]> git.gag.com Git - fw/openocd/blob - src/target/target.c
David Brownell <david-b@pacbell.net>:
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007,2008 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   This program is free software; you can redistribute it and/or modify  *
18  *   it under the terms of the GNU General Public License as published by  *
19  *   the Free Software Foundation; either version 2 of the License, or     *
20  *   (at your option) any later version.                                   *
21  *                                                                         *
22  *   This program is distributed in the hope that it will be useful,       *
23  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
24  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
25  *   GNU General Public License for more details.                          *
26  *                                                                         *
27  *   You should have received a copy of the GNU General Public License     *
28  *   along with this program; if not, write to the                         *
29  *   Free Software Foundation, Inc.,                                       *
30  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "target.h"
37 #include "target_type.h"
38 #include "target_request.h"
39 #include "time_support.h"
40 #include "register.h"
41 #include "trace.h"
42 #include "image.h"
43 #include "jtag.h"
44
45
46 static int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
47
48 static int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
49 static int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
50 static int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
51 static int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
52 static int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
53 static int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
54 static int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
55 static int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
56 static int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
57 static int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
58 static int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
59 static int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
60 static int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
61 static int handle_test_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
62 static int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
63 static int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
64 static int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
65 static int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
66 static int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc);
67 static int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
68 static int handle_fast_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
69 static int handle_fast_load_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
70
71 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
72 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
73 static int jim_target( Jim_Interp *interp, int argc, Jim_Obj *const *argv);
74
75 static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv);
76 static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv);
77
78 /* targets */
79 extern target_type_t arm7tdmi_target;
80 extern target_type_t arm720t_target;
81 extern target_type_t arm9tdmi_target;
82 extern target_type_t arm920t_target;
83 extern target_type_t arm966e_target;
84 extern target_type_t arm926ejs_target;
85 extern target_type_t feroceon_target;
86 extern target_type_t xscale_target;
87 extern target_type_t cortexm3_target;
88 extern target_type_t cortexa8_target;
89 extern target_type_t arm11_target;
90 extern target_type_t mips_m4k_target;
91 extern target_type_t avr_target;
92
93 target_type_t *target_types[] =
94 {
95         &arm7tdmi_target,
96         &arm9tdmi_target,
97         &arm920t_target,
98         &arm720t_target,
99         &arm966e_target,
100         &arm926ejs_target,
101         &feroceon_target,
102         &xscale_target,
103         &cortexm3_target,
104         &cortexa8_target,
105         &arm11_target,
106         &mips_m4k_target,
107         &avr_target,
108         NULL,
109 };
110
111 target_t *all_targets = NULL;
112 target_event_callback_t *target_event_callbacks = NULL;
113 target_timer_callback_t *target_timer_callbacks = NULL;
114
115 const Jim_Nvp nvp_assert[] = {
116         { .name = "assert", NVP_ASSERT },
117         { .name = "deassert", NVP_DEASSERT },
118         { .name = "T", NVP_ASSERT },
119         { .name = "F", NVP_DEASSERT },
120         { .name = "t", NVP_ASSERT },
121         { .name = "f", NVP_DEASSERT },
122         { .name = NULL, .value = -1 }
123 };
124
125 const Jim_Nvp nvp_error_target[] = {
126         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
127         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
128         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
129         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
130         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
131         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
132         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
133         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
134         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
135         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
136         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
137         { .value = -1, .name = NULL }
138 };
139
140 const char *target_strerror_safe( int err )
141 {
142         const Jim_Nvp *n;
143
144         n = Jim_Nvp_value2name_simple( nvp_error_target, err );
145         if( n->name == NULL ){
146                 return "unknown";
147         } else {
148                 return n->name;
149         }
150 }
151
152 static const Jim_Nvp nvp_target_event[] = {
153         { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
154         { .value = TARGET_EVENT_OLD_pre_resume         , .name = "old-pre_resume" },
155
156         { .value = TARGET_EVENT_EARLY_HALTED, .name = "early-halted" },
157         { .value = TARGET_EVENT_HALTED, .name = "halted" },
158         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
159         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
160         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
161
162         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
163         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
164
165         /* historical name */
166
167         { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
168
169         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
170         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
171         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
172         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
173         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
174         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
175         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
176         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
177         { .value = TARGET_EVENT_RESET_INIT , .name = "reset-init" },
178         { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
179
180         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
181         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
182
183         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
184         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
185
186         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
187         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
188
189         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
190         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
191
192         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
193         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
194
195         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
196         { .value = TARGET_EVENT_RESUMED     , .name = "resume-ok" },
197         { .value = TARGET_EVENT_RESUME_END  , .name = "resume-end" },
198
199         { .name = NULL, .value = -1 }
200 };
201
202 const Jim_Nvp nvp_target_state[] = {
203         { .name = "unknown", .value = TARGET_UNKNOWN },
204         { .name = "running", .value = TARGET_RUNNING },
205         { .name = "halted",  .value = TARGET_HALTED },
206         { .name = "reset",   .value = TARGET_RESET },
207         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
208         { .name = NULL, .value = -1 },
209 };
210
211 const Jim_Nvp nvp_target_debug_reason [] = {
212         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
213         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
214         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
215         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
216         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
217         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
218         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
219         { .name = NULL, .value = -1 },
220 };
221
222 const Jim_Nvp nvp_target_endian[] = {
223         { .name = "big",    .value = TARGET_BIG_ENDIAN },
224         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
225         { .name = "be",     .value = TARGET_BIG_ENDIAN },
226         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
227         { .name = NULL,     .value = -1 },
228 };
229
230 const Jim_Nvp nvp_reset_modes[] = {
231         { .name = "unknown", .value = RESET_UNKNOWN },
232         { .name = "run"    , .value = RESET_RUN },
233         { .name = "halt"   , .value = RESET_HALT },
234         { .name = "init"   , .value = RESET_INIT },
235         { .name = NULL     , .value = -1 },
236 };
237
238 static int max_target_number(void)
239 {
240         target_t *t;
241         int x;
242
243         x = -1;
244         t = all_targets;
245         while( t ){
246                 if( x < t->target_number ){
247                         x = (t->target_number)+1;
248                 }
249                 t = t->next;
250         }
251         return x;
252 }
253
254 /* determine the number of the new target */
255 static int new_target_number(void)
256 {
257         target_t *t;
258         int x;
259
260         /* number is 0 based */
261         x = -1;
262         t = all_targets;
263         while(t){
264                 if( x < t->target_number ){
265                         x = t->target_number;
266                 }
267                 t = t->next;
268         }
269         return x+1;
270 }
271
272 static int target_continuous_poll = 1;
273
274 /* read a u32 from a buffer in target memory endianness */
275 u32 target_buffer_get_u32(target_t *target, const u8 *buffer)
276 {
277         if (target->endianness == TARGET_LITTLE_ENDIAN)
278                 return le_to_h_u32(buffer);
279         else
280                 return be_to_h_u32(buffer);
281 }
282
283 /* read a u16 from a buffer in target memory endianness */
284 u16 target_buffer_get_u16(target_t *target, const u8 *buffer)
285 {
286         if (target->endianness == TARGET_LITTLE_ENDIAN)
287                 return le_to_h_u16(buffer);
288         else
289                 return be_to_h_u16(buffer);
290 }
291
292 /* read a u8 from a buffer in target memory endianness */
293 u8 target_buffer_get_u8(target_t *target, const u8 *buffer)
294 {
295         return *buffer & 0x0ff;
296 }
297
298 /* write a u32 to a buffer in target memory endianness */
299 void target_buffer_set_u32(target_t *target, u8 *buffer, u32 value)
300 {
301         if (target->endianness == TARGET_LITTLE_ENDIAN)
302                 h_u32_to_le(buffer, value);
303         else
304                 h_u32_to_be(buffer, value);
305 }
306
307 /* write a u16 to a buffer in target memory endianness */
308 void target_buffer_set_u16(target_t *target, u8 *buffer, u16 value)
309 {
310         if (target->endianness == TARGET_LITTLE_ENDIAN)
311                 h_u16_to_le(buffer, value);
312         else
313                 h_u16_to_be(buffer, value);
314 }
315
316 /* write a u8 to a buffer in target memory endianness */
317 void target_buffer_set_u8(target_t *target, u8 *buffer, u8 value)
318 {
319         *buffer = value;
320 }
321
322 /* return a pointer to a configured target; id is name or number */
323 target_t *get_target(const char *id)
324 {
325         target_t *target;
326
327         /* try as tcltarget name */
328         for (target = all_targets; target; target = target->next) {
329                 if (target->cmd_name == NULL)
330                         continue;
331                 if (strcmp(id, target->cmd_name) == 0)
332                         return target;
333         }
334
335         /* no match, try as number */
336         unsigned num;
337         if (parse_uint(id, &num) != ERROR_OK)
338                 return NULL;
339
340         for (target = all_targets; target; target = target->next) {
341                 if (target->target_number == (int)num)
342                         return target;
343         }
344
345         return NULL;
346 }
347
348 /* returns a pointer to the n-th configured target */
349 static target_t *get_target_by_num(int num)
350 {
351         target_t *target = all_targets;
352
353         while (target){
354                 if( target->target_number == num ){
355                         return target;
356                 }
357                 target = target->next;
358         }
359
360         return NULL;
361 }
362
363 int get_num_by_target(target_t *query_target)
364 {
365         return query_target->target_number;
366 }
367
368 target_t* get_current_target(command_context_t *cmd_ctx)
369 {
370         target_t *target = get_target_by_num(cmd_ctx->current_target);
371
372         if (target == NULL)
373         {
374                 LOG_ERROR("BUG: current_target out of bounds");
375                 exit(-1);
376         }
377
378         return target;
379 }
380
381 int target_poll(struct target_s *target)
382 {
383         /* We can't poll until after examine */
384         if (!target_was_examined(target))
385         {
386                 /* Fail silently lest we pollute the log */
387                 return ERROR_FAIL;
388         }
389         return target->type->poll(target);
390 }
391
392 int target_halt(struct target_s *target)
393 {
394         /* We can't poll until after examine */
395         if (!target_was_examined(target))
396         {
397                 LOG_ERROR("Target not examined yet");
398                 return ERROR_FAIL;
399         }
400         return target->type->halt(target);
401 }
402
403 int target_resume(struct target_s *target, int current, u32 address, int handle_breakpoints, int debug_execution)
404 {
405         int retval;
406
407         /* We can't poll until after examine */
408         if (!target_was_examined(target))
409         {
410                 LOG_ERROR("Target not examined yet");
411                 return ERROR_FAIL;
412         }
413
414         /* note that resume *must* be asynchronous. The CPU can halt before we poll. The CPU can
415          * even halt at the current PC as a result of a software breakpoint being inserted by (a bug?)
416          * the application.
417          */
418         if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
419                 return retval;
420
421         return retval;
422 }
423
424 int target_process_reset(struct command_context_s *cmd_ctx, enum target_reset_mode reset_mode)
425 {
426         char buf[100];
427         int retval;
428         Jim_Nvp *n;
429         n = Jim_Nvp_value2name_simple( nvp_reset_modes, reset_mode );
430         if( n->name == NULL ){
431                 LOG_ERROR("invalid reset mode");
432                 return ERROR_FAIL;
433         }
434
435         /* disable polling during reset to make reset event scripts
436          * more predictable, i.e. dr/irscan & pathmove in events will
437          * not have JTAG operations injected into the middle of a sequence.
438          */
439         int save_poll = target_continuous_poll;
440         target_continuous_poll = 0;
441
442         sprintf( buf, "ocd_process_reset %s", n->name );
443         retval = Jim_Eval( interp, buf );
444
445         target_continuous_poll = save_poll;
446
447         if(retval != JIM_OK) {
448                 Jim_PrintErrorMessage(interp);
449                 return ERROR_FAIL;
450         }
451
452         /* We want any events to be processed before the prompt */
453         retval = target_call_timer_callbacks_now();
454
455         return retval;
456 }
457
458 static int default_virt2phys(struct target_s *target, u32 virtual, u32 *physical)
459 {
460         *physical = virtual;
461         return ERROR_OK;
462 }
463
464 static int default_mmu(struct target_s *target, int *enabled)
465 {
466         *enabled = 0;
467         return ERROR_OK;
468 }
469
470 static int default_examine(struct target_s *target)
471 {
472         target_set_examined(target);
473         return ERROR_OK;
474 }
475
476 int target_examine_one(struct target_s *target)
477 {
478         return target->type->examine(target);
479 }
480
481 /* Targets that correctly implement init+examine, i.e.
482  * no communication with target during init:
483  *
484  * XScale
485  */
486 int target_examine(void)
487 {
488         int retval = ERROR_OK;
489         target_t *target;
490
491         for (target = all_targets; target; target = target->next)
492         {
493                 if (!target->tap->enabled)
494                         continue;
495                 if ((retval = target_examine_one(target)) != ERROR_OK)
496                         return retval;
497         }
498         return retval;
499 }
500 const char *target_get_name(struct target_s *target)
501 {
502         return target->type->name;
503 }
504
505 static int target_write_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
506 {
507         if (!target_was_examined(target))
508         {
509                 LOG_ERROR("Target not examined yet");
510                 return ERROR_FAIL;
511         }
512         return target->type->write_memory_imp(target, address, size, count, buffer);
513 }
514
515 static int target_read_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
516 {
517         if (!target_was_examined(target))
518         {
519                 LOG_ERROR("Target not examined yet");
520                 return ERROR_FAIL;
521         }
522         return target->type->read_memory_imp(target, address, size, count, buffer);
523 }
524
525 static int target_soft_reset_halt_imp(struct target_s *target)
526 {
527         if (!target_was_examined(target))
528         {
529                 LOG_ERROR("Target not examined yet");
530                 return ERROR_FAIL;
531         }
532         return target->type->soft_reset_halt_imp(target);
533 }
534
535 static int target_run_algorithm_imp(struct target_s *target, int num_mem_params, mem_param_t *mem_params, int num_reg_params, reg_param_t *reg_param, u32 entry_point, u32 exit_point, int timeout_ms, void *arch_info)
536 {
537         if (!target_was_examined(target))
538         {
539                 LOG_ERROR("Target not examined yet");
540                 return ERROR_FAIL;
541         }
542         return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
543 }
544
545 int target_read_memory(struct target_s *target,
546                 u32 address, u32 size, u32 count, u8 *buffer)
547 {
548         return target->type->read_memory(target, address, size, count, buffer);
549 }
550
551 int target_write_memory(struct target_s *target,
552                 u32 address, u32 size, u32 count, u8 *buffer)
553 {
554         return target->type->write_memory(target, address, size, count, buffer);
555 }
556 int target_bulk_write_memory(struct target_s *target,
557                 u32 address, u32 count, u8 *buffer)
558 {
559         return target->type->bulk_write_memory(target, address, count, buffer);
560 }
561
562 int target_add_breakpoint(struct target_s *target,
563                 struct breakpoint_s *breakpoint)
564 {
565         return target->type->add_breakpoint(target, breakpoint);
566 }
567 int target_remove_breakpoint(struct target_s *target,
568                 struct breakpoint_s *breakpoint)
569 {
570         return target->type->remove_breakpoint(target, breakpoint);
571 }
572
573 int target_add_watchpoint(struct target_s *target,
574                 struct watchpoint_s *watchpoint)
575 {
576         return target->type->add_watchpoint(target, watchpoint);
577 }
578 int target_remove_watchpoint(struct target_s *target,
579                 struct watchpoint_s *watchpoint)
580 {
581         return target->type->remove_watchpoint(target, watchpoint);
582 }
583
584 int target_get_gdb_reg_list(struct target_s *target,
585                 struct reg_s **reg_list[], int *reg_list_size)
586 {
587         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
588 }
589 int target_step(struct target_s *target,
590                 int current, u32 address, int handle_breakpoints)
591 {
592         return target->type->step(target, current, address, handle_breakpoints);
593 }
594
595
596 int target_run_algorithm(struct target_s *target,
597                 int num_mem_params, mem_param_t *mem_params,
598                 int num_reg_params, reg_param_t *reg_param,
599                 u32 entry_point, u32 exit_point,
600                 int timeout_ms, void *arch_info)
601 {
602         return target->type->run_algorithm(target,
603                         num_mem_params, mem_params, num_reg_params, reg_param,
604                         entry_point, exit_point, timeout_ms, arch_info);
605 }
606
607 /// @returns @c true if the target has been examined.
608 bool target_was_examined(struct target_s *target)
609 {
610         return target->type->examined;
611 }
612 /// Sets the @c examined flag for the given target.
613 void target_set_examined(struct target_s *target)
614 {
615         target->type->examined = true;
616 }
617 // Reset the @c examined flag for the given target.
618 void target_reset_examined(struct target_s *target)
619 {
620         target->type->examined = false;
621 }
622
623
624 int target_init(struct command_context_s *cmd_ctx)
625 {
626         target_t *target = all_targets;
627         int retval;
628
629         while (target)
630         {
631                 target_reset_examined(target);
632                 if (target->type->examine == NULL)
633                 {
634                         target->type->examine = default_examine;
635                 }
636
637                 if ((retval = target->type->init_target(cmd_ctx, target)) != ERROR_OK)
638                 {
639                         LOG_ERROR("target '%s' init failed", target_get_name(target));
640                         return retval;
641                 }
642
643                 /* Set up default functions if none are provided by target */
644                 if (target->type->virt2phys == NULL)
645                 {
646                         target->type->virt2phys = default_virt2phys;
647                 }
648                 target->type->virt2phys = default_virt2phys;
649                 /* a non-invasive way(in terms of patches) to add some code that
650                  * runs before the type->write/read_memory implementation
651                  */
652                 target->type->write_memory_imp = target->type->write_memory;
653                 target->type->write_memory = target_write_memory_imp;
654                 target->type->read_memory_imp = target->type->read_memory;
655                 target->type->read_memory = target_read_memory_imp;
656                 target->type->soft_reset_halt_imp = target->type->soft_reset_halt;
657                 target->type->soft_reset_halt = target_soft_reset_halt_imp;
658                 target->type->run_algorithm_imp = target->type->run_algorithm;
659                 target->type->run_algorithm = target_run_algorithm_imp;
660
661                 if (target->type->mmu == NULL)
662                 {
663                         target->type->mmu = default_mmu;
664                 }
665                 target = target->next;
666         }
667
668         if (all_targets)
669         {
670                 if((retval = target_register_user_commands(cmd_ctx)) != ERROR_OK)
671                         return retval;
672                 if((retval = target_register_timer_callback(handle_target, 100, 1, NULL)) != ERROR_OK)
673                         return retval;
674         }
675
676         return ERROR_OK;
677 }
678
679 int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
680 {
681         target_event_callback_t **callbacks_p = &target_event_callbacks;
682
683         if (callback == NULL)
684         {
685                 return ERROR_INVALID_ARGUMENTS;
686         }
687
688         if (*callbacks_p)
689         {
690                 while ((*callbacks_p)->next)
691                         callbacks_p = &((*callbacks_p)->next);
692                 callbacks_p = &((*callbacks_p)->next);
693         }
694
695         (*callbacks_p) = malloc(sizeof(target_event_callback_t));
696         (*callbacks_p)->callback = callback;
697         (*callbacks_p)->priv = priv;
698         (*callbacks_p)->next = NULL;
699
700         return ERROR_OK;
701 }
702
703 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
704 {
705         target_timer_callback_t **callbacks_p = &target_timer_callbacks;
706         struct timeval now;
707
708         if (callback == NULL)
709         {
710                 return ERROR_INVALID_ARGUMENTS;
711         }
712
713         if (*callbacks_p)
714         {
715                 while ((*callbacks_p)->next)
716                         callbacks_p = &((*callbacks_p)->next);
717                 callbacks_p = &((*callbacks_p)->next);
718         }
719
720         (*callbacks_p) = malloc(sizeof(target_timer_callback_t));
721         (*callbacks_p)->callback = callback;
722         (*callbacks_p)->periodic = periodic;
723         (*callbacks_p)->time_ms = time_ms;
724
725         gettimeofday(&now, NULL);
726         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
727         time_ms -= (time_ms % 1000);
728         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
729         if ((*callbacks_p)->when.tv_usec > 1000000)
730         {
731                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
732                 (*callbacks_p)->when.tv_sec += 1;
733         }
734
735         (*callbacks_p)->priv = priv;
736         (*callbacks_p)->next = NULL;
737
738         return ERROR_OK;
739 }
740
741 int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
742 {
743         target_event_callback_t **p = &target_event_callbacks;
744         target_event_callback_t *c = target_event_callbacks;
745
746         if (callback == NULL)
747         {
748                 return ERROR_INVALID_ARGUMENTS;
749         }
750
751         while (c)
752         {
753                 target_event_callback_t *next = c->next;
754                 if ((c->callback == callback) && (c->priv == priv))
755                 {
756                         *p = next;
757                         free(c);
758                         return ERROR_OK;
759                 }
760                 else
761                         p = &(c->next);
762                 c = next;
763         }
764
765         return ERROR_OK;
766 }
767
768 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
769 {
770         target_timer_callback_t **p = &target_timer_callbacks;
771         target_timer_callback_t *c = target_timer_callbacks;
772
773         if (callback == NULL)
774         {
775                 return ERROR_INVALID_ARGUMENTS;
776         }
777
778         while (c)
779         {
780                 target_timer_callback_t *next = c->next;
781                 if ((c->callback == callback) && (c->priv == priv))
782                 {
783                         *p = next;
784                         free(c);
785                         return ERROR_OK;
786                 }
787                 else
788                         p = &(c->next);
789                 c = next;
790         }
791
792         return ERROR_OK;
793 }
794
795 int target_call_event_callbacks(target_t *target, enum target_event event)
796 {
797         target_event_callback_t *callback = target_event_callbacks;
798         target_event_callback_t *next_callback;
799
800         if (event == TARGET_EVENT_HALTED)
801         {
802                 /* execute early halted first */
803                 target_call_event_callbacks(target, TARGET_EVENT_EARLY_HALTED);
804         }
805
806         LOG_DEBUG("target event %i (%s)",
807                           event,
808                           Jim_Nvp_value2name_simple( nvp_target_event, event )->name );
809
810         target_handle_event( target, event );
811
812         while (callback)
813         {
814                 next_callback = callback->next;
815                 callback->callback(target, event, callback->priv);
816                 callback = next_callback;
817         }
818
819         return ERROR_OK;
820 }
821
822 static int target_timer_callback_periodic_restart(
823                 target_timer_callback_t *cb, struct timeval *now)
824 {
825         int time_ms = cb->time_ms;
826         cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
827         time_ms -= (time_ms % 1000);
828         cb->when.tv_sec = now->tv_sec + time_ms / 1000;
829         if (cb->when.tv_usec > 1000000)
830         {
831                 cb->when.tv_usec = cb->when.tv_usec - 1000000;
832                 cb->when.tv_sec += 1;
833         }
834         return ERROR_OK;
835 }
836
837 static int target_call_timer_callback(target_timer_callback_t *cb,
838                 struct timeval *now)
839 {
840         cb->callback(cb->priv);
841
842         if (cb->periodic)
843                 return target_timer_callback_periodic_restart(cb, now);
844
845         return target_unregister_timer_callback(cb->callback, cb->priv);
846 }
847
848 static int target_call_timer_callbacks_check_time(int checktime)
849 {
850         keep_alive();
851
852         struct timeval now;
853         gettimeofday(&now, NULL);
854
855         target_timer_callback_t *callback = target_timer_callbacks;
856         while (callback)
857         {
858                 // cleaning up may unregister and free this callback
859                 target_timer_callback_t *next_callback = callback->next;
860
861                 bool call_it = callback->callback &&
862                         ((!checktime && callback->periodic) ||
863                           now.tv_sec > callback->when.tv_sec ||
864                          (now.tv_sec == callback->when.tv_sec &&
865                           now.tv_usec >= callback->when.tv_usec));
866
867                 if (call_it)
868                 {
869                         int retval = target_call_timer_callback(callback, &now);
870                         if (retval != ERROR_OK)
871                                 return retval;
872                 }
873
874                 callback = next_callback;
875         }
876
877         return ERROR_OK;
878 }
879
880 int target_call_timer_callbacks(void)
881 {
882         return target_call_timer_callbacks_check_time(1);
883 }
884
885 /* invoke periodic callbacks immediately */
886 int target_call_timer_callbacks_now(void)
887 {
888         return target_call_timer_callbacks_check_time(0);
889 }
890
891 int target_alloc_working_area(struct target_s *target, u32 size, working_area_t **area)
892 {
893         working_area_t *c = target->working_areas;
894         working_area_t *new_wa = NULL;
895
896         /* Reevaluate working area address based on MMU state*/
897         if (target->working_areas == NULL)
898         {
899                 int retval;
900                 int enabled;
901                 retval = target->type->mmu(target, &enabled);
902                 if (retval != ERROR_OK)
903                 {
904                         return retval;
905                 }
906                 if (enabled)
907                 {
908                         target->working_area = target->working_area_virt;
909                 }
910                 else
911                 {
912                         target->working_area = target->working_area_phys;
913                 }
914         }
915
916         /* only allocate multiples of 4 byte */
917         if (size % 4)
918         {
919                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes, padding");
920                 size = CEIL(size, 4);
921         }
922
923         /* see if there's already a matching working area */
924         while (c)
925         {
926                 if ((c->free) && (c->size == size))
927                 {
928                         new_wa = c;
929                         break;
930                 }
931                 c = c->next;
932         }
933
934         /* if not, allocate a new one */
935         if (!new_wa)
936         {
937                 working_area_t **p = &target->working_areas;
938                 u32 first_free = target->working_area;
939                 u32 free_size = target->working_area_size;
940
941                 LOG_DEBUG("allocating new working area");
942
943                 c = target->working_areas;
944                 while (c)
945                 {
946                         first_free += c->size;
947                         free_size -= c->size;
948                         p = &c->next;
949                         c = c->next;
950                 }
951
952                 if (free_size < size)
953                 {
954                         LOG_WARNING("not enough working area available(requested %d, free %d)", size, free_size);
955                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
956                 }
957
958                 new_wa = malloc(sizeof(working_area_t));
959                 new_wa->next = NULL;
960                 new_wa->size = size;
961                 new_wa->address = first_free;
962
963                 if (target->backup_working_area)
964                 {
965                         int retval;
966                         new_wa->backup = malloc(new_wa->size);
967                         if((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
968                         {
969                                 free(new_wa->backup);
970                                 free(new_wa);
971                                 return retval;
972                         }
973                 }
974                 else
975                 {
976                         new_wa->backup = NULL;
977                 }
978
979                 /* put new entry in list */
980                 *p = new_wa;
981         }
982
983         /* mark as used, and return the new (reused) area */
984         new_wa->free = 0;
985         *area = new_wa;
986
987         /* user pointer */
988         new_wa->user = area;
989
990         return ERROR_OK;
991 }
992
993 int target_free_working_area_restore(struct target_s *target, working_area_t *area, int restore)
994 {
995         if (area->free)
996                 return ERROR_OK;
997
998         if (restore&&target->backup_working_area)
999         {
1000                 int retval;
1001                 if((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
1002                         return retval;
1003         }
1004
1005         area->free = 1;
1006
1007         /* mark user pointer invalid */
1008         *area->user = NULL;
1009         area->user = NULL;
1010
1011         return ERROR_OK;
1012 }
1013
1014 int target_free_working_area(struct target_s *target, working_area_t *area)
1015 {
1016         return target_free_working_area_restore(target, area, 1);
1017 }
1018
1019 /* free resources and restore memory, if restoring memory fails,
1020  * free up resources anyway
1021  */
1022 void target_free_all_working_areas_restore(struct target_s *target, int restore)
1023 {
1024         working_area_t *c = target->working_areas;
1025
1026         while (c)
1027         {
1028                 working_area_t *next = c->next;
1029                 target_free_working_area_restore(target, c, restore);
1030
1031                 if (c->backup)
1032                         free(c->backup);
1033
1034                 free(c);
1035
1036                 c = next;
1037         }
1038
1039         target->working_areas = NULL;
1040 }
1041
1042 void target_free_all_working_areas(struct target_s *target)
1043 {
1044         target_free_all_working_areas_restore(target, 1);
1045 }
1046
1047 int target_register_commands(struct command_context_s *cmd_ctx)
1048 {
1049
1050         register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, "change the current command line target (one parameter) or lists targets (with no parameter)");
1051
1052
1053
1054
1055         register_jim(cmd_ctx, "target", jim_target, "configure target" );
1056
1057         return ERROR_OK;
1058 }
1059
1060 int target_arch_state(struct target_s *target)
1061 {
1062         int retval;
1063         if (target==NULL)
1064         {
1065                 LOG_USER("No target has been configured");
1066                 return ERROR_OK;
1067         }
1068
1069         LOG_USER("target state: %s",
1070                  Jim_Nvp_value2name_simple(nvp_target_state,target->state)->name);
1071
1072         if (target->state!=TARGET_HALTED)
1073                 return ERROR_OK;
1074
1075         retval=target->type->arch_state(target);
1076         return retval;
1077 }
1078
1079 /* Single aligned words are guaranteed to use 16 or 32 bit access
1080  * mode respectively, otherwise data is handled as quickly as
1081  * possible
1082  */
1083 int target_write_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
1084 {
1085         int retval;
1086         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x", size, address);
1087
1088         if (!target_was_examined(target))
1089         {
1090                 LOG_ERROR("Target not examined yet");
1091                 return ERROR_FAIL;
1092         }
1093
1094         if (size == 0) {
1095                 return ERROR_OK;
1096         }
1097
1098         if ((address + size - 1) < address)
1099         {
1100                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1101                 LOG_ERROR("address+size wrapped(0x%08x, 0x%08x)", address, size);
1102                 return ERROR_FAIL;
1103         }
1104
1105         if (((address % 2) == 0) && (size == 2))
1106         {
1107                 return target_write_memory(target, address, 2, 1, buffer);
1108         }
1109
1110         /* handle unaligned head bytes */
1111         if (address % 4)
1112         {
1113                 u32 unaligned = 4 - (address % 4);
1114
1115                 if (unaligned > size)
1116                         unaligned = size;
1117
1118                 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1119                         return retval;
1120
1121                 buffer += unaligned;
1122                 address += unaligned;
1123                 size -= unaligned;
1124         }
1125
1126         /* handle aligned words */
1127         if (size >= 4)
1128         {
1129                 int aligned = size - (size % 4);
1130
1131                 /* use bulk writes above a certain limit. This may have to be changed */
1132                 if (aligned > 128)
1133                 {
1134                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1135                                 return retval;
1136                 }
1137                 else
1138                 {
1139                         if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1140                                 return retval;
1141                 }
1142
1143                 buffer += aligned;
1144                 address += aligned;
1145                 size -= aligned;
1146         }
1147
1148         /* handle tail writes of less than 4 bytes */
1149         if (size > 0)
1150         {
1151                 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1152                         return retval;
1153         }
1154
1155         return ERROR_OK;
1156 }
1157
1158 /* Single aligned words are guaranteed to use 16 or 32 bit access
1159  * mode respectively, otherwise data is handled as quickly as
1160  * possible
1161  */
1162 int target_read_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
1163 {
1164         int retval;
1165         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x", size, address);
1166
1167         if (!target_was_examined(target))
1168         {
1169                 LOG_ERROR("Target not examined yet");
1170                 return ERROR_FAIL;
1171         }
1172
1173         if (size == 0) {
1174                 return ERROR_OK;
1175         }
1176
1177         if ((address + size - 1) < address)
1178         {
1179                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1180                 LOG_ERROR("address+size wrapped(0x%08x, 0x%08x)", address, size);
1181                 return ERROR_FAIL;
1182         }
1183
1184         if (((address % 2) == 0) && (size == 2))
1185         {
1186                 return target_read_memory(target, address, 2, 1, buffer);
1187         }
1188
1189         /* handle unaligned head bytes */
1190         if (address % 4)
1191         {
1192                 u32 unaligned = 4 - (address % 4);
1193
1194                 if (unaligned > size)
1195                         unaligned = size;
1196
1197                 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1198                         return retval;
1199
1200                 buffer += unaligned;
1201                 address += unaligned;
1202                 size -= unaligned;
1203         }
1204
1205         /* handle aligned words */
1206         if (size >= 4)
1207         {
1208                 int aligned = size - (size % 4);
1209
1210                 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1211                         return retval;
1212
1213                 buffer += aligned;
1214                 address += aligned;
1215                 size -= aligned;
1216         }
1217
1218         /* handle tail writes of less than 4 bytes */
1219         if (size > 0)
1220         {
1221                 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1222                         return retval;
1223         }
1224
1225         return ERROR_OK;
1226 }
1227
1228 int target_checksum_memory(struct target_s *target, u32 address, u32 size, u32* crc)
1229 {
1230         u8 *buffer;
1231         int retval;
1232         u32 i;
1233         u32 checksum = 0;
1234         if (!target_was_examined(target))
1235         {
1236                 LOG_ERROR("Target not examined yet");
1237                 return ERROR_FAIL;
1238         }
1239
1240         if ((retval = target->type->checksum_memory(target, address,
1241                 size, &checksum)) != ERROR_OK)
1242         {
1243                 buffer = malloc(size);
1244                 if (buffer == NULL)
1245                 {
1246                         LOG_ERROR("error allocating buffer for section (%d bytes)", size);
1247                         return ERROR_INVALID_ARGUMENTS;
1248                 }
1249                 retval = target_read_buffer(target, address, size, buffer);
1250                 if (retval != ERROR_OK)
1251                 {
1252                         free(buffer);
1253                         return retval;
1254                 }
1255
1256                 /* convert to target endianess */
1257                 for (i = 0; i < (size/sizeof(u32)); i++)
1258                 {
1259                         u32 target_data;
1260                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(u32)]);
1261                         target_buffer_set_u32(target, &buffer[i*sizeof(u32)], target_data);
1262                 }
1263
1264                 retval = image_calculate_checksum( buffer, size, &checksum );
1265                 free(buffer);
1266         }
1267
1268         *crc = checksum;
1269
1270         return retval;
1271 }
1272
1273 int target_blank_check_memory(struct target_s *target, u32 address, u32 size, u32* blank)
1274 {
1275         int retval;
1276         if (!target_was_examined(target))
1277         {
1278                 LOG_ERROR("Target not examined yet");
1279                 return ERROR_FAIL;
1280         }
1281
1282         if (target->type->blank_check_memory == 0)
1283                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1284
1285         retval = target->type->blank_check_memory(target, address, size, blank);
1286
1287         return retval;
1288 }
1289
1290 int target_read_u32(struct target_s *target, u32 address, u32 *value)
1291 {
1292         u8 value_buf[4];
1293         if (!target_was_examined(target))
1294         {
1295                 LOG_ERROR("Target not examined yet");
1296                 return ERROR_FAIL;
1297         }
1298
1299         int retval = target_read_memory(target, address, 4, 1, value_buf);
1300
1301         if (retval == ERROR_OK)
1302         {
1303                 *value = target_buffer_get_u32(target, value_buf);
1304                 LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, *value);
1305         }
1306         else
1307         {
1308                 *value = 0x0;
1309                 LOG_DEBUG("address: 0x%8.8x failed", address);
1310         }
1311
1312         return retval;
1313 }
1314
1315 int target_read_u16(struct target_s *target, u32 address, u16 *value)
1316 {
1317         u8 value_buf[2];
1318         if (!target_was_examined(target))
1319         {
1320                 LOG_ERROR("Target not examined yet");
1321                 return ERROR_FAIL;
1322         }
1323
1324         int retval = target_read_memory(target, address, 2, 1, value_buf);
1325
1326         if (retval == ERROR_OK)
1327         {
1328                 *value = target_buffer_get_u16(target, value_buf);
1329                 LOG_DEBUG("address: 0x%8.8x, value: 0x%4.4x", address, *value);
1330         }
1331         else
1332         {
1333                 *value = 0x0;
1334                 LOG_DEBUG("address: 0x%8.8x failed", address);
1335         }
1336
1337         return retval;
1338 }
1339
1340 int target_read_u8(struct target_s *target, u32 address, u8 *value)
1341 {
1342         int retval = target_read_memory(target, address, 1, 1, value);
1343         if (!target_was_examined(target))
1344         {
1345                 LOG_ERROR("Target not examined yet");
1346                 return ERROR_FAIL;
1347         }
1348
1349         if (retval == ERROR_OK)
1350         {
1351                 LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, *value);
1352         }
1353         else
1354         {
1355                 *value = 0x0;
1356                 LOG_DEBUG("address: 0x%8.8x failed", address);
1357         }
1358
1359         return retval;
1360 }
1361
1362 int target_write_u32(struct target_s *target, u32 address, u32 value)
1363 {
1364         int retval;
1365         u8 value_buf[4];
1366         if (!target_was_examined(target))
1367         {
1368                 LOG_ERROR("Target not examined yet");
1369                 return ERROR_FAIL;
1370         }
1371
1372         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1373
1374         target_buffer_set_u32(target, value_buf, value);
1375         if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1376         {
1377                 LOG_DEBUG("failed: %i", retval);
1378         }
1379
1380         return retval;
1381 }
1382
1383 int target_write_u16(struct target_s *target, u32 address, u16 value)
1384 {
1385         int retval;
1386         u8 value_buf[2];
1387         if (!target_was_examined(target))
1388         {
1389                 LOG_ERROR("Target not examined yet");
1390                 return ERROR_FAIL;
1391         }
1392
1393         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1394
1395         target_buffer_set_u16(target, value_buf, value);
1396         if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1397         {
1398                 LOG_DEBUG("failed: %i", retval);
1399         }
1400
1401         return retval;
1402 }
1403
1404 int target_write_u8(struct target_s *target, u32 address, u8 value)
1405 {
1406         int retval;
1407         if (!target_was_examined(target))
1408         {
1409                 LOG_ERROR("Target not examined yet");
1410                 return ERROR_FAIL;
1411         }
1412
1413         LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, value);
1414
1415         if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1416         {
1417                 LOG_DEBUG("failed: %i", retval);
1418         }
1419
1420         return retval;
1421 }
1422
1423 int target_register_user_commands(struct command_context_s *cmd_ctx)
1424 {
1425         int retval = ERROR_OK;
1426
1427
1428         /* script procedures */
1429         register_command(cmd_ctx, NULL, "profile", handle_profile_command, COMMAND_EXEC, "profiling samples the CPU PC");
1430         register_jim(cmd_ctx, "ocd_mem2array", jim_mem2array, "read memory and return as a TCL array for script processing <ARRAYNAME> <WIDTH=32/16/8> <ADDRESS> <COUNT>");
1431         register_jim(cmd_ctx, "ocd_array2mem", jim_array2mem, "convert a TCL array to memory locations and write the values  <ARRAYNAME> <WIDTH=32/16/8> <ADDRESS> <COUNT>");
1432
1433         register_command(cmd_ctx, NULL, "fast_load_image", handle_fast_load_image_command, COMMAND_ANY,
1434                         "same args as load_image, image stored in memory - mainly for profiling purposes");
1435
1436         register_command(cmd_ctx, NULL, "fast_load", handle_fast_load_command, COMMAND_ANY,
1437                         "loads active fast load image to current target - mainly for profiling purposes");
1438
1439
1440         register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "translate a virtual address into a physical address");
1441         register_command(cmd_ctx,  NULL, "reg", handle_reg_command, COMMAND_EXEC, "display or set a register");
1442         register_command(cmd_ctx,  NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state");
1443         register_command(cmd_ctx,  NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]");
1444         register_command(cmd_ctx,  NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target");
1445         register_command(cmd_ctx,  NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]");
1446         register_command(cmd_ctx,  NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]");
1447         register_command(cmd_ctx,  NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run|halt|init] - default is run");
1448         register_command(cmd_ctx,  NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset");
1449
1450         register_command(cmd_ctx,  NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words <addr> [count]");
1451         register_command(cmd_ctx,  NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words <addr> [count]");
1452         register_command(cmd_ctx,  NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes <addr> [count]");
1453
1454         register_command(cmd_ctx,  NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word <addr> <value> [count]");
1455         register_command(cmd_ctx,  NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word <addr> <value> [count]");
1456         register_command(cmd_ctx,  NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte <addr> <value> [count]");
1457
1458         register_command(cmd_ctx,  NULL, "bp", handle_bp_command, COMMAND_EXEC, "set breakpoint <address> <length> [hw]");
1459         register_command(cmd_ctx,  NULL, "rbp", handle_rbp_command, COMMAND_EXEC, "remove breakpoint <adress>");
1460         register_command(cmd_ctx,  NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint <address> <length> <r/w/a> [value] [mask]");
1461         register_command(cmd_ctx,  NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint <adress>");
1462
1463         register_command(cmd_ctx,  NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> ['bin'|'ihex'|'elf'|'s19'] [min_address] [max_length]");
1464         register_command(cmd_ctx,  NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>");
1465         register_command(cmd_ctx,  NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image <file> [offset] [type]");
1466         register_command(cmd_ctx,  NULL, "test_image", handle_test_image_command, COMMAND_EXEC, "test_image <file> [offset] [type]");
1467
1468         if((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
1469                 return retval;
1470         if((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
1471                 return retval;
1472
1473         return retval;
1474 }
1475
1476 static int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1477 {
1478         target_t *target = all_targets;
1479
1480         if (argc == 1)
1481         {
1482                 target = get_target(args[0]);
1483                 if (target == NULL) {
1484                         command_print(cmd_ctx,"Target: %s is unknown, try one of:\n", args[0] );
1485                         goto DumpTargets;
1486                 }
1487                 if (!target->tap->enabled) {
1488                         command_print(cmd_ctx,"Target: TAP %s is disabled, "
1489                                         "can't be the current target\n",
1490                                         target->tap->dotted_name);
1491                         return ERROR_FAIL;
1492                 }
1493
1494                 cmd_ctx->current_target = target->target_number;
1495                 return ERROR_OK;
1496         }
1497 DumpTargets:
1498
1499         target = all_targets;
1500         command_print(cmd_ctx, "    TargetName         Type       Endian TapName            State       ");
1501         command_print(cmd_ctx, "--  ------------------ ---------- ------ ------------------ ------------");
1502         while (target)
1503         {
1504                 const char *state;
1505                 char marker = ' ';
1506
1507                 if (target->tap->enabled)
1508                         state = Jim_Nvp_value2name_simple(nvp_target_state,
1509                                         target->state)->name;
1510                 else
1511                         state = "tap-disabled";
1512
1513                 if (cmd_ctx->current_target == target->target_number)
1514                         marker = '*';
1515
1516                 /* keep columns lined up to match the headers above */
1517                 command_print(cmd_ctx, "%2d%c %-18s %-10s %-6s %-18s %s",
1518                                           target->target_number,
1519                                           marker,
1520                                           target->cmd_name,
1521                                           target_get_name(target),
1522                                           Jim_Nvp_value2name_simple(nvp_target_endian,
1523                                                                 target->endianness)->name,
1524                                           target->tap->dotted_name,
1525                                           state);
1526                 target = target->next;
1527         }
1528
1529         return ERROR_OK;
1530 }
1531
1532 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1533
1534 static int powerDropout;
1535 static int srstAsserted;
1536
1537 static int runPowerRestore;
1538 static int runPowerDropout;
1539 static int runSrstAsserted;
1540 static int runSrstDeasserted;
1541
1542 static int sense_handler(void)
1543 {
1544         static int prevSrstAsserted = 0;
1545         static int prevPowerdropout = 0;
1546
1547         int retval;
1548         if ((retval=jtag_power_dropout(&powerDropout))!=ERROR_OK)
1549                 return retval;
1550
1551         int powerRestored;
1552         powerRestored = prevPowerdropout && !powerDropout;
1553         if (powerRestored)
1554         {
1555                 runPowerRestore = 1;
1556         }
1557
1558         long long current = timeval_ms();
1559         static long long lastPower = 0;
1560         int waitMore = lastPower + 2000 > current;
1561         if (powerDropout && !waitMore)
1562         {
1563                 runPowerDropout = 1;
1564                 lastPower = current;
1565         }
1566
1567         if ((retval=jtag_srst_asserted(&srstAsserted))!=ERROR_OK)
1568                 return retval;
1569
1570         int srstDeasserted;
1571         srstDeasserted = prevSrstAsserted && !srstAsserted;
1572
1573         static long long lastSrst = 0;
1574         waitMore = lastSrst + 2000 > current;
1575         if (srstDeasserted && !waitMore)
1576         {
1577                 runSrstDeasserted = 1;
1578                 lastSrst = current;
1579         }
1580
1581         if (!prevSrstAsserted && srstAsserted)
1582         {
1583                 runSrstAsserted = 1;
1584         }
1585
1586         prevSrstAsserted = srstAsserted;
1587         prevPowerdropout = powerDropout;
1588
1589         if (srstDeasserted || powerRestored)
1590         {
1591                 /* Other than logging the event we can't do anything here.
1592                  * Issuing a reset is a particularly bad idea as we might
1593                  * be inside a reset already.
1594                  */
1595         }
1596
1597         return ERROR_OK;
1598 }
1599
1600 /* process target state changes */
1601 int handle_target(void *priv)
1602 {
1603         int retval = ERROR_OK;
1604
1605         /* we do not want to recurse here... */
1606         static int recursive = 0;
1607         if (! recursive)
1608         {
1609                 recursive = 1;
1610                 sense_handler();
1611                 /* danger! running these procedures can trigger srst assertions and power dropouts.
1612                  * We need to avoid an infinite loop/recursion here and we do that by
1613                  * clearing the flags after running these events.
1614                  */
1615                 int did_something = 0;
1616                 if (runSrstAsserted)
1617                 {
1618                         Jim_Eval( interp, "srst_asserted");
1619                         did_something = 1;
1620                 }
1621                 if (runSrstDeasserted)
1622                 {
1623                         Jim_Eval( interp, "srst_deasserted");
1624                         did_something = 1;
1625                 }
1626                 if (runPowerDropout)
1627                 {
1628                         Jim_Eval( interp, "power_dropout");
1629                         did_something = 1;
1630                 }
1631                 if (runPowerRestore)
1632                 {
1633                         Jim_Eval( interp, "power_restore");
1634                         did_something = 1;
1635                 }
1636
1637                 if (did_something)
1638                 {
1639                         /* clear detect flags */
1640                         sense_handler();
1641                 }
1642
1643                 /* clear action flags */
1644
1645                 runSrstAsserted=0;
1646                 runSrstDeasserted=0;
1647                 runPowerRestore=0;
1648                 runPowerDropout=0;
1649
1650                 recursive = 0;
1651         }
1652
1653         /* Poll targets for state changes unless that's globally disabled.
1654          * Skip targets that are currently disabled.
1655          */
1656         for (target_t *target = all_targets;
1657                         target_continuous_poll && target;
1658                         target = target->next)
1659         {
1660                 if (!target->tap->enabled)
1661                         continue;
1662
1663                 /* only poll target if we've got power and srst isn't asserted */
1664                 if (!powerDropout && !srstAsserted)
1665                 {
1666                         /* polling may fail silently until the target has been examined */
1667                         if((retval = target_poll(target)) != ERROR_OK)
1668                                 return retval;
1669                 }
1670         }
1671
1672         return retval;
1673 }
1674
1675 static int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1676 {
1677         target_t *target;
1678         reg_t *reg = NULL;
1679         int count = 0;
1680         char *value;
1681
1682         LOG_DEBUG("-");
1683
1684         target = get_current_target(cmd_ctx);
1685
1686         /* list all available registers for the current target */
1687         if (argc == 0)
1688         {
1689                 reg_cache_t *cache = target->reg_cache;
1690
1691                 count = 0;
1692                 while(cache)
1693                 {
1694                         int i;
1695                         for (i = 0; i < cache->num_regs; i++)
1696                         {
1697                                 value = buf_to_str(cache->reg_list[i].value, cache->reg_list[i].size, 16);
1698                                 command_print(cmd_ctx, "(%i) %s (/%i): 0x%s (dirty: %i, valid: %i)", count++, cache->reg_list[i].name, cache->reg_list[i].size, value, cache->reg_list[i].dirty, cache->reg_list[i].valid);
1699                                 free(value);
1700                         }
1701                         cache = cache->next;
1702                 }
1703
1704                 return ERROR_OK;
1705         }
1706
1707         /* access a single register by its ordinal number */
1708         if ((args[0][0] >= '0') && (args[0][0] <= '9'))
1709         {
1710                 unsigned num;
1711                 int retval = parse_uint(args[0], &num);
1712                 if (ERROR_OK != retval)
1713                         return ERROR_COMMAND_SYNTAX_ERROR;
1714
1715                 reg_cache_t *cache = target->reg_cache;
1716                 count = 0;
1717                 while(cache)
1718                 {
1719                         int i;
1720                         for (i = 0; i < cache->num_regs; i++)
1721                         {
1722                                 if (count++ == (int)num)
1723                                 {
1724                                         reg = &cache->reg_list[i];
1725                                         break;
1726                                 }
1727                         }
1728                         if (reg)
1729                                 break;
1730                         cache = cache->next;
1731                 }
1732
1733                 if (!reg)
1734                 {
1735                         command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1736                         return ERROR_OK;
1737                 }
1738         } else /* access a single register by its name */
1739         {
1740                 reg = register_get_by_name(target->reg_cache, args[0], 1);
1741
1742                 if (!reg)
1743                 {
1744                         command_print(cmd_ctx, "register %s not found in current target", args[0]);
1745                         return ERROR_OK;
1746                 }
1747         }
1748
1749         /* display a register */
1750         if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
1751         {
1752                 if ((argc == 2) && (strcmp(args[1], "force") == 0))
1753                         reg->valid = 0;
1754
1755                 if (reg->valid == 0)
1756                 {
1757                         reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1758                         arch_type->get(reg);
1759                 }
1760                 value = buf_to_str(reg->value, reg->size, 16);
1761                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1762                 free(value);
1763                 return ERROR_OK;
1764         }
1765
1766         /* set register value */
1767         if (argc == 2)
1768         {
1769                 u8 *buf = malloc(CEIL(reg->size, 8));
1770                 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
1771
1772                 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1773                 arch_type->set(reg, buf);
1774
1775                 value = buf_to_str(reg->value, reg->size, 16);
1776                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1777                 free(value);
1778
1779                 free(buf);
1780
1781                 return ERROR_OK;
1782         }
1783
1784         command_print(cmd_ctx, "usage: reg <#|name> [value]");
1785
1786         return ERROR_OK;
1787 }
1788
1789 static int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1790 {
1791         int retval = ERROR_OK;
1792         target_t *target = get_current_target(cmd_ctx);
1793
1794         if (argc == 0)
1795         {
1796                 command_print(cmd_ctx, "background polling: %s",
1797                                 target_continuous_poll ?  "on" : "off");
1798                 command_print(cmd_ctx, "TAP: %s (%s)",
1799                                 target->tap->dotted_name,
1800                                 target->tap->enabled ? "enabled" : "disabled");
1801                 if (!target->tap->enabled)
1802                         return ERROR_OK;
1803                 if ((retval = target_poll(target)) != ERROR_OK)
1804                         return retval;
1805                 if ((retval = target_arch_state(target)) != ERROR_OK)
1806                         return retval;
1807
1808         }
1809         else if (argc==1)
1810         {
1811                 if (strcmp(args[0], "on") == 0)
1812                 {
1813                         target_continuous_poll = 1;
1814                 }
1815                 else if (strcmp(args[0], "off") == 0)
1816                 {
1817                         target_continuous_poll = 0;
1818                 }
1819                 else
1820                 {
1821                         command_print(cmd_ctx, "arg is \"on\" or \"off\"");
1822                 }
1823         } else
1824         {
1825                 return ERROR_COMMAND_SYNTAX_ERROR;
1826         }
1827
1828         return retval;
1829 }
1830
1831 static int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1832 {
1833         if (argc > 1)
1834                 return ERROR_COMMAND_SYNTAX_ERROR;
1835
1836         unsigned ms = 5000;
1837         if (1 == argc)
1838         {
1839                 int retval = parse_uint(args[0], &ms);
1840                 if (ERROR_OK != retval)
1841                 {
1842                         command_print(cmd_ctx, "usage: %s [seconds]", cmd);
1843                         return ERROR_COMMAND_SYNTAX_ERROR;
1844                 }
1845                 // convert seconds (given) to milliseconds (needed)
1846                 ms *= 1000;
1847         }
1848
1849         target_t *target = get_current_target(cmd_ctx);
1850         return target_wait_state(target, TARGET_HALTED, ms);
1851 }
1852
1853 /* wait for target state to change. The trick here is to have a low
1854  * latency for short waits and not to suck up all the CPU time
1855  * on longer waits.
1856  *
1857  * After 500ms, keep_alive() is invoked
1858  */
1859 int target_wait_state(target_t *target, enum target_state state, int ms)
1860 {
1861         int retval;
1862         long long then=0, cur;
1863         int once=1;
1864
1865         for (;;)
1866         {
1867                 if ((retval=target_poll(target))!=ERROR_OK)
1868                         return retval;
1869                 if (target->state == state)
1870                 {
1871                         break;
1872                 }
1873                 cur = timeval_ms();
1874                 if (once)
1875                 {
1876                         once=0;
1877                         then = timeval_ms();
1878                         LOG_DEBUG("waiting for target %s...",
1879                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
1880                 }
1881
1882                 if (cur-then>500)
1883                 {
1884                         keep_alive();
1885                 }
1886
1887                 if ((cur-then)>ms)
1888                 {
1889                         LOG_ERROR("timed out while waiting for target %s",
1890                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
1891                         return ERROR_FAIL;
1892                 }
1893         }
1894
1895         return ERROR_OK;
1896 }
1897
1898 static int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1899 {
1900         LOG_DEBUG("-");
1901
1902         target_t *target = get_current_target(cmd_ctx);
1903         int retval = target_halt(target);
1904         if (ERROR_OK != retval)
1905                 return retval;
1906
1907         if (argc == 1)
1908         {
1909                 unsigned wait;
1910                 retval = parse_uint(args[0], &wait);
1911                 if (ERROR_OK != retval)
1912                         return ERROR_COMMAND_SYNTAX_ERROR;
1913                 if (!wait)
1914                         return ERROR_OK;
1915         }
1916
1917         return handle_wait_halt_command(cmd_ctx, cmd, args, argc);
1918 }
1919
1920 static int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1921 {
1922         target_t *target = get_current_target(cmd_ctx);
1923
1924         LOG_USER("requesting target halt and executing a soft reset");
1925
1926         target->type->soft_reset_halt(target);
1927
1928         return ERROR_OK;
1929 }
1930
1931 static int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1932 {
1933         if (argc > 1)
1934                 return ERROR_COMMAND_SYNTAX_ERROR;
1935
1936         enum target_reset_mode reset_mode = RESET_RUN;
1937         if (argc == 1)
1938         {
1939                 const Jim_Nvp *n;
1940                 n = Jim_Nvp_name2value_simple( nvp_reset_modes, args[0] );
1941                 if( (n->name == NULL) || (n->value == RESET_UNKNOWN) ){
1942                         return ERROR_COMMAND_SYNTAX_ERROR;
1943                 }
1944                 reset_mode = n->value;
1945         }
1946
1947         /* reset *all* targets */
1948         return target_process_reset(cmd_ctx, reset_mode);
1949 }
1950
1951
1952 static int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1953 {
1954         if (argc > 1)
1955                 return ERROR_COMMAND_SYNTAX_ERROR;
1956
1957         target_t *target = get_current_target(cmd_ctx);
1958         target_handle_event(target, TARGET_EVENT_OLD_pre_resume);
1959
1960         /* with no args, resume from current pc, addr = 0,
1961          * with one arguments, addr = args[0],
1962          * handle breakpoints, not debugging */
1963         u32 addr = 0;
1964         if (argc == 1)
1965         {
1966                 int retval = parse_u32(args[0], &addr);
1967                 if (ERROR_OK != retval)
1968                         return retval;
1969         }
1970
1971         return target_resume(target, 0, addr, 1, 0);
1972 }
1973
1974 static int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1975 {
1976         if (argc > 1)
1977                 return ERROR_COMMAND_SYNTAX_ERROR;
1978
1979         LOG_DEBUG("-");
1980
1981         /* with no args, step from current pc, addr = 0,
1982          * with one argument addr = args[0],
1983          * handle breakpoints, debugging */
1984         u32 addr = 0;
1985         if (argc == 1)
1986         {
1987                 int retval = parse_u32(args[0], &addr);
1988                 if (ERROR_OK != retval)
1989                         return retval;
1990         }
1991
1992         target_t *target = get_current_target(cmd_ctx);
1993         return target->type->step(target, 0, addr, 1);
1994 }
1995
1996 static void handle_md_output(struct command_context_s *cmd_ctx,
1997                 struct target_s *target, u32 address, unsigned size,
1998                 unsigned count, const u8 *buffer)
1999 {
2000         const unsigned line_bytecnt = 32;
2001         unsigned line_modulo = line_bytecnt / size;
2002
2003         char output[line_bytecnt * 4 + 1];
2004         unsigned output_len = 0;
2005
2006         const char *value_fmt;
2007         switch (size) {
2008         case 4: value_fmt = "%8.8x "; break;
2009         case 2: value_fmt = "%4.2x "; break;
2010         case 1: value_fmt = "%2.2x "; break;
2011         default:
2012                 LOG_ERROR("invalid memory read size: %u", size);
2013                 exit(-1);
2014         }
2015
2016         for (unsigned i = 0; i < count; i++)
2017         {
2018                 if (i % line_modulo == 0)
2019                 {
2020                         output_len += snprintf(output + output_len,
2021                                         sizeof(output) - output_len,
2022                                         "0x%8.8x: ", address + (i*size));
2023                 }
2024
2025                 u32 value=0;
2026                 const u8 *value_ptr = buffer + i * size;
2027                 switch (size) {
2028                 case 4: value = target_buffer_get_u32(target, value_ptr); break;
2029                 case 2: value = target_buffer_get_u16(target, value_ptr); break;
2030                 case 1: value = *value_ptr;
2031                 }
2032                 output_len += snprintf(output + output_len,
2033                                 sizeof(output) - output_len,
2034                                 value_fmt, value);
2035
2036                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
2037                 {
2038                         command_print(cmd_ctx, "%s", output);
2039                         output_len = 0;
2040                 }
2041         }
2042 }
2043
2044 static int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2045 {
2046         if (argc < 1)
2047                 return ERROR_COMMAND_SYNTAX_ERROR;
2048
2049         unsigned size = 0;
2050         switch (cmd[2]) {
2051         case 'w': size = 4; break;
2052         case 'h': size = 2; break;
2053         case 'b': size = 1; break;
2054         default: return ERROR_COMMAND_SYNTAX_ERROR;
2055         }
2056
2057         u32 address;
2058         int retval = parse_u32(args[0], &address);
2059         if (ERROR_OK != retval)
2060                 return retval;
2061
2062         unsigned count = 1;
2063         if (argc == 2)
2064         {
2065                 retval = parse_uint(args[1], &count);
2066                 if (ERROR_OK != retval)
2067                         return retval;
2068         }
2069
2070         u8 *buffer = calloc(count, size);
2071
2072         target_t *target = get_current_target(cmd_ctx);
2073         retval = target_read_memory(target,
2074                                 address, size, count, buffer);
2075         if (ERROR_OK == retval)
2076                 handle_md_output(cmd_ctx, target, address, size, count, buffer);
2077
2078         free(buffer);
2079
2080         return retval;
2081 }
2082
2083 static int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2084 {
2085          if ((argc < 2) || (argc > 3))
2086                 return ERROR_COMMAND_SYNTAX_ERROR;
2087
2088         u32 address;
2089         int retval = parse_u32(args[0], &address);
2090         if (ERROR_OK != retval)
2091                 return retval;
2092
2093         u32 value;
2094         retval = parse_u32(args[1], &value);
2095         if (ERROR_OK != retval)
2096                 return retval;
2097
2098         unsigned count = 1;
2099         if (argc == 3)
2100         {
2101                 retval = parse_uint(args[2], &count);
2102                 if (ERROR_OK != retval)
2103                         return retval;
2104         }
2105
2106         target_t *target = get_current_target(cmd_ctx);
2107         unsigned wordsize;
2108         u8 value_buf[4];
2109         switch (cmd[2])
2110         {
2111                 case 'w':
2112                         wordsize = 4;
2113                         target_buffer_set_u32(target, value_buf, value);
2114                         break;
2115                 case 'h':
2116                         wordsize = 2;
2117                         target_buffer_set_u16(target, value_buf, value);
2118                         break;
2119                 case 'b':
2120                         wordsize = 1;
2121                         value_buf[0] = value;
2122                         break;
2123                 default:
2124                         return ERROR_COMMAND_SYNTAX_ERROR;
2125         }
2126         for (unsigned i = 0; i < count; i++)
2127         {
2128                 retval = target_write_memory(target,
2129                                 address + i * wordsize, wordsize, 1, value_buf);
2130                 if (ERROR_OK != retval)
2131                         return retval;
2132                 keep_alive();
2133         }
2134
2135         return ERROR_OK;
2136
2137 }
2138
2139 static int parse_load_image_command_args(char **args, int argc,
2140                 image_t *image, u32 *min_address, u32 *max_address)
2141 {
2142         if (argc < 1 || argc > 5)
2143                 return ERROR_COMMAND_SYNTAX_ERROR;
2144
2145         /* a base address isn't always necessary,
2146          * default to 0x0 (i.e. don't relocate) */
2147         if (argc >= 2)
2148         {
2149                 u32 addr;
2150                 int retval = parse_u32(args[1], &addr);
2151                 if (ERROR_OK != retval)
2152                         return ERROR_COMMAND_SYNTAX_ERROR;
2153                 image->base_address = addr;
2154                 image->base_address_set = 1;
2155         }
2156         else
2157                 image->base_address_set = 0;
2158
2159         image->start_address_set = 0;
2160
2161         if (argc >= 4)
2162         {
2163                 int retval = parse_u32(args[3], min_address);
2164                 if (ERROR_OK != retval)
2165                         return ERROR_COMMAND_SYNTAX_ERROR;
2166         }
2167         if (argc == 5)
2168         {
2169                 int retval = parse_u32(args[4], max_address);
2170                 if (ERROR_OK != retval)
2171                         return ERROR_COMMAND_SYNTAX_ERROR;
2172                 // use size (given) to find max (required)
2173                 *max_address += *min_address;
2174         }
2175
2176         if (*min_address > *max_address)
2177                 return ERROR_COMMAND_SYNTAX_ERROR;
2178
2179         return ERROR_OK;
2180 }
2181
2182 static int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2183 {
2184         u8 *buffer;
2185         u32 buf_cnt;
2186         u32 image_size;
2187         u32 min_address = 0;
2188         u32 max_address = 0xffffffff;
2189         int i;
2190         int retvaltemp;
2191
2192         image_t image;
2193
2194         duration_t duration;
2195         char *duration_text;
2196         
2197         int retval = parse_load_image_command_args(args, argc,
2198                         &image, &min_address, &max_address);
2199         if (ERROR_OK != retval)
2200                 return retval;
2201
2202         target_t *target = get_current_target(cmd_ctx);
2203         duration_start_measure(&duration);
2204
2205         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
2206         {
2207                 return ERROR_OK;
2208         }
2209
2210         image_size = 0x0;
2211         retval = ERROR_OK;
2212         for (i = 0; i < image.num_sections; i++)
2213         {
2214                 buffer = malloc(image.sections[i].size);
2215                 if (buffer == NULL)
2216                 {
2217                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2218                         break;
2219                 }
2220
2221                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2222                 {
2223                         free(buffer);
2224                         break;
2225                 }
2226
2227                 u32 offset=0;
2228                 u32 length=buf_cnt;
2229
2230                 /* DANGER!!! beware of unsigned comparision here!!! */
2231
2232                 if ((image.sections[i].base_address+buf_cnt>=min_address)&&
2233                                 (image.sections[i].base_address<max_address))
2234                 {
2235                         if (image.sections[i].base_address<min_address)
2236                         {
2237                                 /* clip addresses below */
2238                                 offset+=min_address-image.sections[i].base_address;
2239                                 length-=offset;
2240                         }
2241
2242                         if (image.sections[i].base_address+buf_cnt>max_address)
2243                         {
2244                                 length-=(image.sections[i].base_address+buf_cnt)-max_address;
2245                         }
2246
2247                         if ((retval = target_write_buffer(target, image.sections[i].base_address+offset, length, buffer+offset)) != ERROR_OK)
2248                         {
2249                                 free(buffer);
2250                                 break;
2251                         }
2252                         image_size += length;
2253                         command_print(cmd_ctx, "%u byte written at address 0x%8.8x", length, image.sections[i].base_address+offset);
2254                 }
2255
2256                 free(buffer);
2257         }
2258
2259         if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2260         {
2261                 image_close(&image);
2262                 return retvaltemp;
2263         }
2264
2265         if (retval==ERROR_OK)
2266         {
2267                 command_print(cmd_ctx, "downloaded %u byte in %s", image_size, duration_text);
2268         }
2269         free(duration_text);
2270
2271         image_close(&image);
2272
2273         return retval;
2274
2275 }
2276
2277 static int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2278 {
2279         fileio_t fileio;
2280
2281         u8 buffer[560];
2282         int retvaltemp;
2283
2284         duration_t duration;
2285         char *duration_text;
2286
2287         target_t *target = get_current_target(cmd_ctx);
2288
2289         if (argc != 3)
2290         {
2291                 command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
2292                 return ERROR_OK;
2293         }
2294
2295         u32 address;
2296         int retval = parse_u32(args[1], &address);
2297         if (ERROR_OK != retval)
2298                 return retval;
2299
2300         u32 size;
2301         retval = parse_u32(args[2], &size);
2302         if (ERROR_OK != retval)
2303                 return retval;
2304
2305         if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2306         {
2307                 return ERROR_OK;
2308         }
2309
2310         duration_start_measure(&duration);
2311
2312         while (size > 0)
2313         {
2314                 u32 size_written;
2315                 u32 this_run_size = (size > 560) ? 560 : size;
2316
2317                 retval = target_read_buffer(target, address, this_run_size, buffer);
2318                 if (retval != ERROR_OK)
2319                 {
2320                         break;
2321                 }
2322
2323                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2324                 if (retval != ERROR_OK)
2325                 {
2326                         break;
2327                 }
2328
2329                 size -= this_run_size;
2330                 address += this_run_size;
2331         }
2332
2333         if((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2334                 return retvaltemp;
2335
2336         if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2337                 return retvaltemp;
2338
2339         if (retval==ERROR_OK)
2340         {
2341                 command_print(cmd_ctx, "dumped %lld byte in %s",
2342                                 fileio.size, duration_text);
2343                 free(duration_text);
2344         }
2345
2346         return retval;
2347 }
2348
2349 static int handle_verify_image_command_internal(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc, int verify)
2350 {
2351         u8 *buffer;
2352         u32 buf_cnt;
2353         u32 image_size;
2354         int i;
2355         int retval, retvaltemp;
2356         u32 checksum = 0;
2357         u32 mem_checksum = 0;
2358
2359         image_t image;
2360
2361         duration_t duration;
2362         char *duration_text;
2363
2364         target_t *target = get_current_target(cmd_ctx);
2365
2366         if (argc < 1)
2367         {
2368                 return ERROR_COMMAND_SYNTAX_ERROR;
2369         }
2370
2371         if (!target)
2372         {
2373                 LOG_ERROR("no target selected");
2374                 return ERROR_FAIL;
2375         }
2376
2377         duration_start_measure(&duration);
2378
2379         if (argc >= 2)
2380         {
2381                 u32 addr;
2382                 retval = parse_u32(args[1], &addr);
2383                 if (ERROR_OK != retval)
2384                         return ERROR_COMMAND_SYNTAX_ERROR;
2385                 image.base_address = addr;
2386                 image.base_address_set = 1;
2387         }
2388         else
2389         {
2390                 image.base_address_set = 0;
2391                 image.base_address = 0x0;
2392         }
2393
2394         image.start_address_set = 0;
2395
2396         if ((retval=image_open(&image, args[0], (argc == 3) ? args[2] : NULL)) != ERROR_OK)
2397         {
2398                 return retval;
2399         }
2400
2401         image_size = 0x0;
2402         retval=ERROR_OK;
2403         for (i = 0; i < image.num_sections; i++)
2404         {
2405                 buffer = malloc(image.sections[i].size);
2406                 if (buffer == NULL)
2407                 {
2408                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2409                         break;
2410                 }
2411                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2412                 {
2413                         free(buffer);
2414                         break;
2415                 }
2416
2417                 if (verify)
2418                 {
2419                         /* calculate checksum of image */
2420                         image_calculate_checksum( buffer, buf_cnt, &checksum );
2421
2422                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2423                         if( retval != ERROR_OK )
2424                         {
2425                                 free(buffer);
2426                                 break;
2427                         }
2428
2429                         if( checksum != mem_checksum )
2430                         {
2431                                 /* failed crc checksum, fall back to a binary compare */
2432                                 u8 *data;
2433
2434                                 command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
2435
2436                                 data = (u8*)malloc(buf_cnt);
2437
2438                                 /* Can we use 32bit word accesses? */
2439                                 int size = 1;
2440                                 int count = buf_cnt;
2441                                 if ((count % 4) == 0)
2442                                 {
2443                                         size *= 4;
2444                                         count /= 4;
2445                                 }
2446                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2447                                 if (retval == ERROR_OK)
2448                                 {
2449                                         u32 t;
2450                                         for (t = 0; t < buf_cnt; t++)
2451                                         {
2452                                                 if (data[t] != buffer[t])
2453                                                 {
2454                                                         command_print(cmd_ctx, "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n", t + image.sections[i].base_address, data[t], buffer[t]);
2455                                                         free(data);
2456                                                         free(buffer);
2457                                                         retval=ERROR_FAIL;
2458                                                         goto done;
2459                                                 }
2460                                                 if ((t%16384)==0)
2461                                                 {
2462                                                         keep_alive();
2463                                                 }
2464                                         }
2465                                 }
2466
2467                                 free(data);
2468                         }
2469                 } else
2470                 {
2471                         command_print(cmd_ctx, "address 0x%08x length 0x%08x", image.sections[i].base_address, buf_cnt);
2472                 }
2473
2474                 free(buffer);
2475                 image_size += buf_cnt;
2476         }
2477 done:
2478
2479         if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2480         {
2481                 image_close(&image);
2482                 return retvaltemp;
2483         }
2484
2485         if (retval==ERROR_OK)
2486         {
2487                 command_print(cmd_ctx, "verified %u bytes in %s", image_size, duration_text);
2488         }
2489         free(duration_text);
2490
2491         image_close(&image);
2492
2493         return retval;
2494 }
2495
2496 static int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2497 {
2498         return handle_verify_image_command_internal(cmd_ctx, cmd, args, argc, 1);
2499 }
2500
2501 static int handle_test_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2502 {
2503         return handle_verify_image_command_internal(cmd_ctx, cmd, args, argc, 0);
2504 }
2505
2506 static int handle_bp_command_list(struct command_context_s *cmd_ctx)
2507 {
2508         target_t *target = get_current_target(cmd_ctx);
2509         breakpoint_t *breakpoint = target->breakpoints;
2510         while (breakpoint)
2511         {
2512                 if (breakpoint->type == BKPT_SOFT)
2513                 {
2514                         char* buf = buf_to_str(breakpoint->orig_instr,
2515                                         breakpoint->length, 16);
2516                         command_print(cmd_ctx, "0x%8.8x, 0x%x, %i, 0x%s",
2517                                         breakpoint->address, breakpoint->length,
2518                                         breakpoint->set, buf);
2519                         free(buf);
2520                 }
2521                 else
2522                 {
2523                         command_print(cmd_ctx, "0x%8.8x, 0x%x, %i",
2524                                         breakpoint->address, breakpoint->length, breakpoint->set);
2525                 }
2526
2527                 breakpoint = breakpoint->next;
2528         }
2529         return ERROR_OK;
2530 }
2531
2532 static int handle_bp_command_set(struct command_context_s *cmd_ctx,
2533                 u32 addr, u32 length, int hw)
2534 {
2535         target_t *target = get_current_target(cmd_ctx);
2536         int retval = breakpoint_add(target, addr, length, hw);
2537         if (ERROR_OK == retval)
2538                 command_print(cmd_ctx, "breakpoint set at 0x%8.8x", addr);
2539         else
2540                 LOG_ERROR("Failure setting breakpoint");
2541         return retval;
2542 }
2543
2544 static int handle_bp_command(struct command_context_s *cmd_ctx,
2545                 char *cmd, char **args, int argc)
2546 {
2547         if (argc == 0)
2548                 return handle_bp_command_list(cmd_ctx);
2549
2550         if (argc < 2 || argc > 3)
2551         {
2552                 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
2553                 return ERROR_COMMAND_SYNTAX_ERROR;
2554         }
2555
2556         u32 addr;
2557         int retval = parse_u32(args[0], &addr);
2558         if (ERROR_OK != retval)
2559                 return retval;
2560
2561         u32 length;
2562         retval = parse_u32(args[1], &length);
2563         if (ERROR_OK != retval)
2564                 return retval;
2565
2566         int hw = BKPT_SOFT;
2567         if (argc == 3)
2568         {
2569                 if (strcmp(args[2], "hw") == 0)
2570                         hw = BKPT_HARD;
2571                 else
2572                         return ERROR_COMMAND_SYNTAX_ERROR;
2573         }
2574
2575         return handle_bp_command_set(cmd_ctx, addr, length, hw);
2576 }
2577
2578 static int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2579 {
2580         if (argc != 1)
2581                 return ERROR_COMMAND_SYNTAX_ERROR;
2582
2583         u32 addr;
2584         int retval = parse_u32(args[0], &addr);
2585         if (ERROR_OK != retval)
2586                 return retval;
2587
2588         target_t *target = get_current_target(cmd_ctx);
2589         breakpoint_remove(target, addr);
2590
2591         return ERROR_OK;
2592 }
2593
2594 static int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2595 {
2596         target_t *target = get_current_target(cmd_ctx);
2597
2598         if (argc == 0)
2599         {
2600                 watchpoint_t *watchpoint = target->watchpoints;
2601
2602                 while (watchpoint)
2603                 {
2604                         command_print(cmd_ctx, "address: 0x%8.8x, len: 0x%8.8x, r/w/a: %i, value: 0x%8.8x, mask: 0x%8.8x", watchpoint->address, watchpoint->length, watchpoint->rw, watchpoint->value, watchpoint->mask);
2605                         watchpoint = watchpoint->next;
2606                 }
2607                 return ERROR_OK;
2608         }
2609
2610         enum watchpoint_rw type = WPT_ACCESS;
2611         u32 addr = 0;
2612         u32 length = 0;
2613         u32 data_value = 0x0;
2614         u32 data_mask = 0xffffffff;
2615         int retval;
2616
2617         switch (argc)
2618         {
2619         case 5:
2620                 retval = parse_u32(args[4], &data_mask);
2621                 if (ERROR_OK != retval)
2622                         return retval;
2623                 // fall through
2624         case 4:
2625                 retval = parse_u32(args[3], &data_value);
2626                 if (ERROR_OK != retval)
2627                         return retval;
2628                 // fall through
2629         case 3:
2630                 switch(args[2][0])
2631                 {
2632                 case 'r':
2633                         type = WPT_READ;
2634                         break;
2635                 case 'w':
2636                         type = WPT_WRITE;
2637                         break;
2638                 case 'a':
2639                         type = WPT_ACCESS;
2640                         break;
2641                 default:
2642                         LOG_ERROR("invalid watchpoint mode ('%c')", args[2][0]);
2643                         return ERROR_COMMAND_SYNTAX_ERROR;
2644                 }
2645                 // fall through
2646         case 2:
2647                 retval = parse_u32(args[1], &length);
2648                 if (ERROR_OK != retval)
2649                         return retval;
2650                 retval = parse_u32(args[0], &addr);
2651                 if (ERROR_OK != retval)
2652                         return retval;
2653                 break;
2654
2655         default:
2656                 command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2657                 return ERROR_COMMAND_SYNTAX_ERROR;
2658         }
2659
2660         retval = watchpoint_add(target, addr, length, type,
2661                         data_value, data_mask);
2662         if (ERROR_OK != retval)
2663                 LOG_ERROR("Failure setting watchpoints");
2664
2665         return retval;
2666 }
2667
2668 static int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2669 {
2670         if (argc != 1)
2671                 return ERROR_COMMAND_SYNTAX_ERROR;
2672
2673         u32 addr;
2674         int retval = parse_u32(args[0], &addr);
2675         if (ERROR_OK != retval)
2676                 return retval;
2677
2678         target_t *target = get_current_target(cmd_ctx);
2679         watchpoint_remove(target, addr);
2680
2681         return ERROR_OK;
2682 }
2683
2684
2685 /**
2686  * Translate a virtual address to a physical address.
2687  *
2688  * The low-level target implementation must have logged a detailed error
2689  * which is forwarded to telnet/GDB session.
2690  */
2691 static int handle_virt2phys_command(command_context_t *cmd_ctx,
2692                 char *cmd, char **args, int argc)
2693 {
2694         if (argc != 1)
2695                 return ERROR_COMMAND_SYNTAX_ERROR;
2696
2697         u32 va;
2698         int retval = parse_u32(args[0], &va);
2699         if (ERROR_OK != retval)
2700                 return retval;
2701         u32 pa;
2702
2703         target_t *target = get_current_target(cmd_ctx);
2704         retval = target->type->virt2phys(target, va, &pa);
2705         if (retval == ERROR_OK)
2706                 command_print(cmd_ctx, "Physical address 0x%08x", pa);
2707
2708         return retval;
2709 }
2710
2711 static void writeData(FILE *f, const void *data, size_t len)
2712 {
2713         size_t written = fwrite(data, 1, len, f);
2714         if (written != len)
2715                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
2716 }
2717
2718 static void writeLong(FILE *f, int l)
2719 {
2720         int i;
2721         for (i=0; i<4; i++)
2722         {
2723                 char c=(l>>(i*8))&0xff;
2724                 writeData(f, &c, 1);
2725         }
2726
2727 }
2728
2729 static void writeString(FILE *f, char *s)
2730 {
2731         writeData(f, s, strlen(s));
2732 }
2733
2734 /* Dump a gmon.out histogram file. */
2735 static void writeGmon(u32 *samples, u32 sampleNum, char *filename)
2736 {
2737         u32 i;
2738         FILE *f=fopen(filename, "w");
2739         if (f==NULL)
2740                 return;
2741         writeString(f, "gmon");
2742         writeLong(f, 0x00000001); /* Version */
2743         writeLong(f, 0); /* padding */
2744         writeLong(f, 0); /* padding */
2745         writeLong(f, 0); /* padding */
2746
2747         u8 zero = 0;  /* GMON_TAG_TIME_HIST */
2748         writeData(f, &zero, 1);
2749
2750         /* figure out bucket size */
2751         u32 min=samples[0];
2752         u32 max=samples[0];
2753         for (i=0; i<sampleNum; i++)
2754         {
2755                 if (min>samples[i])
2756                 {
2757                         min=samples[i];
2758                 }
2759                 if (max<samples[i])
2760                 {
2761                         max=samples[i];
2762                 }
2763         }
2764
2765         int addressSpace=(max-min+1);
2766
2767         static const u32 maxBuckets = 256 * 1024; /* maximum buckets. */
2768         u32 length = addressSpace;
2769         if (length > maxBuckets)
2770         {
2771                 length=maxBuckets;
2772         }
2773         int *buckets=malloc(sizeof(int)*length);
2774         if (buckets==NULL)
2775         {
2776                 fclose(f);
2777                 return;
2778         }
2779         memset(buckets, 0, sizeof(int)*length);
2780         for (i=0; i<sampleNum;i++)
2781         {
2782                 u32 address=samples[i];
2783                 long long a=address-min;
2784                 long long b=length-1;
2785                 long long c=addressSpace-1;
2786                 int index=(a*b)/c; /* danger!!!! int32 overflows */
2787                 buckets[index]++;
2788         }
2789
2790         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
2791         writeLong(f, min);                      /* low_pc */
2792         writeLong(f, max);                      /* high_pc */
2793         writeLong(f, length);           /* # of samples */
2794         writeLong(f, 64000000);         /* 64MHz */
2795         writeString(f, "seconds");
2796         for (i=0; i<(15-strlen("seconds")); i++)
2797                 writeData(f, &zero, 1);
2798         writeString(f, "s");
2799
2800         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
2801
2802         char *data=malloc(2*length);
2803         if (data!=NULL)
2804         {
2805                 for (i=0; i<length;i++)
2806                 {
2807                         int val;
2808                         val=buckets[i];
2809                         if (val>65535)
2810                         {
2811                                 val=65535;
2812                         }
2813                         data[i*2]=val&0xff;
2814                         data[i*2+1]=(val>>8)&0xff;
2815                 }
2816                 free(buckets);
2817                 writeData(f, data, length * 2);
2818                 free(data);
2819         } else
2820         {
2821                 free(buckets);
2822         }
2823
2824         fclose(f);
2825 }
2826
2827 /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
2828 static int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2829 {
2830         target_t *target = get_current_target(cmd_ctx);
2831         struct timeval timeout, now;
2832
2833         gettimeofday(&timeout, NULL);
2834         if (argc!=2)
2835         {
2836                 return ERROR_COMMAND_SYNTAX_ERROR;
2837         }
2838         unsigned offset;
2839         int retval = parse_uint(args[0], &offset);
2840         if (ERROR_OK != retval)
2841                 return retval;
2842
2843         timeval_add_time(&timeout, offset, 0);
2844
2845         command_print(cmd_ctx, "Starting profiling. Halting and resuming the target as often as we can...");
2846
2847         static const int maxSample=10000;
2848         u32 *samples=malloc(sizeof(u32)*maxSample);
2849         if (samples==NULL)
2850                 return ERROR_OK;
2851
2852         int numSamples=0;
2853         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2854         reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1);
2855
2856         for (;;)
2857         {
2858                 target_poll(target);
2859                 if (target->state == TARGET_HALTED)
2860                 {
2861                         u32 t=*((u32 *)reg->value);
2862                         samples[numSamples++]=t;
2863                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2864                         target_poll(target);
2865                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2866                 } else if (target->state == TARGET_RUNNING)
2867                 {
2868                         /* We want to quickly sample the PC. */
2869                         if((retval = target_halt(target)) != ERROR_OK)
2870                         {
2871                                 free(samples);
2872                                 return retval;
2873                         }
2874                 } else
2875                 {
2876                         command_print(cmd_ctx, "Target not halted or running");
2877                         retval=ERROR_OK;
2878                         break;
2879                 }
2880                 if (retval!=ERROR_OK)
2881                 {
2882                         break;
2883                 }
2884
2885                 gettimeofday(&now, NULL);
2886                 if ((numSamples>=maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
2887                 {
2888                         command_print(cmd_ctx, "Profiling completed. %d samples.", numSamples);
2889                         if((retval = target_poll(target)) != ERROR_OK)
2890                         {
2891                                 free(samples);
2892                                 return retval;
2893                         }
2894                         if (target->state == TARGET_HALTED)
2895                         {
2896                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2897                         }
2898                         if((retval = target_poll(target)) != ERROR_OK)
2899                         {
2900                                 free(samples);
2901                                 return retval;
2902                         }
2903                         writeGmon(samples, numSamples, args[1]);
2904                         command_print(cmd_ctx, "Wrote %s", args[1]);
2905                         break;
2906                 }
2907         }
2908         free(samples);
2909
2910         return ERROR_OK;
2911 }
2912
2913 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 val)
2914 {
2915         char *namebuf;
2916         Jim_Obj *nameObjPtr, *valObjPtr;
2917         int result;
2918
2919         namebuf = alloc_printf("%s(%d)", varname, idx);
2920         if (!namebuf)
2921                 return JIM_ERR;
2922
2923         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
2924         valObjPtr = Jim_NewIntObj(interp, val);
2925         if (!nameObjPtr || !valObjPtr)
2926         {
2927                 free(namebuf);
2928                 return JIM_ERR;
2929         }
2930
2931         Jim_IncrRefCount(nameObjPtr);
2932         Jim_IncrRefCount(valObjPtr);
2933         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
2934         Jim_DecrRefCount(interp, nameObjPtr);
2935         Jim_DecrRefCount(interp, valObjPtr);
2936         free(namebuf);
2937         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
2938         return result;
2939 }
2940
2941 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
2942 {
2943         command_context_t *context;
2944         target_t *target;
2945
2946         context = Jim_GetAssocData(interp, "context");
2947         if (context == NULL)
2948         {
2949                 LOG_ERROR("mem2array: no command context");
2950                 return JIM_ERR;
2951         }
2952         target = get_current_target(context);
2953         if (target == NULL)
2954         {
2955                 LOG_ERROR("mem2array: no current target");
2956                 return JIM_ERR;
2957         }
2958
2959         return  target_mem2array(interp, target, argc-1, argv+1);
2960 }
2961
2962 static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv)
2963 {
2964         long l;
2965         u32 width;
2966         int len;
2967         u32 addr;
2968         u32 count;
2969         u32 v;
2970         const char *varname;
2971         u8 buffer[4096];
2972         int  n, e, retval;
2973         u32 i;
2974
2975         /* argv[1] = name of array to receive the data
2976          * argv[2] = desired width
2977          * argv[3] = memory address
2978          * argv[4] = count of times to read
2979          */
2980         if (argc != 4) {
2981                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
2982                 return JIM_ERR;
2983         }
2984         varname = Jim_GetString(argv[0], &len);
2985         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
2986
2987         e = Jim_GetLong(interp, argv[1], &l);
2988         width = l;
2989         if (e != JIM_OK) {
2990                 return e;
2991         }
2992
2993         e = Jim_GetLong(interp, argv[2], &l);
2994         addr = l;
2995         if (e != JIM_OK) {
2996                 return e;
2997         }
2998         e = Jim_GetLong(interp, argv[3], &l);
2999         len = l;
3000         if (e != JIM_OK) {
3001                 return e;
3002         }
3003         switch (width) {
3004                 case 8:
3005                         width = 1;
3006                         break;
3007                 case 16:
3008                         width = 2;
3009                         break;
3010                 case 32:
3011                         width = 4;
3012                         break;
3013                 default:
3014                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3015                         Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
3016                         return JIM_ERR;
3017         }
3018         if (len == 0) {
3019                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3020                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3021                 return JIM_ERR;
3022         }
3023         if ((addr + (len * width)) < addr) {
3024                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3025                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3026                 return JIM_ERR;
3027         }
3028         /* absurd transfer size? */
3029         if (len > 65536) {
3030                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3031                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3032                 return JIM_ERR;
3033         }
3034
3035         if ((width == 1) ||
3036                 ((width == 2) && ((addr & 1) == 0)) ||
3037                 ((width == 4) && ((addr & 3) == 0))) {
3038                 /* all is well */
3039         } else {
3040                 char buf[100];
3041                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3042                 sprintf(buf, "mem2array address: 0x%08x is not aligned for %d byte reads", addr, width);
3043                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3044                 return JIM_ERR;
3045         }
3046
3047         /* Transfer loop */
3048
3049         /* index counter */
3050         n = 0;
3051         /* assume ok */
3052         e = JIM_OK;
3053         while (len) {
3054                 /* Slurp... in buffer size chunks */
3055
3056                 count = len; /* in objects.. */
3057                 if (count > (sizeof(buffer)/width)) {
3058                         count = (sizeof(buffer)/width);
3059                 }
3060
3061                 retval = target_read_memory( target, addr, width, count, buffer );
3062                 if (retval != ERROR_OK) {
3063                         /* BOO !*/
3064                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
3065                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3066                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3067                         e = JIM_ERR;
3068                         len = 0;
3069                 } else {
3070                         v = 0; /* shut up gcc */
3071                         for (i = 0 ;i < count ;i++, n++) {
3072                                 switch (width) {
3073                                         case 4:
3074                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
3075                                                 break;
3076                                         case 2:
3077                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
3078                                                 break;
3079                                         case 1:
3080                                                 v = buffer[i] & 0x0ff;
3081                                                 break;
3082                                 }
3083                                 new_int_array_element(interp, varname, n, v);
3084                         }
3085                         len -= count;
3086                 }
3087         }
3088
3089         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3090
3091         return JIM_OK;
3092 }
3093
3094 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 *val)
3095 {
3096         char *namebuf;
3097         Jim_Obj *nameObjPtr, *valObjPtr;
3098         int result;
3099         long l;
3100
3101         namebuf = alloc_printf("%s(%d)", varname, idx);
3102         if (!namebuf)
3103                 return JIM_ERR;
3104
3105         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3106         if (!nameObjPtr)
3107         {
3108                 free(namebuf);
3109                 return JIM_ERR;
3110         }
3111
3112         Jim_IncrRefCount(nameObjPtr);
3113         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3114         Jim_DecrRefCount(interp, nameObjPtr);
3115         free(namebuf);
3116         if (valObjPtr == NULL)
3117                 return JIM_ERR;
3118
3119         result = Jim_GetLong(interp, valObjPtr, &l);
3120         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3121         *val = l;
3122         return result;
3123 }
3124
3125 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3126 {
3127         command_context_t *context;
3128         target_t *target;
3129
3130         context = Jim_GetAssocData(interp, "context");
3131         if (context == NULL){
3132                 LOG_ERROR("array2mem: no command context");
3133                 return JIM_ERR;
3134         }
3135         target = get_current_target(context);
3136         if (target == NULL){
3137                 LOG_ERROR("array2mem: no current target");
3138                 return JIM_ERR;
3139         }
3140
3141         return target_array2mem( interp,target, argc-1, argv+1 );
3142 }
3143
3144 static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv)
3145 {
3146         long l;
3147         u32 width;
3148         int len;
3149         u32 addr;
3150         u32 count;
3151         u32 v;
3152         const char *varname;
3153         u8 buffer[4096];
3154         int  n, e, retval;
3155         u32 i;
3156
3157         /* argv[1] = name of array to get the data
3158          * argv[2] = desired width
3159          * argv[3] = memory address
3160          * argv[4] = count to write
3161          */
3162         if (argc != 4) {
3163                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3164                 return JIM_ERR;
3165         }
3166         varname = Jim_GetString(argv[0], &len);
3167         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3168
3169         e = Jim_GetLong(interp, argv[1], &l);
3170         width = l;
3171         if (e != JIM_OK) {
3172                 return e;
3173         }
3174
3175         e = Jim_GetLong(interp, argv[2], &l);
3176         addr = l;
3177         if (e != JIM_OK) {
3178                 return e;
3179         }
3180         e = Jim_GetLong(interp, argv[3], &l);
3181         len = l;
3182         if (e != JIM_OK) {
3183                 return e;
3184         }
3185         switch (width) {
3186                 case 8:
3187                         width = 1;
3188                         break;
3189                 case 16:
3190                         width = 2;
3191                         break;
3192                 case 32:
3193                         width = 4;
3194                         break;
3195                 default:
3196                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3197                         Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
3198                         return JIM_ERR;
3199         }
3200         if (len == 0) {
3201                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3202                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
3203                 return JIM_ERR;
3204         }
3205         if ((addr + (len * width)) < addr) {
3206                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3207                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
3208                 return JIM_ERR;
3209         }
3210         /* absurd transfer size? */
3211         if (len > 65536) {
3212                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3213                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
3214                 return JIM_ERR;
3215         }
3216
3217         if ((width == 1) ||
3218                 ((width == 2) && ((addr & 1) == 0)) ||
3219                 ((width == 4) && ((addr & 3) == 0))) {
3220                 /* all is well */
3221         } else {
3222                 char buf[100];
3223                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3224                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads", addr, width);
3225                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3226                 return JIM_ERR;
3227         }
3228
3229         /* Transfer loop */
3230
3231         /* index counter */
3232         n = 0;
3233         /* assume ok */
3234         e = JIM_OK;
3235         while (len) {
3236                 /* Slurp... in buffer size chunks */
3237
3238                 count = len; /* in objects.. */
3239                 if (count > (sizeof(buffer)/width)) {
3240                         count = (sizeof(buffer)/width);
3241                 }
3242
3243                 v = 0; /* shut up gcc */
3244                 for (i = 0 ;i < count ;i++, n++) {
3245                         get_int_array_element(interp, varname, n, &v);
3246                         switch (width) {
3247                         case 4:
3248                                 target_buffer_set_u32(target, &buffer[i*width], v);
3249                                 break;
3250                         case 2:
3251                                 target_buffer_set_u16(target, &buffer[i*width], v);
3252                                 break;
3253                         case 1:
3254                                 buffer[i] = v & 0x0ff;
3255                                 break;
3256                         }
3257                 }
3258                 len -= count;
3259
3260                 retval = target_write_memory(target, addr, width, count, buffer);
3261                 if (retval != ERROR_OK) {
3262                         /* BOO !*/
3263                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
3264                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3265                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3266                         e = JIM_ERR;
3267                         len = 0;
3268                 }
3269         }
3270
3271         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3272
3273         return JIM_OK;
3274 }
3275
3276 void target_all_handle_event( enum target_event e )
3277 {
3278         target_t *target;
3279
3280         LOG_DEBUG( "**all*targets: event: %d, %s",
3281                         e,
3282                         Jim_Nvp_value2name_simple( nvp_target_event, e )->name );
3283
3284         target = all_targets;
3285         while (target){
3286                 target_handle_event( target, e );
3287                 target = target->next;
3288         }
3289 }
3290
3291 void target_handle_event( target_t *target, enum target_event e )
3292 {
3293         target_event_action_t *teap;
3294         int done;
3295
3296         teap = target->event_action;
3297
3298         done = 0;
3299         while( teap ){
3300                 if( teap->event == e ){
3301                         done = 1;
3302                         LOG_DEBUG( "target: (%d) %s (%s) event: %d (%s) action: %s\n",
3303                                            target->target_number,
3304                                            target->cmd_name,
3305                                            target_get_name(target),
3306                                            e,
3307                                            Jim_Nvp_value2name_simple( nvp_target_event, e )->name,
3308                                            Jim_GetString( teap->body, NULL ) );
3309                         if (Jim_EvalObj( interp, teap->body )!=JIM_OK)
3310                         {
3311                                 Jim_PrintErrorMessage(interp);
3312                         }
3313                 }
3314                 teap = teap->next;
3315         }
3316         if( !done ){
3317                 LOG_DEBUG( "event: %d %s - no action",
3318                                    e,
3319                                    Jim_Nvp_value2name_simple( nvp_target_event, e )->name );
3320         }
3321 }
3322
3323 enum target_cfg_param {
3324         TCFG_TYPE,
3325         TCFG_EVENT,
3326         TCFG_WORK_AREA_VIRT,
3327         TCFG_WORK_AREA_PHYS,
3328         TCFG_WORK_AREA_SIZE,
3329         TCFG_WORK_AREA_BACKUP,
3330         TCFG_ENDIAN,
3331         TCFG_VARIANT,
3332         TCFG_CHAIN_POSITION,
3333 };
3334
3335 static Jim_Nvp nvp_config_opts[] = {
3336         { .name = "-type",             .value = TCFG_TYPE },
3337         { .name = "-event",            .value = TCFG_EVENT },
3338         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
3339         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
3340         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
3341         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3342         { .name = "-endian" ,          .value = TCFG_ENDIAN },
3343         { .name = "-variant",          .value = TCFG_VARIANT },
3344         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
3345
3346         { .name = NULL, .value = -1 }
3347 };
3348
3349 static int target_configure( Jim_GetOptInfo *goi, target_t *target )
3350 {
3351         Jim_Nvp *n;
3352         Jim_Obj *o;
3353         jim_wide w;
3354         char *cp;
3355         int e;
3356
3357         /* parse config or cget options ... */
3358         while( goi->argc > 0 ){
3359                 Jim_SetEmptyResult( goi->interp );
3360                 /* Jim_GetOpt_Debug( goi ); */
3361
3362                 if( target->type->target_jim_configure ){
3363                         /* target defines a configure function */
3364                         /* target gets first dibs on parameters */
3365                         e = (*(target->type->target_jim_configure))( target, goi );
3366                         if( e == JIM_OK ){
3367                                 /* more? */
3368                                 continue;
3369                         }
3370                         if( e == JIM_ERR ){
3371                                 /* An error */
3372                                 return e;
3373                         }
3374                         /* otherwise we 'continue' below */
3375                 }
3376                 e = Jim_GetOpt_Nvp( goi, nvp_config_opts, &n );
3377                 if( e != JIM_OK ){
3378                         Jim_GetOpt_NvpUnknown( goi, nvp_config_opts, 0 );
3379                         return e;
3380                 }
3381                 switch( n->value ){
3382                 case TCFG_TYPE:
3383                         /* not setable */
3384                         if( goi->isconfigure ){
3385                                 Jim_SetResult_sprintf( goi->interp, "not setable: %s", n->name );
3386                                 return JIM_ERR;
3387                         } else {
3388                         no_params:
3389                                 if( goi->argc != 0 ){
3390                                         Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "NO PARAMS");
3391                                         return JIM_ERR;
3392                                 }
3393                         }
3394                         Jim_SetResultString( goi->interp, target_get_name(target), -1 );
3395                         /* loop for more */
3396                         break;
3397                 case TCFG_EVENT:
3398                         if( goi->argc == 0 ){
3399                                 Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
3400                                 return JIM_ERR;
3401                         }
3402
3403                         e = Jim_GetOpt_Nvp( goi, nvp_target_event, &n );
3404                         if( e != JIM_OK ){
3405                                 Jim_GetOpt_NvpUnknown( goi, nvp_target_event, 1 );
3406                                 return e;
3407                         }
3408
3409                         if( goi->isconfigure ){
3410                                 if( goi->argc != 1 ){
3411                                         Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
3412                                         return JIM_ERR;
3413                                 }
3414                         } else {
3415                                 if( goi->argc != 0 ){
3416                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
3417                                         return JIM_ERR;
3418                                 }
3419                         }
3420
3421                         {
3422                                 target_event_action_t *teap;
3423
3424                                 teap = target->event_action;
3425                                 /* replace existing? */
3426                                 while( teap ){
3427                                         if( teap->event == (enum target_event)n->value ){
3428                                                 break;
3429                                         }
3430                                         teap = teap->next;
3431                                 }
3432
3433                                 if( goi->isconfigure ){
3434                                         if( teap == NULL ){
3435                                                 /* create new */
3436                                                 teap = calloc( 1, sizeof(*teap) );
3437                                         }
3438                                         teap->event = n->value;
3439                                         Jim_GetOpt_Obj( goi, &o );
3440                                         if( teap->body ){
3441                                                 Jim_DecrRefCount( interp, teap->body );
3442                                         }
3443                                         teap->body  = Jim_DuplicateObj( goi->interp, o );
3444                                         /*
3445                                          * FIXME:
3446                                          *     Tcl/TK - "tk events" have a nice feature.
3447                                          *     See the "BIND" command.
3448                                          *    We should support that here.
3449                                          *     You can specify %X and %Y in the event code.
3450                                          *     The idea is: %T - target name.
3451                                          *     The idea is: %N - target number
3452                                          *     The idea is: %E - event name.
3453                                          */
3454                                         Jim_IncrRefCount( teap->body );
3455
3456                                         /* add to head of event list */
3457                                         teap->next = target->event_action;
3458                                         target->event_action = teap;
3459                                         Jim_SetEmptyResult(goi->interp);
3460                                 } else {
3461                                         /* get */
3462                                         if( teap == NULL ){
3463                                                 Jim_SetEmptyResult( goi->interp );
3464                                         } else {
3465                                                 Jim_SetResult( goi->interp, Jim_DuplicateObj( goi->interp, teap->body ) );
3466                                         }
3467                                 }
3468                         }
3469                         /* loop for more */
3470                         break;
3471
3472                 case TCFG_WORK_AREA_VIRT:
3473                         if( goi->isconfigure ){
3474                                 target_free_all_working_areas(target);
3475                                 e = Jim_GetOpt_Wide( goi, &w );
3476                                 if( e != JIM_OK ){
3477                                         return e;
3478                                 }
3479                                 target->working_area_virt = w;
3480                         } else {
3481                                 if( goi->argc != 0 ){
3482                                         goto no_params;
3483                                 }
3484                         }
3485                         Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_virt ) );
3486                         /* loop for more */
3487                         break;
3488
3489                 case TCFG_WORK_AREA_PHYS:
3490                         if( goi->isconfigure ){
3491                                 target_free_all_working_areas(target);
3492                                 e = Jim_GetOpt_Wide( goi, &w );
3493                                 if( e != JIM_OK ){
3494                                         return e;
3495                                 }
3496                                 target->working_area_phys = w;
3497                         } else {
3498                                 if( goi->argc != 0 ){
3499                                         goto no_params;
3500                                 }
3501                         }
3502                         Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_phys ) );
3503                         /* loop for more */
3504                         break;
3505
3506                 case TCFG_WORK_AREA_SIZE:
3507                         if( goi->isconfigure ){
3508                                 target_free_all_working_areas(target);
3509                                 e = Jim_GetOpt_Wide( goi, &w );
3510                                 if( e != JIM_OK ){
3511                                         return e;
3512                                 }
3513                                 target->working_area_size = w;
3514                         } else {
3515                                 if( goi->argc != 0 ){
3516                                         goto no_params;
3517                                 }
3518                         }
3519                         Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_size ) );
3520                         /* loop for more */
3521                         break;
3522
3523                 case TCFG_WORK_AREA_BACKUP:
3524                         if( goi->isconfigure ){
3525                                 target_free_all_working_areas(target);
3526                                 e = Jim_GetOpt_Wide( goi, &w );
3527                                 if( e != JIM_OK ){
3528                                         return e;
3529                                 }
3530                                 /* make this exactly 1 or 0 */
3531                                 target->backup_working_area = (!!w);
3532                         } else {
3533                                 if( goi->argc != 0 ){
3534                                         goto no_params;
3535                                 }
3536                         }
3537                         Jim_SetResult(interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
3538                         /* loop for more e*/
3539                         break;
3540
3541                 case TCFG_ENDIAN:
3542                         if( goi->isconfigure ){
3543                                 e = Jim_GetOpt_Nvp( goi, nvp_target_endian, &n );
3544                                 if( e != JIM_OK ){
3545                                         Jim_GetOpt_NvpUnknown( goi, nvp_target_endian, 1 );
3546                                         return e;
3547                                 }
3548                                 target->endianness = n->value;
3549                         } else {
3550                                 if( goi->argc != 0 ){
3551                                         goto no_params;
3552                                 }
3553                         }
3554                         n = Jim_Nvp_value2name_simple( nvp_target_endian, target->endianness );
3555                         if( n->name == NULL ){
3556                                 target->endianness = TARGET_LITTLE_ENDIAN;
3557                                 n = Jim_Nvp_value2name_simple( nvp_target_endian, target->endianness );
3558                         }
3559                         Jim_SetResultString( goi->interp, n->name, -1 );
3560                         /* loop for more */
3561                         break;
3562
3563                 case TCFG_VARIANT:
3564                         if( goi->isconfigure ){
3565                                 if( goi->argc < 1 ){
3566                                         Jim_SetResult_sprintf( goi->interp,
3567                                                                                    "%s ?STRING?",
3568                                                                                    n->name );
3569                                         return JIM_ERR;
3570                                 }
3571                                 if( target->variant ){
3572                                         free((void *)(target->variant));
3573                                 }
3574                                 e = Jim_GetOpt_String( goi, &cp, NULL );
3575                                 target->variant = strdup(cp);
3576                         } else {
3577                                 if( goi->argc != 0 ){
3578                                         goto no_params;
3579                                 }
3580                         }
3581                         Jim_SetResultString( goi->interp, target->variant,-1 );
3582                         /* loop for more */
3583                         break;
3584                 case TCFG_CHAIN_POSITION:
3585                         if( goi->isconfigure ){
3586                                 Jim_Obj *o;
3587                                 jtag_tap_t *tap;
3588                                 target_free_all_working_areas(target);
3589                                 e = Jim_GetOpt_Obj( goi, &o );
3590                                 if( e != JIM_OK ){
3591                                         return e;
3592                                 }
3593                                 tap = jtag_tap_by_jim_obj( goi->interp, o );
3594                                 if( tap == NULL ){
3595                                         return JIM_ERR;
3596                                 }
3597                                 /* make this exactly 1 or 0 */
3598                                 target->tap = tap;
3599                         } else {
3600                                 if( goi->argc != 0 ){
3601                                         goto no_params;
3602                                 }
3603                         }
3604                         Jim_SetResultString( interp, target->tap->dotted_name, -1 );
3605                         /* loop for more e*/
3606                         break;
3607                 }
3608         } /* while( goi->argc ) */
3609
3610
3611                 /* done - we return */
3612         return JIM_OK;
3613 }
3614
3615 /** this is the 'tcl' handler for the target specific command */
3616 static int tcl_target_func( Jim_Interp *interp, int argc, Jim_Obj *const *argv )
3617 {
3618         Jim_GetOptInfo goi;
3619         jim_wide a,b,c;
3620         int x,y,z;
3621         u8  target_buf[32];
3622         Jim_Nvp *n;
3623         target_t *target;
3624         struct command_context_s *cmd_ctx;
3625         int e;
3626
3627         enum {
3628                 TS_CMD_CONFIGURE,
3629                 TS_CMD_CGET,
3630
3631                 TS_CMD_MWW, TS_CMD_MWH, TS_CMD_MWB,
3632                 TS_CMD_MDW, TS_CMD_MDH, TS_CMD_MDB,
3633                 TS_CMD_MRW, TS_CMD_MRH, TS_CMD_MRB,
3634                 TS_CMD_MEM2ARRAY, TS_CMD_ARRAY2MEM,
3635                 TS_CMD_EXAMINE,
3636                 TS_CMD_POLL,
3637                 TS_CMD_RESET,
3638                 TS_CMD_HALT,
3639                 TS_CMD_WAITSTATE,
3640                 TS_CMD_EVENTLIST,
3641                 TS_CMD_CURSTATE,
3642                 TS_CMD_INVOKE_EVENT,
3643         };
3644
3645         static const Jim_Nvp target_options[] = {
3646                 { .name = "configure", .value = TS_CMD_CONFIGURE },
3647                 { .name = "cget", .value = TS_CMD_CGET },
3648                 { .name = "mww", .value = TS_CMD_MWW },
3649                 { .name = "mwh", .value = TS_CMD_MWH },
3650                 { .name = "mwb", .value = TS_CMD_MWB },
3651                 { .name = "mdw", .value = TS_CMD_MDW },
3652                 { .name = "mdh", .value = TS_CMD_MDH },
3653                 { .name = "mdb", .value = TS_CMD_MDB },
3654                 { .name = "mem2array", .value = TS_CMD_MEM2ARRAY },
3655                 { .name = "array2mem", .value = TS_CMD_ARRAY2MEM },
3656                 { .name = "eventlist", .value = TS_CMD_EVENTLIST },
3657                 { .name = "curstate",  .value = TS_CMD_CURSTATE },
3658
3659                 { .name = "arp_examine", .value = TS_CMD_EXAMINE },
3660                 { .name = "arp_poll", .value = TS_CMD_POLL },
3661                 { .name = "arp_reset", .value = TS_CMD_RESET },
3662                 { .name = "arp_halt", .value = TS_CMD_HALT },
3663                 { .name = "arp_waitstate", .value = TS_CMD_WAITSTATE },
3664                 { .name = "invoke-event", .value = TS_CMD_INVOKE_EVENT },
3665
3666                 { .name = NULL, .value = -1 },
3667         };
3668
3669         /* go past the "command" */
3670         Jim_GetOpt_Setup( &goi, interp, argc-1, argv+1 );
3671
3672         target = Jim_CmdPrivData( goi.interp );
3673         cmd_ctx = Jim_GetAssocData(goi.interp, "context");
3674
3675         /* commands here are in an NVP table */
3676         e = Jim_GetOpt_Nvp( &goi, target_options, &n );
3677         if( e != JIM_OK ){
3678                 Jim_GetOpt_NvpUnknown( &goi, target_options, 0 );
3679                 return e;
3680         }
3681         /* Assume blank result */
3682         Jim_SetEmptyResult( goi.interp );
3683
3684         switch( n->value ){
3685         case TS_CMD_CONFIGURE:
3686                 if( goi.argc < 2 ){
3687                         Jim_WrongNumArgs( goi.interp, goi.argc, goi.argv, "missing: -option VALUE ...");
3688                         return JIM_ERR;
3689                 }
3690                 goi.isconfigure = 1;
3691                 return target_configure( &goi, target );
3692         case TS_CMD_CGET:
3693                 // some things take params
3694                 if( goi.argc < 1 ){
3695                         Jim_WrongNumArgs( goi.interp, 0, goi.argv, "missing: ?-option?");
3696                         return JIM_ERR;
3697                 }
3698                 goi.isconfigure = 0;
3699                 return target_configure( &goi, target );
3700                 break;
3701         case TS_CMD_MWW:
3702         case TS_CMD_MWH:
3703         case TS_CMD_MWB:
3704                 /* argv[0] = cmd
3705                  * argv[1] = address
3706                  * argv[2] = data
3707                  * argv[3] = optional count.
3708                  */
3709
3710                 if( (goi.argc == 3) || (goi.argc == 4) ){
3711                         /* all is well */
3712                 } else {
3713                 mwx_error:
3714                         Jim_SetResult_sprintf( goi.interp, "expected: %s ADDR DATA [COUNT]", n->name );
3715                         return JIM_ERR;
3716                 }
3717
3718                 e = Jim_GetOpt_Wide( &goi, &a );
3719                 if( e != JIM_OK ){
3720                         goto mwx_error;
3721                 }
3722
3723                 e = Jim_GetOpt_Wide( &goi, &b );
3724                 if( e != JIM_OK ){
3725                         goto mwx_error;
3726                 }
3727                 if( goi.argc ){
3728                         e = Jim_GetOpt_Wide( &goi, &c );
3729                         if( e != JIM_OK ){
3730                                 goto mwx_error;
3731                         }
3732                 } else {
3733                         c = 1;
3734                 }
3735
3736                 switch( n->value ){
3737                 case TS_CMD_MWW:
3738                         target_buffer_set_u32( target, target_buf, b );
3739                         b = 4;
3740                         break;
3741                 case TS_CMD_MWH:
3742                         target_buffer_set_u16( target, target_buf, b );
3743                         b = 2;
3744                         break;
3745                 case TS_CMD_MWB:
3746                         target_buffer_set_u8( target, target_buf, b );
3747                         b = 1;
3748                         break;
3749                 }
3750                 for( x = 0 ; x < c ; x++ ){
3751                         e = target_write_memory( target, a, b, 1, target_buf );
3752                         if( e != ERROR_OK ){
3753                                 Jim_SetResult_sprintf( interp, "Error writing @ 0x%08x: %d\n", (int)(a), e );
3754                                 return JIM_ERR;
3755                         }
3756                         /* b = width */
3757                         a = a + b;
3758                 }
3759                 return JIM_OK;
3760                 break;
3761
3762                 /* display */
3763         case TS_CMD_MDW:
3764         case TS_CMD_MDH:
3765         case TS_CMD_MDB:
3766                 /* argv[0] = command
3767                  * argv[1] = address
3768                  * argv[2] = optional count
3769                  */
3770                 if( (goi.argc == 2) || (goi.argc == 3) ){
3771                         Jim_SetResult_sprintf( goi.interp, "expected: %s ADDR [COUNT]", n->name );
3772                         return JIM_ERR;
3773                 }
3774                 e = Jim_GetOpt_Wide( &goi, &a );
3775                 if( e != JIM_OK ){
3776                         return JIM_ERR;
3777                 }
3778                 if( goi.argc ){
3779                         e = Jim_GetOpt_Wide( &goi, &c );
3780                         if( e != JIM_OK ){
3781                                 return JIM_ERR;
3782                         }
3783                 } else {
3784                         c = 1;
3785                 }
3786                 b = 1; /* shut up gcc */
3787                 switch( n->value ){
3788                 case TS_CMD_MDW:
3789                         b =  4;
3790                         break;
3791                 case TS_CMD_MDH:
3792                         b = 2;
3793                         break;
3794                 case TS_CMD_MDB:
3795                         b = 1;
3796                         break;
3797                 }
3798
3799                 /* convert to "bytes" */
3800                 c = c * b;
3801                 /* count is now in 'BYTES' */
3802                 while( c > 0 ){
3803                         y = c;
3804                         if( y > 16 ){
3805                                 y = 16;
3806                         }
3807                         e = target_read_memory( target, a, b, y / b, target_buf );
3808                         if( e != ERROR_OK ){
3809                                 Jim_SetResult_sprintf( interp, "error reading target @ 0x%08lx", (int)(a) );
3810                                 return JIM_ERR;
3811                         }
3812
3813                         Jim_fprintf( interp, interp->cookie_stdout, "0x%08x ", (int)(a) );
3814                         switch( b ){
3815                         case 4:
3816                                 for( x = 0 ; (x < 16) && (x < y) ; x += 4 ){
3817                                         z = target_buffer_get_u32( target, &(target_buf[ x * 4 ]) );
3818                                         Jim_fprintf( interp, interp->cookie_stdout, "%08x ", (int)(z) );
3819                                 }
3820                                 for( ; (x < 16) ; x += 4 ){
3821                                         Jim_fprintf( interp, interp->cookie_stdout, "         " );
3822                                 }
3823                                 break;
3824                         case 2:
3825                                 for( x = 0 ; (x < 16) && (x < y) ; x += 2 ){
3826                                         z = target_buffer_get_u16( target, &(target_buf[ x * 2 ]) );
3827                                         Jim_fprintf( interp, interp->cookie_stdout, "%04x ", (int)(z) );
3828                                 }
3829                                 for( ; (x < 16) ; x += 2 ){
3830                                         Jim_fprintf( interp, interp->cookie_stdout, "     " );
3831                                 }
3832                                 break;
3833                         case 1:
3834                         default:
3835                                 for( x = 0 ; (x < 16) && (x < y) ; x += 1 ){
3836                                         z = target_buffer_get_u8( target, &(target_buf[ x * 4 ]) );
3837                                         Jim_fprintf( interp, interp->cookie_stdout, "%02x ", (int)(z) );
3838                                 }
3839                                 for( ; (x < 16) ; x += 1 ){
3840                                         Jim_fprintf( interp, interp->cookie_stdout, "   " );
3841                                 }
3842                                 break;
3843                         }
3844                         /* ascii-ify the bytes */
3845                         for( x = 0 ; x < y ; x++ ){
3846                                 if( (target_buf[x] >= 0x20) &&
3847                                         (target_buf[x] <= 0x7e) ){
3848                                         /* good */
3849                                 } else {
3850                                         /* smack it */
3851                                         target_buf[x] = '.';
3852                                 }
3853                         }
3854                         /* space pad  */
3855                         while( x < 16 ){
3856                                 target_buf[x] = ' ';
3857                                 x++;
3858                         }
3859                         /* terminate */
3860                         target_buf[16] = 0;
3861                         /* print - with a newline */
3862                         Jim_fprintf( interp, interp->cookie_stdout, "%s\n", target_buf );
3863                         /* NEXT... */
3864                         c -= 16;
3865                         a += 16;
3866                 }
3867                 return JIM_OK;
3868         case TS_CMD_MEM2ARRAY:
3869                 return target_mem2array( goi.interp, target, goi.argc, goi.argv );
3870                 break;
3871         case TS_CMD_ARRAY2MEM:
3872                 return target_array2mem( goi.interp, target, goi.argc, goi.argv );
3873                 break;
3874         case TS_CMD_EXAMINE:
3875                 if( goi.argc ){
3876                         Jim_WrongNumArgs( goi.interp, 2, argv, "[no parameters]");
3877                         return JIM_ERR;
3878                 }
3879                 if (!target->tap->enabled)
3880                         goto err_tap_disabled;
3881                 e = target->type->examine( target );
3882                 if( e != ERROR_OK ){
3883                         Jim_SetResult_sprintf( interp, "examine-fails: %d", e );
3884                         return JIM_ERR;
3885                 }
3886                 return JIM_OK;
3887         case TS_CMD_POLL:
3888                 if( goi.argc ){
3889                         Jim_WrongNumArgs( goi.interp, 2, argv, "[no parameters]");
3890                         return JIM_ERR;
3891                 }
3892                 if (!target->tap->enabled)
3893                         goto err_tap_disabled;
3894                 if( !(target_was_examined(target)) ){
3895                         e = ERROR_TARGET_NOT_EXAMINED;
3896                 } else {
3897                         e = target->type->poll( target );
3898                 }
3899                 if( e != ERROR_OK ){
3900                         Jim_SetResult_sprintf( interp, "poll-fails: %d", e );
3901                         return JIM_ERR;
3902                 } else {
3903                         return JIM_OK;
3904                 }
3905                 break;
3906         case TS_CMD_RESET:
3907                 if( goi.argc != 2 ){
3908                         Jim_WrongNumArgs( interp, 2, argv, "t|f|assert|deassert BOOL");
3909                         return JIM_ERR;
3910                 }
3911                 e = Jim_GetOpt_Nvp( &goi, nvp_assert, &n );
3912                 if( e != JIM_OK ){
3913                         Jim_GetOpt_NvpUnknown( &goi, nvp_assert, 1 );
3914                         return e;
3915                 }
3916                 /* the halt or not param */
3917                 e = Jim_GetOpt_Wide( &goi, &a);
3918                 if( e != JIM_OK ){
3919                         return e;
3920                 }
3921                 if (!target->tap->enabled)
3922                         goto err_tap_disabled;
3923                 /* determine if we should halt or not. */
3924                 target->reset_halt = !!a;
3925                 /* When this happens - all workareas are invalid. */
3926                 target_free_all_working_areas_restore(target, 0);
3927
3928                 /* do the assert */
3929                 if( n->value == NVP_ASSERT ){
3930                         target->type->assert_reset( target );
3931                 } else {
3932                         target->type->deassert_reset( target );
3933                 }
3934                 return JIM_OK;
3935         case TS_CMD_HALT:
3936                 if( goi.argc ){
3937                         Jim_WrongNumArgs( goi.interp, 0, argv, "halt [no parameters]");
3938                         return JIM_ERR;
3939                 }
3940                 if (!target->tap->enabled)
3941                         goto err_tap_disabled;
3942                 target->type->halt( target );
3943                 return JIM_OK;
3944         case TS_CMD_WAITSTATE:
3945                 /* params:  <name>  statename timeoutmsecs */
3946                 if( goi.argc != 2 ){
3947                         Jim_SetResult_sprintf( goi.interp, "%s STATENAME TIMEOUTMSECS", n->name );
3948                         return JIM_ERR;
3949                 }
3950                 e = Jim_GetOpt_Nvp( &goi, nvp_target_state, &n );
3951                 if( e != JIM_OK ){
3952                         Jim_GetOpt_NvpUnknown( &goi, nvp_target_state,1 );
3953                         return e;
3954                 }
3955                 e = Jim_GetOpt_Wide( &goi, &a );
3956                 if( e != JIM_OK ){
3957                         return e;
3958                 }
3959                 if (!target->tap->enabled)
3960                         goto err_tap_disabled;
3961                 e = target_wait_state( target, n->value, a );
3962                 if( e != ERROR_OK ){
3963                         Jim_SetResult_sprintf( goi.interp,
3964                                                                    "target: %s wait %s fails (%d) %s",
3965                                                                    target->cmd_name,
3966                                                                    n->name,
3967                                                                    e, target_strerror_safe(e) );
3968                         return JIM_ERR;
3969                 } else {
3970                         return JIM_OK;
3971                 }
3972         case TS_CMD_EVENTLIST:
3973                 /* List for human, Events defined for this target.
3974                  * scripts/programs should use 'name cget -event NAME'
3975                  */
3976                 {
3977                         target_event_action_t *teap;
3978                         teap = target->event_action;
3979                         command_print( cmd_ctx, "Event actions for target (%d) %s\n",
3980                                                    target->target_number,
3981                                                    target->cmd_name );
3982                         command_print( cmd_ctx, "%-25s | Body", "Event");
3983                         command_print( cmd_ctx, "------------------------- | ----------------------------------------");
3984                         while( teap ){
3985                                 command_print( cmd_ctx,
3986                                                            "%-25s | %s",
3987                                                            Jim_Nvp_value2name_simple( nvp_target_event, teap->event )->name,
3988                                                            Jim_GetString( teap->body, NULL ) );
3989                                 teap = teap->next;
3990                         }
3991                         command_print( cmd_ctx, "***END***");
3992                         return JIM_OK;
3993                 }
3994         case TS_CMD_CURSTATE:
3995                 if( goi.argc != 0 ){
3996                         Jim_WrongNumArgs( goi.interp, 0, argv, "[no parameters]");
3997                         return JIM_ERR;
3998                 }
3999                 Jim_SetResultString( goi.interp,
4000                                                          Jim_Nvp_value2name_simple(nvp_target_state,target->state)->name,-1);
4001                 return JIM_OK;
4002         case TS_CMD_INVOKE_EVENT:
4003                 if( goi.argc != 1 ){
4004                         Jim_SetResult_sprintf( goi.interp, "%s ?EVENTNAME?",n->name);
4005                         return JIM_ERR;
4006                 }
4007                 e = Jim_GetOpt_Nvp( &goi, nvp_target_event, &n );
4008                 if( e != JIM_OK ){
4009                         Jim_GetOpt_NvpUnknown( &goi, nvp_target_event, 1 );
4010                         return e;
4011                 }
4012                 target_handle_event( target, n->value );
4013                 return JIM_OK;
4014         }
4015         return JIM_ERR;
4016
4017 err_tap_disabled:
4018         Jim_SetResult_sprintf(interp, "[TAP is disabled]");
4019         return JIM_ERR;
4020 }
4021
4022 static int target_create( Jim_GetOptInfo *goi )
4023 {
4024         Jim_Obj *new_cmd;
4025         Jim_Cmd *cmd;
4026         const char *cp;
4027         char *cp2;
4028         int e;
4029         int x;
4030         target_t *target;
4031         struct command_context_s *cmd_ctx;
4032
4033         cmd_ctx = Jim_GetAssocData(goi->interp, "context");
4034         if( goi->argc < 3 ){
4035                 Jim_WrongNumArgs( goi->interp, 1, goi->argv, "?name? ?type? ..options...");
4036                 return JIM_ERR;
4037         }
4038
4039         /* COMMAND */
4040         Jim_GetOpt_Obj( goi, &new_cmd );
4041         /* does this command exist? */
4042         cmd = Jim_GetCommand( goi->interp, new_cmd, JIM_ERRMSG );
4043         if( cmd ){
4044                 cp = Jim_GetString( new_cmd, NULL );
4045                 Jim_SetResult_sprintf(goi->interp, "Command/target: %s Exists", cp);
4046                 return JIM_ERR;
4047         }
4048
4049         /* TYPE */
4050         e = Jim_GetOpt_String( goi, &cp2, NULL );
4051         cp = cp2;
4052         /* now does target type exist */
4053         for( x = 0 ; target_types[x] ; x++ ){
4054                 if( 0 == strcmp( cp, target_types[x]->name ) ){
4055                         /* found */
4056                         break;
4057                 }
4058         }
4059         if( target_types[x] == NULL ){
4060                 Jim_SetResult_sprintf( goi->interp, "Unknown target type %s, try one of ", cp );
4061                 for( x = 0 ; target_types[x] ; x++ ){
4062                         if( target_types[x+1] ){
4063                                 Jim_AppendStrings( goi->interp,
4064                                                                    Jim_GetResult(goi->interp),
4065                                                                    target_types[x]->name,
4066                                                                    ", ", NULL);
4067                         } else {
4068                                 Jim_AppendStrings( goi->interp,
4069                                                                    Jim_GetResult(goi->interp),
4070                                                                    " or ",
4071                                                                    target_types[x]->name,NULL );
4072                         }
4073                 }
4074                 return JIM_ERR;
4075         }
4076
4077         /* Create it */
4078         target = calloc(1,sizeof(target_t));
4079         /* set target number */
4080         target->target_number = new_target_number();
4081
4082         /* allocate memory for each unique target type */
4083         target->type = (target_type_t*)calloc(1,sizeof(target_type_t));
4084
4085         memcpy( target->type, target_types[x], sizeof(target_type_t));
4086
4087         /* will be set by "-endian" */
4088         target->endianness = TARGET_ENDIAN_UNKNOWN;
4089
4090         target->working_area        = 0x0;
4091         target->working_area_size   = 0x0;
4092         target->working_areas       = NULL;
4093         target->backup_working_area = 0;
4094
4095         target->state               = TARGET_UNKNOWN;
4096         target->debug_reason        = DBG_REASON_UNDEFINED;
4097         target->reg_cache           = NULL;
4098         target->breakpoints         = NULL;
4099         target->watchpoints         = NULL;
4100         target->next                = NULL;
4101         target->arch_info           = NULL;
4102
4103         target->display             = 1;
4104
4105         /* initialize trace information */
4106         target->trace_info = malloc(sizeof(trace_t));
4107         target->trace_info->num_trace_points         = 0;
4108         target->trace_info->trace_points_size        = 0;
4109         target->trace_info->trace_points             = NULL;
4110         target->trace_info->trace_history_size       = 0;
4111         target->trace_info->trace_history            = NULL;
4112         target->trace_info->trace_history_pos        = 0;
4113         target->trace_info->trace_history_overflowed = 0;
4114
4115         target->dbgmsg          = NULL;
4116         target->dbg_msg_enabled = 0;
4117
4118         target->endianness = TARGET_ENDIAN_UNKNOWN;
4119
4120         /* Do the rest as "configure" options */
4121         goi->isconfigure = 1;
4122         e = target_configure( goi, target);
4123
4124         if (target->tap == NULL)
4125         {
4126                 Jim_SetResultString( interp, "-chain-position required when creating target", -1);
4127                 e=JIM_ERR;
4128         }
4129
4130         if( e != JIM_OK ){
4131                 free( target->type );
4132                 free( target );
4133                 return e;
4134         }
4135
4136         if( target->endianness == TARGET_ENDIAN_UNKNOWN ){
4137                 /* default endian to little if not specified */
4138                 target->endianness = TARGET_LITTLE_ENDIAN;
4139         }
4140
4141         /* incase variant is not set */
4142         if (!target->variant)
4143                 target->variant = strdup("");
4144
4145         /* create the target specific commands */
4146         if( target->type->register_commands ){
4147                 (*(target->type->register_commands))( cmd_ctx );
4148         }
4149         if( target->type->target_create ){
4150                 (*(target->type->target_create))( target, goi->interp );
4151         }
4152
4153         /* append to end of list */
4154         {
4155                 target_t **tpp;
4156                 tpp = &(all_targets);
4157                 while( *tpp ){
4158                         tpp = &( (*tpp)->next );
4159                 }
4160                 *tpp = target;
4161         }
4162
4163         cp = Jim_GetString( new_cmd, NULL );
4164         target->cmd_name = strdup(cp);
4165
4166         /* now - create the new target name command */
4167         e = Jim_CreateCommand( goi->interp,
4168                                                    /* name */
4169                                                    cp,
4170                                                    tcl_target_func, /* C function */
4171                                                    target, /* private data */
4172                                                    NULL ); /* no del proc */
4173
4174         return e;
4175 }
4176
4177 static int jim_target( Jim_Interp *interp, int argc, Jim_Obj *const *argv )
4178 {
4179         int x,r,e;
4180         jim_wide w;
4181         struct command_context_s *cmd_ctx;
4182         target_t *target;
4183         Jim_GetOptInfo goi;
4184         enum tcmd {
4185                 /* TG = target generic */
4186                 TG_CMD_CREATE,
4187                 TG_CMD_TYPES,
4188                 TG_CMD_NAMES,
4189                 TG_CMD_CURRENT,
4190                 TG_CMD_NUMBER,
4191                 TG_CMD_COUNT,
4192         };
4193         const char *target_cmds[] = {
4194                 "create", "types", "names", "current", "number",
4195                 "count",
4196                 NULL /* terminate */
4197         };
4198
4199         LOG_DEBUG("Target command params:");
4200         LOG_DEBUG("%s", Jim_Debug_ArgvString(interp, argc, argv));
4201
4202         cmd_ctx = Jim_GetAssocData( interp, "context" );
4203
4204         Jim_GetOpt_Setup( &goi, interp, argc-1, argv+1 );
4205
4206         if( goi.argc == 0 ){
4207                 Jim_WrongNumArgs(interp, 1, argv, "missing: command ...");
4208                 return JIM_ERR;
4209         }
4210
4211         /* Jim_GetOpt_Debug( &goi ); */
4212         r = Jim_GetOpt_Enum( &goi, target_cmds, &x   );
4213         if( r != JIM_OK ){
4214                 return r;
4215         }
4216
4217         switch(x){
4218         default:
4219                 Jim_Panic(goi.interp,"Why am I here?");
4220                 return JIM_ERR;
4221         case TG_CMD_CURRENT:
4222                 if( goi.argc != 0 ){
4223                         Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters");
4224                         return JIM_ERR;
4225                 }
4226                 Jim_SetResultString( goi.interp, get_current_target( cmd_ctx )->cmd_name, -1 );
4227                 return JIM_OK;
4228         case TG_CMD_TYPES:
4229                 if( goi.argc != 0 ){
4230                         Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters" );
4231                         return JIM_ERR;
4232                 }
4233                 Jim_SetResult( goi.interp, Jim_NewListObj( goi.interp, NULL, 0 ) );
4234                 for( x = 0 ; target_types[x] ; x++ ){
4235                         Jim_ListAppendElement( goi.interp,
4236                                                                    Jim_GetResult(goi.interp),
4237                                                                    Jim_NewStringObj( goi.interp, target_types[x]->name, -1 ) );
4238                 }
4239                 return JIM_OK;
4240         case TG_CMD_NAMES:
4241                 if( goi.argc != 0 ){
4242                         Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters" );
4243                         return JIM_ERR;
4244                 }
4245                 Jim_SetResult( goi.interp, Jim_NewListObj( goi.interp, NULL, 0 ) );
4246                 target = all_targets;
4247                 while( target ){
4248                         Jim_ListAppendElement( goi.interp,
4249                                                                    Jim_GetResult(goi.interp),
4250                                                                    Jim_NewStringObj( goi.interp, target->cmd_name, -1 ) );
4251                         target = target->next;
4252                 }
4253                 return JIM_OK;
4254         case TG_CMD_CREATE:
4255                 if( goi.argc < 3 ){
4256                         Jim_WrongNumArgs( goi.interp, goi.argc, goi.argv, "?name  ... config options ...");
4257                         return JIM_ERR;
4258                 }
4259                 return target_create( &goi );
4260                 break;
4261         case TG_CMD_NUMBER:
4262                 if( goi.argc != 1 ){
4263                         Jim_SetResult_sprintf( goi.interp, "expected: target number ?NUMBER?");
4264                         return JIM_ERR;
4265                 }
4266                 e = Jim_GetOpt_Wide( &goi, &w );
4267                 if( e != JIM_OK ){
4268                         return JIM_ERR;
4269                 }
4270                 {
4271                         target_t *t;
4272                         t = get_target_by_num(w);
4273                         if( t == NULL ){
4274                                 Jim_SetResult_sprintf( goi.interp,"Target: number %d does not exist", (int)(w));
4275                                 return JIM_ERR;
4276                         }
4277                         Jim_SetResultString( goi.interp, t->cmd_name, -1 );
4278                         return JIM_OK;
4279                 }
4280         case TG_CMD_COUNT:
4281                 if( goi.argc != 0 ){
4282                         Jim_WrongNumArgs( goi.interp, 0, goi.argv, "<no parameters>");
4283                         return JIM_ERR;
4284                 }
4285                 Jim_SetResult( goi.interp,
4286                                            Jim_NewIntObj( goi.interp, max_target_number()));
4287                 return JIM_OK;
4288         }
4289
4290         return JIM_ERR;
4291 }
4292
4293
4294 struct FastLoad
4295 {
4296         u32 address;
4297         u8 *data;
4298         int length;
4299
4300 };
4301
4302 static int fastload_num;
4303 static struct FastLoad *fastload;
4304
4305 static void free_fastload(void)
4306 {
4307         if (fastload!=NULL)
4308         {
4309                 int i;
4310                 for (i=0; i<fastload_num; i++)
4311                 {
4312                         if (fastload[i].data)
4313                                 free(fastload[i].data);
4314                 }
4315                 free(fastload);
4316                 fastload=NULL;
4317         }
4318 }
4319
4320
4321
4322
4323 static int handle_fast_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
4324 {
4325         u8 *buffer;
4326         u32 buf_cnt;
4327         u32 image_size;
4328         u32 min_address=0;
4329         u32 max_address=0xffffffff;
4330         int i;
4331
4332         image_t image;
4333
4334         duration_t duration;
4335         char *duration_text;
4336
4337         int retval = parse_load_image_command_args(args, argc,
4338                         &image, &min_address, &max_address);
4339         if (ERROR_OK != retval)
4340                 return retval;
4341
4342         duration_start_measure(&duration);
4343
4344         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
4345         {
4346                 return ERROR_OK;
4347         }
4348
4349         image_size = 0x0;
4350         retval = ERROR_OK;
4351         fastload_num=image.num_sections;
4352         fastload=(struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
4353         if (fastload==NULL)
4354         {
4355                 image_close(&image);
4356                 return ERROR_FAIL;
4357         }
4358         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
4359         for (i = 0; i < image.num_sections; i++)
4360         {
4361                 buffer = malloc(image.sections[i].size);
4362                 if (buffer == NULL)
4363                 {
4364                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
4365                         break;
4366                 }
4367
4368                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
4369                 {
4370                         free(buffer);
4371                         break;
4372                 }
4373
4374                 u32 offset=0;
4375                 u32 length=buf_cnt;
4376
4377
4378                 /* DANGER!!! beware of unsigned comparision here!!! */
4379
4380                 if ((image.sections[i].base_address+buf_cnt>=min_address)&&
4381                                 (image.sections[i].base_address<max_address))
4382                 {
4383                         if (image.sections[i].base_address<min_address)
4384                         {
4385                                 /* clip addresses below */
4386                                 offset+=min_address-image.sections[i].base_address;
4387                                 length-=offset;
4388                         }
4389
4390                         if (image.sections[i].base_address+buf_cnt>max_address)
4391                         {
4392                                 length-=(image.sections[i].base_address+buf_cnt)-max_address;
4393                         }
4394
4395                         fastload[i].address=image.sections[i].base_address+offset;
4396                         fastload[i].data=malloc(length);
4397                         if (fastload[i].data==NULL)
4398                         {
4399                                 free(buffer);
4400                                 break;
4401                         }
4402                         memcpy(fastload[i].data, buffer+offset, length);
4403                         fastload[i].length=length;
4404
4405                         image_size += length;
4406                         command_print(cmd_ctx, "%u byte written at address 0x%8.8x", length, image.sections[i].base_address+offset);
4407                 }
4408
4409                 free(buffer);
4410         }
4411
4412         duration_stop_measure(&duration, &duration_text);
4413         if (retval==ERROR_OK)
4414         {
4415                 command_print(cmd_ctx, "Loaded %u bytes in %s", image_size, duration_text);
4416                 command_print(cmd_ctx, "NB!!! image has not been loaded to target, issue a subsequent 'fast_load' to do so.");
4417         }
4418         free(duration_text);
4419
4420         image_close(&image);
4421
4422         if (retval!=ERROR_OK)
4423         {
4424                 free_fastload();
4425         }
4426
4427         return retval;
4428 }
4429
4430 static int handle_fast_load_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
4431 {
4432         if (argc>0)
4433                 return ERROR_COMMAND_SYNTAX_ERROR;
4434         if (fastload==NULL)
4435         {
4436                 LOG_ERROR("No image in memory");
4437                 return ERROR_FAIL;
4438         }
4439         int i;
4440         int ms=timeval_ms();
4441         int size=0;
4442         int retval=ERROR_OK;
4443         for (i=0; i<fastload_num;i++)
4444         {
4445                 target_t *target = get_current_target(cmd_ctx);
4446                 command_print(cmd_ctx, "Write to 0x%08x, length 0x%08x", fastload[i].address, fastload[i].length);
4447                 if (retval==ERROR_OK)
4448                 {
4449                         retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
4450                 }
4451                 size+=fastload[i].length;
4452         }
4453         int after=timeval_ms();
4454         command_print(cmd_ctx, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
4455         return retval;
4456 }