fixed gaffe mea culpa
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007,2008 Ã˜yvind Harboe                                      *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   This program is free software; you can redistribute it and/or modify  *
9  *   it under the terms of the GNU General Public License as published by  *
10  *   the Free Software Foundation; either version 2 of the License, or     *
11  *   (at your option) any later version.                                   *
12  *                                                                         *
13  *   This program is distributed in the hope that it will be useful,       *
14  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
15  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
16  *   GNU General Public License for more details.                          *
17  *                                                                         *
18  *   You should have received a copy of the GNU General Public License     *
19  *   along with this program; if not, write to the                         *
20  *   Free Software Foundation, Inc.,                                       *
21  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
22  ***************************************************************************/
23 #ifdef HAVE_CONFIG_H
24 #include "config.h"
25 #endif
26
27 #include "replacements.h"
28 #include "target.h"
29 #include "target_request.h"
30
31 #include "log.h"
32 #include "configuration.h"
33 #include "binarybuffer.h"
34 #include "jtag.h"
35
36 #include <string.h>
37 #include <stdlib.h>
38 #include <inttypes.h>
39
40 #include <sys/types.h>
41 #include <sys/stat.h>
42 #include <unistd.h>
43 #include <errno.h>
44
45 #include <sys/time.h>
46 #include <time.h>
47
48 #include <time_support.h>
49
50 #include <fileio.h>
51 #include <image.h>
52
53 int cli_target_callback_event_handler(struct target_s *target, enum target_event event, void *priv);
54
55 int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
56 int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
57
58 int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
59
60 int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
61 int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
62 int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
63 int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
64 int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
65 int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
66 int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
67 int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
68 int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
69 int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
70 int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
71 int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
72 int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
73 int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
74 int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
75 int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
76 int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
77 int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc);
78 int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
79 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
80 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
81
82
83 /* targets */
84 extern target_type_t arm7tdmi_target;
85 extern target_type_t arm720t_target;
86 extern target_type_t arm9tdmi_target;
87 extern target_type_t arm920t_target;
88 extern target_type_t arm966e_target;
89 extern target_type_t arm926ejs_target;
90 extern target_type_t feroceon_target;
91 extern target_type_t xscale_target;
92 extern target_type_t cortexm3_target;
93 extern target_type_t arm11_target;
94 extern target_type_t mips_m4k_target;
95
96 target_type_t *target_types[] =
97 {
98         &arm7tdmi_target,
99         &arm9tdmi_target,
100         &arm920t_target,
101         &arm720t_target,
102         &arm966e_target,
103         &arm926ejs_target,
104         &feroceon_target,
105         &xscale_target,
106         &cortexm3_target,
107         &arm11_target,
108         &mips_m4k_target,
109         NULL,
110 };
111
112 target_t *targets = NULL;
113 target_event_callback_t *target_event_callbacks = NULL;
114 target_timer_callback_t *target_timer_callbacks = NULL;
115
116 char *target_state_strings[] =
117 {
118         "unknown",
119         "running",
120         "halted",
121         "reset",
122         "debug_running",
123 };
124
125 char *target_debug_reason_strings[] =
126 {
127         "debug request", "breakpoint", "watchpoint",
128         "watchpoint and breakpoint", "single step",
129         "target not halted", "undefined"
130 };
131
132 char *target_endianess_strings[] =
133 {
134         "big endian",
135         "little endian",
136 };
137
138 static int target_continous_poll = 1;
139
140 /* read a u32 from a buffer in target memory endianness */
141 u32 target_buffer_get_u32(target_t *target, u8 *buffer)
142 {
143         if (target->endianness == TARGET_LITTLE_ENDIAN)
144                 return le_to_h_u32(buffer);
145         else
146                 return be_to_h_u32(buffer);
147 }
148
149 /* read a u16 from a buffer in target memory endianness */
150 u16 target_buffer_get_u16(target_t *target, u8 *buffer)
151 {
152         if (target->endianness == TARGET_LITTLE_ENDIAN)
153                 return le_to_h_u16(buffer);
154         else
155                 return be_to_h_u16(buffer);
156 }
157
158 /* write a u32 to a buffer in target memory endianness */
159 void target_buffer_set_u32(target_t *target, u8 *buffer, u32 value)
160 {
161         if (target->endianness == TARGET_LITTLE_ENDIAN)
162                 h_u32_to_le(buffer, value);
163         else
164                 h_u32_to_be(buffer, value);
165 }
166
167 /* write a u16 to a buffer in target memory endianness */
168 void target_buffer_set_u16(target_t *target, u8 *buffer, u16 value)
169 {
170         if (target->endianness == TARGET_LITTLE_ENDIAN)
171                 h_u16_to_le(buffer, value);
172         else
173                 h_u16_to_be(buffer, value);
174 }
175
176 /* returns a pointer to the n-th configured target */
177 target_t* get_target_by_num(int num)
178 {
179         target_t *target = targets;
180         int i = 0;
181
182         while (target)
183         {
184                 if (num == i)
185                         return target;
186                 target = target->next;
187                 i++;
188         }
189
190         return NULL;
191 }
192
193 int get_num_by_target(target_t *query_target)
194 {
195         target_t *target = targets;
196         int i = 0;
197
198         while (target)
199         {
200                 if (target == query_target)
201                         return i;
202                 target = target->next;
203                 i++;
204         }
205
206         return -1;
207 }
208
209 target_t* get_current_target(command_context_t *cmd_ctx)
210 {
211         target_t *target = get_target_by_num(cmd_ctx->current_target);
212
213         if (target == NULL)
214         {
215                 LOG_ERROR("BUG: current_target out of bounds");
216                 exit(-1);
217         }
218
219         return target;
220 }
221
222
223 int target_poll(struct target_s *target)
224 {
225         /* We can't poll until after examine */
226         if (!target->type->examined)
227         {
228                 /* Fail silently lest we pollute the log */
229                 return ERROR_FAIL;
230         }
231         return target->type->poll(target);
232 }
233
234 int target_halt(struct target_s *target)
235 {
236         /* We can't poll until after examine */
237         if (!target->type->examined)
238         {
239                 LOG_ERROR("Target not examined yet");
240                 return ERROR_FAIL;
241         }
242         return target->type->halt(target);
243 }
244
245 int target_resume(struct target_s *target, int current, u32 address, int handle_breakpoints, int debug_execution)
246 {
247         int retval;
248
249         /* We can't poll until after examine */
250         if (!target->type->examined)
251         {
252                 LOG_ERROR("Target not examined yet");
253                 return ERROR_FAIL;
254         }
255
256         /* note that resume *must* be asynchronous. The CPU can halt before we poll. The CPU can
257          * even halt at the current PC as a result of a software breakpoint being inserted by (a bug?)
258          * the application.
259          */
260         if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
261                 return retval;
262
263         return retval;
264 }
265
266 int target_process_reset(struct command_context_s *cmd_ctx, enum target_reset_mode reset_mode)
267 {
268         int retval = ERROR_OK;
269         target_t *target;
270
271         target = targets;
272         while (target)
273         {
274                 target_invoke_script(cmd_ctx, target, "pre_reset");
275                 target = target->next;
276         }
277
278         if ((retval = jtag_init_reset(cmd_ctx)) != ERROR_OK)
279                 return retval;
280
281         keep_alive(); /* we might be running on a very slow JTAG clk */
282
283         /* First time this is executed after launching OpenOCD, it will read out
284          * the type of CPU, etc. and init Embedded ICE registers in host
285          * memory.
286          *
287          * It will also set up ICE registers in the target.
288          *
289          * However, if we assert TRST later, we need to set up the registers again.
290          *
291          * For the "reset halt/init" case we must only set up the registers here.
292          */
293         if ((retval = target_examine(cmd_ctx)) != ERROR_OK)
294                 return retval;
295
296         keep_alive(); /* we might be running on a very slow JTAG clk */
297
298         target = targets;
299         while (target)
300         {
301                 /* we have no idea what state the target is in, so we
302                  * have to drop working areas
303                  */
304                 target_free_all_working_areas_restore(target, 0);
305                 target->reset_halt=((reset_mode==RESET_HALT)||(reset_mode==RESET_INIT));
306                 target->type->assert_reset(target);
307                 target = target->next;
308         }
309         if ((retval = jtag_execute_queue()) != ERROR_OK)
310         {
311                 LOG_WARNING("JTAG communication failed asserting reset.");
312                 retval = ERROR_OK;
313         }
314
315         /* request target halt if necessary, and schedule further action */
316         target = targets;
317         while (target)
318         {
319                 if (reset_mode!=RESET_RUN)
320                 {
321                         if ((jtag_reset_config & RESET_SRST_PULLS_TRST)==0)
322                                 target_halt(target);
323                 }
324                 target = target->next;
325         }
326
327         if ((retval = jtag_execute_queue()) != ERROR_OK)
328         {
329                 LOG_WARNING("JTAG communication failed while reset was asserted. Consider using srst_only for reset_config.");
330                 retval = ERROR_OK;
331         }
332
333         target = targets;
334         while (target)
335         {
336                 target->type->deassert_reset(target);
337                 /* We can fail to bring the target into the halted state  */
338                 target_poll(target);
339                 if (target->reset_halt&&((target->state != TARGET_HALTED)))
340                 {
341                         LOG_WARNING("Failed to reset target into halted mode - issuing halt");
342                         target->type->halt(target);
343                 }
344
345                 target = target->next;
346         }
347
348         if ((retval = jtag_execute_queue()) != ERROR_OK)
349         {
350                 LOG_WARNING("JTAG communication failed while deasserting reset.");
351                 retval = ERROR_OK;
352         }
353
354         if (jtag_reset_config & RESET_SRST_PULLS_TRST)
355         {
356                 /* If TRST was asserted we need to set up registers again */
357                 if ((retval = target_examine(cmd_ctx)) != ERROR_OK)
358                         return retval;
359         }
360
361         LOG_DEBUG("Waiting for halted stated as appropriate");
362
363         if ((reset_mode == RESET_HALT) || (reset_mode == RESET_INIT))
364         {
365                 target = targets;
366                 while (target)
367                 {
368                         /* Wait for reset to complete, maximum 5 seconds. */
369                         if (((retval=target_wait_state(target, TARGET_HALTED, 5000)))==ERROR_OK)
370                         {
371                                 if (reset_mode == RESET_INIT)
372                                         target_invoke_script(cmd_ctx, target, "post_reset");
373                         }
374                         target = target->next;
375                 }
376         }
377
378         /* We want any events to be processed before the prompt */
379         target_call_timer_callbacks_now();
380
381         return retval;
382 }
383
384 static int default_virt2phys(struct target_s *target, u32 virtual, u32 *physical)
385 {
386         *physical = virtual;
387         return ERROR_OK;
388 }
389
390 static int default_mmu(struct target_s *target, int *enabled)
391 {
392         *enabled = 0;
393         return ERROR_OK;
394 }
395
396 static int default_examine(struct command_context_s *cmd_ctx, struct target_s *target)
397 {
398         target->type->examined = 1;
399         return ERROR_OK;
400 }
401
402
403 /* Targets that correctly implement init+examine, i.e.
404  * no communication with target during init:
405  *
406  * XScale
407  */
408 int target_examine(struct command_context_s *cmd_ctx)
409 {
410         int retval = ERROR_OK;
411         target_t *target = targets;
412         while (target)
413         {
414                 if ((retval = target->type->examine(cmd_ctx, target))!=ERROR_OK)
415                         return retval;
416                 target = target->next;
417         }
418         return retval;
419 }
420
421 static int target_write_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
422 {
423         if (!target->type->examined)
424         {
425                 LOG_ERROR("Target not examined yet");
426                 return ERROR_FAIL;
427         }
428         return target->type->write_memory_imp(target, address, size, count, buffer);
429 }
430
431 static int target_read_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
432 {
433         if (!target->type->examined)
434         {
435                 LOG_ERROR("Target not examined yet");
436                 return ERROR_FAIL;
437         }
438         return target->type->read_memory_imp(target, address, size, count, buffer);
439 }
440
441 static int target_soft_reset_halt_imp(struct target_s *target)
442 {
443         if (!target->type->examined)
444         {
445                 LOG_ERROR("Target not examined yet");
446                 return ERROR_FAIL;
447         }
448         return target->type->soft_reset_halt_imp(target);
449 }
450
451 static int target_run_algorithm_imp(struct target_s *target, int num_mem_params, mem_param_t *mem_params, int num_reg_params, reg_param_t *reg_param, u32 entry_point, u32 exit_point, int timeout_ms, void *arch_info)
452 {
453         if (!target->type->examined)
454         {
455                 LOG_ERROR("Target not examined yet");
456                 return ERROR_FAIL;
457         }
458         return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
459 }
460
461 int target_init(struct command_context_s *cmd_ctx)
462 {
463         target_t *target = targets;
464
465         while (target)
466         {
467                 target->type->examined = 0;
468                 if (target->type->examine == NULL)
469                 {
470                         target->type->examine = default_examine;
471                 }
472
473                 if (target->type->init_target(cmd_ctx, target) != ERROR_OK)
474                 {
475                         LOG_ERROR("target '%s' init failed", target->type->name);
476                         exit(-1);
477                 }
478
479                 /* Set up default functions if none are provided by target */
480                 if (target->type->virt2phys == NULL)
481                 {
482                         target->type->virt2phys = default_virt2phys;
483                 }
484                 target->type->virt2phys = default_virt2phys;
485                 /* a non-invasive way(in terms of patches) to add some code that
486                  * runs before the type->write/read_memory implementation
487                  */
488                 target->type->write_memory_imp = target->type->write_memory;
489                 target->type->write_memory = target_write_memory_imp;
490                 target->type->read_memory_imp = target->type->read_memory;
491                 target->type->read_memory = target_read_memory_imp;
492                 target->type->soft_reset_halt_imp = target->type->soft_reset_halt;
493                 target->type->soft_reset_halt = target_soft_reset_halt_imp;
494                 target->type->run_algorithm_imp = target->type->run_algorithm;
495                 target->type->run_algorithm = target_run_algorithm_imp;
496
497
498                 if (target->type->mmu == NULL)
499                 {
500                         target->type->mmu = default_mmu;
501                 }
502                 target = target->next;
503         }
504
505         if (targets)
506         {
507                 target_register_user_commands(cmd_ctx);
508                 target_register_timer_callback(handle_target, 100, 1, NULL);
509         }
510
511         return ERROR_OK;
512 }
513
514 int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
515 {
516         target_event_callback_t **callbacks_p = &target_event_callbacks;
517
518         if (callback == NULL)
519         {
520                 return ERROR_INVALID_ARGUMENTS;
521         }
522
523         if (*callbacks_p)
524         {
525                 while ((*callbacks_p)->next)
526                         callbacks_p = &((*callbacks_p)->next);
527                 callbacks_p = &((*callbacks_p)->next);
528         }
529
530         (*callbacks_p) = malloc(sizeof(target_event_callback_t));
531         (*callbacks_p)->callback = callback;
532         (*callbacks_p)->priv = priv;
533         (*callbacks_p)->next = NULL;
534
535         return ERROR_OK;
536 }
537
538 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
539 {
540         target_timer_callback_t **callbacks_p = &target_timer_callbacks;
541         struct timeval now;
542
543         if (callback == NULL)
544         {
545                 return ERROR_INVALID_ARGUMENTS;
546         }
547
548         if (*callbacks_p)
549         {
550                 while ((*callbacks_p)->next)
551                         callbacks_p = &((*callbacks_p)->next);
552                 callbacks_p = &((*callbacks_p)->next);
553         }
554
555         (*callbacks_p) = malloc(sizeof(target_timer_callback_t));
556         (*callbacks_p)->callback = callback;
557         (*callbacks_p)->periodic = periodic;
558         (*callbacks_p)->time_ms = time_ms;
559
560         gettimeofday(&now, NULL);
561         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
562         time_ms -= (time_ms % 1000);
563         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
564         if ((*callbacks_p)->when.tv_usec > 1000000)
565         {
566                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
567                 (*callbacks_p)->when.tv_sec += 1;
568         }
569
570         (*callbacks_p)->priv = priv;
571         (*callbacks_p)->next = NULL;
572
573         return ERROR_OK;
574 }
575
576 int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
577 {
578         target_event_callback_t **p = &target_event_callbacks;
579         target_event_callback_t *c = target_event_callbacks;
580
581         if (callback == NULL)
582         {
583                 return ERROR_INVALID_ARGUMENTS;
584         }
585
586         while (c)
587         {
588                 target_event_callback_t *next = c->next;
589                 if ((c->callback == callback) && (c->priv == priv))
590                 {
591                         *p = next;
592                         free(c);
593                         return ERROR_OK;
594                 }
595                 else
596                         p = &(c->next);
597                 c = next;
598         }
599
600         return ERROR_OK;
601 }
602
603 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
604 {
605         target_timer_callback_t **p = &target_timer_callbacks;
606         target_timer_callback_t *c = target_timer_callbacks;
607
608         if (callback == NULL)
609         {
610                 return ERROR_INVALID_ARGUMENTS;
611         }
612
613         while (c)
614         {
615                 target_timer_callback_t *next = c->next;
616                 if ((c->callback == callback) && (c->priv == priv))
617                 {
618                         *p = next;
619                         free(c);
620                         return ERROR_OK;
621                 }
622                 else
623                         p = &(c->next);
624                 c = next;
625         }
626
627         return ERROR_OK;
628 }
629
630 int target_call_event_callbacks(target_t *target, enum target_event event)
631 {
632         target_event_callback_t *callback = target_event_callbacks;
633         target_event_callback_t *next_callback;
634
635         LOG_DEBUG("target event %i", event);
636
637         while (callback)
638         {
639                 next_callback = callback->next;
640                 callback->callback(target, event, callback->priv);
641                 callback = next_callback;
642         }
643
644         return ERROR_OK;
645 }
646
647 static int target_call_timer_callbacks_check_time(int checktime)
648 {
649         target_timer_callback_t *callback = target_timer_callbacks;
650         target_timer_callback_t *next_callback;
651         struct timeval now;
652
653         keep_alive();
654
655         gettimeofday(&now, NULL);
656
657         while (callback)
658         {
659                 next_callback = callback->next;
660
661                 if ((!checktime&&callback->periodic)||
662                                 (((now.tv_sec >= callback->when.tv_sec) && (now.tv_usec >= callback->when.tv_usec))
663                                                 || (now.tv_sec > callback->when.tv_sec)))
664                 {
665                         if(callback->callback != NULL)
666                         {
667                                 callback->callback(callback->priv);
668                                 if (callback->periodic)
669                                 {
670                                         int time_ms = callback->time_ms;
671                                         callback->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
672                                         time_ms -= (time_ms % 1000);
673                                         callback->when.tv_sec = now.tv_sec + time_ms / 1000;
674                                         if (callback->when.tv_usec > 1000000)
675                                         {
676                                                 callback->when.tv_usec = callback->when.tv_usec - 1000000;
677                                                 callback->when.tv_sec += 1;
678                                         }
679                                 }
680                                 else
681                                         target_unregister_timer_callback(callback->callback, callback->priv);
682                         }
683                 }
684
685                 callback = next_callback;
686         }
687
688         return ERROR_OK;
689 }
690
691 int target_call_timer_callbacks()
692 {
693         return target_call_timer_callbacks_check_time(1);
694 }
695
696 /* invoke periodic callbacks immediately */
697 int target_call_timer_callbacks_now()
698 {
699         return target_call_timer_callbacks(0);
700 }
701
702 int target_alloc_working_area(struct target_s *target, u32 size, working_area_t **area)
703 {
704         working_area_t *c = target->working_areas;
705         working_area_t *new_wa = NULL;
706
707         /* Reevaluate working area address based on MMU state*/
708         if (target->working_areas == NULL)
709         {
710                 int retval;
711                 int enabled;
712                 retval = target->type->mmu(target, &enabled);
713                 if (retval != ERROR_OK)
714                 {
715                         return retval;
716                 }
717                 if (enabled)
718                 {
719                         target->working_area = target->working_area_virt;
720                 }
721                 else
722                 {
723                         target->working_area = target->working_area_phys;
724                 }
725         }
726
727         /* only allocate multiples of 4 byte */
728         if (size % 4)
729         {
730                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes, padding");
731                 size = CEIL(size, 4);
732         }
733
734         /* see if there's already a matching working area */
735         while (c)
736         {
737                 if ((c->free) && (c->size == size))
738                 {
739                         new_wa = c;
740                         break;
741                 }
742                 c = c->next;
743         }
744
745         /* if not, allocate a new one */
746         if (!new_wa)
747         {
748                 working_area_t **p = &target->working_areas;
749                 u32 first_free = target->working_area;
750                 u32 free_size = target->working_area_size;
751
752                 LOG_DEBUG("allocating new working area");
753
754                 c = target->working_areas;
755                 while (c)
756                 {
757                         first_free += c->size;
758                         free_size -= c->size;
759                         p = &c->next;
760                         c = c->next;
761                 }
762
763                 if (free_size < size)
764                 {
765                         LOG_WARNING("not enough working area available(requested %d, free %d)", size, free_size);
766                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
767                 }
768
769                 new_wa = malloc(sizeof(working_area_t));
770                 new_wa->next = NULL;
771                 new_wa->size = size;
772                 new_wa->address = first_free;
773
774                 if (target->backup_working_area)
775                 {
776                         new_wa->backup = malloc(new_wa->size);
777                         target->type->read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup);
778                 }
779                 else
780                 {
781                         new_wa->backup = NULL;
782                 }
783
784                 /* put new entry in list */
785                 *p = new_wa;
786         }
787
788         /* mark as used, and return the new (reused) area */
789         new_wa->free = 0;
790         *area = new_wa;
791
792         /* user pointer */
793         new_wa->user = area;
794
795         return ERROR_OK;
796 }
797
798 int target_free_working_area_restore(struct target_s *target, working_area_t *area, int restore)
799 {
800         if (area->free)
801                 return ERROR_OK;
802
803         if (restore&&target->backup_working_area)
804                 target->type->write_memory(target, area->address, 4, area->size / 4, area->backup);
805
806         area->free = 1;
807
808         /* mark user pointer invalid */
809         *area->user = NULL;
810         area->user = NULL;
811
812         return ERROR_OK;
813 }
814
815 int target_free_working_area(struct target_s *target, working_area_t *area)
816 {
817         return target_free_working_area_restore(target, area, 1);
818 }
819
820 int target_free_all_working_areas_restore(struct target_s *target, int restore)
821 {
822         working_area_t *c = target->working_areas;
823
824         while (c)
825         {
826                 working_area_t *next = c->next;
827                 target_free_working_area_restore(target, c, restore);
828
829                 if (c->backup)
830                         free(c->backup);
831
832                 free(c);
833
834                 c = next;
835         }
836
837         target->working_areas = NULL;
838
839         return ERROR_OK;
840 }
841
842 int target_free_all_working_areas(struct target_s *target)
843 {
844         return target_free_all_working_areas_restore(target, 1);
845 }
846
847 int target_register_commands(struct command_context_s *cmd_ctx)
848 {
849         register_command(cmd_ctx, NULL, "target", handle_target_command, COMMAND_CONFIG, "target <cpu> [reset_init default - DEPRECATED] <chainpos> <endianness> <variant> [cpu type specifc args]");
850         register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, NULL);
851         register_command(cmd_ctx, NULL, "working_area", handle_working_area_command, COMMAND_ANY, "working_area <target#> <address> <size> <'backup'|'nobackup'> [virtual address]");
852         register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "virt2phys <virtual address>");
853         register_command(cmd_ctx, NULL, "profile", handle_profile_command, COMMAND_EXEC, "PRELIMINARY! - profile <seconds> <gmon.out>");
854
855
856         /* script procedures */
857         register_jim(cmd_ctx, "ocd_mem2array", jim_mem2array, "read memory and return as a TCL array for script processing");
858         register_jim(cmd_ctx, "ocd_array2mem", jim_array2mem, "convert a TCL array to memory locations and write the values");
859         return ERROR_OK;
860 }
861
862 int target_arch_state(struct target_s *target)
863 {
864         int retval;
865         if (target==NULL)
866         {
867                 LOG_USER("No target has been configured");
868                 return ERROR_OK;
869         }
870
871         LOG_USER("target state: %s", target_state_strings[target->state]);
872
873         if (target->state!=TARGET_HALTED)
874                 return ERROR_OK;
875
876         retval=target->type->arch_state(target);
877         return retval;
878 }
879
880 /* Single aligned words are guaranteed to use 16 or 32 bit access
881  * mode respectively, otherwise data is handled as quickly as
882  * possible
883  */
884 int target_write_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
885 {
886         int retval;
887         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x", size, address);
888
889         if (!target->type->examined)
890         {
891                 LOG_ERROR("Target not examined yet");
892                 return ERROR_FAIL;
893         }
894
895         if (address+size<address)
896         {
897                 /* GDB can request this when e.g. PC is 0xfffffffc*/
898                 LOG_ERROR("address+size wrapped(0x%08x, 0x%08x)", address, size);
899                 return ERROR_FAIL;
900         }
901
902         if (((address % 2) == 0) && (size == 2))
903         {
904                 return target->type->write_memory(target, address, 2, 1, buffer);
905         }
906
907         /* handle unaligned head bytes */
908         if (address % 4)
909         {
910                 int unaligned = 4 - (address % 4);
911
912                 if (unaligned > size)
913                         unaligned = size;
914
915                 if ((retval = target->type->write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
916                         return retval;
917
918                 buffer += unaligned;
919                 address += unaligned;
920                 size -= unaligned;
921         }
922
923         /* handle aligned words */
924         if (size >= 4)
925         {
926                 int aligned = size - (size % 4);
927
928                 /* use bulk writes above a certain limit. This may have to be changed */
929                 if (aligned > 128)
930                 {
931                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
932                                 return retval;
933                 }
934                 else
935                 {
936                         if ((retval = target->type->write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
937                                 return retval;
938                 }
939
940                 buffer += aligned;
941                 address += aligned;
942                 size -= aligned;
943         }
944
945         /* handle tail writes of less than 4 bytes */
946         if (size > 0)
947         {
948                 if ((retval = target->type->write_memory(target, address, 1, size, buffer)) != ERROR_OK)
949                         return retval;
950         }
951
952         return ERROR_OK;
953 }
954
955
956 /* Single aligned words are guaranteed to use 16 or 32 bit access
957  * mode respectively, otherwise data is handled as quickly as
958  * possible
959  */
960 int target_read_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
961 {
962         int retval;
963         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x", size, address);
964
965         if (!target->type->examined)
966         {
967                 LOG_ERROR("Target not examined yet");
968                 return ERROR_FAIL;
969         }
970
971         if (address+size<address)
972         {
973                 /* GDB can request this when e.g. PC is 0xfffffffc*/
974                 LOG_ERROR("address+size wrapped(0x%08x, 0x%08x)", address, size);
975                 return ERROR_FAIL;
976         }
977
978         if (((address % 2) == 0) && (size == 2))
979         {
980                 return target->type->read_memory(target, address, 2, 1, buffer);
981         }
982
983         /* handle unaligned head bytes */
984         if (address % 4)
985         {
986                 int unaligned = 4 - (address % 4);
987
988                 if (unaligned > size)
989                         unaligned = size;
990
991                 if ((retval = target->type->read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
992                         return retval;
993
994                 buffer += unaligned;
995                 address += unaligned;
996                 size -= unaligned;
997         }
998
999         /* handle aligned words */
1000         if (size >= 4)
1001         {
1002                 int aligned = size - (size % 4);
1003
1004                 if ((retval = target->type->read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1005                         return retval;
1006
1007                 buffer += aligned;
1008                 address += aligned;
1009                 size -= aligned;
1010         }
1011
1012         /* handle tail writes of less than 4 bytes */
1013         if (size > 0)
1014         {
1015                 if ((retval = target->type->read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1016                         return retval;
1017         }
1018
1019         return ERROR_OK;
1020 }
1021
1022 int target_checksum_memory(struct target_s *target, u32 address, u32 size, u32* crc)
1023 {
1024         u8 *buffer;
1025         int retval;
1026         int i;
1027         u32 checksum = 0;
1028         if (!target->type->examined)
1029         {
1030                 LOG_ERROR("Target not examined yet");
1031                 return ERROR_FAIL;
1032         }
1033
1034         if ((retval = target->type->checksum_memory(target, address,
1035                 size, &checksum)) == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1036         {
1037                 buffer = malloc(size);
1038                 if (buffer == NULL)
1039                 {
1040                         LOG_ERROR("error allocating buffer for section (%d bytes)", size);
1041                         return ERROR_INVALID_ARGUMENTS;
1042                 }
1043                 retval = target_read_buffer(target, address, size, buffer);
1044                 if (retval != ERROR_OK)
1045                 {
1046                         free(buffer);
1047                         return retval;
1048                 }
1049
1050                 /* convert to target endianess */
1051                 for (i = 0; i < (size/sizeof(u32)); i++)
1052                 {
1053                         u32 target_data;
1054                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(u32)]);
1055                         target_buffer_set_u32(target, &buffer[i*sizeof(u32)], target_data);
1056                 }
1057
1058                 retval = image_calculate_checksum( buffer, size, &checksum );
1059                 free(buffer);
1060         }
1061
1062         *crc = checksum;
1063
1064         return retval;
1065 }
1066
1067 int target_blank_check_memory(struct target_s *target, u32 address, u32 size, u32* blank)
1068 {
1069         int retval;
1070         if (!target->type->examined)
1071         {
1072                 LOG_ERROR("Target not examined yet");
1073                 return ERROR_FAIL;
1074         }
1075
1076         if (target->type->blank_check_memory == 0)
1077                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1078
1079         retval = target->type->blank_check_memory(target, address, size, blank);
1080
1081         return retval;
1082 }
1083
1084 int target_read_u32(struct target_s *target, u32 address, u32 *value)
1085 {
1086         u8 value_buf[4];
1087         if (!target->type->examined)
1088         {
1089                 LOG_ERROR("Target not examined yet");
1090                 return ERROR_FAIL;
1091         }
1092
1093         int retval = target->type->read_memory(target, address, 4, 1, value_buf);
1094
1095         if (retval == ERROR_OK)
1096         {
1097                 *value = target_buffer_get_u32(target, value_buf);
1098                 LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, *value);
1099         }
1100         else
1101         {
1102                 *value = 0x0;
1103                 LOG_DEBUG("address: 0x%8.8x failed", address);
1104         }
1105
1106         return retval;
1107 }
1108
1109 int target_read_u16(struct target_s *target, u32 address, u16 *value)
1110 {
1111         u8 value_buf[2];
1112         if (!target->type->examined)
1113         {
1114                 LOG_ERROR("Target not examined yet");
1115                 return ERROR_FAIL;
1116         }
1117
1118         int retval = target->type->read_memory(target, address, 2, 1, value_buf);
1119
1120         if (retval == ERROR_OK)
1121         {
1122                 *value = target_buffer_get_u16(target, value_buf);
1123                 LOG_DEBUG("address: 0x%8.8x, value: 0x%4.4x", address, *value);
1124         }
1125         else
1126         {
1127                 *value = 0x0;
1128                 LOG_DEBUG("address: 0x%8.8x failed", address);
1129         }
1130
1131         return retval;
1132 }
1133
1134 int target_read_u8(struct target_s *target, u32 address, u8 *value)
1135 {
1136         int retval = target->type->read_memory(target, address, 1, 1, value);
1137         if (!target->type->examined)
1138         {
1139                 LOG_ERROR("Target not examined yet");
1140                 return ERROR_FAIL;
1141         }
1142
1143         if (retval == ERROR_OK)
1144         {
1145                 LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, *value);
1146         }
1147         else
1148         {
1149                 *value = 0x0;
1150                 LOG_DEBUG("address: 0x%8.8x failed", address);
1151         }
1152
1153         return retval;
1154 }
1155
1156 int target_write_u32(struct target_s *target, u32 address, u32 value)
1157 {
1158         int retval;
1159         u8 value_buf[4];
1160         if (!target->type->examined)
1161         {
1162                 LOG_ERROR("Target not examined yet");
1163                 return ERROR_FAIL;
1164         }
1165
1166         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1167
1168         target_buffer_set_u32(target, value_buf, value);
1169         if ((retval = target->type->write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1170         {
1171                 LOG_DEBUG("failed: %i", retval);
1172         }
1173
1174         return retval;
1175 }
1176
1177 int target_write_u16(struct target_s *target, u32 address, u16 value)
1178 {
1179         int retval;
1180         u8 value_buf[2];
1181         if (!target->type->examined)
1182         {
1183                 LOG_ERROR("Target not examined yet");
1184                 return ERROR_FAIL;
1185         }
1186
1187         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1188
1189         target_buffer_set_u16(target, value_buf, value);
1190         if ((retval = target->type->write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1191         {
1192                 LOG_DEBUG("failed: %i", retval);
1193         }
1194
1195         return retval;
1196 }
1197
1198 int target_write_u8(struct target_s *target, u32 address, u8 value)
1199 {
1200         int retval;
1201         if (!target->type->examined)
1202         {
1203                 LOG_ERROR("Target not examined yet");
1204                 return ERROR_FAIL;
1205         }
1206
1207         LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, value);
1208
1209         if ((retval = target->type->read_memory(target, address, 1, 1, &value)) != ERROR_OK)
1210         {
1211                 LOG_DEBUG("failed: %i", retval);
1212         }
1213
1214         return retval;
1215 }
1216
1217 int target_register_user_commands(struct command_context_s *cmd_ctx)
1218 {
1219         register_command(cmd_ctx,  NULL, "reg", handle_reg_command, COMMAND_EXEC, NULL);
1220         register_command(cmd_ctx,  NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state");
1221         register_command(cmd_ctx,  NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]");
1222         register_command(cmd_ctx,  NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target");
1223         register_command(cmd_ctx,  NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]");
1224         register_command(cmd_ctx,  NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]");
1225         register_command(cmd_ctx,  NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run|halt|init]");
1226         register_command(cmd_ctx,  NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset");
1227
1228         register_command(cmd_ctx,  NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words <addr> [count]");
1229         register_command(cmd_ctx,  NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words <addr> [count]");
1230         register_command(cmd_ctx,  NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes <addr> [count]");
1231
1232         register_command(cmd_ctx,  NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word <addr> <value> [count]");
1233         register_command(cmd_ctx,  NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word <addr> <value> [count]");
1234         register_command(cmd_ctx,  NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte <addr> <value> [count]");
1235
1236         register_command(cmd_ctx,  NULL, "bp", handle_bp_command, COMMAND_EXEC, "set breakpoint <address> <length> [hw]");
1237         register_command(cmd_ctx,  NULL, "rbp", handle_rbp_command, COMMAND_EXEC, "remove breakpoint <adress>");
1238         register_command(cmd_ctx,  NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint <address> <length> <r/w/a> [value] [mask]");
1239         register_command(cmd_ctx,  NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint <adress>");
1240
1241         register_command(cmd_ctx,  NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> ['bin'|'ihex'|'elf'|'s19'] [min_address] [max_length]");
1242         register_command(cmd_ctx,  NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>");
1243         register_command(cmd_ctx,  NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image <file> [offset] [type]");
1244
1245         target_request_register_commands(cmd_ctx);
1246         trace_register_commands(cmd_ctx);
1247
1248         return ERROR_OK;
1249 }
1250
1251 int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1252 {
1253         target_t *target = targets;
1254         int count = 0;
1255
1256         if (argc == 1)
1257         {
1258                 int num = strtoul(args[0], NULL, 0);
1259
1260                 while (target)
1261                 {
1262                         count++;
1263                         target = target->next;
1264                 }
1265
1266                 if (num < count)
1267                         cmd_ctx->current_target = num;
1268                 else
1269                         command_print(cmd_ctx, "%i is out of bounds, only %i targets are configured", num, count);
1270
1271                 return ERROR_OK;
1272         }
1273
1274         while (target)
1275         {
1276                 command_print(cmd_ctx, "%i: %s (%s), state: %s", count++, target->type->name, target_endianess_strings[target->endianness], target_state_strings[target->state]);
1277                 target = target->next;
1278         }
1279
1280         return ERROR_OK;
1281 }
1282
1283 int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1284 {
1285         int i;
1286         int found = 0;
1287
1288         if (argc < 3)
1289         {
1290                 return ERROR_COMMAND_SYNTAX_ERROR;
1291         }
1292
1293         /* search for the specified target */
1294         if (args[0] && (args[0][0] != 0))
1295         {
1296                 for (i = 0; target_types[i]; i++)
1297                 {
1298                         if (strcmp(args[0], target_types[i]->name) == 0)
1299                         {
1300                                 target_t **last_target_p = &targets;
1301
1302                                 /* register target specific commands */
1303                                 if (target_types[i]->register_commands(cmd_ctx) != ERROR_OK)
1304                                 {
1305                                         LOG_ERROR("couldn't register '%s' commands", args[0]);
1306                                         exit(-1);
1307                                 }
1308
1309                                 if (*last_target_p)
1310                                 {
1311                                         while ((*last_target_p)->next)
1312                                                 last_target_p = &((*last_target_p)->next);
1313                                         last_target_p = &((*last_target_p)->next);
1314                                 }
1315
1316                                 *last_target_p = malloc(sizeof(target_t));
1317
1318                                 /* allocate memory for each unique target type */
1319                                 (*last_target_p)->type = (target_type_t*)malloc(sizeof(target_type_t));
1320                                 *((*last_target_p)->type) = *target_types[i];
1321
1322                                 if (strcmp(args[1], "big") == 0)
1323                                         (*last_target_p)->endianness = TARGET_BIG_ENDIAN;
1324                                 else if (strcmp(args[1], "little") == 0)
1325                                         (*last_target_p)->endianness = TARGET_LITTLE_ENDIAN;
1326                                 else
1327                                 {
1328                                         LOG_ERROR("endianness must be either 'little' or 'big', not '%s'", args[1]);
1329                                         return ERROR_COMMAND_SYNTAX_ERROR;
1330                                 }
1331
1332                                 if (strcmp(args[2], "reset_halt") == 0)
1333                                 {
1334                                         LOG_WARNING("reset_mode argument is obsolete.");
1335                                         return ERROR_COMMAND_SYNTAX_ERROR;
1336                                 }
1337                                 else if (strcmp(args[2], "reset_run") == 0)
1338                                 {
1339                                         LOG_WARNING("reset_mode argument is obsolete.");
1340                                         return ERROR_COMMAND_SYNTAX_ERROR;
1341                                 }
1342                                 else if (strcmp(args[2], "reset_init") == 0)
1343                                 {
1344                                         LOG_WARNING("reset_mode argument is obsolete.");
1345                                         return ERROR_COMMAND_SYNTAX_ERROR;
1346                                 }
1347                                 else if (strcmp(args[2], "run_and_halt") == 0)
1348                                 {
1349                                         LOG_WARNING("reset_mode argument is obsolete.");
1350                                         return ERROR_COMMAND_SYNTAX_ERROR;
1351                                 }
1352                                 else if (strcmp(args[2], "run_and_init") == 0)
1353                                 {
1354                                         LOG_WARNING("reset_mode argument is obsolete.");
1355                                         return ERROR_COMMAND_SYNTAX_ERROR;
1356                                 }
1357                                 else
1358                                 {
1359                                         /* Kludge! we want to make this reset arg optional while remaining compatible! */
1360                                         args--;
1361                                         argc++;
1362                                 }
1363
1364                                 (*last_target_p)->working_area = 0x0;
1365                                 (*last_target_p)->working_area_size = 0x0;
1366                                 (*last_target_p)->working_areas = NULL;
1367                                 (*last_target_p)->backup_working_area = 0;
1368
1369                                 (*last_target_p)->state = TARGET_UNKNOWN;
1370                                 (*last_target_p)->debug_reason = DBG_REASON_UNDEFINED;
1371                                 (*last_target_p)->reg_cache = NULL;
1372                                 (*last_target_p)->breakpoints = NULL;
1373                                 (*last_target_p)->watchpoints = NULL;
1374                                 (*last_target_p)->next = NULL;
1375                                 (*last_target_p)->arch_info = NULL;
1376
1377                                 /* initialize trace information */
1378                                 (*last_target_p)->trace_info = malloc(sizeof(trace_t));
1379                                 (*last_target_p)->trace_info->num_trace_points = 0;
1380                                 (*last_target_p)->trace_info->trace_points_size = 0;
1381                                 (*last_target_p)->trace_info->trace_points = NULL;
1382                                 (*last_target_p)->trace_info->trace_history_size = 0;
1383                                 (*last_target_p)->trace_info->trace_history = NULL;
1384                                 (*last_target_p)->trace_info->trace_history_pos = 0;
1385                                 (*last_target_p)->trace_info->trace_history_overflowed = 0;
1386
1387                                 (*last_target_p)->dbgmsg = NULL;
1388                                 (*last_target_p)->dbg_msg_enabled = 0;
1389
1390                                 (*last_target_p)->type->target_command(cmd_ctx, cmd, args, argc, *last_target_p);
1391
1392                                 found = 1;
1393                                 break;
1394                         }
1395                 }
1396         }
1397
1398         /* no matching target found */
1399         if (!found)
1400         {
1401                 LOG_ERROR("target '%s' not found", args[0]);
1402                 return ERROR_COMMAND_SYNTAX_ERROR;
1403         }
1404
1405         return ERROR_OK;
1406 }
1407
1408 int target_invoke_script(struct command_context_s *cmd_ctx, target_t *target, char *name)
1409 {
1410         return command_run_linef(cmd_ctx, " if {[catch {info body target_%d_%s} t]==0} {target_%d_%s}",
1411                         get_num_by_target(target), name,
1412                         get_num_by_target(target), name);
1413 }
1414
1415 int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1416 {
1417         target_t *target = NULL;
1418
1419         if ((argc < 4) || (argc > 5))
1420         {
1421                 return ERROR_COMMAND_SYNTAX_ERROR;
1422         }
1423
1424         target = get_target_by_num(strtoul(args[0], NULL, 0));
1425         if (!target)
1426         {
1427                 return ERROR_COMMAND_SYNTAX_ERROR;
1428         }
1429         target_free_all_working_areas(target);
1430
1431         target->working_area_phys = target->working_area_virt = strtoul(args[1], NULL, 0);
1432         if (argc == 5)
1433         {
1434                 target->working_area_virt = strtoul(args[4], NULL, 0);
1435         }
1436         target->working_area_size = strtoul(args[2], NULL, 0);
1437
1438         if (strcmp(args[3], "backup") == 0)
1439         {
1440                 target->backup_working_area = 1;
1441         }
1442         else if (strcmp(args[3], "nobackup") == 0)
1443         {
1444                 target->backup_working_area = 0;
1445         }
1446         else
1447         {
1448                 LOG_ERROR("unrecognized <backup|nobackup> argument (%s)", args[3]);
1449                 return ERROR_COMMAND_SYNTAX_ERROR;
1450         }
1451
1452         return ERROR_OK;
1453 }
1454
1455
1456 /* process target state changes */
1457 int handle_target(void *priv)
1458 {
1459         target_t *target = targets;
1460
1461         while (target)
1462         {
1463                 if (target_continous_poll)
1464                 {
1465                         /* polling may fail silently until the target has been examined */
1466                         target_poll(target);
1467                 }
1468
1469                 target = target->next;
1470         }
1471
1472         return ERROR_OK;
1473 }
1474
1475 int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1476 {
1477         target_t *target;
1478         reg_t *reg = NULL;
1479         int count = 0;
1480         char *value;
1481
1482         LOG_DEBUG("-");
1483
1484         target = get_current_target(cmd_ctx);
1485
1486         /* list all available registers for the current target */
1487         if (argc == 0)
1488         {
1489                 reg_cache_t *cache = target->reg_cache;
1490
1491                 count = 0;
1492                 while(cache)
1493                 {
1494                         int i;
1495                         for (i = 0; i < cache->num_regs; i++)
1496                         {
1497                                 value = buf_to_str(cache->reg_list[i].value, cache->reg_list[i].size, 16);
1498                                 command_print(cmd_ctx, "(%i) %s (/%i): 0x%s (dirty: %i, valid: %i)", count++, cache->reg_list[i].name, cache->reg_list[i].size, value, cache->reg_list[i].dirty, cache->reg_list[i].valid);
1499                                 free(value);
1500                         }
1501                         cache = cache->next;
1502                 }
1503
1504                 return ERROR_OK;
1505         }
1506
1507         /* access a single register by its ordinal number */
1508         if ((args[0][0] >= '0') && (args[0][0] <= '9'))
1509         {
1510                 int num = strtoul(args[0], NULL, 0);
1511                 reg_cache_t *cache = target->reg_cache;
1512
1513                 count = 0;
1514                 while(cache)
1515                 {
1516                         int i;
1517                         for (i = 0; i < cache->num_regs; i++)
1518                         {
1519                                 if (count++ == num)
1520                                 {
1521                                         reg = &cache->reg_list[i];
1522                                         break;
1523                                 }
1524                         }
1525                         if (reg)
1526                                 break;
1527                         cache = cache->next;
1528                 }
1529
1530                 if (!reg)
1531                 {
1532                         command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1533                         return ERROR_OK;
1534                 }
1535         } else /* access a single register by its name */
1536         {
1537                 reg = register_get_by_name(target->reg_cache, args[0], 1);
1538
1539                 if (!reg)
1540                 {
1541                         command_print(cmd_ctx, "register %s not found in current target", args[0]);
1542                         return ERROR_OK;
1543                 }
1544         }
1545
1546         /* display a register */
1547         if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
1548         {
1549                 if ((argc == 2) && (strcmp(args[1], "force") == 0))
1550                         reg->valid = 0;
1551
1552                 if (reg->valid == 0)
1553                 {
1554                         reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1555                         if (arch_type == NULL)
1556                         {
1557                                 LOG_ERROR("BUG: encountered unregistered arch type");
1558                                 return ERROR_OK;
1559                         }
1560                         arch_type->get(reg);
1561                 }
1562                 value = buf_to_str(reg->value, reg->size, 16);
1563                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1564                 free(value);
1565                 return ERROR_OK;
1566         }
1567
1568         /* set register value */
1569         if (argc == 2)
1570         {
1571                 u8 *buf = malloc(CEIL(reg->size, 8));
1572                 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
1573
1574                 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1575                 if (arch_type == NULL)
1576                 {
1577                         LOG_ERROR("BUG: encountered unregistered arch type");
1578                         return ERROR_OK;
1579                 }
1580
1581                 arch_type->set(reg, buf);
1582
1583                 value = buf_to_str(reg->value, reg->size, 16);
1584                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1585                 free(value);
1586
1587                 free(buf);
1588
1589                 return ERROR_OK;
1590         }
1591
1592         command_print(cmd_ctx, "usage: reg <#|name> [value]");
1593
1594         return ERROR_OK;
1595 }
1596
1597
1598 int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1599 {
1600         target_t *target = get_current_target(cmd_ctx);
1601
1602         if (argc == 0)
1603         {
1604                 target_poll(target);
1605                 target_arch_state(target);
1606         }
1607         else
1608         {
1609                 if (strcmp(args[0], "on") == 0)
1610                 {
1611                         target_continous_poll = 1;
1612                 }
1613                 else if (strcmp(args[0], "off") == 0)
1614                 {
1615                         target_continous_poll = 0;
1616                 }
1617                 else
1618                 {
1619                         command_print(cmd_ctx, "arg is \"on\" or \"off\"");
1620                 }
1621         }
1622
1623
1624         return ERROR_OK;
1625 }
1626
1627 int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1628 {
1629         int ms = 5000;
1630
1631         if (argc > 0)
1632         {
1633                 char *end;
1634
1635                 ms = strtoul(args[0], &end, 0) * 1000;
1636                 if (*end)
1637                 {
1638                         command_print(cmd_ctx, "usage: %s [seconds]", cmd);
1639                         return ERROR_OK;
1640                 }
1641         }
1642         target_t *target = get_current_target(cmd_ctx);
1643
1644         return target_wait_state(target, TARGET_HALTED, ms);
1645 }
1646
1647 int target_wait_state(target_t *target, enum target_state state, int ms)
1648 {
1649         int retval;
1650         struct timeval timeout, now;
1651         int once=1;
1652         gettimeofday(&timeout, NULL);
1653         timeval_add_time(&timeout, 0, ms * 1000);
1654
1655         for (;;)
1656         {
1657                 if ((retval=target_poll(target))!=ERROR_OK)
1658                         return retval;
1659                 target_call_timer_callbacks_now();
1660                 if (target->state == state)
1661                 {
1662                         break;
1663                 }
1664                 if (once)
1665                 {
1666                         once=0;
1667                         LOG_USER("waiting for target %s...", target_state_strings[state]);
1668                 }
1669
1670                 gettimeofday(&now, NULL);
1671                 if ((now.tv_sec > timeout.tv_sec) || ((now.tv_sec == timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
1672                 {
1673                         LOG_ERROR("timed out while waiting for target %s", target_state_strings[state]);
1674                         return ERROR_FAIL;
1675                 }
1676         }
1677
1678         return ERROR_OK;
1679 }
1680
1681 int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1682 {
1683         int retval;
1684         target_t *target = get_current_target(cmd_ctx);
1685
1686         LOG_DEBUG("-");
1687
1688         if ((retval = target_halt(target)) != ERROR_OK)
1689         {
1690                 return retval;
1691         }
1692
1693         return handle_wait_halt_command(cmd_ctx, cmd, args, argc);
1694 }
1695
1696 int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1697 {
1698         target_t *target = get_current_target(cmd_ctx);
1699
1700         LOG_USER("requesting target halt and executing a soft reset");
1701
1702         target->type->soft_reset_halt(target);
1703
1704         return ERROR_OK;
1705 }
1706
1707 int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1708 {
1709         enum target_reset_mode reset_mode = RESET_RUN;
1710
1711         if (argc >= 1)
1712         {
1713                 if (strcmp("run", args[0]) == 0)
1714                         reset_mode = RESET_RUN;
1715                 else if (strcmp("halt", args[0]) == 0)
1716                         reset_mode = RESET_HALT;
1717                 else if (strcmp("init", args[0]) == 0)
1718                         reset_mode = RESET_INIT;
1719                 else
1720                 {
1721                         return ERROR_COMMAND_SYNTAX_ERROR;
1722                 }
1723         }
1724
1725         /* reset *all* targets */
1726         target_process_reset(cmd_ctx, reset_mode);
1727
1728         return ERROR_OK;
1729 }
1730
1731 int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1732 {
1733         int retval;
1734         target_t *target = get_current_target(cmd_ctx);
1735
1736         target_invoke_script(cmd_ctx, target, "pre_resume");
1737
1738         if (argc == 0)
1739                 retval = target_resume(target, 1, 0, 1, 0); /* current pc, addr = 0, handle breakpoints, not debugging */
1740         else if (argc == 1)
1741                 retval = target_resume(target, 0, strtoul(args[0], NULL, 0), 1, 0); /* addr = args[0], handle breakpoints, not debugging */
1742         else
1743         {
1744                 return ERROR_COMMAND_SYNTAX_ERROR;
1745         }
1746
1747         return retval;
1748 }
1749
1750 int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1751 {
1752         target_t *target = get_current_target(cmd_ctx);
1753
1754         LOG_DEBUG("-");
1755
1756         if (argc == 0)
1757                 target->type->step(target, 1, 0, 1); /* current pc, addr = 0, handle breakpoints */
1758
1759         if (argc == 1)
1760                 target->type->step(target, 0, strtoul(args[0], NULL, 0), 1); /* addr = args[0], handle breakpoints */
1761
1762         return ERROR_OK;
1763 }
1764
1765 int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1766 {
1767         const int line_bytecnt = 32;
1768         int count = 1;
1769         int size = 4;
1770         u32 address = 0;
1771         int line_modulo;
1772         int i;
1773
1774         char output[128];
1775         int output_len;
1776
1777         int retval;
1778
1779         u8 *buffer;
1780         target_t *target = get_current_target(cmd_ctx);
1781
1782         if (argc < 1)
1783                 return ERROR_OK;
1784
1785         if (argc == 2)
1786                 count = strtoul(args[1], NULL, 0);
1787
1788         address = strtoul(args[0], NULL, 0);
1789
1790
1791         switch (cmd[2])
1792         {
1793                 case 'w':
1794                         size = 4; line_modulo = line_bytecnt / 4;
1795                         break;
1796                 case 'h':
1797                         size = 2; line_modulo = line_bytecnt / 2;
1798                         break;
1799                 case 'b':
1800                         size = 1; line_modulo = line_bytecnt / 1;
1801                         break;
1802                 default:
1803                         return ERROR_OK;
1804         }
1805
1806         buffer = calloc(count, size);
1807         retval  = target->type->read_memory(target, address, size, count, buffer);
1808         if (retval == ERROR_OK)
1809         {
1810                 output_len = 0;
1811
1812                 for (i = 0; i < count; i++)
1813                 {
1814                         if (i%line_modulo == 0)
1815                                 output_len += snprintf(output + output_len, 128 - output_len, "0x%8.8x: ", address + (i*size));
1816
1817                         switch (size)
1818                         {
1819                                 case 4:
1820                                         output_len += snprintf(output + output_len, 128 - output_len, "%8.8x ", target_buffer_get_u32(target, &buffer[i*4]));
1821                                         break;
1822                                 case 2:
1823                                         output_len += snprintf(output + output_len, 128 - output_len, "%4.4x ", target_buffer_get_u16(target, &buffer[i*2]));
1824                                         break;
1825                                 case 1:
1826                                         output_len += snprintf(output + output_len, 128 - output_len, "%2.2x ", buffer[i*1]);
1827                                         break;
1828                         }
1829
1830                         if ((i%line_modulo == line_modulo-1) || (i == count - 1))
1831                         {
1832                                 command_print(cmd_ctx, output);
1833                                 output_len = 0;
1834                         }
1835                 }
1836         }
1837
1838         free(buffer);
1839
1840         return retval;
1841 }
1842
1843 int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1844 {
1845         u32 address = 0;
1846         u32 value = 0;
1847         int count = 1;
1848         int i;
1849         int wordsize;
1850         target_t *target = get_current_target(cmd_ctx);
1851         u8 value_buf[4];
1852
1853          if ((argc < 2) || (argc > 3))
1854                 return ERROR_COMMAND_SYNTAX_ERROR;
1855
1856         address = strtoul(args[0], NULL, 0);
1857         value = strtoul(args[1], NULL, 0);
1858         if (argc == 3)
1859                 count = strtoul(args[2], NULL, 0);
1860
1861         switch (cmd[2])
1862         {
1863                 case 'w':
1864                         wordsize = 4;
1865                         target_buffer_set_u32(target, value_buf, value);
1866                         break;
1867                 case 'h':
1868                         wordsize = 2;
1869                         target_buffer_set_u16(target, value_buf, value);
1870                         break;
1871                 case 'b':
1872                         wordsize = 1;
1873                         value_buf[0] = value;
1874                         break;
1875                 default:
1876                         return ERROR_COMMAND_SYNTAX_ERROR;
1877         }
1878         for (i=0; i<count; i++)
1879         {
1880                 int retval;
1881                 switch (wordsize)
1882                 {
1883                         case 4:
1884                                 retval = target->type->write_memory(target, address + i*wordsize, 4, 1, value_buf);
1885                                 break;
1886                         case 2:
1887                                 retval = target->type->write_memory(target, address + i*wordsize, 2, 1, value_buf);
1888                                 break;
1889                         case 1:
1890                                 retval = target->type->write_memory(target, address + i*wordsize, 1, 1, value_buf);
1891                         break;
1892                         default:
1893                         return ERROR_OK;
1894                 }
1895                 if (retval!=ERROR_OK)
1896                 {
1897                         return retval;
1898                 }
1899         }
1900
1901         return ERROR_OK;
1902
1903 }
1904
1905 int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1906 {
1907         u8 *buffer;
1908         u32 buf_cnt;
1909         u32 image_size;
1910         u32 min_address=0;
1911         u32 max_address=0xffffffff;
1912         int i;
1913         int retval;
1914
1915         image_t image;
1916
1917         duration_t duration;
1918         char *duration_text;
1919
1920         target_t *target = get_current_target(cmd_ctx);
1921
1922         if ((argc < 1)||(argc > 5))
1923         {
1924                 return ERROR_COMMAND_SYNTAX_ERROR;
1925         }
1926
1927         /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
1928         if (argc >= 2)
1929         {
1930                 image.base_address_set = 1;
1931                 image.base_address = strtoul(args[1], NULL, 0);
1932         }
1933         else
1934         {
1935                 image.base_address_set = 0;
1936         }
1937
1938
1939         image.start_address_set = 0;
1940
1941         if (argc>=4)
1942         {
1943                 min_address=strtoul(args[3], NULL, 0);
1944         }
1945         if (argc>=5)
1946         {
1947                 max_address=strtoul(args[4], NULL, 0)+min_address;
1948         }
1949
1950         if (min_address>max_address)
1951         {
1952                 return ERROR_COMMAND_SYNTAX_ERROR;
1953         }
1954
1955
1956         duration_start_measure(&duration);
1957
1958         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
1959         {
1960                 return ERROR_OK;
1961         }
1962
1963         image_size = 0x0;
1964         retval = ERROR_OK;
1965         for (i = 0; i < image.num_sections; i++)
1966         {
1967                 buffer = malloc(image.sections[i].size);
1968                 if (buffer == NULL)
1969                 {
1970                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
1971                         break;
1972                 }
1973
1974                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
1975                 {
1976                         free(buffer);
1977                         break;
1978                 }
1979
1980                 u32 offset=0;
1981                 u32 length=buf_cnt;
1982
1983
1984                 /* DANGER!!! beware of unsigned comparision here!!! */
1985
1986                 if ((image.sections[i].base_address+buf_cnt>=min_address)&&
1987                                 (image.sections[i].base_address<max_address))
1988                 {
1989                         if (image.sections[i].base_address<min_address)
1990                         {
1991                                 /* clip addresses below */
1992                                 offset+=min_address-image.sections[i].base_address;
1993                                 length-=offset;
1994                         }
1995
1996                         if (image.sections[i].base_address+buf_cnt>max_address)
1997                         {
1998                                 length-=(image.sections[i].base_address+buf_cnt)-max_address;
1999                         }
2000
2001                         if ((retval = target_write_buffer(target, image.sections[i].base_address+offset, length, buffer+offset)) != ERROR_OK)
2002                         {
2003                                 free(buffer);
2004                                 break;
2005                         }
2006                         image_size += length;
2007                         command_print(cmd_ctx, "%u byte written at address 0x%8.8x", length, image.sections[i].base_address+offset);
2008                 }
2009
2010                 free(buffer);
2011         }
2012
2013         duration_stop_measure(&duration, &duration_text);
2014         if (retval==ERROR_OK)
2015         {
2016                 command_print(cmd_ctx, "downloaded %u byte in %s", image_size, duration_text);
2017         }
2018         free(duration_text);
2019
2020         image_close(&image);
2021
2022         return retval;
2023
2024 }
2025
2026 int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2027 {
2028         fileio_t fileio;
2029
2030         u32 address;
2031         u32 size;
2032         u8 buffer[560];
2033         int retval=ERROR_OK;
2034
2035         duration_t duration;
2036         char *duration_text;
2037
2038         target_t *target = get_current_target(cmd_ctx);
2039
2040         if (argc != 3)
2041         {
2042                 command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
2043                 return ERROR_OK;
2044         }
2045
2046         address = strtoul(args[1], NULL, 0);
2047         size = strtoul(args[2], NULL, 0);
2048
2049         if ((address & 3) || (size & 3))
2050         {
2051                 command_print(cmd_ctx, "only 32-bit aligned address and size are supported");
2052                 return ERROR_OK;
2053         }
2054
2055         if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2056         {
2057                 return ERROR_OK;
2058         }
2059
2060         duration_start_measure(&duration);
2061
2062         while (size > 0)
2063         {
2064                 u32 size_written;
2065                 u32 this_run_size = (size > 560) ? 560 : size;
2066
2067                 retval = target->type->read_memory(target, address, 4, this_run_size / 4, buffer);
2068                 if (retval != ERROR_OK)
2069                 {
2070                         break;
2071                 }
2072
2073                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2074                 if (retval != ERROR_OK)
2075                 {
2076                         break;
2077                 }
2078
2079                 size -= this_run_size;
2080                 address += this_run_size;
2081         }
2082
2083         fileio_close(&fileio);
2084
2085         duration_stop_measure(&duration, &duration_text);
2086         if (retval==ERROR_OK)
2087         {
2088                 command_print(cmd_ctx, "dumped %"PRIi64" byte in %s", fileio.size, duration_text);
2089         }
2090         free(duration_text);
2091
2092         return ERROR_OK;
2093 }
2094
2095 int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2096 {
2097         u8 *buffer;
2098         u32 buf_cnt;
2099         u32 image_size;
2100         int i;
2101         int retval;
2102         u32 checksum = 0;
2103         u32 mem_checksum = 0;
2104
2105         image_t image;
2106
2107         duration_t duration;
2108         char *duration_text;
2109
2110         target_t *target = get_current_target(cmd_ctx);
2111
2112         if (argc < 1)
2113         {
2114                 return ERROR_COMMAND_SYNTAX_ERROR;
2115         }
2116
2117         if (!target)
2118         {
2119                 LOG_ERROR("no target selected");
2120                 return ERROR_FAIL;
2121         }
2122
2123         duration_start_measure(&duration);
2124
2125         if (argc >= 2)
2126         {
2127                 image.base_address_set = 1;
2128                 image.base_address = strtoul(args[1], NULL, 0);
2129         }
2130         else
2131         {
2132                 image.base_address_set = 0;
2133                 image.base_address = 0x0;
2134         }
2135
2136         image.start_address_set = 0;
2137
2138         if ((retval=image_open(&image, args[0], (argc == 3) ? args[2] : NULL)) != ERROR_OK)
2139         {
2140                 return retval;
2141         }
2142
2143         image_size = 0x0;
2144         retval=ERROR_OK;
2145         for (i = 0; i < image.num_sections; i++)
2146         {
2147                 buffer = malloc(image.sections[i].size);
2148                 if (buffer == NULL)
2149                 {
2150                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2151                         break;
2152                 }
2153                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2154                 {
2155                         free(buffer);
2156                         break;
2157                 }
2158
2159                 /* calculate checksum of image */
2160                 image_calculate_checksum( buffer, buf_cnt, &checksum );
2161
2162                 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2163                 if( retval != ERROR_OK )
2164                 {
2165                         free(buffer);
2166                         break;
2167                 }
2168
2169                 if( checksum != mem_checksum )
2170                 {
2171                         /* failed crc checksum, fall back to a binary compare */
2172                         u8 *data;
2173
2174                         command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
2175
2176                         data = (u8*)malloc(buf_cnt);
2177
2178                         /* Can we use 32bit word accesses? */
2179                         int size = 1;
2180                         int count = buf_cnt;
2181                         if ((count % 4) == 0)
2182                         {
2183                                 size *= 4;
2184                                 count /= 4;
2185                         }
2186                         retval = target->type->read_memory(target, image.sections[i].base_address, size, count, data);
2187                         if (retval == ERROR_OK)
2188                         {
2189                                 int t;
2190                                 for (t = 0; t < buf_cnt; t++)
2191                                 {
2192                                         if (data[t] != buffer[t])
2193                                         {
2194                                                 command_print(cmd_ctx, "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n", t + image.sections[i].base_address, data[t], buffer[t]);
2195                                                 free(data);
2196                                                 free(buffer);
2197                                                 retval=ERROR_FAIL;
2198                                                 goto done;
2199                                         }
2200                                 }
2201                         }
2202
2203                         free(data);
2204                 }
2205
2206                 free(buffer);
2207                 image_size += buf_cnt;
2208         }
2209 done:
2210         duration_stop_measure(&duration, &duration_text);
2211         if (retval==ERROR_OK)
2212         {
2213                 command_print(cmd_ctx, "verified %u bytes in %s", image_size, duration_text);
2214         }
2215         free(duration_text);
2216
2217         image_close(&image);
2218
2219         return retval;
2220 }
2221
2222 int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2223 {
2224         int retval;
2225         target_t *target = get_current_target(cmd_ctx);
2226
2227         if (argc == 0)
2228         {
2229                 breakpoint_t *breakpoint = target->breakpoints;
2230
2231                 while (breakpoint)
2232                 {
2233                         if (breakpoint->type == BKPT_SOFT)
2234                         {
2235                                 char* buf = buf_to_str(breakpoint->orig_instr, breakpoint->length, 16);
2236                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i, 0x%s", breakpoint->address, breakpoint->length, breakpoint->set, buf);
2237                                 free(buf);
2238                         }
2239                         else
2240                         {
2241                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i", breakpoint->address, breakpoint->length, breakpoint->set);
2242                         }
2243                         breakpoint = breakpoint->next;
2244                 }
2245         }
2246         else if (argc >= 2)
2247         {
2248                 int hw = BKPT_SOFT;
2249                 u32 length = 0;
2250
2251                 length = strtoul(args[1], NULL, 0);
2252
2253                 if (argc >= 3)
2254                         if (strcmp(args[2], "hw") == 0)
2255                                 hw = BKPT_HARD;
2256
2257                 if ((retval = breakpoint_add(target, strtoul(args[0], NULL, 0), length, hw)) != ERROR_OK)
2258                 {
2259                         LOG_ERROR("Failure setting breakpoints");
2260                 }
2261                 else
2262                 {
2263                         command_print(cmd_ctx, "breakpoint added at address 0x%8.8x", strtoul(args[0], NULL, 0));
2264                 }
2265         }
2266         else
2267         {
2268                 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
2269         }
2270
2271         return ERROR_OK;
2272 }
2273
2274 int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2275 {
2276         target_t *target = get_current_target(cmd_ctx);
2277
2278         if (argc > 0)
2279                 breakpoint_remove(target, strtoul(args[0], NULL, 0));
2280
2281         return ERROR_OK;
2282 }
2283
2284 int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2285 {
2286         target_t *target = get_current_target(cmd_ctx);
2287         int retval;
2288
2289         if (argc == 0)
2290         {
2291                 watchpoint_t *watchpoint = target->watchpoints;
2292
2293                 while (watchpoint)
2294                 {
2295                         command_print(cmd_ctx, "address: 0x%8.8x, len: 0x%8.8x, r/w/a: %i, value: 0x%8.8x, mask: 0x%8.8x", watchpoint->address, watchpoint->length, watchpoint->rw, watchpoint->value, watchpoint->mask);
2296                         watchpoint = watchpoint->next;
2297                 }
2298         }
2299         else if (argc >= 2)
2300         {
2301                 enum watchpoint_rw type = WPT_ACCESS;
2302                 u32 data_value = 0x0;
2303                 u32 data_mask = 0xffffffff;
2304
2305                 if (argc >= 3)
2306                 {
2307                         switch(args[2][0])
2308                         {
2309                                 case 'r':
2310                                         type = WPT_READ;
2311                                         break;
2312                                 case 'w':
2313                                         type = WPT_WRITE;
2314                                         break;
2315                                 case 'a':
2316                                         type = WPT_ACCESS;
2317                                         break;
2318                                 default:
2319                                         command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2320                                         return ERROR_OK;
2321                         }
2322                 }
2323                 if (argc >= 4)
2324                 {
2325                         data_value = strtoul(args[3], NULL, 0);
2326                 }
2327                 if (argc >= 5)
2328                 {
2329                         data_mask = strtoul(args[4], NULL, 0);
2330                 }
2331
2332                 if ((retval = watchpoint_add(target, strtoul(args[0], NULL, 0),
2333                                 strtoul(args[1], NULL, 0), type, data_value, data_mask)) != ERROR_OK)
2334                 {
2335                         LOG_ERROR("Failure setting breakpoints");
2336                 }
2337         }
2338         else
2339         {
2340                 command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2341         }
2342
2343         return ERROR_OK;
2344 }
2345
2346 int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2347 {
2348         target_t *target = get_current_target(cmd_ctx);
2349
2350         if (argc > 0)
2351                 watchpoint_remove(target, strtoul(args[0], NULL, 0));
2352
2353         return ERROR_OK;
2354 }
2355
2356 int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc)
2357 {
2358         int retval;
2359         target_t *target = get_current_target(cmd_ctx);
2360         u32 va;
2361         u32 pa;
2362
2363         if (argc != 1)
2364         {
2365                 return ERROR_COMMAND_SYNTAX_ERROR;
2366         }
2367         va = strtoul(args[0], NULL, 0);
2368
2369         retval = target->type->virt2phys(target, va, &pa);
2370         if (retval == ERROR_OK)
2371         {
2372                 command_print(cmd_ctx, "Physical address 0x%08x", pa);
2373         }
2374         else
2375         {
2376                 /* lower levels will have logged a detailed error which is
2377                  * forwarded to telnet/GDB session.
2378                  */
2379         }
2380         return retval;
2381 }
2382 static void writeLong(FILE *f, int l)
2383 {
2384         int i;
2385         for (i=0; i<4; i++)
2386         {
2387                 char c=(l>>(i*8))&0xff;
2388                 fwrite(&c, 1, 1, f);
2389         }
2390
2391 }
2392 static void writeString(FILE *f, char *s)
2393 {
2394         fwrite(s, 1, strlen(s), f);
2395 }
2396
2397
2398
2399 // Dump a gmon.out histogram file.
2400 static void writeGmon(u32 *samples, int sampleNum, char *filename)
2401 {
2402         int i;
2403         FILE *f=fopen(filename, "w");
2404         if (f==NULL)
2405                 return;
2406         fwrite("gmon", 1, 4, f);
2407         writeLong(f, 0x00000001); // Version
2408         writeLong(f, 0); // padding
2409         writeLong(f, 0); // padding
2410         writeLong(f, 0); // padding
2411
2412         fwrite("", 1, 1, f);  // GMON_TAG_TIME_HIST
2413
2414         // figure out bucket size
2415         u32 min=samples[0];
2416         u32 max=samples[0];
2417         for (i=0; i<sampleNum; i++)
2418         {
2419                 if (min>samples[i])
2420                 {
2421                         min=samples[i];
2422                 }
2423                 if (max<samples[i])
2424                 {
2425                         max=samples[i];
2426                 }
2427         }
2428
2429         int addressSpace=(max-min+1);
2430
2431         static int const maxBuckets=256*1024; // maximum buckets.
2432         int length=addressSpace;
2433         if (length > maxBuckets)
2434         {
2435                 length=maxBuckets;
2436         }
2437         int *buckets=malloc(sizeof(int)*length);
2438         if (buckets==NULL)
2439         {
2440                 fclose(f);
2441                 return;
2442         }
2443         memset(buckets, 0, sizeof(int)*length);
2444         for (i=0; i<sampleNum;i++)
2445         {
2446                 u32 address=samples[i];
2447                 long long a=address-min;
2448                 long long b=length-1;
2449                 long long c=addressSpace-1;
2450                 int index=(a*b)/c; // danger!!!! int32 overflows
2451                 buckets[index]++;
2452         }
2453
2454         //                         append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr))
2455         writeLong(f, min);                                      // low_pc
2456         writeLong(f, max);              // high_pc
2457         writeLong(f, length);           // # of samples
2458         writeLong(f, 64000000);                         // 64MHz
2459         writeString(f, "seconds");
2460         for (i=0; i<(15-strlen("seconds")); i++)
2461         {
2462                 fwrite("", 1, 1, f);  // padding
2463         }
2464         writeString(f, "s");
2465
2466 //                         append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size)
2467
2468         char *data=malloc(2*length);
2469         if (data!=NULL)
2470         {
2471                 for (i=0; i<length;i++)
2472                 {
2473                         int val;
2474                         val=buckets[i];
2475                         if (val>65535)
2476                         {
2477                                 val=65535;
2478                         }
2479                         data[i*2]=val&0xff;
2480                         data[i*2+1]=(val>>8)&0xff;
2481                 }
2482                 free(buckets);
2483                 fwrite(data, 1, length*2, f);
2484                 free(data);
2485         } else
2486         {
2487                 free(buckets);
2488         }
2489
2490         fclose(f);
2491 }
2492
2493 /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
2494 int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2495 {
2496         target_t *target = get_current_target(cmd_ctx);
2497         struct timeval timeout, now;
2498
2499         gettimeofday(&timeout, NULL);
2500         if (argc!=2)
2501         {
2502                 return ERROR_COMMAND_SYNTAX_ERROR;
2503         }
2504         char *end;
2505         timeval_add_time(&timeout, strtoul(args[0], &end, 0), 0);
2506         if (*end)
2507         {
2508                 return ERROR_OK;
2509         }
2510
2511         command_print(cmd_ctx, "Starting profiling. Halting and resuming the target as often as we can...");
2512
2513         static const int maxSample=10000;
2514         u32 *samples=malloc(sizeof(u32)*maxSample);
2515         if (samples==NULL)
2516                 return ERROR_OK;
2517
2518         int numSamples=0;
2519         int retval=ERROR_OK;
2520         // hopefully it is safe to cache! We want to stop/restart as quickly as possible.
2521         reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1);
2522
2523         for (;;)
2524         {
2525                 target_poll(target);
2526                 if (target->state == TARGET_HALTED)
2527                 {
2528                         u32 t=*((u32 *)reg->value);
2529                         samples[numSamples++]=t;
2530                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2531                         target_poll(target);
2532                         usleep(10*1000); // sleep 10ms, i.e. <100 samples/second.
2533                 } else if (target->state == TARGET_RUNNING)
2534                 {
2535                         // We want to quickly sample the PC.
2536                         target_halt(target);
2537                 } else
2538                 {
2539                         command_print(cmd_ctx, "Target not halted or running");
2540                         retval=ERROR_OK;
2541                         break;
2542                 }
2543                 if (retval!=ERROR_OK)
2544                 {
2545                         break;
2546                 }
2547
2548                 gettimeofday(&now, NULL);
2549                 if ((numSamples>=maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
2550                 {
2551                         command_print(cmd_ctx, "Profiling completed. %d samples.", numSamples);
2552                         target_poll(target);
2553                         if (target->state == TARGET_HALTED)
2554                         {
2555                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2556                         }
2557                         target_poll(target);
2558                         writeGmon(samples, numSamples, args[1]);
2559                         command_print(cmd_ctx, "Wrote %s", args[1]);
2560                         break;
2561                 }
2562         }
2563         free(samples);
2564
2565         return ERROR_OK;
2566 }
2567
2568 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 val)
2569 {
2570         char *namebuf;
2571         Jim_Obj *nameObjPtr, *valObjPtr;
2572         int result;
2573
2574         namebuf = alloc_printf("%s(%d)", varname, idx);
2575         if (!namebuf)
2576                 return JIM_ERR;
2577
2578         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
2579         valObjPtr = Jim_NewIntObj(interp, val);
2580         if (!nameObjPtr || !valObjPtr)
2581         {
2582                 free(namebuf);
2583                 return JIM_ERR;
2584         }
2585
2586         Jim_IncrRefCount(nameObjPtr);
2587         Jim_IncrRefCount(valObjPtr);
2588         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
2589         Jim_DecrRefCount(interp, nameObjPtr);
2590         Jim_DecrRefCount(interp, valObjPtr);
2591         free(namebuf);
2592         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
2593         return result;
2594 }
2595
2596 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
2597 {
2598         target_t *target;
2599         command_context_t *context;
2600         long l;
2601         u32 width;
2602         u32 len;
2603         u32 addr;
2604         u32 count;
2605         u32 v;
2606         const char *varname;
2607         u8 buffer[4096];
2608         int  i, n, e, retval;
2609
2610         /* argv[1] = name of array to receive the data
2611          * argv[2] = desired width
2612          * argv[3] = memory address
2613          * argv[4] = count of times to read
2614          */
2615         if (argc != 5) {
2616                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
2617                 return JIM_ERR;
2618         }
2619         varname = Jim_GetString(argv[1], &len);
2620         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
2621
2622         e = Jim_GetLong(interp, argv[2], &l);
2623         width = l;
2624         if (e != JIM_OK) {
2625                 return e;
2626         }
2627
2628         e = Jim_GetLong(interp, argv[3], &l);
2629         addr = l;
2630         if (e != JIM_OK) {
2631                 return e;
2632         }
2633         e = Jim_GetLong(interp, argv[4], &l);
2634         len = l;
2635         if (e != JIM_OK) {
2636                 return e;
2637         }
2638         switch (width) {
2639                 case 8:
2640                         width = 1;
2641                         break;
2642                 case 16:
2643                         width = 2;
2644                         break;
2645                 case 32:
2646                         width = 4;
2647                         break;
2648                 default:
2649                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2650                         Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
2651                         return JIM_ERR;
2652         }
2653         if (len == 0) {
2654                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2655                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
2656                 return JIM_ERR;
2657         }
2658         if ((addr + (len * width)) < addr) {
2659                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2660                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
2661                 return JIM_ERR;
2662         }
2663         /* absurd transfer size? */
2664         if (len > 65536) {
2665                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2666                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
2667                 return JIM_ERR;
2668         }
2669
2670         if ((width == 1) ||
2671                 ((width == 2) && ((addr & 1) == 0)) ||
2672                 ((width == 4) && ((addr & 3) == 0))) {
2673                 /* all is well */
2674         } else {
2675                 char buf[100];
2676                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2677                 sprintf(buf, "mem2array address: 0x%08x is not aligned for %d byte reads", addr, width);
2678                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
2679                 return JIM_ERR;
2680         }
2681
2682         context = Jim_GetAssocData(interp, "context");
2683         if (context == NULL)
2684         {
2685                 LOG_ERROR("mem2array: no command context");
2686                 return JIM_ERR;
2687         }
2688         target = get_current_target(context);
2689         if (target == NULL)
2690         {
2691                 LOG_ERROR("mem2array: no current target");
2692                 return JIM_ERR;
2693         }
2694
2695         /* Transfer loop */
2696
2697         /* index counter */
2698         n = 0;
2699         /* assume ok */
2700         e = JIM_OK;
2701         while (len) {
2702                 /* Slurp... in buffer size chunks */
2703
2704                 count = len; /* in objects.. */
2705                 if (count > (sizeof(buffer)/width)) {
2706                         count = (sizeof(buffer)/width);
2707                 }
2708
2709                 retval = target->type->read_memory( target, addr, width, count, buffer );
2710                 if (retval != ERROR_OK) {
2711                         /* BOO !*/
2712                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
2713                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2714                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
2715                         e = JIM_ERR;
2716                         len = 0;
2717                 } else {
2718                         v = 0; /* shut up gcc */
2719                         for (i = 0 ;i < count ;i++, n++) {
2720                                 switch (width) {
2721                                         case 4:
2722                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
2723                                                 break;
2724                                         case 2:
2725                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
2726                                                 break;
2727                                         case 1:
2728                                                 v = buffer[i] & 0x0ff;
2729                                                 break;
2730                                 }
2731                                 new_int_array_element(interp, varname, n, v);
2732                         }
2733                         len -= count;
2734                 }
2735         }
2736
2737         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2738
2739         return JIM_OK;
2740 }
2741
2742 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 *val)
2743 {
2744         char *namebuf;
2745         Jim_Obj *nameObjPtr, *valObjPtr;
2746         int result;
2747         long l;
2748
2749         namebuf = alloc_printf("%s(%d)", varname, idx);
2750         if (!namebuf)
2751                 return JIM_ERR;
2752
2753         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
2754         if (!nameObjPtr)
2755         {
2756                 free(namebuf);
2757                 return JIM_ERR;
2758         }
2759
2760         Jim_IncrRefCount(nameObjPtr);
2761         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
2762         Jim_DecrRefCount(interp, nameObjPtr);
2763         free(namebuf);
2764         if (valObjPtr == NULL)
2765                 return JIM_ERR;
2766
2767         result = Jim_GetLong(interp, valObjPtr, &l);
2768         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
2769         *val = l;
2770         return result;
2771 }
2772
2773 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
2774 {
2775         target_t *target;
2776         command_context_t *context;
2777         long l;
2778         u32 width;
2779         u32 len;
2780         u32 addr;
2781         u32 count;
2782         u32 v;
2783         const char *varname;
2784         u8 buffer[4096];
2785         int  i, n, e, retval;
2786
2787         /* argv[1] = name of array to get the data
2788          * argv[2] = desired width
2789          * argv[3] = memory address
2790          * argv[4] = count to write
2791          */
2792         if (argc != 5) {
2793                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
2794                 return JIM_ERR;
2795         }
2796         varname = Jim_GetString(argv[1], &len);
2797         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
2798
2799         e = Jim_GetLong(interp, argv[2], &l);
2800         width = l;
2801         if (e != JIM_OK) {
2802                 return e;
2803         }
2804
2805         e = Jim_GetLong(interp, argv[3], &l);
2806         addr = l;
2807         if (e != JIM_OK) {
2808                 return e;
2809         }
2810         e = Jim_GetLong(interp, argv[4], &l);
2811         len = l;
2812         if (e != JIM_OK) {
2813                 return e;
2814         }
2815         switch (width) {
2816                 case 8:
2817                         width = 1;
2818                         break;
2819                 case 16:
2820                         width = 2;
2821                         break;
2822                 case 32:
2823                         width = 4;
2824                         break;
2825                 default:
2826                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2827                         Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
2828                         return JIM_ERR;
2829         }
2830         if (len == 0) {
2831                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2832                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
2833                 return JIM_ERR;
2834         }
2835         if ((addr + (len * width)) < addr) {
2836                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2837                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
2838                 return JIM_ERR;
2839         }
2840         /* absurd transfer size? */
2841         if (len > 65536) {
2842                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2843                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
2844                 return JIM_ERR;
2845         }
2846
2847         if ((width == 1) ||
2848                 ((width == 2) && ((addr & 1) == 0)) ||
2849                 ((width == 4) && ((addr & 3) == 0))) {
2850                 /* all is well */
2851         } else {
2852                 char buf[100];
2853                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2854                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads", addr, width);
2855                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
2856                 return JIM_ERR;
2857         }
2858
2859         context = Jim_GetAssocData(interp, "context");
2860         if (context == NULL)
2861         {
2862                 LOG_ERROR("array2mem: no command context");
2863                 return JIM_ERR;
2864         }
2865         target = get_current_target(context);
2866         if (target == NULL)
2867         {
2868                 LOG_ERROR("array2mem: no current target");
2869                 return JIM_ERR;
2870         }
2871
2872         /* Transfer loop */
2873
2874         /* index counter */
2875         n = 0;
2876         /* assume ok */
2877         e = JIM_OK;
2878         while (len) {
2879                 /* Slurp... in buffer size chunks */
2880
2881                 count = len; /* in objects.. */
2882                 if (count > (sizeof(buffer)/width)) {
2883                         count = (sizeof(buffer)/width);
2884                 }
2885
2886                 v = 0; /* shut up gcc */
2887                 for (i = 0 ;i < count ;i++, n++) {
2888                         get_int_array_element(interp, varname, n, &v);
2889                         switch (width) {
2890                         case 4:
2891                                 target_buffer_set_u32(target, &buffer[i*width], v);
2892                                 break;
2893                         case 2:
2894                                 target_buffer_set_u16(target, &buffer[i*width], v);
2895                                 break;
2896                         case 1:
2897                                 buffer[i] = v & 0x0ff;
2898                                 break;
2899                         }
2900                 }
2901                 len -= count;
2902
2903                 retval = target->type->write_memory(target, addr, width, count, buffer);
2904                 if (retval != ERROR_OK) {
2905                         /* BOO !*/
2906                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
2907                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2908                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
2909                         e = JIM_ERR;
2910                         len = 0;
2911                 }
2912         }
2913
2914         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2915
2916         return JIM_OK;
2917 }