Add target_bulk_write_memory wrapper:
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007,2008 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   This program is free software; you can redistribute it and/or modify  *
18  *   it under the terms of the GNU General Public License as published by  *
19  *   the Free Software Foundation; either version 2 of the License, or     *
20  *   (at your option) any later version.                                   *
21  *                                                                         *
22  *   This program is distributed in the hope that it will be useful,       *
23  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
24  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
25  *   GNU General Public License for more details.                          *
26  *                                                                         *
27  *   You should have received a copy of the GNU General Public License     *
28  *   along with this program; if not, write to the                         *
29  *   Free Software Foundation, Inc.,                                       *
30  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "target.h"
37 #include "target_request.h"
38 #include "time_support.h"
39 #include "register.h"
40 #include "trace.h"
41 #include "image.h"
42 #include "jtag.h"
43
44 #include <inttypes.h>
45
46
47 static int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
48
49 static int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
50 static int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
51 static int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
52 static int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
53 static int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
54 static int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
55 static int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
56 static int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
57 static int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
58 static int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
59 static int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
60 static int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
61 static int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
62 static int handle_test_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
63 static int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
64 static int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
65 static int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
66 static int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
67 static int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc);
68 static int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
69 static int handle_fast_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
70 static int handle_fast_load_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
71
72 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
73 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
74 static int jim_target( Jim_Interp *interp, int argc, Jim_Obj *const *argv);
75
76 static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv);
77 static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv);
78
79 /* targets */
80 extern target_type_t arm7tdmi_target;
81 extern target_type_t arm720t_target;
82 extern target_type_t arm9tdmi_target;
83 extern target_type_t arm920t_target;
84 extern target_type_t arm966e_target;
85 extern target_type_t arm926ejs_target;
86 extern target_type_t feroceon_target;
87 extern target_type_t xscale_target;
88 extern target_type_t cortexm3_target;
89 extern target_type_t cortexa8_target;
90 extern target_type_t arm11_target;
91 extern target_type_t mips_m4k_target;
92 extern target_type_t avr_target;
93
94 target_type_t *target_types[] =
95 {
96         &arm7tdmi_target,
97         &arm9tdmi_target,
98         &arm920t_target,
99         &arm720t_target,
100         &arm966e_target,
101         &arm926ejs_target,
102         &feroceon_target,
103         &xscale_target,
104         &cortexm3_target,
105         &cortexa8_target,
106         &arm11_target,
107         &mips_m4k_target,
108         &avr_target,
109         NULL,
110 };
111
112 target_t *all_targets = NULL;
113 target_event_callback_t *target_event_callbacks = NULL;
114 target_timer_callback_t *target_timer_callbacks = NULL;
115
116 const Jim_Nvp nvp_assert[] = {
117         { .name = "assert", NVP_ASSERT },
118         { .name = "deassert", NVP_DEASSERT },
119         { .name = "T", NVP_ASSERT },
120         { .name = "F", NVP_DEASSERT },
121         { .name = "t", NVP_ASSERT },
122         { .name = "f", NVP_DEASSERT },
123         { .name = NULL, .value = -1 }
124 };
125
126 const Jim_Nvp nvp_error_target[] = {
127         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
128         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
129         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
130         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
131         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
132         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
133         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
134         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
135         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
136         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
137         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
138         { .value = -1, .name = NULL }
139 };
140
141 const char *target_strerror_safe( int err )
142 {
143         const Jim_Nvp *n;
144
145         n = Jim_Nvp_value2name_simple( nvp_error_target, err );
146         if( n->name == NULL ){
147                 return "unknown";
148         } else {
149                 return n->name;
150         }
151 }
152
153 static const Jim_Nvp nvp_target_event[] = {
154         { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
155         { .value = TARGET_EVENT_OLD_pre_resume         , .name = "old-pre_resume" },
156
157         { .value = TARGET_EVENT_EARLY_HALTED, .name = "early-halted" },
158         { .value = TARGET_EVENT_HALTED, .name = "halted" },
159         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
160         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
161         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
162
163         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
164         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
165
166         /* historical name */
167
168         { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
169
170         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
171         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
172         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
173         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
174         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
175         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
176         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
177         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
178         { .value = TARGET_EVENT_RESET_INIT , .name = "reset-init" },
179         { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
180
181         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
182         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
183
184         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
185         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
186
187         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
188         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
189
190         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
191         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
192
193         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
194         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
195
196         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
197         { .value = TARGET_EVENT_RESUMED     , .name = "resume-ok" },
198         { .value = TARGET_EVENT_RESUME_END  , .name = "resume-end" },
199
200         { .name = NULL, .value = -1 }
201 };
202
203 const Jim_Nvp nvp_target_state[] = {
204         { .name = "unknown", .value = TARGET_UNKNOWN },
205         { .name = "running", .value = TARGET_RUNNING },
206         { .name = "halted",  .value = TARGET_HALTED },
207         { .name = "reset",   .value = TARGET_RESET },
208         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
209         { .name = NULL, .value = -1 },
210 };
211
212 const Jim_Nvp nvp_target_debug_reason [] = {
213         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
214         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
215         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
216         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
217         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
218         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
219         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
220         { .name = NULL, .value = -1 },
221 };
222
223 const Jim_Nvp nvp_target_endian[] = {
224         { .name = "big",    .value = TARGET_BIG_ENDIAN },
225         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
226         { .name = "be",     .value = TARGET_BIG_ENDIAN },
227         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
228         { .name = NULL,     .value = -1 },
229 };
230
231 const Jim_Nvp nvp_reset_modes[] = {
232         { .name = "unknown", .value = RESET_UNKNOWN },
233         { .name = "run"    , .value = RESET_RUN },
234         { .name = "halt"   , .value = RESET_HALT },
235         { .name = "init"   , .value = RESET_INIT },
236         { .name = NULL     , .value = -1 },
237 };
238
239 static int max_target_number(void)
240 {
241         target_t *t;
242         int x;
243
244         x = -1;
245         t = all_targets;
246         while( t ){
247                 if( x < t->target_number ){
248                         x = (t->target_number)+1;
249                 }
250                 t = t->next;
251         }
252         return x;
253 }
254
255 /* determine the number of the new target */
256 static int new_target_number(void)
257 {
258         target_t *t;
259         int x;
260
261         /* number is 0 based */
262         x = -1;
263         t = all_targets;
264         while(t){
265                 if( x < t->target_number ){
266                         x = t->target_number;
267                 }
268                 t = t->next;
269         }
270         return x+1;
271 }
272
273 static int target_continous_poll = 1;
274
275 /* read a u32 from a buffer in target memory endianness */
276 u32 target_buffer_get_u32(target_t *target, const u8 *buffer)
277 {
278         if (target->endianness == TARGET_LITTLE_ENDIAN)
279                 return le_to_h_u32(buffer);
280         else
281                 return be_to_h_u32(buffer);
282 }
283
284 /* read a u16 from a buffer in target memory endianness */
285 u16 target_buffer_get_u16(target_t *target, const u8 *buffer)
286 {
287         if (target->endianness == TARGET_LITTLE_ENDIAN)
288                 return le_to_h_u16(buffer);
289         else
290                 return be_to_h_u16(buffer);
291 }
292
293 /* read a u8 from a buffer in target memory endianness */
294 u8 target_buffer_get_u8(target_t *target, const u8 *buffer)
295 {
296         return *buffer & 0x0ff;
297 }
298
299 /* write a u32 to a buffer in target memory endianness */
300 void target_buffer_set_u32(target_t *target, u8 *buffer, u32 value)
301 {
302         if (target->endianness == TARGET_LITTLE_ENDIAN)
303                 h_u32_to_le(buffer, value);
304         else
305                 h_u32_to_be(buffer, value);
306 }
307
308 /* write a u16 to a buffer in target memory endianness */
309 void target_buffer_set_u16(target_t *target, u8 *buffer, u16 value)
310 {
311         if (target->endianness == TARGET_LITTLE_ENDIAN)
312                 h_u16_to_le(buffer, value);
313         else
314                 h_u16_to_be(buffer, value);
315 }
316
317 /* write a u8 to a buffer in target memory endianness */
318 void target_buffer_set_u8(target_t *target, u8 *buffer, u8 value)
319 {
320         *buffer = value;
321 }
322
323 /* return a pointer to a configured target; id is name or number */
324 target_t *get_target(const char *id)
325 {
326         target_t *target;
327         char *endptr;
328         int num;
329
330         /* try as tcltarget name */
331         for (target = all_targets; target; target = target->next) {
332                 if (target->cmd_name == NULL)
333                         continue;
334                 if (strcmp(id, target->cmd_name) == 0)
335                         return target;
336         }
337
338         /* no match, try as number */
339         num = strtoul(id, &endptr, 0);
340         if (*endptr != 0)
341                 return NULL;
342
343         for (target = all_targets; target; target = target->next) {
344                 if (target->target_number == num)
345                         return target;
346         }
347
348         return NULL;
349 }
350
351 /* returns a pointer to the n-th configured target */
352 static target_t *get_target_by_num(int num)
353 {
354         target_t *target = all_targets;
355
356         while (target){
357                 if( target->target_number == num ){
358                         return target;
359                 }
360                 target = target->next;
361         }
362
363         return NULL;
364 }
365
366 int get_num_by_target(target_t *query_target)
367 {
368         return query_target->target_number;
369 }
370
371 target_t* get_current_target(command_context_t *cmd_ctx)
372 {
373         target_t *target = get_target_by_num(cmd_ctx->current_target);
374
375         if (target == NULL)
376         {
377                 LOG_ERROR("BUG: current_target out of bounds");
378                 exit(-1);
379         }
380
381         return target;
382 }
383
384 int target_poll(struct target_s *target)
385 {
386         /* We can't poll until after examine */
387         if (!target_was_examined(target))
388         {
389                 /* Fail silently lest we pollute the log */
390                 return ERROR_FAIL;
391         }
392         return target->type->poll(target);
393 }
394
395 int target_halt(struct target_s *target)
396 {
397         /* We can't poll until after examine */
398         if (!target_was_examined(target))
399         {
400                 LOG_ERROR("Target not examined yet");
401                 return ERROR_FAIL;
402         }
403         return target->type->halt(target);
404 }
405
406 int target_resume(struct target_s *target, int current, u32 address, int handle_breakpoints, int debug_execution)
407 {
408         int retval;
409
410         /* We can't poll until after examine */
411         if (!target_was_examined(target))
412         {
413                 LOG_ERROR("Target not examined yet");
414                 return ERROR_FAIL;
415         }
416
417         /* note that resume *must* be asynchronous. The CPU can halt before we poll. The CPU can
418          * even halt at the current PC as a result of a software breakpoint being inserted by (a bug?)
419          * the application.
420          */
421         if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
422                 return retval;
423
424         return retval;
425 }
426
427 int target_process_reset(struct command_context_s *cmd_ctx, enum target_reset_mode reset_mode)
428 {
429         char buf[100];
430         int retval;
431         Jim_Nvp *n;
432         n = Jim_Nvp_value2name_simple( nvp_reset_modes, reset_mode );
433         if( n->name == NULL ){
434                 LOG_ERROR("invalid reset mode");
435                 return ERROR_FAIL;
436         }
437
438         sprintf( buf, "ocd_process_reset %s", n->name );
439         retval = Jim_Eval( interp, buf );
440
441         if(retval != JIM_OK) {
442                 Jim_PrintErrorMessage(interp);
443                 return ERROR_FAIL;
444         }
445
446         /* We want any events to be processed before the prompt */
447         retval = target_call_timer_callbacks_now();
448
449         return retval;
450 }
451
452 static int default_virt2phys(struct target_s *target, u32 virtual, u32 *physical)
453 {
454         *physical = virtual;
455         return ERROR_OK;
456 }
457
458 static int default_mmu(struct target_s *target, int *enabled)
459 {
460         *enabled = 0;
461         return ERROR_OK;
462 }
463
464 static int default_examine(struct target_s *target)
465 {
466         target_set_examined(target);
467         return ERROR_OK;
468 }
469
470 /* Targets that correctly implement init+examine, i.e.
471  * no communication with target during init:
472  *
473  * XScale
474  */
475 int target_examine(void)
476 {
477         int retval = ERROR_OK;
478         target_t *target = all_targets;
479         while (target)
480         {
481                 if ((retval = target->type->examine(target))!=ERROR_OK)
482                         return retval;
483                 target = target->next;
484         }
485         return retval;
486 }
487
488 static int target_write_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
489 {
490         if (!target_was_examined(target))
491         {
492                 LOG_ERROR("Target not examined yet");
493                 return ERROR_FAIL;
494         }
495         return target->type->write_memory_imp(target, address, size, count, buffer);
496 }
497
498 static int target_read_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
499 {
500         if (!target_was_examined(target))
501         {
502                 LOG_ERROR("Target not examined yet");
503                 return ERROR_FAIL;
504         }
505         return target->type->read_memory_imp(target, address, size, count, buffer);
506 }
507
508 static int target_soft_reset_halt_imp(struct target_s *target)
509 {
510         if (!target_was_examined(target))
511         {
512                 LOG_ERROR("Target not examined yet");
513                 return ERROR_FAIL;
514         }
515         return target->type->soft_reset_halt_imp(target);
516 }
517
518 static int target_run_algorithm_imp(struct target_s *target, int num_mem_params, mem_param_t *mem_params, int num_reg_params, reg_param_t *reg_param, u32 entry_point, u32 exit_point, int timeout_ms, void *arch_info)
519 {
520         if (!target_was_examined(target))
521         {
522                 LOG_ERROR("Target not examined yet");
523                 return ERROR_FAIL;
524         }
525         return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
526 }
527
528 int target_read_memory(struct target_s *target,
529                 u32 address, u32 size, u32 count, u8 *buffer)
530 {
531         return target->type->read_memory(target, address, size, count, buffer);
532 }
533
534 int target_write_memory(struct target_s *target,
535                 u32 address, u32 size, u32 count, u8 *buffer)
536 {
537         return target->type->write_memory(target, address, size, count, buffer);
538 }
539 int target_bulk_write_memory(struct target_s *target,
540                 u32 address, u32 count, u8 *buffer)
541 {
542         return target->type->bulk_write_memory(target, address, count, buffer);
543 }
544
545
546 int target_run_algorithm(struct target_s *target,
547                 int num_mem_params, mem_param_t *mem_params,
548                 int num_reg_params, reg_param_t *reg_param,
549                 u32 entry_point, u32 exit_point,
550                 int timeout_ms, void *arch_info)
551 {
552         return target->type->run_algorithm(target,
553                         num_mem_params, mem_params, num_reg_params, reg_param,
554                         entry_point, exit_point, timeout_ms, arch_info);
555 }
556
557 /// @returns @c true if the target has been examined.
558 bool target_was_examined(struct target_s *target)
559 {
560         return target->type->examined;
561 }
562 /// Sets the @c examined flag for the given target.
563 void target_set_examined(struct target_s *target)
564 {
565         target->type->examined = true;
566 }
567 // Reset the @c examined flag for the given target.
568 void target_reset_examined(struct target_s *target)
569 {
570         target->type->examined = false;
571 }
572
573
574 int target_init(struct command_context_s *cmd_ctx)
575 {
576         target_t *target = all_targets;
577         int retval;
578
579         while (target)
580         {
581                 target_reset_examined(target);
582                 if (target->type->examine == NULL)
583                 {
584                         target->type->examine = default_examine;
585                 }
586
587                 if ((retval = target->type->init_target(cmd_ctx, target)) != ERROR_OK)
588                 {
589                         LOG_ERROR("target '%s' init failed", target->type->name);
590                         return retval;
591                 }
592
593                 /* Set up default functions if none are provided by target */
594                 if (target->type->virt2phys == NULL)
595                 {
596                         target->type->virt2phys = default_virt2phys;
597                 }
598                 target->type->virt2phys = default_virt2phys;
599                 /* a non-invasive way(in terms of patches) to add some code that
600                  * runs before the type->write/read_memory implementation
601                  */
602                 target->type->write_memory_imp = target->type->write_memory;
603                 target->type->write_memory = target_write_memory_imp;
604                 target->type->read_memory_imp = target->type->read_memory;
605                 target->type->read_memory = target_read_memory_imp;
606                 target->type->soft_reset_halt_imp = target->type->soft_reset_halt;
607                 target->type->soft_reset_halt = target_soft_reset_halt_imp;
608                 target->type->run_algorithm_imp = target->type->run_algorithm;
609                 target->type->run_algorithm = target_run_algorithm_imp;
610
611                 if (target->type->mmu == NULL)
612                 {
613                         target->type->mmu = default_mmu;
614                 }
615                 target = target->next;
616         }
617
618         if (all_targets)
619         {
620                 if((retval = target_register_user_commands(cmd_ctx)) != ERROR_OK)
621                         return retval;
622                 if((retval = target_register_timer_callback(handle_target, 100, 1, NULL)) != ERROR_OK)
623                         return retval;
624         }
625
626         return ERROR_OK;
627 }
628
629 int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
630 {
631         target_event_callback_t **callbacks_p = &target_event_callbacks;
632
633         if (callback == NULL)
634         {
635                 return ERROR_INVALID_ARGUMENTS;
636         }
637
638         if (*callbacks_p)
639         {
640                 while ((*callbacks_p)->next)
641                         callbacks_p = &((*callbacks_p)->next);
642                 callbacks_p = &((*callbacks_p)->next);
643         }
644
645         (*callbacks_p) = malloc(sizeof(target_event_callback_t));
646         (*callbacks_p)->callback = callback;
647         (*callbacks_p)->priv = priv;
648         (*callbacks_p)->next = NULL;
649
650         return ERROR_OK;
651 }
652
653 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
654 {
655         target_timer_callback_t **callbacks_p = &target_timer_callbacks;
656         struct timeval now;
657
658         if (callback == NULL)
659         {
660                 return ERROR_INVALID_ARGUMENTS;
661         }
662
663         if (*callbacks_p)
664         {
665                 while ((*callbacks_p)->next)
666                         callbacks_p = &((*callbacks_p)->next);
667                 callbacks_p = &((*callbacks_p)->next);
668         }
669
670         (*callbacks_p) = malloc(sizeof(target_timer_callback_t));
671         (*callbacks_p)->callback = callback;
672         (*callbacks_p)->periodic = periodic;
673         (*callbacks_p)->time_ms = time_ms;
674
675         gettimeofday(&now, NULL);
676         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
677         time_ms -= (time_ms % 1000);
678         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
679         if ((*callbacks_p)->when.tv_usec > 1000000)
680         {
681                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
682                 (*callbacks_p)->when.tv_sec += 1;
683         }
684
685         (*callbacks_p)->priv = priv;
686         (*callbacks_p)->next = NULL;
687
688         return ERROR_OK;
689 }
690
691 int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
692 {
693         target_event_callback_t **p = &target_event_callbacks;
694         target_event_callback_t *c = target_event_callbacks;
695
696         if (callback == NULL)
697         {
698                 return ERROR_INVALID_ARGUMENTS;
699         }
700
701         while (c)
702         {
703                 target_event_callback_t *next = c->next;
704                 if ((c->callback == callback) && (c->priv == priv))
705                 {
706                         *p = next;
707                         free(c);
708                         return ERROR_OK;
709                 }
710                 else
711                         p = &(c->next);
712                 c = next;
713         }
714
715         return ERROR_OK;
716 }
717
718 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
719 {
720         target_timer_callback_t **p = &target_timer_callbacks;
721         target_timer_callback_t *c = target_timer_callbacks;
722
723         if (callback == NULL)
724         {
725                 return ERROR_INVALID_ARGUMENTS;
726         }
727
728         while (c)
729         {
730                 target_timer_callback_t *next = c->next;
731                 if ((c->callback == callback) && (c->priv == priv))
732                 {
733                         *p = next;
734                         free(c);
735                         return ERROR_OK;
736                 }
737                 else
738                         p = &(c->next);
739                 c = next;
740         }
741
742         return ERROR_OK;
743 }
744
745 int target_call_event_callbacks(target_t *target, enum target_event event)
746 {
747         target_event_callback_t *callback = target_event_callbacks;
748         target_event_callback_t *next_callback;
749
750         if (event == TARGET_EVENT_HALTED)
751         {
752                 /* execute early halted first */
753                 target_call_event_callbacks(target, TARGET_EVENT_EARLY_HALTED);
754         }
755
756         LOG_DEBUG("target event %i (%s)",
757                           event,
758                           Jim_Nvp_value2name_simple( nvp_target_event, event )->name );
759
760         target_handle_event( target, event );
761
762         while (callback)
763         {
764                 next_callback = callback->next;
765                 callback->callback(target, event, callback->priv);
766                 callback = next_callback;
767         }
768
769         return ERROR_OK;
770 }
771
772 static int target_call_timer_callbacks_check_time(int checktime)
773 {
774         target_timer_callback_t *callback = target_timer_callbacks;
775         target_timer_callback_t *next_callback;
776         struct timeval now;
777
778         keep_alive();
779
780         gettimeofday(&now, NULL);
781
782         while (callback)
783         {
784                 next_callback = callback->next;
785
786                 if ((!checktime&&callback->periodic)||
787                                 (((now.tv_sec >= callback->when.tv_sec) && (now.tv_usec >= callback->when.tv_usec))
788                                                 || (now.tv_sec > callback->when.tv_sec)))
789                 {
790                         if(callback->callback != NULL)
791                         {
792                                 callback->callback(callback->priv);
793                                 if (callback->periodic)
794                                 {
795                                         int time_ms = callback->time_ms;
796                                         callback->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
797                                         time_ms -= (time_ms % 1000);
798                                         callback->when.tv_sec = now.tv_sec + time_ms / 1000;
799                                         if (callback->when.tv_usec > 1000000)
800                                         {
801                                                 callback->when.tv_usec = callback->when.tv_usec - 1000000;
802                                                 callback->when.tv_sec += 1;
803                                         }
804                                 }
805                                 else
806                                 {
807                                         int retval;
808                                         if((retval = target_unregister_timer_callback(callback->callback, callback->priv)) != ERROR_OK)
809                                                 return retval;
810                                 }
811                         }
812                 }
813
814                 callback = next_callback;
815         }
816
817         return ERROR_OK;
818 }
819
820 int target_call_timer_callbacks(void)
821 {
822         return target_call_timer_callbacks_check_time(1);
823 }
824
825 /* invoke periodic callbacks immediately */
826 int target_call_timer_callbacks_now(void)
827 {
828         return target_call_timer_callbacks_check_time(0);
829 }
830
831 int target_alloc_working_area(struct target_s *target, u32 size, working_area_t **area)
832 {
833         working_area_t *c = target->working_areas;
834         working_area_t *new_wa = NULL;
835
836         /* Reevaluate working area address based on MMU state*/
837         if (target->working_areas == NULL)
838         {
839                 int retval;
840                 int enabled;
841                 retval = target->type->mmu(target, &enabled);
842                 if (retval != ERROR_OK)
843                 {
844                         return retval;
845                 }
846                 if (enabled)
847                 {
848                         target->working_area = target->working_area_virt;
849                 }
850                 else
851                 {
852                         target->working_area = target->working_area_phys;
853                 }
854         }
855
856         /* only allocate multiples of 4 byte */
857         if (size % 4)
858         {
859                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes, padding");
860                 size = CEIL(size, 4);
861         }
862
863         /* see if there's already a matching working area */
864         while (c)
865         {
866                 if ((c->free) && (c->size == size))
867                 {
868                         new_wa = c;
869                         break;
870                 }
871                 c = c->next;
872         }
873
874         /* if not, allocate a new one */
875         if (!new_wa)
876         {
877                 working_area_t **p = &target->working_areas;
878                 u32 first_free = target->working_area;
879                 u32 free_size = target->working_area_size;
880
881                 LOG_DEBUG("allocating new working area");
882
883                 c = target->working_areas;
884                 while (c)
885                 {
886                         first_free += c->size;
887                         free_size -= c->size;
888                         p = &c->next;
889                         c = c->next;
890                 }
891
892                 if (free_size < size)
893                 {
894                         LOG_WARNING("not enough working area available(requested %d, free %d)", size, free_size);
895                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
896                 }
897
898                 new_wa = malloc(sizeof(working_area_t));
899                 new_wa->next = NULL;
900                 new_wa->size = size;
901                 new_wa->address = first_free;
902
903                 if (target->backup_working_area)
904                 {
905                         int retval;
906                         new_wa->backup = malloc(new_wa->size);
907                         if((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
908                         {
909                                 free(new_wa->backup);
910                                 free(new_wa);
911                                 return retval;
912                         }
913                 }
914                 else
915                 {
916                         new_wa->backup = NULL;
917                 }
918
919                 /* put new entry in list */
920                 *p = new_wa;
921         }
922
923         /* mark as used, and return the new (reused) area */
924         new_wa->free = 0;
925         *area = new_wa;
926
927         /* user pointer */
928         new_wa->user = area;
929
930         return ERROR_OK;
931 }
932
933 int target_free_working_area_restore(struct target_s *target, working_area_t *area, int restore)
934 {
935         if (area->free)
936                 return ERROR_OK;
937
938         if (restore&&target->backup_working_area)
939         {
940                 int retval;
941                 if((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
942                         return retval;
943         }
944
945         area->free = 1;
946
947         /* mark user pointer invalid */
948         *area->user = NULL;
949         area->user = NULL;
950
951         return ERROR_OK;
952 }
953
954 int target_free_working_area(struct target_s *target, working_area_t *area)
955 {
956         return target_free_working_area_restore(target, area, 1);
957 }
958
959 /* free resources and restore memory, if restoring memory fails,
960  * free up resources anyway
961  */
962 void target_free_all_working_areas_restore(struct target_s *target, int restore)
963 {
964         working_area_t *c = target->working_areas;
965
966         while (c)
967         {
968                 working_area_t *next = c->next;
969                 target_free_working_area_restore(target, c, restore);
970
971                 if (c->backup)
972                         free(c->backup);
973
974                 free(c);
975
976                 c = next;
977         }
978
979         target->working_areas = NULL;
980 }
981
982 void target_free_all_working_areas(struct target_s *target)
983 {
984         target_free_all_working_areas_restore(target, 1);
985 }
986
987 int target_register_commands(struct command_context_s *cmd_ctx)
988 {
989
990         register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, "change the current command line target (one parameter) or lists targets (with no parameter)");
991
992
993
994
995         register_jim(cmd_ctx, "target", jim_target, "configure target" );
996
997         return ERROR_OK;
998 }
999
1000 int target_arch_state(struct target_s *target)
1001 {
1002         int retval;
1003         if (target==NULL)
1004         {
1005                 LOG_USER("No target has been configured");
1006                 return ERROR_OK;
1007         }
1008
1009         LOG_USER("target state: %s",
1010                  Jim_Nvp_value2name_simple(nvp_target_state,target->state)->name);
1011
1012         if (target->state!=TARGET_HALTED)
1013                 return ERROR_OK;
1014
1015         retval=target->type->arch_state(target);
1016         return retval;
1017 }
1018
1019 /* Single aligned words are guaranteed to use 16 or 32 bit access
1020  * mode respectively, otherwise data is handled as quickly as
1021  * possible
1022  */
1023 int target_write_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
1024 {
1025         int retval;
1026         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x", size, address);
1027
1028         if (!target_was_examined(target))
1029         {
1030                 LOG_ERROR("Target not examined yet");
1031                 return ERROR_FAIL;
1032         }
1033
1034         if (size == 0) {
1035                 return ERROR_OK;
1036         }
1037
1038         if ((address + size - 1) < address)
1039         {
1040                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1041                 LOG_ERROR("address+size wrapped(0x%08x, 0x%08x)", address, size);
1042                 return ERROR_FAIL;
1043         }
1044
1045         if (((address % 2) == 0) && (size == 2))
1046         {
1047                 return target_write_memory(target, address, 2, 1, buffer);
1048         }
1049
1050         /* handle unaligned head bytes */
1051         if (address % 4)
1052         {
1053                 u32 unaligned = 4 - (address % 4);
1054
1055                 if (unaligned > size)
1056                         unaligned = size;
1057
1058                 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1059                         return retval;
1060
1061                 buffer += unaligned;
1062                 address += unaligned;
1063                 size -= unaligned;
1064         }
1065
1066         /* handle aligned words */
1067         if (size >= 4)
1068         {
1069                 int aligned = size - (size % 4);
1070
1071                 /* use bulk writes above a certain limit. This may have to be changed */
1072                 if (aligned > 128)
1073                 {
1074                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1075                                 return retval;
1076                 }
1077                 else
1078                 {
1079                         if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1080                                 return retval;
1081                 }
1082
1083                 buffer += aligned;
1084                 address += aligned;
1085                 size -= aligned;
1086         }
1087
1088         /* handle tail writes of less than 4 bytes */
1089         if (size > 0)
1090         {
1091                 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1092                         return retval;
1093         }
1094
1095         return ERROR_OK;
1096 }
1097
1098 /* Single aligned words are guaranteed to use 16 or 32 bit access
1099  * mode respectively, otherwise data is handled as quickly as
1100  * possible
1101  */
1102 int target_read_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
1103 {
1104         int retval;
1105         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x", size, address);
1106
1107         if (!target_was_examined(target))
1108         {
1109                 LOG_ERROR("Target not examined yet");
1110                 return ERROR_FAIL;
1111         }
1112
1113         if (size == 0) {
1114                 return ERROR_OK;
1115         }
1116
1117         if ((address + size - 1) < address)
1118         {
1119                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1120                 LOG_ERROR("address+size wrapped(0x%08x, 0x%08x)", address, size);
1121                 return ERROR_FAIL;
1122         }
1123
1124         if (((address % 2) == 0) && (size == 2))
1125         {
1126                 return target_read_memory(target, address, 2, 1, buffer);
1127         }
1128
1129         /* handle unaligned head bytes */
1130         if (address % 4)
1131         {
1132                 u32 unaligned = 4 - (address % 4);
1133
1134                 if (unaligned > size)
1135                         unaligned = size;
1136
1137                 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1138                         return retval;
1139
1140                 buffer += unaligned;
1141                 address += unaligned;
1142                 size -= unaligned;
1143         }
1144
1145         /* handle aligned words */
1146         if (size >= 4)
1147         {
1148                 int aligned = size - (size % 4);
1149
1150                 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1151                         return retval;
1152
1153                 buffer += aligned;
1154                 address += aligned;
1155                 size -= aligned;
1156         }
1157
1158         /* handle tail writes of less than 4 bytes */
1159         if (size > 0)
1160         {
1161                 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1162                         return retval;
1163         }
1164
1165         return ERROR_OK;
1166 }
1167
1168 int target_checksum_memory(struct target_s *target, u32 address, u32 size, u32* crc)
1169 {
1170         u8 *buffer;
1171         int retval;
1172         u32 i;
1173         u32 checksum = 0;
1174         if (!target_was_examined(target))
1175         {
1176                 LOG_ERROR("Target not examined yet");
1177                 return ERROR_FAIL;
1178         }
1179
1180         if ((retval = target->type->checksum_memory(target, address,
1181                 size, &checksum)) != ERROR_OK)
1182         {
1183                 buffer = malloc(size);
1184                 if (buffer == NULL)
1185                 {
1186                         LOG_ERROR("error allocating buffer for section (%d bytes)", size);
1187                         return ERROR_INVALID_ARGUMENTS;
1188                 }
1189                 retval = target_read_buffer(target, address, size, buffer);
1190                 if (retval != ERROR_OK)
1191                 {
1192                         free(buffer);
1193                         return retval;
1194                 }
1195
1196                 /* convert to target endianess */
1197                 for (i = 0; i < (size/sizeof(u32)); i++)
1198                 {
1199                         u32 target_data;
1200                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(u32)]);
1201                         target_buffer_set_u32(target, &buffer[i*sizeof(u32)], target_data);
1202                 }
1203
1204                 retval = image_calculate_checksum( buffer, size, &checksum );
1205                 free(buffer);
1206         }
1207
1208         *crc = checksum;
1209
1210         return retval;
1211 }
1212
1213 int target_blank_check_memory(struct target_s *target, u32 address, u32 size, u32* blank)
1214 {
1215         int retval;
1216         if (!target_was_examined(target))
1217         {
1218                 LOG_ERROR("Target not examined yet");
1219                 return ERROR_FAIL;
1220         }
1221
1222         if (target->type->blank_check_memory == 0)
1223                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1224
1225         retval = target->type->blank_check_memory(target, address, size, blank);
1226
1227         return retval;
1228 }
1229
1230 int target_read_u32(struct target_s *target, u32 address, u32 *value)
1231 {
1232         u8 value_buf[4];
1233         if (!target_was_examined(target))
1234         {
1235                 LOG_ERROR("Target not examined yet");
1236                 return ERROR_FAIL;
1237         }
1238
1239         int retval = target_read_memory(target, address, 4, 1, value_buf);
1240
1241         if (retval == ERROR_OK)
1242         {
1243                 *value = target_buffer_get_u32(target, value_buf);
1244                 LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, *value);
1245         }
1246         else
1247         {
1248                 *value = 0x0;
1249                 LOG_DEBUG("address: 0x%8.8x failed", address);
1250         }
1251
1252         return retval;
1253 }
1254
1255 int target_read_u16(struct target_s *target, u32 address, u16 *value)
1256 {
1257         u8 value_buf[2];
1258         if (!target_was_examined(target))
1259         {
1260                 LOG_ERROR("Target not examined yet");
1261                 return ERROR_FAIL;
1262         }
1263
1264         int retval = target_read_memory(target, address, 2, 1, value_buf);
1265
1266         if (retval == ERROR_OK)
1267         {
1268                 *value = target_buffer_get_u16(target, value_buf);
1269                 LOG_DEBUG("address: 0x%8.8x, value: 0x%4.4x", address, *value);
1270         }
1271         else
1272         {
1273                 *value = 0x0;
1274                 LOG_DEBUG("address: 0x%8.8x failed", address);
1275         }
1276
1277         return retval;
1278 }
1279
1280 int target_read_u8(struct target_s *target, u32 address, u8 *value)
1281 {
1282         int retval = target_read_memory(target, address, 1, 1, value);
1283         if (!target_was_examined(target))
1284         {
1285                 LOG_ERROR("Target not examined yet");
1286                 return ERROR_FAIL;
1287         }
1288
1289         if (retval == ERROR_OK)
1290         {
1291                 LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, *value);
1292         }
1293         else
1294         {
1295                 *value = 0x0;
1296                 LOG_DEBUG("address: 0x%8.8x failed", address);
1297         }
1298
1299         return retval;
1300 }
1301
1302 int target_write_u32(struct target_s *target, u32 address, u32 value)
1303 {
1304         int retval;
1305         u8 value_buf[4];
1306         if (!target_was_examined(target))
1307         {
1308                 LOG_ERROR("Target not examined yet");
1309                 return ERROR_FAIL;
1310         }
1311
1312         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1313
1314         target_buffer_set_u32(target, value_buf, value);
1315         if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1316         {
1317                 LOG_DEBUG("failed: %i", retval);
1318         }
1319
1320         return retval;
1321 }
1322
1323 int target_write_u16(struct target_s *target, u32 address, u16 value)
1324 {
1325         int retval;
1326         u8 value_buf[2];
1327         if (!target_was_examined(target))
1328         {
1329                 LOG_ERROR("Target not examined yet");
1330                 return ERROR_FAIL;
1331         }
1332
1333         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1334
1335         target_buffer_set_u16(target, value_buf, value);
1336         if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1337         {
1338                 LOG_DEBUG("failed: %i", retval);
1339         }
1340
1341         return retval;
1342 }
1343
1344 int target_write_u8(struct target_s *target, u32 address, u8 value)
1345 {
1346         int retval;
1347         if (!target_was_examined(target))
1348         {
1349                 LOG_ERROR("Target not examined yet");
1350                 return ERROR_FAIL;
1351         }
1352
1353         LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, value);
1354
1355         if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1356         {
1357                 LOG_DEBUG("failed: %i", retval);
1358         }
1359
1360         return retval;
1361 }
1362
1363 int target_register_user_commands(struct command_context_s *cmd_ctx)
1364 {
1365         int retval = ERROR_OK;
1366
1367
1368         /* script procedures */
1369         register_command(cmd_ctx, NULL, "profile", handle_profile_command, COMMAND_EXEC, "profiling samples the CPU PC");
1370         register_jim(cmd_ctx, "ocd_mem2array", jim_mem2array, "read memory and return as a TCL array for script processing <ARRAYNAME> <WIDTH=32/16/8> <ADDRESS> <COUNT>");
1371         register_jim(cmd_ctx, "ocd_array2mem", jim_array2mem, "convert a TCL array to memory locations and write the values  <ARRAYNAME> <WIDTH=32/16/8> <ADDRESS> <COUNT>");
1372
1373         register_command(cmd_ctx, NULL, "fast_load_image", handle_fast_load_image_command, COMMAND_ANY,
1374                         "same args as load_image, image stored in memory - mainly for profiling purposes");
1375
1376         register_command(cmd_ctx, NULL, "fast_load", handle_fast_load_command, COMMAND_ANY,
1377                         "loads active fast load image to current target - mainly for profiling purposes");
1378
1379
1380         register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "translate a virtual address into a physical address");
1381         register_command(cmd_ctx,  NULL, "reg", handle_reg_command, COMMAND_EXEC, "display or set a register");
1382         register_command(cmd_ctx,  NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state");
1383         register_command(cmd_ctx,  NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]");
1384         register_command(cmd_ctx,  NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target");
1385         register_command(cmd_ctx,  NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]");
1386         register_command(cmd_ctx,  NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]");
1387         register_command(cmd_ctx,  NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run|halt|init] - default is run");
1388         register_command(cmd_ctx,  NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset");
1389
1390         register_command(cmd_ctx,  NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words <addr> [count]");
1391         register_command(cmd_ctx,  NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words <addr> [count]");
1392         register_command(cmd_ctx,  NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes <addr> [count]");
1393
1394         register_command(cmd_ctx,  NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word <addr> <value> [count]");
1395         register_command(cmd_ctx,  NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word <addr> <value> [count]");
1396         register_command(cmd_ctx,  NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte <addr> <value> [count]");
1397
1398         register_command(cmd_ctx,  NULL, "bp", handle_bp_command, COMMAND_EXEC, "set breakpoint <address> <length> [hw]");
1399         register_command(cmd_ctx,  NULL, "rbp", handle_rbp_command, COMMAND_EXEC, "remove breakpoint <adress>");
1400         register_command(cmd_ctx,  NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint <address> <length> <r/w/a> [value] [mask]");
1401         register_command(cmd_ctx,  NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint <adress>");
1402
1403         register_command(cmd_ctx,  NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> ['bin'|'ihex'|'elf'|'s19'] [min_address] [max_length]");
1404         register_command(cmd_ctx,  NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>");
1405         register_command(cmd_ctx,  NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image <file> [offset] [type]");
1406         register_command(cmd_ctx,  NULL, "test_image", handle_test_image_command, COMMAND_EXEC, "test_image <file> [offset] [type]");
1407
1408         if((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
1409                 return retval;
1410         if((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
1411                 return retval;
1412
1413         return retval;
1414 }
1415
1416 static int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1417 {
1418         target_t *target = all_targets;
1419
1420         if (argc == 1)
1421         {
1422                 target = get_target(args[0]);
1423                 if (target == NULL) {
1424                         command_print(cmd_ctx,"Target: %s is unknown, try one of:\n", args[0] );
1425                         goto DumpTargets;
1426                 }
1427
1428                 cmd_ctx->current_target = target->target_number;
1429                 return ERROR_OK;
1430         }
1431 DumpTargets:
1432
1433         target = all_targets;
1434         command_print(cmd_ctx, "    CmdName    Type       Endian     AbsChainPos Name          State     ");
1435         command_print(cmd_ctx, "--  ---------- ---------- ---------- ----------- ------------- ----------");
1436         while (target)
1437         {
1438                 /* XX: abcdefghij abcdefghij abcdefghij abcdefghij */
1439                 command_print(cmd_ctx, "%2d: %-10s %-10s %-10s %10d %14s %s",
1440                                           target->target_number,
1441                                           target->cmd_name,
1442                                           target->type->name,
1443                                           Jim_Nvp_value2name_simple( nvp_target_endian, target->endianness )->name,
1444                                           target->tap->abs_chain_position,
1445                                           target->tap->dotted_name,
1446                                           Jim_Nvp_value2name_simple( nvp_target_state, target->state )->name );
1447                 target = target->next;
1448         }
1449
1450         return ERROR_OK;
1451 }
1452
1453 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1454
1455 static int powerDropout;
1456 static int srstAsserted;
1457
1458 static int runPowerRestore;
1459 static int runPowerDropout;
1460 static int runSrstAsserted;
1461 static int runSrstDeasserted;
1462
1463 static int sense_handler(void)
1464 {
1465         static int prevSrstAsserted = 0;
1466         static int prevPowerdropout = 0;
1467
1468         int retval;
1469         if ((retval=jtag_power_dropout(&powerDropout))!=ERROR_OK)
1470                 return retval;
1471
1472         int powerRestored;
1473         powerRestored = prevPowerdropout && !powerDropout;
1474         if (powerRestored)
1475         {
1476                 runPowerRestore = 1;
1477         }
1478
1479         long long current = timeval_ms();
1480         static long long lastPower = 0;
1481         int waitMore = lastPower + 2000 > current;
1482         if (powerDropout && !waitMore)
1483         {
1484                 runPowerDropout = 1;
1485                 lastPower = current;
1486         }
1487
1488         if ((retval=jtag_srst_asserted(&srstAsserted))!=ERROR_OK)
1489                 return retval;
1490
1491         int srstDeasserted;
1492         srstDeasserted = prevSrstAsserted && !srstAsserted;
1493
1494         static long long lastSrst = 0;
1495         waitMore = lastSrst + 2000 > current;
1496         if (srstDeasserted && !waitMore)
1497         {
1498                 runSrstDeasserted = 1;
1499                 lastSrst = current;
1500         }
1501
1502         if (!prevSrstAsserted && srstAsserted)
1503         {
1504                 runSrstAsserted = 1;
1505         }
1506
1507         prevSrstAsserted = srstAsserted;
1508         prevPowerdropout = powerDropout;
1509
1510         if (srstDeasserted || powerRestored)
1511         {
1512                 /* Other than logging the event we can't do anything here.
1513                  * Issuing a reset is a particularly bad idea as we might
1514                  * be inside a reset already.
1515                  */
1516         }
1517
1518         return ERROR_OK;
1519 }
1520
1521 /* process target state changes */
1522 int handle_target(void *priv)
1523 {
1524         int retval = ERROR_OK;
1525
1526         /* we do not want to recurse here... */
1527         static int recursive = 0;
1528         if (! recursive)
1529         {
1530                 recursive = 1;
1531                 sense_handler();
1532                 /* danger! running these procedures can trigger srst assertions and power dropouts.
1533                  * We need to avoid an infinite loop/recursion here and we do that by
1534                  * clearing the flags after running these events.
1535                  */
1536                 int did_something = 0;
1537                 if (runSrstAsserted)
1538                 {
1539                         Jim_Eval( interp, "srst_asserted");
1540                         did_something = 1;
1541                 }
1542                 if (runSrstDeasserted)
1543                 {
1544                         Jim_Eval( interp, "srst_deasserted");
1545                         did_something = 1;
1546                 }
1547                 if (runPowerDropout)
1548                 {
1549                         Jim_Eval( interp, "power_dropout");
1550                         did_something = 1;
1551                 }
1552                 if (runPowerRestore)
1553                 {
1554                         Jim_Eval( interp, "power_restore");
1555                         did_something = 1;
1556                 }
1557
1558                 if (did_something)
1559                 {
1560                         /* clear detect flags */
1561                         sense_handler();
1562                 }
1563
1564                 /* clear action flags */
1565
1566                 runSrstAsserted=0;
1567                 runSrstDeasserted=0;
1568                 runPowerRestore=0;
1569                 runPowerDropout=0;
1570
1571                 recursive = 0;
1572         }
1573
1574         target_t *target = all_targets;
1575
1576         while (target)
1577         {
1578
1579                 /* only poll target if we've got power and srst isn't asserted */
1580                 if (target_continous_poll&&!powerDropout&&!srstAsserted)
1581                 {
1582                         /* polling may fail silently until the target has been examined */
1583                         if((retval = target_poll(target)) != ERROR_OK)
1584                                 return retval;
1585                 }
1586
1587                 target = target->next;
1588         }
1589
1590         return retval;
1591 }
1592
1593 static int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1594 {
1595         target_t *target;
1596         reg_t *reg = NULL;
1597         int count = 0;
1598         char *value;
1599
1600         LOG_DEBUG("-");
1601
1602         target = get_current_target(cmd_ctx);
1603
1604         /* list all available registers for the current target */
1605         if (argc == 0)
1606         {
1607                 reg_cache_t *cache = target->reg_cache;
1608
1609                 count = 0;
1610                 while(cache)
1611                 {
1612                         int i;
1613                         for (i = 0; i < cache->num_regs; i++)
1614                         {
1615                                 value = buf_to_str(cache->reg_list[i].value, cache->reg_list[i].size, 16);
1616                                 command_print(cmd_ctx, "(%i) %s (/%i): 0x%s (dirty: %i, valid: %i)", count++, cache->reg_list[i].name, cache->reg_list[i].size, value, cache->reg_list[i].dirty, cache->reg_list[i].valid);
1617                                 free(value);
1618                         }
1619                         cache = cache->next;
1620                 }
1621
1622                 return ERROR_OK;
1623         }
1624
1625         /* access a single register by its ordinal number */
1626         if ((args[0][0] >= '0') && (args[0][0] <= '9'))
1627         {
1628                 int num = strtoul(args[0], NULL, 0);
1629                 reg_cache_t *cache = target->reg_cache;
1630
1631                 count = 0;
1632                 while(cache)
1633                 {
1634                         int i;
1635                         for (i = 0; i < cache->num_regs; i++)
1636                         {
1637                                 if (count++ == num)
1638                                 {
1639                                         reg = &cache->reg_list[i];
1640                                         break;
1641                                 }
1642                         }
1643                         if (reg)
1644                                 break;
1645                         cache = cache->next;
1646                 }
1647
1648                 if (!reg)
1649                 {
1650                         command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1651                         return ERROR_OK;
1652                 }
1653         } else /* access a single register by its name */
1654         {
1655                 reg = register_get_by_name(target->reg_cache, args[0], 1);
1656
1657                 if (!reg)
1658                 {
1659                         command_print(cmd_ctx, "register %s not found in current target", args[0]);
1660                         return ERROR_OK;
1661                 }
1662         }
1663
1664         /* display a register */
1665         if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
1666         {
1667                 if ((argc == 2) && (strcmp(args[1], "force") == 0))
1668                         reg->valid = 0;
1669
1670                 if (reg->valid == 0)
1671                 {
1672                         reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1673                         arch_type->get(reg);
1674                 }
1675                 value = buf_to_str(reg->value, reg->size, 16);
1676                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1677                 free(value);
1678                 return ERROR_OK;
1679         }
1680
1681         /* set register value */
1682         if (argc == 2)
1683         {
1684                 u8 *buf = malloc(CEIL(reg->size, 8));
1685                 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
1686
1687                 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1688                 arch_type->set(reg, buf);
1689
1690                 value = buf_to_str(reg->value, reg->size, 16);
1691                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1692                 free(value);
1693
1694                 free(buf);
1695
1696                 return ERROR_OK;
1697         }
1698
1699         command_print(cmd_ctx, "usage: reg <#|name> [value]");
1700
1701         return ERROR_OK;
1702 }
1703
1704 static int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1705 {
1706         int retval = ERROR_OK;
1707         target_t *target = get_current_target(cmd_ctx);
1708
1709         if (argc == 0)
1710         {
1711                 if((retval = target_poll(target)) != ERROR_OK)
1712                         return retval;
1713                 if((retval = target_arch_state(target)) != ERROR_OK)
1714                         return retval;
1715
1716         }
1717         else if (argc==1)
1718         {
1719                 if (strcmp(args[0], "on") == 0)
1720                 {
1721                         target_continous_poll = 1;
1722                 }
1723                 else if (strcmp(args[0], "off") == 0)
1724                 {
1725                         target_continous_poll = 0;
1726                 }
1727                 else
1728                 {
1729                         command_print(cmd_ctx, "arg is \"on\" or \"off\"");
1730                 }
1731         } else
1732         {
1733                 return ERROR_COMMAND_SYNTAX_ERROR;
1734         }
1735
1736         return retval;
1737 }
1738
1739 static int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1740 {
1741         int ms = 5000;
1742
1743         if (argc > 0)
1744         {
1745                 char *end;
1746
1747                 ms = strtoul(args[0], &end, 0) * 1000;
1748                 if (*end)
1749                 {
1750                         command_print(cmd_ctx, "usage: %s [seconds]", cmd);
1751                         return ERROR_OK;
1752                 }
1753         }
1754         target_t *target = get_current_target(cmd_ctx);
1755
1756         return target_wait_state(target, TARGET_HALTED, ms);
1757 }
1758
1759 /* wait for target state to change. The trick here is to have a low
1760  * latency for short waits and not to suck up all the CPU time
1761  * on longer waits.
1762  *
1763  * After 500ms, keep_alive() is invoked
1764  */
1765 int target_wait_state(target_t *target, enum target_state state, int ms)
1766 {
1767         int retval;
1768         long long then=0, cur;
1769         int once=1;
1770
1771         for (;;)
1772         {
1773                 if ((retval=target_poll(target))!=ERROR_OK)
1774                         return retval;
1775                 if (target->state == state)
1776                 {
1777                         break;
1778                 }
1779                 cur = timeval_ms();
1780                 if (once)
1781                 {
1782                         once=0;
1783                         then = timeval_ms();
1784                         LOG_DEBUG("waiting for target %s...",
1785                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
1786                 }
1787
1788                 if (cur-then>500)
1789                 {
1790                         keep_alive();
1791                 }
1792
1793                 if ((cur-then)>ms)
1794                 {
1795                         LOG_ERROR("timed out while waiting for target %s",
1796                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
1797                         return ERROR_FAIL;
1798                 }
1799         }
1800
1801         return ERROR_OK;
1802 }
1803
1804 static int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1805 {
1806         int retval;
1807         target_t *target = get_current_target(cmd_ctx);
1808
1809         LOG_DEBUG("-");
1810
1811         if ((retval = target_halt(target)) != ERROR_OK)
1812         {
1813                 return retval;
1814         }
1815
1816         if (argc == 1)
1817         {
1818                 int wait;
1819                 char *end;
1820
1821                 wait = strtoul(args[0], &end, 0);
1822                 if (!*end && !wait)
1823                         return ERROR_OK;
1824         }
1825
1826         return handle_wait_halt_command(cmd_ctx, cmd, args, argc);
1827 }
1828
1829 static int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1830 {
1831         target_t *target = get_current_target(cmd_ctx);
1832
1833         LOG_USER("requesting target halt and executing a soft reset");
1834
1835         target->type->soft_reset_halt(target);
1836
1837         return ERROR_OK;
1838 }
1839
1840 static int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1841 {
1842         const Jim_Nvp *n;
1843         enum target_reset_mode reset_mode = RESET_RUN;
1844
1845         if (argc >= 1)
1846         {
1847                 n = Jim_Nvp_name2value_simple( nvp_reset_modes, args[0] );
1848                 if( (n->name == NULL) || (n->value == RESET_UNKNOWN) ){
1849                         return ERROR_COMMAND_SYNTAX_ERROR;
1850                 }
1851                 reset_mode = n->value;
1852         }
1853
1854         /* reset *all* targets */
1855         return target_process_reset(cmd_ctx, reset_mode);
1856 }
1857
1858
1859 static int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1860 {
1861         int retval;
1862         target_t *target = get_current_target(cmd_ctx);
1863
1864         target_handle_event( target, TARGET_EVENT_OLD_pre_resume );
1865
1866         if (argc == 0)
1867                 retval = target_resume(target, 1, 0, 1, 0); /* current pc, addr = 0, handle breakpoints, not debugging */
1868         else if (argc == 1)
1869                 retval = target_resume(target, 0, strtoul(args[0], NULL, 0), 1, 0); /* addr = args[0], handle breakpoints, not debugging */
1870         else
1871         {
1872                 retval = ERROR_COMMAND_SYNTAX_ERROR;
1873         }
1874
1875         return retval;
1876 }
1877
1878 static int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1879 {
1880         target_t *target = get_current_target(cmd_ctx);
1881
1882         LOG_DEBUG("-");
1883
1884         if (argc == 0)
1885                 return target->type->step(target, 1, 0, 1); /* current pc, addr = 0, handle breakpoints */
1886
1887         if (argc == 1)
1888                 return target->type->step(target, 0, strtoul(args[0], NULL, 0), 1); /* addr = args[0], handle breakpoints */
1889
1890         return ERROR_OK;
1891 }
1892
1893 static void handle_md_output(struct command_context_s *cmd_ctx,
1894                 struct target_s *target, u32 address, unsigned size,
1895                 unsigned count, const u8 *buffer)
1896 {
1897         const unsigned line_bytecnt = 32;
1898         unsigned line_modulo = line_bytecnt / size;
1899
1900         char output[line_bytecnt * 4 + 1];
1901         unsigned output_len = 0;
1902
1903         const char *value_fmt;
1904         switch (size) {
1905         case 4: value_fmt = "%8.8x"; break;
1906         case 2: value_fmt = "%4.2x"; break;
1907         case 1: value_fmt = "%2.2x"; break;
1908         default:
1909                 LOG_ERROR("invalid memory read size: %u", size);
1910                 exit(-1);
1911         }
1912
1913         for (unsigned i = 0; i < count; i++)
1914         {
1915                 if (i % line_modulo == 0)
1916                 {
1917                         output_len += snprintf(output + output_len,
1918                                         sizeof(output) - output_len,
1919                                         "0x%8.8x: ", address + (i*size));
1920                 }
1921
1922                 u32 value;
1923                 const u8 *value_ptr = buffer + i * size;
1924                 switch (size) {
1925                 case 4: value = target_buffer_get_u32(target, value_ptr); break;
1926                 case 2: value = target_buffer_get_u16(target, value_ptr); break;
1927                 case 1: value = *value_ptr;
1928                 }
1929                 output_len += snprintf(output + output_len,
1930                                 sizeof(output) - output_len,
1931                                 value_fmt, value);
1932
1933                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
1934                 {
1935                         command_print(cmd_ctx, "%s", output);
1936                         output_len = 0;
1937                 }
1938         }
1939 }
1940
1941 static int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1942 {
1943         if (argc < 1)
1944                 return ERROR_COMMAND_SYNTAX_ERROR;
1945
1946         unsigned size = 0;
1947         switch (cmd[2]) {
1948         case 'w': size = 4; break;
1949         case 'h': size = 2; break;
1950         case 'b': size = 1; break;
1951         default: return ERROR_COMMAND_SYNTAX_ERROR;
1952         }
1953
1954         u32 address = strtoul(args[0], NULL, 0);
1955
1956         unsigned count = 1;
1957         if (argc == 2)
1958                 count = strtoul(args[1], NULL, 0);
1959
1960         u8 *buffer = calloc(count, size);
1961
1962         target_t *target = get_current_target(cmd_ctx);
1963         int retval = target_read_memory(target,
1964                                 address, size, count, buffer);
1965         if (ERROR_OK == retval)
1966                 handle_md_output(cmd_ctx, target, address, size, count, buffer);
1967
1968         free(buffer);
1969
1970         return retval;
1971 }
1972
1973 static int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1974 {
1975         u32 address = 0;
1976         u32 value = 0;
1977         int count = 1;
1978         int i;
1979         int wordsize;
1980         target_t *target = get_current_target(cmd_ctx);
1981         u8 value_buf[4];
1982
1983          if ((argc < 2) || (argc > 3))
1984                 return ERROR_COMMAND_SYNTAX_ERROR;
1985
1986         address = strtoul(args[0], NULL, 0);
1987         value = strtoul(args[1], NULL, 0);
1988         if (argc == 3)
1989                 count = strtoul(args[2], NULL, 0);
1990
1991         switch (cmd[2])
1992         {
1993                 case 'w':
1994                         wordsize = 4;
1995                         target_buffer_set_u32(target, value_buf, value);
1996                         break;
1997                 case 'h':
1998                         wordsize = 2;
1999                         target_buffer_set_u16(target, value_buf, value);
2000                         break;
2001                 case 'b':
2002                         wordsize = 1;
2003                         value_buf[0] = value;
2004                         break;
2005                 default:
2006                         return ERROR_COMMAND_SYNTAX_ERROR;
2007         }
2008         for (i=0; i<count; i++)
2009         {
2010                 int retval = target_write_memory(target,
2011                                 address + i * wordsize, wordsize, 1, value_buf);
2012                 if (ERROR_OK != retval)
2013                         return retval;
2014                 keep_alive();
2015         }
2016
2017         return ERROR_OK;
2018
2019 }
2020
2021 static int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2022 {
2023         u8 *buffer;
2024         u32 buf_cnt;
2025         u32 image_size;
2026         u32 min_address=0;
2027         u32 max_address=0xffffffff;
2028         int i;
2029         int retval, retvaltemp;
2030
2031         image_t image;
2032
2033         duration_t duration;
2034         char *duration_text;
2035
2036         target_t *target = get_current_target(cmd_ctx);
2037
2038         if ((argc < 1)||(argc > 5))
2039         {
2040                 return ERROR_COMMAND_SYNTAX_ERROR;
2041         }
2042
2043         /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
2044         if (argc >= 2)
2045         {
2046                 image.base_address_set = 1;
2047                 image.base_address = strtoul(args[1], NULL, 0);
2048         }
2049         else
2050         {
2051                 image.base_address_set = 0;
2052         }
2053
2054
2055         image.start_address_set = 0;
2056
2057         if (argc>=4)
2058         {
2059                 min_address=strtoul(args[3], NULL, 0);
2060         }
2061         if (argc>=5)
2062         {
2063                 max_address=strtoul(args[4], NULL, 0)+min_address;
2064         }
2065
2066         if (min_address>max_address)
2067         {
2068                 return ERROR_COMMAND_SYNTAX_ERROR;
2069         }
2070
2071         duration_start_measure(&duration);
2072
2073         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
2074         {
2075                 return ERROR_OK;
2076         }
2077
2078         image_size = 0x0;
2079         retval = ERROR_OK;
2080         for (i = 0; i < image.num_sections; i++)
2081         {
2082                 buffer = malloc(image.sections[i].size);
2083                 if (buffer == NULL)
2084                 {
2085                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2086                         break;
2087                 }
2088
2089                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2090                 {
2091                         free(buffer);
2092                         break;
2093                 }
2094
2095                 u32 offset=0;
2096                 u32 length=buf_cnt;
2097
2098                 /* DANGER!!! beware of unsigned comparision here!!! */
2099
2100                 if ((image.sections[i].base_address+buf_cnt>=min_address)&&
2101                                 (image.sections[i].base_address<max_address))
2102                 {
2103                         if (image.sections[i].base_address<min_address)
2104                         {
2105                                 /* clip addresses below */
2106                                 offset+=min_address-image.sections[i].base_address;
2107                                 length-=offset;
2108                         }
2109
2110                         if (image.sections[i].base_address+buf_cnt>max_address)
2111                         {
2112                                 length-=(image.sections[i].base_address+buf_cnt)-max_address;
2113                         }
2114
2115                         if ((retval = target_write_buffer(target, image.sections[i].base_address+offset, length, buffer+offset)) != ERROR_OK)
2116                         {
2117                                 free(buffer);
2118                                 break;
2119                         }
2120                         image_size += length;
2121                         command_print(cmd_ctx, "%u byte written at address 0x%8.8x", length, image.sections[i].base_address+offset);
2122                 }
2123
2124                 free(buffer);
2125         }
2126
2127         if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2128         {
2129                 image_close(&image);
2130                 return retvaltemp;
2131         }
2132
2133         if (retval==ERROR_OK)
2134         {
2135                 command_print(cmd_ctx, "downloaded %u byte in %s", image_size, duration_text);
2136         }
2137         free(duration_text);
2138
2139         image_close(&image);
2140
2141         return retval;
2142
2143 }
2144
2145 static int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2146 {
2147         fileio_t fileio;
2148
2149         u32 address;
2150         u32 size;
2151         u8 buffer[560];
2152         int retval=ERROR_OK, retvaltemp;
2153
2154         duration_t duration;
2155         char *duration_text;
2156
2157         target_t *target = get_current_target(cmd_ctx);
2158
2159         if (argc != 3)
2160         {
2161                 command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
2162                 return ERROR_OK;
2163         }
2164
2165         address = strtoul(args[1], NULL, 0);
2166         size = strtoul(args[2], NULL, 0);
2167
2168         if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2169         {
2170                 return ERROR_OK;
2171         }
2172
2173         duration_start_measure(&duration);
2174
2175         while (size > 0)
2176         {
2177                 u32 size_written;
2178                 u32 this_run_size = (size > 560) ? 560 : size;
2179
2180                 retval = target_read_buffer(target, address, this_run_size, buffer);
2181                 if (retval != ERROR_OK)
2182                 {
2183                         break;
2184                 }
2185
2186                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2187                 if (retval != ERROR_OK)
2188                 {
2189                         break;
2190                 }
2191
2192                 size -= this_run_size;
2193                 address += this_run_size;
2194         }
2195
2196         if((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2197                 return retvaltemp;
2198
2199         if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2200                 return retvaltemp;
2201
2202         if (retval==ERROR_OK)
2203         {
2204                 command_print(cmd_ctx, "dumped %lld byte in %s",
2205                                 fileio.size, duration_text);
2206                 free(duration_text);
2207         }
2208
2209         return retval;
2210 }
2211
2212 static int handle_verify_image_command_internal(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc, int verify)
2213 {
2214         u8 *buffer;
2215         u32 buf_cnt;
2216         u32 image_size;
2217         int i;
2218         int retval, retvaltemp;
2219         u32 checksum = 0;
2220         u32 mem_checksum = 0;
2221
2222         image_t image;
2223
2224         duration_t duration;
2225         char *duration_text;
2226
2227         target_t *target = get_current_target(cmd_ctx);
2228
2229         if (argc < 1)
2230         {
2231                 return ERROR_COMMAND_SYNTAX_ERROR;
2232         }
2233
2234         if (!target)
2235         {
2236                 LOG_ERROR("no target selected");
2237                 return ERROR_FAIL;
2238         }
2239
2240         duration_start_measure(&duration);
2241
2242         if (argc >= 2)
2243         {
2244                 image.base_address_set = 1;
2245                 image.base_address = strtoul(args[1], NULL, 0);
2246         }
2247         else
2248         {
2249                 image.base_address_set = 0;
2250                 image.base_address = 0x0;
2251         }
2252
2253         image.start_address_set = 0;
2254
2255         if ((retval=image_open(&image, args[0], (argc == 3) ? args[2] : NULL)) != ERROR_OK)
2256         {
2257                 return retval;
2258         }
2259
2260         image_size = 0x0;
2261         retval=ERROR_OK;
2262         for (i = 0; i < image.num_sections; i++)
2263         {
2264                 buffer = malloc(image.sections[i].size);
2265                 if (buffer == NULL)
2266                 {
2267                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2268                         break;
2269                 }
2270                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2271                 {
2272                         free(buffer);
2273                         break;
2274                 }
2275
2276                 if (verify)
2277                 {
2278                         /* calculate checksum of image */
2279                         image_calculate_checksum( buffer, buf_cnt, &checksum );
2280
2281                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2282                         if( retval != ERROR_OK )
2283                         {
2284                                 free(buffer);
2285                                 break;
2286                         }
2287
2288                         if( checksum != mem_checksum )
2289                         {
2290                                 /* failed crc checksum, fall back to a binary compare */
2291                                 u8 *data;
2292
2293                                 command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
2294
2295                                 data = (u8*)malloc(buf_cnt);
2296
2297                                 /* Can we use 32bit word accesses? */
2298                                 int size = 1;
2299                                 int count = buf_cnt;
2300                                 if ((count % 4) == 0)
2301                                 {
2302                                         size *= 4;
2303                                         count /= 4;
2304                                 }
2305                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2306                                 if (retval == ERROR_OK)
2307                                 {
2308                                         u32 t;
2309                                         for (t = 0; t < buf_cnt; t++)
2310                                         {
2311                                                 if (data[t] != buffer[t])
2312                                                 {
2313                                                         command_print(cmd_ctx, "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n", t + image.sections[i].base_address, data[t], buffer[t]);
2314                                                         free(data);
2315                                                         free(buffer);
2316                                                         retval=ERROR_FAIL;
2317                                                         goto done;
2318                                                 }
2319                                                 if ((t%16384)==0)
2320                                                 {
2321                                                         keep_alive();
2322                                                 }
2323                                         }
2324                                 }
2325
2326                                 free(data);
2327                         }
2328                 } else
2329                 {
2330                         command_print(cmd_ctx, "address 0x%08x length 0x%08x", image.sections[i].base_address, buf_cnt);
2331                 }
2332
2333                 free(buffer);
2334                 image_size += buf_cnt;
2335         }
2336 done:
2337
2338         if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2339         {
2340                 image_close(&image);
2341                 return retvaltemp;
2342         }
2343
2344         if (retval==ERROR_OK)
2345         {
2346                 command_print(cmd_ctx, "verified %u bytes in %s", image_size, duration_text);
2347         }
2348         free(duration_text);
2349
2350         image_close(&image);
2351
2352         return retval;
2353 }
2354
2355 static int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2356 {
2357         return handle_verify_image_command_internal(cmd_ctx, cmd, args, argc, 1);
2358 }
2359
2360 static int handle_test_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2361 {
2362         return handle_verify_image_command_internal(cmd_ctx, cmd, args, argc, 0);
2363 }
2364
2365 static int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2366 {
2367         int retval;
2368         target_t *target = get_current_target(cmd_ctx);
2369
2370         if (argc == 0)
2371         {
2372                 breakpoint_t *breakpoint = target->breakpoints;
2373
2374                 while (breakpoint)
2375                 {
2376                         if (breakpoint->type == BKPT_SOFT)
2377                         {
2378                                 char* buf = buf_to_str(breakpoint->orig_instr, breakpoint->length, 16);
2379                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i, 0x%s", breakpoint->address, breakpoint->length, breakpoint->set, buf);
2380                                 free(buf);
2381                         }
2382                         else
2383                         {
2384                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i", breakpoint->address, breakpoint->length, breakpoint->set);
2385                         }
2386                         breakpoint = breakpoint->next;
2387                 }
2388         }
2389         else if (argc >= 2)
2390         {
2391                 int hw = BKPT_SOFT;
2392                 u32 length = 0;
2393
2394                 length = strtoul(args[1], NULL, 0);
2395
2396                 if (argc >= 3)
2397                         if (strcmp(args[2], "hw") == 0)
2398                                 hw = BKPT_HARD;
2399
2400                 if ((retval = breakpoint_add(target, strtoul(args[0], NULL, 0), length, hw)) != ERROR_OK)
2401                 {
2402                         LOG_ERROR("Failure setting breakpoints");
2403                 }
2404                 else
2405                 {
2406                         command_print(cmd_ctx, "breakpoint added at address 0x%8.8lx",
2407                                         strtoul(args[0], NULL, 0));
2408                 }
2409         }
2410         else
2411         {
2412                 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
2413         }
2414
2415         return ERROR_OK;
2416 }
2417
2418 static int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2419 {
2420         target_t *target = get_current_target(cmd_ctx);
2421
2422         if (argc > 0)
2423                 breakpoint_remove(target, strtoul(args[0], NULL, 0));
2424
2425         return ERROR_OK;
2426 }
2427
2428 static int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2429 {
2430         target_t *target = get_current_target(cmd_ctx);
2431         int retval;
2432
2433         if (argc == 0)
2434         {
2435                 watchpoint_t *watchpoint = target->watchpoints;
2436
2437                 while (watchpoint)
2438                 {
2439                         command_print(cmd_ctx, "address: 0x%8.8x, len: 0x%8.8x, r/w/a: %i, value: 0x%8.8x, mask: 0x%8.8x", watchpoint->address, watchpoint->length, watchpoint->rw, watchpoint->value, watchpoint->mask);
2440                         watchpoint = watchpoint->next;
2441                 }
2442         }
2443         else if (argc >= 2)
2444         {
2445                 enum watchpoint_rw type = WPT_ACCESS;
2446                 u32 data_value = 0x0;
2447                 u32 data_mask = 0xffffffff;
2448
2449                 if (argc >= 3)
2450                 {
2451                         switch(args[2][0])
2452                         {
2453                                 case 'r':
2454                                         type = WPT_READ;
2455                                         break;
2456                                 case 'w':
2457                                         type = WPT_WRITE;
2458                                         break;
2459                                 case 'a':
2460                                         type = WPT_ACCESS;
2461                                         break;
2462                                 default:
2463                                         command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2464                                         return ERROR_OK;
2465                         }
2466                 }
2467                 if (argc >= 4)
2468                 {
2469                         data_value = strtoul(args[3], NULL, 0);
2470                 }
2471                 if (argc >= 5)
2472                 {
2473                         data_mask = strtoul(args[4], NULL, 0);
2474                 }
2475
2476                 if ((retval = watchpoint_add(target, strtoul(args[0], NULL, 0),
2477                                 strtoul(args[1], NULL, 0), type, data_value, data_mask)) != ERROR_OK)
2478                 {
2479                         LOG_ERROR("Failure setting breakpoints");
2480                 }
2481         }
2482         else
2483         {
2484                 command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2485         }
2486
2487         return ERROR_OK;
2488 }
2489
2490 static int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2491 {
2492         target_t *target = get_current_target(cmd_ctx);
2493
2494         if (argc > 0)
2495                 watchpoint_remove(target, strtoul(args[0], NULL, 0));
2496
2497         return ERROR_OK;
2498 }
2499
2500 static int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc)
2501 {
2502         int retval;
2503         target_t *target = get_current_target(cmd_ctx);
2504         u32 va;
2505         u32 pa;
2506
2507         if (argc != 1)
2508         {
2509                 return ERROR_COMMAND_SYNTAX_ERROR;
2510         }
2511         va = strtoul(args[0], NULL, 0);
2512
2513         retval = target->type->virt2phys(target, va, &pa);
2514         if (retval == ERROR_OK)
2515         {
2516                 command_print(cmd_ctx, "Physical address 0x%08x", pa);
2517         }
2518         else
2519         {
2520                 /* lower levels will have logged a detailed error which is
2521                  * forwarded to telnet/GDB session.
2522                  */
2523         }
2524         return retval;
2525 }
2526
2527 static void writeData(FILE *f, const void *data, size_t len)
2528 {
2529         size_t written = fwrite(data, len, 1, f);
2530         if (written != len)
2531                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
2532 }
2533
2534 static void writeLong(FILE *f, int l)
2535 {
2536         int i;
2537         for (i=0; i<4; i++)
2538         {
2539                 char c=(l>>(i*8))&0xff;
2540                 writeData(f, &c, 1);
2541         }
2542
2543 }
2544
2545 static void writeString(FILE *f, char *s)
2546 {
2547         writeData(f, s, strlen(s));
2548 }
2549
2550 /* Dump a gmon.out histogram file. */
2551 static void writeGmon(u32 *samples, u32 sampleNum, char *filename)
2552 {
2553         u32 i;
2554         FILE *f=fopen(filename, "w");
2555         if (f==NULL)
2556                 return;
2557         writeString(f, "gmon");
2558         writeLong(f, 0x00000001); /* Version */
2559         writeLong(f, 0); /* padding */
2560         writeLong(f, 0); /* padding */
2561         writeLong(f, 0); /* padding */
2562
2563         u8 zero = 0;  /* GMON_TAG_TIME_HIST */
2564         writeData(f, &zero, 1);
2565
2566         /* figure out bucket size */
2567         u32 min=samples[0];
2568         u32 max=samples[0];
2569         for (i=0; i<sampleNum; i++)
2570         {
2571                 if (min>samples[i])
2572                 {
2573                         min=samples[i];
2574                 }
2575                 if (max<samples[i])
2576                 {
2577                         max=samples[i];
2578                 }
2579         }
2580
2581         int addressSpace=(max-min+1);
2582
2583         static const u32 maxBuckets = 256 * 1024; /* maximum buckets. */
2584         u32 length = addressSpace;
2585         if (length > maxBuckets)
2586         {
2587                 length=maxBuckets;
2588         }
2589         int *buckets=malloc(sizeof(int)*length);
2590         if (buckets==NULL)
2591         {
2592                 fclose(f);
2593                 return;
2594         }
2595         memset(buckets, 0, sizeof(int)*length);
2596         for (i=0; i<sampleNum;i++)
2597         {
2598                 u32 address=samples[i];
2599                 long long a=address-min;
2600                 long long b=length-1;
2601                 long long c=addressSpace-1;
2602                 int index=(a*b)/c; /* danger!!!! int32 overflows */
2603                 buckets[index]++;
2604         }
2605
2606         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
2607         writeLong(f, min);                      /* low_pc */
2608         writeLong(f, max);                      /* high_pc */
2609         writeLong(f, length);           /* # of samples */
2610         writeLong(f, 64000000);         /* 64MHz */
2611         writeString(f, "seconds");
2612         for (i=0; i<(15-strlen("seconds")); i++)
2613                 writeData(f, &zero, 1);
2614         writeString(f, "s");
2615
2616         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
2617
2618         char *data=malloc(2*length);
2619         if (data!=NULL)
2620         {
2621                 for (i=0; i<length;i++)
2622                 {
2623                         int val;
2624                         val=buckets[i];
2625                         if (val>65535)
2626                         {
2627                                 val=65535;
2628                         }
2629                         data[i*2]=val&0xff;
2630                         data[i*2+1]=(val>>8)&0xff;
2631                 }
2632                 free(buckets);
2633                 writeData(f, data, length * 2);
2634                 free(data);
2635         } else
2636         {
2637                 free(buckets);
2638         }
2639
2640         fclose(f);
2641 }
2642
2643 /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
2644 static int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2645 {
2646         target_t *target = get_current_target(cmd_ctx);
2647         struct timeval timeout, now;
2648
2649         gettimeofday(&timeout, NULL);
2650         if (argc!=2)
2651         {
2652                 return ERROR_COMMAND_SYNTAX_ERROR;
2653         }
2654         char *end;
2655         timeval_add_time(&timeout, strtoul(args[0], &end, 0), 0);
2656         if (*end)
2657         {
2658                 return ERROR_OK;
2659         }
2660
2661         command_print(cmd_ctx, "Starting profiling. Halting and resuming the target as often as we can...");
2662
2663         static const int maxSample=10000;
2664         u32 *samples=malloc(sizeof(u32)*maxSample);
2665         if (samples==NULL)
2666                 return ERROR_OK;
2667
2668         int numSamples=0;
2669         int retval=ERROR_OK;
2670         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2671         reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1);
2672
2673         for (;;)
2674         {
2675                 target_poll(target);
2676                 if (target->state == TARGET_HALTED)
2677                 {
2678                         u32 t=*((u32 *)reg->value);
2679                         samples[numSamples++]=t;
2680                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2681                         target_poll(target);
2682                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2683                 } else if (target->state == TARGET_RUNNING)
2684                 {
2685                         /* We want to quickly sample the PC. */
2686                         if((retval = target_halt(target)) != ERROR_OK)
2687                         {
2688                                 free(samples);
2689                                 return retval;
2690                         }
2691                 } else
2692                 {
2693                         command_print(cmd_ctx, "Target not halted or running");
2694                         retval=ERROR_OK;
2695                         break;
2696                 }
2697                 if (retval!=ERROR_OK)
2698                 {
2699                         break;
2700                 }
2701
2702                 gettimeofday(&now, NULL);
2703                 if ((numSamples>=maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
2704                 {
2705                         command_print(cmd_ctx, "Profiling completed. %d samples.", numSamples);
2706                         if((retval = target_poll(target)) != ERROR_OK)
2707                         {
2708                                 free(samples);
2709                                 return retval;
2710                         }
2711                         if (target->state == TARGET_HALTED)
2712                         {
2713                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2714                         }
2715                         if((retval = target_poll(target)) != ERROR_OK)
2716                         {
2717                                 free(samples);
2718                                 return retval;
2719                         }
2720                         writeGmon(samples, numSamples, args[1]);
2721                         command_print(cmd_ctx, "Wrote %s", args[1]);
2722                         break;
2723                 }
2724         }
2725         free(samples);
2726
2727         return ERROR_OK;
2728 }
2729
2730 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 val)
2731 {
2732         char *namebuf;
2733         Jim_Obj *nameObjPtr, *valObjPtr;
2734         int result;
2735
2736         namebuf = alloc_printf("%s(%d)", varname, idx);
2737         if (!namebuf)
2738                 return JIM_ERR;
2739
2740         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
2741         valObjPtr = Jim_NewIntObj(interp, val);
2742         if (!nameObjPtr || !valObjPtr)
2743         {
2744                 free(namebuf);
2745                 return JIM_ERR;
2746         }
2747
2748         Jim_IncrRefCount(nameObjPtr);
2749         Jim_IncrRefCount(valObjPtr);
2750         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
2751         Jim_DecrRefCount(interp, nameObjPtr);
2752         Jim_DecrRefCount(interp, valObjPtr);
2753         free(namebuf);
2754         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
2755         return result;
2756 }
2757
2758 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
2759 {
2760         command_context_t *context;
2761         target_t *target;
2762
2763         context = Jim_GetAssocData(interp, "context");
2764         if (context == NULL)
2765         {
2766                 LOG_ERROR("mem2array: no command context");
2767                 return JIM_ERR;
2768         }
2769         target = get_current_target(context);
2770         if (target == NULL)
2771         {
2772                 LOG_ERROR("mem2array: no current target");
2773                 return JIM_ERR;
2774         }
2775
2776         return  target_mem2array(interp, target, argc-1, argv+1);
2777 }
2778
2779 static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv)
2780 {
2781         long l;
2782         u32 width;
2783         int len;
2784         u32 addr;
2785         u32 count;
2786         u32 v;
2787         const char *varname;
2788         u8 buffer[4096];
2789         int  n, e, retval;
2790         u32 i;
2791
2792         /* argv[1] = name of array to receive the data
2793          * argv[2] = desired width
2794          * argv[3] = memory address
2795          * argv[4] = count of times to read
2796          */
2797         if (argc != 4) {
2798                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
2799                 return JIM_ERR;
2800         }
2801         varname = Jim_GetString(argv[0], &len);
2802         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
2803
2804         e = Jim_GetLong(interp, argv[1], &l);
2805         width = l;
2806         if (e != JIM_OK) {
2807                 return e;
2808         }
2809
2810         e = Jim_GetLong(interp, argv[2], &l);
2811         addr = l;
2812         if (e != JIM_OK) {
2813                 return e;
2814         }
2815         e = Jim_GetLong(interp, argv[3], &l);
2816         len = l;
2817         if (e != JIM_OK) {
2818                 return e;
2819         }
2820         switch (width) {
2821                 case 8:
2822                         width = 1;
2823                         break;
2824                 case 16:
2825                         width = 2;
2826                         break;
2827                 case 32:
2828                         width = 4;
2829                         break;
2830                 default:
2831                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2832                         Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
2833                         return JIM_ERR;
2834         }
2835         if (len == 0) {
2836                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2837                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
2838                 return JIM_ERR;
2839         }
2840         if ((addr + (len * width)) < addr) {
2841                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2842                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
2843                 return JIM_ERR;
2844         }
2845         /* absurd transfer size? */
2846         if (len > 65536) {
2847                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2848                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
2849                 return JIM_ERR;
2850         }
2851
2852         if ((width == 1) ||
2853                 ((width == 2) && ((addr & 1) == 0)) ||
2854                 ((width == 4) && ((addr & 3) == 0))) {
2855                 /* all is well */
2856         } else {
2857                 char buf[100];
2858                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2859                 sprintf(buf, "mem2array address: 0x%08x is not aligned for %d byte reads", addr, width);
2860                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
2861                 return JIM_ERR;
2862         }
2863
2864         /* Transfer loop */
2865
2866         /* index counter */
2867         n = 0;
2868         /* assume ok */
2869         e = JIM_OK;
2870         while (len) {
2871                 /* Slurp... in buffer size chunks */
2872
2873                 count = len; /* in objects.. */
2874                 if (count > (sizeof(buffer)/width)) {
2875                         count = (sizeof(buffer)/width);
2876                 }
2877
2878                 retval = target_read_memory( target, addr, width, count, buffer );
2879                 if (retval != ERROR_OK) {
2880                         /* BOO !*/
2881                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
2882                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2883                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
2884                         e = JIM_ERR;
2885                         len = 0;
2886                 } else {
2887                         v = 0; /* shut up gcc */
2888                         for (i = 0 ;i < count ;i++, n++) {
2889                                 switch (width) {
2890                                         case 4:
2891                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
2892                                                 break;
2893                                         case 2:
2894                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
2895                                                 break;
2896                                         case 1:
2897                                                 v = buffer[i] & 0x0ff;
2898                                                 break;
2899                                 }
2900                                 new_int_array_element(interp, varname, n, v);
2901                         }
2902                         len -= count;
2903                 }
2904         }
2905
2906         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2907
2908         return JIM_OK;
2909 }
2910
2911 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 *val)
2912 {
2913         char *namebuf;
2914         Jim_Obj *nameObjPtr, *valObjPtr;
2915         int result;
2916         long l;
2917
2918         namebuf = alloc_printf("%s(%d)", varname, idx);
2919         if (!namebuf)
2920                 return JIM_ERR;
2921
2922         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
2923         if (!nameObjPtr)
2924         {
2925                 free(namebuf);
2926                 return JIM_ERR;
2927         }
2928
2929         Jim_IncrRefCount(nameObjPtr);
2930         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
2931         Jim_DecrRefCount(interp, nameObjPtr);
2932         free(namebuf);
2933         if (valObjPtr == NULL)
2934                 return JIM_ERR;
2935
2936         result = Jim_GetLong(interp, valObjPtr, &l);
2937         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
2938         *val = l;
2939         return result;
2940 }
2941
2942 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
2943 {
2944         command_context_t *context;
2945         target_t *target;
2946
2947         context = Jim_GetAssocData(interp, "context");
2948         if (context == NULL){
2949                 LOG_ERROR("array2mem: no command context");
2950                 return JIM_ERR;
2951         }
2952         target = get_current_target(context);
2953         if (target == NULL){
2954                 LOG_ERROR("array2mem: no current target");
2955                 return JIM_ERR;
2956         }
2957
2958         return target_array2mem( interp,target, argc-1, argv+1 );
2959 }
2960
2961 static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv)
2962 {
2963         long l;
2964         u32 width;
2965         int len;
2966         u32 addr;
2967         u32 count;
2968         u32 v;
2969         const char *varname;
2970         u8 buffer[4096];
2971         int  n, e, retval;
2972         u32 i;
2973
2974         /* argv[1] = name of array to get the data
2975          * argv[2] = desired width
2976          * argv[3] = memory address
2977          * argv[4] = count to write
2978          */
2979         if (argc != 4) {
2980                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
2981                 return JIM_ERR;
2982         }
2983         varname = Jim_GetString(argv[0], &len);
2984         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
2985
2986         e = Jim_GetLong(interp, argv[1], &l);
2987         width = l;
2988         if (e != JIM_OK) {
2989                 return e;
2990         }
2991
2992         e = Jim_GetLong(interp, argv[2], &l);
2993         addr = l;
2994         if (e != JIM_OK) {
2995                 return e;
2996         }
2997         e = Jim_GetLong(interp, argv[3], &l);
2998         len = l;
2999         if (e != JIM_OK) {
3000                 return e;
3001         }
3002         switch (width) {
3003                 case 8:
3004                         width = 1;
3005                         break;
3006                 case 16:
3007                         width = 2;
3008                         break;
3009                 case 32:
3010                         width = 4;
3011                         break;
3012                 default:
3013                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3014                         Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
3015                         return JIM_ERR;
3016         }
3017         if (len == 0) {
3018                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3019                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
3020                 return JIM_ERR;
3021         }
3022         if ((addr + (len * width)) < addr) {
3023                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3024                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
3025                 return JIM_ERR;
3026         }
3027         /* absurd transfer size? */
3028         if (len > 65536) {
3029                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3030                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
3031                 return JIM_ERR;
3032         }
3033
3034         if ((width == 1) ||
3035                 ((width == 2) && ((addr & 1) == 0)) ||
3036                 ((width == 4) && ((addr & 3) == 0))) {
3037                 /* all is well */
3038         } else {
3039                 char buf[100];
3040                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3041                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads", addr, width);
3042                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3043                 return JIM_ERR;
3044         }
3045
3046         /* Transfer loop */
3047
3048         /* index counter */
3049         n = 0;
3050         /* assume ok */
3051         e = JIM_OK;
3052         while (len) {
3053                 /* Slurp... in buffer size chunks */
3054
3055                 count = len; /* in objects.. */
3056                 if (count > (sizeof(buffer)/width)) {
3057                         count = (sizeof(buffer)/width);
3058                 }
3059
3060                 v = 0; /* shut up gcc */
3061                 for (i = 0 ;i < count ;i++, n++) {
3062                         get_int_array_element(interp, varname, n, &v);
3063                         switch (width) {
3064                         case 4:
3065                                 target_buffer_set_u32(target, &buffer[i*width], v);
3066                                 break;
3067                         case 2:
3068                                 target_buffer_set_u16(target, &buffer[i*width], v);
3069                                 break;
3070                         case 1:
3071                                 buffer[i] = v & 0x0ff;
3072                                 break;
3073                         }
3074                 }
3075                 len -= count;
3076
3077                 retval = target_write_memory(target, addr, width, count, buffer);
3078                 if (retval != ERROR_OK) {
3079                         /* BOO !*/
3080                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
3081                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3082                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3083                         e = JIM_ERR;
3084                         len = 0;
3085                 }
3086         }
3087
3088         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3089
3090         return JIM_OK;
3091 }
3092
3093 void target_all_handle_event( enum target_event e )
3094 {
3095         target_t *target;
3096
3097         LOG_DEBUG( "**all*targets: event: %d, %s",
3098                         e,
3099                         Jim_Nvp_value2name_simple( nvp_target_event, e )->name );
3100
3101         target = all_targets;
3102         while (target){
3103                 target_handle_event( target, e );
3104                 target = target->next;
3105         }
3106 }
3107
3108 void target_handle_event( target_t *target, enum target_event e )
3109 {
3110         target_event_action_t *teap;
3111         int done;
3112
3113         teap = target->event_action;
3114
3115         done = 0;
3116         while( teap ){
3117                 if( teap->event == e ){
3118                         done = 1;
3119                         LOG_DEBUG( "target: (%d) %s (%s) event: %d (%s) action: %s\n",
3120                                            target->target_number,
3121                                            target->cmd_name,
3122                                            target->type->name,
3123                                            e,
3124                                            Jim_Nvp_value2name_simple( nvp_target_event, e )->name,
3125                                            Jim_GetString( teap->body, NULL ) );
3126                         if (Jim_EvalObj( interp, teap->body )!=JIM_OK)
3127                         {
3128                                 Jim_PrintErrorMessage(interp);
3129                         }
3130                 }
3131                 teap = teap->next;
3132         }
3133         if( !done ){
3134                 LOG_DEBUG( "event: %d %s - no action",
3135                                    e,
3136                                    Jim_Nvp_value2name_simple( nvp_target_event, e )->name );
3137         }
3138 }
3139
3140 enum target_cfg_param {
3141         TCFG_TYPE,
3142         TCFG_EVENT,
3143         TCFG_WORK_AREA_VIRT,
3144         TCFG_WORK_AREA_PHYS,
3145         TCFG_WORK_AREA_SIZE,
3146         TCFG_WORK_AREA_BACKUP,
3147         TCFG_ENDIAN,
3148         TCFG_VARIANT,
3149         TCFG_CHAIN_POSITION,
3150 };
3151
3152 static Jim_Nvp nvp_config_opts[] = {
3153         { .name = "-type",             .value = TCFG_TYPE },
3154         { .name = "-event",            .value = TCFG_EVENT },
3155         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
3156         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
3157         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
3158         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3159         { .name = "-endian" ,          .value = TCFG_ENDIAN },
3160         { .name = "-variant",          .value = TCFG_VARIANT },
3161         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
3162
3163         { .name = NULL, .value = -1 }
3164 };
3165
3166 static int target_configure( Jim_GetOptInfo *goi, target_t *target )
3167 {
3168         Jim_Nvp *n;
3169         Jim_Obj *o;
3170         jim_wide w;
3171         char *cp;
3172         int e;
3173
3174         /* parse config or cget options ... */
3175         while( goi->argc > 0 ){
3176                 Jim_SetEmptyResult( goi->interp );
3177                 /* Jim_GetOpt_Debug( goi ); */
3178
3179                 if( target->type->target_jim_configure ){
3180                         /* target defines a configure function */
3181                         /* target gets first dibs on parameters */
3182                         e = (*(target->type->target_jim_configure))( target, goi );
3183                         if( e == JIM_OK ){
3184                                 /* more? */
3185                                 continue;
3186                         }
3187                         if( e == JIM_ERR ){
3188                                 /* An error */
3189                                 return e;
3190                         }
3191                         /* otherwise we 'continue' below */
3192                 }
3193                 e = Jim_GetOpt_Nvp( goi, nvp_config_opts, &n );
3194                 if( e != JIM_OK ){
3195                         Jim_GetOpt_NvpUnknown( goi, nvp_config_opts, 0 );
3196                         return e;
3197                 }
3198                 switch( n->value ){
3199                 case TCFG_TYPE:
3200                         /* not setable */
3201                         if( goi->isconfigure ){
3202                                 Jim_SetResult_sprintf( goi->interp, "not setable: %s", n->name );
3203                                 return JIM_ERR;
3204                         } else {
3205                         no_params:
3206                                 if( goi->argc != 0 ){
3207                                         Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "NO PARAMS");
3208                                         return JIM_ERR;
3209                                 }
3210                         }
3211                         Jim_SetResultString( goi->interp, target->type->name, -1 );
3212                         /* loop for more */
3213                         break;
3214                 case TCFG_EVENT:
3215                         if( goi->argc == 0 ){
3216                                 Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
3217                                 return JIM_ERR;
3218                         }
3219
3220                         e = Jim_GetOpt_Nvp( goi, nvp_target_event, &n );
3221                         if( e != JIM_OK ){
3222                                 Jim_GetOpt_NvpUnknown( goi, nvp_target_event, 1 );
3223                                 return e;
3224                         }
3225
3226                         if( goi->isconfigure ){
3227                                 if( goi->argc != 1 ){
3228                                         Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
3229                                         return JIM_ERR;
3230                                 }
3231                         } else {
3232                                 if( goi->argc != 0 ){
3233                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
3234                                         return JIM_ERR;
3235                                 }
3236                         }
3237
3238                         {
3239                                 target_event_action_t *teap;
3240
3241                                 teap = target->event_action;
3242                                 /* replace existing? */
3243                                 while( teap ){
3244                                         if( teap->event == (enum target_event)n->value ){
3245                                                 break;
3246                                         }
3247                                         teap = teap->next;
3248                                 }
3249
3250                                 if( goi->isconfigure ){
3251                                         if( teap == NULL ){
3252                                                 /* create new */
3253                                                 teap = calloc( 1, sizeof(*teap) );
3254                                         }
3255                                         teap->event = n->value;
3256                                         Jim_GetOpt_Obj( goi, &o );
3257                                         if( teap->body ){
3258                                                 Jim_DecrRefCount( interp, teap->body );
3259                                         }
3260                                         teap->body  = Jim_DuplicateObj( goi->interp, o );
3261                                         /*
3262                                          * FIXME:
3263                                          *     Tcl/TK - "tk events" have a nice feature.
3264                                          *     See the "BIND" command.
3265                                          *    We should support that here.
3266                                          *     You can specify %X and %Y in the event code.
3267                                          *     The idea is: %T - target name.
3268                                          *     The idea is: %N - target number
3269                                          *     The idea is: %E - event name.
3270                                          */
3271                                         Jim_IncrRefCount( teap->body );
3272
3273                                         /* add to head of event list */
3274                                         teap->next = target->event_action;
3275                                         target->event_action = teap;
3276                                         Jim_SetEmptyResult(goi->interp);
3277                                 } else {
3278                                         /* get */
3279                                         if( teap == NULL ){
3280                                                 Jim_SetEmptyResult( goi->interp );
3281                                         } else {
3282                                                 Jim_SetResult( goi->interp, Jim_DuplicateObj( goi->interp, teap->body ) );
3283                                         }
3284                                 }
3285                         }
3286                         /* loop for more */
3287                         break;
3288
3289                 case TCFG_WORK_AREA_VIRT:
3290                         if( goi->isconfigure ){
3291                                 target_free_all_working_areas(target);
3292                                 e = Jim_GetOpt_Wide( goi, &w );
3293                                 if( e != JIM_OK ){
3294                                         return e;
3295                                 }
3296                                 target->working_area_virt = w;
3297                         } else {
3298                                 if( goi->argc != 0 ){
3299                                         goto no_params;
3300                                 }
3301                         }
3302                         Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_virt ) );
3303                         /* loop for more */
3304                         break;
3305
3306                 case TCFG_WORK_AREA_PHYS:
3307                         if( goi->isconfigure ){
3308                                 target_free_all_working_areas(target);
3309                                 e = Jim_GetOpt_Wide( goi, &w );
3310                                 if( e != JIM_OK ){
3311                                         return e;
3312                                 }
3313                                 target->working_area_phys = w;
3314                         } else {
3315                                 if( goi->argc != 0 ){
3316                                         goto no_params;
3317                                 }
3318                         }
3319                         Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_phys ) );
3320                         /* loop for more */
3321                         break;
3322
3323                 case TCFG_WORK_AREA_SIZE:
3324                         if( goi->isconfigure ){
3325                                 target_free_all_working_areas(target);
3326                                 e = Jim_GetOpt_Wide( goi, &w );
3327                                 if( e != JIM_OK ){
3328                                         return e;
3329                                 }
3330                                 target->working_area_size = w;
3331                         } else {
3332                                 if( goi->argc != 0 ){
3333                                         goto no_params;
3334                                 }
3335                         }
3336                         Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_size ) );
3337                         /* loop for more */
3338                         break;
3339
3340                 case TCFG_WORK_AREA_BACKUP:
3341                         if( goi->isconfigure ){
3342                                 target_free_all_working_areas(target);
3343                                 e = Jim_GetOpt_Wide( goi, &w );
3344                                 if( e != JIM_OK ){
3345                                         return e;
3346                                 }
3347                                 /* make this exactly 1 or 0 */
3348                                 target->backup_working_area = (!!w);
3349                         } else {
3350                                 if( goi->argc != 0 ){
3351                                         goto no_params;
3352                                 }
3353                         }
3354                         Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_size ) );
3355                         /* loop for more e*/
3356                         break;
3357
3358                 case TCFG_ENDIAN:
3359                         if( goi->isconfigure ){
3360                                 e = Jim_GetOpt_Nvp( goi, nvp_target_endian, &n );
3361                                 if( e != JIM_OK ){
3362                                         Jim_GetOpt_NvpUnknown( goi, nvp_target_endian, 1 );
3363                                         return e;
3364                                 }
3365                                 target->endianness = n->value;
3366                         } else {
3367                                 if( goi->argc != 0 ){
3368                                         goto no_params;
3369                                 }
3370                         }
3371                         n = Jim_Nvp_value2name_simple( nvp_target_endian, target->endianness );
3372                         if( n->name == NULL ){
3373                                 target->endianness = TARGET_LITTLE_ENDIAN;
3374                                 n = Jim_Nvp_value2name_simple( nvp_target_endian, target->endianness );
3375                         }
3376                         Jim_SetResultString( goi->interp, n->name, -1 );
3377                         /* loop for more */
3378                         break;
3379
3380                 case TCFG_VARIANT:
3381                         if( goi->isconfigure ){
3382                                 if( goi->argc < 1 ){
3383                                         Jim_SetResult_sprintf( goi->interp,
3384                                                                                    "%s ?STRING?",
3385                                                                                    n->name );
3386                                         return JIM_ERR;
3387                                 }
3388                                 if( target->variant ){
3389                                         free((void *)(target->variant));
3390                                 }
3391                                 e = Jim_GetOpt_String( goi, &cp, NULL );
3392                                 target->variant = strdup(cp);
3393                         } else {
3394                                 if( goi->argc != 0 ){
3395                                         goto no_params;
3396                                 }
3397                         }
3398                         Jim_SetResultString( goi->interp, target->variant,-1 );
3399                         /* loop for more */
3400                         break;
3401                 case TCFG_CHAIN_POSITION:
3402                         if( goi->isconfigure ){
3403                                 Jim_Obj *o;
3404                                 jtag_tap_t *tap;
3405                                 target_free_all_working_areas(target);
3406                                 e = Jim_GetOpt_Obj( goi, &o );
3407                                 if( e != JIM_OK ){
3408                                         return e;
3409                                 }
3410                                 tap = jtag_TapByJimObj( goi->interp, o );
3411                                 if( tap == NULL ){
3412                                         return JIM_ERR;
3413                                 }
3414                                 /* make this exactly 1 or 0 */
3415                                 target->tap = tap;
3416                         } else {
3417                                 if( goi->argc != 0 ){
3418                                         goto no_params;
3419                                 }
3420                         }
3421                         Jim_SetResultString( interp, target->tap->dotted_name, -1 );
3422                         /* loop for more e*/
3423                         break;
3424                 }
3425         } /* while( goi->argc ) */
3426
3427
3428                 /* done - we return */
3429         return JIM_OK;
3430 }
3431
3432 /** this is the 'tcl' handler for the target specific command */
3433 static int tcl_target_func( Jim_Interp *interp, int argc, Jim_Obj *const *argv )
3434 {
3435         Jim_GetOptInfo goi;
3436         jim_wide a,b,c;
3437         int x,y,z;
3438         u8  target_buf[32];
3439         Jim_Nvp *n;
3440         target_t *target;
3441         struct command_context_s *cmd_ctx;
3442         int e;
3443
3444         enum {
3445                 TS_CMD_CONFIGURE,
3446                 TS_CMD_CGET,
3447
3448                 TS_CMD_MWW, TS_CMD_MWH, TS_CMD_MWB,
3449                 TS_CMD_MDW, TS_CMD_MDH, TS_CMD_MDB,
3450                 TS_CMD_MRW, TS_CMD_MRH, TS_CMD_MRB,
3451                 TS_CMD_MEM2ARRAY, TS_CMD_ARRAY2MEM,
3452                 TS_CMD_EXAMINE,
3453                 TS_CMD_POLL,
3454                 TS_CMD_RESET,
3455                 TS_CMD_HALT,
3456                 TS_CMD_WAITSTATE,
3457                 TS_CMD_EVENTLIST,
3458                 TS_CMD_CURSTATE,
3459                 TS_CMD_INVOKE_EVENT,
3460         };
3461
3462         static const Jim_Nvp target_options[] = {
3463                 { .name = "configure", .value = TS_CMD_CONFIGURE },
3464                 { .name = "cget", .value = TS_CMD_CGET },
3465                 { .name = "mww", .value = TS_CMD_MWW },
3466                 { .name = "mwh", .value = TS_CMD_MWH },
3467                 { .name = "mwb", .value = TS_CMD_MWB },
3468                 { .name = "mdw", .value = TS_CMD_MDW },
3469                 { .name = "mdh", .value = TS_CMD_MDH },
3470                 { .name = "mdb", .value = TS_CMD_MDB },
3471                 { .name = "mem2array", .value = TS_CMD_MEM2ARRAY },
3472                 { .name = "array2mem", .value = TS_CMD_ARRAY2MEM },
3473                 { .name = "eventlist", .value = TS_CMD_EVENTLIST },
3474                 { .name = "curstate",  .value = TS_CMD_CURSTATE },
3475
3476                 { .name = "arp_examine", .value = TS_CMD_EXAMINE },
3477                 { .name = "arp_poll", .value = TS_CMD_POLL },
3478                 { .name = "arp_reset", .value = TS_CMD_RESET },
3479                 { .name = "arp_halt", .value = TS_CMD_HALT },
3480                 { .name = "arp_waitstate", .value = TS_CMD_WAITSTATE },
3481                 { .name = "invoke-event", .value = TS_CMD_INVOKE_EVENT },
3482
3483                 { .name = NULL, .value = -1 },
3484         };
3485
3486         /* go past the "command" */
3487         Jim_GetOpt_Setup( &goi, interp, argc-1, argv+1 );
3488
3489         target = Jim_CmdPrivData( goi.interp );
3490         cmd_ctx = Jim_GetAssocData(goi.interp, "context");
3491
3492         /* commands here are in an NVP table */
3493         e = Jim_GetOpt_Nvp( &goi, target_options, &n );
3494         if( e != JIM_OK ){
3495                 Jim_GetOpt_NvpUnknown( &goi, target_options, 0 );
3496                 return e;
3497         }
3498         /* Assume blank result */
3499         Jim_SetEmptyResult( goi.interp );
3500
3501         switch( n->value ){
3502         case TS_CMD_CONFIGURE:
3503                 if( goi.argc < 2 ){
3504                         Jim_WrongNumArgs( goi.interp, goi.argc, goi.argv, "missing: -option VALUE ...");
3505                         return JIM_ERR;
3506                 }
3507                 goi.isconfigure = 1;
3508                 return target_configure( &goi, target );
3509         case TS_CMD_CGET:
3510                 // some things take params
3511                 if( goi.argc < 1 ){
3512                         Jim_WrongNumArgs( goi.interp, 0, goi.argv, "missing: ?-option?");
3513                         return JIM_ERR;
3514                 }
3515                 goi.isconfigure = 0;
3516                 return target_configure( &goi, target );
3517                 break;
3518         case TS_CMD_MWW:
3519         case TS_CMD_MWH:
3520         case TS_CMD_MWB:
3521                 /* argv[0] = cmd
3522                  * argv[1] = address
3523                  * argv[2] = data
3524                  * argv[3] = optional count.
3525                  */
3526
3527                 if( (goi.argc == 3) || (goi.argc == 4) ){
3528                         /* all is well */
3529                 } else {
3530                 mwx_error:
3531                         Jim_SetResult_sprintf( goi.interp, "expected: %s ADDR DATA [COUNT]", n->name );
3532                         return JIM_ERR;
3533                 }
3534
3535                 e = Jim_GetOpt_Wide( &goi, &a );
3536                 if( e != JIM_OK ){
3537                         goto mwx_error;
3538                 }
3539
3540                 e = Jim_GetOpt_Wide( &goi, &b );
3541                 if( e != JIM_OK ){
3542                         goto mwx_error;
3543                 }
3544                 if( goi.argc ){
3545                         e = Jim_GetOpt_Wide( &goi, &c );
3546                         if( e != JIM_OK ){
3547                                 goto mwx_error;
3548                         }
3549                 } else {
3550                         c = 1;
3551                 }
3552
3553                 switch( n->value ){
3554                 case TS_CMD_MWW:
3555                         target_buffer_set_u32( target, target_buf, b );
3556                         b = 4;
3557                         break;
3558                 case TS_CMD_MWH:
3559                         target_buffer_set_u16( target, target_buf, b );
3560                         b = 2;
3561                         break;
3562                 case TS_CMD_MWB:
3563                         target_buffer_set_u8( target, target_buf, b );
3564                         b = 1;
3565                         break;
3566                 }
3567                 for( x = 0 ; x < c ; x++ ){
3568                         e = target_write_memory( target, a, b, 1, target_buf );
3569                         if( e != ERROR_OK ){
3570                                 Jim_SetResult_sprintf( interp, "Error writing @ 0x%08x: %d\n", (int)(a), e );
3571                                 return JIM_ERR;
3572                         }
3573                         /* b = width */
3574                         a = a + b;
3575                 }
3576                 return JIM_OK;
3577                 break;
3578
3579                 /* display */
3580         case TS_CMD_MDW:
3581         case TS_CMD_MDH:
3582         case TS_CMD_MDB:
3583                 /* argv[0] = command
3584                  * argv[1] = address
3585                  * argv[2] = optional count
3586                  */
3587                 if( (goi.argc == 2) || (goi.argc == 3) ){
3588                         Jim_SetResult_sprintf( goi.interp, "expected: %s ADDR [COUNT]", n->name );
3589                         return JIM_ERR;
3590                 }
3591                 e = Jim_GetOpt_Wide( &goi, &a );
3592                 if( e != JIM_OK ){
3593                         return JIM_ERR;
3594                 }
3595                 if( goi.argc ){
3596                         e = Jim_GetOpt_Wide( &goi, &c );
3597                         if( e != JIM_OK ){
3598                                 return JIM_ERR;
3599                         }
3600                 } else {
3601                         c = 1;
3602                 }
3603                 b = 1; /* shut up gcc */
3604                 switch( n->value ){
3605                 case TS_CMD_MDW:
3606                         b =  4;
3607                         break;
3608                 case TS_CMD_MDH:
3609                         b = 2;
3610                         break;
3611                 case TS_CMD_MDB:
3612                         b = 1;
3613                         break;
3614                 }
3615
3616                 /* convert to "bytes" */
3617                 c = c * b;
3618                 /* count is now in 'BYTES' */
3619                 while( c > 0 ){
3620                         y = c;
3621                         if( y > 16 ){
3622                                 y = 16;
3623                         }
3624                         e = target_read_memory( target, a, b, y / b, target_buf );
3625                         if( e != ERROR_OK ){
3626                                 Jim_SetResult_sprintf( interp, "error reading target @ 0x%08lx", (int)(a) );
3627                                 return JIM_ERR;
3628                         }
3629
3630                         Jim_fprintf( interp, interp->cookie_stdout, "0x%08x ", (int)(a) );
3631                         switch( b ){
3632                         case 4:
3633                                 for( x = 0 ; (x < 16) && (x < y) ; x += 4 ){
3634                                         z = target_buffer_get_u32( target, &(target_buf[ x * 4 ]) );
3635                                         Jim_fprintf( interp, interp->cookie_stdout, "%08x ", (int)(z) );
3636                                 }
3637                                 for( ; (x < 16) ; x += 4 ){
3638                                         Jim_fprintf( interp, interp->cookie_stdout, "         " );
3639                                 }
3640                                 break;
3641                         case 2:
3642                                 for( x = 0 ; (x < 16) && (x < y) ; x += 2 ){
3643                                         z = target_buffer_get_u16( target, &(target_buf[ x * 2 ]) );
3644                                         Jim_fprintf( interp, interp->cookie_stdout, "%04x ", (int)(z) );
3645                                 }
3646                                 for( ; (x < 16) ; x += 2 ){
3647                                         Jim_fprintf( interp, interp->cookie_stdout, "     " );
3648                                 }
3649                                 break;
3650                         case 1:
3651                         default:
3652                                 for( x = 0 ; (x < 16) && (x < y) ; x += 1 ){
3653                                         z = target_buffer_get_u8( target, &(target_buf[ x * 4 ]) );
3654                                         Jim_fprintf( interp, interp->cookie_stdout, "%02x ", (int)(z) );
3655                                 }
3656                                 for( ; (x < 16) ; x += 1 ){
3657                                         Jim_fprintf( interp, interp->cookie_stdout, "   " );
3658                                 }
3659                                 break;
3660                         }
3661                         /* ascii-ify the bytes */
3662                         for( x = 0 ; x < y ; x++ ){
3663                                 if( (target_buf[x] >= 0x20) &&
3664                                         (target_buf[x] <= 0x7e) ){
3665                                         /* good */
3666                                 } else {
3667                                         /* smack it */
3668                                         target_buf[x] = '.';
3669                                 }
3670                         }
3671                         /* space pad  */
3672                         while( x < 16 ){
3673                                 target_buf[x] = ' ';
3674                                 x++;
3675                         }
3676                         /* terminate */
3677                         target_buf[16] = 0;
3678                         /* print - with a newline */
3679                         Jim_fprintf( interp, interp->cookie_stdout, "%s\n", target_buf );
3680                         /* NEXT... */
3681                         c -= 16;
3682                         a += 16;
3683                 }
3684                 return JIM_OK;
3685         case TS_CMD_MEM2ARRAY:
3686                 return target_mem2array( goi.interp, target, goi.argc, goi.argv );
3687                 break;
3688         case TS_CMD_ARRAY2MEM:
3689                 return target_array2mem( goi.interp, target, goi.argc, goi.argv );
3690                 break;
3691         case TS_CMD_EXAMINE:
3692                 if( goi.argc ){
3693                         Jim_WrongNumArgs( goi.interp, 2, argv, "[no parameters]");
3694                         return JIM_ERR;
3695                 }
3696                 e = target->type->examine( target );
3697                 if( e != ERROR_OK ){
3698                         Jim_SetResult_sprintf( interp, "examine-fails: %d", e );
3699                         return JIM_ERR;
3700                 }
3701                 return JIM_OK;
3702         case TS_CMD_POLL:
3703                 if( goi.argc ){
3704                         Jim_WrongNumArgs( goi.interp, 2, argv, "[no parameters]");
3705                         return JIM_ERR;
3706                 }
3707                 if( !(target_was_examined(target)) ){
3708                         e = ERROR_TARGET_NOT_EXAMINED;
3709                 } else {
3710                         e = target->type->poll( target );
3711                 }
3712                 if( e != ERROR_OK ){
3713                         Jim_SetResult_sprintf( interp, "poll-fails: %d", e );
3714                         return JIM_ERR;
3715                 } else {
3716                         return JIM_OK;
3717                 }
3718                 break;
3719         case TS_CMD_RESET:
3720                 if( goi.argc != 2 ){
3721                         Jim_WrongNumArgs( interp, 2, argv, "t|f|assert|deassert BOOL");
3722                         return JIM_ERR;
3723                 }
3724                 e = Jim_GetOpt_Nvp( &goi, nvp_assert, &n );
3725                 if( e != JIM_OK ){
3726                         Jim_GetOpt_NvpUnknown( &goi, nvp_assert, 1 );
3727                         return e;
3728                 }
3729                 /* the halt or not param */
3730                 e = Jim_GetOpt_Wide( &goi, &a);
3731                 if( e != JIM_OK ){
3732                         return e;
3733                 }
3734                 /* determine if we should halt or not. */
3735                 target->reset_halt = !!a;
3736                 /* When this happens - all workareas are invalid. */
3737                 target_free_all_working_areas_restore(target, 0);
3738
3739                 /* do the assert */
3740                 if( n->value == NVP_ASSERT ){
3741                         target->type->assert_reset( target );
3742                 } else {
3743                         target->type->deassert_reset( target );
3744                 }
3745                 return JIM_OK;
3746         case TS_CMD_HALT:
3747                 if( goi.argc ){
3748                         Jim_WrongNumArgs( goi.interp, 0, argv, "halt [no parameters]");
3749                         return JIM_ERR;
3750                 }
3751                 target->type->halt( target );
3752                 return JIM_OK;
3753         case TS_CMD_WAITSTATE:
3754                 /* params:  <name>  statename timeoutmsecs */
3755                 if( goi.argc != 2 ){
3756                         Jim_SetResult_sprintf( goi.interp, "%s STATENAME TIMEOUTMSECS", n->name );
3757                         return JIM_ERR;
3758                 }
3759                 e = Jim_GetOpt_Nvp( &goi, nvp_target_state, &n );
3760                 if( e != JIM_OK ){
3761                         Jim_GetOpt_NvpUnknown( &goi, nvp_target_state,1 );
3762                         return e;
3763                 }
3764                 e = Jim_GetOpt_Wide( &goi, &a );
3765                 if( e != JIM_OK ){
3766                         return e;
3767                 }
3768                 e = target_wait_state( target, n->value, a );
3769                 if( e != ERROR_OK ){
3770                         Jim_SetResult_sprintf( goi.interp,
3771                                                                    "target: %s wait %s fails (%d) %s",
3772                                                                    target->cmd_name,
3773                                                                    n->name,
3774                                                                    e, target_strerror_safe(e) );
3775                         return JIM_ERR;
3776                 } else {
3777                         return JIM_OK;
3778                 }
3779         case TS_CMD_EVENTLIST:
3780                 /* List for human, Events defined for this target.
3781                  * scripts/programs should use 'name cget -event NAME'
3782                  */
3783                 {
3784                         target_event_action_t *teap;
3785                         teap = target->event_action;
3786                         command_print( cmd_ctx, "Event actions for target (%d) %s\n",
3787                                                    target->target_number,
3788                                                    target->cmd_name );
3789                         command_print( cmd_ctx, "%-25s | Body", "Event");
3790                         command_print( cmd_ctx, "------------------------- | ----------------------------------------");
3791                         while( teap ){
3792                                 command_print( cmd_ctx,
3793                                                            "%-25s | %s",
3794                                                            Jim_Nvp_value2name_simple( nvp_target_event, teap->event )->name,
3795                                                            Jim_GetString( teap->body, NULL ) );
3796                                 teap = teap->next;
3797                         }
3798                         command_print( cmd_ctx, "***END***");
3799                         return JIM_OK;
3800                 }
3801         case TS_CMD_CURSTATE:
3802                 if( goi.argc != 0 ){
3803                         Jim_WrongNumArgs( goi.interp, 0, argv, "[no parameters]");
3804                         return JIM_ERR;
3805                 }
3806                 Jim_SetResultString( goi.interp,
3807                                                          Jim_Nvp_value2name_simple(nvp_target_state,target->state)->name,-1);
3808                 return JIM_OK;
3809         case TS_CMD_INVOKE_EVENT:
3810                 if( goi.argc != 1 ){
3811                         Jim_SetResult_sprintf( goi.interp, "%s ?EVENTNAME?",n->name);
3812                         return JIM_ERR;
3813                 }
3814                 e = Jim_GetOpt_Nvp( &goi, nvp_target_event, &n );
3815                 if( e != JIM_OK ){
3816                         Jim_GetOpt_NvpUnknown( &goi, nvp_target_event, 1 );
3817                         return e;
3818                 }
3819                 target_handle_event( target, n->value );
3820                 return JIM_OK;
3821         }
3822         return JIM_ERR;
3823 }
3824
3825 static int target_create( Jim_GetOptInfo *goi )
3826 {
3827         Jim_Obj *new_cmd;
3828         Jim_Cmd *cmd;
3829         const char *cp;
3830         char *cp2;
3831         int e;
3832         int x;
3833         target_t *target;
3834         struct command_context_s *cmd_ctx;
3835
3836         cmd_ctx = Jim_GetAssocData(goi->interp, "context");
3837         if( goi->argc < 3 ){
3838                 Jim_WrongNumArgs( goi->interp, 1, goi->argv, "?name? ?type? ..options...");
3839                 return JIM_ERR;
3840         }
3841
3842         /* COMMAND */
3843         Jim_GetOpt_Obj( goi, &new_cmd );
3844         /* does this command exist? */
3845         cmd = Jim_GetCommand( goi->interp, new_cmd, JIM_ERRMSG );
3846         if( cmd ){
3847                 cp = Jim_GetString( new_cmd, NULL );
3848                 Jim_SetResult_sprintf(goi->interp, "Command/target: %s Exists", cp);
3849                 return JIM_ERR;
3850         }
3851
3852         /* TYPE */
3853         e = Jim_GetOpt_String( goi, &cp2, NULL );
3854         cp = cp2;
3855         /* now does target type exist */
3856         for( x = 0 ; target_types[x] ; x++ ){
3857                 if( 0 == strcmp( cp, target_types[x]->name ) ){
3858                         /* found */
3859                         break;
3860                 }
3861         }
3862         if( target_types[x] == NULL ){
3863                 Jim_SetResult_sprintf( goi->interp, "Unknown target type %s, try one of ", cp );
3864                 for( x = 0 ; target_types[x] ; x++ ){
3865                         if( target_types[x+1] ){
3866                                 Jim_AppendStrings( goi->interp,
3867                                                                    Jim_GetResult(goi->interp),
3868                                                                    target_types[x]->name,
3869                                                                    ", ", NULL);
3870                         } else {
3871                                 Jim_AppendStrings( goi->interp,
3872                                                                    Jim_GetResult(goi->interp),
3873                                                                    " or ",
3874                                                                    target_types[x]->name,NULL );
3875                         }
3876                 }
3877                 return JIM_ERR;
3878         }
3879
3880         /* Create it */
3881         target = calloc(1,sizeof(target_t));
3882         /* set target number */
3883         target->target_number = new_target_number();
3884
3885         /* allocate memory for each unique target type */
3886         target->type = (target_type_t*)calloc(1,sizeof(target_type_t));
3887
3888         memcpy( target->type, target_types[x], sizeof(target_type_t));
3889
3890         /* will be set by "-endian" */
3891         target->endianness = TARGET_ENDIAN_UNKNOWN;
3892
3893         target->working_area        = 0x0;
3894         target->working_area_size   = 0x0;
3895         target->working_areas       = NULL;
3896         target->backup_working_area = 0;
3897
3898         target->state               = TARGET_UNKNOWN;
3899         target->debug_reason        = DBG_REASON_UNDEFINED;
3900         target->reg_cache           = NULL;
3901         target->breakpoints         = NULL;
3902         target->watchpoints         = NULL;
3903         target->next                = NULL;
3904         target->arch_info           = NULL;
3905
3906         target->display             = 1;
3907
3908         /* initialize trace information */
3909         target->trace_info = malloc(sizeof(trace_t));
3910         target->trace_info->num_trace_points         = 0;
3911         target->trace_info->trace_points_size        = 0;
3912         target->trace_info->trace_points             = NULL;
3913         target->trace_info->trace_history_size       = 0;
3914         target->trace_info->trace_history            = NULL;
3915         target->trace_info->trace_history_pos        = 0;
3916         target->trace_info->trace_history_overflowed = 0;
3917
3918         target->dbgmsg          = NULL;
3919         target->dbg_msg_enabled = 0;
3920
3921         target->endianness = TARGET_ENDIAN_UNKNOWN;
3922
3923         /* Do the rest as "configure" options */
3924         goi->isconfigure = 1;
3925         e = target_configure( goi, target);
3926
3927         if (target->tap == NULL)
3928         {
3929                 Jim_SetResultString( interp, "-chain-position required when creating target", -1);
3930                 e=JIM_ERR;
3931         }
3932
3933         if( e != JIM_OK ){
3934                 free( target->type );
3935                 free( target );
3936                 return e;
3937         }
3938
3939         if( target->endianness == TARGET_ENDIAN_UNKNOWN ){
3940                 /* default endian to little if not specified */
3941                 target->endianness = TARGET_LITTLE_ENDIAN;
3942         }
3943
3944         /* incase variant is not set */
3945         if (!target->variant)
3946                 target->variant = strdup("");
3947
3948         /* create the target specific commands */
3949         if( target->type->register_commands ){
3950                 (*(target->type->register_commands))( cmd_ctx );
3951         }
3952         if( target->type->target_create ){
3953                 (*(target->type->target_create))( target, goi->interp );
3954         }
3955
3956         /* append to end of list */
3957         {
3958                 target_t **tpp;
3959                 tpp = &(all_targets);
3960                 while( *tpp ){
3961                         tpp = &( (*tpp)->next );
3962                 }
3963                 *tpp = target;
3964         }
3965
3966         cp = Jim_GetString( new_cmd, NULL );
3967         target->cmd_name = strdup(cp);
3968
3969         /* now - create the new target name command */
3970         e = Jim_CreateCommand( goi->interp,
3971                                                    /* name */
3972                                                    cp,
3973                                                    tcl_target_func, /* C function */
3974                                                    target, /* private data */
3975                                                    NULL ); /* no del proc */
3976
3977         return e;
3978 }
3979
3980 static int jim_target( Jim_Interp *interp, int argc, Jim_Obj *const *argv )
3981 {
3982         int x,r,e;
3983         jim_wide w;
3984         struct command_context_s *cmd_ctx;
3985         target_t *target;
3986         Jim_GetOptInfo goi;
3987         enum tcmd {
3988                 /* TG = target generic */
3989                 TG_CMD_CREATE,
3990                 TG_CMD_TYPES,
3991                 TG_CMD_NAMES,
3992                 TG_CMD_CURRENT,
3993                 TG_CMD_NUMBER,
3994                 TG_CMD_COUNT,
3995         };
3996         const char *target_cmds[] = {
3997                 "create", "types", "names", "current", "number",
3998                 "count",
3999                 NULL /* terminate */
4000         };
4001
4002         LOG_DEBUG("Target command params:");
4003         LOG_DEBUG("%s", Jim_Debug_ArgvString(interp, argc, argv));
4004
4005         cmd_ctx = Jim_GetAssocData( interp, "context" );
4006
4007         Jim_GetOpt_Setup( &goi, interp, argc-1, argv+1 );
4008
4009         if( goi.argc == 0 ){
4010                 Jim_WrongNumArgs(interp, 1, argv, "missing: command ...");
4011                 return JIM_ERR;
4012         }
4013
4014         /* Jim_GetOpt_Debug( &goi ); */
4015         r = Jim_GetOpt_Enum( &goi, target_cmds, &x   );
4016         if( r != JIM_OK ){
4017                 return r;
4018         }
4019
4020         switch(x){
4021         default:
4022                 Jim_Panic(goi.interp,"Why am I here?");
4023                 return JIM_ERR;
4024         case TG_CMD_CURRENT:
4025                 if( goi.argc != 0 ){
4026                         Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters");
4027                         return JIM_ERR;
4028                 }
4029                 Jim_SetResultString( goi.interp, get_current_target( cmd_ctx )->cmd_name, -1 );
4030                 return JIM_OK;
4031         case TG_CMD_TYPES:
4032                 if( goi.argc != 0 ){
4033                         Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters" );
4034                         return JIM_ERR;
4035                 }
4036                 Jim_SetResult( goi.interp, Jim_NewListObj( goi.interp, NULL, 0 ) );
4037                 for( x = 0 ; target_types[x] ; x++ ){
4038                         Jim_ListAppendElement( goi.interp,
4039                                                                    Jim_GetResult(goi.interp),
4040                                                                    Jim_NewStringObj( goi.interp, target_types[x]->name, -1 ) );
4041                 }
4042                 return JIM_OK;
4043         case TG_CMD_NAMES:
4044                 if( goi.argc != 0 ){
4045                         Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters" );
4046                         return JIM_ERR;
4047                 }
4048                 Jim_SetResult( goi.interp, Jim_NewListObj( goi.interp, NULL, 0 ) );
4049                 target = all_targets;
4050                 while( target ){
4051                         Jim_ListAppendElement( goi.interp,
4052                                                                    Jim_GetResult(goi.interp),
4053                                                                    Jim_NewStringObj( goi.interp, target->cmd_name, -1 ) );
4054                         target = target->next;
4055                 }
4056                 return JIM_OK;
4057         case TG_CMD_CREATE:
4058                 if( goi.argc < 3 ){
4059                         Jim_WrongNumArgs( goi.interp, goi.argc, goi.argv, "?name  ... config options ...");
4060                         return JIM_ERR;
4061                 }
4062                 return target_create( &goi );
4063                 break;
4064         case TG_CMD_NUMBER:
4065                 if( goi.argc != 1 ){
4066                         Jim_SetResult_sprintf( goi.interp, "expected: target number ?NUMBER?");
4067                         return JIM_ERR;
4068                 }
4069                 e = Jim_GetOpt_Wide( &goi, &w );
4070                 if( e != JIM_OK ){
4071                         return JIM_ERR;
4072                 }
4073                 {
4074                         target_t *t;
4075                         t = get_target_by_num(w);
4076                         if( t == NULL ){
4077                                 Jim_SetResult_sprintf( goi.interp,"Target: number %d does not exist", (int)(w));
4078                                 return JIM_ERR;
4079                         }
4080                         Jim_SetResultString( goi.interp, t->cmd_name, -1 );
4081                         return JIM_OK;
4082                 }
4083         case TG_CMD_COUNT:
4084                 if( goi.argc != 0 ){
4085                         Jim_WrongNumArgs( goi.interp, 0, goi.argv, "<no parameters>");
4086                         return JIM_ERR;
4087                 }
4088                 Jim_SetResult( goi.interp,
4089                                            Jim_NewIntObj( goi.interp, max_target_number()));
4090                 return JIM_OK;
4091         }
4092
4093         return JIM_ERR;
4094 }
4095
4096
4097 struct FastLoad
4098 {
4099         u32 address;
4100         u8 *data;
4101         int length;
4102
4103 };
4104
4105 static int fastload_num;
4106 static struct FastLoad *fastload;
4107
4108 static void free_fastload(void)
4109 {
4110         if (fastload!=NULL)
4111         {
4112                 int i;
4113                 for (i=0; i<fastload_num; i++)
4114                 {
4115                         if (fastload[i].data)
4116                                 free(fastload[i].data);
4117                 }
4118                 free(fastload);
4119                 fastload=NULL;
4120         }
4121 }
4122
4123
4124
4125
4126 static int handle_fast_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
4127 {
4128         u8 *buffer;
4129         u32 buf_cnt;
4130         u32 image_size;
4131         u32 min_address=0;
4132         u32 max_address=0xffffffff;
4133         int i;
4134         int retval;
4135
4136         image_t image;
4137
4138         duration_t duration;
4139         char *duration_text;
4140
4141         if ((argc < 1)||(argc > 5))
4142         {
4143                 return ERROR_COMMAND_SYNTAX_ERROR;
4144         }
4145
4146         /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
4147         if (argc >= 2)
4148         {
4149                 image.base_address_set = 1;
4150                 image.base_address = strtoul(args[1], NULL, 0);
4151         }
4152         else
4153         {
4154                 image.base_address_set = 0;
4155         }
4156
4157
4158         image.start_address_set = 0;
4159
4160         if (argc>=4)
4161         {
4162                 min_address=strtoul(args[3], NULL, 0);
4163         }
4164         if (argc>=5)
4165         {
4166                 max_address=strtoul(args[4], NULL, 0)+min_address;
4167         }
4168
4169         if (min_address>max_address)
4170         {
4171                 return ERROR_COMMAND_SYNTAX_ERROR;
4172         }
4173
4174         duration_start_measure(&duration);
4175
4176         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
4177         {
4178                 return ERROR_OK;
4179         }
4180
4181         image_size = 0x0;
4182         retval = ERROR_OK;
4183         fastload_num=image.num_sections;
4184         fastload=(struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
4185         if (fastload==NULL)
4186         {
4187                 image_close(&image);
4188                 return ERROR_FAIL;
4189         }
4190         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
4191         for (i = 0; i < image.num_sections; i++)
4192         {
4193                 buffer = malloc(image.sections[i].size);
4194                 if (buffer == NULL)
4195                 {
4196                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
4197                         break;
4198                 }
4199
4200                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
4201                 {
4202                         free(buffer);
4203                         break;
4204                 }
4205
4206                 u32 offset=0;
4207                 u32 length=buf_cnt;
4208
4209
4210                 /* DANGER!!! beware of unsigned comparision here!!! */
4211
4212                 if ((image.sections[i].base_address+buf_cnt>=min_address)&&
4213                                 (image.sections[i].base_address<max_address))
4214                 {
4215                         if (image.sections[i].base_address<min_address)
4216                         {
4217                                 /* clip addresses below */
4218                                 offset+=min_address-image.sections[i].base_address;
4219                                 length-=offset;
4220                         }
4221
4222                         if (image.sections[i].base_address+buf_cnt>max_address)
4223                         {
4224                                 length-=(image.sections[i].base_address+buf_cnt)-max_address;
4225                         }
4226
4227                         fastload[i].address=image.sections[i].base_address+offset;
4228                         fastload[i].data=malloc(length);
4229                         if (fastload[i].data==NULL)
4230                         {
4231                                 free(buffer);
4232                                 break;
4233                         }
4234                         memcpy(fastload[i].data, buffer+offset, length);
4235                         fastload[i].length=length;
4236
4237                         image_size += length;
4238                         command_print(cmd_ctx, "%u byte written at address 0x%8.8x", length, image.sections[i].base_address+offset);
4239                 }
4240
4241                 free(buffer);
4242         }
4243
4244         duration_stop_measure(&duration, &duration_text);
4245         if (retval==ERROR_OK)
4246         {
4247                 command_print(cmd_ctx, "Loaded %u bytes in %s", image_size, duration_text);
4248                 command_print(cmd_ctx, "NB!!! image has not been loaded to target, issue a subsequent 'fast_load' to do so.");
4249         }
4250         free(duration_text);
4251
4252         image_close(&image);
4253
4254         if (retval!=ERROR_OK)
4255         {
4256                 free_fastload();
4257         }
4258
4259         return retval;
4260 }
4261
4262 static int handle_fast_load_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
4263 {
4264         if (argc>0)
4265                 return ERROR_COMMAND_SYNTAX_ERROR;
4266         if (fastload==NULL)
4267         {
4268                 LOG_ERROR("No image in memory");
4269                 return ERROR_FAIL;
4270         }
4271         int i;
4272         int ms=timeval_ms();
4273         int size=0;
4274         int retval=ERROR_OK;
4275         for (i=0; i<fastload_num;i++)
4276         {
4277                 target_t *target = get_current_target(cmd_ctx);
4278                 command_print(cmd_ctx, "Write to 0x%08x, length 0x%08x", fastload[i].address, fastload[i].length);
4279                 if (retval==ERROR_OK)
4280                 {
4281                         retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
4282                 }
4283                 size+=fastload[i].length;
4284         }
4285         int after=timeval_ms();
4286         command_print(cmd_ctx, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
4287         return retval;
4288 }