arch: Added ARMv7R and Cortex-R4 support
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2010 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   Copyright (C) 2011 by Broadcom Corporation                            *
18  *   Evan Hunter - ehunter@broadcom.com                                    *
19  *                                                                         *
20  *   Copyright (C) ST-Ericsson SA 2011                                     *
21  *   michel.jaouen@stericsson.com : smp minimum support                    *
22  *                                                                         *
23  *   Copyright (C) 2011 Andreas Fritiofson                                 *
24  *   andreas.fritiofson@gmail.com                                          *
25  *                                                                         *
26  *   This program is free software; you can redistribute it and/or modify  *
27  *   it under the terms of the GNU General Public License as published by  *
28  *   the Free Software Foundation; either version 2 of the License, or     *
29  *   (at your option) any later version.                                   *
30  *                                                                         *
31  *   This program is distributed in the hope that it will be useful,       *
32  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
33  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
34  *   GNU General Public License for more details.                          *
35  *                                                                         *
36  *   You should have received a copy of the GNU General Public License     *
37  *   along with this program; if not, write to the                         *
38  *   Free Software Foundation, Inc.,                                       *
39  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
40  ***************************************************************************/
41
42 #ifdef HAVE_CONFIG_H
43 #include "config.h"
44 #endif
45
46 #include <helper/time_support.h>
47 #include <jtag/jtag.h>
48 #include <flash/nor/core.h>
49
50 #include "target.h"
51 #include "target_type.h"
52 #include "target_request.h"
53 #include "breakpoints.h"
54 #include "register.h"
55 #include "trace.h"
56 #include "image.h"
57 #include "rtos/rtos.h"
58
59 static int target_read_buffer_default(struct target *target, uint32_t address,
60                 uint32_t size, uint8_t *buffer);
61 static int target_write_buffer_default(struct target *target, uint32_t address,
62                 uint32_t size, const uint8_t *buffer);
63 static int target_array2mem(Jim_Interp *interp, struct target *target,
64                 int argc, Jim_Obj * const *argv);
65 static int target_mem2array(Jim_Interp *interp, struct target *target,
66                 int argc, Jim_Obj * const *argv);
67 static int target_register_user_commands(struct command_context *cmd_ctx);
68
69 /* targets */
70 extern struct target_type arm7tdmi_target;
71 extern struct target_type arm720t_target;
72 extern struct target_type arm9tdmi_target;
73 extern struct target_type arm920t_target;
74 extern struct target_type arm966e_target;
75 extern struct target_type arm946e_target;
76 extern struct target_type arm926ejs_target;
77 extern struct target_type fa526_target;
78 extern struct target_type feroceon_target;
79 extern struct target_type dragonite_target;
80 extern struct target_type xscale_target;
81 extern struct target_type cortexm3_target;
82 extern struct target_type cortexa8_target;
83 extern struct target_type cortexr4_target;
84 extern struct target_type arm11_target;
85 extern struct target_type mips_m4k_target;
86 extern struct target_type avr_target;
87 extern struct target_type dsp563xx_target;
88 extern struct target_type dsp5680xx_target;
89 extern struct target_type testee_target;
90 extern struct target_type avr32_ap7k_target;
91 extern struct target_type hla_target;
92
93 static struct target_type *target_types[] = {
94         &arm7tdmi_target,
95         &arm9tdmi_target,
96         &arm920t_target,
97         &arm720t_target,
98         &arm966e_target,
99         &arm946e_target,
100         &arm926ejs_target,
101         &fa526_target,
102         &feroceon_target,
103         &dragonite_target,
104         &xscale_target,
105         &cortexm3_target,
106         &cortexa8_target,
107         &cortexr4_target,
108         &arm11_target,
109         &mips_m4k_target,
110         &avr_target,
111         &dsp563xx_target,
112         &dsp5680xx_target,
113         &testee_target,
114         &avr32_ap7k_target,
115         &hla_target,
116         NULL,
117 };
118
119 struct target *all_targets;
120 static struct target_event_callback *target_event_callbacks;
121 static struct target_timer_callback *target_timer_callbacks;
122 static const int polling_interval = 100;
123
124 static const Jim_Nvp nvp_assert[] = {
125         { .name = "assert", NVP_ASSERT },
126         { .name = "deassert", NVP_DEASSERT },
127         { .name = "T", NVP_ASSERT },
128         { .name = "F", NVP_DEASSERT },
129         { .name = "t", NVP_ASSERT },
130         { .name = "f", NVP_DEASSERT },
131         { .name = NULL, .value = -1 }
132 };
133
134 static const Jim_Nvp nvp_error_target[] = {
135         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
136         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
137         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
138         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
139         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
140         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
141         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
142         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
143         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
144         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
145         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
146         { .value = -1, .name = NULL }
147 };
148
149 static const char *target_strerror_safe(int err)
150 {
151         const Jim_Nvp *n;
152
153         n = Jim_Nvp_value2name_simple(nvp_error_target, err);
154         if (n->name == NULL)
155                 return "unknown";
156         else
157                 return n->name;
158 }
159
160 static const Jim_Nvp nvp_target_event[] = {
161
162         { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
163         { .value = TARGET_EVENT_HALTED, .name = "halted" },
164         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
165         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
166         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
167
168         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
169         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
170
171         { .value = TARGET_EVENT_RESET_START,         .name = "reset-start" },
172         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
173         { .value = TARGET_EVENT_RESET_ASSERT,        .name = "reset-assert" },
174         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
175         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
176         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
177         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
178         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
179         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
180         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
181         { .value = TARGET_EVENT_RESET_INIT,          .name = "reset-init" },
182         { .value = TARGET_EVENT_RESET_END,           .name = "reset-end" },
183
184         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
185         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
186
187         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
188         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
189
190         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
191         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
192
193         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
194         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
195
196         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
197         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
198
199         { .name = NULL, .value = -1 }
200 };
201
202 static const Jim_Nvp nvp_target_state[] = {
203         { .name = "unknown", .value = TARGET_UNKNOWN },
204         { .name = "running", .value = TARGET_RUNNING },
205         { .name = "halted",  .value = TARGET_HALTED },
206         { .name = "reset",   .value = TARGET_RESET },
207         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
208         { .name = NULL, .value = -1 },
209 };
210
211 static const Jim_Nvp nvp_target_debug_reason[] = {
212         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
213         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
214         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
215         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
216         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
217         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
218         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
219         { .name = NULL, .value = -1 },
220 };
221
222 static const Jim_Nvp nvp_target_endian[] = {
223         { .name = "big",    .value = TARGET_BIG_ENDIAN },
224         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
225         { .name = "be",     .value = TARGET_BIG_ENDIAN },
226         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
227         { .name = NULL,     .value = -1 },
228 };
229
230 static const Jim_Nvp nvp_reset_modes[] = {
231         { .name = "unknown", .value = RESET_UNKNOWN },
232         { .name = "run"    , .value = RESET_RUN },
233         { .name = "halt"   , .value = RESET_HALT },
234         { .name = "init"   , .value = RESET_INIT },
235         { .name = NULL     , .value = -1 },
236 };
237
238 const char *debug_reason_name(struct target *t)
239 {
240         const char *cp;
241
242         cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
243                         t->debug_reason)->name;
244         if (!cp) {
245                 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
246                 cp = "(*BUG*unknown*BUG*)";
247         }
248         return cp;
249 }
250
251 const char *target_state_name(struct target *t)
252 {
253         const char *cp;
254         cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
255         if (!cp) {
256                 LOG_ERROR("Invalid target state: %d", (int)(t->state));
257                 cp = "(*BUG*unknown*BUG*)";
258         }
259         return cp;
260 }
261
262 /* determine the number of the new target */
263 static int new_target_number(void)
264 {
265         struct target *t;
266         int x;
267
268         /* number is 0 based */
269         x = -1;
270         t = all_targets;
271         while (t) {
272                 if (x < t->target_number)
273                         x = t->target_number;
274                 t = t->next;
275         }
276         return x + 1;
277 }
278
279 /* read a uint32_t from a buffer in target memory endianness */
280 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
281 {
282         if (target->endianness == TARGET_LITTLE_ENDIAN)
283                 return le_to_h_u32(buffer);
284         else
285                 return be_to_h_u32(buffer);
286 }
287
288 /* read a uint24_t from a buffer in target memory endianness */
289 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
290 {
291         if (target->endianness == TARGET_LITTLE_ENDIAN)
292                 return le_to_h_u24(buffer);
293         else
294                 return be_to_h_u24(buffer);
295 }
296
297 /* read a uint16_t from a buffer in target memory endianness */
298 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
299 {
300         if (target->endianness == TARGET_LITTLE_ENDIAN)
301                 return le_to_h_u16(buffer);
302         else
303                 return be_to_h_u16(buffer);
304 }
305
306 /* read a uint8_t from a buffer in target memory endianness */
307 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
308 {
309         return *buffer & 0x0ff;
310 }
311
312 /* write a uint32_t to a buffer in target memory endianness */
313 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
314 {
315         if (target->endianness == TARGET_LITTLE_ENDIAN)
316                 h_u32_to_le(buffer, value);
317         else
318                 h_u32_to_be(buffer, value);
319 }
320
321 /* write a uint24_t to a buffer in target memory endianness */
322 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
323 {
324         if (target->endianness == TARGET_LITTLE_ENDIAN)
325                 h_u24_to_le(buffer, value);
326         else
327                 h_u24_to_be(buffer, value);
328 }
329
330 /* write a uint16_t to a buffer in target memory endianness */
331 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
332 {
333         if (target->endianness == TARGET_LITTLE_ENDIAN)
334                 h_u16_to_le(buffer, value);
335         else
336                 h_u16_to_be(buffer, value);
337 }
338
339 /* write a uint8_t to a buffer in target memory endianness */
340 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
341 {
342         *buffer = value;
343 }
344
345 /* write a uint32_t array to a buffer in target memory endianness */
346 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
347 {
348         uint32_t i;
349         for (i = 0; i < count; i++)
350                 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
351 }
352
353 /* write a uint16_t array to a buffer in target memory endianness */
354 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
355 {
356         uint32_t i;
357         for (i = 0; i < count; i++)
358                 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
359 }
360
361 /* write a uint32_t array to a buffer in target memory endianness */
362 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, uint32_t *srcbuf)
363 {
364         uint32_t i;
365         for (i = 0; i < count; i++)
366                 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
367 }
368
369 /* write a uint16_t array to a buffer in target memory endianness */
370 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, uint16_t *srcbuf)
371 {
372         uint32_t i;
373         for (i = 0; i < count; i++)
374                 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
375 }
376
377 /* return a pointer to a configured target; id is name or number */
378 struct target *get_target(const char *id)
379 {
380         struct target *target;
381
382         /* try as tcltarget name */
383         for (target = all_targets; target; target = target->next) {
384                 if (target_name(target) == NULL)
385                         continue;
386                 if (strcmp(id, target_name(target)) == 0)
387                         return target;
388         }
389
390         /* It's OK to remove this fallback sometime after August 2010 or so */
391
392         /* no match, try as number */
393         unsigned num;
394         if (parse_uint(id, &num) != ERROR_OK)
395                 return NULL;
396
397         for (target = all_targets; target; target = target->next) {
398                 if (target->target_number == (int)num) {
399                         LOG_WARNING("use '%s' as target identifier, not '%u'",
400                                         target_name(target), num);
401                         return target;
402                 }
403         }
404
405         return NULL;
406 }
407
408 /* returns a pointer to the n-th configured target */
409 static struct target *get_target_by_num(int num)
410 {
411         struct target *target = all_targets;
412
413         while (target) {
414                 if (target->target_number == num)
415                         return target;
416                 target = target->next;
417         }
418
419         return NULL;
420 }
421
422 struct target *get_current_target(struct command_context *cmd_ctx)
423 {
424         struct target *target = get_target_by_num(cmd_ctx->current_target);
425
426         if (target == NULL) {
427                 LOG_ERROR("BUG: current_target out of bounds");
428                 exit(-1);
429         }
430
431         return target;
432 }
433
434 int target_poll(struct target *target)
435 {
436         int retval;
437
438         /* We can't poll until after examine */
439         if (!target_was_examined(target)) {
440                 /* Fail silently lest we pollute the log */
441                 return ERROR_FAIL;
442         }
443
444         retval = target->type->poll(target);
445         if (retval != ERROR_OK)
446                 return retval;
447
448         if (target->halt_issued) {
449                 if (target->state == TARGET_HALTED)
450                         target->halt_issued = false;
451                 else {
452                         long long t = timeval_ms() - target->halt_issued_time;
453                         if (t > 1000) {
454                                 target->halt_issued = false;
455                                 LOG_INFO("Halt timed out, wake up GDB.");
456                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
457                         }
458                 }
459         }
460
461         return ERROR_OK;
462 }
463
464 int target_halt(struct target *target)
465 {
466         int retval;
467         /* We can't poll until after examine */
468         if (!target_was_examined(target)) {
469                 LOG_ERROR("Target not examined yet");
470                 return ERROR_FAIL;
471         }
472
473         retval = target->type->halt(target);
474         if (retval != ERROR_OK)
475                 return retval;
476
477         target->halt_issued = true;
478         target->halt_issued_time = timeval_ms();
479
480         return ERROR_OK;
481 }
482
483 /**
484  * Make the target (re)start executing using its saved execution
485  * context (possibly with some modifications).
486  *
487  * @param target Which target should start executing.
488  * @param current True to use the target's saved program counter instead
489  *      of the address parameter
490  * @param address Optionally used as the program counter.
491  * @param handle_breakpoints True iff breakpoints at the resumption PC
492  *      should be skipped.  (For example, maybe execution was stopped by
493  *      such a breakpoint, in which case it would be counterprodutive to
494  *      let it re-trigger.
495  * @param debug_execution False if all working areas allocated by OpenOCD
496  *      should be released and/or restored to their original contents.
497  *      (This would for example be true to run some downloaded "helper"
498  *      algorithm code, which resides in one such working buffer and uses
499  *      another for data storage.)
500  *
501  * @todo Resolve the ambiguity about what the "debug_execution" flag
502  * signifies.  For example, Target implementations don't agree on how
503  * it relates to invalidation of the register cache, or to whether
504  * breakpoints and watchpoints should be enabled.  (It would seem wrong
505  * to enable breakpoints when running downloaded "helper" algorithms
506  * (debug_execution true), since the breakpoints would be set to match
507  * target firmware being debugged, not the helper algorithm.... and
508  * enabling them could cause such helpers to malfunction (for example,
509  * by overwriting data with a breakpoint instruction.  On the other
510  * hand the infrastructure for running such helpers might use this
511  * procedure but rely on hardware breakpoint to detect termination.)
512  */
513 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
514 {
515         int retval;
516
517         /* We can't poll until after examine */
518         if (!target_was_examined(target)) {
519                 LOG_ERROR("Target not examined yet");
520                 return ERROR_FAIL;
521         }
522
523         target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
524
525         /* note that resume *must* be asynchronous. The CPU can halt before
526          * we poll. The CPU can even halt at the current PC as a result of
527          * a software breakpoint being inserted by (a bug?) the application.
528          */
529         retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
530         if (retval != ERROR_OK)
531                 return retval;
532
533         target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
534
535         return retval;
536 }
537
538 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
539 {
540         char buf[100];
541         int retval;
542         Jim_Nvp *n;
543         n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
544         if (n->name == NULL) {
545                 LOG_ERROR("invalid reset mode");
546                 return ERROR_FAIL;
547         }
548
549         /* disable polling during reset to make reset event scripts
550          * more predictable, i.e. dr/irscan & pathmove in events will
551          * not have JTAG operations injected into the middle of a sequence.
552          */
553         bool save_poll = jtag_poll_get_enabled();
554
555         jtag_poll_set_enabled(false);
556
557         sprintf(buf, "ocd_process_reset %s", n->name);
558         retval = Jim_Eval(cmd_ctx->interp, buf);
559
560         jtag_poll_set_enabled(save_poll);
561
562         if (retval != JIM_OK) {
563                 Jim_MakeErrorMessage(cmd_ctx->interp);
564                 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
565                 return ERROR_FAIL;
566         }
567
568         /* We want any events to be processed before the prompt */
569         retval = target_call_timer_callbacks_now();
570
571         struct target *target;
572         for (target = all_targets; target; target = target->next)
573                 target->type->check_reset(target);
574
575         return retval;
576 }
577
578 static int identity_virt2phys(struct target *target,
579                 uint32_t virtual, uint32_t *physical)
580 {
581         *physical = virtual;
582         return ERROR_OK;
583 }
584
585 static int no_mmu(struct target *target, int *enabled)
586 {
587         *enabled = 0;
588         return ERROR_OK;
589 }
590
591 static int default_examine(struct target *target)
592 {
593         target_set_examined(target);
594         return ERROR_OK;
595 }
596
597 /* no check by default */
598 static int default_check_reset(struct target *target)
599 {
600         return ERROR_OK;
601 }
602
603 int target_examine_one(struct target *target)
604 {
605         return target->type->examine(target);
606 }
607
608 static int jtag_enable_callback(enum jtag_event event, void *priv)
609 {
610         struct target *target = priv;
611
612         if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
613                 return ERROR_OK;
614
615         jtag_unregister_event_callback(jtag_enable_callback, target);
616
617         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
618
619         int retval = target_examine_one(target);
620         if (retval != ERROR_OK)
621                 return retval;
622
623         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
624
625         return retval;
626 }
627
628 /* Targets that correctly implement init + examine, i.e.
629  * no communication with target during init:
630  *
631  * XScale
632  */
633 int target_examine(void)
634 {
635         int retval = ERROR_OK;
636         struct target *target;
637
638         for (target = all_targets; target; target = target->next) {
639                 /* defer examination, but don't skip it */
640                 if (!target->tap->enabled) {
641                         jtag_register_event_callback(jtag_enable_callback,
642                                         target);
643                         continue;
644                 }
645
646                 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
647
648                 retval = target_examine_one(target);
649                 if (retval != ERROR_OK)
650                         return retval;
651
652                 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
653         }
654         return retval;
655 }
656
657 const char *target_type_name(struct target *target)
658 {
659         return target->type->name;
660 }
661
662 static int target_soft_reset_halt(struct target *target)
663 {
664         if (!target_was_examined(target)) {
665                 LOG_ERROR("Target not examined yet");
666                 return ERROR_FAIL;
667         }
668         if (!target->type->soft_reset_halt) {
669                 LOG_ERROR("Target %s does not support soft_reset_halt",
670                                 target_name(target));
671                 return ERROR_FAIL;
672         }
673         return target->type->soft_reset_halt(target);
674 }
675
676 /**
677  * Downloads a target-specific native code algorithm to the target,
678  * and executes it.  * Note that some targets may need to set up, enable,
679  * and tear down a breakpoint (hard or * soft) to detect algorithm
680  * termination, while others may support  lower overhead schemes where
681  * soft breakpoints embedded in the algorithm automatically terminate the
682  * algorithm.
683  *
684  * @param target used to run the algorithm
685  * @param arch_info target-specific description of the algorithm.
686  */
687 int target_run_algorithm(struct target *target,
688                 int num_mem_params, struct mem_param *mem_params,
689                 int num_reg_params, struct reg_param *reg_param,
690                 uint32_t entry_point, uint32_t exit_point,
691                 int timeout_ms, void *arch_info)
692 {
693         int retval = ERROR_FAIL;
694
695         if (!target_was_examined(target)) {
696                 LOG_ERROR("Target not examined yet");
697                 goto done;
698         }
699         if (!target->type->run_algorithm) {
700                 LOG_ERROR("Target type '%s' does not support %s",
701                                 target_type_name(target), __func__);
702                 goto done;
703         }
704
705         target->running_alg = true;
706         retval = target->type->run_algorithm(target,
707                         num_mem_params, mem_params,
708                         num_reg_params, reg_param,
709                         entry_point, exit_point, timeout_ms, arch_info);
710         target->running_alg = false;
711
712 done:
713         return retval;
714 }
715
716 /**
717  * Downloads a target-specific native code algorithm to the target,
718  * executes and leaves it running.
719  *
720  * @param target used to run the algorithm
721  * @param arch_info target-specific description of the algorithm.
722  */
723 int target_start_algorithm(struct target *target,
724                 int num_mem_params, struct mem_param *mem_params,
725                 int num_reg_params, struct reg_param *reg_params,
726                 uint32_t entry_point, uint32_t exit_point,
727                 void *arch_info)
728 {
729         int retval = ERROR_FAIL;
730
731         if (!target_was_examined(target)) {
732                 LOG_ERROR("Target not examined yet");
733                 goto done;
734         }
735         if (!target->type->start_algorithm) {
736                 LOG_ERROR("Target type '%s' does not support %s",
737                                 target_type_name(target), __func__);
738                 goto done;
739         }
740         if (target->running_alg) {
741                 LOG_ERROR("Target is already running an algorithm");
742                 goto done;
743         }
744
745         target->running_alg = true;
746         retval = target->type->start_algorithm(target,
747                         num_mem_params, mem_params,
748                         num_reg_params, reg_params,
749                         entry_point, exit_point, arch_info);
750
751 done:
752         return retval;
753 }
754
755 /**
756  * Waits for an algorithm started with target_start_algorithm() to complete.
757  *
758  * @param target used to run the algorithm
759  * @param arch_info target-specific description of the algorithm.
760  */
761 int target_wait_algorithm(struct target *target,
762                 int num_mem_params, struct mem_param *mem_params,
763                 int num_reg_params, struct reg_param *reg_params,
764                 uint32_t exit_point, int timeout_ms,
765                 void *arch_info)
766 {
767         int retval = ERROR_FAIL;
768
769         if (!target->type->wait_algorithm) {
770                 LOG_ERROR("Target type '%s' does not support %s",
771                                 target_type_name(target), __func__);
772                 goto done;
773         }
774         if (!target->running_alg) {
775                 LOG_ERROR("Target is not running an algorithm");
776                 goto done;
777         }
778
779         retval = target->type->wait_algorithm(target,
780                         num_mem_params, mem_params,
781                         num_reg_params, reg_params,
782                         exit_point, timeout_ms, arch_info);
783         if (retval != ERROR_TARGET_TIMEOUT)
784                 target->running_alg = false;
785
786 done:
787         return retval;
788 }
789
790 /**
791  * Executes a target-specific native code algorithm in the target.
792  * It differs from target_run_algorithm in that the algorithm is asynchronous.
793  * Because of this it requires an compliant algorithm:
794  * see contrib/loaders/flash/stm32f1x.S for example.
795  *
796  * @param target used to run the algorithm
797  */
798
799 int target_run_flash_async_algorithm(struct target *target,
800                 uint8_t *buffer, uint32_t count, int block_size,
801                 int num_mem_params, struct mem_param *mem_params,
802                 int num_reg_params, struct reg_param *reg_params,
803                 uint32_t buffer_start, uint32_t buffer_size,
804                 uint32_t entry_point, uint32_t exit_point, void *arch_info)
805 {
806         int retval;
807         int timeout = 0;
808
809         /* Set up working area. First word is write pointer, second word is read pointer,
810          * rest is fifo data area. */
811         uint32_t wp_addr = buffer_start;
812         uint32_t rp_addr = buffer_start + 4;
813         uint32_t fifo_start_addr = buffer_start + 8;
814         uint32_t fifo_end_addr = buffer_start + buffer_size;
815
816         uint32_t wp = fifo_start_addr;
817         uint32_t rp = fifo_start_addr;
818
819         /* validate block_size is 2^n */
820         assert(!block_size || !(block_size & (block_size - 1)));
821
822         retval = target_write_u32(target, wp_addr, wp);
823         if (retval != ERROR_OK)
824                 return retval;
825         retval = target_write_u32(target, rp_addr, rp);
826         if (retval != ERROR_OK)
827                 return retval;
828
829         /* Start up algorithm on target and let it idle while writing the first chunk */
830         retval = target_start_algorithm(target, num_mem_params, mem_params,
831                         num_reg_params, reg_params,
832                         entry_point,
833                         exit_point,
834                         arch_info);
835
836         if (retval != ERROR_OK) {
837                 LOG_ERROR("error starting target flash write algorithm");
838                 return retval;
839         }
840
841         while (count > 0) {
842
843                 retval = target_read_u32(target, rp_addr, &rp);
844                 if (retval != ERROR_OK) {
845                         LOG_ERROR("failed to get read pointer");
846                         break;
847                 }
848
849                 LOG_DEBUG("count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32, count, wp, rp);
850
851                 if (rp == 0) {
852                         LOG_ERROR("flash write algorithm aborted by target");
853                         retval = ERROR_FLASH_OPERATION_FAILED;
854                         break;
855                 }
856
857                 if ((rp & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
858                         LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
859                         break;
860                 }
861
862                 /* Count the number of bytes available in the fifo without
863                  * crossing the wrap around. Make sure to not fill it completely,
864                  * because that would make wp == rp and that's the empty condition. */
865                 uint32_t thisrun_bytes;
866                 if (rp > wp)
867                         thisrun_bytes = rp - wp - block_size;
868                 else if (rp > fifo_start_addr)
869                         thisrun_bytes = fifo_end_addr - wp;
870                 else
871                         thisrun_bytes = fifo_end_addr - wp - block_size;
872
873                 if (thisrun_bytes == 0) {
874                         /* Throttle polling a bit if transfer is (much) faster than flash
875                          * programming. The exact delay shouldn't matter as long as it's
876                          * less than buffer size / flash speed. This is very unlikely to
877                          * run when using high latency connections such as USB. */
878                         alive_sleep(10);
879
880                         /* to stop an infinite loop on some targets check and increment a timeout
881                          * this issue was observed on a stellaris using the new ICDI interface */
882                         if (timeout++ >= 500) {
883                                 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
884                                 return ERROR_FLASH_OPERATION_FAILED;
885                         }
886                         continue;
887                 }
888
889                 /* reset our timeout */
890                 timeout = 0;
891
892                 /* Limit to the amount of data we actually want to write */
893                 if (thisrun_bytes > count * block_size)
894                         thisrun_bytes = count * block_size;
895
896                 /* Write data to fifo */
897                 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
898                 if (retval != ERROR_OK)
899                         break;
900
901                 /* Update counters and wrap write pointer */
902                 buffer += thisrun_bytes;
903                 count -= thisrun_bytes / block_size;
904                 wp += thisrun_bytes;
905                 if (wp >= fifo_end_addr)
906                         wp = fifo_start_addr;
907
908                 /* Store updated write pointer to target */
909                 retval = target_write_u32(target, wp_addr, wp);
910                 if (retval != ERROR_OK)
911                         break;
912         }
913
914         if (retval != ERROR_OK) {
915                 /* abort flash write algorithm on target */
916                 target_write_u32(target, wp_addr, 0);
917         }
918
919         int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
920                         num_reg_params, reg_params,
921                         exit_point,
922                         10000,
923                         arch_info);
924
925         if (retval2 != ERROR_OK) {
926                 LOG_ERROR("error waiting for target flash write algorithm");
927                 retval = retval2;
928         }
929
930         return retval;
931 }
932
933 int target_read_memory(struct target *target,
934                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
935 {
936         if (!target_was_examined(target)) {
937                 LOG_ERROR("Target not examined yet");
938                 return ERROR_FAIL;
939         }
940         return target->type->read_memory(target, address, size, count, buffer);
941 }
942
943 int target_read_phys_memory(struct target *target,
944                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
945 {
946         if (!target_was_examined(target)) {
947                 LOG_ERROR("Target not examined yet");
948                 return ERROR_FAIL;
949         }
950         return target->type->read_phys_memory(target, address, size, count, buffer);
951 }
952
953 int target_write_memory(struct target *target,
954                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
955 {
956         if (!target_was_examined(target)) {
957                 LOG_ERROR("Target not examined yet");
958                 return ERROR_FAIL;
959         }
960         return target->type->write_memory(target, address, size, count, buffer);
961 }
962
963 int target_write_phys_memory(struct target *target,
964                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
965 {
966         if (!target_was_examined(target)) {
967                 LOG_ERROR("Target not examined yet");
968                 return ERROR_FAIL;
969         }
970         return target->type->write_phys_memory(target, address, size, count, buffer);
971 }
972
973 int target_bulk_write_memory(struct target *target,
974                 uint32_t address, uint32_t count, const uint8_t *buffer)
975 {
976         return target->type->bulk_write_memory(target, address, count, buffer);
977 }
978
979 int target_add_breakpoint(struct target *target,
980                 struct breakpoint *breakpoint)
981 {
982         if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
983                 LOG_WARNING("target %s is not halted", target_name(target));
984                 return ERROR_TARGET_NOT_HALTED;
985         }
986         return target->type->add_breakpoint(target, breakpoint);
987 }
988
989 int target_add_context_breakpoint(struct target *target,
990                 struct breakpoint *breakpoint)
991 {
992         if (target->state != TARGET_HALTED) {
993                 LOG_WARNING("target %s is not halted", target_name(target));
994                 return ERROR_TARGET_NOT_HALTED;
995         }
996         return target->type->add_context_breakpoint(target, breakpoint);
997 }
998
999 int target_add_hybrid_breakpoint(struct target *target,
1000                 struct breakpoint *breakpoint)
1001 {
1002         if (target->state != TARGET_HALTED) {
1003                 LOG_WARNING("target %s is not halted", target_name(target));
1004                 return ERROR_TARGET_NOT_HALTED;
1005         }
1006         return target->type->add_hybrid_breakpoint(target, breakpoint);
1007 }
1008
1009 int target_remove_breakpoint(struct target *target,
1010                 struct breakpoint *breakpoint)
1011 {
1012         return target->type->remove_breakpoint(target, breakpoint);
1013 }
1014
1015 int target_add_watchpoint(struct target *target,
1016                 struct watchpoint *watchpoint)
1017 {
1018         if (target->state != TARGET_HALTED) {
1019                 LOG_WARNING("target %s is not halted", target_name(target));
1020                 return ERROR_TARGET_NOT_HALTED;
1021         }
1022         return target->type->add_watchpoint(target, watchpoint);
1023 }
1024 int target_remove_watchpoint(struct target *target,
1025                 struct watchpoint *watchpoint)
1026 {
1027         return target->type->remove_watchpoint(target, watchpoint);
1028 }
1029
1030 int target_get_gdb_reg_list(struct target *target,
1031                 struct reg **reg_list[], int *reg_list_size)
1032 {
1033         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
1034 }
1035 int target_step(struct target *target,
1036                 int current, uint32_t address, int handle_breakpoints)
1037 {
1038         return target->type->step(target, current, address, handle_breakpoints);
1039 }
1040
1041 /**
1042  * Reset the @c examined flag for the given target.
1043  * Pure paranoia -- targets are zeroed on allocation.
1044  */
1045 static void target_reset_examined(struct target *target)
1046 {
1047         target->examined = false;
1048 }
1049
1050 static int err_read_phys_memory(struct target *target, uint32_t address,
1051                 uint32_t size, uint32_t count, uint8_t *buffer)
1052 {
1053         LOG_ERROR("Not implemented: %s", __func__);
1054         return ERROR_FAIL;
1055 }
1056
1057 static int err_write_phys_memory(struct target *target, uint32_t address,
1058                 uint32_t size, uint32_t count, const uint8_t *buffer)
1059 {
1060         LOG_ERROR("Not implemented: %s", __func__);
1061         return ERROR_FAIL;
1062 }
1063
1064 static int handle_target(void *priv);
1065
1066 static int target_init_one(struct command_context *cmd_ctx,
1067                 struct target *target)
1068 {
1069         target_reset_examined(target);
1070
1071         struct target_type *type = target->type;
1072         if (type->examine == NULL)
1073                 type->examine = default_examine;
1074
1075         if (type->check_reset == NULL)
1076                 type->check_reset = default_check_reset;
1077
1078         assert(type->init_target != NULL);
1079
1080         int retval = type->init_target(cmd_ctx, target);
1081         if (ERROR_OK != retval) {
1082                 LOG_ERROR("target '%s' init failed", target_name(target));
1083                 return retval;
1084         }
1085
1086         /* Sanity-check MMU support ... stub in what we must, to help
1087          * implement it in stages, but warn if we need to do so.
1088          */
1089         if (type->mmu) {
1090                 if (type->write_phys_memory == NULL) {
1091                         LOG_ERROR("type '%s' is missing write_phys_memory",
1092                                         type->name);
1093                         type->write_phys_memory = err_write_phys_memory;
1094                 }
1095                 if (type->read_phys_memory == NULL) {
1096                         LOG_ERROR("type '%s' is missing read_phys_memory",
1097                                         type->name);
1098                         type->read_phys_memory = err_read_phys_memory;
1099                 }
1100                 if (type->virt2phys == NULL) {
1101                         LOG_ERROR("type '%s' is missing virt2phys", type->name);
1102                         type->virt2phys = identity_virt2phys;
1103                 }
1104         } else {
1105                 /* Make sure no-MMU targets all behave the same:  make no
1106                  * distinction between physical and virtual addresses, and
1107                  * ensure that virt2phys() is always an identity mapping.
1108                  */
1109                 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1110                         LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1111
1112                 type->mmu = no_mmu;
1113                 type->write_phys_memory = type->write_memory;
1114                 type->read_phys_memory = type->read_memory;
1115                 type->virt2phys = identity_virt2phys;
1116         }
1117
1118         if (target->type->read_buffer == NULL)
1119                 target->type->read_buffer = target_read_buffer_default;
1120
1121         if (target->type->write_buffer == NULL)
1122                 target->type->write_buffer = target_write_buffer_default;
1123
1124         return ERROR_OK;
1125 }
1126
1127 static int target_init(struct command_context *cmd_ctx)
1128 {
1129         struct target *target;
1130         int retval;
1131
1132         for (target = all_targets; target; target = target->next) {
1133                 retval = target_init_one(cmd_ctx, target);
1134                 if (ERROR_OK != retval)
1135                         return retval;
1136         }
1137
1138         if (!all_targets)
1139                 return ERROR_OK;
1140
1141         retval = target_register_user_commands(cmd_ctx);
1142         if (ERROR_OK != retval)
1143                 return retval;
1144
1145         retval = target_register_timer_callback(&handle_target,
1146                         polling_interval, 1, cmd_ctx->interp);
1147         if (ERROR_OK != retval)
1148                 return retval;
1149
1150         return ERROR_OK;
1151 }
1152
1153 COMMAND_HANDLER(handle_target_init_command)
1154 {
1155         int retval;
1156
1157         if (CMD_ARGC != 0)
1158                 return ERROR_COMMAND_SYNTAX_ERROR;
1159
1160         static bool target_initialized;
1161         if (target_initialized) {
1162                 LOG_INFO("'target init' has already been called");
1163                 return ERROR_OK;
1164         }
1165         target_initialized = true;
1166
1167         retval = command_run_line(CMD_CTX, "init_targets");
1168         if (ERROR_OK != retval)
1169                 return retval;
1170
1171         retval = command_run_line(CMD_CTX, "init_board");
1172         if (ERROR_OK != retval)
1173                 return retval;
1174
1175         LOG_DEBUG("Initializing targets...");
1176         return target_init(CMD_CTX);
1177 }
1178
1179 int target_register_event_callback(int (*callback)(struct target *target,
1180                 enum target_event event, void *priv), void *priv)
1181 {
1182         struct target_event_callback **callbacks_p = &target_event_callbacks;
1183
1184         if (callback == NULL)
1185                 return ERROR_COMMAND_SYNTAX_ERROR;
1186
1187         if (*callbacks_p) {
1188                 while ((*callbacks_p)->next)
1189                         callbacks_p = &((*callbacks_p)->next);
1190                 callbacks_p = &((*callbacks_p)->next);
1191         }
1192
1193         (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1194         (*callbacks_p)->callback = callback;
1195         (*callbacks_p)->priv = priv;
1196         (*callbacks_p)->next = NULL;
1197
1198         return ERROR_OK;
1199 }
1200
1201 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1202 {
1203         struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1204         struct timeval now;
1205
1206         if (callback == NULL)
1207                 return ERROR_COMMAND_SYNTAX_ERROR;
1208
1209         if (*callbacks_p) {
1210                 while ((*callbacks_p)->next)
1211                         callbacks_p = &((*callbacks_p)->next);
1212                 callbacks_p = &((*callbacks_p)->next);
1213         }
1214
1215         (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1216         (*callbacks_p)->callback = callback;
1217         (*callbacks_p)->periodic = periodic;
1218         (*callbacks_p)->time_ms = time_ms;
1219
1220         gettimeofday(&now, NULL);
1221         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
1222         time_ms -= (time_ms % 1000);
1223         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
1224         if ((*callbacks_p)->when.tv_usec > 1000000) {
1225                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
1226                 (*callbacks_p)->when.tv_sec += 1;
1227         }
1228
1229         (*callbacks_p)->priv = priv;
1230         (*callbacks_p)->next = NULL;
1231
1232         return ERROR_OK;
1233 }
1234
1235 int target_unregister_event_callback(int (*callback)(struct target *target,
1236                 enum target_event event, void *priv), void *priv)
1237 {
1238         struct target_event_callback **p = &target_event_callbacks;
1239         struct target_event_callback *c = target_event_callbacks;
1240
1241         if (callback == NULL)
1242                 return ERROR_COMMAND_SYNTAX_ERROR;
1243
1244         while (c) {
1245                 struct target_event_callback *next = c->next;
1246                 if ((c->callback == callback) && (c->priv == priv)) {
1247                         *p = next;
1248                         free(c);
1249                         return ERROR_OK;
1250                 } else
1251                         p = &(c->next);
1252                 c = next;
1253         }
1254
1255         return ERROR_OK;
1256 }
1257
1258 static int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1259 {
1260         struct target_timer_callback **p = &target_timer_callbacks;
1261         struct target_timer_callback *c = target_timer_callbacks;
1262
1263         if (callback == NULL)
1264                 return ERROR_COMMAND_SYNTAX_ERROR;
1265
1266         while (c) {
1267                 struct target_timer_callback *next = c->next;
1268                 if ((c->callback == callback) && (c->priv == priv)) {
1269                         *p = next;
1270                         free(c);
1271                         return ERROR_OK;
1272                 } else
1273                         p = &(c->next);
1274                 c = next;
1275         }
1276
1277         return ERROR_OK;
1278 }
1279
1280 int target_call_event_callbacks(struct target *target, enum target_event event)
1281 {
1282         struct target_event_callback *callback = target_event_callbacks;
1283         struct target_event_callback *next_callback;
1284
1285         if (event == TARGET_EVENT_HALTED) {
1286                 /* execute early halted first */
1287                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1288         }
1289
1290         LOG_DEBUG("target event %i (%s)", event,
1291                         Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1292
1293         target_handle_event(target, event);
1294
1295         while (callback) {
1296                 next_callback = callback->next;
1297                 callback->callback(target, event, callback->priv);
1298                 callback = next_callback;
1299         }
1300
1301         return ERROR_OK;
1302 }
1303
1304 static int target_timer_callback_periodic_restart(
1305                 struct target_timer_callback *cb, struct timeval *now)
1306 {
1307         int time_ms = cb->time_ms;
1308         cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1309         time_ms -= (time_ms % 1000);
1310         cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1311         if (cb->when.tv_usec > 1000000) {
1312                 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1313                 cb->when.tv_sec += 1;
1314         }
1315         return ERROR_OK;
1316 }
1317
1318 static int target_call_timer_callback(struct target_timer_callback *cb,
1319                 struct timeval *now)
1320 {
1321         cb->callback(cb->priv);
1322
1323         if (cb->periodic)
1324                 return target_timer_callback_periodic_restart(cb, now);
1325
1326         return target_unregister_timer_callback(cb->callback, cb->priv);
1327 }
1328
1329 static int target_call_timer_callbacks_check_time(int checktime)
1330 {
1331         keep_alive();
1332
1333         struct timeval now;
1334         gettimeofday(&now, NULL);
1335
1336         struct target_timer_callback *callback = target_timer_callbacks;
1337         while (callback) {
1338                 /* cleaning up may unregister and free this callback */
1339                 struct target_timer_callback *next_callback = callback->next;
1340
1341                 bool call_it = callback->callback &&
1342                         ((!checktime && callback->periodic) ||
1343                           now.tv_sec > callback->when.tv_sec ||
1344                          (now.tv_sec == callback->when.tv_sec &&
1345                           now.tv_usec >= callback->when.tv_usec));
1346
1347                 if (call_it) {
1348                         int retval = target_call_timer_callback(callback, &now);
1349                         if (retval != ERROR_OK)
1350                                 return retval;
1351                 }
1352
1353                 callback = next_callback;
1354         }
1355
1356         return ERROR_OK;
1357 }
1358
1359 int target_call_timer_callbacks(void)
1360 {
1361         return target_call_timer_callbacks_check_time(1);
1362 }
1363
1364 /* invoke periodic callbacks immediately */
1365 int target_call_timer_callbacks_now(void)
1366 {
1367         return target_call_timer_callbacks_check_time(0);
1368 }
1369
1370 /* Prints the working area layout for debug purposes */
1371 static void print_wa_layout(struct target *target)
1372 {
1373         struct working_area *c = target->working_areas;
1374
1375         while (c) {
1376                 LOG_DEBUG("%c%c 0x%08"PRIx32"-0x%08"PRIx32" (%"PRIu32" bytes)",
1377                         c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1378                         c->address, c->address + c->size - 1, c->size);
1379                 c = c->next;
1380         }
1381 }
1382
1383 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1384 static void target_split_working_area(struct working_area *area, uint32_t size)
1385 {
1386         assert(area->free); /* Shouldn't split an allocated area */
1387         assert(size <= area->size); /* Caller should guarantee this */
1388
1389         /* Split only if not already the right size */
1390         if (size < area->size) {
1391                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1392
1393                 if (new_wa == NULL)
1394                         return;
1395
1396                 new_wa->next = area->next;
1397                 new_wa->size = area->size - size;
1398                 new_wa->address = area->address + size;
1399                 new_wa->backup = NULL;
1400                 new_wa->user = NULL;
1401                 new_wa->free = true;
1402
1403                 area->next = new_wa;
1404                 area->size = size;
1405
1406                 /* If backup memory was allocated to this area, it has the wrong size
1407                  * now so free it and it will be reallocated if/when needed */
1408                 if (area->backup) {
1409                         free(area->backup);
1410                         area->backup = NULL;
1411                 }
1412         }
1413 }
1414
1415 /* Merge all adjacent free areas into one */
1416 static void target_merge_working_areas(struct target *target)
1417 {
1418         struct working_area *c = target->working_areas;
1419
1420         while (c && c->next) {
1421                 assert(c->next->address == c->address + c->size); /* This is an invariant */
1422
1423                 /* Find two adjacent free areas */
1424                 if (c->free && c->next->free) {
1425                         /* Merge the last into the first */
1426                         c->size += c->next->size;
1427
1428                         /* Remove the last */
1429                         struct working_area *to_be_freed = c->next;
1430                         c->next = c->next->next;
1431                         if (to_be_freed->backup)
1432                                 free(to_be_freed->backup);
1433                         free(to_be_freed);
1434
1435                         /* If backup memory was allocated to the remaining area, it's has
1436                          * the wrong size now */
1437                         if (c->backup) {
1438                                 free(c->backup);
1439                                 c->backup = NULL;
1440                         }
1441                 } else {
1442                         c = c->next;
1443                 }
1444         }
1445 }
1446
1447 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1448 {
1449         /* Reevaluate working area address based on MMU state*/
1450         if (target->working_areas == NULL) {
1451                 int retval;
1452                 int enabled;
1453
1454                 retval = target->type->mmu(target, &enabled);
1455                 if (retval != ERROR_OK)
1456                         return retval;
1457
1458                 if (!enabled) {
1459                         if (target->working_area_phys_spec) {
1460                                 LOG_DEBUG("MMU disabled, using physical "
1461                                         "address for working memory 0x%08"PRIx32,
1462                                         target->working_area_phys);
1463                                 target->working_area = target->working_area_phys;
1464                         } else {
1465                                 LOG_ERROR("No working memory available. "
1466                                         "Specify -work-area-phys to target.");
1467                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1468                         }
1469                 } else {
1470                         if (target->working_area_virt_spec) {
1471                                 LOG_DEBUG("MMU enabled, using virtual "
1472                                         "address for working memory 0x%08"PRIx32,
1473                                         target->working_area_virt);
1474                                 target->working_area = target->working_area_virt;
1475                         } else {
1476                                 LOG_ERROR("No working memory available. "
1477                                         "Specify -work-area-virt to target.");
1478                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1479                         }
1480                 }
1481
1482                 /* Set up initial working area on first call */
1483                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1484                 if (new_wa) {
1485                         new_wa->next = NULL;
1486                         new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1487                         new_wa->address = target->working_area;
1488                         new_wa->backup = NULL;
1489                         new_wa->user = NULL;
1490                         new_wa->free = true;
1491                 }
1492
1493                 target->working_areas = new_wa;
1494         }
1495
1496         /* only allocate multiples of 4 byte */
1497         if (size % 4)
1498                 size = (size + 3) & (~3UL);
1499
1500         struct working_area *c = target->working_areas;
1501
1502         /* Find the first large enough working area */
1503         while (c) {
1504                 if (c->free && c->size >= size)
1505                         break;
1506                 c = c->next;
1507         }
1508
1509         if (c == NULL)
1510                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1511
1512         /* Split the working area into the requested size */
1513         target_split_working_area(c, size);
1514
1515         LOG_DEBUG("allocated new working area of %"PRIu32" bytes at address 0x%08"PRIx32, size, c->address);
1516
1517         if (target->backup_working_area) {
1518                 if (c->backup == NULL) {
1519                         c->backup = malloc(c->size);
1520                         if (c->backup == NULL)
1521                                 return ERROR_FAIL;
1522                 }
1523
1524                 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1525                 if (retval != ERROR_OK)
1526                         return retval;
1527         }
1528
1529         /* mark as used, and return the new (reused) area */
1530         c->free = false;
1531         *area = c;
1532
1533         /* user pointer */
1534         c->user = area;
1535
1536         print_wa_layout(target);
1537
1538         return ERROR_OK;
1539 }
1540
1541 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1542 {
1543         int retval;
1544
1545         retval = target_alloc_working_area_try(target, size, area);
1546         if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1547                 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1548         return retval;
1549
1550 }
1551
1552 static int target_restore_working_area(struct target *target, struct working_area *area)
1553 {
1554         int retval = ERROR_OK;
1555
1556         if (target->backup_working_area && area->backup != NULL) {
1557                 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1558                 if (retval != ERROR_OK)
1559                         LOG_ERROR("failed to restore %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1560                                         area->size, area->address);
1561         }
1562
1563         return retval;
1564 }
1565
1566 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1567 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1568 {
1569         int retval = ERROR_OK;
1570
1571         if (area->free)
1572                 return retval;
1573
1574         if (restore) {
1575                 retval = target_restore_working_area(target, area);
1576                 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1577                 if (retval != ERROR_OK)
1578                         return retval;
1579         }
1580
1581         area->free = true;
1582
1583         LOG_DEBUG("freed %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1584                         area->size, area->address);
1585
1586         /* mark user pointer invalid */
1587         /* TODO: Is this really safe? It points to some previous caller's memory.
1588          * How could we know that the area pointer is still in that place and not
1589          * some other vital data? What's the purpose of this, anyway? */
1590         *area->user = NULL;
1591         area->user = NULL;
1592
1593         target_merge_working_areas(target);
1594
1595         print_wa_layout(target);
1596
1597         return retval;
1598 }
1599
1600 int target_free_working_area(struct target *target, struct working_area *area)
1601 {
1602         return target_free_working_area_restore(target, area, 1);
1603 }
1604
1605 /* free resources and restore memory, if restoring memory fails,
1606  * free up resources anyway
1607  */
1608 static void target_free_all_working_areas_restore(struct target *target, int restore)
1609 {
1610         struct working_area *c = target->working_areas;
1611
1612         LOG_DEBUG("freeing all working areas");
1613
1614         /* Loop through all areas, restoring the allocated ones and marking them as free */
1615         while (c) {
1616                 if (!c->free) {
1617                         if (restore)
1618                                 target_restore_working_area(target, c);
1619                         c->free = true;
1620                         *c->user = NULL; /* Same as above */
1621                         c->user = NULL;
1622                 }
1623                 c = c->next;
1624         }
1625
1626         /* Run a merge pass to combine all areas into one */
1627         target_merge_working_areas(target);
1628
1629         print_wa_layout(target);
1630 }
1631
1632 void target_free_all_working_areas(struct target *target)
1633 {
1634         target_free_all_working_areas_restore(target, 1);
1635 }
1636
1637 /* Find the largest number of bytes that can be allocated */
1638 uint32_t target_get_working_area_avail(struct target *target)
1639 {
1640         struct working_area *c = target->working_areas;
1641         uint32_t max_size = 0;
1642
1643         if (c == NULL)
1644                 return target->working_area_size;
1645
1646         while (c) {
1647                 if (c->free && max_size < c->size)
1648                         max_size = c->size;
1649
1650                 c = c->next;
1651         }
1652
1653         return max_size;
1654 }
1655
1656 int target_arch_state(struct target *target)
1657 {
1658         int retval;
1659         if (target == NULL) {
1660                 LOG_USER("No target has been configured");
1661                 return ERROR_OK;
1662         }
1663
1664         LOG_USER("target state: %s", target_state_name(target));
1665
1666         if (target->state != TARGET_HALTED)
1667                 return ERROR_OK;
1668
1669         retval = target->type->arch_state(target);
1670         return retval;
1671 }
1672
1673 /* Single aligned words are guaranteed to use 16 or 32 bit access
1674  * mode respectively, otherwise data is handled as quickly as
1675  * possible
1676  */
1677 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1678 {
1679         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1680                         (int)size, (unsigned)address);
1681
1682         if (!target_was_examined(target)) {
1683                 LOG_ERROR("Target not examined yet");
1684                 return ERROR_FAIL;
1685         }
1686
1687         if (size == 0)
1688                 return ERROR_OK;
1689
1690         if ((address + size - 1) < address) {
1691                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1692                 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1693                                   (unsigned)address,
1694                                   (unsigned)size);
1695                 return ERROR_FAIL;
1696         }
1697
1698         return target->type->write_buffer(target, address, size, buffer);
1699 }
1700
1701 static int target_write_buffer_default(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1702 {
1703         int retval = ERROR_OK;
1704
1705         if (((address % 2) == 0) && (size == 2))
1706                 return target_write_memory(target, address, 2, 1, buffer);
1707
1708         /* handle unaligned head bytes */
1709         if (address % 4) {
1710                 uint32_t unaligned = 4 - (address % 4);
1711
1712                 if (unaligned > size)
1713                         unaligned = size;
1714
1715                 retval = target_write_memory(target, address, 1, unaligned, buffer);
1716                 if (retval != ERROR_OK)
1717                         return retval;
1718
1719                 buffer += unaligned;
1720                 address += unaligned;
1721                 size -= unaligned;
1722         }
1723
1724         /* handle aligned words */
1725         if (size >= 4) {
1726                 int aligned = size - (size % 4);
1727
1728                 /* use bulk writes above a certain limit. This may have to be changed */
1729                 if (aligned > 128) {
1730                         retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer);
1731                         if (retval != ERROR_OK)
1732                                 return retval;
1733                 } else {
1734                         retval = target_write_memory(target, address, 4, aligned / 4, buffer);
1735                         if (retval != ERROR_OK)
1736                                 return retval;
1737                 }
1738
1739                 buffer += aligned;
1740                 address += aligned;
1741                 size -= aligned;
1742         }
1743
1744         /* handle tail writes of less than 4 bytes */
1745         if (size > 0) {
1746                 retval = target_write_memory(target, address, 1, size, buffer);
1747                 if (retval != ERROR_OK)
1748                         return retval;
1749         }
1750
1751         return retval;
1752 }
1753
1754 /* Single aligned words are guaranteed to use 16 or 32 bit access
1755  * mode respectively, otherwise data is handled as quickly as
1756  * possible
1757  */
1758 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1759 {
1760         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1761                           (int)size, (unsigned)address);
1762
1763         if (!target_was_examined(target)) {
1764                 LOG_ERROR("Target not examined yet");
1765                 return ERROR_FAIL;
1766         }
1767
1768         if (size == 0)
1769                 return ERROR_OK;
1770
1771         if ((address + size - 1) < address) {
1772                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1773                 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1774                                   address,
1775                                   size);
1776                 return ERROR_FAIL;
1777         }
1778
1779         return target->type->read_buffer(target, address, size, buffer);
1780 }
1781
1782 static int target_read_buffer_default(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1783 {
1784         int retval = ERROR_OK;
1785
1786         if (((address % 2) == 0) && (size == 2))
1787                 return target_read_memory(target, address, 2, 1, buffer);
1788
1789         /* handle unaligned head bytes */
1790         if (address % 4) {
1791                 uint32_t unaligned = 4 - (address % 4);
1792
1793                 if (unaligned > size)
1794                         unaligned = size;
1795
1796                 retval = target_read_memory(target, address, 1, unaligned, buffer);
1797                 if (retval != ERROR_OK)
1798                         return retval;
1799
1800                 buffer += unaligned;
1801                 address += unaligned;
1802                 size -= unaligned;
1803         }
1804
1805         /* handle aligned words */
1806         if (size >= 4) {
1807                 int aligned = size - (size % 4);
1808
1809                 retval = target_read_memory(target, address, 4, aligned / 4, buffer);
1810                 if (retval != ERROR_OK)
1811                         return retval;
1812
1813                 buffer += aligned;
1814                 address += aligned;
1815                 size -= aligned;
1816         }
1817
1818         /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1819         if (size        >= 2) {
1820                 int aligned = size - (size % 2);
1821                 retval = target_read_memory(target, address, 2, aligned / 2, buffer);
1822                 if (retval != ERROR_OK)
1823                         return retval;
1824
1825                 buffer += aligned;
1826                 address += aligned;
1827                 size -= aligned;
1828         }
1829         /* handle tail writes of less than 4 bytes */
1830         if (size > 0) {
1831                 retval = target_read_memory(target, address, 1, size, buffer);
1832                 if (retval != ERROR_OK)
1833                         return retval;
1834         }
1835
1836         return ERROR_OK;
1837 }
1838
1839 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1840 {
1841         uint8_t *buffer;
1842         int retval;
1843         uint32_t i;
1844         uint32_t checksum = 0;
1845         if (!target_was_examined(target)) {
1846                 LOG_ERROR("Target not examined yet");
1847                 return ERROR_FAIL;
1848         }
1849
1850         retval = target->type->checksum_memory(target, address, size, &checksum);
1851         if (retval != ERROR_OK) {
1852                 buffer = malloc(size);
1853                 if (buffer == NULL) {
1854                         LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1855                         return ERROR_COMMAND_SYNTAX_ERROR;
1856                 }
1857                 retval = target_read_buffer(target, address, size, buffer);
1858                 if (retval != ERROR_OK) {
1859                         free(buffer);
1860                         return retval;
1861                 }
1862
1863                 /* convert to target endianness */
1864                 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
1865                         uint32_t target_data;
1866                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1867                         target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1868                 }
1869
1870                 retval = image_calculate_checksum(buffer, size, &checksum);
1871                 free(buffer);
1872         }
1873
1874         *crc = checksum;
1875
1876         return retval;
1877 }
1878
1879 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
1880 {
1881         int retval;
1882         if (!target_was_examined(target)) {
1883                 LOG_ERROR("Target not examined yet");
1884                 return ERROR_FAIL;
1885         }
1886
1887         if (target->type->blank_check_memory == 0)
1888                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1889
1890         retval = target->type->blank_check_memory(target, address, size, blank);
1891
1892         return retval;
1893 }
1894
1895 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
1896 {
1897         uint8_t value_buf[4];
1898         if (!target_was_examined(target)) {
1899                 LOG_ERROR("Target not examined yet");
1900                 return ERROR_FAIL;
1901         }
1902
1903         int retval = target_read_memory(target, address, 4, 1, value_buf);
1904
1905         if (retval == ERROR_OK) {
1906                 *value = target_buffer_get_u32(target, value_buf);
1907                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1908                                   address,
1909                                   *value);
1910         } else {
1911                 *value = 0x0;
1912                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1913                                   address);
1914         }
1915
1916         return retval;
1917 }
1918
1919 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
1920 {
1921         uint8_t value_buf[2];
1922         if (!target_was_examined(target)) {
1923                 LOG_ERROR("Target not examined yet");
1924                 return ERROR_FAIL;
1925         }
1926
1927         int retval = target_read_memory(target, address, 2, 1, value_buf);
1928
1929         if (retval == ERROR_OK) {
1930                 *value = target_buffer_get_u16(target, value_buf);
1931                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
1932                                   address,
1933                                   *value);
1934         } else {
1935                 *value = 0x0;
1936                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1937                                   address);
1938         }
1939
1940         return retval;
1941 }
1942
1943 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
1944 {
1945         int retval = target_read_memory(target, address, 1, 1, value);
1946         if (!target_was_examined(target)) {
1947                 LOG_ERROR("Target not examined yet");
1948                 return ERROR_FAIL;
1949         }
1950
1951         if (retval == ERROR_OK) {
1952                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1953                                   address,
1954                                   *value);
1955         } else {
1956                 *value = 0x0;
1957                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1958                                   address);
1959         }
1960
1961         return retval;
1962 }
1963
1964 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
1965 {
1966         int retval;
1967         uint8_t value_buf[4];
1968         if (!target_was_examined(target)) {
1969                 LOG_ERROR("Target not examined yet");
1970                 return ERROR_FAIL;
1971         }
1972
1973         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1974                           address,
1975                           value);
1976
1977         target_buffer_set_u32(target, value_buf, value);
1978         retval = target_write_memory(target, address, 4, 1, value_buf);
1979         if (retval != ERROR_OK)
1980                 LOG_DEBUG("failed: %i", retval);
1981
1982         return retval;
1983 }
1984
1985 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
1986 {
1987         int retval;
1988         uint8_t value_buf[2];
1989         if (!target_was_examined(target)) {
1990                 LOG_ERROR("Target not examined yet");
1991                 return ERROR_FAIL;
1992         }
1993
1994         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
1995                           address,
1996                           value);
1997
1998         target_buffer_set_u16(target, value_buf, value);
1999         retval = target_write_memory(target, address, 2, 1, value_buf);
2000         if (retval != ERROR_OK)
2001                 LOG_DEBUG("failed: %i", retval);
2002
2003         return retval;
2004 }
2005
2006 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
2007 {
2008         int retval;
2009         if (!target_was_examined(target)) {
2010                 LOG_ERROR("Target not examined yet");
2011                 return ERROR_FAIL;
2012         }
2013
2014         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
2015                           address, value);
2016
2017         retval = target_write_memory(target, address, 1, 1, &value);
2018         if (retval != ERROR_OK)
2019                 LOG_DEBUG("failed: %i", retval);
2020
2021         return retval;
2022 }
2023
2024 static int find_target(struct command_context *cmd_ctx, const char *name)
2025 {
2026         struct target *target = get_target(name);
2027         if (target == NULL) {
2028                 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2029                 return ERROR_FAIL;
2030         }
2031         if (!target->tap->enabled) {
2032                 LOG_USER("Target: TAP %s is disabled, "
2033                          "can't be the current target\n",
2034                          target->tap->dotted_name);
2035                 return ERROR_FAIL;
2036         }
2037
2038         cmd_ctx->current_target = target->target_number;
2039         return ERROR_OK;
2040 }
2041
2042
2043 COMMAND_HANDLER(handle_targets_command)
2044 {
2045         int retval = ERROR_OK;
2046         if (CMD_ARGC == 1) {
2047                 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2048                 if (retval == ERROR_OK) {
2049                         /* we're done! */
2050                         return retval;
2051                 }
2052         }
2053
2054         struct target *target = all_targets;
2055         command_print(CMD_CTX, "    TargetName         Type       Endian TapName            State       ");
2056         command_print(CMD_CTX, "--  ------------------ ---------- ------ ------------------ ------------");
2057         while (target) {
2058                 const char *state;
2059                 char marker = ' ';
2060
2061                 if (target->tap->enabled)
2062                         state = target_state_name(target);
2063                 else
2064                         state = "tap-disabled";
2065
2066                 if (CMD_CTX->current_target == target->target_number)
2067                         marker = '*';
2068
2069                 /* keep columns lined up to match the headers above */
2070                 command_print(CMD_CTX,
2071                                 "%2d%c %-18s %-10s %-6s %-18s %s",
2072                                 target->target_number,
2073                                 marker,
2074                                 target_name(target),
2075                                 target_type_name(target),
2076                                 Jim_Nvp_value2name_simple(nvp_target_endian,
2077                                         target->endianness)->name,
2078                                 target->tap->dotted_name,
2079                                 state);
2080                 target = target->next;
2081         }
2082
2083         return retval;
2084 }
2085
2086 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2087
2088 static int powerDropout;
2089 static int srstAsserted;
2090
2091 static int runPowerRestore;
2092 static int runPowerDropout;
2093 static int runSrstAsserted;
2094 static int runSrstDeasserted;
2095
2096 static int sense_handler(void)
2097 {
2098         static int prevSrstAsserted;
2099         static int prevPowerdropout;
2100
2101         int retval = jtag_power_dropout(&powerDropout);
2102         if (retval != ERROR_OK)
2103                 return retval;
2104
2105         int powerRestored;
2106         powerRestored = prevPowerdropout && !powerDropout;
2107         if (powerRestored)
2108                 runPowerRestore = 1;
2109
2110         long long current = timeval_ms();
2111         static long long lastPower;
2112         int waitMore = lastPower + 2000 > current;
2113         if (powerDropout && !waitMore) {
2114                 runPowerDropout = 1;
2115                 lastPower = current;
2116         }
2117
2118         retval = jtag_srst_asserted(&srstAsserted);
2119         if (retval != ERROR_OK)
2120                 return retval;
2121
2122         int srstDeasserted;
2123         srstDeasserted = prevSrstAsserted && !srstAsserted;
2124
2125         static long long lastSrst;
2126         waitMore = lastSrst + 2000 > current;
2127         if (srstDeasserted && !waitMore) {
2128                 runSrstDeasserted = 1;
2129                 lastSrst = current;
2130         }
2131
2132         if (!prevSrstAsserted && srstAsserted)
2133                 runSrstAsserted = 1;
2134
2135         prevSrstAsserted = srstAsserted;
2136         prevPowerdropout = powerDropout;
2137
2138         if (srstDeasserted || powerRestored) {
2139                 /* Other than logging the event we can't do anything here.
2140                  * Issuing a reset is a particularly bad idea as we might
2141                  * be inside a reset already.
2142                  */
2143         }
2144
2145         return ERROR_OK;
2146 }
2147
2148 /* process target state changes */
2149 static int handle_target(void *priv)
2150 {
2151         Jim_Interp *interp = (Jim_Interp *)priv;
2152         int retval = ERROR_OK;
2153
2154         if (!is_jtag_poll_safe()) {
2155                 /* polling is disabled currently */
2156                 return ERROR_OK;
2157         }
2158
2159         /* we do not want to recurse here... */
2160         static int recursive;
2161         if (!recursive) {
2162                 recursive = 1;
2163                 sense_handler();
2164                 /* danger! running these procedures can trigger srst assertions and power dropouts.
2165                  * We need to avoid an infinite loop/recursion here and we do that by
2166                  * clearing the flags after running these events.
2167                  */
2168                 int did_something = 0;
2169                 if (runSrstAsserted) {
2170                         LOG_INFO("srst asserted detected, running srst_asserted proc.");
2171                         Jim_Eval(interp, "srst_asserted");
2172                         did_something = 1;
2173                 }
2174                 if (runSrstDeasserted) {
2175                         Jim_Eval(interp, "srst_deasserted");
2176                         did_something = 1;
2177                 }
2178                 if (runPowerDropout) {
2179                         LOG_INFO("Power dropout detected, running power_dropout proc.");
2180                         Jim_Eval(interp, "power_dropout");
2181                         did_something = 1;
2182                 }
2183                 if (runPowerRestore) {
2184                         Jim_Eval(interp, "power_restore");
2185                         did_something = 1;
2186                 }
2187
2188                 if (did_something) {
2189                         /* clear detect flags */
2190                         sense_handler();
2191                 }
2192
2193                 /* clear action flags */
2194
2195                 runSrstAsserted = 0;
2196                 runSrstDeasserted = 0;
2197                 runPowerRestore = 0;
2198                 runPowerDropout = 0;
2199
2200                 recursive = 0;
2201         }
2202
2203         /* Poll targets for state changes unless that's globally disabled.
2204          * Skip targets that are currently disabled.
2205          */
2206         for (struct target *target = all_targets;
2207                         is_jtag_poll_safe() && target;
2208                         target = target->next) {
2209                 if (!target->tap->enabled)
2210                         continue;
2211
2212                 if (target->backoff.times > target->backoff.count) {
2213                         /* do not poll this time as we failed previously */
2214                         target->backoff.count++;
2215                         continue;
2216                 }
2217                 target->backoff.count = 0;
2218
2219                 /* only poll target if we've got power and srst isn't asserted */
2220                 if (!powerDropout && !srstAsserted) {
2221                         /* polling may fail silently until the target has been examined */
2222                         retval = target_poll(target);
2223                         if (retval != ERROR_OK) {
2224                                 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2225                                 if (target->backoff.times * polling_interval < 5000) {
2226                                         target->backoff.times *= 2;
2227                                         target->backoff.times++;
2228                                 }
2229                                 LOG_USER("Polling target %s failed, GDB will be halted. Polling again in %dms",
2230                                                 target_name(target),
2231                                                 target->backoff.times * polling_interval);
2232
2233                                 /* Tell GDB to halt the debugger. This allows the user to
2234                                  * run monitor commands to handle the situation.
2235                                  */
2236                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2237                                 return retval;
2238                         }
2239                         /* Since we succeeded, we reset backoff count */
2240                         if (target->backoff.times > 0)
2241                                 LOG_USER("Polling target %s succeeded again", target_name(target));
2242                         target->backoff.times = 0;
2243                 }
2244         }
2245
2246         return retval;
2247 }
2248
2249 COMMAND_HANDLER(handle_reg_command)
2250 {
2251         struct target *target;
2252         struct reg *reg = NULL;
2253         unsigned count = 0;
2254         char *value;
2255
2256         LOG_DEBUG("-");
2257
2258         target = get_current_target(CMD_CTX);
2259
2260         /* list all available registers for the current target */
2261         if (CMD_ARGC == 0) {
2262                 struct reg_cache *cache = target->reg_cache;
2263
2264                 count = 0;
2265                 while (cache) {
2266                         unsigned i;
2267
2268                         command_print(CMD_CTX, "===== %s", cache->name);
2269
2270                         for (i = 0, reg = cache->reg_list;
2271                                         i < cache->num_regs;
2272                                         i++, reg++, count++) {
2273                                 /* only print cached values if they are valid */
2274                                 if (reg->valid) {
2275                                         value = buf_to_str(reg->value,
2276                                                         reg->size, 16);
2277                                         command_print(CMD_CTX,
2278                                                         "(%i) %s (/%" PRIu32 "): 0x%s%s",
2279                                                         count, reg->name,
2280                                                         reg->size, value,
2281                                                         reg->dirty
2282                                                                 ? " (dirty)"
2283                                                                 : "");
2284                                         free(value);
2285                                 } else {
2286                                         command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2287                                                           count, reg->name,
2288                                                           reg->size) ;
2289                                 }
2290                         }
2291                         cache = cache->next;
2292                 }
2293
2294                 return ERROR_OK;
2295         }
2296
2297         /* access a single register by its ordinal number */
2298         if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2299                 unsigned num;
2300                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2301
2302                 struct reg_cache *cache = target->reg_cache;
2303                 count = 0;
2304                 while (cache) {
2305                         unsigned i;
2306                         for (i = 0; i < cache->num_regs; i++) {
2307                                 if (count++ == num) {
2308                                         reg = &cache->reg_list[i];
2309                                         break;
2310                                 }
2311                         }
2312                         if (reg)
2313                                 break;
2314                         cache = cache->next;
2315                 }
2316
2317                 if (!reg) {
2318                         command_print(CMD_CTX, "%i is out of bounds, the current target "
2319                                         "has only %i registers (0 - %i)", num, count, count - 1);
2320                         return ERROR_OK;
2321                 }
2322         } else {
2323                 /* access a single register by its name */
2324                 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2325
2326                 if (!reg) {
2327                         command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2328                         return ERROR_OK;
2329                 }
2330         }
2331
2332         assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2333
2334         /* display a register */
2335         if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2336                         && (CMD_ARGV[1][0] <= '9')))) {
2337                 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2338                         reg->valid = 0;
2339
2340                 if (reg->valid == 0)
2341                         reg->type->get(reg);
2342                 value = buf_to_str(reg->value, reg->size, 16);
2343                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2344                 free(value);
2345                 return ERROR_OK;
2346         }
2347
2348         /* set register value */
2349         if (CMD_ARGC == 2) {
2350                 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2351                 if (buf == NULL)
2352                         return ERROR_FAIL;
2353                 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2354
2355                 reg->type->set(reg, buf);
2356
2357                 value = buf_to_str(reg->value, reg->size, 16);
2358                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2359                 free(value);
2360
2361                 free(buf);
2362
2363                 return ERROR_OK;
2364         }
2365
2366         return ERROR_COMMAND_SYNTAX_ERROR;
2367 }
2368
2369 COMMAND_HANDLER(handle_poll_command)
2370 {
2371         int retval = ERROR_OK;
2372         struct target *target = get_current_target(CMD_CTX);
2373
2374         if (CMD_ARGC == 0) {
2375                 command_print(CMD_CTX, "background polling: %s",
2376                                 jtag_poll_get_enabled() ? "on" : "off");
2377                 command_print(CMD_CTX, "TAP: %s (%s)",
2378                                 target->tap->dotted_name,
2379                                 target->tap->enabled ? "enabled" : "disabled");
2380                 if (!target->tap->enabled)
2381                         return ERROR_OK;
2382                 retval = target_poll(target);
2383                 if (retval != ERROR_OK)
2384                         return retval;
2385                 retval = target_arch_state(target);
2386                 if (retval != ERROR_OK)
2387                         return retval;
2388         } else if (CMD_ARGC == 1) {
2389                 bool enable;
2390                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2391                 jtag_poll_set_enabled(enable);
2392         } else
2393                 return ERROR_COMMAND_SYNTAX_ERROR;
2394
2395         return retval;
2396 }
2397
2398 COMMAND_HANDLER(handle_wait_halt_command)
2399 {
2400         if (CMD_ARGC > 1)
2401                 return ERROR_COMMAND_SYNTAX_ERROR;
2402
2403         unsigned ms = 5000;
2404         if (1 == CMD_ARGC) {
2405                 int retval = parse_uint(CMD_ARGV[0], &ms);
2406                 if (ERROR_OK != retval)
2407                         return ERROR_COMMAND_SYNTAX_ERROR;
2408                 /* convert seconds (given) to milliseconds (needed) */
2409                 ms *= 1000;
2410         }
2411
2412         struct target *target = get_current_target(CMD_CTX);
2413         return target_wait_state(target, TARGET_HALTED, ms);
2414 }
2415
2416 /* wait for target state to change. The trick here is to have a low
2417  * latency for short waits and not to suck up all the CPU time
2418  * on longer waits.
2419  *
2420  * After 500ms, keep_alive() is invoked
2421  */
2422 int target_wait_state(struct target *target, enum target_state state, int ms)
2423 {
2424         int retval;
2425         long long then = 0, cur;
2426         int once = 1;
2427
2428         for (;;) {
2429                 retval = target_poll(target);
2430                 if (retval != ERROR_OK)
2431                         return retval;
2432                 if (target->state == state)
2433                         break;
2434                 cur = timeval_ms();
2435                 if (once) {
2436                         once = 0;
2437                         then = timeval_ms();
2438                         LOG_DEBUG("waiting for target %s...",
2439                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2440                 }
2441
2442                 if (cur-then > 500)
2443                         keep_alive();
2444
2445                 if ((cur-then) > ms) {
2446                         LOG_ERROR("timed out while waiting for target %s",
2447                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2448                         return ERROR_FAIL;
2449                 }
2450         }
2451
2452         return ERROR_OK;
2453 }
2454
2455 COMMAND_HANDLER(handle_halt_command)
2456 {
2457         LOG_DEBUG("-");
2458
2459         struct target *target = get_current_target(CMD_CTX);
2460         int retval = target_halt(target);
2461         if (ERROR_OK != retval)
2462                 return retval;
2463
2464         if (CMD_ARGC == 1) {
2465                 unsigned wait_local;
2466                 retval = parse_uint(CMD_ARGV[0], &wait_local);
2467                 if (ERROR_OK != retval)
2468                         return ERROR_COMMAND_SYNTAX_ERROR;
2469                 if (!wait_local)
2470                         return ERROR_OK;
2471         }
2472
2473         return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2474 }
2475
2476 COMMAND_HANDLER(handle_soft_reset_halt_command)
2477 {
2478         struct target *target = get_current_target(CMD_CTX);
2479
2480         LOG_USER("requesting target halt and executing a soft reset");
2481
2482         target_soft_reset_halt(target);
2483
2484         return ERROR_OK;
2485 }
2486
2487 COMMAND_HANDLER(handle_reset_command)
2488 {
2489         if (CMD_ARGC > 1)
2490                 return ERROR_COMMAND_SYNTAX_ERROR;
2491
2492         enum target_reset_mode reset_mode = RESET_RUN;
2493         if (CMD_ARGC == 1) {
2494                 const Jim_Nvp *n;
2495                 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2496                 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
2497                         return ERROR_COMMAND_SYNTAX_ERROR;
2498                 reset_mode = n->value;
2499         }
2500
2501         /* reset *all* targets */
2502         return target_process_reset(CMD_CTX, reset_mode);
2503 }
2504
2505
2506 COMMAND_HANDLER(handle_resume_command)
2507 {
2508         int current = 1;
2509         if (CMD_ARGC > 1)
2510                 return ERROR_COMMAND_SYNTAX_ERROR;
2511
2512         struct target *target = get_current_target(CMD_CTX);
2513
2514         /* with no CMD_ARGV, resume from current pc, addr = 0,
2515          * with one arguments, addr = CMD_ARGV[0],
2516          * handle breakpoints, not debugging */
2517         uint32_t addr = 0;
2518         if (CMD_ARGC == 1) {
2519                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2520                 current = 0;
2521         }
2522
2523         return target_resume(target, current, addr, 1, 0);
2524 }
2525
2526 COMMAND_HANDLER(handle_step_command)
2527 {
2528         if (CMD_ARGC > 1)
2529                 return ERROR_COMMAND_SYNTAX_ERROR;
2530
2531         LOG_DEBUG("-");
2532
2533         /* with no CMD_ARGV, step from current pc, addr = 0,
2534          * with one argument addr = CMD_ARGV[0],
2535          * handle breakpoints, debugging */
2536         uint32_t addr = 0;
2537         int current_pc = 1;
2538         if (CMD_ARGC == 1) {
2539                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2540                 current_pc = 0;
2541         }
2542
2543         struct target *target = get_current_target(CMD_CTX);
2544
2545         return target->type->step(target, current_pc, addr, 1);
2546 }
2547
2548 static void handle_md_output(struct command_context *cmd_ctx,
2549                 struct target *target, uint32_t address, unsigned size,
2550                 unsigned count, const uint8_t *buffer)
2551 {
2552         const unsigned line_bytecnt = 32;
2553         unsigned line_modulo = line_bytecnt / size;
2554
2555         char output[line_bytecnt * 4 + 1];
2556         unsigned output_len = 0;
2557
2558         const char *value_fmt;
2559         switch (size) {
2560         case 4:
2561                 value_fmt = "%8.8x ";
2562                 break;
2563         case 2:
2564                 value_fmt = "%4.4x ";
2565                 break;
2566         case 1:
2567                 value_fmt = "%2.2x ";
2568                 break;
2569         default:
2570                 /* "can't happen", caller checked */
2571                 LOG_ERROR("invalid memory read size: %u", size);
2572                 return;
2573         }
2574
2575         for (unsigned i = 0; i < count; i++) {
2576                 if (i % line_modulo == 0) {
2577                         output_len += snprintf(output + output_len,
2578                                         sizeof(output) - output_len,
2579                                         "0x%8.8x: ",
2580                                         (unsigned)(address + (i*size)));
2581                 }
2582
2583                 uint32_t value = 0;
2584                 const uint8_t *value_ptr = buffer + i * size;
2585                 switch (size) {
2586                 case 4:
2587                         value = target_buffer_get_u32(target, value_ptr);
2588                         break;
2589                 case 2:
2590                         value = target_buffer_get_u16(target, value_ptr);
2591                         break;
2592                 case 1:
2593                         value = *value_ptr;
2594                 }
2595                 output_len += snprintf(output + output_len,
2596                                 sizeof(output) - output_len,
2597                                 value_fmt, value);
2598
2599                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
2600                         command_print(cmd_ctx, "%s", output);
2601                         output_len = 0;
2602                 }
2603         }
2604 }
2605
2606 COMMAND_HANDLER(handle_md_command)
2607 {
2608         if (CMD_ARGC < 1)
2609                 return ERROR_COMMAND_SYNTAX_ERROR;
2610
2611         unsigned size = 0;
2612         switch (CMD_NAME[2]) {
2613         case 'w':
2614                 size = 4;
2615                 break;
2616         case 'h':
2617                 size = 2;
2618                 break;
2619         case 'b':
2620                 size = 1;
2621                 break;
2622         default:
2623                 return ERROR_COMMAND_SYNTAX_ERROR;
2624         }
2625
2626         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2627         int (*fn)(struct target *target,
2628                         uint32_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
2629         if (physical) {
2630                 CMD_ARGC--;
2631                 CMD_ARGV++;
2632                 fn = target_read_phys_memory;
2633         } else
2634                 fn = target_read_memory;
2635         if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2636                 return ERROR_COMMAND_SYNTAX_ERROR;
2637
2638         uint32_t address;
2639         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2640
2641         unsigned count = 1;
2642         if (CMD_ARGC == 2)
2643                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2644
2645         uint8_t *buffer = calloc(count, size);
2646
2647         struct target *target = get_current_target(CMD_CTX);
2648         int retval = fn(target, address, size, count, buffer);
2649         if (ERROR_OK == retval)
2650                 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2651
2652         free(buffer);
2653
2654         return retval;
2655 }
2656
2657 typedef int (*target_write_fn)(struct target *target,
2658                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
2659
2660 static int target_write_memory_fast(struct target *target,
2661                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
2662 {
2663         return target_write_buffer(target, address, size * count, buffer);
2664 }
2665
2666 static int target_fill_mem(struct target *target,
2667                 uint32_t address,
2668                 target_write_fn fn,
2669                 unsigned data_size,
2670                 /* value */
2671                 uint32_t b,
2672                 /* count */
2673                 unsigned c)
2674 {
2675         /* We have to write in reasonably large chunks to be able
2676          * to fill large memory areas with any sane speed */
2677         const unsigned chunk_size = 16384;
2678         uint8_t *target_buf = malloc(chunk_size * data_size);
2679         if (target_buf == NULL) {
2680                 LOG_ERROR("Out of memory");
2681                 return ERROR_FAIL;
2682         }
2683
2684         for (unsigned i = 0; i < chunk_size; i++) {
2685                 switch (data_size) {
2686                 case 4:
2687                         target_buffer_set_u32(target, target_buf + i * data_size, b);
2688                         break;
2689                 case 2:
2690                         target_buffer_set_u16(target, target_buf + i * data_size, b);
2691                         break;
2692                 case 1:
2693                         target_buffer_set_u8(target, target_buf + i * data_size, b);
2694                         break;
2695                 default:
2696                         exit(-1);
2697                 }
2698         }
2699
2700         int retval = ERROR_OK;
2701
2702         for (unsigned x = 0; x < c; x += chunk_size) {
2703                 unsigned current;
2704                 current = c - x;
2705                 if (current > chunk_size)
2706                         current = chunk_size;
2707                 retval = fn(target, address + x * data_size, data_size, current, target_buf);
2708                 if (retval != ERROR_OK)
2709                         break;
2710                 /* avoid GDB timeouts */
2711                 keep_alive();
2712         }
2713         free(target_buf);
2714
2715         return retval;
2716 }
2717
2718
2719 COMMAND_HANDLER(handle_mw_command)
2720 {
2721         if (CMD_ARGC < 2)
2722                 return ERROR_COMMAND_SYNTAX_ERROR;
2723         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2724         target_write_fn fn;
2725         if (physical) {
2726                 CMD_ARGC--;
2727                 CMD_ARGV++;
2728                 fn = target_write_phys_memory;
2729         } else
2730                 fn = target_write_memory_fast;
2731         if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2732                 return ERROR_COMMAND_SYNTAX_ERROR;
2733
2734         uint32_t address;
2735         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2736
2737         uint32_t value;
2738         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2739
2740         unsigned count = 1;
2741         if (CMD_ARGC == 3)
2742                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2743
2744         struct target *target = get_current_target(CMD_CTX);
2745         unsigned wordsize;
2746         switch (CMD_NAME[2]) {
2747                 case 'w':
2748                         wordsize = 4;
2749                         break;
2750                 case 'h':
2751                         wordsize = 2;
2752                         break;
2753                 case 'b':
2754                         wordsize = 1;
2755                         break;
2756                 default:
2757                         return ERROR_COMMAND_SYNTAX_ERROR;
2758         }
2759
2760         return target_fill_mem(target, address, fn, wordsize, value, count);
2761 }
2762
2763 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2764                 uint32_t *min_address, uint32_t *max_address)
2765 {
2766         if (CMD_ARGC < 1 || CMD_ARGC > 5)
2767                 return ERROR_COMMAND_SYNTAX_ERROR;
2768
2769         /* a base address isn't always necessary,
2770          * default to 0x0 (i.e. don't relocate) */
2771         if (CMD_ARGC >= 2) {
2772                 uint32_t addr;
2773                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2774                 image->base_address = addr;
2775                 image->base_address_set = 1;
2776         } else
2777                 image->base_address_set = 0;
2778
2779         image->start_address_set = 0;
2780
2781         if (CMD_ARGC >= 4)
2782                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2783         if (CMD_ARGC == 5) {
2784                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2785                 /* use size (given) to find max (required) */
2786                 *max_address += *min_address;
2787         }
2788
2789         if (*min_address > *max_address)
2790                 return ERROR_COMMAND_SYNTAX_ERROR;
2791
2792         return ERROR_OK;
2793 }
2794
2795 COMMAND_HANDLER(handle_load_image_command)
2796 {
2797         uint8_t *buffer;
2798         size_t buf_cnt;
2799         uint32_t image_size;
2800         uint32_t min_address = 0;
2801         uint32_t max_address = 0xffffffff;
2802         int i;
2803         struct image image;
2804
2805         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2806                         &image, &min_address, &max_address);
2807         if (ERROR_OK != retval)
2808                 return retval;
2809
2810         struct target *target = get_current_target(CMD_CTX);
2811
2812         struct duration bench;
2813         duration_start(&bench);
2814
2815         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2816                 return ERROR_OK;
2817
2818         image_size = 0x0;
2819         retval = ERROR_OK;
2820         for (i = 0; i < image.num_sections; i++) {
2821                 buffer = malloc(image.sections[i].size);
2822                 if (buffer == NULL) {
2823                         command_print(CMD_CTX,
2824                                                   "error allocating buffer for section (%d bytes)",
2825                                                   (int)(image.sections[i].size));
2826                         break;
2827                 }
2828
2829                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
2830                 if (retval != ERROR_OK) {
2831                         free(buffer);
2832                         break;
2833                 }
2834
2835                 uint32_t offset = 0;
2836                 uint32_t length = buf_cnt;
2837
2838                 /* DANGER!!! beware of unsigned comparision here!!! */
2839
2840                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
2841                                 (image.sections[i].base_address < max_address)) {
2842
2843                         if (image.sections[i].base_address < min_address) {
2844                                 /* clip addresses below */
2845                                 offset += min_address-image.sections[i].base_address;
2846                                 length -= offset;
2847                         }
2848
2849                         if (image.sections[i].base_address + buf_cnt > max_address)
2850                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2851
2852                         retval = target_write_buffer(target,
2853                                         image.sections[i].base_address + offset, length, buffer + offset);
2854                         if (retval != ERROR_OK) {
2855                                 free(buffer);
2856                                 break;
2857                         }
2858                         image_size += length;
2859                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
2860                                         (unsigned int)length,
2861                                         image.sections[i].base_address + offset);
2862                 }
2863
2864                 free(buffer);
2865         }
2866
2867         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
2868                 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
2869                                 "in %fs (%0.3f KiB/s)", image_size,
2870                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2871         }
2872
2873         image_close(&image);
2874
2875         return retval;
2876
2877 }
2878
2879 COMMAND_HANDLER(handle_dump_image_command)
2880 {
2881         struct fileio fileio;
2882         uint8_t *buffer;
2883         int retval, retvaltemp;
2884         uint32_t address, size;
2885         struct duration bench;
2886         struct target *target = get_current_target(CMD_CTX);
2887
2888         if (CMD_ARGC != 3)
2889                 return ERROR_COMMAND_SYNTAX_ERROR;
2890
2891         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
2892         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
2893
2894         uint32_t buf_size = (size > 4096) ? 4096 : size;
2895         buffer = malloc(buf_size);
2896         if (!buffer)
2897                 return ERROR_FAIL;
2898
2899         retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
2900         if (retval != ERROR_OK) {
2901                 free(buffer);
2902                 return retval;
2903         }
2904
2905         duration_start(&bench);
2906
2907         while (size > 0) {
2908                 size_t size_written;
2909                 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
2910                 retval = target_read_buffer(target, address, this_run_size, buffer);
2911                 if (retval != ERROR_OK)
2912                         break;
2913
2914                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2915                 if (retval != ERROR_OK)
2916                         break;
2917
2918                 size -= this_run_size;
2919                 address += this_run_size;
2920         }
2921
2922         free(buffer);
2923
2924         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
2925                 int filesize;
2926                 retval = fileio_size(&fileio, &filesize);
2927                 if (retval != ERROR_OK)
2928                         return retval;
2929                 command_print(CMD_CTX,
2930                                 "dumped %ld bytes in %fs (%0.3f KiB/s)", (long)filesize,
2931                                 duration_elapsed(&bench), duration_kbps(&bench, filesize));
2932         }
2933
2934         retvaltemp = fileio_close(&fileio);
2935         if (retvaltemp != ERROR_OK)
2936                 return retvaltemp;
2937
2938         return retval;
2939 }
2940
2941 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
2942 {
2943         uint8_t *buffer;
2944         size_t buf_cnt;
2945         uint32_t image_size;
2946         int i;
2947         int retval;
2948         uint32_t checksum = 0;
2949         uint32_t mem_checksum = 0;
2950
2951         struct image image;
2952
2953         struct target *target = get_current_target(CMD_CTX);
2954
2955         if (CMD_ARGC < 1)
2956                 return ERROR_COMMAND_SYNTAX_ERROR;
2957
2958         if (!target) {
2959                 LOG_ERROR("no target selected");
2960                 return ERROR_FAIL;
2961         }
2962
2963         struct duration bench;
2964         duration_start(&bench);
2965
2966         if (CMD_ARGC >= 2) {
2967                 uint32_t addr;
2968                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2969                 image.base_address = addr;
2970                 image.base_address_set = 1;
2971         } else {
2972                 image.base_address_set = 0;
2973                 image.base_address = 0x0;
2974         }
2975
2976         image.start_address_set = 0;
2977
2978         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
2979         if (retval != ERROR_OK)
2980                 return retval;
2981
2982         image_size = 0x0;
2983         int diffs = 0;
2984         retval = ERROR_OK;
2985         for (i = 0; i < image.num_sections; i++) {
2986                 buffer = malloc(image.sections[i].size);
2987                 if (buffer == NULL) {
2988                         command_print(CMD_CTX,
2989                                         "error allocating buffer for section (%d bytes)",
2990                                         (int)(image.sections[i].size));
2991                         break;
2992                 }
2993                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
2994                 if (retval != ERROR_OK) {
2995                         free(buffer);
2996                         break;
2997                 }
2998
2999                 if (verify) {
3000                         /* calculate checksum of image */
3001                         retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3002                         if (retval != ERROR_OK) {
3003                                 free(buffer);
3004                                 break;
3005                         }
3006
3007                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3008                         if (retval != ERROR_OK) {
3009                                 free(buffer);
3010                                 break;
3011                         }
3012
3013                         if (checksum != mem_checksum) {
3014                                 /* failed crc checksum, fall back to a binary compare */
3015                                 uint8_t *data;
3016
3017                                 if (diffs == 0)
3018                                         LOG_ERROR("checksum mismatch - attempting binary compare");
3019
3020                                 data = (uint8_t *)malloc(buf_cnt);
3021
3022                                 /* Can we use 32bit word accesses? */
3023                                 int size = 1;
3024                                 int count = buf_cnt;
3025                                 if ((count % 4) == 0) {
3026                                         size *= 4;
3027                                         count /= 4;
3028                                 }
3029                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3030                                 if (retval == ERROR_OK) {
3031                                         uint32_t t;
3032                                         for (t = 0; t < buf_cnt; t++) {
3033                                                 if (data[t] != buffer[t]) {
3034                                                         command_print(CMD_CTX,
3035                                                                                   "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3036                                                                                   diffs,
3037                                                                                   (unsigned)(t + image.sections[i].base_address),
3038                                                                                   data[t],
3039                                                                                   buffer[t]);
3040                                                         if (diffs++ >= 127) {
3041                                                                 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3042                                                                 free(data);
3043                                                                 free(buffer);
3044                                                                 goto done;
3045                                                         }
3046                                                 }
3047                                                 keep_alive();
3048                                         }
3049                                 }
3050                                 free(data);
3051                         }
3052                 } else {
3053                         command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
3054                                                   image.sections[i].base_address,
3055                                                   buf_cnt);
3056                 }
3057
3058                 free(buffer);
3059                 image_size += buf_cnt;
3060         }
3061         if (diffs > 0)
3062                 command_print(CMD_CTX, "No more differences found.");
3063 done:
3064         if (diffs > 0)
3065                 retval = ERROR_FAIL;
3066         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3067                 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3068                                 "in %fs (%0.3f KiB/s)", image_size,
3069                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3070         }
3071
3072         image_close(&image);
3073
3074         return retval;
3075 }
3076
3077 COMMAND_HANDLER(handle_verify_image_command)
3078 {
3079         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
3080 }
3081
3082 COMMAND_HANDLER(handle_test_image_command)
3083 {
3084         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
3085 }
3086
3087 static int handle_bp_command_list(struct command_context *cmd_ctx)
3088 {
3089         struct target *target = get_current_target(cmd_ctx);
3090         struct breakpoint *breakpoint = target->breakpoints;
3091         while (breakpoint) {
3092                 if (breakpoint->type == BKPT_SOFT) {
3093                         char *buf = buf_to_str(breakpoint->orig_instr,
3094                                         breakpoint->length, 16);
3095                         command_print(cmd_ctx, "IVA breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
3096                                         breakpoint->address,
3097                                         breakpoint->length,
3098                                         breakpoint->set, buf);
3099                         free(buf);
3100                 } else {
3101                         if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3102                                 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3103                                                         breakpoint->asid,
3104                                                         breakpoint->length, breakpoint->set);
3105                         else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3106                                 command_print(cmd_ctx, "Hybrid breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3107                                                         breakpoint->address,
3108                                                         breakpoint->length, breakpoint->set);
3109                                 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3110                                                         breakpoint->asid);
3111                         } else
3112                                 command_print(cmd_ctx, "Breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3113                                                         breakpoint->address,
3114                                                         breakpoint->length, breakpoint->set);
3115                 }
3116
3117                 breakpoint = breakpoint->next;
3118         }
3119         return ERROR_OK;
3120 }
3121
3122 static int handle_bp_command_set(struct command_context *cmd_ctx,
3123                 uint32_t addr, uint32_t asid, uint32_t length, int hw)
3124 {
3125         struct target *target = get_current_target(cmd_ctx);
3126
3127         if (asid == 0) {
3128                 int retval = breakpoint_add(target, addr, length, hw);
3129                 if (ERROR_OK == retval)
3130                         command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
3131                 else {
3132                         LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3133                         return retval;
3134                 }
3135         } else if (addr == 0) {
3136                 int retval = context_breakpoint_add(target, asid, length, hw);
3137                 if (ERROR_OK == retval)
3138                         command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3139                 else {
3140                         LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3141                         return retval;
3142                 }
3143         } else {
3144                 int retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3145                 if (ERROR_OK == retval)
3146                         command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3147                 else {
3148                         LOG_ERROR("Failure setting breakpoint, the same address is already used");
3149                         return retval;
3150                 }
3151         }
3152         return ERROR_OK;
3153 }
3154
3155 COMMAND_HANDLER(handle_bp_command)
3156 {
3157         uint32_t addr;
3158         uint32_t asid;
3159         uint32_t length;
3160         int hw = BKPT_SOFT;
3161
3162         switch (CMD_ARGC) {
3163                 case 0:
3164                         return handle_bp_command_list(CMD_CTX);
3165
3166                 case 2:
3167                         asid = 0;
3168                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3169                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3170                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3171
3172                 case 3:
3173                         if (strcmp(CMD_ARGV[2], "hw") == 0) {
3174                                 hw = BKPT_HARD;
3175                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3176
3177                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3178
3179                                 asid = 0;
3180                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3181                         } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
3182                                 hw = BKPT_HARD;
3183                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3184                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3185                                 addr = 0;
3186                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3187                         }
3188
3189                 case 4:
3190                         hw = BKPT_HARD;
3191                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3192                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3193                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3194                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3195
3196                 default:
3197                         return ERROR_COMMAND_SYNTAX_ERROR;
3198         }
3199 }
3200
3201 COMMAND_HANDLER(handle_rbp_command)
3202 {
3203         if (CMD_ARGC != 1)
3204                 return ERROR_COMMAND_SYNTAX_ERROR;
3205
3206         uint32_t addr;
3207         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3208
3209         struct target *target = get_current_target(CMD_CTX);
3210         breakpoint_remove(target, addr);
3211
3212         return ERROR_OK;
3213 }
3214
3215 COMMAND_HANDLER(handle_wp_command)
3216 {
3217         struct target *target = get_current_target(CMD_CTX);
3218
3219         if (CMD_ARGC == 0) {
3220                 struct watchpoint *watchpoint = target->watchpoints;
3221
3222                 while (watchpoint) {
3223                         command_print(CMD_CTX, "address: 0x%8.8" PRIx32
3224                                         ", len: 0x%8.8" PRIx32
3225                                         ", r/w/a: %i, value: 0x%8.8" PRIx32
3226                                         ", mask: 0x%8.8" PRIx32,
3227                                         watchpoint->address,
3228                                         watchpoint->length,
3229                                         (int)watchpoint->rw,
3230                                         watchpoint->value,
3231                                         watchpoint->mask);
3232                         watchpoint = watchpoint->next;
3233                 }
3234                 return ERROR_OK;
3235         }
3236
3237         enum watchpoint_rw type = WPT_ACCESS;
3238         uint32_t addr = 0;
3239         uint32_t length = 0;
3240         uint32_t data_value = 0x0;
3241         uint32_t data_mask = 0xffffffff;
3242
3243         switch (CMD_ARGC) {
3244         case 5:
3245                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3246                 /* fall through */
3247         case 4:
3248                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3249                 /* fall through */
3250         case 3:
3251                 switch (CMD_ARGV[2][0]) {
3252                 case 'r':
3253                         type = WPT_READ;
3254                         break;
3255                 case 'w':
3256                         type = WPT_WRITE;
3257                         break;
3258                 case 'a':
3259                         type = WPT_ACCESS;
3260                         break;
3261                 default:
3262                         LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3263                         return ERROR_COMMAND_SYNTAX_ERROR;
3264                 }
3265                 /* fall through */
3266         case 2:
3267                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3268                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3269                 break;
3270
3271         default:
3272                 return ERROR_COMMAND_SYNTAX_ERROR;
3273         }
3274
3275         int retval = watchpoint_add(target, addr, length, type,
3276                         data_value, data_mask);
3277         if (ERROR_OK != retval)
3278                 LOG_ERROR("Failure setting watchpoints");
3279
3280         return retval;
3281 }
3282
3283 COMMAND_HANDLER(handle_rwp_command)
3284 {
3285         if (CMD_ARGC != 1)
3286                 return ERROR_COMMAND_SYNTAX_ERROR;
3287
3288         uint32_t addr;
3289         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3290
3291         struct target *target = get_current_target(CMD_CTX);
3292         watchpoint_remove(target, addr);
3293
3294         return ERROR_OK;
3295 }
3296
3297 /**
3298  * Translate a virtual address to a physical address.
3299  *
3300  * The low-level target implementation must have logged a detailed error
3301  * which is forwarded to telnet/GDB session.
3302  */
3303 COMMAND_HANDLER(handle_virt2phys_command)
3304 {
3305         if (CMD_ARGC != 1)
3306                 return ERROR_COMMAND_SYNTAX_ERROR;
3307
3308         uint32_t va;
3309         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
3310         uint32_t pa;
3311
3312         struct target *target = get_current_target(CMD_CTX);
3313         int retval = target->type->virt2phys(target, va, &pa);
3314         if (retval == ERROR_OK)
3315                 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
3316
3317         return retval;
3318 }
3319
3320 static void writeData(FILE *f, const void *data, size_t len)
3321 {
3322         size_t written = fwrite(data, 1, len, f);
3323         if (written != len)
3324                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3325 }
3326
3327 static void writeLong(FILE *f, int l)
3328 {
3329         int i;
3330         for (i = 0; i < 4; i++) {
3331                 char c = (l >> (i*8))&0xff;
3332                 writeData(f, &c, 1);
3333         }
3334
3335 }
3336
3337 static void writeString(FILE *f, char *s)
3338 {
3339         writeData(f, s, strlen(s));
3340 }
3341
3342 /* Dump a gmon.out histogram file. */
3343 static void writeGmon(uint32_t *samples, uint32_t sampleNum, const char *filename)
3344 {
3345         uint32_t i;
3346         FILE *f = fopen(filename, "w");
3347         if (f == NULL)
3348                 return;
3349         writeString(f, "gmon");
3350         writeLong(f, 0x00000001); /* Version */
3351         writeLong(f, 0); /* padding */
3352         writeLong(f, 0); /* padding */
3353         writeLong(f, 0); /* padding */
3354
3355         uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
3356         writeData(f, &zero, 1);
3357
3358         /* figure out bucket size */
3359         uint32_t min = samples[0];
3360         uint32_t max = samples[0];
3361         for (i = 0; i < sampleNum; i++) {
3362                 if (min > samples[i])
3363                         min = samples[i];
3364                 if (max < samples[i])
3365                         max = samples[i];
3366         }
3367
3368         int addressSpace = (max - min + 1);
3369         assert(addressSpace >= 2);
3370
3371         static const uint32_t maxBuckets = 16 * 1024; /* maximum buckets. */
3372         uint32_t length = addressSpace;
3373         if (length > maxBuckets)
3374                 length = maxBuckets;
3375         int *buckets = malloc(sizeof(int)*length);
3376         if (buckets == NULL) {
3377                 fclose(f);
3378                 return;
3379         }
3380         memset(buckets, 0, sizeof(int) * length);
3381         for (i = 0; i < sampleNum; i++) {
3382                 uint32_t address = samples[i];
3383                 long long a = address - min;
3384                 long long b = length - 1;
3385                 long long c = addressSpace - 1;
3386                 int index_t = (a * b) / c; /* danger!!!! int32 overflows */
3387                 buckets[index_t]++;
3388         }
3389
3390         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3391         writeLong(f, min);                      /* low_pc */
3392         writeLong(f, max);                      /* high_pc */
3393         writeLong(f, length);           /* # of samples */
3394         writeLong(f, 100);                      /* KLUDGE! We lie, ca. 100Hz best case. */
3395         writeString(f, "seconds");
3396         for (i = 0; i < (15-strlen("seconds")); i++)
3397                 writeData(f, &zero, 1);
3398         writeString(f, "s");
3399
3400         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3401
3402         char *data = malloc(2 * length);
3403         if (data != NULL) {
3404                 for (i = 0; i < length; i++) {
3405                         int val;
3406                         val = buckets[i];
3407                         if (val > 65535)
3408                                 val = 65535;
3409                         data[i * 2] = val&0xff;
3410                         data[i * 2 + 1] = (val >> 8) & 0xff;
3411                 }
3412                 free(buckets);
3413                 writeData(f, data, length * 2);
3414                 free(data);
3415         } else
3416                 free(buckets);
3417
3418         fclose(f);
3419 }
3420
3421 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3422  * which will be used as a random sampling of PC */
3423 COMMAND_HANDLER(handle_profile_command)
3424 {
3425         struct target *target = get_current_target(CMD_CTX);
3426         struct timeval timeout, now;
3427
3428         gettimeofday(&timeout, NULL);
3429         if (CMD_ARGC != 2)
3430                 return ERROR_COMMAND_SYNTAX_ERROR;
3431         unsigned offset;
3432         COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], offset);
3433
3434         timeval_add_time(&timeout, offset, 0);
3435
3436         /**
3437          * @todo: Some cores let us sample the PC without the
3438          * annoying halt/resume step; for example, ARMv7 PCSR.
3439          * Provide a way to use that more efficient mechanism.
3440          */
3441
3442         command_print(CMD_CTX, "Starting profiling. Halting and resuming the target as often as we can...");
3443
3444         static const int maxSample = 10000;
3445         uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
3446         if (samples == NULL)
3447                 return ERROR_OK;
3448
3449         int numSamples = 0;
3450         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
3451         struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
3452
3453         int retval = ERROR_OK;
3454         for (;;) {
3455                 target_poll(target);
3456                 if (target->state == TARGET_HALTED) {
3457                         uint32_t t = *((uint32_t *)reg->value);
3458                         samples[numSamples++] = t;
3459                         /* current pc, addr = 0, do not handle breakpoints, not debugging */
3460                         retval = target_resume(target, 1, 0, 0, 0);
3461                         target_poll(target);
3462                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
3463                 } else if (target->state == TARGET_RUNNING) {
3464                         /* We want to quickly sample the PC. */
3465                         retval = target_halt(target);
3466                         if (retval != ERROR_OK) {
3467                                 free(samples);
3468                                 return retval;
3469                         }
3470                 } else {
3471                         command_print(CMD_CTX, "Target not halted or running");
3472                         retval = ERROR_OK;
3473                         break;
3474                 }
3475                 if (retval != ERROR_OK)
3476                         break;
3477
3478                 gettimeofday(&now, NULL);
3479                 if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec)
3480                                 && (now.tv_usec >= timeout.tv_usec))) {
3481                         command_print(CMD_CTX, "Profiling completed. %d samples.", numSamples);
3482                         retval = target_poll(target);
3483                         if (retval != ERROR_OK) {
3484                                 free(samples);
3485                                 return retval;
3486                         }
3487                         if (target->state == TARGET_HALTED) {
3488                                 /* current pc, addr = 0, do not handle
3489                                  * breakpoints, not debugging */
3490                                 target_resume(target, 1, 0, 0, 0);
3491                         }
3492                         retval = target_poll(target);
3493                         if (retval != ERROR_OK) {
3494                                 free(samples);
3495                                 return retval;
3496                         }
3497                         writeGmon(samples, numSamples, CMD_ARGV[1]);
3498                         command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3499                         break;
3500                 }
3501         }
3502         free(samples);
3503
3504         return retval;
3505 }
3506
3507 static int new_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t val)
3508 {
3509         char *namebuf;
3510         Jim_Obj *nameObjPtr, *valObjPtr;
3511         int result;
3512
3513         namebuf = alloc_printf("%s(%d)", varname, idx);
3514         if (!namebuf)
3515                 return JIM_ERR;
3516
3517         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3518         valObjPtr = Jim_NewIntObj(interp, val);
3519         if (!nameObjPtr || !valObjPtr) {
3520                 free(namebuf);
3521                 return JIM_ERR;
3522         }
3523
3524         Jim_IncrRefCount(nameObjPtr);
3525         Jim_IncrRefCount(valObjPtr);
3526         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3527         Jim_DecrRefCount(interp, nameObjPtr);
3528         Jim_DecrRefCount(interp, valObjPtr);
3529         free(namebuf);
3530         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3531         return result;
3532 }
3533
3534 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3535 {
3536         struct command_context *context;
3537         struct target *target;
3538
3539         context = current_command_context(interp);
3540         assert(context != NULL);
3541
3542         target = get_current_target(context);
3543         if (target == NULL) {
3544                 LOG_ERROR("mem2array: no current target");
3545                 return JIM_ERR;
3546         }
3547
3548         return target_mem2array(interp, target, argc - 1, argv + 1);
3549 }
3550
3551 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3552 {
3553         long l;
3554         uint32_t width;
3555         int len;
3556         uint32_t addr;
3557         uint32_t count;
3558         uint32_t v;
3559         const char *varname;
3560         int  n, e, retval;
3561         uint32_t i;
3562
3563         /* argv[1] = name of array to receive the data
3564          * argv[2] = desired width
3565          * argv[3] = memory address
3566          * argv[4] = count of times to read
3567          */
3568         if (argc != 4) {
3569                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3570                 return JIM_ERR;
3571         }
3572         varname = Jim_GetString(argv[0], &len);
3573         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3574
3575         e = Jim_GetLong(interp, argv[1], &l);
3576         width = l;
3577         if (e != JIM_OK)
3578                 return e;
3579
3580         e = Jim_GetLong(interp, argv[2], &l);
3581         addr = l;
3582         if (e != JIM_OK)
3583                 return e;
3584         e = Jim_GetLong(interp, argv[3], &l);
3585         len = l;
3586         if (e != JIM_OK)
3587                 return e;
3588         switch (width) {
3589                 case 8:
3590                         width = 1;
3591                         break;
3592                 case 16:
3593                         width = 2;
3594                         break;
3595                 case 32:
3596                         width = 4;
3597                         break;
3598                 default:
3599                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3600                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3601                         return JIM_ERR;
3602         }
3603         if (len == 0) {
3604                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3605                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3606                 return JIM_ERR;
3607         }
3608         if ((addr + (len * width)) < addr) {
3609                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3610                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3611                 return JIM_ERR;
3612         }
3613         /* absurd transfer size? */
3614         if (len > 65536) {
3615                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3616                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3617                 return JIM_ERR;
3618         }
3619
3620         if ((width == 1) ||
3621                 ((width == 2) && ((addr & 1) == 0)) ||
3622                 ((width == 4) && ((addr & 3) == 0))) {
3623                 /* all is well */
3624         } else {
3625                 char buf[100];
3626                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3627                 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3628                                 addr,
3629                                 width);
3630                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3631                 return JIM_ERR;
3632         }
3633
3634         /* Transfer loop */
3635
3636         /* index counter */
3637         n = 0;
3638
3639         size_t buffersize = 4096;
3640         uint8_t *buffer = malloc(buffersize);
3641         if (buffer == NULL)
3642                 return JIM_ERR;
3643
3644         /* assume ok */
3645         e = JIM_OK;
3646         while (len) {
3647                 /* Slurp... in buffer size chunks */
3648
3649                 count = len; /* in objects.. */
3650                 if (count > (buffersize / width))
3651                         count = (buffersize / width);
3652
3653                 retval = target_read_memory(target, addr, width, count, buffer);
3654                 if (retval != ERROR_OK) {
3655                         /* BOO !*/
3656                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3657                                           (unsigned int)addr,
3658                                           (int)width,
3659                                           (int)count);
3660                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3661                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3662                         e = JIM_ERR;
3663                         break;
3664                 } else {
3665                         v = 0; /* shut up gcc */
3666                         for (i = 0; i < count ; i++, n++) {
3667                                 switch (width) {
3668                                         case 4:
3669                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
3670                                                 break;
3671                                         case 2:
3672                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
3673                                                 break;
3674                                         case 1:
3675                                                 v = buffer[i] & 0x0ff;
3676                                                 break;
3677                                 }
3678                                 new_int_array_element(interp, varname, n, v);
3679                         }
3680                         len -= count;
3681                 }
3682         }
3683
3684         free(buffer);
3685
3686         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3687
3688         return e;
3689 }
3690
3691 static int get_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t *val)
3692 {
3693         char *namebuf;
3694         Jim_Obj *nameObjPtr, *valObjPtr;
3695         int result;
3696         long l;
3697
3698         namebuf = alloc_printf("%s(%d)", varname, idx);
3699         if (!namebuf)
3700                 return JIM_ERR;
3701
3702         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3703         if (!nameObjPtr) {
3704                 free(namebuf);
3705                 return JIM_ERR;
3706         }
3707
3708         Jim_IncrRefCount(nameObjPtr);
3709         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3710         Jim_DecrRefCount(interp, nameObjPtr);
3711         free(namebuf);
3712         if (valObjPtr == NULL)
3713                 return JIM_ERR;
3714
3715         result = Jim_GetLong(interp, valObjPtr, &l);
3716         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3717         *val = l;
3718         return result;
3719 }
3720
3721 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3722 {
3723         struct command_context *context;
3724         struct target *target;
3725
3726         context = current_command_context(interp);
3727         assert(context != NULL);
3728
3729         target = get_current_target(context);
3730         if (target == NULL) {
3731                 LOG_ERROR("array2mem: no current target");
3732                 return JIM_ERR;
3733         }
3734
3735         return target_array2mem(interp, target, argc-1, argv + 1);
3736 }
3737
3738 static int target_array2mem(Jim_Interp *interp, struct target *target,
3739                 int argc, Jim_Obj *const *argv)
3740 {
3741         long l;
3742         uint32_t width;
3743         int len;
3744         uint32_t addr;
3745         uint32_t count;
3746         uint32_t v;
3747         const char *varname;
3748         int  n, e, retval;
3749         uint32_t i;
3750
3751         /* argv[1] = name of array to get the data
3752          * argv[2] = desired width
3753          * argv[3] = memory address
3754          * argv[4] = count to write
3755          */
3756         if (argc != 4) {
3757                 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems");
3758                 return JIM_ERR;
3759         }
3760         varname = Jim_GetString(argv[0], &len);
3761         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3762
3763         e = Jim_GetLong(interp, argv[1], &l);
3764         width = l;
3765         if (e != JIM_OK)
3766                 return e;
3767
3768         e = Jim_GetLong(interp, argv[2], &l);
3769         addr = l;
3770         if (e != JIM_OK)
3771                 return e;
3772         e = Jim_GetLong(interp, argv[3], &l);
3773         len = l;
3774         if (e != JIM_OK)
3775                 return e;
3776         switch (width) {
3777                 case 8:
3778                         width = 1;
3779                         break;
3780                 case 16:
3781                         width = 2;
3782                         break;
3783                 case 32:
3784                         width = 4;
3785                         break;
3786                 default:
3787                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3788                         Jim_AppendStrings(interp, Jim_GetResult(interp),
3789                                         "Invalid width param, must be 8/16/32", NULL);
3790                         return JIM_ERR;
3791         }
3792         if (len == 0) {
3793                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3794                 Jim_AppendStrings(interp, Jim_GetResult(interp),
3795                                 "array2mem: zero width read?", NULL);
3796                 return JIM_ERR;
3797         }
3798         if ((addr + (len * width)) < addr) {
3799                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3800                 Jim_AppendStrings(interp, Jim_GetResult(interp),
3801                                 "array2mem: addr + len - wraps to zero?", NULL);
3802                 return JIM_ERR;
3803         }
3804         /* absurd transfer size? */
3805         if (len > 65536) {
3806                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3807                 Jim_AppendStrings(interp, Jim_GetResult(interp),
3808                                 "array2mem: absurd > 64K item request", NULL);
3809                 return JIM_ERR;
3810         }
3811
3812         if ((width == 1) ||
3813                 ((width == 2) && ((addr & 1) == 0)) ||
3814                 ((width == 4) && ((addr & 3) == 0))) {
3815                 /* all is well */
3816         } else {
3817                 char buf[100];
3818                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3819                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
3820                                 (unsigned int)addr,
3821                                 (int)width);
3822                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3823                 return JIM_ERR;
3824         }
3825
3826         /* Transfer loop */
3827
3828         /* index counter */
3829         n = 0;
3830         /* assume ok */
3831         e = JIM_OK;
3832
3833         size_t buffersize = 4096;
3834         uint8_t *buffer = malloc(buffersize);
3835         if (buffer == NULL)
3836                 return JIM_ERR;
3837
3838         while (len) {
3839                 /* Slurp... in buffer size chunks */
3840
3841                 count = len; /* in objects.. */
3842                 if (count > (buffersize / width))
3843                         count = (buffersize / width);
3844
3845                 v = 0; /* shut up gcc */
3846                 for (i = 0; i < count; i++, n++) {
3847                         get_int_array_element(interp, varname, n, &v);
3848                         switch (width) {
3849                         case 4:
3850                                 target_buffer_set_u32(target, &buffer[i * width], v);
3851                                 break;
3852                         case 2:
3853                                 target_buffer_set_u16(target, &buffer[i * width], v);
3854                                 break;
3855                         case 1:
3856                                 buffer[i] = v & 0x0ff;
3857                                 break;
3858                         }
3859                 }
3860                 len -= count;
3861
3862                 retval = target_write_memory(target, addr, width, count, buffer);
3863                 if (retval != ERROR_OK) {
3864                         /* BOO !*/
3865                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
3866                                           (unsigned int)addr,
3867                                           (int)width,
3868                                           (int)count);
3869                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3870                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3871                         e = JIM_ERR;
3872                         break;
3873                 }
3874         }
3875
3876         free(buffer);
3877
3878         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3879
3880         return e;
3881 }
3882
3883 /* FIX? should we propagate errors here rather than printing them
3884  * and continuing?
3885  */
3886 void target_handle_event(struct target *target, enum target_event e)
3887 {
3888         struct target_event_action *teap;
3889
3890         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3891                 if (teap->event == e) {
3892                         LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
3893                                            target->target_number,
3894                                            target_name(target),
3895                                            target_type_name(target),
3896                                            e,
3897                                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
3898                                            Jim_GetString(teap->body, NULL));
3899                         if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK) {
3900                                 Jim_MakeErrorMessage(teap->interp);
3901                                 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(teap->interp), NULL));
3902                         }
3903                 }
3904         }
3905 }
3906
3907 /**
3908  * Returns true only if the target has a handler for the specified event.
3909  */
3910 bool target_has_event_action(struct target *target, enum target_event event)
3911 {
3912         struct target_event_action *teap;
3913
3914         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3915                 if (teap->event == event)
3916                         return true;
3917         }
3918         return false;
3919 }
3920
3921 enum target_cfg_param {
3922         TCFG_TYPE,
3923         TCFG_EVENT,
3924         TCFG_WORK_AREA_VIRT,
3925         TCFG_WORK_AREA_PHYS,
3926         TCFG_WORK_AREA_SIZE,
3927         TCFG_WORK_AREA_BACKUP,
3928         TCFG_ENDIAN,
3929         TCFG_VARIANT,
3930         TCFG_COREID,
3931         TCFG_CHAIN_POSITION,
3932         TCFG_DBGBASE,
3933         TCFG_RTOS,
3934 };
3935
3936 static Jim_Nvp nvp_config_opts[] = {
3937         { .name = "-type",             .value = TCFG_TYPE },
3938         { .name = "-event",            .value = TCFG_EVENT },
3939         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
3940         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
3941         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
3942         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3943         { .name = "-endian" ,          .value = TCFG_ENDIAN },
3944         { .name = "-variant",          .value = TCFG_VARIANT },
3945         { .name = "-coreid",           .value = TCFG_COREID },
3946         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
3947         { .name = "-dbgbase",          .value = TCFG_DBGBASE },
3948         { .name = "-rtos",             .value = TCFG_RTOS },
3949         { .name = NULL, .value = -1 }
3950 };
3951
3952 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
3953 {
3954         Jim_Nvp *n;
3955         Jim_Obj *o;
3956         jim_wide w;
3957         char *cp;
3958         int e;
3959
3960         /* parse config or cget options ... */
3961         while (goi->argc > 0) {
3962                 Jim_SetEmptyResult(goi->interp);
3963                 /* Jim_GetOpt_Debug(goi); */
3964
3965                 if (target->type->target_jim_configure) {
3966                         /* target defines a configure function */
3967                         /* target gets first dibs on parameters */
3968                         e = (*(target->type->target_jim_configure))(target, goi);
3969                         if (e == JIM_OK) {
3970                                 /* more? */
3971                                 continue;
3972                         }
3973                         if (e == JIM_ERR) {
3974                                 /* An error */
3975                                 return e;
3976                         }
3977                         /* otherwise we 'continue' below */
3978                 }
3979                 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
3980                 if (e != JIM_OK) {
3981                         Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
3982                         return e;
3983                 }
3984                 switch (n->value) {
3985                 case TCFG_TYPE:
3986                         /* not setable */
3987                         if (goi->isconfigure) {
3988                                 Jim_SetResultFormatted(goi->interp,
3989                                                 "not settable: %s", n->name);
3990                                 return JIM_ERR;
3991                         } else {
3992 no_params:
3993                                 if (goi->argc != 0) {
3994                                         Jim_WrongNumArgs(goi->interp,
3995                                                         goi->argc, goi->argv,
3996                                                         "NO PARAMS");
3997                                         return JIM_ERR;
3998                                 }
3999                         }
4000                         Jim_SetResultString(goi->interp,
4001                                         target_type_name(target), -1);
4002                         /* loop for more */
4003                         break;
4004                 case TCFG_EVENT:
4005                         if (goi->argc == 0) {
4006                                 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
4007                                 return JIM_ERR;
4008                         }
4009
4010                         e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
4011                         if (e != JIM_OK) {
4012                                 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
4013                                 return e;
4014                         }
4015
4016                         if (goi->isconfigure) {
4017                                 if (goi->argc != 1) {
4018                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
4019                                         return JIM_ERR;
4020                                 }
4021                         } else {
4022                                 if (goi->argc != 0) {
4023                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
4024                                         return JIM_ERR;
4025                                 }
4026                         }
4027
4028                         {
4029                                 struct target_event_action *teap;
4030
4031                                 teap = target->event_action;
4032                                 /* replace existing? */
4033                                 while (teap) {
4034                                         if (teap->event == (enum target_event)n->value)
4035                                                 break;
4036                                         teap = teap->next;
4037                                 }
4038
4039                                 if (goi->isconfigure) {
4040                                         bool replace = true;
4041                                         if (teap == NULL) {
4042                                                 /* create new */
4043                                                 teap = calloc(1, sizeof(*teap));
4044                                                 replace = false;
4045                                         }
4046                                         teap->event = n->value;
4047                                         teap->interp = goi->interp;
4048                                         Jim_GetOpt_Obj(goi, &o);
4049                                         if (teap->body)
4050                                                 Jim_DecrRefCount(teap->interp, teap->body);
4051                                         teap->body  = Jim_DuplicateObj(goi->interp, o);
4052                                         /*
4053                                          * FIXME:
4054                                          *     Tcl/TK - "tk events" have a nice feature.
4055                                          *     See the "BIND" command.
4056                                          *    We should support that here.
4057                                          *     You can specify %X and %Y in the event code.
4058                                          *     The idea is: %T - target name.
4059                                          *     The idea is: %N - target number
4060                                          *     The idea is: %E - event name.
4061                                          */
4062                                         Jim_IncrRefCount(teap->body);
4063
4064                                         if (!replace) {
4065                                                 /* add to head of event list */
4066                                                 teap->next = target->event_action;
4067                                                 target->event_action = teap;
4068                                         }
4069                                         Jim_SetEmptyResult(goi->interp);
4070                                 } else {
4071                                         /* get */
4072                                         if (teap == NULL)
4073                                                 Jim_SetEmptyResult(goi->interp);
4074                                         else
4075                                                 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
4076                                 }
4077                         }
4078                         /* loop for more */
4079                         break;
4080
4081                 case TCFG_WORK_AREA_VIRT:
4082                         if (goi->isconfigure) {
4083                                 target_free_all_working_areas(target);
4084                                 e = Jim_GetOpt_Wide(goi, &w);
4085                                 if (e != JIM_OK)
4086                                         return e;
4087                                 target->working_area_virt = w;
4088                                 target->working_area_virt_spec = true;
4089                         } else {
4090                                 if (goi->argc != 0)
4091                                         goto no_params;
4092                         }
4093                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
4094                         /* loop for more */
4095                         break;
4096
4097                 case TCFG_WORK_AREA_PHYS:
4098                         if (goi->isconfigure) {
4099                                 target_free_all_working_areas(target);
4100                                 e = Jim_GetOpt_Wide(goi, &w);
4101                                 if (e != JIM_OK)
4102                                         return e;
4103                                 target->working_area_phys = w;
4104                                 target->working_area_phys_spec = true;
4105                         } else {
4106                                 if (goi->argc != 0)
4107                                         goto no_params;
4108                         }
4109                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
4110                         /* loop for more */
4111                         break;
4112
4113                 case TCFG_WORK_AREA_SIZE:
4114                         if (goi->isconfigure) {
4115                                 target_free_all_working_areas(target);
4116                                 e = Jim_GetOpt_Wide(goi, &w);
4117                                 if (e != JIM_OK)
4118                                         return e;
4119                                 target->working_area_size = w;
4120                         } else {
4121                                 if (goi->argc != 0)
4122                                         goto no_params;
4123                         }
4124                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4125                         /* loop for more */
4126                         break;
4127
4128                 case TCFG_WORK_AREA_BACKUP:
4129                         if (goi->isconfigure) {
4130                                 target_free_all_working_areas(target);
4131                                 e = Jim_GetOpt_Wide(goi, &w);
4132                                 if (e != JIM_OK)
4133                                         return e;
4134                                 /* make this exactly 1 or 0 */
4135                                 target->backup_working_area = (!!w);
4136                         } else {
4137                                 if (goi->argc != 0)
4138                                         goto no_params;
4139                         }
4140                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
4141                         /* loop for more e*/
4142                         break;
4143
4144
4145                 case TCFG_ENDIAN:
4146                         if (goi->isconfigure) {
4147                                 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
4148                                 if (e != JIM_OK) {
4149                                         Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
4150                                         return e;
4151                                 }
4152                                 target->endianness = n->value;
4153                         } else {
4154                                 if (goi->argc != 0)
4155                                         goto no_params;
4156                         }
4157                         n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4158                         if (n->name == NULL) {
4159                                 target->endianness = TARGET_LITTLE_ENDIAN;
4160                                 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4161                         }
4162                         Jim_SetResultString(goi->interp, n->name, -1);
4163                         /* loop for more */
4164                         break;
4165
4166                 case TCFG_VARIANT:
4167                         if (goi->isconfigure) {
4168                                 if (goi->argc < 1) {
4169                                         Jim_SetResultFormatted(goi->interp,
4170                                                                                    "%s ?STRING?",
4171                                                                                    n->name);
4172                                         return JIM_ERR;
4173                                 }
4174                                 if (target->variant)
4175                                         free((void *)(target->variant));
4176                                 e = Jim_GetOpt_String(goi, &cp, NULL);
4177                                 if (e != JIM_OK)
4178                                         return e;
4179                                 target->variant = strdup(cp);
4180                         } else {
4181                                 if (goi->argc != 0)
4182                                         goto no_params;
4183                         }
4184                         Jim_SetResultString(goi->interp, target->variant, -1);
4185                         /* loop for more */
4186                         break;
4187
4188                 case TCFG_COREID:
4189                         if (goi->isconfigure) {
4190                                 e = Jim_GetOpt_Wide(goi, &w);
4191                                 if (e != JIM_OK)
4192                                         return e;
4193                                 target->coreid = (int32_t)w;
4194                         } else {
4195                                 if (goi->argc != 0)
4196                                         goto no_params;
4197                         }
4198                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4199                         /* loop for more */
4200                         break;
4201
4202                 case TCFG_CHAIN_POSITION:
4203                         if (goi->isconfigure) {
4204                                 Jim_Obj *o_t;
4205                                 struct jtag_tap *tap;
4206                                 target_free_all_working_areas(target);
4207                                 e = Jim_GetOpt_Obj(goi, &o_t);
4208                                 if (e != JIM_OK)
4209                                         return e;
4210                                 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
4211                                 if (tap == NULL)
4212                                         return JIM_ERR;
4213                                 /* make this exactly 1 or 0 */
4214                                 target->tap = tap;
4215                         } else {
4216                                 if (goi->argc != 0)
4217                                         goto no_params;
4218                         }
4219                         Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
4220                         /* loop for more e*/
4221                         break;
4222                 case TCFG_DBGBASE:
4223                         if (goi->isconfigure) {
4224                                 e = Jim_GetOpt_Wide(goi, &w);
4225                                 if (e != JIM_OK)
4226                                         return e;
4227                                 target->dbgbase = (uint32_t)w;
4228                                 target->dbgbase_set = true;
4229                         } else {
4230                                 if (goi->argc != 0)
4231                                         goto no_params;
4232                         }
4233                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
4234                         /* loop for more */
4235                         break;
4236
4237                 case TCFG_RTOS:
4238                         /* RTOS */
4239                         {
4240                                 int result = rtos_create(goi, target);
4241                                 if (result != JIM_OK)
4242                                         return result;
4243                         }
4244                         /* loop for more */
4245                         break;
4246                 }
4247         } /* while (goi->argc) */
4248
4249
4250                 /* done - we return */
4251         return JIM_OK;
4252 }
4253
4254 static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
4255 {
4256         Jim_GetOptInfo goi;
4257
4258         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4259         goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
4260         int need_args = 1 + goi.isconfigure;
4261         if (goi.argc < need_args) {
4262                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4263                         goi.isconfigure
4264                                 ? "missing: -option VALUE ..."
4265                                 : "missing: -option ...");
4266                 return JIM_ERR;
4267         }
4268         struct target *target = Jim_CmdPrivData(goi.interp);
4269         return target_configure(&goi, target);
4270 }
4271
4272 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4273 {
4274         const char *cmd_name = Jim_GetString(argv[0], NULL);
4275
4276         Jim_GetOptInfo goi;
4277         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4278
4279         if (goi.argc < 2 || goi.argc > 4) {
4280                 Jim_SetResultFormatted(goi.interp,
4281                                 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
4282                 return JIM_ERR;
4283         }
4284
4285         target_write_fn fn;
4286         fn = target_write_memory_fast;
4287
4288         int e;
4289         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4290                 /* consume it */
4291                 struct Jim_Obj *obj;
4292                 e = Jim_GetOpt_Obj(&goi, &obj);
4293                 if (e != JIM_OK)
4294                         return e;
4295
4296                 fn = target_write_phys_memory;
4297         }
4298
4299         jim_wide a;
4300         e = Jim_GetOpt_Wide(&goi, &a);
4301         if (e != JIM_OK)
4302                 return e;
4303
4304         jim_wide b;
4305         e = Jim_GetOpt_Wide(&goi, &b);
4306         if (e != JIM_OK)
4307                 return e;
4308
4309         jim_wide c = 1;
4310         if (goi.argc == 1) {
4311                 e = Jim_GetOpt_Wide(&goi, &c);
4312                 if (e != JIM_OK)
4313                         return e;
4314         }
4315
4316         /* all args must be consumed */
4317         if (goi.argc != 0)
4318                 return JIM_ERR;
4319
4320         struct target *target = Jim_CmdPrivData(goi.interp);
4321         unsigned data_size;
4322         if (strcasecmp(cmd_name, "mww") == 0)
4323                 data_size = 4;
4324         else if (strcasecmp(cmd_name, "mwh") == 0)
4325                 data_size = 2;
4326         else if (strcasecmp(cmd_name, "mwb") == 0)
4327                 data_size = 1;
4328         else {
4329                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4330                 return JIM_ERR;
4331         }
4332
4333         return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4334 }
4335
4336 /**
4337 *  @brief Reads an array of words/halfwords/bytes from target memory starting at specified address.
4338 *
4339 *  Usage: mdw [phys] <address> [<count>] - for 32 bit reads
4340 *         mdh [phys] <address> [<count>] - for 16 bit reads
4341 *         mdb [phys] <address> [<count>] - for  8 bit reads
4342 *
4343 *  Count defaults to 1.
4344 *
4345 *  Calls target_read_memory or target_read_phys_memory depending on
4346 *  the presence of the "phys" argument
4347 *  Reads the target memory in blocks of max. 32 bytes, and returns an array of ints formatted
4348 *  to int representation in base16.
4349 *  Also outputs read data in a human readable form using command_print
4350 *
4351 *  @param phys if present target_read_phys_memory will be used instead of target_read_memory
4352 *  @param address address where to start the read. May be specified in decimal or hex using the standard "0x" prefix
4353 *  @param count optional count parameter to read an array of values. If not specified, defaults to 1.
4354 *  @returns:  JIM_ERR on error or JIM_OK on success and sets the result string to an array of ascii formatted numbers
4355 *  on success, with [<count>] number of elements.
4356 *
4357 *  In case of little endian target:
4358 *      Example1: "mdw 0x00000000"  returns "10123456"
4359 *      Exmaple2: "mdh 0x00000000 1" returns "3456"
4360 *      Example3: "mdb 0x00000000" returns "56"
4361 *      Example4: "mdh 0x00000000 2" returns "3456 1012"
4362 *      Example5: "mdb 0x00000000 3" returns "56 34 12"
4363 **/
4364 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4365 {
4366         const char *cmd_name = Jim_GetString(argv[0], NULL);
4367
4368         Jim_GetOptInfo goi;
4369         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4370
4371         if ((goi.argc < 1) || (goi.argc > 3)) {
4372                 Jim_SetResultFormatted(goi.interp,
4373                                 "usage: %s [phys] <address> [<count>]", cmd_name);
4374                 return JIM_ERR;
4375         }
4376
4377         int (*fn)(struct target *target,
4378                         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
4379         fn = target_read_memory;
4380
4381         int e;
4382         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4383                 /* consume it */
4384                 struct Jim_Obj *obj;
4385                 e = Jim_GetOpt_Obj(&goi, &obj);
4386                 if (e != JIM_OK)
4387                         return e;
4388
4389                 fn = target_read_phys_memory;
4390         }
4391
4392         /* Read address parameter */
4393         jim_wide addr;
4394         e = Jim_GetOpt_Wide(&goi, &addr);
4395         if (e != JIM_OK)
4396                 return JIM_ERR;
4397
4398         /* If next parameter exists, read it out as the count parameter, if not, set it to 1 (default) */
4399         jim_wide count;
4400         if (goi.argc == 1) {
4401                 e = Jim_GetOpt_Wide(&goi, &count);
4402                 if (e != JIM_OK)
4403                         return JIM_ERR;
4404         } else
4405                 count = 1;
4406
4407         /* all args must be consumed */
4408         if (goi.argc != 0)
4409                 return JIM_ERR;
4410
4411         jim_wide dwidth = 1; /* shut up gcc */
4412         if (strcasecmp(cmd_name, "mdw") == 0)
4413                 dwidth = 4;
4414         else if (strcasecmp(cmd_name, "mdh") == 0)
4415                 dwidth = 2;
4416         else if (strcasecmp(cmd_name, "mdb") == 0)
4417                 dwidth = 1;
4418         else {
4419                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4420                 return JIM_ERR;
4421         }
4422
4423         /* convert count to "bytes" */
4424         int bytes = count * dwidth;
4425
4426         struct target *target = Jim_CmdPrivData(goi.interp);
4427         uint8_t  target_buf[32];
4428         jim_wide x, y, z;
4429         while (bytes > 0) {
4430                 y = (bytes < 16) ? bytes : 16; /* y = min(bytes, 16); */
4431
4432                 /* Try to read out next block */
4433                 e = fn(target, addr, dwidth, y / dwidth, target_buf);
4434
4435                 if (e != ERROR_OK) {
4436                         Jim_SetResultFormatted(interp, "error reading target @ 0x%08lx", (long)addr);
4437                         return JIM_ERR;
4438                 }
4439
4440                 command_print_sameline(NULL, "0x%08x ", (int)(addr));
4441                 switch (dwidth) {
4442                 case 4:
4443                         for (x = 0; x < 16 && x < y; x += 4) {
4444                                 z = target_buffer_get_u32(target, &(target_buf[x]));
4445                                 command_print_sameline(NULL, "%08x ", (int)(z));
4446                         }
4447                         for (; (x < 16) ; x += 4)
4448                                 command_print_sameline(NULL, "         ");
4449                         break;
4450                 case 2:
4451                         for (x = 0; x < 16 && x < y; x += 2) {
4452                                 z = target_buffer_get_u16(target, &(target_buf[x]));
4453                                 command_print_sameline(NULL, "%04x ", (int)(z));
4454                         }
4455                         for (; (x < 16) ; x += 2)
4456                                 command_print_sameline(NULL, "     ");
4457                         break;
4458                 case 1:
4459                 default:
4460                         for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4461                                 z = target_buffer_get_u8(target, &(target_buf[x]));
4462                                 command_print_sameline(NULL, "%02x ", (int)(z));
4463                         }
4464                         for (; (x < 16) ; x += 1)
4465                                 command_print_sameline(NULL, "   ");
4466                         break;
4467                 }
4468                 /* ascii-ify the bytes */
4469                 for (x = 0 ; x < y ; x++) {
4470                         if ((target_buf[x] >= 0x20) &&
4471                                 (target_buf[x] <= 0x7e)) {
4472                                 /* good */
4473                         } else {
4474                                 /* smack it */
4475                                 target_buf[x] = '.';
4476                         }
4477                 }
4478                 /* space pad  */
4479                 while (x < 16) {
4480                         target_buf[x] = ' ';
4481                         x++;
4482                 }
4483                 /* terminate */
4484                 target_buf[16] = 0;
4485                 /* print - with a newline */
4486                 command_print_sameline(NULL, "%s\n", target_buf);
4487                 /* NEXT... */
4488                 bytes -= 16;
4489                 addr += 16;
4490         }
4491         return JIM_OK;
4492 }
4493
4494 static int jim_target_mem2array(Jim_Interp *interp,
4495                 int argc, Jim_Obj *const *argv)
4496 {
4497         struct target *target = Jim_CmdPrivData(interp);
4498         return target_mem2array(interp, target, argc - 1, argv + 1);
4499 }
4500
4501 static int jim_target_array2mem(Jim_Interp *interp,
4502                 int argc, Jim_Obj *const *argv)
4503 {
4504         struct target *target = Jim_CmdPrivData(interp);
4505         return target_array2mem(interp, target, argc - 1, argv + 1);
4506 }
4507
4508 static int jim_target_tap_disabled(Jim_Interp *interp)
4509 {
4510         Jim_SetResultFormatted(interp, "[TAP is disabled]");
4511         return JIM_ERR;
4512 }
4513
4514 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4515 {
4516         if (argc != 1) {
4517                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4518                 return JIM_ERR;
4519         }
4520         struct target *target = Jim_CmdPrivData(interp);
4521         if (!target->tap->enabled)
4522                 return jim_target_tap_disabled(interp);
4523
4524         int e = target->type->examine(target);
4525         if (e != ERROR_OK)
4526                 return JIM_ERR;
4527         return JIM_OK;
4528 }
4529
4530 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4531 {
4532         if (argc != 1) {
4533                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4534                 return JIM_ERR;
4535         }
4536         struct target *target = Jim_CmdPrivData(interp);
4537
4538         if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
4539                 return JIM_ERR;
4540
4541         return JIM_OK;
4542 }
4543
4544 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4545 {
4546         if (argc != 1) {
4547                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4548                 return JIM_ERR;
4549         }
4550         struct target *target = Jim_CmdPrivData(interp);
4551         if (!target->tap->enabled)
4552                 return jim_target_tap_disabled(interp);
4553
4554         int e;
4555         if (!(target_was_examined(target)))
4556                 e = ERROR_TARGET_NOT_EXAMINED;
4557         else
4558                 e = target->type->poll(target);
4559         if (e != ERROR_OK)
4560                 return JIM_ERR;
4561         return JIM_OK;
4562 }
4563
4564 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4565 {
4566         Jim_GetOptInfo goi;
4567         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4568
4569         if (goi.argc != 2) {
4570                 Jim_WrongNumArgs(interp, 0, argv,
4571                                 "([tT]|[fF]|assert|deassert) BOOL");
4572                 return JIM_ERR;
4573         }
4574
4575         Jim_Nvp *n;
4576         int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4577         if (e != JIM_OK) {
4578                 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4579                 return e;
4580         }
4581         /* the halt or not param */
4582         jim_wide a;
4583         e = Jim_GetOpt_Wide(&goi, &a);
4584         if (e != JIM_OK)
4585                 return e;
4586
4587         struct target *target = Jim_CmdPrivData(goi.interp);
4588         if (!target->tap->enabled)
4589                 return jim_target_tap_disabled(interp);
4590         if (!(target_was_examined(target))) {
4591                 LOG_ERROR("Target not examined yet");
4592                 return ERROR_TARGET_NOT_EXAMINED;
4593         }
4594         if (!target->type->assert_reset || !target->type->deassert_reset) {
4595                 Jim_SetResultFormatted(interp,
4596                                 "No target-specific reset for %s",
4597                                 target_name(target));
4598                 return JIM_ERR;
4599         }
4600         /* determine if we should halt or not. */
4601         target->reset_halt = !!a;
4602         /* When this happens - all workareas are invalid. */
4603         target_free_all_working_areas_restore(target, 0);
4604
4605         /* do the assert */
4606         if (n->value == NVP_ASSERT)
4607                 e = target->type->assert_reset(target);
4608         else
4609                 e = target->type->deassert_reset(target);
4610         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4611 }
4612
4613 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4614 {
4615         if (argc != 1) {
4616                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4617                 return JIM_ERR;
4618         }
4619         struct target *target = Jim_CmdPrivData(interp);
4620         if (!target->tap->enabled)
4621                 return jim_target_tap_disabled(interp);
4622         int e = target->type->halt(target);
4623         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4624 }
4625
4626 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4627 {
4628         Jim_GetOptInfo goi;
4629         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4630
4631         /* params:  <name>  statename timeoutmsecs */
4632         if (goi.argc != 2) {
4633                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4634                 Jim_SetResultFormatted(goi.interp,
4635                                 "%s <state_name> <timeout_in_msec>", cmd_name);
4636                 return JIM_ERR;
4637         }
4638
4639         Jim_Nvp *n;
4640         int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4641         if (e != JIM_OK) {
4642                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state, 1);
4643                 return e;
4644         }
4645         jim_wide a;
4646         e = Jim_GetOpt_Wide(&goi, &a);
4647         if (e != JIM_OK)
4648                 return e;
4649         struct target *target = Jim_CmdPrivData(interp);
4650         if (!target->tap->enabled)
4651                 return jim_target_tap_disabled(interp);
4652
4653         e = target_wait_state(target, n->value, a);
4654         if (e != ERROR_OK) {
4655                 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
4656                 Jim_SetResultFormatted(goi.interp,
4657                                 "target: %s wait %s fails (%#s) %s",
4658                                 target_name(target), n->name,
4659                                 eObj, target_strerror_safe(e));
4660                 Jim_FreeNewObj(interp, eObj);
4661                 return JIM_ERR;
4662         }
4663         return JIM_OK;
4664 }
4665 /* List for human, Events defined for this target.
4666  * scripts/programs should use 'name cget -event NAME'
4667  */
4668 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4669 {
4670         struct command_context *cmd_ctx = current_command_context(interp);
4671         assert(cmd_ctx != NULL);
4672
4673         struct target *target = Jim_CmdPrivData(interp);
4674         struct target_event_action *teap = target->event_action;
4675         command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4676                                    target->target_number,
4677                                    target_name(target));
4678         command_print(cmd_ctx, "%-25s | Body", "Event");
4679         command_print(cmd_ctx, "------------------------- | "
4680                         "----------------------------------------");
4681         while (teap) {
4682                 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
4683                 command_print(cmd_ctx, "%-25s | %s",
4684                                 opt->name, Jim_GetString(teap->body, NULL));
4685                 teap = teap->next;
4686         }
4687         command_print(cmd_ctx, "***END***");
4688         return JIM_OK;
4689 }
4690 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4691 {
4692         if (argc != 1) {
4693                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4694                 return JIM_ERR;
4695         }
4696         struct target *target = Jim_CmdPrivData(interp);
4697         Jim_SetResultString(interp, target_state_name(target), -1);
4698         return JIM_OK;
4699 }
4700 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4701 {
4702         Jim_GetOptInfo goi;
4703         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4704         if (goi.argc != 1) {
4705                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4706                 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
4707                 return JIM_ERR;
4708         }
4709         Jim_Nvp *n;
4710         int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4711         if (e != JIM_OK) {
4712                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4713                 return e;
4714         }
4715         struct target *target = Jim_CmdPrivData(interp);
4716         target_handle_event(target, n->value);
4717         return JIM_OK;
4718 }
4719
4720 static const struct command_registration target_instance_command_handlers[] = {
4721         {
4722                 .name = "configure",
4723                 .mode = COMMAND_CONFIG,
4724                 .jim_handler = jim_target_configure,
4725                 .help  = "configure a new target for use",
4726                 .usage = "[target_attribute ...]",
4727         },
4728         {
4729                 .name = "cget",
4730                 .mode = COMMAND_ANY,
4731                 .jim_handler = jim_target_configure,
4732                 .help  = "returns the specified target attribute",
4733                 .usage = "target_attribute",
4734         },
4735         {
4736                 .name = "mww",
4737                 .mode = COMMAND_EXEC,
4738                 .jim_handler = jim_target_mw,
4739                 .help = "Write 32-bit word(s) to target memory",
4740                 .usage = "address data [count]",
4741         },
4742         {
4743                 .name = "mwh",
4744                 .mode = COMMAND_EXEC,
4745                 .jim_handler = jim_target_mw,
4746                 .help = "Write 16-bit half-word(s) to target memory",
4747                 .usage = "address data [count]",
4748         },
4749         {
4750                 .name = "mwb",
4751                 .mode = COMMAND_EXEC,
4752                 .jim_handler = jim_target_mw,
4753                 .help = "Write byte(s) to target memory",
4754                 .usage = "address data [count]",
4755         },
4756         {
4757                 .name = "mdw",
4758                 .mode = COMMAND_EXEC,
4759                 .jim_handler = jim_target_md,
4760                 .help = "Display target memory as 32-bit words",
4761                 .usage = "address [count]",
4762         },
4763         {
4764                 .name = "mdh",
4765                 .mode = COMMAND_EXEC,
4766                 .jim_handler = jim_target_md,
4767                 .help = "Display target memory as 16-bit half-words",
4768                 .usage = "address [count]",
4769         },
4770         {
4771                 .name = "mdb",
4772                 .mode = COMMAND_EXEC,
4773                 .jim_handler = jim_target_md,
4774                 .help = "Display target memory as 8-bit bytes",
4775                 .usage = "address [count]",
4776         },
4777         {
4778                 .name = "array2mem",
4779                 .mode = COMMAND_EXEC,
4780                 .jim_handler = jim_target_array2mem,
4781                 .help = "Writes Tcl array of 8/16/32 bit numbers "
4782                         "to target memory",
4783                 .usage = "arrayname bitwidth address count",
4784         },
4785         {
4786                 .name = "mem2array",
4787                 .mode = COMMAND_EXEC,
4788                 .jim_handler = jim_target_mem2array,
4789                 .help = "Loads Tcl array of 8/16/32 bit numbers "
4790                         "from target memory",
4791                 .usage = "arrayname bitwidth address count",
4792         },
4793         {
4794                 .name = "eventlist",
4795                 .mode = COMMAND_EXEC,
4796                 .jim_handler = jim_target_event_list,
4797                 .help = "displays a table of events defined for this target",
4798         },
4799         {
4800                 .name = "curstate",
4801                 .mode = COMMAND_EXEC,
4802                 .jim_handler = jim_target_current_state,
4803                 .help = "displays the current state of this target",
4804         },
4805         {
4806                 .name = "arp_examine",
4807                 .mode = COMMAND_EXEC,
4808                 .jim_handler = jim_target_examine,
4809                 .help = "used internally for reset processing",
4810         },
4811         {
4812                 .name = "arp_halt_gdb",
4813                 .mode = COMMAND_EXEC,
4814                 .jim_handler = jim_target_halt_gdb,
4815                 .help = "used internally for reset processing to halt GDB",
4816         },
4817         {
4818                 .name = "arp_poll",
4819                 .mode = COMMAND_EXEC,
4820                 .jim_handler = jim_target_poll,
4821                 .help = "used internally for reset processing",
4822         },
4823         {
4824                 .name = "arp_reset",
4825                 .mode = COMMAND_EXEC,
4826                 .jim_handler = jim_target_reset,
4827                 .help = "used internally for reset processing",
4828         },
4829         {
4830                 .name = "arp_halt",
4831                 .mode = COMMAND_EXEC,
4832                 .jim_handler = jim_target_halt,
4833                 .help = "used internally for reset processing",
4834         },
4835         {
4836                 .name = "arp_waitstate",
4837                 .mode = COMMAND_EXEC,
4838                 .jim_handler = jim_target_wait_state,
4839                 .help = "used internally for reset processing",
4840         },
4841         {
4842                 .name = "invoke-event",
4843                 .mode = COMMAND_EXEC,
4844                 .jim_handler = jim_target_invoke_event,
4845                 .help = "invoke handler for specified event",
4846                 .usage = "event_name",
4847         },
4848         COMMAND_REGISTRATION_DONE
4849 };
4850
4851 static int target_create(Jim_GetOptInfo *goi)
4852 {
4853         Jim_Obj *new_cmd;
4854         Jim_Cmd *cmd;
4855         const char *cp;
4856         char *cp2;
4857         int e;
4858         int x;
4859         struct target *target;
4860         struct command_context *cmd_ctx;
4861
4862         cmd_ctx = current_command_context(goi->interp);
4863         assert(cmd_ctx != NULL);
4864
4865         if (goi->argc < 3) {
4866                 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
4867                 return JIM_ERR;
4868         }
4869
4870         /* COMMAND */
4871         Jim_GetOpt_Obj(goi, &new_cmd);
4872         /* does this command exist? */
4873         cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
4874         if (cmd) {
4875                 cp = Jim_GetString(new_cmd, NULL);
4876                 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
4877                 return JIM_ERR;
4878         }
4879
4880         /* TYPE */
4881         e = Jim_GetOpt_String(goi, &cp2, NULL);
4882         if (e != JIM_OK)
4883                 return e;
4884         cp = cp2;
4885         /* now does target type exist */
4886         for (x = 0 ; target_types[x] ; x++) {
4887                 if (0 == strcmp(cp, target_types[x]->name)) {
4888                         /* found */
4889                         break;
4890                 }
4891
4892                 /* check for deprecated name */
4893                 if (target_types[x]->deprecated_name) {
4894                         if (0 == strcmp(cp, target_types[x]->deprecated_name)) {
4895                                 /* found */
4896                                 LOG_WARNING("target name is deprecated use: \'%s\'", target_types[x]->name);
4897                                 break;
4898                         }
4899                 }
4900         }
4901         if (target_types[x] == NULL) {
4902                 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
4903                 for (x = 0 ; target_types[x] ; x++) {
4904                         if (target_types[x + 1]) {
4905                                 Jim_AppendStrings(goi->interp,
4906                                                                    Jim_GetResult(goi->interp),
4907                                                                    target_types[x]->name,
4908                                                                    ", ", NULL);
4909                         } else {
4910                                 Jim_AppendStrings(goi->interp,
4911                                                                    Jim_GetResult(goi->interp),
4912                                                                    " or ",
4913                                                                    target_types[x]->name, NULL);
4914                         }
4915                 }
4916                 return JIM_ERR;
4917         }
4918
4919         /* Create it */
4920         target = calloc(1, sizeof(struct target));
4921         /* set target number */
4922         target->target_number = new_target_number();
4923
4924         /* allocate memory for each unique target type */
4925         target->type = (struct target_type *)calloc(1, sizeof(struct target_type));
4926
4927         memcpy(target->type, target_types[x], sizeof(struct target_type));
4928
4929         /* will be set by "-endian" */
4930         target->endianness = TARGET_ENDIAN_UNKNOWN;
4931
4932         /* default to first core, override with -coreid */
4933         target->coreid = 0;
4934
4935         target->working_area        = 0x0;
4936         target->working_area_size   = 0x0;
4937         target->working_areas       = NULL;
4938         target->backup_working_area = 0;
4939
4940         target->state               = TARGET_UNKNOWN;
4941         target->debug_reason        = DBG_REASON_UNDEFINED;
4942         target->reg_cache           = NULL;
4943         target->breakpoints         = NULL;
4944         target->watchpoints         = NULL;
4945         target->next                = NULL;
4946         target->arch_info           = NULL;
4947
4948         target->display             = 1;
4949
4950         target->halt_issued                     = false;
4951
4952         /* initialize trace information */
4953         target->trace_info = malloc(sizeof(struct trace));
4954         target->trace_info->num_trace_points         = 0;
4955         target->trace_info->trace_points_size        = 0;
4956         target->trace_info->trace_points             = NULL;
4957         target->trace_info->trace_history_size       = 0;
4958         target->trace_info->trace_history            = NULL;
4959         target->trace_info->trace_history_pos        = 0;
4960         target->trace_info->trace_history_overflowed = 0;
4961
4962         target->dbgmsg          = NULL;
4963         target->dbg_msg_enabled = 0;
4964
4965         target->endianness = TARGET_ENDIAN_UNKNOWN;
4966
4967         target->rtos = NULL;
4968         target->rtos_auto_detect = false;
4969
4970         /* Do the rest as "configure" options */
4971         goi->isconfigure = 1;
4972         e = target_configure(goi, target);
4973
4974         if (target->tap == NULL) {
4975                 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
4976                 e = JIM_ERR;
4977         }
4978
4979         if (e != JIM_OK) {
4980                 free(target->type);
4981                 free(target);
4982                 return e;
4983         }
4984
4985         if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
4986                 /* default endian to little if not specified */
4987                 target->endianness = TARGET_LITTLE_ENDIAN;
4988         }
4989
4990         /* incase variant is not set */
4991         if (!target->variant)
4992                 target->variant = strdup("");
4993
4994         cp = Jim_GetString(new_cmd, NULL);
4995         target->cmd_name = strdup(cp);
4996
4997         /* create the target specific commands */
4998         if (target->type->commands) {
4999                 e = register_commands(cmd_ctx, NULL, target->type->commands);
5000                 if (ERROR_OK != e)
5001                         LOG_ERROR("unable to register '%s' commands", cp);
5002         }
5003         if (target->type->target_create)
5004                 (*(target->type->target_create))(target, goi->interp);
5005
5006         /* append to end of list */
5007         {
5008                 struct target **tpp;
5009                 tpp = &(all_targets);
5010                 while (*tpp)
5011                         tpp = &((*tpp)->next);
5012                 *tpp = target;
5013         }
5014
5015         /* now - create the new target name command */
5016         const const struct command_registration target_subcommands[] = {
5017                 {
5018                         .chain = target_instance_command_handlers,
5019                 },
5020                 {
5021                         .chain = target->type->commands,
5022                 },
5023                 COMMAND_REGISTRATION_DONE
5024         };
5025         const const struct command_registration target_commands[] = {
5026                 {
5027                         .name = cp,
5028                         .mode = COMMAND_ANY,
5029                         .help = "target command group",
5030                         .usage = "",
5031                         .chain = target_subcommands,
5032                 },
5033                 COMMAND_REGISTRATION_DONE
5034         };
5035         e = register_commands(cmd_ctx, NULL, target_commands);
5036         if (ERROR_OK != e)
5037                 return JIM_ERR;
5038
5039         struct command *c = command_find_in_context(cmd_ctx, cp);
5040         assert(c);
5041         command_set_handler_data(c, target);
5042
5043         return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
5044 }
5045
5046 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5047 {
5048         if (argc != 1) {
5049                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5050                 return JIM_ERR;
5051         }
5052         struct command_context *cmd_ctx = current_command_context(interp);
5053         assert(cmd_ctx != NULL);
5054
5055         Jim_SetResultString(interp, target_name(get_current_target(cmd_ctx)), -1);
5056         return JIM_OK;
5057 }
5058
5059 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5060 {
5061         if (argc != 1) {
5062                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5063                 return JIM_ERR;
5064         }
5065         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5066         for (unsigned x = 0; NULL != target_types[x]; x++) {
5067                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5068                         Jim_NewStringObj(interp, target_types[x]->name, -1));
5069         }
5070         return JIM_OK;
5071 }
5072
5073 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5074 {
5075         if (argc != 1) {
5076                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5077                 return JIM_ERR;
5078         }
5079         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5080         struct target *target = all_targets;
5081         while (target) {
5082                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5083                         Jim_NewStringObj(interp, target_name(target), -1));
5084                 target = target->next;
5085         }
5086         return JIM_OK;
5087 }
5088
5089 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5090 {
5091         int i;
5092         const char *targetname;
5093         int retval, len;
5094         struct target *target = (struct target *) NULL;
5095         struct target_list *head, *curr, *new;
5096         curr = (struct target_list *) NULL;
5097         head = (struct target_list *) NULL;
5098
5099         retval = 0;
5100         LOG_DEBUG("%d", argc);
5101         /* argv[1] = target to associate in smp
5102          * argv[2] = target to assoicate in smp
5103          * argv[3] ...
5104          */
5105
5106         for (i = 1; i < argc; i++) {
5107
5108                 targetname = Jim_GetString(argv[i], &len);
5109                 target = get_target(targetname);
5110                 LOG_DEBUG("%s ", targetname);
5111                 if (target) {
5112                         new = malloc(sizeof(struct target_list));
5113                         new->target = target;
5114                         new->next = (struct target_list *)NULL;
5115                         if (head == (struct target_list *)NULL) {
5116                                 head = new;
5117                                 curr = head;
5118                         } else {
5119                                 curr->next = new;
5120                                 curr = new;
5121                         }
5122                 }
5123         }
5124         /*  now parse the list of cpu and put the target in smp mode*/
5125         curr = head;
5126
5127         while (curr != (struct target_list *)NULL) {
5128                 target = curr->target;
5129                 target->smp = 1;
5130                 target->head = head;
5131                 curr = curr->next;
5132         }
5133
5134         if (target && target->rtos)
5135                 retval = rtos_smp_init(head->target);
5136
5137         return retval;
5138 }
5139
5140
5141 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5142 {
5143         Jim_GetOptInfo goi;
5144         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5145         if (goi.argc < 3) {
5146                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5147                         "<name> <target_type> [<target_options> ...]");
5148                 return JIM_ERR;
5149         }
5150         return target_create(&goi);
5151 }
5152
5153 static int jim_target_number(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5154 {
5155         Jim_GetOptInfo goi;
5156         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5157
5158         /* It's OK to remove this mechanism sometime after August 2010 or so */
5159         LOG_WARNING("don't use numbers as target identifiers; use names");
5160         if (goi.argc != 1) {
5161                 Jim_SetResultFormatted(goi.interp, "usage: target number <number>");
5162                 return JIM_ERR;
5163         }
5164         jim_wide w;
5165         int e = Jim_GetOpt_Wide(&goi, &w);
5166         if (e != JIM_OK)
5167                 return JIM_ERR;
5168
5169         struct target *target;
5170         for (target = all_targets; NULL != target; target = target->next) {
5171                 if (target->target_number != w)
5172                         continue;
5173
5174                 Jim_SetResultString(goi.interp, target_name(target), -1);
5175                 return JIM_OK;
5176         }
5177         {
5178                 Jim_Obj *wObj = Jim_NewIntObj(goi.interp, w);
5179                 Jim_SetResultFormatted(goi.interp,
5180                         "Target: number %#s does not exist", wObj);
5181                 Jim_FreeNewObj(interp, wObj);
5182         }
5183         return JIM_ERR;
5184 }
5185
5186 static int jim_target_count(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5187 {
5188         if (argc != 1) {
5189                 Jim_WrongNumArgs(interp, 1, argv, "<no parameters>");
5190                 return JIM_ERR;
5191         }
5192         unsigned count = 0;
5193         struct target *target = all_targets;
5194         while (NULL != target) {
5195                 target = target->next;
5196                 count++;
5197         }
5198         Jim_SetResult(interp, Jim_NewIntObj(interp, count));
5199         return JIM_OK;
5200 }
5201
5202 static const struct command_registration target_subcommand_handlers[] = {
5203         {
5204                 .name = "init",
5205                 .mode = COMMAND_CONFIG,
5206                 .handler = handle_target_init_command,
5207                 .help = "initialize targets",
5208         },
5209         {
5210                 .name = "create",
5211                 /* REVISIT this should be COMMAND_CONFIG ... */
5212                 .mode = COMMAND_ANY,
5213                 .jim_handler = jim_target_create,
5214                 .usage = "name type '-chain-position' name [options ...]",
5215                 .help = "Creates and selects a new target",
5216         },
5217         {
5218                 .name = "current",
5219                 .mode = COMMAND_ANY,
5220                 .jim_handler = jim_target_current,
5221                 .help = "Returns the currently selected target",
5222         },
5223         {
5224                 .name = "types",
5225                 .mode = COMMAND_ANY,
5226                 .jim_handler = jim_target_types,
5227                 .help = "Returns the available target types as "
5228                                 "a list of strings",
5229         },
5230         {
5231                 .name = "names",
5232                 .mode = COMMAND_ANY,
5233                 .jim_handler = jim_target_names,
5234                 .help = "Returns the names of all targets as a list of strings",
5235         },
5236         {
5237                 .name = "number",
5238                 .mode = COMMAND_ANY,
5239                 .jim_handler = jim_target_number,
5240                 .usage = "number",
5241                 .help = "Returns the name of the numbered target "
5242                         "(DEPRECATED)",
5243         },
5244         {
5245                 .name = "count",
5246                 .mode = COMMAND_ANY,
5247                 .jim_handler = jim_target_count,
5248                 .help = "Returns the number of targets as an integer "
5249                         "(DEPRECATED)",
5250         },
5251         {
5252                 .name = "smp",
5253                 .mode = COMMAND_ANY,
5254                 .jim_handler = jim_target_smp,
5255                 .usage = "targetname1 targetname2 ...",
5256                 .help = "gather several target in a smp list"
5257         },
5258
5259         COMMAND_REGISTRATION_DONE
5260 };
5261
5262 struct FastLoad {
5263         uint32_t address;
5264         uint8_t *data;
5265         int length;
5266
5267 };
5268
5269 static int fastload_num;
5270 static struct FastLoad *fastload;
5271
5272 static void free_fastload(void)
5273 {
5274         if (fastload != NULL) {
5275                 int i;
5276                 for (i = 0; i < fastload_num; i++) {
5277                         if (fastload[i].data)
5278                                 free(fastload[i].data);
5279                 }
5280                 free(fastload);
5281                 fastload = NULL;
5282         }
5283 }
5284
5285 COMMAND_HANDLER(handle_fast_load_image_command)
5286 {
5287         uint8_t *buffer;
5288         size_t buf_cnt;
5289         uint32_t image_size;
5290         uint32_t min_address = 0;
5291         uint32_t max_address = 0xffffffff;
5292         int i;
5293
5294         struct image image;
5295
5296         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
5297                         &image, &min_address, &max_address);
5298         if (ERROR_OK != retval)
5299                 return retval;
5300
5301         struct duration bench;
5302         duration_start(&bench);
5303
5304         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
5305         if (retval != ERROR_OK)
5306                 return retval;
5307
5308         image_size = 0x0;
5309         retval = ERROR_OK;
5310         fastload_num = image.num_sections;
5311         fastload = (struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
5312         if (fastload == NULL) {
5313                 command_print(CMD_CTX, "out of memory");
5314                 image_close(&image);
5315                 return ERROR_FAIL;
5316         }
5317         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
5318         for (i = 0; i < image.num_sections; i++) {
5319                 buffer = malloc(image.sections[i].size);
5320                 if (buffer == NULL) {
5321                         command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5322                                                   (int)(image.sections[i].size));
5323                         retval = ERROR_FAIL;
5324                         break;
5325                 }
5326
5327                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
5328                 if (retval != ERROR_OK) {
5329                         free(buffer);
5330                         break;
5331                 }
5332
5333                 uint32_t offset = 0;
5334                 uint32_t length = buf_cnt;
5335
5336                 /* DANGER!!! beware of unsigned comparision here!!! */
5337
5338                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
5339                                 (image.sections[i].base_address < max_address)) {
5340                         if (image.sections[i].base_address < min_address) {
5341                                 /* clip addresses below */
5342                                 offset += min_address-image.sections[i].base_address;
5343                                 length -= offset;
5344                         }
5345
5346                         if (image.sections[i].base_address + buf_cnt > max_address)
5347                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5348
5349                         fastload[i].address = image.sections[i].base_address + offset;
5350                         fastload[i].data = malloc(length);
5351                         if (fastload[i].data == NULL) {
5352                                 free(buffer);
5353                                 command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5354                                                           length);
5355                                 retval = ERROR_FAIL;
5356                                 break;
5357                         }
5358                         memcpy(fastload[i].data, buffer + offset, length);
5359                         fastload[i].length = length;
5360
5361                         image_size += length;
5362                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
5363                                                   (unsigned int)length,
5364                                                   ((unsigned int)(image.sections[i].base_address + offset)));
5365                 }
5366
5367                 free(buffer);
5368         }
5369
5370         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
5371                 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
5372                                 "in %fs (%0.3f KiB/s)", image_size,
5373                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5374
5375                 command_print(CMD_CTX,
5376                                 "WARNING: image has not been loaded to target!"
5377                                 "You can issue a 'fast_load' to finish loading.");
5378         }
5379
5380         image_close(&image);
5381
5382         if (retval != ERROR_OK)
5383                 free_fastload();
5384
5385         return retval;
5386 }
5387
5388 COMMAND_HANDLER(handle_fast_load_command)
5389 {
5390         if (CMD_ARGC > 0)
5391                 return ERROR_COMMAND_SYNTAX_ERROR;
5392         if (fastload == NULL) {
5393                 LOG_ERROR("No image in memory");
5394                 return ERROR_FAIL;
5395         }
5396         int i;
5397         int ms = timeval_ms();
5398         int size = 0;
5399         int retval = ERROR_OK;
5400         for (i = 0; i < fastload_num; i++) {
5401                 struct target *target = get_current_target(CMD_CTX);
5402                 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
5403                                           (unsigned int)(fastload[i].address),
5404                                           (unsigned int)(fastload[i].length));
5405                 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5406                 if (retval != ERROR_OK)
5407                         break;
5408                 size += fastload[i].length;
5409         }
5410         if (retval == ERROR_OK) {
5411                 int after = timeval_ms();
5412                 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5413         }
5414         return retval;
5415 }
5416
5417 static const struct command_registration target_command_handlers[] = {
5418         {
5419                 .name = "targets",
5420                 .handler = handle_targets_command,
5421                 .mode = COMMAND_ANY,
5422                 .help = "change current default target (one parameter) "
5423                         "or prints table of all targets (no parameters)",
5424                 .usage = "[target]",
5425         },
5426         {
5427                 .name = "target",
5428                 .mode = COMMAND_CONFIG,
5429                 .help = "configure target",
5430
5431                 .chain = target_subcommand_handlers,
5432         },
5433         COMMAND_REGISTRATION_DONE
5434 };
5435
5436 int target_register_commands(struct command_context *cmd_ctx)
5437 {
5438         return register_commands(cmd_ctx, NULL, target_command_handlers);
5439 }
5440
5441 static bool target_reset_nag = true;
5442
5443 bool get_target_reset_nag(void)
5444 {
5445         return target_reset_nag;
5446 }
5447
5448 COMMAND_HANDLER(handle_target_reset_nag)
5449 {
5450         return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5451                         &target_reset_nag, "Nag after each reset about options to improve "
5452                         "performance");
5453 }
5454
5455 COMMAND_HANDLER(handle_ps_command)
5456 {
5457         struct target *target = get_current_target(CMD_CTX);
5458         char *display;
5459         if (target->state != TARGET_HALTED) {
5460                 LOG_INFO("target not halted !!");
5461                 return ERROR_OK;
5462         }
5463
5464         if ((target->rtos) && (target->rtos->type)
5465                         && (target->rtos->type->ps_command)) {
5466                 display = target->rtos->type->ps_command(target);
5467                 command_print(CMD_CTX, "%s", display);
5468                 free(display);
5469                 return ERROR_OK;
5470         } else {
5471                 LOG_INFO("failed");
5472                 return ERROR_TARGET_FAILURE;
5473         }
5474 }
5475
5476 static const struct command_registration target_exec_command_handlers[] = {
5477         {
5478                 .name = "fast_load_image",
5479                 .handler = handle_fast_load_image_command,
5480                 .mode = COMMAND_ANY,
5481                 .help = "Load image into server memory for later use by "
5482                         "fast_load; primarily for profiling",
5483                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5484                         "[min_address [max_length]]",
5485         },
5486         {
5487                 .name = "fast_load",
5488                 .handler = handle_fast_load_command,
5489                 .mode = COMMAND_EXEC,
5490                 .help = "loads active fast load image to current target "
5491                         "- mainly for profiling purposes",
5492                 .usage = "",
5493         },
5494         {
5495                 .name = "profile",
5496                 .handler = handle_profile_command,
5497                 .mode = COMMAND_EXEC,
5498                 .usage = "seconds filename",
5499                 .help = "profiling samples the CPU PC",
5500         },
5501         /** @todo don't register virt2phys() unless target supports it */
5502         {
5503                 .name = "virt2phys",
5504                 .handler = handle_virt2phys_command,
5505                 .mode = COMMAND_ANY,
5506                 .help = "translate a virtual address into a physical address",
5507                 .usage = "virtual_address",
5508         },
5509         {
5510                 .name = "reg",
5511                 .handler = handle_reg_command,
5512                 .mode = COMMAND_EXEC,
5513                 .help = "display or set a register; with no arguments, "
5514                         "displays all registers and their values",
5515                 .usage = "[(register_name|register_number) [value]]",
5516         },
5517         {
5518                 .name = "poll",
5519                 .handler = handle_poll_command,
5520                 .mode = COMMAND_EXEC,
5521                 .help = "poll target state; or reconfigure background polling",
5522                 .usage = "['on'|'off']",
5523         },
5524         {
5525                 .name = "wait_halt",
5526                 .handler = handle_wait_halt_command,
5527                 .mode = COMMAND_EXEC,
5528                 .help = "wait up to the specified number of milliseconds "
5529                         "(default 5) for a previously requested halt",
5530                 .usage = "[milliseconds]",
5531         },
5532         {
5533                 .name = "halt",
5534                 .handler = handle_halt_command,
5535                 .mode = COMMAND_EXEC,
5536                 .help = "request target to halt, then wait up to the specified"
5537                         "number of milliseconds (default 5) for it to complete",
5538                 .usage = "[milliseconds]",
5539         },
5540         {
5541                 .name = "resume",
5542                 .handler = handle_resume_command,
5543                 .mode = COMMAND_EXEC,
5544                 .help = "resume target execution from current PC or address",
5545                 .usage = "[address]",
5546         },
5547         {
5548                 .name = "reset",
5549                 .handler = handle_reset_command,
5550                 .mode = COMMAND_EXEC,
5551                 .usage = "[run|halt|init]",
5552                 .help = "Reset all targets into the specified mode."
5553                         "Default reset mode is run, if not given.",
5554         },
5555         {
5556                 .name = "soft_reset_halt",
5557                 .handler = handle_soft_reset_halt_command,
5558                 .mode = COMMAND_EXEC,
5559                 .usage = "",
5560                 .help = "halt the target and do a soft reset",
5561         },
5562         {
5563                 .name = "step",
5564                 .handler = handle_step_command,
5565                 .mode = COMMAND_EXEC,
5566                 .help = "step one instruction from current PC or address",
5567                 .usage = "[address]",
5568         },
5569         {
5570                 .name = "mdw",
5571                 .handler = handle_md_command,
5572                 .mode = COMMAND_EXEC,
5573                 .help = "display memory words",
5574                 .usage = "['phys'] address [count]",
5575         },
5576         {
5577                 .name = "mdh",
5578                 .handler = handle_md_command,
5579                 .mode = COMMAND_EXEC,
5580                 .help = "display memory half-words",
5581                 .usage = "['phys'] address [count]",
5582         },
5583         {
5584                 .name = "mdb",
5585                 .handler = handle_md_command,
5586                 .mode = COMMAND_EXEC,
5587                 .help = "display memory bytes",
5588                 .usage = "['phys'] address [count]",
5589         },
5590         {
5591                 .name = "mww",
5592                 .handler = handle_mw_command,
5593                 .mode = COMMAND_EXEC,
5594                 .help = "write memory word",
5595                 .usage = "['phys'] address value [count]",
5596         },
5597         {
5598                 .name = "mwh",
5599                 .handler = handle_mw_command,
5600                 .mode = COMMAND_EXEC,
5601                 .help = "write memory half-word",
5602                 .usage = "['phys'] address value [count]",
5603         },
5604         {
5605                 .name = "mwb",
5606                 .handler = handle_mw_command,
5607                 .mode = COMMAND_EXEC,
5608                 .help = "write memory byte",
5609                 .usage = "['phys'] address value [count]",
5610         },
5611         {
5612                 .name = "bp",
5613                 .handler = handle_bp_command,
5614                 .mode = COMMAND_EXEC,
5615                 .help = "list or set hardware or software breakpoint",
5616                 .usage = "<address> [<asid>]<length> ['hw'|'hw_ctx']",
5617         },
5618         {
5619                 .name = "rbp",
5620                 .handler = handle_rbp_command,
5621                 .mode = COMMAND_EXEC,
5622                 .help = "remove breakpoint",
5623                 .usage = "address",
5624         },
5625         {
5626                 .name = "wp",
5627                 .handler = handle_wp_command,
5628                 .mode = COMMAND_EXEC,
5629                 .help = "list (no params) or create watchpoints",
5630                 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
5631         },
5632         {
5633                 .name = "rwp",
5634                 .handler = handle_rwp_command,
5635                 .mode = COMMAND_EXEC,
5636                 .help = "remove watchpoint",
5637                 .usage = "address",
5638         },
5639         {
5640                 .name = "load_image",
5641                 .handler = handle_load_image_command,
5642                 .mode = COMMAND_EXEC,
5643                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5644                         "[min_address] [max_length]",
5645         },
5646         {
5647                 .name = "dump_image",
5648                 .handler = handle_dump_image_command,
5649                 .mode = COMMAND_EXEC,
5650                 .usage = "filename address size",
5651         },
5652         {
5653                 .name = "verify_image",
5654                 .handler = handle_verify_image_command,
5655                 .mode = COMMAND_EXEC,
5656                 .usage = "filename [offset [type]]",
5657         },
5658         {
5659                 .name = "test_image",
5660                 .handler = handle_test_image_command,
5661                 .mode = COMMAND_EXEC,
5662                 .usage = "filename [offset [type]]",
5663         },
5664         {
5665                 .name = "mem2array",
5666                 .mode = COMMAND_EXEC,
5667                 .jim_handler = jim_mem2array,
5668                 .help = "read 8/16/32 bit memory and return as a TCL array "
5669                         "for script processing",
5670                 .usage = "arrayname bitwidth address count",
5671         },
5672         {
5673                 .name = "array2mem",
5674                 .mode = COMMAND_EXEC,
5675                 .jim_handler = jim_array2mem,
5676                 .help = "convert a TCL array to memory locations "
5677                         "and write the 8/16/32 bit values",
5678                 .usage = "arrayname bitwidth address count",
5679         },
5680         {
5681                 .name = "reset_nag",
5682                 .handler = handle_target_reset_nag,
5683                 .mode = COMMAND_ANY,
5684                 .help = "Nag after each reset about options that could have been "
5685                                 "enabled to improve performance. ",
5686                 .usage = "['enable'|'disable']",
5687         },
5688         {
5689                 .name = "ps",
5690                 .handler = handle_ps_command,
5691                 .mode = COMMAND_EXEC,
5692                 .help = "list all tasks ",
5693                 .usage = " ",
5694         },
5695
5696         COMMAND_REGISTRATION_DONE
5697 };
5698 static int target_register_user_commands(struct command_context *cmd_ctx)
5699 {
5700         int retval = ERROR_OK;
5701         retval = target_request_register_commands(cmd_ctx);
5702         if (retval != ERROR_OK)
5703                 return retval;
5704
5705         retval = trace_register_commands(cmd_ctx);
5706         if (retval != ERROR_OK)
5707                 return retval;
5708
5709
5710         return register_commands(cmd_ctx, NULL, target_exec_command_handlers);
5711 }