- fixed typo in wp command
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   This program is free software; you can redistribute it and/or modify  *
6  *   it under the terms of the GNU General Public License as published by  *
7  *   the Free Software Foundation; either version 2 of the License, or     *
8  *   (at your option) any later version.                                   *
9  *                                                                         *
10  *   This program is distributed in the hope that it will be useful,       *
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
13  *   GNU General Public License for more details.                          *
14  *                                                                         *
15  *   You should have received a copy of the GNU General Public License     *
16  *   along with this program; if not, write to the                         *
17  *   Free Software Foundation, Inc.,                                       *
18  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
19  ***************************************************************************/
20 #ifdef HAVE_CONFIG_H
21 #include "config.h"
22 #endif
23
24 #include "replacements.h"
25 #include "target.h"
26 #include "target_request.h"
27
28 #include "log.h"
29 #include "configuration.h"
30 #include "binarybuffer.h"
31 #include "jtag.h"
32
33 #include <string.h>
34 #include <stdlib.h>
35 #include <inttypes.h>
36
37 #include <sys/types.h>
38 #include <sys/stat.h>
39 #include <unistd.h>
40 #include <errno.h>
41
42 #include <sys/time.h>
43 #include <time.h>
44
45 #include <time_support.h>
46
47 #include <fileio.h>
48 #include <image.h>
49
50 int cli_target_callback_event_handler(struct target_s *target, enum target_event event, void *priv);
51
52
53 int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
54 int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
55
56 int handle_target_script_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
57 int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
58 int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
59
60 int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
61 int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
62 int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
63 int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
64 int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
65 int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
66 int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
67 int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
68 int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
69 int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
70 int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
71 int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
72 int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
73 int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
74 int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
75 int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
76 int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
77 int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc);
78 int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
79
80 /* targets
81  */
82 extern target_type_t arm7tdmi_target;
83 extern target_type_t arm720t_target;
84 extern target_type_t arm9tdmi_target;
85 extern target_type_t arm920t_target;
86 extern target_type_t arm966e_target;
87 extern target_type_t arm926ejs_target;
88 extern target_type_t feroceon_target;
89 extern target_type_t xscale_target;
90 extern target_type_t cortexm3_target;
91 extern target_type_t arm11_target;
92
93 target_type_t *target_types[] =
94 {
95         &arm7tdmi_target,
96         &arm9tdmi_target,
97         &arm920t_target,
98         &arm720t_target,
99         &arm966e_target,
100         &arm926ejs_target,
101         &feroceon_target,
102         &xscale_target,
103         &cortexm3_target,
104         &arm11_target,
105         NULL,
106 };
107
108 target_t *targets = NULL;
109 target_event_callback_t *target_event_callbacks = NULL;
110 target_timer_callback_t *target_timer_callbacks = NULL;
111
112 char *target_state_strings[] =
113 {
114         "unknown",
115         "running",
116         "halted",
117         "reset",
118         "debug_running",
119 };
120
121 char *target_debug_reason_strings[] =
122 {
123         "debug request", "breakpoint", "watchpoint",
124         "watchpoint and breakpoint", "single step",
125         "target not halted", "undefined"
126 };
127
128 char *target_endianess_strings[] =
129 {
130         "big endian",
131         "little endian",
132 };
133
134 static int target_continous_poll = 1;
135
136 /* read a u32 from a buffer in target memory endianness */
137 u32 target_buffer_get_u32(target_t *target, u8 *buffer)
138 {
139         if (target->endianness == TARGET_LITTLE_ENDIAN)
140                 return le_to_h_u32(buffer);
141         else
142                 return be_to_h_u32(buffer);
143 }
144
145 /* read a u16 from a buffer in target memory endianness */
146 u16 target_buffer_get_u16(target_t *target, u8 *buffer)
147 {
148         if (target->endianness == TARGET_LITTLE_ENDIAN)
149                 return le_to_h_u16(buffer);
150         else
151                 return be_to_h_u16(buffer);
152 }
153
154 /* write a u32 to a buffer in target memory endianness */
155 void target_buffer_set_u32(target_t *target, u8 *buffer, u32 value)
156 {
157         if (target->endianness == TARGET_LITTLE_ENDIAN)
158                 h_u32_to_le(buffer, value);
159         else
160                 h_u32_to_be(buffer, value);
161 }
162
163 /* write a u16 to a buffer in target memory endianness */
164 void target_buffer_set_u16(target_t *target, u8 *buffer, u16 value)
165 {
166         if (target->endianness == TARGET_LITTLE_ENDIAN)
167                 h_u16_to_le(buffer, value);
168         else
169                 h_u16_to_be(buffer, value);
170 }
171
172 /* returns a pointer to the n-th configured target */
173 target_t* get_target_by_num(int num)
174 {
175         target_t *target = targets;
176         int i = 0;
177
178         while (target)
179         {
180                 if (num == i)
181                         return target;
182                 target = target->next;
183                 i++;
184         }
185
186         return NULL;
187 }
188
189 int get_num_by_target(target_t *query_target)
190 {
191         target_t *target = targets;
192         int i = 0;      
193         
194         while (target)
195         {
196                 if (target == query_target)
197                         return i;
198                 target = target->next;
199                 i++;
200         }
201         
202         return -1;
203 }
204
205 target_t* get_current_target(command_context_t *cmd_ctx)
206 {
207         target_t *target = get_target_by_num(cmd_ctx->current_target);
208         
209         if (target == NULL)
210         {
211                 LOG_ERROR("BUG: current_target out of bounds");
212                 exit(-1);
213         }
214         
215         return target;
216 }
217
218 /* Process target initialization, when target entered debug out of reset
219  * the handler is unregistered at the end of this function, so it's only called once
220  */
221 int target_init_handler(struct target_s *target, enum target_event event, void *priv)
222 {
223         FILE *script;
224         struct command_context_s *cmd_ctx = priv;
225         
226         if ((event == TARGET_EVENT_HALTED) && (target->reset_script))
227         {
228                 target_unregister_event_callback(target_init_handler, priv);
229
230                 script = open_file_from_path(target->reset_script, "r");
231                 if (!script)
232                 {
233                         LOG_ERROR("couldn't open script file %s", target->reset_script);
234                                 return ERROR_OK;
235                 }
236
237                 LOG_INFO("executing reset script '%s'", target->reset_script);
238                 command_run_file(cmd_ctx, script, COMMAND_EXEC);
239                 fclose(script);
240
241                 jtag_execute_queue();
242         }
243         
244         return ERROR_OK;
245 }
246
247 int target_run_and_halt_handler(void *priv)
248 {
249         target_t *target = priv;
250         
251         target_halt(target);
252         
253         return ERROR_OK;
254 }
255
256 int target_poll(struct target_s *target)
257 {
258         /* We can't poll until after examine */
259         if (!target->type->examined)
260         {
261                 /* Fail silently lest we pollute the log */
262                 return ERROR_FAIL;
263         }
264         return target->type->poll(target);
265 }
266
267 int target_halt(struct target_s *target)
268 {
269         /* We can't poll until after examine */
270         if (!target->type->examined)
271         {
272                 LOG_ERROR("Target not examined yet");
273                 return ERROR_FAIL;
274         }
275         return target->type->halt(target);
276 }
277
278 int target_resume(struct target_s *target, int current, u32 address, int handle_breakpoints, int debug_execution)
279 {
280         /* We can't poll until after examine */
281         if (!target->type->examined)
282         {
283                 LOG_ERROR("Target not examined yet");
284                 return ERROR_FAIL;
285         }
286         return target->type->resume(target, current, address, handle_breakpoints, debug_execution);
287 }
288
289
290 int target_process_reset(struct command_context_s *cmd_ctx)
291 {
292         int retval = ERROR_OK;
293         target_t *target;
294         struct timeval timeout, now;
295
296         jtag->speed(jtag_speed);
297
298         if ((retval = jtag_init_reset(cmd_ctx)) != ERROR_OK)
299                 return retval;
300         
301         /* First time this is executed after launching OpenOCD, it will read out 
302          * the type of CPU, etc. and init Embedded ICE registers in host
303          * memory. 
304          * 
305          * It will also set up ICE registers in the target.
306          * 
307          * However, if we assert TRST later, we need to set up the registers again. 
308          * 
309          * For the "reset halt/init" case we must only set up the registers here.
310          */
311         if ((retval = target_examine(cmd_ctx)) != ERROR_OK)
312                 return retval;
313         
314         /* prepare reset_halt where necessary */
315         target = targets;
316         while (target)
317         {
318                 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
319                 {
320                         switch (target->reset_mode)
321                         {
322                                 case RESET_HALT:
323                                         command_print(cmd_ctx, "nSRST pulls nTRST, falling back to \"reset run_and_halt\"");
324                                         target->reset_mode = RESET_RUN_AND_HALT;
325                                         break;
326                                 case RESET_INIT:
327                                         command_print(cmd_ctx, "nSRST pulls nTRST, falling back to \"reset run_and_init\"");
328                                         target->reset_mode = RESET_RUN_AND_INIT;
329                                         break;
330                                 default:
331                                         break;
332                         } 
333                 }
334                 target = target->next;
335         }
336         
337         target = targets;
338         while (target)
339         {
340                 /* we have no idea what state the target is in, so we
341                  * have to drop working areas
342                  */
343                 target_free_all_working_areas_restore(target, 0);
344                 target->type->assert_reset(target);
345                 target = target->next;
346         }
347         if ((retval = jtag_execute_queue()) != ERROR_OK)
348         {
349                 LOG_WARNING("JTAG communication failed asserting reset.");
350                 retval = ERROR_OK;
351         }
352         
353         /* request target halt if necessary, and schedule further action */
354         target = targets;
355         while (target)
356         {
357                 switch (target->reset_mode)
358                 {
359                         case RESET_RUN:
360                                 /* nothing to do if target just wants to be run */
361                                 break;
362                         case RESET_RUN_AND_HALT:
363                                 /* schedule halt */
364                                 target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target);
365                                 break;
366                         case RESET_RUN_AND_INIT:
367                                 /* schedule halt */
368                                 target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target);
369                                 target_register_event_callback(target_init_handler, cmd_ctx);
370                                 break;
371                         case RESET_HALT:
372                                 target_halt(target);
373                                 break;
374                         case RESET_INIT:
375                                 target_halt(target);
376                                 target_register_event_callback(target_init_handler, cmd_ctx);
377                                 break;
378                         default:
379                                 LOG_ERROR("BUG: unknown target->reset_mode");
380                 }
381                 target = target->next;
382         }
383         
384         if ((retval = jtag_execute_queue()) != ERROR_OK)
385         {
386                 LOG_WARNING("JTAG communication failed while reset was asserted. Consider using srst_only for reset_config.");
387                 retval = ERROR_OK;              
388         }
389         
390         target = targets;
391         while (target)
392         {
393                 target->type->deassert_reset(target);
394                 target = target->next;
395         }
396         
397         if ((retval = jtag_execute_queue()) != ERROR_OK)
398         {
399                 LOG_WARNING("JTAG communication failed while deasserting reset.");
400                 retval = ERROR_OK;
401         }
402
403         if (jtag_reset_config & RESET_SRST_PULLS_TRST)
404         {
405                 /* If TRST was asserted we need to set up registers again */
406                 if ((retval = target_examine(cmd_ctx)) != ERROR_OK)
407                         return retval;
408         }               
409         
410         
411         LOG_DEBUG("Waiting for halted stated as approperiate");
412         
413         /* Wait for reset to complete, maximum 5 seconds. */    
414         gettimeofday(&timeout, NULL);
415         timeval_add_time(&timeout, 5, 0);
416         for(;;)
417         {
418                 gettimeofday(&now, NULL);
419                 
420                 target_call_timer_callbacks_now();
421                 
422                 target = targets;
423                 while (target)
424                 {
425                         LOG_DEBUG("Polling target");
426                         target_poll(target);
427                         if ((target->reset_mode == RESET_RUN_AND_INIT) || 
428                                         (target->reset_mode == RESET_RUN_AND_HALT) ||
429                                         (target->reset_mode == RESET_HALT) ||
430                                         (target->reset_mode == RESET_INIT))
431                         {
432                                 if (target->state != TARGET_HALTED)
433                                 {
434                                         if ((now.tv_sec > timeout.tv_sec) || ((now.tv_sec == timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
435                                         {
436                                                 LOG_USER("Timed out waiting for halt after reset");
437                                                 goto done;
438                                         }
439                                         /* this will send alive messages on e.g. GDB remote protocol. */
440                                         usleep(500*1000); 
441                                         LOG_USER_N("%s", ""); /* avoid warning about zero length formatting message*/ 
442                                         goto again;
443                                 }
444                         }
445                         target = target->next;
446                 }
447                 /* All targets we're waiting for are halted */
448                 break;
449                 
450                 again:;
451         }
452         done:
453         
454         
455         /* We want any events to be processed before the prompt */
456         target_call_timer_callbacks_now();
457
458         /* if we timed out we need to unregister these handlers */
459         target = targets;
460         while (target)
461         {
462                 target_unregister_timer_callback(target_run_and_halt_handler, target);
463                 target = target->next;
464         }
465         target_unregister_event_callback(target_init_handler, cmd_ctx);
466                                 
467         
468         jtag->speed(jtag_speed_post_reset);
469         
470         return retval;
471 }
472
473 static int default_virt2phys(struct target_s *target, u32 virtual, u32 *physical)
474 {
475         *physical = virtual;
476         return ERROR_OK;
477 }
478
479 static int default_mmu(struct target_s *target, int *enabled)
480 {
481         *enabled = 0;
482         return ERROR_OK;
483 }
484
485 static int default_examine(struct command_context_s *cmd_ctx, struct target_s *target)
486 {
487         target->type->examined = 1;
488         return ERROR_OK;
489 }
490
491
492 /* Targets that correctly implement init+examine, i.e.
493  * no communication with target during init:
494  * 
495  * XScale 
496  */
497 int target_examine(struct command_context_s *cmd_ctx)
498 {
499         int retval = ERROR_OK;
500         target_t *target = targets;
501         while (target)
502         {
503                 if ((retval = target->type->examine(cmd_ctx, target))!=ERROR_OK)
504                         return retval;
505                 target = target->next;
506         }
507         return retval;
508 }
509
510 static int target_write_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
511 {
512         if (!target->type->examined)
513         {
514                 LOG_ERROR("Target not examined yet");
515                 return ERROR_FAIL;
516         }
517         return target->type->write_memory_imp(target, address, size, count, buffer);
518 }
519
520 static int target_read_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
521 {
522         if (!target->type->examined)
523         {
524                 LOG_ERROR("Target not examined yet");
525                 return ERROR_FAIL;
526         }
527         return target->type->read_memory_imp(target, address, size, count, buffer);
528 }
529
530 static int target_soft_reset_halt_imp(struct target_s *target)
531 {
532         if (!target->type->examined)
533         {
534                 LOG_ERROR("Target not examined yet");
535                 return ERROR_FAIL;
536         }
537         return target->type->soft_reset_halt_imp(target);
538 }
539
540 static int target_run_algorithm_imp(struct target_s *target, int num_mem_params, mem_param_t *mem_params, int num_reg_params, reg_param_t *reg_param, u32 entry_point, u32 exit_point, int timeout_ms, void *arch_info)
541 {
542         if (!target->type->examined)
543         {
544                 LOG_ERROR("Target not examined yet");
545                 return ERROR_FAIL;
546         }
547         return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
548 }
549
550 int target_init(struct command_context_s *cmd_ctx)
551 {
552         target_t *target = targets;
553         
554         while (target)
555         {
556                 target->type->examined = 0;
557                 if (target->type->examine == NULL)
558                 {
559                         target->type->examine = default_examine;
560                 }
561                 
562                 if (target->type->init_target(cmd_ctx, target) != ERROR_OK)
563                 {
564                         LOG_ERROR("target '%s' init failed", target->type->name);
565                         exit(-1);
566                 }
567                 
568                 /* Set up default functions if none are provided by target */
569                 if (target->type->virt2phys == NULL)
570                 {
571                         target->type->virt2phys = default_virt2phys;
572                 }
573                 target->type->virt2phys = default_virt2phys;
574                 /* a non-invasive way(in terms of patches) to add some code that
575                  * runs before the type->write/read_memory implementation
576                  */
577                 target->type->write_memory_imp = target->type->write_memory;
578                 target->type->write_memory = target_write_memory_imp;
579                 target->type->read_memory_imp = target->type->read_memory;
580                 target->type->read_memory = target_read_memory_imp;
581                 target->type->soft_reset_halt_imp = target->type->soft_reset_halt;
582                 target->type->soft_reset_halt = target_soft_reset_halt_imp;
583                 target->type->run_algorithm_imp = target->type->run_algorithm;
584                 target->type->run_algorithm = target_run_algorithm_imp;
585
586                 
587                 if (target->type->mmu == NULL)
588                 {
589                         target->type->mmu = default_mmu;
590                 }
591                 target = target->next;
592         }
593         
594         if (targets)
595         {
596                 target_register_user_commands(cmd_ctx);
597                 target_register_timer_callback(handle_target, 100, 1, NULL);
598         }
599                 
600         return ERROR_OK;
601 }
602
603 int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
604 {
605         target_event_callback_t **callbacks_p = &target_event_callbacks;
606         
607         if (callback == NULL)
608         {
609                 return ERROR_INVALID_ARGUMENTS;
610         }
611         
612         if (*callbacks_p)
613         {
614                 while ((*callbacks_p)->next)
615                         callbacks_p = &((*callbacks_p)->next);
616                 callbacks_p = &((*callbacks_p)->next);
617         }
618         
619         (*callbacks_p) = malloc(sizeof(target_event_callback_t));
620         (*callbacks_p)->callback = callback;
621         (*callbacks_p)->priv = priv;
622         (*callbacks_p)->next = NULL;
623         
624         return ERROR_OK;
625 }
626
627 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
628 {
629         target_timer_callback_t **callbacks_p = &target_timer_callbacks;
630         struct timeval now;
631         
632         if (callback == NULL)
633         {
634                 return ERROR_INVALID_ARGUMENTS;
635         }
636         
637         if (*callbacks_p)
638         {
639                 while ((*callbacks_p)->next)
640                         callbacks_p = &((*callbacks_p)->next);
641                 callbacks_p = &((*callbacks_p)->next);
642         }
643         
644         (*callbacks_p) = malloc(sizeof(target_timer_callback_t));
645         (*callbacks_p)->callback = callback;
646         (*callbacks_p)->periodic = periodic;
647         (*callbacks_p)->time_ms = time_ms;
648         
649         gettimeofday(&now, NULL);
650         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
651         time_ms -= (time_ms % 1000);
652         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
653         if ((*callbacks_p)->when.tv_usec > 1000000)
654         {
655                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
656                 (*callbacks_p)->when.tv_sec += 1;
657         }
658         
659         (*callbacks_p)->priv = priv;
660         (*callbacks_p)->next = NULL;
661         
662         return ERROR_OK;
663 }
664
665 int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
666 {
667         target_event_callback_t **p = &target_event_callbacks;
668         target_event_callback_t *c = target_event_callbacks;
669         
670         if (callback == NULL)
671         {
672                 return ERROR_INVALID_ARGUMENTS;
673         }
674                 
675         while (c)
676         {
677                 target_event_callback_t *next = c->next;
678                 if ((c->callback == callback) && (c->priv == priv))
679                 {
680                         *p = next;
681                         free(c);
682                         return ERROR_OK;
683                 }
684                 else
685                         p = &(c->next);
686                 c = next;
687         }
688         
689         return ERROR_OK;
690 }
691
692 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
693 {
694         target_timer_callback_t **p = &target_timer_callbacks;
695         target_timer_callback_t *c = target_timer_callbacks;
696         
697         if (callback == NULL)
698         {
699                 return ERROR_INVALID_ARGUMENTS;
700         }
701                 
702         while (c)
703         {
704                 target_timer_callback_t *next = c->next;
705                 if ((c->callback == callback) && (c->priv == priv))
706                 {
707                         *p = next;
708                         free(c);
709                         return ERROR_OK;
710                 }
711                 else
712                         p = &(c->next);
713                 c = next;
714         }
715         
716         return ERROR_OK;
717 }
718
719 int target_call_event_callbacks(target_t *target, enum target_event event)
720 {
721         target_event_callback_t *callback = target_event_callbacks;
722         target_event_callback_t *next_callback;
723         
724         LOG_DEBUG("target event %i", event);
725         
726         while (callback)
727         {
728                 next_callback = callback->next;
729                 callback->callback(target, event, callback->priv);
730                 callback = next_callback;
731         }
732         
733         return ERROR_OK;
734 }
735
736 static int target_call_timer_callbacks_check_time(int checktime)
737 {
738         target_timer_callback_t *callback = target_timer_callbacks;
739         target_timer_callback_t *next_callback;
740         struct timeval now;
741
742         gettimeofday(&now, NULL);
743         
744         while (callback)
745         {
746                 next_callback = callback->next;
747                 
748                 if ((!checktime&&callback->periodic)||
749                                 (((now.tv_sec >= callback->when.tv_sec) && (now.tv_usec >= callback->when.tv_usec))
750                                                 || (now.tv_sec > callback->when.tv_sec)))
751                 {
752                         if(callback->callback != NULL)
753                         {
754                                 callback->callback(callback->priv);
755                                 if (callback->periodic)
756                                 {
757                                         int time_ms = callback->time_ms;
758                                         callback->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
759                                         time_ms -= (time_ms % 1000);
760                                         callback->when.tv_sec = now.tv_sec + time_ms / 1000;
761                                         if (callback->when.tv_usec > 1000000)
762                                         {
763                                                 callback->when.tv_usec = callback->when.tv_usec - 1000000;
764                                                 callback->when.tv_sec += 1;
765                                         }
766                                 }
767                                 else
768                                         target_unregister_timer_callback(callback->callback, callback->priv);
769                         }
770                 }
771                         
772                 callback = next_callback;
773         }
774         
775         return ERROR_OK;
776 }
777
778 int target_call_timer_callbacks()
779 {
780         return target_call_timer_callbacks_check_time(1);
781 }
782
783 /* invoke periodic callbacks immediately */
784 int target_call_timer_callbacks_now()
785 {
786         return target_call_timer_callbacks(0);
787 }
788
789
790 int target_alloc_working_area(struct target_s *target, u32 size, working_area_t **area)
791 {
792         working_area_t *c = target->working_areas;
793         working_area_t *new_wa = NULL;
794         
795         /* Reevaluate working area address based on MMU state*/
796         if (target->working_areas == NULL)
797         {
798                 int retval;
799                 int enabled;
800                 retval = target->type->mmu(target, &enabled);
801                 if (retval != ERROR_OK)
802                 {
803                         return retval;
804                 }
805                 if (enabled)
806                 {
807                         target->working_area = target->working_area_virt;
808                 }
809                 else
810                 {
811                         target->working_area = target->working_area_phys;
812                 }
813         }
814         
815         /* only allocate multiples of 4 byte */
816         if (size % 4)
817         {
818                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes, padding");
819                 size = CEIL(size, 4);
820         }
821         
822         /* see if there's already a matching working area */
823         while (c)
824         {
825                 if ((c->free) && (c->size == size))
826                 {
827                         new_wa = c;
828                         break;
829                 }
830                 c = c->next;
831         }
832         
833         /* if not, allocate a new one */
834         if (!new_wa)
835         {
836                 working_area_t **p = &target->working_areas;
837                 u32 first_free = target->working_area;
838                 u32 free_size = target->working_area_size;
839                 
840                 LOG_DEBUG("allocating new working area");
841                 
842                 c = target->working_areas;
843                 while (c)
844                 {
845                         first_free += c->size;
846                         free_size -= c->size;
847                         p = &c->next;
848                         c = c->next;
849                 }
850                 
851                 if (free_size < size)
852                 {
853                         LOG_WARNING("not enough working area available(requested %d, free %d)", size, free_size);
854                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
855                 }
856                 
857                 new_wa = malloc(sizeof(working_area_t));
858                 new_wa->next = NULL;
859                 new_wa->size = size;
860                 new_wa->address = first_free;
861                 
862                 if (target->backup_working_area)
863                 {
864                         new_wa->backup = malloc(new_wa->size);
865                         target->type->read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup);
866                 }
867                 else
868                 {
869                         new_wa->backup = NULL;
870                 }
871                 
872                 /* put new entry in list */
873                 *p = new_wa;
874         }
875         
876         /* mark as used, and return the new (reused) area */
877         new_wa->free = 0;
878         *area = new_wa;
879         
880         /* user pointer */
881         new_wa->user = area;
882         
883         return ERROR_OK;
884 }
885
886 int target_free_working_area_restore(struct target_s *target, working_area_t *area, int restore)
887 {
888         if (area->free)
889                 return ERROR_OK;
890         
891         if (restore&&target->backup_working_area)
892                 target->type->write_memory(target, area->address, 4, area->size / 4, area->backup);
893         
894         area->free = 1;
895         
896         /* mark user pointer invalid */
897         *area->user = NULL;
898         area->user = NULL;
899         
900         return ERROR_OK;
901 }
902
903 int target_free_working_area(struct target_s *target, working_area_t *area)
904 {
905         return target_free_working_area_restore(target, area, 1);
906 }
907
908 int target_free_all_working_areas_restore(struct target_s *target, int restore)
909 {
910         working_area_t *c = target->working_areas;
911
912         while (c)
913         {
914                 working_area_t *next = c->next;
915                 target_free_working_area_restore(target, c, restore);
916                 
917                 if (c->backup)
918                         free(c->backup);
919                 
920                 free(c);
921                 
922                 c = next;
923         }
924         
925         target->working_areas = NULL;
926         
927         return ERROR_OK;
928 }
929
930 int target_free_all_working_areas(struct target_s *target)
931 {
932         return target_free_all_working_areas_restore(target, 1); 
933 }
934
935 int target_register_commands(struct command_context_s *cmd_ctx)
936 {
937         register_command(cmd_ctx, NULL, "target", handle_target_command, COMMAND_CONFIG, "target <cpu> [reset_init default - DEPRECATED] <chainpos> <endianness> <variant> [cpu type specifc args]");
938         register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, NULL);
939         register_command(cmd_ctx, NULL, "target_script", handle_target_script_command, COMMAND_CONFIG, NULL);
940         register_command(cmd_ctx, NULL, "run_and_halt_time", handle_run_and_halt_time_command, COMMAND_CONFIG, "<target> <run time ms>");
941         register_command(cmd_ctx, NULL, "working_area", handle_working_area_command, COMMAND_ANY, "working_area <target#> <address> <size> <'backup'|'nobackup'> [virtual address]");
942         register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "virt2phys <virtual address>");
943         register_command(cmd_ctx, NULL, "profile", handle_profile_command, COMMAND_EXEC, "PRELIMINARY! - profile <seconds> <gmon.out>");
944
945         return ERROR_OK;
946 }
947
948 int target_arch_state(struct target_s *target)
949 {
950         int retval;
951         if (target==NULL)
952         {
953                 LOG_USER("No target has been configured");
954                 return ERROR_OK;
955         }
956         
957         LOG_USER("target state: %s", target_state_strings[target->state]);
958         
959         if (target->state!=TARGET_HALTED)
960                 return ERROR_OK;
961         
962         retval=target->type->arch_state(target);
963         return retval;
964 }
965
966 /* Single aligned words are guaranteed to use 16 or 32 bit access 
967  * mode respectively, otherwise data is handled as quickly as 
968  * possible
969  */
970 int target_write_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
971 {
972         int retval;
973         if (!target->type->examined)
974         {
975                 LOG_ERROR("Target not examined yet");
976                 return ERROR_FAIL;
977         }
978         
979         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x", size, address);
980         
981         if (((address % 2) == 0) && (size == 2))
982         {
983                 return target->type->write_memory(target, address, 2, 1, buffer);
984         }
985         
986         /* handle unaligned head bytes */
987         if (address % 4)
988         {
989                 int unaligned = 4 - (address % 4);
990                 
991                 if (unaligned > size)
992                         unaligned = size;
993
994                 if ((retval = target->type->write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
995                         return retval;
996                 
997                 buffer += unaligned;
998                 address += unaligned;
999                 size -= unaligned;
1000         }
1001                 
1002         /* handle aligned words */
1003         if (size >= 4)
1004         {
1005                 int aligned = size - (size % 4);
1006         
1007                 /* use bulk writes above a certain limit. This may have to be changed */
1008                 if (aligned > 128)
1009                 {
1010                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1011                                 return retval;
1012                 }
1013                 else
1014                 {
1015                         if ((retval = target->type->write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1016                                 return retval;
1017                 }
1018                 
1019                 buffer += aligned;
1020                 address += aligned;
1021                 size -= aligned;
1022         }
1023         
1024         /* handle tail writes of less than 4 bytes */
1025         if (size > 0)
1026         {
1027                 if ((retval = target->type->write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1028                         return retval;
1029         }
1030         
1031         return ERROR_OK;
1032 }
1033
1034
1035 /* Single aligned words are guaranteed to use 16 or 32 bit access 
1036  * mode respectively, otherwise data is handled as quickly as 
1037  * possible
1038  */
1039 int target_read_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
1040 {
1041         int retval;
1042         if (!target->type->examined)
1043         {
1044                 LOG_ERROR("Target not examined yet");
1045                 return ERROR_FAIL;
1046         }
1047
1048         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x", size, address);
1049         
1050         if (((address % 2) == 0) && (size == 2))
1051         {
1052                 return target->type->read_memory(target, address, 2, 1, buffer);
1053         }
1054         
1055         /* handle unaligned head bytes */
1056         if (address % 4)
1057         {
1058                 int unaligned = 4 - (address % 4);
1059                 
1060                 if (unaligned > size)
1061                         unaligned = size;
1062
1063                 if ((retval = target->type->read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1064                         return retval;
1065                 
1066                 buffer += unaligned;
1067                 address += unaligned;
1068                 size -= unaligned;
1069         }
1070                 
1071         /* handle aligned words */
1072         if (size >= 4)
1073         {
1074                 int aligned = size - (size % 4);
1075         
1076                 if ((retval = target->type->read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1077                         return retval;
1078                 
1079                 buffer += aligned;
1080                 address += aligned;
1081                 size -= aligned;
1082         }
1083         
1084         /* handle tail writes of less than 4 bytes */
1085         if (size > 0)
1086         {
1087                 if ((retval = target->type->read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1088                         return retval;
1089         }
1090         
1091         return ERROR_OK;
1092 }
1093
1094 int target_checksum_memory(struct target_s *target, u32 address, u32 size, u32* crc)
1095 {
1096         u8 *buffer;
1097         int retval;
1098         int i;
1099         u32 checksum = 0;
1100         if (!target->type->examined)
1101         {
1102                 LOG_ERROR("Target not examined yet");
1103                 return ERROR_FAIL;
1104         }
1105         
1106         if ((retval = target->type->checksum_memory(target, address,
1107                 size, &checksum)) == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1108         {
1109                 buffer = malloc(size);
1110                 if (buffer == NULL)
1111                 {
1112                         LOG_ERROR("error allocating buffer for section (%d bytes)", size);
1113                         return ERROR_INVALID_ARGUMENTS;
1114                 }
1115                 retval = target_read_buffer(target, address, size, buffer);
1116                 if (retval != ERROR_OK)
1117                 {
1118                         free(buffer);
1119                         return retval;
1120                 }
1121
1122                 /* convert to target endianess */
1123                 for (i = 0; i < (size/sizeof(u32)); i++)
1124                 {
1125                         u32 target_data;
1126                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(u32)]);
1127                         target_buffer_set_u32(target, &buffer[i*sizeof(u32)], target_data);
1128                 }
1129
1130                 retval = image_calculate_checksum( buffer, size, &checksum );
1131                 free(buffer);
1132         }
1133         
1134         *crc = checksum;
1135         
1136         return retval;
1137 }
1138
1139 int target_read_u32(struct target_s *target, u32 address, u32 *value)
1140 {
1141         u8 value_buf[4];
1142         if (!target->type->examined)
1143         {
1144                 LOG_ERROR("Target not examined yet");
1145                 return ERROR_FAIL;
1146         }
1147
1148         int retval = target->type->read_memory(target, address, 4, 1, value_buf);
1149         
1150         if (retval == ERROR_OK)
1151         {
1152                 *value = target_buffer_get_u32(target, value_buf);
1153                 LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, *value);
1154         }
1155         else
1156         {
1157                 *value = 0x0;
1158                 LOG_DEBUG("address: 0x%8.8x failed", address);
1159         }
1160         
1161         return retval;
1162 }
1163
1164 int target_read_u16(struct target_s *target, u32 address, u16 *value)
1165 {
1166         u8 value_buf[2];
1167         if (!target->type->examined)
1168         {
1169                 LOG_ERROR("Target not examined yet");
1170                 return ERROR_FAIL;
1171         }
1172
1173         int retval = target->type->read_memory(target, address, 2, 1, value_buf);
1174         
1175         if (retval == ERROR_OK)
1176         {
1177                 *value = target_buffer_get_u16(target, value_buf);
1178                 LOG_DEBUG("address: 0x%8.8x, value: 0x%4.4x", address, *value);
1179         }
1180         else
1181         {
1182                 *value = 0x0;
1183                 LOG_DEBUG("address: 0x%8.8x failed", address);
1184         }
1185         
1186         return retval;
1187 }
1188
1189 int target_read_u8(struct target_s *target, u32 address, u8 *value)
1190 {
1191         int retval = target->type->read_memory(target, address, 1, 1, value);
1192         if (!target->type->examined)
1193         {
1194                 LOG_ERROR("Target not examined yet");
1195                 return ERROR_FAIL;
1196         }
1197
1198         if (retval == ERROR_OK)
1199         {
1200                 LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, *value);
1201         }
1202         else
1203         {
1204                 *value = 0x0;
1205                 LOG_DEBUG("address: 0x%8.8x failed", address);
1206         }
1207         
1208         return retval;
1209 }
1210
1211 int target_write_u32(struct target_s *target, u32 address, u32 value)
1212 {
1213         int retval;
1214         u8 value_buf[4];
1215         if (!target->type->examined)
1216         {
1217                 LOG_ERROR("Target not examined yet");
1218                 return ERROR_FAIL;
1219         }
1220
1221         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1222
1223         target_buffer_set_u32(target, value_buf, value);        
1224         if ((retval = target->type->write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1225         {
1226                 LOG_DEBUG("failed: %i", retval);
1227         }
1228         
1229         return retval;
1230 }
1231
1232 int target_write_u16(struct target_s *target, u32 address, u16 value)
1233 {
1234         int retval;
1235         u8 value_buf[2];
1236         if (!target->type->examined)
1237         {
1238                 LOG_ERROR("Target not examined yet");
1239                 return ERROR_FAIL;
1240         }
1241
1242         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1243
1244         target_buffer_set_u16(target, value_buf, value);        
1245         if ((retval = target->type->write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1246         {
1247                 LOG_DEBUG("failed: %i", retval);
1248         }
1249         
1250         return retval;
1251 }
1252
1253 int target_write_u8(struct target_s *target, u32 address, u8 value)
1254 {
1255         int retval;
1256         if (!target->type->examined)
1257         {
1258                 LOG_ERROR("Target not examined yet");
1259                 return ERROR_FAIL;
1260         }
1261
1262         LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, value);
1263
1264         if ((retval = target->type->read_memory(target, address, 1, 1, &value)) != ERROR_OK)
1265         {
1266                 LOG_DEBUG("failed: %i", retval);
1267         }
1268         
1269         return retval;
1270 }
1271
1272 int target_register_user_commands(struct command_context_s *cmd_ctx)
1273 {
1274         register_command(cmd_ctx,  NULL, "reg", handle_reg_command, COMMAND_EXEC, NULL);
1275         register_command(cmd_ctx,  NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state");
1276         register_command(cmd_ctx,  NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]");
1277         register_command(cmd_ctx,  NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target");
1278         register_command(cmd_ctx,  NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]");
1279         register_command(cmd_ctx,  NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]");
1280         register_command(cmd_ctx,  NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run|halt|init|run_and_halt|run_and_init]");
1281         register_command(cmd_ctx,  NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset");
1282
1283         register_command(cmd_ctx,  NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words <addr> [count]");
1284         register_command(cmd_ctx,  NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words <addr> [count]");
1285         register_command(cmd_ctx,  NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes <addr> [count]");
1286         
1287         register_command(cmd_ctx,  NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word <addr> <value> [count]");
1288         register_command(cmd_ctx,  NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word <addr> <value> [count]");
1289         register_command(cmd_ctx,  NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte <addr> <value> [count]");
1290         
1291         register_command(cmd_ctx,  NULL, "bp", handle_bp_command, COMMAND_EXEC, "set breakpoint <address> <length> [hw]");      
1292         register_command(cmd_ctx,  NULL, "rbp", handle_rbp_command, COMMAND_EXEC, "remove breakpoint <adress>");
1293         register_command(cmd_ctx,  NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint <address> <length> <r/w/a> [value] [mask]");    
1294         register_command(cmd_ctx,  NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint <adress>");
1295         
1296         register_command(cmd_ctx,  NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> ['bin'|'ihex'|'elf'|'s19']");
1297         register_command(cmd_ctx,  NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>");
1298         register_command(cmd_ctx,  NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image <file> [offset] [type]");
1299         register_command(cmd_ctx,  NULL, "load_binary", handle_load_image_command, COMMAND_EXEC, "[DEPRECATED] load_binary <file> <address>");
1300         register_command(cmd_ctx,  NULL, "dump_binary", handle_dump_image_command, COMMAND_EXEC, "[DEPRECATED] dump_binary <file> <address> <size>");
1301         
1302         target_request_register_commands(cmd_ctx);
1303         trace_register_commands(cmd_ctx);
1304         
1305         return ERROR_OK;
1306 }
1307
1308 int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1309 {
1310         target_t *target = targets;
1311         int count = 0;
1312         
1313         if (argc == 1)
1314         {
1315                 int num = strtoul(args[0], NULL, 0);
1316                 
1317                 while (target)
1318                 {
1319                         count++;
1320                         target = target->next;
1321                 }
1322                 
1323                 if (num < count)
1324                         cmd_ctx->current_target = num;
1325                 else
1326                         command_print(cmd_ctx, "%i is out of bounds, only %i targets are configured", num, count);
1327                         
1328                 return ERROR_OK;
1329         }
1330                 
1331         while (target)
1332         {
1333                 command_print(cmd_ctx, "%i: %s (%s), state: %s", count++, target->type->name, target_endianess_strings[target->endianness], target_state_strings[target->state]);
1334                 target = target->next;
1335         }
1336         
1337         return ERROR_OK;
1338 }
1339
1340 int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1341 {
1342         int i;
1343         int found = 0;
1344         
1345         if (argc < 3)
1346         {
1347                 return ERROR_COMMAND_SYNTAX_ERROR;
1348         }
1349         
1350         /* search for the specified target */
1351         if (args[0] && (args[0][0] != 0))
1352         {
1353                 for (i = 0; target_types[i]; i++)
1354                 {
1355                         if (strcmp(args[0], target_types[i]->name) == 0)
1356                         {
1357                                 target_t **last_target_p = &targets;
1358                                 
1359                                 /* register target specific commands */
1360                                 if (target_types[i]->register_commands(cmd_ctx) != ERROR_OK)
1361                                 {
1362                                         LOG_ERROR("couldn't register '%s' commands", args[0]);
1363                                         exit(-1);
1364                                 }
1365
1366                                 if (*last_target_p)
1367                                 {
1368                                         while ((*last_target_p)->next)
1369                                                 last_target_p = &((*last_target_p)->next);
1370                                         last_target_p = &((*last_target_p)->next);
1371                                 }
1372
1373                                 *last_target_p = malloc(sizeof(target_t));
1374                                 
1375                                 (*last_target_p)->type = target_types[i];
1376                                 
1377                                 if (strcmp(args[1], "big") == 0)
1378                                         (*last_target_p)->endianness = TARGET_BIG_ENDIAN;
1379                                 else if (strcmp(args[1], "little") == 0)
1380                                         (*last_target_p)->endianness = TARGET_LITTLE_ENDIAN;
1381                                 else
1382                                 {
1383                                         LOG_ERROR("endianness must be either 'little' or 'big', not '%s'", args[1]);
1384                                         return ERROR_COMMAND_SYNTAX_ERROR;
1385                                 }
1386                                 
1387                                 /* what to do on a target reset */
1388                                 (*last_target_p)->reset_mode = RESET_INIT; /* default */
1389                                 if (strcmp(args[2], "reset_halt") == 0)
1390                                         (*last_target_p)->reset_mode = RESET_HALT;
1391                                 else if (strcmp(args[2], "reset_run") == 0)
1392                                         (*last_target_p)->reset_mode = RESET_RUN;
1393                                 else if (strcmp(args[2], "reset_init") == 0)
1394                                         (*last_target_p)->reset_mode = RESET_INIT;
1395                                 else if (strcmp(args[2], "run_and_halt") == 0)
1396                                         (*last_target_p)->reset_mode = RESET_RUN_AND_HALT;
1397                                 else if (strcmp(args[2], "run_and_init") == 0)
1398                                         (*last_target_p)->reset_mode = RESET_RUN_AND_INIT;
1399                                 else
1400                                 {
1401                                         /* Kludge! we want to make this reset arg optional while remaining compatible! */
1402                                         args--;
1403                                         argc++;
1404                                 }
1405                                 (*last_target_p)->run_and_halt_time = 1000; /* default 1s */
1406                                 
1407                                 (*last_target_p)->reset_script = NULL;
1408                                 (*last_target_p)->post_halt_script = NULL;
1409                                 (*last_target_p)->pre_resume_script = NULL;
1410                                 (*last_target_p)->gdb_program_script = NULL;
1411                                 
1412                                 (*last_target_p)->working_area = 0x0;
1413                                 (*last_target_p)->working_area_size = 0x0;
1414                                 (*last_target_p)->working_areas = NULL;
1415                                 (*last_target_p)->backup_working_area = 0;
1416                                 
1417                                 (*last_target_p)->state = TARGET_UNKNOWN;
1418                                 (*last_target_p)->debug_reason = DBG_REASON_UNDEFINED;
1419                                 (*last_target_p)->reg_cache = NULL;
1420                                 (*last_target_p)->breakpoints = NULL;
1421                                 (*last_target_p)->watchpoints = NULL;
1422                                 (*last_target_p)->next = NULL;
1423                                 (*last_target_p)->arch_info = NULL;
1424                                 
1425                                 /* initialize trace information */
1426                                 (*last_target_p)->trace_info = malloc(sizeof(trace_t));
1427                                 (*last_target_p)->trace_info->num_trace_points = 0;
1428                                 (*last_target_p)->trace_info->trace_points_size = 0;
1429                                 (*last_target_p)->trace_info->trace_points = NULL;
1430                                 (*last_target_p)->trace_info->trace_history_size = 0;
1431                                 (*last_target_p)->trace_info->trace_history = NULL;
1432                                 (*last_target_p)->trace_info->trace_history_pos = 0;
1433                                 (*last_target_p)->trace_info->trace_history_overflowed = 0;
1434                                 
1435                                 (*last_target_p)->dbgmsg = NULL;
1436                                 (*last_target_p)->dbg_msg_enabled = 0;
1437                                                                 
1438                                 (*last_target_p)->type->target_command(cmd_ctx, cmd, args, argc, *last_target_p);
1439                                 
1440                                 found = 1;
1441                                 break;
1442                         }
1443                 }
1444         }
1445         
1446         /* no matching target found */
1447         if (!found)
1448         {
1449                 LOG_ERROR("target '%s' not found", args[0]);
1450                 return ERROR_COMMAND_SYNTAX_ERROR;
1451         }
1452
1453         return ERROR_OK;
1454 }
1455
1456 /* usage: target_script <target#> <event> <script_file> */
1457 int handle_target_script_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1458 {
1459         target_t *target = NULL;
1460         
1461         if (argc < 3)
1462         {
1463                 LOG_ERROR("incomplete target_script command");
1464                 return ERROR_COMMAND_SYNTAX_ERROR;
1465         }
1466         
1467         target = get_target_by_num(strtoul(args[0], NULL, 0));
1468         
1469         if (!target)
1470         {
1471                 return ERROR_COMMAND_SYNTAX_ERROR;
1472         }
1473         
1474         if (strcmp(args[1], "reset") == 0)
1475         {
1476                 if (target->reset_script)
1477                         free(target->reset_script);
1478                 target->reset_script = strdup(args[2]);
1479         }
1480         else if (strcmp(args[1], "post_halt") == 0)
1481         {
1482                 if (target->post_halt_script)
1483                         free(target->post_halt_script);
1484                 target->post_halt_script = strdup(args[2]);
1485         }
1486         else if (strcmp(args[1], "pre_resume") == 0)
1487         {
1488                 if (target->pre_resume_script)
1489                         free(target->pre_resume_script);
1490                 target->pre_resume_script = strdup(args[2]);
1491         }
1492         else if (strcmp(args[1], "gdb_program_config") == 0)
1493         {
1494                 if (target->gdb_program_script)
1495                         free(target->gdb_program_script);
1496                 target->gdb_program_script = strdup(args[2]);
1497         }
1498         else
1499         {
1500                 LOG_ERROR("unknown event type: '%s", args[1]);
1501                 return ERROR_COMMAND_SYNTAX_ERROR;
1502         }
1503         
1504         return ERROR_OK;
1505 }
1506
1507 int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1508 {
1509         target_t *target = NULL;
1510         
1511         if (argc < 2)
1512         {
1513                 return ERROR_COMMAND_SYNTAX_ERROR;
1514         }
1515         
1516         target = get_target_by_num(strtoul(args[0], NULL, 0));
1517         if (!target)
1518         {
1519                 return ERROR_COMMAND_SYNTAX_ERROR;
1520         }
1521         
1522         target->run_and_halt_time = strtoul(args[1], NULL, 0);
1523         
1524         return ERROR_OK;
1525 }
1526
1527 int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1528 {
1529         target_t *target = NULL;
1530         
1531         if ((argc < 4) || (argc > 5))
1532         {
1533                 return ERROR_COMMAND_SYNTAX_ERROR;
1534         }
1535         
1536         target = get_target_by_num(strtoul(args[0], NULL, 0));
1537         if (!target)
1538         {
1539                 return ERROR_COMMAND_SYNTAX_ERROR;
1540         }
1541         target_free_all_working_areas(target);
1542         
1543         target->working_area_phys = target->working_area_virt = strtoul(args[1], NULL, 0);
1544         if (argc == 5)
1545         {
1546                 target->working_area_virt = strtoul(args[4], NULL, 0);
1547         }
1548         target->working_area_size = strtoul(args[2], NULL, 0);
1549         
1550         if (strcmp(args[3], "backup") == 0)
1551         {
1552                 target->backup_working_area = 1;
1553         }
1554         else if (strcmp(args[3], "nobackup") == 0)
1555         {
1556                 target->backup_working_area = 0;
1557         }
1558         else
1559         {
1560                 LOG_ERROR("unrecognized <backup|nobackup> argument (%s)", args[3]);
1561                 return ERROR_COMMAND_SYNTAX_ERROR;
1562         }
1563         
1564         return ERROR_OK;
1565 }
1566
1567
1568 /* process target state changes */
1569 int handle_target(void *priv)
1570 {
1571         target_t *target = targets;
1572         
1573         while (target)
1574         {
1575                 if (target_continous_poll)
1576                 {
1577                         /* polling may fail silently until the target has been examined */
1578                         target_poll(target);
1579                 }
1580         
1581                 target = target->next;
1582         }
1583         
1584         return ERROR_OK;
1585 }
1586
1587 int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1588 {
1589         target_t *target;
1590         reg_t *reg = NULL;
1591         int count = 0;
1592         char *value;
1593         
1594         LOG_DEBUG("-");
1595         
1596         target = get_current_target(cmd_ctx);
1597         
1598         /* list all available registers for the current target */
1599         if (argc == 0)
1600         {
1601                 reg_cache_t *cache = target->reg_cache;
1602                 
1603                 count = 0;
1604                 while(cache)
1605                 {
1606                         int i;
1607                         for (i = 0; i < cache->num_regs; i++)
1608                         {
1609                                 value = buf_to_str(cache->reg_list[i].value, cache->reg_list[i].size, 16);
1610                                 command_print(cmd_ctx, "(%i) %s (/%i): 0x%s (dirty: %i, valid: %i)", count++, cache->reg_list[i].name, cache->reg_list[i].size, value, cache->reg_list[i].dirty, cache->reg_list[i].valid);
1611                                 free(value);
1612                         }
1613                         cache = cache->next;
1614                 }
1615                 
1616                 return ERROR_OK;
1617         }
1618         
1619         /* access a single register by its ordinal number */
1620         if ((args[0][0] >= '0') && (args[0][0] <= '9'))
1621         {
1622                 int num = strtoul(args[0], NULL, 0);
1623                 reg_cache_t *cache = target->reg_cache;
1624                 
1625                 count = 0;
1626                 while(cache)
1627                 {
1628                         int i;
1629                         for (i = 0; i < cache->num_regs; i++)
1630                         {
1631                                 if (count++ == num)
1632                                 {
1633                                         reg = &cache->reg_list[i];
1634                                         break;
1635                                 }
1636                         }
1637                         if (reg)
1638                                 break;
1639                         cache = cache->next;
1640                 }
1641                 
1642                 if (!reg)
1643                 {
1644                         command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1645                         return ERROR_OK;
1646                 }
1647         } else /* access a single register by its name */
1648         {
1649                 reg = register_get_by_name(target->reg_cache, args[0], 1);
1650                 
1651                 if (!reg)
1652                 {
1653                         command_print(cmd_ctx, "register %s not found in current target", args[0]);
1654                         return ERROR_OK;
1655                 }
1656         }
1657
1658         /* display a register */
1659         if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
1660         {
1661                 if ((argc == 2) && (strcmp(args[1], "force") == 0))
1662                         reg->valid = 0;
1663                 
1664                 if (reg->valid == 0)
1665                 {
1666                         reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1667                         if (arch_type == NULL)
1668                         {
1669                                 LOG_ERROR("BUG: encountered unregistered arch type");
1670                                 return ERROR_OK;
1671                         }
1672                         arch_type->get(reg);
1673                 }
1674                 value = buf_to_str(reg->value, reg->size, 16);
1675                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1676                 free(value);
1677                 return ERROR_OK;
1678         }
1679         
1680         /* set register value */
1681         if (argc == 2)
1682         {
1683                 u8 *buf = malloc(CEIL(reg->size, 8));
1684                 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
1685
1686                 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1687                 if (arch_type == NULL)
1688                 {
1689                         LOG_ERROR("BUG: encountered unregistered arch type");
1690                         return ERROR_OK;
1691                 }
1692                 
1693                 arch_type->set(reg, buf);
1694                 
1695                 value = buf_to_str(reg->value, reg->size, 16);
1696                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1697                 free(value);
1698                 
1699                 free(buf);
1700                 
1701                 return ERROR_OK;
1702         }
1703         
1704         command_print(cmd_ctx, "usage: reg <#|name> [value]");
1705         
1706         return ERROR_OK;
1707 }
1708
1709 static int wait_state(struct command_context_s *cmd_ctx, char *cmd, enum target_state state, int ms);
1710
1711 int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1712 {
1713         target_t *target = get_current_target(cmd_ctx);
1714
1715         if (argc == 0)
1716         {
1717                 target_poll(target);
1718                 target_arch_state(target);
1719         }
1720         else
1721         {
1722                 if (strcmp(args[0], "on") == 0)
1723                 {
1724                         target_continous_poll = 1;
1725                 }
1726                 else if (strcmp(args[0], "off") == 0)
1727                 {
1728                         target_continous_poll = 0;
1729                 }
1730                 else
1731                 {
1732                         command_print(cmd_ctx, "arg is \"on\" or \"off\"");
1733                 }
1734         }
1735         
1736         
1737         return ERROR_OK;
1738 }
1739
1740 int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1741 {
1742         int ms = 5000;
1743         
1744         if (argc > 0)
1745         {
1746                 char *end;
1747
1748                 ms = strtoul(args[0], &end, 0) * 1000;
1749                 if (*end)
1750                 {
1751                         command_print(cmd_ctx, "usage: %s [seconds]", cmd);
1752                         return ERROR_OK;
1753                 }
1754         }
1755
1756         return wait_state(cmd_ctx, cmd, TARGET_HALTED, ms); 
1757 }
1758
1759 static void target_process_events(struct command_context_s *cmd_ctx)
1760 {
1761         target_t *target = get_current_target(cmd_ctx);
1762         target_poll(target);
1763         target_call_timer_callbacks_now();
1764 }
1765
1766 static int wait_state(struct command_context_s *cmd_ctx, char *cmd, enum target_state state, int ms)
1767 {
1768         int retval;
1769         struct timeval timeout, now;
1770         int once=1;
1771         gettimeofday(&timeout, NULL);
1772         timeval_add_time(&timeout, 0, ms * 1000);
1773         
1774         target_t *target = get_current_target(cmd_ctx);
1775         for (;;)
1776         {
1777                 if ((retval=target_poll(target))!=ERROR_OK)
1778                         return retval;
1779                 target_call_timer_callbacks_now();
1780                 if (target->state == state)
1781                 {
1782                         break;
1783                 }
1784                 if (once)
1785                 {
1786                         once=0;
1787                         command_print(cmd_ctx, "waiting for target %s...", target_state_strings[state]);
1788                 }
1789                 
1790                 gettimeofday(&now, NULL);
1791                 if ((now.tv_sec > timeout.tv_sec) || ((now.tv_sec == timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
1792                 {
1793                         LOG_ERROR("timed out while waiting for target %s", target_state_strings[state]);
1794                         break;
1795                 }
1796         }
1797         
1798         return ERROR_OK;
1799 }
1800
1801 int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1802 {
1803         int retval;
1804         target_t *target = get_current_target(cmd_ctx);
1805
1806         LOG_DEBUG("-");
1807
1808         if ((retval = target_halt(target)) != ERROR_OK)
1809         {
1810                 return retval;
1811         }
1812         
1813         return handle_wait_halt_command(cmd_ctx, cmd, args, argc);
1814 }
1815
1816                 
1817 int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1818 {
1819         target_t *target = get_current_target(cmd_ctx);
1820         
1821         LOG_USER("requesting target halt and executing a soft reset");
1822         
1823         target->type->soft_reset_halt(target);
1824         
1825         return ERROR_OK;
1826 }
1827
1828 int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1829 {
1830         target_t *target = get_current_target(cmd_ctx);
1831         enum target_reset_mode reset_mode = target->reset_mode;
1832         enum target_reset_mode save = target->reset_mode;
1833         
1834         LOG_DEBUG("-");
1835         
1836         if (argc >= 1)
1837         {
1838                 if (strcmp("run", args[0]) == 0)
1839                         reset_mode = RESET_RUN;
1840                 else if (strcmp("halt", args[0]) == 0)
1841                         reset_mode = RESET_HALT;
1842                 else if (strcmp("init", args[0]) == 0)
1843                         reset_mode = RESET_INIT;
1844                 else if (strcmp("run_and_halt", args[0]) == 0)
1845                 {
1846                         reset_mode = RESET_RUN_AND_HALT;
1847                         if (argc >= 2)
1848                         {
1849                                 target->run_and_halt_time = strtoul(args[1], NULL, 0);
1850                         }
1851                 }
1852                 else if (strcmp("run_and_init", args[0]) == 0)
1853                 {
1854                         reset_mode = RESET_RUN_AND_INIT;
1855                         if (argc >= 2)
1856                         {
1857                                 target->run_and_halt_time = strtoul(args[1], NULL, 0);
1858                         }
1859                 }
1860                 else
1861                 {
1862                         command_print(cmd_ctx, "usage: reset ['run', 'halt', 'init', 'run_and_halt', 'run_and_init]");
1863                         return ERROR_OK;
1864                 }
1865         }
1866         
1867         /* temporarily modify mode of current reset target */
1868         target->reset_mode = reset_mode;
1869
1870         /* reset *all* targets */
1871         target_process_reset(cmd_ctx);
1872         
1873         /* Restore default reset mode for this target */
1874     target->reset_mode = save;
1875         
1876         return ERROR_OK;
1877 }
1878
1879 int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1880 {
1881         int retval;
1882         target_t *target = get_current_target(cmd_ctx);
1883         
1884         if (argc == 0)
1885                 retval = target_resume(target, 1, 0, 1, 0); /* current pc, addr = 0, handle breakpoints, not debugging */
1886         else if (argc == 1)
1887                 retval = target_resume(target, 0, strtoul(args[0], NULL, 0), 1, 0); /* addr = args[0], handle breakpoints, not debugging */
1888         else
1889         {
1890                 return ERROR_COMMAND_SYNTAX_ERROR;
1891         }
1892
1893         target_process_events(cmd_ctx);
1894         
1895         return retval;
1896 }
1897
1898 int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1899 {
1900         target_t *target = get_current_target(cmd_ctx);
1901         
1902         LOG_DEBUG("-");
1903         
1904         if (argc == 0)
1905                 target->type->step(target, 1, 0, 1); /* current pc, addr = 0, handle breakpoints */
1906
1907         if (argc == 1)
1908                 target->type->step(target, 0, strtoul(args[0], NULL, 0), 1); /* addr = args[0], handle breakpoints */
1909         
1910         return ERROR_OK;
1911 }
1912
1913 int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1914 {
1915         const int line_bytecnt = 32;
1916         int count = 1;
1917         int size = 4;
1918         u32 address = 0;
1919         int line_modulo;
1920         int i;
1921
1922         char output[128];
1923         int output_len;
1924
1925         int retval;
1926
1927         u8 *buffer;
1928         target_t *target = get_current_target(cmd_ctx);
1929
1930         if (argc < 1)
1931                 return ERROR_OK;
1932
1933         if (argc == 2)
1934                 count = strtoul(args[1], NULL, 0);
1935
1936         address = strtoul(args[0], NULL, 0);
1937         
1938
1939         switch (cmd[2])
1940         {
1941                 case 'w':
1942                         size = 4; line_modulo = line_bytecnt / 4;
1943                         break;
1944                 case 'h':
1945                         size = 2; line_modulo = line_bytecnt / 2;
1946                         break;
1947                 case 'b':
1948                         size = 1; line_modulo = line_bytecnt / 1;
1949                         break;
1950                 default:
1951                         return ERROR_OK;
1952         }
1953
1954         buffer = calloc(count, size);
1955         retval  = target->type->read_memory(target, address, size, count, buffer);
1956         if (retval == ERROR_OK)
1957         {
1958                 output_len = 0;
1959         
1960                 for (i = 0; i < count; i++)
1961                 {
1962                         if (i%line_modulo == 0)
1963                                 output_len += snprintf(output + output_len, 128 - output_len, "0x%8.8x: ", address + (i*size));
1964                         
1965                         switch (size)
1966                         {
1967                                 case 4:
1968                                         output_len += snprintf(output + output_len, 128 - output_len, "%8.8x ", target_buffer_get_u32(target, &buffer[i*4]));
1969                                         break;
1970                                 case 2:
1971                                         output_len += snprintf(output + output_len, 128 - output_len, "%4.4x ", target_buffer_get_u16(target, &buffer[i*2]));
1972                                         break;
1973                                 case 1:
1974                                         output_len += snprintf(output + output_len, 128 - output_len, "%2.2x ", buffer[i*1]);
1975                                         break;
1976                         }
1977         
1978                         if ((i%line_modulo == line_modulo-1) || (i == count - 1))
1979                         {
1980                                 command_print(cmd_ctx, output);
1981                                 output_len = 0;
1982                         }
1983                 }
1984         } else
1985         {
1986                 LOG_ERROR("Failure examining memory");
1987         }
1988
1989         free(buffer);
1990         
1991         return ERROR_OK;
1992 }
1993
1994 int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1995 {
1996         u32 address = 0;
1997         u32 value = 0;
1998         int count = 1;
1999         int i;
2000         int wordsize;
2001         target_t *target = get_current_target(cmd_ctx);
2002         u8 value_buf[4];
2003
2004          if ((argc < 2) || (argc > 3))
2005                 return ERROR_COMMAND_SYNTAX_ERROR;
2006
2007         address = strtoul(args[0], NULL, 0);
2008         value = strtoul(args[1], NULL, 0);
2009         if (argc == 3)
2010                 count = strtoul(args[2], NULL, 0);
2011
2012
2013         switch (cmd[2])
2014         {
2015                 case 'w':
2016                         wordsize = 4;
2017                         target_buffer_set_u32(target, value_buf, value);
2018                         break;
2019                 case 'h':
2020                         wordsize = 2;
2021                         target_buffer_set_u16(target, value_buf, value);
2022                         break;
2023                 case 'b':
2024                         wordsize = 1;
2025                         value_buf[0] = value;
2026                         break;
2027                 default:
2028                         return ERROR_COMMAND_SYNTAX_ERROR;
2029         }
2030         for (i=0; i<count; i++)
2031         {
2032                 int retval;
2033                 switch (wordsize)
2034                 {
2035                         case 4:
2036                                 retval = target->type->write_memory(target, address + i*wordsize, 4, 1, value_buf);
2037                                 break;
2038                         case 2:
2039                                 retval = target->type->write_memory(target, address + i*wordsize, 2, 1, value_buf);
2040                                 break;
2041                         case 1:
2042                                 retval = target->type->write_memory(target, address + i*wordsize, 1, 1, value_buf);
2043                         break;
2044                         default:
2045                         return ERROR_OK;
2046                 }
2047                 if (retval!=ERROR_OK)
2048                 {
2049                         return retval;
2050                 }
2051         }
2052
2053         return ERROR_OK;
2054
2055 }
2056
2057 int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2058 {
2059         u8 *buffer;
2060         u32 buf_cnt;
2061         u32 image_size;
2062         int i;
2063         int retval;
2064
2065         image_t image;  
2066         
2067         duration_t duration;
2068         char *duration_text;
2069         
2070         target_t *target = get_current_target(cmd_ctx);
2071
2072         if (argc < 1)
2073         {
2074                 command_print(cmd_ctx, "usage: load_image <filename> [address] [type]");
2075                 return ERROR_OK;
2076         }
2077         
2078         /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
2079         if (argc >= 2)
2080         {
2081                 image.base_address_set = 1;
2082                 image.base_address = strtoul(args[1], NULL, 0);
2083         }
2084         else
2085         {
2086                 image.base_address_set = 0;
2087         }
2088         
2089         image.start_address_set = 0;
2090
2091         duration_start_measure(&duration);
2092         
2093         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
2094         {
2095                 return ERROR_OK;
2096         }
2097         
2098         image_size = 0x0;
2099         retval = ERROR_OK;
2100         for (i = 0; i < image.num_sections; i++)
2101         {
2102                 buffer = malloc(image.sections[i].size);
2103                 if (buffer == NULL)
2104                 {
2105                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2106                         break;
2107                 }
2108                 
2109                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2110                 {
2111                         free(buffer);
2112                         break;
2113                 }
2114                 if ((retval = target_write_buffer(target, image.sections[i].base_address, buf_cnt, buffer)) != ERROR_OK)
2115                 {
2116                         free(buffer);
2117                         break;
2118                 }
2119                 image_size += buf_cnt;
2120                 command_print(cmd_ctx, "%u byte written at address 0x%8.8x", buf_cnt, image.sections[i].base_address);
2121                 
2122                 free(buffer);
2123         }
2124
2125         duration_stop_measure(&duration, &duration_text);
2126         if (retval==ERROR_OK)
2127         {
2128                 command_print(cmd_ctx, "downloaded %u byte in %s", image_size, duration_text);
2129         }
2130         free(duration_text);
2131         
2132         image_close(&image);
2133
2134         return retval;
2135
2136 }
2137
2138 int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2139 {
2140         fileio_t fileio;
2141         
2142         u32 address;
2143         u32 size;
2144         u8 buffer[560];
2145         int retval=ERROR_OK;
2146         
2147         duration_t duration;
2148         char *duration_text;
2149         
2150         target_t *target = get_current_target(cmd_ctx);
2151
2152         if (argc != 3)
2153         {
2154                 command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
2155                 return ERROR_OK;
2156         }
2157
2158         address = strtoul(args[1], NULL, 0);
2159         size = strtoul(args[2], NULL, 0);
2160
2161         if ((address & 3) || (size & 3))
2162         {
2163                 command_print(cmd_ctx, "only 32-bit aligned address and size are supported");
2164                 return ERROR_OK;
2165         }
2166         
2167         if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2168         {
2169                 return ERROR_OK;
2170         }
2171         
2172         duration_start_measure(&duration);
2173         
2174         while (size > 0)
2175         {
2176                 u32 size_written;
2177                 u32 this_run_size = (size > 560) ? 560 : size;
2178                 
2179                 retval = target->type->read_memory(target, address, 4, this_run_size / 4, buffer);
2180                 if (retval != ERROR_OK)
2181                 {
2182                         break;
2183                 }
2184                 
2185                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2186                 if (retval != ERROR_OK)
2187                 {
2188                         break;
2189                 }
2190                 
2191                 size -= this_run_size;
2192                 address += this_run_size;
2193         }
2194
2195         fileio_close(&fileio);
2196
2197         duration_stop_measure(&duration, &duration_text);
2198         if (retval==ERROR_OK)
2199         {
2200                 command_print(cmd_ctx, "dumped %"PRIi64" byte in %s", fileio.size, duration_text);
2201         }
2202         free(duration_text);
2203         
2204         return ERROR_OK;
2205 }
2206
2207 int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2208 {
2209         u8 *buffer;
2210         u32 buf_cnt;
2211         u32 image_size;
2212         int i;
2213         int retval;
2214         u32 checksum = 0;
2215         u32 mem_checksum = 0;
2216
2217         image_t image;  
2218         
2219         duration_t duration;
2220         char *duration_text;
2221         
2222         target_t *target = get_current_target(cmd_ctx);
2223         
2224         if (argc < 1)
2225         {
2226                 return ERROR_COMMAND_SYNTAX_ERROR;
2227         }
2228         
2229         if (!target)
2230         {
2231                 LOG_ERROR("no target selected");
2232                 return ERROR_FAIL;
2233         }
2234         
2235         duration_start_measure(&duration);
2236         
2237         if (argc >= 2)
2238         {
2239                 image.base_address_set = 1;
2240                 image.base_address = strtoul(args[1], NULL, 0);
2241         }
2242         else
2243         {
2244                 image.base_address_set = 0;
2245                 image.base_address = 0x0;
2246         }
2247
2248         image.start_address_set = 0;
2249
2250         if ((retval=image_open(&image, args[0], (argc == 3) ? args[2] : NULL)) != ERROR_OK)
2251         {
2252                 return retval;
2253         }
2254         
2255         image_size = 0x0;
2256         retval=ERROR_OK;
2257         for (i = 0; i < image.num_sections; i++)
2258         {
2259                 buffer = malloc(image.sections[i].size);
2260                 if (buffer == NULL)
2261                 {
2262                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2263                         break;
2264                 }
2265                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2266                 {
2267                         free(buffer);
2268                         break;
2269                 }
2270                 
2271                 /* calculate checksum of image */
2272                 image_calculate_checksum( buffer, buf_cnt, &checksum );
2273                 
2274                 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2275                 if( retval != ERROR_OK )
2276                 {
2277                         free(buffer);
2278                         break;
2279                 }
2280                 
2281                 if( checksum != mem_checksum )
2282                 {
2283                         /* failed crc checksum, fall back to a binary compare */
2284                         u8 *data;
2285                         
2286                         command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
2287                         
2288                         data = (u8*)malloc(buf_cnt);
2289                         
2290                         /* Can we use 32bit word accesses? */
2291                         int size = 1;
2292                         int count = buf_cnt;
2293                         if ((count % 4) == 0)
2294                         {
2295                                 size *= 4;
2296                                 count /= 4;
2297                         }
2298                         retval = target->type->read_memory(target, image.sections[i].base_address, size, count, data);
2299                         if (retval == ERROR_OK)
2300                         {
2301                                 int t;
2302                                 for (t = 0; t < buf_cnt; t++)
2303                                 {
2304                                         if (data[t] != buffer[t])
2305                                         {
2306                                                 command_print(cmd_ctx, "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n", t + image.sections[i].base_address, data[t], buffer[t]);
2307                                                 free(data);
2308                                                 free(buffer);
2309                                                 retval=ERROR_FAIL;
2310                                                 goto done;
2311                                         }
2312                                 }
2313                         }
2314                         
2315                         free(data);
2316                 }
2317                 
2318                 free(buffer);
2319                 image_size += buf_cnt;
2320         }
2321 done:   
2322         duration_stop_measure(&duration, &duration_text);
2323         if (retval==ERROR_OK)
2324         {
2325                 command_print(cmd_ctx, "verified %u bytes in %s", image_size, duration_text);
2326         }
2327         free(duration_text);
2328         
2329         image_close(&image);
2330         
2331         return retval;
2332 }
2333
2334 int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2335 {
2336         int retval;
2337         target_t *target = get_current_target(cmd_ctx);
2338
2339         if (argc == 0)
2340         {
2341                 breakpoint_t *breakpoint = target->breakpoints;
2342
2343                 while (breakpoint)
2344                 {
2345                         if (breakpoint->type == BKPT_SOFT)
2346                         {
2347                                 char* buf = buf_to_str(breakpoint->orig_instr, breakpoint->length, 16);
2348                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i, 0x%s", breakpoint->address, breakpoint->length, breakpoint->set, buf);
2349                                 free(buf);
2350                         }
2351                         else
2352                         {
2353                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i", breakpoint->address, breakpoint->length, breakpoint->set);
2354                         }
2355                         breakpoint = breakpoint->next;
2356                 }
2357         }
2358         else if (argc >= 2)
2359         {
2360                 int hw = BKPT_SOFT;
2361                 u32 length = 0;
2362
2363                 length = strtoul(args[1], NULL, 0);
2364                 
2365                 if (argc >= 3)
2366                         if (strcmp(args[2], "hw") == 0)
2367                                 hw = BKPT_HARD;
2368
2369                 if ((retval = breakpoint_add(target, strtoul(args[0], NULL, 0), length, hw)) != ERROR_OK)
2370                 {
2371                         LOG_ERROR("Failure setting breakpoints");
2372                 }
2373                 else
2374                 {
2375                         command_print(cmd_ctx, "breakpoint added at address 0x%8.8x", strtoul(args[0], NULL, 0));
2376                 }
2377         }
2378         else
2379         {
2380                 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
2381         }
2382
2383         return ERROR_OK;
2384 }
2385
2386 int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2387 {
2388         target_t *target = get_current_target(cmd_ctx);
2389
2390         if (argc > 0)
2391                 breakpoint_remove(target, strtoul(args[0], NULL, 0));
2392
2393         return ERROR_OK;
2394 }
2395
2396 int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2397 {
2398         target_t *target = get_current_target(cmd_ctx);
2399         int retval;
2400
2401         if (argc == 0)
2402         {
2403                 watchpoint_t *watchpoint = target->watchpoints;
2404
2405                 while (watchpoint)
2406                 {
2407                         command_print(cmd_ctx, "address: 0x%8.8x, len: 0x%8.8x, r/w/a: %i, value: 0x%8.8x, mask: 0x%8.8x", watchpoint->address, watchpoint->length, watchpoint->rw, watchpoint->value, watchpoint->mask);
2408                         watchpoint = watchpoint->next;
2409                 }
2410         } 
2411         else if (argc >= 2)
2412         {
2413                 enum watchpoint_rw type = WPT_ACCESS;
2414                 u32 data_value = 0x0;
2415                 u32 data_mask = 0xffffffff;
2416                 
2417                 if (argc >= 3)
2418                 {
2419                         switch(args[2][0])
2420                         {
2421                                 case 'r':
2422                                         type = WPT_READ;
2423                                         break;
2424                                 case 'w':
2425                                         type = WPT_WRITE;
2426                                         break;
2427                                 case 'a':
2428                                         type = WPT_ACCESS;
2429                                         break;
2430                                 default:
2431                                         command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2432                                         return ERROR_OK;
2433                         }
2434                 }
2435                 if (argc >= 4)
2436                 {
2437                         data_value = strtoul(args[3], NULL, 0);
2438                 }
2439                 if (argc >= 5)
2440                 {
2441                         data_mask = strtoul(args[4], NULL, 0);
2442                 }
2443                 
2444                 if ((retval = watchpoint_add(target, strtoul(args[0], NULL, 0),
2445                                 strtoul(args[1], NULL, 0), type, data_value, data_mask)) != ERROR_OK)
2446                 {
2447                         LOG_ERROR("Failure setting breakpoints");
2448                 }
2449         }
2450         else
2451         {
2452                 command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2453         }
2454                 
2455         return ERROR_OK;
2456 }
2457
2458 int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2459 {
2460         target_t *target = get_current_target(cmd_ctx);
2461
2462         if (argc > 0)
2463                 watchpoint_remove(target, strtoul(args[0], NULL, 0));
2464         
2465         return ERROR_OK;
2466 }
2467
2468 int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc)
2469 {
2470         int retval;
2471         target_t *target = get_current_target(cmd_ctx);
2472         u32 va;
2473         u32 pa;
2474
2475         if (argc != 1)
2476         {
2477                 return ERROR_COMMAND_SYNTAX_ERROR;
2478         }
2479         va = strtoul(args[0], NULL, 0);
2480
2481         retval = target->type->virt2phys(target, va, &pa);
2482         if (retval == ERROR_OK)
2483         {
2484                 command_print(cmd_ctx, "Physical address 0x%08x", pa);
2485         }
2486         else
2487         {
2488                 /* lower levels will have logged a detailed error which is 
2489                  * forwarded to telnet/GDB session.  
2490                  */
2491         }
2492         return retval;
2493 }
2494 static void writeLong(FILE *f, int l)
2495 {
2496         int i;
2497         for (i=0; i<4; i++)
2498         {
2499                 char c=(l>>(i*8))&0xff;
2500                 fwrite(&c, 1, 1, f); 
2501         }
2502         
2503 }
2504 static void writeString(FILE *f, char *s)
2505 {
2506         fwrite(s, 1, strlen(s), f); 
2507 }
2508
2509
2510
2511 // Dump a gmon.out histogram file.
2512 static void writeGmon(u32 *samples, int sampleNum, char *filename)
2513 {
2514         int i;
2515         FILE *f=fopen(filename, "w");
2516         if (f==NULL)
2517                 return;
2518         fwrite("gmon", 1, 4, f);
2519         writeLong(f, 0x00000001); // Version
2520         writeLong(f, 0); // padding
2521         writeLong(f, 0); // padding
2522         writeLong(f, 0); // padding
2523                                 
2524         fwrite("", 1, 1, f);  // GMON_TAG_TIME_HIST 
2525
2526         // figure out bucket size
2527         u32 min=samples[0];
2528         u32 max=samples[0];
2529         for (i=0; i<sampleNum; i++)
2530         {
2531                 if (min>samples[i])
2532                 {
2533                         min=samples[i];
2534                 }
2535                 if (max<samples[i])
2536                 {
2537                         max=samples[i];
2538                 }
2539         }
2540
2541         int addressSpace=(max-min+1);
2542         
2543         static int const maxBuckets=256*1024; // maximum buckets.
2544         int length=addressSpace;
2545         if (length > maxBuckets)
2546         {
2547                 length=maxBuckets; 
2548         }
2549         int *buckets=malloc(sizeof(int)*length);
2550         if (buckets==NULL)
2551         {
2552                 fclose(f);
2553                 return;
2554         }
2555         memset(buckets, 0, sizeof(int)*length);
2556         for (i=0; i<sampleNum;i++)
2557         {
2558                 u32 address=samples[i];
2559                 long long a=address-min;
2560                 long long b=length-1;
2561                 long long c=addressSpace-1;
2562                 int index=(a*b)/c; // danger!!!! int32 overflows 
2563                 buckets[index]++;
2564         }
2565         
2566         //                         append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr))
2567         writeLong(f, min);                                      // low_pc
2568         writeLong(f, max);              // high_pc
2569         writeLong(f, length);           // # of samples
2570         writeLong(f, 64000000);                         // 64MHz
2571         writeString(f, "seconds");
2572         for (i=0; i<(15-strlen("seconds")); i++)
2573         {
2574                 fwrite("", 1, 1, f);  // padding
2575         }
2576         writeString(f, "s");
2577                 
2578 //                         append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size)
2579         
2580         char *data=malloc(2*length);
2581         if (data!=NULL)
2582         {
2583                 for (i=0; i<length;i++)
2584                 {
2585                         int val;
2586                         val=buckets[i];
2587                         if (val>65535)
2588                         {
2589                                 val=65535;
2590                         }
2591                         data[i*2]=val&0xff;
2592                         data[i*2+1]=(val>>8)&0xff;
2593                 }
2594                 free(buckets);
2595                 fwrite(data, 1, length*2, f);
2596                 free(data);
2597         } else
2598         {
2599                 free(buckets);
2600         }
2601
2602         fclose(f);
2603 }
2604
2605 /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
2606 int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2607 {
2608         target_t *target = get_current_target(cmd_ctx);
2609         struct timeval timeout, now;
2610         
2611         gettimeofday(&timeout, NULL);
2612         if (argc!=2)
2613         {
2614                 return ERROR_COMMAND_SYNTAX_ERROR;
2615         }
2616         char *end;
2617         timeval_add_time(&timeout, strtoul(args[0], &end, 0), 0);
2618         if (*end) 
2619         {
2620                 return ERROR_OK;
2621         }
2622         
2623         command_print(cmd_ctx, "Starting profiling. Halting and resuming the target as often as we can...");
2624
2625         static const int maxSample=10000;
2626         u32 *samples=malloc(sizeof(u32)*maxSample);
2627         if (samples==NULL)
2628                 return ERROR_OK;
2629         
2630         int numSamples=0;
2631         int retval=ERROR_OK;
2632         // hopefully it is safe to cache! We want to stop/restart as quickly as possible.
2633         reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1);
2634         
2635         for (;;)
2636         {
2637                 target_poll(target);
2638                 if (target->state == TARGET_HALTED)
2639                 {
2640                         u32 t=*((u32 *)reg->value);
2641                         samples[numSamples++]=t;
2642                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2643                         target_poll(target);
2644                         usleep(10*1000); // sleep 10ms, i.e. <100 samples/second.
2645                 } else if (target->state == TARGET_RUNNING)
2646                 {
2647                         // We want to quickly sample the PC.
2648                         target_halt(target);
2649                 } else
2650                 {
2651                         command_print(cmd_ctx, "Target not halted or running");
2652                         retval=ERROR_OK;
2653                         break;
2654                 }
2655                 if (retval!=ERROR_OK)
2656                 {
2657                         break;
2658                 }
2659                 
2660                 gettimeofday(&now, NULL);
2661                 if ((numSamples>=maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
2662                 {
2663                         command_print(cmd_ctx, "Profiling completed. %d samples.", numSamples);
2664                         target_poll(target);
2665                         if (target->state == TARGET_HALTED)
2666                         {
2667                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2668                         }
2669                         target_poll(target);
2670                         writeGmon(samples, numSamples, args[1]);
2671                         command_print(cmd_ctx, "Wrote %s", args[1]);
2672                         break;
2673                 }
2674         }
2675         free(samples);
2676         
2677         return ERROR_OK;
2678 }
2679