NULL);
4883
4884         Jim_GetOptInfo goi;
4885         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4886
4887         if ((goi.argc < 1) || (goi.argc > 3)) {
4888                 Jim_SetResultFormatted(goi.interp,
4889                                 "usage: %s [phys] <address> [<count>]", cmd_name);
4890                 return JIM_ERR;
4891         }
4892
4893         int (*fn)(struct target *target,
4894                         target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer);
4895         fn = target_read_memory;
4896
4897         int e;
4898         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4899                 /* consume it */
4900                 struct Jim_Obj *obj;
4901                 e = Jim_GetOpt_Obj(&goi, &obj);
4902                 if (e != JIM_OK)
4903                         return e;
4904
4905                 fn = target_read_phys_memory;
4906         }
4907
4908         /* Read address parameter */
4909         jim_wide addr;
4910         e = Jim_GetOpt_Wide(&goi, &addr);
4911         if (e != JIM_OK)
4912                 return JIM_ERR;
4913
4914         /* If next parameter exists, read it out as the count parameter, if not, set it to 1 (default) */
4915         jim_wide count;
4916         if (goi.argc == 1) {
4917                 e = Jim_GetOpt_Wide(&goi, &count);
4918                 if (e != JIM_OK)
4919                         return JIM_ERR;
4920         } else
4921                 count = 1;
4922
4923         /* all args must be consumed */
4924         if (goi.argc != 0)
4925                 return JIM_ERR;
4926
4927         jim_wide dwidth = 1; /* shut up gcc */
4928         if (strcasecmp(cmd_name, "mdw") == 0)
4929                 dwidth = 4;
4930         else if (strcasecmp(cmd_name, "mdh") == 0)
4931                 dwidth = 2;
4932         else if (strcasecmp(cmd_name, "mdb") == 0)
4933                 dwidth = 1;
4934         else {
4935                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4936                 return JIM_ERR;
4937         }
4938
4939         /* convert count to "bytes" */
4940         int bytes = count * dwidth;
4941
4942         struct target *target = Jim_CmdPrivData(goi.interp);
4943         uint8_t  target_buf[32];
4944         jim_wide x, y, z;
4945         while (bytes > 0) {
4946                 y = (bytes < 16) ? bytes : 16; /* y = min(bytes, 16); */
4947
4948                 /* Try to read out next block */
4949                 e = fn(target, addr, dwidth, y / dwidth, target_buf);
4950
4951                 if (e != ERROR_OK) {
4952                         Jim_SetResultFormatted(interp, "error reading target @ 0x%08lx", (long)addr);
4953                         return JIM_ERR;
4954                 }
4955
4956                 command_print_sameline(NULL, "0x%08x ", (int)(addr));
4957                 switch (dwidth) {
4958                 case 4:
4959                         for (x = 0; x < 16 && x < y; x += 4) {
4960                                 z = target_buffer_get_u32(target, &(target_buf[x]));
4961                                 command_print_sameline(NULL, "%08x ", (int)(z));
4962                         }
4963                         for (; (x < 16) ; x += 4)
4964                                 command_print_sameline(NULL, "         ");
4965                         break;
4966                 case 2:
4967                         for (x = 0; x < 16 && x < y; x += 2) {
4968                                 z = target_buffer_get_u16(target, &(target_buf[x]));
4969                                 command_print_sameline(NULL, "%04x ", (int)(z));
4970                         }
4971                         for (; (x < 16) ; x += 2)
4972                                 command_print_sameline(NULL, "     ");
4973                         break;
4974                 case 1:
4975                 default:
4976                         for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4977                                 z = target_buffer_get_u8(target, &(target_buf[x]));
4978                                 command_print_sameline(NULL, "%02x ", (int)(z));
4979                         }
4980                         for (; (x < 16) ; x += 1)
4981                                 command_print_sameline(NULL, "   ");
4982                         break;
4983                 }
4984                 /* ascii-ify the bytes */
4985                 for (x = 0 ; x < y ; x++) {
4986                         if ((target_buf[x] >= 0x20) &&
4987                                 (target_buf[x] <= 0x7e)) {
4988                                 /* good */
4989                         } else {
4990                                 /* smack it */
4991                                 target_buf[x] = '.';
4992                         }
4993                 }
4994                 /* space pad  */
4995                 while (x < 16) {
4996                         target_buf[x] = ' ';
4997                         x++;
4998                 }
4999                 /* terminate */
5000                 target_buf[16] = 0;
5001                 /* print - with a newline */
5002                 command_print_sameline(NULL, "%s\n", target_buf);
5003                 /* NEXT... */
5004                 bytes -= 16;
5005                 addr += 16;
5006         }
5007         return JIM_OK;
5008 }
5009
5010 static int jim_target_mem2array(Jim_Interp *interp,
5011                 int argc, Jim_Obj *const *argv)
5012 {
5013         struct target *target = Jim_CmdPrivData(interp);
5014         return target_mem2array(interp, target, argc - 1, argv + 1);
5015 }
5016
5017 static int jim_target_array2mem(Jim_Interp *interp,
5018                 int argc, Jim_Obj *const *argv)
5019 {
5020         struct target *target = Jim_CmdPrivData(interp);
5021         return target_array2mem(interp, target, argc - 1, argv + 1);
5022 }
5023
5024 static int jim_target_tap_disabled(Jim_Interp *interp)
5025 {
5026         Jim_SetResultFormatted(interp, "[TAP is disabled]");
5027         return JIM_ERR;
5028 }
5029
5030 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5031 {
5032         bool allow_defer = false;
5033
5034         Jim_GetOptInfo goi;
5035         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5036         if (goi.argc > 1) {
5037                 const char *cmd_name = Jim_GetString(argv[0], NULL);
5038                 Jim_SetResultFormatted(goi.interp,
5039                                 "usage: %s ['allow-defer']", cmd_name);
5040                 return JIM_ERR;
5041         }
5042         if (goi.argc > 0 &&
5043             strcmp(Jim_GetString(argv[1], NULL), "allow-defer") == 0) {
5044                 /* consume it */
5045                 struct Jim_Obj *obj;
5046                 int e = Jim_GetOpt_Obj(&goi, &obj);
5047                 if (e != JIM_OK)
5048                         return e;
5049                 allow_defer = true;
5050         }
5051
5052         struct target *target = Jim_CmdPrivData(interp);
5053         if (!target->tap->enabled)
5054                 return jim_target_tap_disabled(interp);
5055
5056         if (allow_defer && target->defer_examine) {
5057                 LOG_INFO("Deferring arp_examine of %s", target_name(target));
5058                 LOG_INFO("Use arp_examine command to examine it manually!");
5059                 return JIM_OK;
5060         }
5061
5062         int e = target->type->examine(target);
5063         if (e != ERROR_OK)
5064                 return JIM_ERR;
5065         return JIM_OK;
5066 }
5067
5068 static int jim_target_was_examined(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
5069 {
5070         struct target *target = Jim_CmdPrivData(interp);
5071
5072         Jim_SetResultBool(interp, target_was_examined(target));
5073         return JIM_OK;
5074 }
5075
5076 static int jim_target_examine_deferred(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
5077 {
5078         struct target *target = Jim_CmdPrivData(interp);
5079
5080         Jim_SetResultBool(interp, target->defer_examine);
5081         return JIM_OK;
5082 }
5083
5084 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5085 {
5086         if (argc != 1) {
5087                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5088                 return JIM_ERR;
5089         }
5090         struct target *target = Jim_CmdPrivData(interp);
5091
5092         if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
5093                 return JIM_ERR;
5094
5095         return JIM_OK;
5096 }
5097
5098 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5099 {
5100         if (argc != 1) {
5101                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5102                 return JIM_ERR;
5103         }
5104         struct target *target = Jim_CmdPrivData(interp);
5105         if (!target->tap->enabled)
5106                 return jim_target_tap_disabled(interp);
5107
5108         int e;
5109         if (!(target_was_examined(target)))
5110                 e = ERROR_TARGET_NOT_EXAMINED;
5111         else
5112                 e = target->type->poll(target);
5113         if (e != ERROR_OK)
5114                 return JIM_ERR;
5115         return JIM_OK;
5116 }
5117
5118 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5119 {
5120         Jim_GetOptInfo goi;
5121         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5122
5123         if (goi.argc != 2) {
5124                 Jim_WrongNumArgs(interp, 0, argv,
5125                                 "([tT]|[fF]|assert|deassert) BOOL");
5126                 return JIM_ERR;
5127         }
5128
5129         Jim_Nvp *n;
5130         int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
5131         if (e != JIM_OK) {
5132                 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
5133                 return e;
5134         }
5135         /* the halt or not param */
5136         jim_wide a;
5137         e = Jim_GetOpt_Wide(&goi, &a);
5138         if (e != JIM_OK)
5139                 return e;
5140
5141         struct target *target = Jim_CmdPrivData(goi.interp);
5142         if (!target->tap->enabled)
5143                 return jim_target_tap_disabled(interp);
5144
5145         if (!target->type->assert_reset || !target->type->deassert_reset) {
5146                 Jim_SetResultFormatted(interp,
5147                                 "No target-specific reset for %s",
5148                                 target_name(target));
5149                 return JIM_ERR;
5150         }
5151
5152         if (target->defer_examine)
5153                 target_reset_examined(target);
5154
5155         /* determine if we should halt or not. */
5156         target->reset_halt = !!a;
5157         /* When this happens - all workareas are invalid. */
5158         target_free_all_working_areas_restore(target, 0);
5159
5160         /* do the assert */
5161         if (n->value == NVP_ASSERT)
5162                 e = target->type->assert_reset(target);
5163         else
5164                 e = target->type->deassert_reset(target);
5165         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
5166 }
5167
5168 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5169 {
5170         if (argc != 1) {
5171                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5172                 return JIM_ERR;
5173         }
5174         struct target *target = Jim_CmdPrivData(interp);
5175         if (!target->tap->enabled)
5176                 return jim_target_tap_disabled(interp);
5177         int e = target->type->halt(target);
5178         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
5179 }
5180
5181 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5182 {
5183         Jim_GetOptInfo goi;
5184         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5185
5186         /* params:  <name>  statename timeoutmsecs */
5187         if (goi.argc != 2) {
5188                 const char *cmd_name = Jim_GetString(argv[0], NULL);
5189                 Jim_SetResultFormatted(goi.interp,
5190                                 "%s <state_name> <timeout_in_msec>", cmd_name);
5191                 return JIM_ERR;
5192         }
5193
5194         Jim_Nvp *n;
5195         int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
5196         if (e != JIM_OK) {
5197                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state, 1);
5198                 return e;
5199         }
5200         jim_wide a;
5201         e = Jim_GetOpt_Wide(&goi, &a);
5202         if (e != JIM_OK)
5203                 return e;
5204         struct target *target = Jim_CmdPrivData(interp);
5205         if (!target->tap->enabled)
5206                 return jim_target_tap_disabled(interp);
5207
5208         e = target_wait_state(target, n->value, a);
5209         if (e != ERROR_OK) {
5210                 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
5211                 Jim_SetResultFormatted(goi.interp,
5212                                 "target: %s wait %s fails (%#s) %s",
5213                                 target_name(target), n->name,
5214                                 eObj, target_strerror_safe(e));
5215                 Jim_FreeNewObj(interp, eObj);
5216                 return JIM_ERR;
5217         }
5218         return JIM_OK;
5219 }
5220 /* List for human, Events defined for this target.
5221  * scripts/programs should use 'name cget -event NAME'
5222  */
5223 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5224 {
5225         struct command_context *cmd_ctx = current_command_context(interp);
5226         assert(cmd_ctx != NULL);
5227
5228         struct target *target = Jim_CmdPrivData(interp);
5229         struct target_event_action *teap = target->event_action;
5230         command_print(cmd_ctx, "Event actions for target (%d) %s\n",
5231                                    target->target_number,
5232                                    target_name(target));
5233         command_print(cmd_ctx, "%-25s | Body", "Event");
5234         command_print(cmd_ctx, "------------------------- | "
5235                         "----------------------------------------");
5236         while (teap) {
5237                 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
5238                 command_print(cmd_ctx, "%-25s | %s",
5239                                 opt->name, Jim_GetString(teap->body, NULL));
5240                 teap = teap->next;
5241         }
5242         command_print(cmd_ctx, "***END***");
5243         return JIM_OK;
5244 }
5245 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5246 {
5247         if (argc != 1) {
5248                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5249                 return JIM_ERR;
5250         }
5251         struct target *target = Jim_CmdPrivData(interp);
5252         Jim_SetResultString(interp, target_state_name(target), -1);
5253         return JIM_OK;
5254 }
5255 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5256 {
5257         Jim_GetOptInfo goi;
5258         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5259         if (goi.argc != 1) {
5260                 const char *cmd_name = Jim_GetString(argv[0], NULL);
5261                 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
5262                 return JIM_ERR;
5263         }
5264         Jim_Nvp *n;
5265         int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
5266         if (e != JIM_OK) {
5267                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
5268                 return e;
5269         }
5270         struct target *target = Jim_CmdPrivData(interp);
5271         target_handle_event(target, n->value);
5272         return JIM_OK;
5273 }
5274
5275 static const struct command_registration target_instance_command_handlers[] = {
5276         {
5277                 .name = "configure",
5278                 .mode = COMMAND_CONFIG,
5279                 .jim_handler = jim_target_configure,
5280                 .help  = "configure a new target for use",
5281                 .usage = "[target_attribute ...]",
5282         },
5283         {
5284                 .name = "cget",
5285                 .mode = COMMAND_ANY,
5286                 .jim_handler = jim_target_configure,
5287                 .help  = "returns the specified target attribute",
5288                 .usage = "target_attribute",
5289         },
5290         {
5291                 .name = "mww",
5292                 .mode = COMMAND_EXEC,
5293                 .jim_handler = jim_target_mw,
5294                 .help = "Write 32-bit word(s) to target memory",
5295                 .usage = "address data [count]",
5296         },
5297         {
5298                 .name = "mwh",
5299                 .mode = COMMAND_EXEC,
5300                 .jim_handler = jim_target_mw,
5301                 .help = "Write 16-bit half-word(s) to target memory",
5302                 .usage = "address data [count]",
5303         },
5304         {
5305                 .name = "mwb",
5306                 .mode = COMMAND_EXEC,
5307                 .jim_handler = jim_target_mw,
5308                 .help = "Write byte(s) to target memory",
5309                 .usage = "address data [count]",
5310         },
5311         {
5312                 .name = "mdw",
5313                 .mode = COMMAND_EXEC,
5314                 .jim_handler = jim_target_md,
5315                 .help = "Display target memory as 32-bit words",
5316                 .usage = "address [count]",
5317         },
5318         {
5319                 .name = "mdh",
5320                 .mode = COMMAND_EXEC,
5321                 .jim_handler = jim_target_md,
5322                 .help = "Display target memory as 16-bit half-words",
5323                 .usage = "address [count]",
5324         },
5325         {
5326                 .name = "mdb",
5327                 .mode = COMMAND_EXEC,
5328                 .jim_handler = jim_target_md,
5329                 .help = "Display target memory as 8-bit bytes",
5330                 .usage = "address [count]",
5331         },
5332         {
5333                 .name = "array2mem",
5334                 .mode = COMMAND_EXEC,
5335                 .jim_handler = jim_target_array2mem,
5336                 .help = "Writes Tcl array of 8/16/32 bit numbers "
5337                         "to target memory",
5338                 .usage = "arrayname bitwidth address count",
5339         },
5340         {
5341                 .name = "mem2array",
5342                 .mode = COMMAND_EXEC,
5343                 .jim_handler = jim_target_mem2array,
5344                 .help = "Loads Tcl array of 8/16/32 bit numbers "
5345                         "from target memory",
5346                 .usage = "arrayname bitwidth address count",
5347         },
5348         {
5349                 .name = "eventlist",
5350                 .mode = COMMAND_EXEC,
5351                 .jim_handler = jim_target_event_list,
5352                 .help = "displays a table of events defined for this target",
5353         },
5354         {
5355                 .name = "curstate",
5356                 .mode = COMMAND_EXEC,
5357                 .jim_handler = jim_target_current_state,
5358                 .help = "displays the current state of this target",
5359         },
5360         {
5361                 .name = "arp_examine",
5362                 .mode = COMMAND_EXEC,
5363                 .jim_handler = jim_target_examine,
5364                 .help = "used internally for reset processing",
5365                 .usage = "arp_examine ['allow-defer']",
5366         },
5367         {
5368                 .name = "was_examined",
5369                 .mode = COMMAND_EXEC,
5370                 .jim_handler = jim_target_was_examined,
5371                 .help = "used internally for reset processing",
5372                 .usage = "was_examined",
5373         },
5374         {
5375                 .name = "examine_deferred",
5376                 .mode = COMMAND_EXEC,
5377                 .jim_handler = jim_target_examine_deferred,
5378                 .help = "used internally for reset processing",
5379                 .usage = "examine_deferred",
5380         },
5381         {
5382                 .name = "arp_halt_gdb",
5383                 .mode = COMMAND_EXEC,
5384                 .jim_handler = jim_target_halt_gdb,
5385                 .help = "used internally for reset processing to halt GDB",
5386         },
5387         {
5388                 .name = "arp_poll",
5389                 .mode = COMMAND_EXEC,
5390                 .jim_handler = jim_target_poll,
5391                 .help = "used internally for reset processing",
5392         },
5393         {
5394                 .name = "arp_reset",
5395                 .mode = COMMAND_EXEC,
5396                 .jim_handler = jim_target_reset,
5397                 .help = "used internally for reset processing",
5398         },
5399         {
5400                 .name = "arp_halt",
5401                 .mode = COMMAND_EXEC,
5402                 .jim_handler = jim_target_halt,
5403                 .help = "used internally for reset processing",
5404         },
5405         {
5406                 .name = "arp_waitstate",
5407                 .mode = COMMAND_EXEC,
5408                 .jim_handler = jim_target_wait_state,
5409                 .help = "used internally for reset processing",
5410         },
5411         {
5412                 .name = "invoke-event",
5413                 .mode = COMMAND_EXEC,
5414                 .jim_handler = jim_target_invoke_event,
5415                 .help = "invoke handler for specified event",
5416                 .usage = "event_name",
5417         },
5418         COMMAND_REGISTRATION_DONE
5419 };
5420
5421 static int target_create(Jim_GetOptInfo *goi)
5422 {
5423         Jim_Obj *new_cmd;
5424         Jim_Cmd *cmd;
5425         const char *cp;
5426         int e;
5427         int x;
5428         struct target *target;
5429         struct command_context *cmd_ctx;
5430
5431         cmd_ctx = current_command_context(goi->interp);
5432         assert(cmd_ctx != NULL);
5433
5434         if (goi->argc < 3) {
5435                 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
5436                 return JIM_ERR;
5437         }
5438
5439         /* COMMAND */
5440         Jim_GetOpt_Obj(goi, &new_cmd);
5441         /* does this command exist? */
5442         cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
5443         if (cmd) {
5444                 cp = Jim_GetString(new_cmd, NULL);
5445                 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
5446                 return JIM_ERR;
5447         }
5448
5449         /* TYPE */
5450         e = Jim_GetOpt_String(goi, &cp, NULL);
5451         if (e != JIM_OK)
5452                 return e;
5453         struct transport *tr = get_current_transport();
5454         if (tr->override_target) {
5455                 e = tr->override_target(&cp);
5456                 if (e != ERROR_OK) {
5457                         LOG_ERROR("The selected transport doesn't support this target");
5458                         return JIM_ERR;
5459                 }
5460                 LOG_INFO("The selected transport took over low-level target control. The results might differ compared to plain JTAG/SWD");
5461         }
5462         /* now does target type exist */
5463         for (x = 0 ; target_types[x] ; x++) {
5464                 if (0 == strcmp(cp, target_types[x]->name)) {
5465                         /* found */
5466                         break;
5467                 }
5468
5469                 /* check for deprecated name */
5470                 if (target_types[x]->deprecated_name) {
5471                         if (0 == strcmp(cp, target_types[x]->deprecated_name)) {
5472                                 /* found */
5473                                 LOG_WARNING("target name is deprecated use: \'%s\'", target_types[x]->name);
5474                                 break;
5475                         }
5476                 }
5477         }
5478         if (target_types[x] == NULL) {
5479                 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
5480                 for (x = 0 ; target_types[x] ; x++) {
5481                         if (target_types[x + 1]) {
5482                                 Jim_AppendStrings(goi->interp,
5483                                                                    Jim_GetResult(goi->interp),
5484                                                                    target_types[x]->name,
5485                                                                    ", ", NULL);
5486                         } else {
5487                                 Jim_AppendStrings(goi->interp,
5488                                                                    Jim_GetResult(goi->interp),
5489                                                                    " or ",
5490                                                                    target_types[x]->name, NULL);
5491                         }
5492                 }
5493                 return JIM_ERR;
5494         }
5495
5496         /* Create it */
5497         target = calloc(1, sizeof(struct target));
5498         /* set target number */
5499         target->target_number = new_target_number();
5500         cmd_ctx->current_target = target->target_number;
5501
5502         /* allocate memory for each unique target type */
5503         target->type = calloc(1, sizeof(struct target_type));
5504
5505         memcpy(target->type, target_types[x], sizeof(struct target_type));
5506
5507         /* will be set by "-endian" */
5508         target->endianness = TARGET_ENDIAN_UNKNOWN;
5509
5510         /* default to first core, override with -coreid */
5511         target->coreid = 0;
5512
5513         target->working_area        = 0x0;
5514         target->working_area_size   = 0x0;
5515         target->working_areas       = NULL;
5516         target->backup_working_area = 0;
5517
5518         target->state               = TARGET_UNKNOWN;
5519         target->debug_reason        = DBG_REASON_UNDEFINED;
5520         target->reg_cache           = NULL;
5521         target->breakpoints         = NULL;
5522         target->watchpoints         = NULL;
5523         target->next                = NULL;
5524         target->arch_info           = NULL;
5525
5526         target->display             = 1;
5527
5528         target->halt_issued                     = false;
5529
5530         /* initialize trace information */
5531         target->trace_info = calloc(1, sizeof(struct trace));
5532
5533         target->dbgmsg          = NULL;
5534         target->dbg_msg_enabled = 0;
5535
5536         target->endianness = TARGET_ENDIAN_UNKNOWN;
5537
5538         target->rtos = NULL;
5539         target->rtos_auto_detect = false;
5540
5541         /* Do the rest as "configure" options */
5542         goi->isconfigure = 1;
5543         e = target_configure(goi, target);
5544
5545         if (target->tap == NULL) {
5546                 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
5547                 e = JIM_ERR;
5548         }
5549
5550         if (e != JIM_OK) {
5551                 free(target->type);
5552                 free(target);
5553                 return e;
5554         }
5555
5556         if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
5557                 /* default endian to little if not specified */
5558                 target->endianness = TARGET_LITTLE_ENDIAN;
5559         }
5560
5561         cp = Jim_GetString(new_cmd, NULL);
5562         target->cmd_name = strdup(cp);
5563
5564         /* create the target specific commands */
5565         if (target->type->commands) {
5566                 e = register_commands(cmd_ctx, NULL, target->type->commands);
5567                 if (ERROR_OK != e)
5568                         LOG_ERROR("unable to register '%s' commands", cp);
5569         }
5570         if (target->type->target_create)
5571                 (*(target->type->target_create))(target, goi->interp);
5572
5573         /* append to end of list */
5574         {
5575                 struct target **tpp;
5576                 tpp = &(all_targets);
5577                 while (*tpp)
5578                         tpp = &((*tpp)->next);
5579                 *tpp = target;
5580         }
5581
5582         /* now - create the new target name command */
5583         const struct command_registration target_subcommands[] = {
5584                 {
5585                         .chain = target_instance_command_handlers,
5586                 },
5587                 {
5588                         .chain = target->type->commands,
5589                 },
5590                 COMMAND_REGISTRATION_DONE
5591         };
5592         const struct command_registration target_commands[] = {
5593                 {
5594                         .name = cp,
5595                         .mode = COMMAND_ANY,
5596                         .help = "target command group",
5597                         .usage = "",
5598                         .chain = target_subcommands,
5599                 },
5600                 COMMAND_REGISTRATION_DONE
5601         };
5602         e = register_commands(cmd_ctx, NULL, target_commands);
5603         if (ERROR_OK != e)
5604                 return JIM_ERR;
5605
5606         struct command *c = command_find_in_context(cmd_ctx, cp);
5607         assert(c);
5608         command_set_handler_data(c, target);
5609
5610         return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
5611 }
5612
5613 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5614 {
5615         if (argc != 1) {
5616                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5617                 return JIM_ERR;
5618         }
5619         struct command_context *cmd_ctx = current_command_context(interp);
5620         assert(cmd_ctx != NULL);
5621
5622         Jim_SetResultString(interp, target_name(get_current_target(cmd_ctx)), -1);
5623         return JIM_OK;
5624 }
5625
5626 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5627 {
5628         if (argc != 1) {
5629                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5630                 return JIM_ERR;
5631         }
5632         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5633         for (unsigned x = 0; NULL != target_types[x]; x++) {
5634                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5635                         Jim_NewStringObj(interp, target_types[x]->name, -1));
5636         }
5637         return JIM_OK;
5638 }
5639
5640 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5641 {
5642         if (argc != 1) {
5643                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5644                 return JIM_ERR;
5645         }
5646         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5647         struct target *target = all_targets;
5648         while (target) {
5649                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5650                         Jim_NewStringObj(interp, target_name(target), -1));
5651                 target = target->next;
5652         }
5653         return JIM_OK;
5654 }
5655
5656 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5657 {
5658         int i;
5659         const char *targetname;
5660         int retval, len;
5661         struct target *target = (struct target *) NULL;
5662         struct target_list *head, *curr, *new;
5663         curr = (struct target_list *) NULL;
5664         head = (struct target_list *) NULL;
5665
5666         retval = 0;
5667         LOG_DEBUG("%d", argc);
5668         /* argv[1] = target to associate in smp
5669          * argv[2] = target to assoicate in smp
5670          * argv[3] ...
5671          */
5672
5673         for (i = 1; i < argc; i++) {
5674
5675                 targetname = Jim_GetString(argv[i], &len);
5676                 target = get_target(targetname);
5677                 LOG_DEBUG("%s ", targetname);
5678                 if (target) {
5679                         new = malloc(sizeof(struct target_list));
5680                         new->target = target;
5681                         new->next = (struct target_list *)NULL;
5682                         if (head == (struct target_list *)NULL) {
5683                                 head = new;
5684                                 curr = head;
5685                         } else {
5686                                 curr->next = new;
5687                                 curr = new;
5688                         }
5689                 }
5690         }
5691         /*  now parse the list of cpu and put the target in smp mode*/
5692         curr = head;
5693
5694         while (curr != (struct target_list *)NULL) {
5695                 target = curr->target;
5696                 target->smp = 1;
5697                 target->head = head;
5698                 curr = curr->next;
5699         }
5700
5701         if (target && target->rtos)
5702                 retval = rtos_smp_init(head->target);
5703
5704         return retval;
5705 }
5706
5707
5708 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5709 {
5710         Jim_GetOptInfo goi;
5711         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5712         if (goi.argc < 3) {
5713                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5714                         "<name> <target_type> [<target_options> ...]");
5715                 return JIM_ERR;
5716         }
5717         return target_create(&goi);
5718 }
5719
5720 static const struct command_registration target_subcommand_handlers[] = {
5721         {
5722                 .name = "init",
5723                 .mode = COMMAND_CONFIG,
5724                 .handler = handle_target_init_command,
5725                 .help = "initialize targets",
5726         },
5727         {
5728                 .name = "create",
5729                 /* REVISIT this should be COMMAND_CONFIG ... */
5730                 .mode = COMMAND_ANY,
5731                 .jim_handler = jim_target_create,
5732                 .usage = "name type '-chain-position' name [options ...]",
5733                 .help = "Creates and selects a new target",
5734         },
5735         {
5736                 .name = "current",
5737                 .mode = COMMAND_ANY,
5738                 .jim_handler = jim_target_current,
5739                 .help = "Returns the currently selected target",
5740         },
5741         {
5742                 .name = "types",
5743                 .mode = COMMAND_ANY,
5744                 .jim_handler = jim_target_types,
5745                 .help = "Returns the available target types as "
5746                                 "a list of strings",
5747         },
5748         {
5749                 .name = "names",
5750                 .mode = COMMAND_ANY,
5751                 .jim_handler = jim_target_names,
5752                 .help = "Returns the names of all targets as a list of strings",
5753         },
5754         {
5755                 .name = "smp",
5756                 .mode = COMMAND_ANY,
5757                 .jim_handler = jim_target_smp,
5758                 .usage = "targetname1 targetname2 ...",
5759                 .help = "gather several target in a smp list"
5760         },
5761
5762         COMMAND_REGISTRATION_DONE
5763 };
5764
5765 struct FastLoad {
5766         target_addr_t address;
5767         uint8_t *data;
5768         int length;
5769
5770 };
5771
5772 static int fastload_num;
5773 static struct FastLoad *fastload;
5774
5775 static void free_fastload(void)
5776 {
5777         if (fastload != NULL) {
5778                 int i;
5779                 for (i = 0; i < fastload_num; i++) {
5780                         if (fastload[i].data)
5781                                 free(fastload[i].data);
5782                 }
5783                 free(fastload);
5784                 fastload = NULL;
5785         }
5786 }
5787
5788 COMMAND_HANDLER(handle_fast_load_image_command)
5789 {
5790         uint8_t *buffer;
5791         size_t buf_cnt;
5792         uint32_t image_size;
5793         target_addr_t min_address = 0;
5794         target_addr_t max_address = -1;
5795         int i;
5796
5797         struct image image;
5798
5799         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
5800                         &image, &min_address, &max_address);
5801         if (ERROR_OK != retval)
5802                 return retval;
5803
5804         struct duration bench;
5805         duration_start(&bench);
5806
5807         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
5808         if (retval != ERROR_OK)
5809                 return retval;
5810
5811         image_size = 0x0;
5812         retval = ERROR_OK;
5813         fastload_num = image.num_sections;
5814         fastload = malloc(sizeof(struct FastLoad)*image.num_sections);
5815         if (fastload == NULL) {
5816                 command_print(CMD_CTX, "out of memory");
5817                 image_close(&image);
5818                 return ERROR_FAIL;
5819         }
5820         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
5821         for (i = 0; i < image.num_sections; i++) {
5822                 buffer = malloc(image.sections[i].size);
5823                 if (buffer == NULL) {
5824                         command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5825                                                   (int)(image.sections[i].size));
5826                         retval = ERROR_FAIL;
5827                         break;
5828                 }
5829
5830                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
5831                 if (retval != ERROR_OK) {
5832                         free(buffer);
5833                         break;
5834                 }
5835
5836                 uint32_t offset = 0;
5837                 uint32_t length = buf_cnt;
5838
5839                 /* DANGER!!! beware of unsigned comparision here!!! */
5840
5841                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
5842                                 (image.sections[i].base_address < max_address)) {
5843                         if (image.sections[i].base_address < min_address) {
5844                                 /* clip addresses below */
5845                                 offset += min_address-image.sections[i].base_address;
5846                                 length -= offset;
5847                         }
5848
5849                         if (image.sections[i].base_address + buf_cnt > max_address)
5850                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5851
5852                         fastload[i].address = image.sections[i].base_address + offset;
5853                         fastload[i].data = malloc(length);
5854                         if (fastload[i].data == NULL) {
5855                                 free(buffer);
5856                                 command_print(CMD_CTX, "error allocating buffer for section (%" PRIu32 " bytes)",
5857                                                           length);
5858                                 retval = ERROR_FAIL;
5859                                 break;
5860                         }
5861                         memcpy(fastload[i].data, buffer + offset, length);
5862                         fastload[i].length = length;
5863
5864                         image_size += length;
5865                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
5866                                                   (unsigned int)length,
5867                                                   ((unsigned int)(image.sections[i].base_address + offset)));
5868                 }
5869
5870                 free(buffer);
5871         }
5872
5873         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
5874                 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
5875                                 "in %fs (%0.3f KiB/s)", image_size,
5876                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5877
5878                 command_print(CMD_CTX,
5879                                 "WARNING: image has not been loaded to target!"
5880                                 "You can issue a 'fast_load' to finish loading.");
5881         }
5882
5883         image_close(&image);
5884
5885         if (retval != ERROR_OK)
5886                 free_fastload();
5887
5888         return retval;
5889 }
5890
5891 COMMAND_HANDLER(handle_fast_load_command)
5892 {
5893         if (CMD_ARGC > 0)
5894                 return ERROR_COMMAND_SYNTAX_ERROR;
5895         if (fastload == NULL) {
5896                 LOG_ERROR("No image in memory");
5897                 return ERROR_FAIL;
5898         }
5899         int i;
5900         int64_t ms = timeval_ms();
5901         int size = 0;
5902         int retval = ERROR_OK;
5903         for (i = 0; i < fastload_num; i++) {
5904                 struct target *target = get_current_target(CMD_CTX);
5905                 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
5906                                           (unsigned int)(fastload[i].address),
5907                                           (unsigned int)(fastload[i].length));
5908                 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5909                 if (retval != ERROR_OK)
5910                         break;
5911                 size += fastload[i].length;
5912         }
5913         if (retval == ERROR_OK) {
5914                 int64_t after = timeval_ms();
5915                 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5916         }
5917         return retval;
5918 }
5919
5920 static const struct command_registration target_command_handlers[] = {
5921         {
5922                 .name = "targets",
5923                 .handler = handle_targets_command,
5924                 .mode = COMMAND_ANY,
5925                 .help = "change current default target (one parameter) "
5926                         "or prints table of all targets (no parameters)",
5927                 .usage = "[target]",
5928         },
5929         {
5930                 .name = "target",
5931                 .mode = COMMAND_CONFIG,
5932                 .help = "configure target",
5933
5934                 .chain = target_subcommand_handlers,
5935         },
5936         COMMAND_REGISTRATION_DONE
5937 };
5938
5939 int target_register_commands(struct command_context *cmd_ctx)
5940 {
5941         return register_commands(cmd_ctx, NULL, target_command_handlers);
5942 }
5943
5944 static bool target_reset_nag = true;
5945
5946 bool get_target_reset_nag(void)
5947 {
5948         return target_reset_nag;
5949 }
5950
5951 COMMAND_HANDLER(handle_target_reset_nag)
5952 {
5953         return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5954                         &target_reset_nag, "Nag after each reset about options to improve "
5955                         "performance");
5956 }
5957
5958 COMMAND_HANDLER(handle_ps_command)
5959 {
5960         struct target *target = get_current_target(CMD_CTX);
5961         char *display;
5962         if (target->state != TARGET_HALTED) {
5963                 LOG_INFO("target not halted !!");
5964                 return ERROR_OK;
5965         }
5966
5967         if ((target->rtos) && (target->rtos->type)
5968                         && (target->rtos->type->ps_command)) {
5969                 display = target->rtos->type->ps_command(target);
5970                 command_print(CMD_CTX, "%s", display);
5971                 free(display);
5972                 return ERROR_OK;
5973         } else {
5974                 LOG_INFO("failed");
5975                 return ERROR_TARGET_FAILURE;
5976         }
5977 }
5978
5979 static void binprint(struct command_context *cmd_ctx, const char *text, const uint8_t *buf, int size)
5980 {
5981         if (text != NULL)
5982                 command_print_sameline(cmd_ctx, "%s", text);
5983         for (int i = 0; i < size; i++)
5984                 command_print_sameline(cmd_ctx, " %02x", buf[i]);
5985         command_print(cmd_ctx, " ");
5986 }
5987
5988 COMMAND_HANDLER(handle_test_mem_access_command)
5989 {
5990         struct target *target = get_current_target(CMD_CTX);
5991         uint32_t test_size;
5992         int retval = ERROR_OK;
5993
5994         if (target->state != TARGET_HALTED) {
5995                 LOG_INFO("target not halted !!");
5996                 return ERROR_FAIL;
5997         }
5998
5999         if (CMD_ARGC != 1)
6000                 return ERROR_COMMAND_SYNTAX_ERROR;
6001
6002         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], test_size);
6003
6004         /* Test reads */
6005         size_t num_bytes = test_size + 4;
6006
6007         struct working_area *wa = NULL;
6008         retval = target_alloc_working_area(target, num_bytes, &wa);
6009         if (retval != ERROR_OK) {
6010                 LOG_ERROR("Not enough working area");
6011                 return ERROR_FAIL;
6012         }
6013
6014         uint8_t *test_pattern = malloc(num_bytes);
6015
6016         for (size_t i = 0; i < num_bytes; i++)
6017                 test_pattern[i] = rand();
6018
6019         retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
6020         if (retval != ERROR_OK) {
6021                 LOG_ERROR("Test pattern write failed");
6022                 goto out;
6023         }
6024
6025         for (int host_offset = 0; host_offset <= 1; host_offset++) {
6026                 for (int size = 1; size <= 4; size *= 2) {
6027                         for (int offset = 0; offset < 4; offset++) {
6028                                 uint32_t count = test_size / size;
6029                                 size_t host_bufsiz = (count + 2) * size + host_offset;
6030                                 uint8_t *read_ref = malloc(host_bufsiz);
6031                                 uint8_t *read_buf = malloc(host_bufsiz);
6032
6033                                 for (size_t i = 0; i < host_bufsiz; i++) {
6034                                         read_ref[i] = rand();
6035                                         read_buf[i] = read_ref[i];
6036                                 }
6037                                 command_print_sameline(CMD_CTX,
6038                                                 "Test read %" PRIu32 " x %d @ %d to %saligned buffer: ", count,
6039                                                 size, offset, host_offset ? "un" : "");
6040
6041                                 struct duration bench;
6042                                 duration_start(&bench);
6043
6044                                 retval = target_read_memory(target, wa->address + offset, size, count,
6045                                                 read_buf + size + host_offset);
6046
6047                                 duration_measure(&bench);
6048
6049                                 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
6050                                         command_print(CMD_CTX, "Unsupported alignment");
6051                                         goto next;
6052                                 } else if (retval != ERROR_OK) {
6053                                         command_print(CMD_CTX, "Memory read failed");
6054                                         goto next;
6055                                 }
6056
6057                                 /* replay on host */
6058                                 memcpy(read_ref + size + host_offset, test_pattern + offset, count * size);
6059
6060                                 /* check result */
6061                                 int result = memcmp(read_ref, read_buf, host_bufsiz);
6062                                 if (result == 0) {
6063                                         command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
6064                                                         duration_elapsed(&bench),
6065                                                         duration_kbps(&bench, count * size));
6066                                 } else {
6067                                         command_print(CMD_CTX, "Compare failed");
6068                                         binprint(CMD_CTX, "ref:", read_ref, host_bufsiz);
6069                                         binprint(CMD_CTX, "buf:", read_buf, host_bufsiz);
6070                                 }
6071 next:
6072                                 free(read_ref);
6073                                 free(read_buf);
6074                         }
6075                 }
6076         }
6077
6078 out:
6079         free(test_pattern);
6080
6081         if (wa != NULL)
6082                 target_free_working_area(target, wa);
6083
6084         /* Test writes */
6085         num_bytes = test_size + 4 + 4 + 4;
6086
6087         retval = target_alloc_working_area(target, num_bytes, &wa);
6088         if (retval != ERROR_OK) {
6089                 LOG_ERROR("Not enough working area");
6090                 return ERROR_FAIL;
6091         }
6092
6093         test_pattern = malloc(num_bytes);
6094
6095         for (size_t i = 0; i < num_bytes; i++)
6096                 test_pattern[i] = rand();
6097
6098         for (int host_offset = 0; host_offset <= 1; host_offset++) {
6099                 for (int size = 1; size <= 4; size *= 2) {
6100                         for (int offset = 0; offset < 4; offset++) {
6101                                 uint32_t count = test_size / size;
6102                                 size_t host_bufsiz = count * size + host_offset;
6103                                 uint8_t *read_ref = malloc(num_bytes);
6104                                 uint8_t *read_buf = malloc(num_bytes);
6105                                 uint8_t *write_buf = malloc(host_bufsiz);
6106
6107                                 for (size_t i = 0; i < host_bufsiz; i++)
6108                                         write_buf[i] = rand();
6109                                 command_print_sameline(CMD_CTX,
6110                                                 "Test write %" PRIu32 " x %d @ %d from %saligned buffer: ", count,
6111                                                 size, offset, host_offset ? "un" : "");
6112
6113                                 retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
6114                                 if (retval != ERROR_OK) {
6115                                         command_print(CMD_CTX, "Test pattern write failed");
6116                                         goto nextw;
6117                                 }
6118
6119                                 /* replay on host */
6120                                 memcpy(read_ref, test_pattern, num_bytes);
6121                                 memcpy(read_ref + size + offset, write_buf + host_offset, count * size);
6122
6123                                 struct duration bench;
6124                                 duration_start(&bench);
6125
6126                                 retval = target_write_memory(target, wa->address + size + offset, size, count,
6127                                                 write_buf + host_offset);
6128
6129                                 duration_measure(&bench);
6130
6131                                 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
6132                                         command_print(CMD_CTX, "Unsupported alignment");
6133                                         goto nextw;
6134                                 } else if (retval != ERROR_OK) {
6135                                         command_print(CMD_CTX, "Memory write failed");
6136                                         goto nextw;
6137                                 }
6138
6139                                 /* read back */
6140                                 retval = target_read_memory(target, wa->address, 1, num_bytes, read_buf);
6141                                 if (retval != ERROR_OK) {
6142                                         command_print(CMD_CTX, "Test pattern write failed");
6143                                         goto nextw;
6144                                 }
6145
6146                                 /* check result */
6147                                 int result = memcmp(read_ref, read_buf, num_bytes);
6148                                 if (result == 0) {
6149                                         command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
6150                                                         duration_elapsed(&bench),
6151                                                         duration_kbps(&bench, count * size));
6152                                 } else {
6153                                         command_print(CMD_CTX, "Compare failed");
6154                                         binprint(CMD_CTX, "ref:", read_ref, num_bytes);
6155                                         binprint(CMD_CTX, "buf:", read_buf, num_bytes);
6156                                 }
6157 nextw:
6158                                 free(read_ref);
6159                                 free(read_buf);
6160                         }
6161                 }
6162         }
6163
6164         free(test_pattern);
6165
6166         if (wa != NULL)
6167                 target_free_working_area(target, wa);
6168         return retval;
6169 }
6170
6171 static const struct command_registration target_exec_command_handlers[] = {
6172         {
6173                 .name = "fast_load_image",
6174                 .handler = handle_fast_load_image_command,
6175                 .mode = COMMAND_ANY,
6176                 .help = "Load image into server memory for later use by "
6177                         "fast_load; primarily for profiling",
6178                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6179                         "[min_address [max_length]]",
6180         },
6181         {
6182                 .name = "fast_load",
6183                 .handler = handle_fast_load_command,
6184                 .mode = COMMAND_EXEC,
6185                 .help = "loads active fast load image to current target "
6186                         "- mainly for profiling purposes",
6187                 .usage = "",
6188         },
6189         {
6190                 .name = "profile",
6191                 .handler = handle_profile_command,
6192                 .mode = COMMAND_EXEC,
6193                 .usage = "seconds filename [start end]",
6194                 .help = "profiling samples the CPU PC",
6195         },
6196         /** @todo don't register virt2phys() unless target supports it */
6197         {
6198                 .name = "virt2phys",
6199                 .handler = handle_virt2phys_command,
6200                 .mode = COMMAND_ANY,
6201                 .help = "translate a virtual address into a physical address",
6202                 .usage = "virtual_address",
6203         },
6204         {
6205                 .name = "reg",
6206                 .handler = handle_reg_command,
6207                 .mode = COMMAND_EXEC,
6208                 .help = "display (reread from target with \"force\") or set a register; "
6209                         "with no arguments, displays all registers and their values",
6210                 .usage = "[(register_number|register_name) [(value|'force')]]",
6211         },
6212         {
6213                 .name = "poll",
6214                 .handler = handle_poll_command,
6215                 .mode = COMMAND_EXEC,
6216                 .help = "poll target state; or reconfigure background polling",
6217                 .usage = "['on'|'off']",
6218         },
6219         {
6220                 .name = "wait_halt",
6221                 .handler = handle_wait_halt_command,
6222                 .mode = COMMAND_EXEC,
6223                 .help = "wait up to the specified number of milliseconds "
6224                         "(default 5000) for a previously requested halt",
6225                 .usage = "[milliseconds]",
6226         },
6227         {
6228                 .name = "halt",
6229                 .handler = handle_halt_command,
6230                 .mode = COMMAND_EXEC,
6231                 .help = "request target to halt, then wait up to the specified"
6232                         "number of milliseconds (default 5000) for it to complete",
6233                 .usage = "[milliseconds]",
6234         },
6235         {
6236                 .name = "resume",
6237                 .handler = handle_resume_command,
6238                 .mode = COMMAND_EXEC,
6239                 .help = "resume target execution from current PC or address",
6240                 .usage = "[address]",
6241         },
6242         {
6243                 .name = "reset",
6244                 .handler = handle_reset_command,
6245                 .mode = COMMAND_EXEC,
6246                 .usage = "[run|halt|init]",
6247                 .help = "Reset all targets into the specified mode."
6248                         "Default reset mode is run, if not given.",
6249         },
6250         {
6251                 .name = "soft_reset_halt",
6252                 .handler = handle_soft_reset_halt_command,
6253                 .mode = COMMAND_EXEC,
6254                 .usage = "",
6255                 .help = "halt the target and do a soft reset",
6256         },
6257         {
6258                 .name = "step",
6259                 .handler = handle_step_command,
6260                 .mode = COMMAND_EXEC,
6261                 .help = "step one instruction from current PC or address",
6262                 .usage = "[address]",
6263         },
6264         {
6265                 .name = "mdd",
6266                 .handler = handle_md_command,
6267                 .mode = COMMAND_EXEC,
6268                 .help = "display memory words",
6269                 .usage = "['phys'] address [count]",
6270         },
6271         {
6272                 .name = "mdw",
6273                 .handler = handle_md_command,
6274                 .mode = COMMAND_EXEC,
6275                 .help = "display memory words",
6276                 .usage = "['phys'] address [count]",
6277         },
6278         {
6279                 .name = "mdh",
6280                 .handler = handle_md_command,
6281                 .mode = COMMAND_EXEC,
6282                 .help = "display memory half-words",
6283                 .usage = "['phys'] address [count]",
6284         },
6285         {
6286                 .name = "mdb",
6287                 .handler = handle_md_command,
6288                 .mode = COMMAND_EXEC,
6289                 .help = "display memory bytes",
6290                 .usage = "['phys'] address [count]",
6291         },
6292         {
6293                 .name = "mwd",
6294                 .handler = handle_mw_command,
6295                 .mode = COMMAND_EXEC,
6296                 .help = "write memory word",
6297                 .usage = "['phys'] address value [count]",
6298         },
6299         {
6300                 .name = "mww",
6301                 .handler = handle_mw_command,
6302                 .mode = COMMAND_EXEC,
6303                 .help = "write memory word",
6304                 .usage = "['phys'] address value [count]",
6305         },
6306         {
6307                 .name = "mwh",
6308                 .handler = handle_mw_command,
6309                 .mode = COMMAND_EXEC,
6310                 .help = "write memory half-word",
6311                 .usage = "['phys'] address value [count]",
6312         },
6313         {
6314                 .name = "mwb",
6315                 .handler = handle_mw_command,
6316                 .mode = COMMAND_EXEC,
6317                 .help = "write memory byte",
6318                 .usage = "['phys'] address value [count]",
6319         },
6320         {
6321                 .name = "bp",
6322                 .handler = handle_bp_command,
6323                 .mode = COMMAND_EXEC,
6324                 .help = "list or set hardware or software breakpoint",
6325                 .usage = "<address> [<asid>]<length> ['hw'|'hw_ctx']",
6326         },
6327         {
6328                 .name = "rbp",
6329                 .handler = handle_rbp_command,
6330                 .mode = COMMAND_EXEC,
6331                 .help = "remove breakpoint",
6332                 .usage = "address",
6333         },
6334         {
6335                 .name = "wp",
6336                 .handler = handle_wp_command,
6337                 .mode = COMMAND_EXEC,
6338                 .help = "list (no params) or create watchpoints",
6339                 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
6340         },
6341         {
6342                 .name = "rwp",
6343                 .handler = handle_rwp_command,
6344                 .mode = COMMAND_EXEC,
6345                 .help = "remove watchpoint",
6346                 .usage = "address",
6347         },
6348         {
6349                 .name = "load_image",
6350                 .handler = handle_load_image_command,
6351                 .mode = COMMAND_EXEC,
6352                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6353                         "[min_address] [max_length]",
6354         },
6355         {
6356                 .name = "dump_image",
6357                 .handler = handle_dump_image_command,
6358                 .mode = COMMAND_EXEC,
6359                 .usage = "filename address size",
6360         },
6361         {
6362                 .name = "verify_image_checksum",
6363                 .handler = handle_verify_image_checksum_command,
6364                 .mode = COMMAND_EXEC,
6365                 .usage = "filename [offset [type]]",
6366         },
6367         {
6368                 .name = "verify_image",
6369                 .handler = handle_verify_image_command,
6370                 .mode = COMMAND_EXEC,
6371                 .usage = "filename [offset [type]]",
6372         },
6373         {
6374                 .name = "test_image",
6375                 .handler = handle_test_image_command,
6376                 .mode = COMMAND_EXEC,
6377                 .usage = "filename [offset [type]]",
6378         },
6379         {
6380                 .name = "mem2array",
6381                 .mode = COMMAND_EXEC,
6382                 .jim_handler = jim_mem2array,
6383                 .help = "read 8/16/32 bit memory and return as a TCL array "
6384                         "for script processing",
6385                 .usage = "arrayname bitwidth address count",
6386         },
6387         {
6388                 .name = "array2mem",
6389                 .mode = COMMAND_EXEC,
6390                 .jim_handler = jim_array2mem,
6391                 .help = "convert a TCL array to memory locations "
6392                         "and write the 8/16/32 bit values",
6393                 .usage = "arrayname bitwidth address count",
6394         },
6395         {
6396                 .name = "reset_nag",
6397                 .handler = handle_target_reset_nag,
6398                 .mode = COMMAND_ANY,
6399                 .help = "Nag after each reset about options that could have been "
6400                                 "enabled to improve performance. ",
6401                 .usage = "['enable'|'disable']",
6402         },
6403         {
6404                 .name = "ps",
6405                 .handler = handle_ps_command,
6406                 .mode = COMMAND_EXEC,
6407                 .help = "list all tasks ",
6408                 .usage = " ",
6409         },
6410         {
6411                 .name = "test_mem_access",
6412                 .handler = handle_test_mem_access_command,
6413                 .mode = COMMAND_EXEC,
6414                 .help = "Test the target's memory access functions",
6415                 .usage = "size",
6416         },
6417
6418         COMMAND_REGISTRATION_DONE
6419 };
6420 static int target_register_user_commands(struct command_context *cmd_ctx)
6421 {
6422         int retval = ERROR_OK;
6423         retval = target_request_register_commands(cmd_ctx);
6424         if (retval != ERROR_OK)
6425                 return retval;
6426
6427         retval = trace_register_commands(cmd_ctx);
6428         if (retval != ERROR_OK)
6429                 return retval;
6430
6431
6432         return register_commands(cmd_ctx, NULL, target_exec_command_handlers);
6433 }