Add target_get_name wrapper:
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007,2008 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   This program is free software; you can redistribute it and/or modify  *
18  *   it under the terms of the GNU General Public License as published by  *
19  *   the Free Software Foundation; either version 2 of the License, or     *
20  *   (at your option) any later version.                                   *
21  *                                                                         *
22  *   This program is distributed in the hope that it will be useful,       *
23  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
24  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
25  *   GNU General Public License for more details.                          *
26  *                                                                         *
27  *   You should have received a copy of the GNU General Public License     *
28  *   along with this program; if not, write to the                         *
29  *   Free Software Foundation, Inc.,                                       *
30  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "target.h"
37 #include "target_request.h"
38 #include "time_support.h"
39 #include "register.h"
40 #include "trace.h"
41 #include "image.h"
42 #include "jtag.h"
43
44 #include <inttypes.h>
45
46
47 static int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
48
49 static int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
50 static int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
51 static int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
52 static int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
53 static int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
54 static int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
55 static int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
56 static int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
57 static int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
58 static int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
59 static int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
60 static int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
61 static int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
62 static int handle_test_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
63 static int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
64 static int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
65 static int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
66 static int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
67 static int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc);
68 static int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
69 static int handle_fast_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
70 static int handle_fast_load_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
71
72 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
73 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
74 static int jim_target( Jim_Interp *interp, int argc, Jim_Obj *const *argv);
75
76 static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv);
77 static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv);
78
79 /* targets */
80 extern target_type_t arm7tdmi_target;
81 extern target_type_t arm720t_target;
82 extern target_type_t arm9tdmi_target;
83 extern target_type_t arm920t_target;
84 extern target_type_t arm966e_target;
85 extern target_type_t arm926ejs_target;
86 extern target_type_t feroceon_target;
87 extern target_type_t xscale_target;
88 extern target_type_t cortexm3_target;
89 extern target_type_t cortexa8_target;
90 extern target_type_t arm11_target;
91 extern target_type_t mips_m4k_target;
92 extern target_type_t avr_target;
93
94 target_type_t *target_types[] =
95 {
96         &arm7tdmi_target,
97         &arm9tdmi_target,
98         &arm920t_target,
99         &arm720t_target,
100         &arm966e_target,
101         &arm926ejs_target,
102         &feroceon_target,
103         &xscale_target,
104         &cortexm3_target,
105         &cortexa8_target,
106         &arm11_target,
107         &mips_m4k_target,
108         &avr_target,
109         NULL,
110 };
111
112 target_t *all_targets = NULL;
113 target_event_callback_t *target_event_callbacks = NULL;
114 target_timer_callback_t *target_timer_callbacks = NULL;
115
116 const Jim_Nvp nvp_assert[] = {
117         { .name = "assert", NVP_ASSERT },
118         { .name = "deassert", NVP_DEASSERT },
119         { .name = "T", NVP_ASSERT },
120         { .name = "F", NVP_DEASSERT },
121         { .name = "t", NVP_ASSERT },
122         { .name = "f", NVP_DEASSERT },
123         { .name = NULL, .value = -1 }
124 };
125
126 const Jim_Nvp nvp_error_target[] = {
127         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
128         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
129         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
130         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
131         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
132         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
133         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
134         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
135         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
136         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
137         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
138         { .value = -1, .name = NULL }
139 };
140
141 const char *target_strerror_safe( int err )
142 {
143         const Jim_Nvp *n;
144
145         n = Jim_Nvp_value2name_simple( nvp_error_target, err );
146         if( n->name == NULL ){
147                 return "unknown";
148         } else {
149                 return n->name;
150         }
151 }
152
153 static const Jim_Nvp nvp_target_event[] = {
154         { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
155         { .value = TARGET_EVENT_OLD_pre_resume         , .name = "old-pre_resume" },
156
157         { .value = TARGET_EVENT_EARLY_HALTED, .name = "early-halted" },
158         { .value = TARGET_EVENT_HALTED, .name = "halted" },
159         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
160         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
161         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
162
163         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
164         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
165
166         /* historical name */
167
168         { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
169
170         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
171         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
172         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
173         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
174         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
175         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
176         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
177         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
178         { .value = TARGET_EVENT_RESET_INIT , .name = "reset-init" },
179         { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
180
181         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
182         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
183
184         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
185         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
186
187         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
188         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
189
190         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
191         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
192
193         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
194         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
195
196         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
197         { .value = TARGET_EVENT_RESUMED     , .name = "resume-ok" },
198         { .value = TARGET_EVENT_RESUME_END  , .name = "resume-end" },
199
200         { .name = NULL, .value = -1 }
201 };
202
203 const Jim_Nvp nvp_target_state[] = {
204         { .name = "unknown", .value = TARGET_UNKNOWN },
205         { .name = "running", .value = TARGET_RUNNING },
206         { .name = "halted",  .value = TARGET_HALTED },
207         { .name = "reset",   .value = TARGET_RESET },
208         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
209         { .name = NULL, .value = -1 },
210 };
211
212 const Jim_Nvp nvp_target_debug_reason [] = {
213         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
214         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
215         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
216         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
217         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
218         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
219         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
220         { .name = NULL, .value = -1 },
221 };
222
223 const Jim_Nvp nvp_target_endian[] = {
224         { .name = "big",    .value = TARGET_BIG_ENDIAN },
225         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
226         { .name = "be",     .value = TARGET_BIG_ENDIAN },
227         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
228         { .name = NULL,     .value = -1 },
229 };
230
231 const Jim_Nvp nvp_reset_modes[] = {
232         { .name = "unknown", .value = RESET_UNKNOWN },
233         { .name = "run"    , .value = RESET_RUN },
234         { .name = "halt"   , .value = RESET_HALT },
235         { .name = "init"   , .value = RESET_INIT },
236         { .name = NULL     , .value = -1 },
237 };
238
239 static int max_target_number(void)
240 {
241         target_t *t;
242         int x;
243
244         x = -1;
245         t = all_targets;
246         while( t ){
247                 if( x < t->target_number ){
248                         x = (t->target_number)+1;
249                 }
250                 t = t->next;
251         }
252         return x;
253 }
254
255 /* determine the number of the new target */
256 static int new_target_number(void)
257 {
258         target_t *t;
259         int x;
260
261         /* number is 0 based */
262         x = -1;
263         t = all_targets;
264         while(t){
265                 if( x < t->target_number ){
266                         x = t->target_number;
267                 }
268                 t = t->next;
269         }
270         return x+1;
271 }
272
273 static int target_continous_poll = 1;
274
275 /* read a u32 from a buffer in target memory endianness */
276 u32 target_buffer_get_u32(target_t *target, const u8 *buffer)
277 {
278         if (target->endianness == TARGET_LITTLE_ENDIAN)
279                 return le_to_h_u32(buffer);
280         else
281                 return be_to_h_u32(buffer);
282 }
283
284 /* read a u16 from a buffer in target memory endianness */
285 u16 target_buffer_get_u16(target_t *target, const u8 *buffer)
286 {
287         if (target->endianness == TARGET_LITTLE_ENDIAN)
288                 return le_to_h_u16(buffer);
289         else
290                 return be_to_h_u16(buffer);
291 }
292
293 /* read a u8 from a buffer in target memory endianness */
294 u8 target_buffer_get_u8(target_t *target, const u8 *buffer)
295 {
296         return *buffer & 0x0ff;
297 }
298
299 /* write a u32 to a buffer in target memory endianness */
300 void target_buffer_set_u32(target_t *target, u8 *buffer, u32 value)
301 {
302         if (target->endianness == TARGET_LITTLE_ENDIAN)
303                 h_u32_to_le(buffer, value);
304         else
305                 h_u32_to_be(buffer, value);
306 }
307
308 /* write a u16 to a buffer in target memory endianness */
309 void target_buffer_set_u16(target_t *target, u8 *buffer, u16 value)
310 {
311         if (target->endianness == TARGET_LITTLE_ENDIAN)
312                 h_u16_to_le(buffer, value);
313         else
314                 h_u16_to_be(buffer, value);
315 }
316
317 /* write a u8 to a buffer in target memory endianness */
318 void target_buffer_set_u8(target_t *target, u8 *buffer, u8 value)
319 {
320         *buffer = value;
321 }
322
323 /* return a pointer to a configured target; id is name or number */
324 target_t *get_target(const char *id)
325 {
326         target_t *target;
327         char *endptr;
328         int num;
329
330         /* try as tcltarget name */
331         for (target = all_targets; target; target = target->next) {
332                 if (target->cmd_name == NULL)
333                         continue;
334                 if (strcmp(id, target->cmd_name) == 0)
335                         return target;
336         }
337
338         /* no match, try as number */
339         num = strtoul(id, &endptr, 0);
340         if (*endptr != 0)
341                 return NULL;
342
343         for (target = all_targets; target; target = target->next) {
344                 if (target->target_number == num)
345                         return target;
346         }
347
348         return NULL;
349 }
350
351 /* returns a pointer to the n-th configured target */
352 static target_t *get_target_by_num(int num)
353 {
354         target_t *target = all_targets;
355
356         while (target){
357                 if( target->target_number == num ){
358                         return target;
359                 }
360                 target = target->next;
361         }
362
363         return NULL;
364 }
365
366 int get_num_by_target(target_t *query_target)
367 {
368         return query_target->target_number;
369 }
370
371 target_t* get_current_target(command_context_t *cmd_ctx)
372 {
373         target_t *target = get_target_by_num(cmd_ctx->current_target);
374
375         if (target == NULL)
376         {
377                 LOG_ERROR("BUG: current_target out of bounds");
378                 exit(-1);
379         }
380
381         return target;
382 }
383
384 int target_poll(struct target_s *target)
385 {
386         /* We can't poll until after examine */
387         if (!target_was_examined(target))
388         {
389                 /* Fail silently lest we pollute the log */
390                 return ERROR_FAIL;
391         }
392         return target->type->poll(target);
393 }
394
395 int target_halt(struct target_s *target)
396 {
397         /* We can't poll until after examine */
398         if (!target_was_examined(target))
399         {
400                 LOG_ERROR("Target not examined yet");
401                 return ERROR_FAIL;
402         }
403         return target->type->halt(target);
404 }
405
406 int target_resume(struct target_s *target, int current, u32 address, int handle_breakpoints, int debug_execution)
407 {
408         int retval;
409
410         /* We can't poll until after examine */
411         if (!target_was_examined(target))
412         {
413                 LOG_ERROR("Target not examined yet");
414                 return ERROR_FAIL;
415         }
416
417         /* note that resume *must* be asynchronous. The CPU can halt before we poll. The CPU can
418          * even halt at the current PC as a result of a software breakpoint being inserted by (a bug?)
419          * the application.
420          */
421         if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
422                 return retval;
423
424         return retval;
425 }
426
427 int target_process_reset(struct command_context_s *cmd_ctx, enum target_reset_mode reset_mode)
428 {
429         char buf[100];
430         int retval;
431         Jim_Nvp *n;
432         n = Jim_Nvp_value2name_simple( nvp_reset_modes, reset_mode );
433         if( n->name == NULL ){
434                 LOG_ERROR("invalid reset mode");
435                 return ERROR_FAIL;
436         }
437
438         sprintf( buf, "ocd_process_reset %s", n->name );
439         retval = Jim_Eval( interp, buf );
440
441         if(retval != JIM_OK) {
442                 Jim_PrintErrorMessage(interp);
443                 return ERROR_FAIL;
444         }
445
446         /* We want any events to be processed before the prompt */
447         retval = target_call_timer_callbacks_now();
448
449         return retval;
450 }
451
452 static int default_virt2phys(struct target_s *target, u32 virtual, u32 *physical)
453 {
454         *physical = virtual;
455         return ERROR_OK;
456 }
457
458 static int default_mmu(struct target_s *target, int *enabled)
459 {
460         *enabled = 0;
461         return ERROR_OK;
462 }
463
464 static int default_examine(struct target_s *target)
465 {
466         target_set_examined(target);
467         return ERROR_OK;
468 }
469
470 /* Targets that correctly implement init+examine, i.e.
471  * no communication with target during init:
472  *
473  * XScale
474  */
475 int target_examine(void)
476 {
477         int retval = ERROR_OK;
478         target_t *target = all_targets;
479         while (target)
480         {
481                 if ((retval = target->type->examine(target))!=ERROR_OK)
482                         return retval;
483                 target = target->next;
484         }
485         return retval;
486 }
487 const char *target_get_name(struct target_s *target)
488 {
489         return target->type->name;
490 }
491
492 static int target_write_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
493 {
494         if (!target_was_examined(target))
495         {
496                 LOG_ERROR("Target not examined yet");
497                 return ERROR_FAIL;
498         }
499         return target->type->write_memory_imp(target, address, size, count, buffer);
500 }
501
502 static int target_read_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
503 {
504         if (!target_was_examined(target))
505         {
506                 LOG_ERROR("Target not examined yet");
507                 return ERROR_FAIL;
508         }
509         return target->type->read_memory_imp(target, address, size, count, buffer);
510 }
511
512 static int target_soft_reset_halt_imp(struct target_s *target)
513 {
514         if (!target_was_examined(target))
515         {
516                 LOG_ERROR("Target not examined yet");
517                 return ERROR_FAIL;
518         }
519         return target->type->soft_reset_halt_imp(target);
520 }
521
522 static int target_run_algorithm_imp(struct target_s *target, int num_mem_params, mem_param_t *mem_params, int num_reg_params, reg_param_t *reg_param, u32 entry_point, u32 exit_point, int timeout_ms, void *arch_info)
523 {
524         if (!target_was_examined(target))
525         {
526                 LOG_ERROR("Target not examined yet");
527                 return ERROR_FAIL;
528         }
529         return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
530 }
531
532 int target_read_memory(struct target_s *target,
533                 u32 address, u32 size, u32 count, u8 *buffer)
534 {
535         return target->type->read_memory(target, address, size, count, buffer);
536 }
537
538 int target_write_memory(struct target_s *target,
539                 u32 address, u32 size, u32 count, u8 *buffer)
540 {
541         return target->type->write_memory(target, address, size, count, buffer);
542 }
543 int target_bulk_write_memory(struct target_s *target,
544                 u32 address, u32 count, u8 *buffer)
545 {
546         return target->type->bulk_write_memory(target, address, count, buffer);
547 }
548
549
550 int target_get_gdb_reg_list(struct target_s *target,
551                 struct reg_s **reg_list[], int *reg_list_size)
552 {
553         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
554 }
555 int target_step(struct target_s *target,
556                 int current, u32 address, int handle_breakpoints)
557 {
558         return target->type->step(target, current, address, handle_breakpoints);
559 }
560
561
562 int target_run_algorithm(struct target_s *target,
563                 int num_mem_params, mem_param_t *mem_params,
564                 int num_reg_params, reg_param_t *reg_param,
565                 u32 entry_point, u32 exit_point,
566                 int timeout_ms, void *arch_info)
567 {
568         return target->type->run_algorithm(target,
569                         num_mem_params, mem_params, num_reg_params, reg_param,
570                         entry_point, exit_point, timeout_ms, arch_info);
571 }
572
573 /// @returns @c true if the target has been examined.
574 bool target_was_examined(struct target_s *target)
575 {
576         return target->type->examined;
577 }
578 /// Sets the @c examined flag for the given target.
579 void target_set_examined(struct target_s *target)
580 {
581         target->type->examined = true;
582 }
583 // Reset the @c examined flag for the given target.
584 void target_reset_examined(struct target_s *target)
585 {
586         target->type->examined = false;
587 }
588
589
590 int target_init(struct command_context_s *cmd_ctx)
591 {
592         target_t *target = all_targets;
593         int retval;
594
595         while (target)
596         {
597                 target_reset_examined(target);
598                 if (target->type->examine == NULL)
599                 {
600                         target->type->examine = default_examine;
601                 }
602
603                 if ((retval = target->type->init_target(cmd_ctx, target)) != ERROR_OK)
604                 {
605                         LOG_ERROR("target '%s' init failed", target_get_name(target));
606                         return retval;
607                 }
608
609                 /* Set up default functions if none are provided by target */
610                 if (target->type->virt2phys == NULL)
611                 {
612                         target->type->virt2phys = default_virt2phys;
613                 }
614                 target->type->virt2phys = default_virt2phys;
615                 /* a non-invasive way(in terms of patches) to add some code that
616                  * runs before the type->write/read_memory implementation
617                  */
618                 target->type->write_memory_imp = target->type->write_memory;
619                 target->type->write_memory = target_write_memory_imp;
620                 target->type->read_memory_imp = target->type->read_memory;
621                 target->type->read_memory = target_read_memory_imp;
622                 target->type->soft_reset_halt_imp = target->type->soft_reset_halt;
623                 target->type->soft_reset_halt = target_soft_reset_halt_imp;
624                 target->type->run_algorithm_imp = target->type->run_algorithm;
625                 target->type->run_algorithm = target_run_algorithm_imp;
626
627                 if (target->type->mmu == NULL)
628                 {
629                         target->type->mmu = default_mmu;
630                 }
631                 target = target->next;
632         }
633
634         if (all_targets)
635         {
636                 if((retval = target_register_user_commands(cmd_ctx)) != ERROR_OK)
637                         return retval;
638                 if((retval = target_register_timer_callback(handle_target, 100, 1, NULL)) != ERROR_OK)
639                         return retval;
640         }
641
642         return ERROR_OK;
643 }
644
645 int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
646 {
647         target_event_callback_t **callbacks_p = &target_event_callbacks;
648
649         if (callback == NULL)
650         {
651                 return ERROR_INVALID_ARGUMENTS;
652         }
653
654         if (*callbacks_p)
655         {
656                 while ((*callbacks_p)->next)
657                         callbacks_p = &((*callbacks_p)->next);
658                 callbacks_p = &((*callbacks_p)->next);
659         }
660
661         (*callbacks_p) = malloc(sizeof(target_event_callback_t));
662         (*callbacks_p)->callback = callback;
663         (*callbacks_p)->priv = priv;
664         (*callbacks_p)->next = NULL;
665
666         return ERROR_OK;
667 }
668
669 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
670 {
671         target_timer_callback_t **callbacks_p = &target_timer_callbacks;
672         struct timeval now;
673
674         if (callback == NULL)
675         {
676                 return ERROR_INVALID_ARGUMENTS;
677         }
678
679         if (*callbacks_p)
680         {
681                 while ((*callbacks_p)->next)
682                         callbacks_p = &((*callbacks_p)->next);
683                 callbacks_p = &((*callbacks_p)->next);
684         }
685
686         (*callbacks_p) = malloc(sizeof(target_timer_callback_t));
687         (*callbacks_p)->callback = callback;
688         (*callbacks_p)->periodic = periodic;
689         (*callbacks_p)->time_ms = time_ms;
690
691         gettimeofday(&now, NULL);
692         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
693         time_ms -= (time_ms % 1000);
694         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
695         if ((*callbacks_p)->when.tv_usec > 1000000)
696         {
697                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
698                 (*callbacks_p)->when.tv_sec += 1;
699         }
700
701         (*callbacks_p)->priv = priv;
702         (*callbacks_p)->next = NULL;
703
704         return ERROR_OK;
705 }
706
707 int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
708 {
709         target_event_callback_t **p = &target_event_callbacks;
710         target_event_callback_t *c = target_event_callbacks;
711
712         if (callback == NULL)
713         {
714                 return ERROR_INVALID_ARGUMENTS;
715         }
716
717         while (c)
718         {
719                 target_event_callback_t *next = c->next;
720                 if ((c->callback == callback) && (c->priv == priv))
721                 {
722                         *p = next;
723                         free(c);
724                         return ERROR_OK;
725                 }
726                 else
727                         p = &(c->next);
728                 c = next;
729         }
730
731         return ERROR_OK;
732 }
733
734 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
735 {
736         target_timer_callback_t **p = &target_timer_callbacks;
737         target_timer_callback_t *c = target_timer_callbacks;
738
739         if (callback == NULL)
740         {
741                 return ERROR_INVALID_ARGUMENTS;
742         }
743
744         while (c)
745         {
746                 target_timer_callback_t *next = c->next;
747                 if ((c->callback == callback) && (c->priv == priv))
748                 {
749                         *p = next;
750                         free(c);
751                         return ERROR_OK;
752                 }
753                 else
754                         p = &(c->next);
755                 c = next;
756         }
757
758         return ERROR_OK;
759 }
760
761 int target_call_event_callbacks(target_t *target, enum target_event event)
762 {
763         target_event_callback_t *callback = target_event_callbacks;
764         target_event_callback_t *next_callback;
765
766         if (event == TARGET_EVENT_HALTED)
767         {
768                 /* execute early halted first */
769                 target_call_event_callbacks(target, TARGET_EVENT_EARLY_HALTED);
770         }
771
772         LOG_DEBUG("target event %i (%s)",
773                           event,
774                           Jim_Nvp_value2name_simple( nvp_target_event, event )->name );
775
776         target_handle_event( target, event );
777
778         while (callback)
779         {
780                 next_callback = callback->next;
781                 callback->callback(target, event, callback->priv);
782                 callback = next_callback;
783         }
784
785         return ERROR_OK;
786 }
787
788 static int target_call_timer_callbacks_check_time(int checktime)
789 {
790         target_timer_callback_t *callback = target_timer_callbacks;
791         target_timer_callback_t *next_callback;
792         struct timeval now;
793
794         keep_alive();
795
796         gettimeofday(&now, NULL);
797
798         while (callback)
799         {
800                 next_callback = callback->next;
801
802                 if ((!checktime&&callback->periodic)||
803                                 (((now.tv_sec >= callback->when.tv_sec) && (now.tv_usec >= callback->when.tv_usec))
804                                                 || (now.tv_sec > callback->when.tv_sec)))
805                 {
806                         if(callback->callback != NULL)
807                         {
808                                 callback->callback(callback->priv);
809                                 if (callback->periodic)
810                                 {
811                                         int time_ms = callback->time_ms;
812                                         callback->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
813                                         time_ms -= (time_ms % 1000);
814                                         callback->when.tv_sec = now.tv_sec + time_ms / 1000;
815                                         if (callback->when.tv_usec > 1000000)
816                                         {
817                                                 callback->when.tv_usec = callback->when.tv_usec - 1000000;
818                                                 callback->when.tv_sec += 1;
819                                         }
820                                 }
821                                 else
822                                 {
823                                         int retval;
824                                         if((retval = target_unregister_timer_callback(callback->callback, callback->priv)) != ERROR_OK)
825                                                 return retval;
826                                 }
827                         }
828                 }
829
830                 callback = next_callback;
831         }
832
833         return ERROR_OK;
834 }
835
836 int target_call_timer_callbacks(void)
837 {
838         return target_call_timer_callbacks_check_time(1);
839 }
840
841 /* invoke periodic callbacks immediately */
842 int target_call_timer_callbacks_now(void)
843 {
844         return target_call_timer_callbacks_check_time(0);
845 }
846
847 int target_alloc_working_area(struct target_s *target, u32 size, working_area_t **area)
848 {
849         working_area_t *c = target->working_areas;
850         working_area_t *new_wa = NULL;
851
852         /* Reevaluate working area address based on MMU state*/
853         if (target->working_areas == NULL)
854         {
855                 int retval;
856                 int enabled;
857                 retval = target->type->mmu(target, &enabled);
858                 if (retval != ERROR_OK)
859                 {
860                         return retval;
861                 }
862                 if (enabled)
863                 {
864                         target->working_area = target->working_area_virt;
865                 }
866                 else
867                 {
868                         target->working_area = target->working_area_phys;
869                 }
870         }
871
872         /* only allocate multiples of 4 byte */
873         if (size % 4)
874         {
875                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes, padding");
876                 size = CEIL(size, 4);
877         }
878
879         /* see if there's already a matching working area */
880         while (c)
881         {
882                 if ((c->free) && (c->size == size))
883                 {
884                         new_wa = c;
885                         break;
886                 }
887                 c = c->next;
888         }
889
890         /* if not, allocate a new one */
891         if (!new_wa)
892         {
893                 working_area_t **p = &target->working_areas;
894                 u32 first_free = target->working_area;
895                 u32 free_size = target->working_area_size;
896
897                 LOG_DEBUG("allocating new working area");
898
899                 c = target->working_areas;
900                 while (c)
901                 {
902                         first_free += c->size;
903                         free_size -= c->size;
904                         p = &c->next;
905                         c = c->next;
906                 }
907
908                 if (free_size < size)
909                 {
910                         LOG_WARNING("not enough working area available(requested %d, free %d)", size, free_size);
911                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
912                 }
913
914                 new_wa = malloc(sizeof(working_area_t));
915                 new_wa->next = NULL;
916                 new_wa->size = size;
917                 new_wa->address = first_free;
918
919                 if (target->backup_working_area)
920                 {
921                         int retval;
922                         new_wa->backup = malloc(new_wa->size);
923                         if((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
924                         {
925                                 free(new_wa->backup);
926                                 free(new_wa);
927                                 return retval;
928                         }
929                 }
930                 else
931                 {
932                         new_wa->backup = NULL;
933                 }
934
935                 /* put new entry in list */
936                 *p = new_wa;
937         }
938
939         /* mark as used, and return the new (reused) area */
940         new_wa->free = 0;
941         *area = new_wa;
942
943         /* user pointer */
944         new_wa->user = area;
945
946         return ERROR_OK;
947 }
948
949 int target_free_working_area_restore(struct target_s *target, working_area_t *area, int restore)
950 {
951         if (area->free)
952                 return ERROR_OK;
953
954         if (restore&&target->backup_working_area)
955         {
956                 int retval;
957                 if((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
958                         return retval;
959         }
960
961         area->free = 1;
962
963         /* mark user pointer invalid */
964         *area->user = NULL;
965         area->user = NULL;
966
967         return ERROR_OK;
968 }
969
970 int target_free_working_area(struct target_s *target, working_area_t *area)
971 {
972         return target_free_working_area_restore(target, area, 1);
973 }
974
975 /* free resources and restore memory, if restoring memory fails,
976  * free up resources anyway
977  */
978 void target_free_all_working_areas_restore(struct target_s *target, int restore)
979 {
980         working_area_t *c = target->working_areas;
981
982         while (c)
983         {
984                 working_area_t *next = c->next;
985                 target_free_working_area_restore(target, c, restore);
986
987                 if (c->backup)
988                         free(c->backup);
989
990                 free(c);
991
992                 c = next;
993         }
994
995         target->working_areas = NULL;
996 }
997
998 void target_free_all_working_areas(struct target_s *target)
999 {
1000         target_free_all_working_areas_restore(target, 1);
1001 }
1002
1003 int target_register_commands(struct command_context_s *cmd_ctx)
1004 {
1005
1006         register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, "change the current command line target (one parameter) or lists targets (with no parameter)");
1007
1008
1009
1010
1011         register_jim(cmd_ctx, "target", jim_target, "configure target" );
1012
1013         return ERROR_OK;
1014 }
1015
1016 int target_arch_state(struct target_s *target)
1017 {
1018         int retval;
1019         if (target==NULL)
1020         {
1021                 LOG_USER("No target has been configured");
1022                 return ERROR_OK;
1023         }
1024
1025         LOG_USER("target state: %s",
1026                  Jim_Nvp_value2name_simple(nvp_target_state,target->state)->name);
1027
1028         if (target->state!=TARGET_HALTED)
1029                 return ERROR_OK;
1030
1031         retval=target->type->arch_state(target);
1032         return retval;
1033 }
1034
1035 /* Single aligned words are guaranteed to use 16 or 32 bit access
1036  * mode respectively, otherwise data is handled as quickly as
1037  * possible
1038  */
1039 int target_write_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
1040 {
1041         int retval;
1042         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x", size, address);
1043
1044         if (!target_was_examined(target))
1045         {
1046                 LOG_ERROR("Target not examined yet");
1047                 return ERROR_FAIL;
1048         }
1049
1050         if (size == 0) {
1051                 return ERROR_OK;
1052         }
1053
1054         if ((address + size - 1) < address)
1055         {
1056                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1057                 LOG_ERROR("address+size wrapped(0x%08x, 0x%08x)", address, size);
1058                 return ERROR_FAIL;
1059         }
1060
1061         if (((address % 2) == 0) && (size == 2))
1062         {
1063                 return target_write_memory(target, address, 2, 1, buffer);
1064         }
1065
1066         /* handle unaligned head bytes */
1067         if (address % 4)
1068         {
1069                 u32 unaligned = 4 - (address % 4);
1070
1071                 if (unaligned > size)
1072                         unaligned = size;
1073
1074                 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1075                         return retval;
1076
1077                 buffer += unaligned;
1078                 address += unaligned;
1079                 size -= unaligned;
1080         }
1081
1082         /* handle aligned words */
1083         if (size >= 4)
1084         {
1085                 int aligned = size - (size % 4);
1086
1087                 /* use bulk writes above a certain limit. This may have to be changed */
1088                 if (aligned > 128)
1089                 {
1090                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1091                                 return retval;
1092                 }
1093                 else
1094                 {
1095                         if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1096                                 return retval;
1097                 }
1098
1099                 buffer += aligned;
1100                 address += aligned;
1101                 size -= aligned;
1102         }
1103
1104         /* handle tail writes of less than 4 bytes */
1105         if (size > 0)
1106         {
1107                 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1108                         return retval;
1109         }
1110
1111         return ERROR_OK;
1112 }
1113
1114 /* Single aligned words are guaranteed to use 16 or 32 bit access
1115  * mode respectively, otherwise data is handled as quickly as
1116  * possible
1117  */
1118 int target_read_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
1119 {
1120         int retval;
1121         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x", size, address);
1122
1123         if (!target_was_examined(target))
1124         {
1125                 LOG_ERROR("Target not examined yet");
1126                 return ERROR_FAIL;
1127         }
1128
1129         if (size == 0) {
1130                 return ERROR_OK;
1131         }
1132
1133         if ((address + size - 1) < address)
1134         {
1135                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1136                 LOG_ERROR("address+size wrapped(0x%08x, 0x%08x)", address, size);
1137                 return ERROR_FAIL;
1138         }
1139
1140         if (((address % 2) == 0) && (size == 2))
1141         {
1142                 return target_read_memory(target, address, 2, 1, buffer);
1143         }
1144
1145         /* handle unaligned head bytes */
1146         if (address % 4)
1147         {
1148                 u32 unaligned = 4 - (address % 4);
1149
1150                 if (unaligned > size)
1151                         unaligned = size;
1152
1153                 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1154                         return retval;
1155
1156                 buffer += unaligned;
1157                 address += unaligned;
1158                 size -= unaligned;
1159         }
1160
1161         /* handle aligned words */
1162         if (size >= 4)
1163         {
1164                 int aligned = size - (size % 4);
1165
1166                 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1167                         return retval;
1168
1169                 buffer += aligned;
1170                 address += aligned;
1171                 size -= aligned;
1172         }
1173
1174         /* handle tail writes of less than 4 bytes */
1175         if (size > 0)
1176         {
1177                 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1178                         return retval;
1179         }
1180
1181         return ERROR_OK;
1182 }
1183
1184 int target_checksum_memory(struct target_s *target, u32 address, u32 size, u32* crc)
1185 {
1186         u8 *buffer;
1187         int retval;
1188         u32 i;
1189         u32 checksum = 0;
1190         if (!target_was_examined(target))
1191         {
1192                 LOG_ERROR("Target not examined yet");
1193                 return ERROR_FAIL;
1194         }
1195
1196         if ((retval = target->type->checksum_memory(target, address,
1197                 size, &checksum)) != ERROR_OK)
1198         {
1199                 buffer = malloc(size);
1200                 if (buffer == NULL)
1201                 {
1202                         LOG_ERROR("error allocating buffer for section (%d bytes)", size);
1203                         return ERROR_INVALID_ARGUMENTS;
1204                 }
1205                 retval = target_read_buffer(target, address, size, buffer);
1206                 if (retval != ERROR_OK)
1207                 {
1208                         free(buffer);
1209                         return retval;
1210                 }
1211
1212                 /* convert to target endianess */
1213                 for (i = 0; i < (size/sizeof(u32)); i++)
1214                 {
1215                         u32 target_data;
1216                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(u32)]);
1217                         target_buffer_set_u32(target, &buffer[i*sizeof(u32)], target_data);
1218                 }
1219
1220                 retval = image_calculate_checksum( buffer, size, &checksum );
1221                 free(buffer);
1222         }
1223
1224         *crc = checksum;
1225
1226         return retval;
1227 }
1228
1229 int target_blank_check_memory(struct target_s *target, u32 address, u32 size, u32* blank)
1230 {
1231         int retval;
1232         if (!target_was_examined(target))
1233         {
1234                 LOG_ERROR("Target not examined yet");
1235                 return ERROR_FAIL;
1236         }
1237
1238         if (target->type->blank_check_memory == 0)
1239                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1240
1241         retval = target->type->blank_check_memory(target, address, size, blank);
1242
1243         return retval;
1244 }
1245
1246 int target_read_u32(struct target_s *target, u32 address, u32 *value)
1247 {
1248         u8 value_buf[4];
1249         if (!target_was_examined(target))
1250         {
1251                 LOG_ERROR("Target not examined yet");
1252                 return ERROR_FAIL;
1253         }
1254
1255         int retval = target_read_memory(target, address, 4, 1, value_buf);
1256
1257         if (retval == ERROR_OK)
1258         {
1259                 *value = target_buffer_get_u32(target, value_buf);
1260                 LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, *value);
1261         }
1262         else
1263         {
1264                 *value = 0x0;
1265                 LOG_DEBUG("address: 0x%8.8x failed", address);
1266         }
1267
1268         return retval;
1269 }
1270
1271 int target_read_u16(struct target_s *target, u32 address, u16 *value)
1272 {
1273         u8 value_buf[2];
1274         if (!target_was_examined(target))
1275         {
1276                 LOG_ERROR("Target not examined yet");
1277                 return ERROR_FAIL;
1278         }
1279
1280         int retval = target_read_memory(target, address, 2, 1, value_buf);
1281
1282         if (retval == ERROR_OK)
1283         {
1284                 *value = target_buffer_get_u16(target, value_buf);
1285                 LOG_DEBUG("address: 0x%8.8x, value: 0x%4.4x", address, *value);
1286         }
1287         else
1288         {
1289                 *value = 0x0;
1290                 LOG_DEBUG("address: 0x%8.8x failed", address);
1291         }
1292
1293         return retval;
1294 }
1295
1296 int target_read_u8(struct target_s *target, u32 address, u8 *value)
1297 {
1298         int retval = target_read_memory(target, address, 1, 1, value);
1299         if (!target_was_examined(target))
1300         {
1301                 LOG_ERROR("Target not examined yet");
1302                 return ERROR_FAIL;
1303         }
1304
1305         if (retval == ERROR_OK)
1306         {
1307                 LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, *value);
1308         }
1309         else
1310         {
1311                 *value = 0x0;
1312                 LOG_DEBUG("address: 0x%8.8x failed", address);
1313         }
1314
1315         return retval;
1316 }
1317
1318 int target_write_u32(struct target_s *target, u32 address, u32 value)
1319 {
1320         int retval;
1321         u8 value_buf[4];
1322         if (!target_was_examined(target))
1323         {
1324                 LOG_ERROR("Target not examined yet");
1325                 return ERROR_FAIL;
1326         }
1327
1328         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1329
1330         target_buffer_set_u32(target, value_buf, value);
1331         if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1332         {
1333                 LOG_DEBUG("failed: %i", retval);
1334         }
1335
1336         return retval;
1337 }
1338
1339 int target_write_u16(struct target_s *target, u32 address, u16 value)
1340 {
1341         int retval;
1342         u8 value_buf[2];
1343         if (!target_was_examined(target))
1344         {
1345                 LOG_ERROR("Target not examined yet");
1346                 return ERROR_FAIL;
1347         }
1348
1349         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1350
1351         target_buffer_set_u16(target, value_buf, value);
1352         if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1353         {
1354                 LOG_DEBUG("failed: %i", retval);
1355         }
1356
1357         return retval;
1358 }
1359
1360 int target_write_u8(struct target_s *target, u32 address, u8 value)
1361 {
1362         int retval;
1363         if (!target_was_examined(target))
1364         {
1365                 LOG_ERROR("Target not examined yet");
1366                 return ERROR_FAIL;
1367         }
1368
1369         LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, value);
1370
1371         if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1372         {
1373                 LOG_DEBUG("failed: %i", retval);
1374         }
1375
1376         return retval;
1377 }
1378
1379 int target_register_user_commands(struct command_context_s *cmd_ctx)
1380 {
1381         int retval = ERROR_OK;
1382
1383
1384         /* script procedures */
1385         register_command(cmd_ctx, NULL, "profile", handle_profile_command, COMMAND_EXEC, "profiling samples the CPU PC");
1386         register_jim(cmd_ctx, "ocd_mem2array", jim_mem2array, "read memory and return as a TCL array for script processing <ARRAYNAME> <WIDTH=32/16/8> <ADDRESS> <COUNT>");
1387         register_jim(cmd_ctx, "ocd_array2mem", jim_array2mem, "convert a TCL array to memory locations and write the values  <ARRAYNAME> <WIDTH=32/16/8> <ADDRESS> <COUNT>");
1388
1389         register_command(cmd_ctx, NULL, "fast_load_image", handle_fast_load_image_command, COMMAND_ANY,
1390                         "same args as load_image, image stored in memory - mainly for profiling purposes");
1391
1392         register_command(cmd_ctx, NULL, "fast_load", handle_fast_load_command, COMMAND_ANY,
1393                         "loads active fast load image to current target - mainly for profiling purposes");
1394
1395
1396         register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "translate a virtual address into a physical address");
1397         register_command(cmd_ctx,  NULL, "reg", handle_reg_command, COMMAND_EXEC, "display or set a register");
1398         register_command(cmd_ctx,  NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state");
1399         register_command(cmd_ctx,  NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]");
1400         register_command(cmd_ctx,  NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target");
1401         register_command(cmd_ctx,  NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]");
1402         register_command(cmd_ctx,  NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]");
1403         register_command(cmd_ctx,  NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run|halt|init] - default is run");
1404         register_command(cmd_ctx,  NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset");
1405
1406         register_command(cmd_ctx,  NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words <addr> [count]");
1407         register_command(cmd_ctx,  NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words <addr> [count]");
1408         register_command(cmd_ctx,  NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes <addr> [count]");
1409
1410         register_command(cmd_ctx,  NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word <addr> <value> [count]");
1411         register_command(cmd_ctx,  NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word <addr> <value> [count]");
1412         register_command(cmd_ctx,  NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte <addr> <value> [count]");
1413
1414         register_command(cmd_ctx,  NULL, "bp", handle_bp_command, COMMAND_EXEC, "set breakpoint <address> <length> [hw]");
1415         register_command(cmd_ctx,  NULL, "rbp", handle_rbp_command, COMMAND_EXEC, "remove breakpoint <adress>");
1416         register_command(cmd_ctx,  NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint <address> <length> <r/w/a> [value] [mask]");
1417         register_command(cmd_ctx,  NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint <adress>");
1418
1419         register_command(cmd_ctx,  NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> ['bin'|'ihex'|'elf'|'s19'] [min_address] [max_length]");
1420         register_command(cmd_ctx,  NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>");
1421         register_command(cmd_ctx,  NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image <file> [offset] [type]");
1422         register_command(cmd_ctx,  NULL, "test_image", handle_test_image_command, COMMAND_EXEC, "test_image <file> [offset] [type]");
1423
1424         if((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
1425                 return retval;
1426         if((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
1427                 return retval;
1428
1429         return retval;
1430 }
1431
1432 static int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1433 {
1434         target_t *target = all_targets;
1435
1436         if (argc == 1)
1437         {
1438                 target = get_target(args[0]);
1439                 if (target == NULL) {
1440                         command_print(cmd_ctx,"Target: %s is unknown, try one of:\n", args[0] );
1441                         goto DumpTargets;
1442                 }
1443
1444                 cmd_ctx->current_target = target->target_number;
1445                 return ERROR_OK;
1446         }
1447 DumpTargets:
1448
1449         target = all_targets;
1450         command_print(cmd_ctx, "    CmdName    Type       Endian     AbsChainPos Name          State     ");
1451         command_print(cmd_ctx, "--  ---------- ---------- ---------- ----------- ------------- ----------");
1452         while (target)
1453         {
1454                 /* XX: abcdefghij abcdefghij abcdefghij abcdefghij */
1455                 command_print(cmd_ctx, "%2d: %-10s %-10s %-10s %10d %14s %s",
1456                                           target->target_number,
1457                                           target->cmd_name,
1458                                           target_get_name(target),
1459                                           Jim_Nvp_value2name_simple( nvp_target_endian, target->endianness )->name,
1460                                           target->tap->abs_chain_position,
1461                                           target->tap->dotted_name,
1462                                           Jim_Nvp_value2name_simple( nvp_target_state, target->state )->name );
1463                 target = target->next;
1464         }
1465
1466         return ERROR_OK;
1467 }
1468
1469 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1470
1471 static int powerDropout;
1472 static int srstAsserted;
1473
1474 static int runPowerRestore;
1475 static int runPowerDropout;
1476 static int runSrstAsserted;
1477 static int runSrstDeasserted;
1478
1479 static int sense_handler(void)
1480 {
1481         static int prevSrstAsserted = 0;
1482         static int prevPowerdropout = 0;
1483
1484         int retval;
1485         if ((retval=jtag_power_dropout(&powerDropout))!=ERROR_OK)
1486                 return retval;
1487
1488         int powerRestored;
1489         powerRestored = prevPowerdropout && !powerDropout;
1490         if (powerRestored)
1491         {
1492                 runPowerRestore = 1;
1493         }
1494
1495         long long current = timeval_ms();
1496         static long long lastPower = 0;
1497         int waitMore = lastPower + 2000 > current;
1498         if (powerDropout && !waitMore)
1499         {
1500                 runPowerDropout = 1;
1501                 lastPower = current;
1502         }
1503
1504         if ((retval=jtag_srst_asserted(&srstAsserted))!=ERROR_OK)
1505                 return retval;
1506
1507         int srstDeasserted;
1508         srstDeasserted = prevSrstAsserted && !srstAsserted;
1509
1510         static long long lastSrst = 0;
1511         waitMore = lastSrst + 2000 > current;
1512         if (srstDeasserted && !waitMore)
1513         {
1514                 runSrstDeasserted = 1;
1515                 lastSrst = current;
1516         }
1517
1518         if (!prevSrstAsserted && srstAsserted)
1519         {
1520                 runSrstAsserted = 1;
1521         }
1522
1523         prevSrstAsserted = srstAsserted;
1524         prevPowerdropout = powerDropout;
1525
1526         if (srstDeasserted || powerRestored)
1527         {
1528                 /* Other than logging the event we can't do anything here.
1529                  * Issuing a reset is a particularly bad idea as we might
1530                  * be inside a reset already.
1531                  */
1532         }
1533
1534         return ERROR_OK;
1535 }
1536
1537 /* process target state changes */
1538 int handle_target(void *priv)
1539 {
1540         int retval = ERROR_OK;
1541
1542         /* we do not want to recurse here... */
1543         static int recursive = 0;
1544         if (! recursive)
1545         {
1546                 recursive = 1;
1547                 sense_handler();
1548                 /* danger! running these procedures can trigger srst assertions and power dropouts.
1549                  * We need to avoid an infinite loop/recursion here and we do that by
1550                  * clearing the flags after running these events.
1551                  */
1552                 int did_something = 0;
1553                 if (runSrstAsserted)
1554                 {
1555                         Jim_Eval( interp, "srst_asserted");
1556                         did_something = 1;
1557                 }
1558                 if (runSrstDeasserted)
1559                 {
1560                         Jim_Eval( interp, "srst_deasserted");
1561                         did_something = 1;
1562                 }
1563                 if (runPowerDropout)
1564                 {
1565                         Jim_Eval( interp, "power_dropout");
1566                         did_something = 1;
1567                 }
1568                 if (runPowerRestore)
1569                 {
1570                         Jim_Eval( interp, "power_restore");
1571                         did_something = 1;
1572                 }
1573
1574                 if (did_something)
1575                 {
1576                         /* clear detect flags */
1577                         sense_handler();
1578                 }
1579
1580                 /* clear action flags */
1581
1582                 runSrstAsserted=0;
1583                 runSrstDeasserted=0;
1584                 runPowerRestore=0;
1585                 runPowerDropout=0;
1586
1587                 recursive = 0;
1588         }
1589
1590         target_t *target = all_targets;
1591
1592         while (target)
1593         {
1594
1595                 /* only poll target if we've got power and srst isn't asserted */
1596                 if (target_continous_poll&&!powerDropout&&!srstAsserted)
1597                 {
1598                         /* polling may fail silently until the target has been examined */
1599                         if((retval = target_poll(target)) != ERROR_OK)
1600                                 return retval;
1601                 }
1602
1603                 target = target->next;
1604         }
1605
1606         return retval;
1607 }
1608
1609 static int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1610 {
1611         target_t *target;
1612         reg_t *reg = NULL;
1613         int count = 0;
1614         char *value;
1615
1616         LOG_DEBUG("-");
1617
1618         target = get_current_target(cmd_ctx);
1619
1620         /* list all available registers for the current target */
1621         if (argc == 0)
1622         {
1623                 reg_cache_t *cache = target->reg_cache;
1624
1625                 count = 0;
1626                 while(cache)
1627                 {
1628                         int i;
1629                         for (i = 0; i < cache->num_regs; i++)
1630                         {
1631                                 value = buf_to_str(cache->reg_list[i].value, cache->reg_list[i].size, 16);
1632                                 command_print(cmd_ctx, "(%i) %s (/%i): 0x%s (dirty: %i, valid: %i)", count++, cache->reg_list[i].name, cache->reg_list[i].size, value, cache->reg_list[i].dirty, cache->reg_list[i].valid);
1633                                 free(value);
1634                         }
1635                         cache = cache->next;
1636                 }
1637
1638                 return ERROR_OK;
1639         }
1640
1641         /* access a single register by its ordinal number */
1642         if ((args[0][0] >= '0') && (args[0][0] <= '9'))
1643         {
1644                 int num = strtoul(args[0], NULL, 0);
1645                 reg_cache_t *cache = target->reg_cache;
1646
1647                 count = 0;
1648                 while(cache)
1649                 {
1650                         int i;
1651                         for (i = 0; i < cache->num_regs; i++)
1652                         {
1653                                 if (count++ == num)
1654                                 {
1655                                         reg = &cache->reg_list[i];
1656                                         break;
1657                                 }
1658                         }
1659                         if (reg)
1660                                 break;
1661                         cache = cache->next;
1662                 }
1663
1664                 if (!reg)
1665                 {
1666                         command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1667                         return ERROR_OK;
1668                 }
1669         } else /* access a single register by its name */
1670         {
1671                 reg = register_get_by_name(target->reg_cache, args[0], 1);
1672
1673                 if (!reg)
1674                 {
1675                         command_print(cmd_ctx, "register %s not found in current target", args[0]);
1676                         return ERROR_OK;
1677                 }
1678         }
1679
1680         /* display a register */
1681         if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
1682         {
1683                 if ((argc == 2) && (strcmp(args[1], "force") == 0))
1684                         reg->valid = 0;
1685
1686                 if (reg->valid == 0)
1687                 {
1688                         reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1689                         arch_type->get(reg);
1690                 }
1691                 value = buf_to_str(reg->value, reg->size, 16);
1692                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1693                 free(value);
1694                 return ERROR_OK;
1695         }
1696
1697         /* set register value */
1698         if (argc == 2)
1699         {
1700                 u8 *buf = malloc(CEIL(reg->size, 8));
1701                 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
1702
1703                 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1704                 arch_type->set(reg, buf);
1705
1706                 value = buf_to_str(reg->value, reg->size, 16);
1707                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1708                 free(value);
1709
1710                 free(buf);
1711
1712                 return ERROR_OK;
1713         }
1714
1715         command_print(cmd_ctx, "usage: reg <#|name> [value]");
1716
1717         return ERROR_OK;
1718 }
1719
1720 static int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1721 {
1722         int retval = ERROR_OK;
1723         target_t *target = get_current_target(cmd_ctx);
1724
1725         if (argc == 0)
1726         {
1727                 if((retval = target_poll(target)) != ERROR_OK)
1728                         return retval;
1729                 if((retval = target_arch_state(target)) != ERROR_OK)
1730                         return retval;
1731
1732         }
1733         else if (argc==1)
1734         {
1735                 if (strcmp(args[0], "on") == 0)
1736                 {
1737                         target_continous_poll = 1;
1738                 }
1739                 else if (strcmp(args[0], "off") == 0)
1740                 {
1741                         target_continous_poll = 0;
1742                 }
1743                 else
1744                 {
1745                         command_print(cmd_ctx, "arg is \"on\" or \"off\"");
1746                 }
1747         } else
1748         {
1749                 return ERROR_COMMAND_SYNTAX_ERROR;
1750         }
1751
1752         return retval;
1753 }
1754
1755 static int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1756 {
1757         int ms = 5000;
1758
1759         if (argc > 0)
1760         {
1761                 char *end;
1762
1763                 ms = strtoul(args[0], &end, 0) * 1000;
1764                 if (*end)
1765                 {
1766                         command_print(cmd_ctx, "usage: %s [seconds]", cmd);
1767                         return ERROR_OK;
1768                 }
1769         }
1770         target_t *target = get_current_target(cmd_ctx);
1771
1772         return target_wait_state(target, TARGET_HALTED, ms);
1773 }
1774
1775 /* wait for target state to change. The trick here is to have a low
1776  * latency for short waits and not to suck up all the CPU time
1777  * on longer waits.
1778  *
1779  * After 500ms, keep_alive() is invoked
1780  */
1781 int target_wait_state(target_t *target, enum target_state state, int ms)
1782 {
1783         int retval;
1784         long long then=0, cur;
1785         int once=1;
1786
1787         for (;;)
1788         {
1789                 if ((retval=target_poll(target))!=ERROR_OK)
1790                         return retval;
1791                 if (target->state == state)
1792                 {
1793                         break;
1794                 }
1795                 cur = timeval_ms();
1796                 if (once)
1797                 {
1798                         once=0;
1799                         then = timeval_ms();
1800                         LOG_DEBUG("waiting for target %s...",
1801                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
1802                 }
1803
1804                 if (cur-then>500)
1805                 {
1806                         keep_alive();
1807                 }
1808
1809                 if ((cur-then)>ms)
1810                 {
1811                         LOG_ERROR("timed out while waiting for target %s",
1812                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
1813                         return ERROR_FAIL;
1814                 }
1815         }
1816
1817         return ERROR_OK;
1818 }
1819
1820 static int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1821 {
1822         int retval;
1823         target_t *target = get_current_target(cmd_ctx);
1824
1825         LOG_DEBUG("-");
1826
1827         if ((retval = target_halt(target)) != ERROR_OK)
1828         {
1829                 return retval;
1830         }
1831
1832         if (argc == 1)
1833         {
1834                 int wait;
1835                 char *end;
1836
1837                 wait = strtoul(args[0], &end, 0);
1838                 if (!*end && !wait)
1839                         return ERROR_OK;
1840         }
1841
1842         return handle_wait_halt_command(cmd_ctx, cmd, args, argc);
1843 }
1844
1845 static int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1846 {
1847         target_t *target = get_current_target(cmd_ctx);
1848
1849         LOG_USER("requesting target halt and executing a soft reset");
1850
1851         target->type->soft_reset_halt(target);
1852
1853         return ERROR_OK;
1854 }
1855
1856 static int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1857 {
1858         const Jim_Nvp *n;
1859         enum target_reset_mode reset_mode = RESET_RUN;
1860
1861         if (argc >= 1)
1862         {
1863                 n = Jim_Nvp_name2value_simple( nvp_reset_modes, args[0] );
1864                 if( (n->name == NULL) || (n->value == RESET_UNKNOWN) ){
1865                         return ERROR_COMMAND_SYNTAX_ERROR;
1866                 }
1867                 reset_mode = n->value;
1868         }
1869
1870         /* reset *all* targets */
1871         return target_process_reset(cmd_ctx, reset_mode);
1872 }
1873
1874
1875 static int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1876 {
1877         int retval;
1878         target_t *target = get_current_target(cmd_ctx);
1879
1880         target_handle_event( target, TARGET_EVENT_OLD_pre_resume );
1881
1882         if (argc == 0)
1883                 retval = target_resume(target, 1, 0, 1, 0); /* current pc, addr = 0, handle breakpoints, not debugging */
1884         else if (argc == 1)
1885                 retval = target_resume(target, 0, strtoul(args[0], NULL, 0), 1, 0); /* addr = args[0], handle breakpoints, not debugging */
1886         else
1887         {
1888                 retval = ERROR_COMMAND_SYNTAX_ERROR;
1889         }
1890
1891         return retval;
1892 }
1893
1894 static int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1895 {
1896         target_t *target = get_current_target(cmd_ctx);
1897
1898         LOG_DEBUG("-");
1899
1900         if (argc == 0)
1901                 return target->type->step(target, 1, 0, 1); /* current pc, addr = 0, handle breakpoints */
1902
1903         if (argc == 1)
1904                 return target->type->step(target, 0, strtoul(args[0], NULL, 0), 1); /* addr = args[0], handle breakpoints */
1905
1906         return ERROR_OK;
1907 }
1908
1909 static void handle_md_output(struct command_context_s *cmd_ctx,
1910                 struct target_s *target, u32 address, unsigned size,
1911                 unsigned count, const u8 *buffer)
1912 {
1913         const unsigned line_bytecnt = 32;
1914         unsigned line_modulo = line_bytecnt / size;
1915
1916         char output[line_bytecnt * 4 + 1];
1917         unsigned output_len = 0;
1918
1919         const char *value_fmt;
1920         switch (size) {
1921         case 4: value_fmt = "%8.8x"; break;
1922         case 2: value_fmt = "%4.2x"; break;
1923         case 1: value_fmt = "%2.2x"; break;
1924         default:
1925                 LOG_ERROR("invalid memory read size: %u", size);
1926                 exit(-1);
1927         }
1928
1929         for (unsigned i = 0; i < count; i++)
1930         {
1931                 if (i % line_modulo == 0)
1932                 {
1933                         output_len += snprintf(output + output_len,
1934                                         sizeof(output) - output_len,
1935                                         "0x%8.8x: ", address + (i*size));
1936                 }
1937
1938                 u32 value;
1939                 const u8 *value_ptr = buffer + i * size;
1940                 switch (size) {
1941                 case 4: value = target_buffer_get_u32(target, value_ptr); break;
1942                 case 2: value = target_buffer_get_u16(target, value_ptr); break;
1943                 case 1: value = *value_ptr;
1944                 }
1945                 output_len += snprintf(output + output_len,
1946                                 sizeof(output) - output_len,
1947                                 value_fmt, value);
1948
1949                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
1950                 {
1951                         command_print(cmd_ctx, "%s", output);
1952                         output_len = 0;
1953                 }
1954         }
1955 }
1956
1957 static int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1958 {
1959         if (argc < 1)
1960                 return ERROR_COMMAND_SYNTAX_ERROR;
1961
1962         unsigned size = 0;
1963         switch (cmd[2]) {
1964         case 'w': size = 4; break;
1965         case 'h': size = 2; break;
1966         case 'b': size = 1; break;
1967         default: return ERROR_COMMAND_SYNTAX_ERROR;
1968         }
1969
1970         u32 address = strtoul(args[0], NULL, 0);
1971
1972         unsigned count = 1;
1973         if (argc == 2)
1974                 count = strtoul(args[1], NULL, 0);
1975
1976         u8 *buffer = calloc(count, size);
1977
1978         target_t *target = get_current_target(cmd_ctx);
1979         int retval = target_read_memory(target,
1980                                 address, size, count, buffer);
1981         if (ERROR_OK == retval)
1982                 handle_md_output(cmd_ctx, target, address, size, count, buffer);
1983
1984         free(buffer);
1985
1986         return retval;
1987 }
1988
1989 static int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1990 {
1991         u32 address = 0;
1992         u32 value = 0;
1993         int count = 1;
1994         int i;
1995         int wordsize;
1996         target_t *target = get_current_target(cmd_ctx);
1997         u8 value_buf[4];
1998
1999          if ((argc < 2) || (argc > 3))
2000                 return ERROR_COMMAND_SYNTAX_ERROR;
2001
2002         address = strtoul(args[0], NULL, 0);
2003         value = strtoul(args[1], NULL, 0);
2004         if (argc == 3)
2005                 count = strtoul(args[2], NULL, 0);
2006
2007         switch (cmd[2])
2008         {
2009                 case 'w':
2010                         wordsize = 4;
2011                         target_buffer_set_u32(target, value_buf, value);
2012                         break;
2013                 case 'h':
2014                         wordsize = 2;
2015                         target_buffer_set_u16(target, value_buf, value);
2016                         break;
2017                 case 'b':
2018                         wordsize = 1;
2019                         value_buf[0] = value;
2020                         break;
2021                 default:
2022                         return ERROR_COMMAND_SYNTAX_ERROR;
2023         }
2024         for (i=0; i<count; i++)
2025         {
2026                 int retval = target_write_memory(target,
2027                                 address + i * wordsize, wordsize, 1, value_buf);
2028                 if (ERROR_OK != retval)
2029                         return retval;
2030                 keep_alive();
2031         }
2032
2033         return ERROR_OK;
2034
2035 }
2036
2037 static int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2038 {
2039         u8 *buffer;
2040         u32 buf_cnt;
2041         u32 image_size;
2042         u32 min_address=0;
2043         u32 max_address=0xffffffff;
2044         int i;
2045         int retval, retvaltemp;
2046
2047         image_t image;
2048
2049         duration_t duration;
2050         char *duration_text;
2051
2052         target_t *target = get_current_target(cmd_ctx);
2053
2054         if ((argc < 1)||(argc > 5))
2055         {
2056                 return ERROR_COMMAND_SYNTAX_ERROR;
2057         }
2058
2059         /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
2060         if (argc >= 2)
2061         {
2062                 image.base_address_set = 1;
2063                 image.base_address = strtoul(args[1], NULL, 0);
2064         }
2065         else
2066         {
2067                 image.base_address_set = 0;
2068         }
2069
2070
2071         image.start_address_set = 0;
2072
2073         if (argc>=4)
2074         {
2075                 min_address=strtoul(args[3], NULL, 0);
2076         }
2077         if (argc>=5)
2078         {
2079                 max_address=strtoul(args[4], NULL, 0)+min_address;
2080         }
2081
2082         if (min_address>max_address)
2083         {
2084                 return ERROR_COMMAND_SYNTAX_ERROR;
2085         }
2086
2087         duration_start_measure(&duration);
2088
2089         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
2090         {
2091                 return ERROR_OK;
2092         }
2093
2094         image_size = 0x0;
2095         retval = ERROR_OK;
2096         for (i = 0; i < image.num_sections; i++)
2097         {
2098                 buffer = malloc(image.sections[i].size);
2099                 if (buffer == NULL)
2100                 {
2101                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2102                         break;
2103                 }
2104
2105                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2106                 {
2107                         free(buffer);
2108                         break;
2109                 }
2110
2111                 u32 offset=0;
2112                 u32 length=buf_cnt;
2113
2114                 /* DANGER!!! beware of unsigned comparision here!!! */
2115
2116                 if ((image.sections[i].base_address+buf_cnt>=min_address)&&
2117                                 (image.sections[i].base_address<max_address))
2118                 {
2119                         if (image.sections[i].base_address<min_address)
2120                         {
2121                                 /* clip addresses below */
2122                                 offset+=min_address-image.sections[i].base_address;
2123                                 length-=offset;
2124                         }
2125
2126                         if (image.sections[i].base_address+buf_cnt>max_address)
2127                         {
2128                                 length-=(image.sections[i].base_address+buf_cnt)-max_address;
2129                         }
2130
2131                         if ((retval = target_write_buffer(target, image.sections[i].base_address+offset, length, buffer+offset)) != ERROR_OK)
2132                         {
2133                                 free(buffer);
2134                                 break;
2135                         }
2136                         image_size += length;
2137                         command_print(cmd_ctx, "%u byte written at address 0x%8.8x", length, image.sections[i].base_address+offset);
2138                 }
2139
2140                 free(buffer);
2141         }
2142
2143         if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2144         {
2145                 image_close(&image);
2146                 return retvaltemp;
2147         }
2148
2149         if (retval==ERROR_OK)
2150         {
2151                 command_print(cmd_ctx, "downloaded %u byte in %s", image_size, duration_text);
2152         }
2153         free(duration_text);
2154
2155         image_close(&image);
2156
2157         return retval;
2158
2159 }
2160
2161 static int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2162 {
2163         fileio_t fileio;
2164
2165         u32 address;
2166         u32 size;
2167         u8 buffer[560];
2168         int retval=ERROR_OK, retvaltemp;
2169
2170         duration_t duration;
2171         char *duration_text;
2172
2173         target_t *target = get_current_target(cmd_ctx);
2174
2175         if (argc != 3)
2176         {
2177                 command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
2178                 return ERROR_OK;
2179         }
2180
2181         address = strtoul(args[1], NULL, 0);
2182         size = strtoul(args[2], NULL, 0);
2183
2184         if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2185         {
2186                 return ERROR_OK;
2187         }
2188
2189         duration_start_measure(&duration);
2190
2191         while (size > 0)
2192         {
2193                 u32 size_written;
2194                 u32 this_run_size = (size > 560) ? 560 : size;
2195
2196                 retval = target_read_buffer(target, address, this_run_size, buffer);
2197                 if (retval != ERROR_OK)
2198                 {
2199                         break;
2200                 }
2201
2202                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2203                 if (retval != ERROR_OK)
2204                 {
2205                         break;
2206                 }
2207
2208                 size -= this_run_size;
2209                 address += this_run_size;
2210         }
2211
2212         if((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2213                 return retvaltemp;
2214
2215         if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2216                 return retvaltemp;
2217
2218         if (retval==ERROR_OK)
2219         {
2220                 command_print(cmd_ctx, "dumped %lld byte in %s",
2221                                 fileio.size, duration_text);
2222                 free(duration_text);
2223         }
2224
2225         return retval;
2226 }
2227
2228 static int handle_verify_image_command_internal(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc, int verify)
2229 {
2230         u8 *buffer;
2231         u32 buf_cnt;
2232         u32 image_size;
2233         int i;
2234         int retval, retvaltemp;
2235         u32 checksum = 0;
2236         u32 mem_checksum = 0;
2237
2238         image_t image;
2239
2240         duration_t duration;
2241         char *duration_text;
2242
2243         target_t *target = get_current_target(cmd_ctx);
2244
2245         if (argc < 1)
2246         {
2247                 return ERROR_COMMAND_SYNTAX_ERROR;
2248         }
2249
2250         if (!target)
2251         {
2252                 LOG_ERROR("no target selected");
2253                 return ERROR_FAIL;
2254         }
2255
2256         duration_start_measure(&duration);
2257
2258         if (argc >= 2)
2259         {
2260                 image.base_address_set = 1;
2261                 image.base_address = strtoul(args[1], NULL, 0);
2262         }
2263         else
2264         {
2265                 image.base_address_set = 0;
2266                 image.base_address = 0x0;
2267         }
2268
2269         image.start_address_set = 0;
2270
2271         if ((retval=image_open(&image, args[0], (argc == 3) ? args[2] : NULL)) != ERROR_OK)
2272         {
2273                 return retval;
2274         }
2275
2276         image_size = 0x0;
2277         retval=ERROR_OK;
2278         for (i = 0; i < image.num_sections; i++)
2279         {
2280                 buffer = malloc(image.sections[i].size);
2281                 if (buffer == NULL)
2282                 {
2283                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2284                         break;
2285                 }
2286                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2287                 {
2288                         free(buffer);
2289                         break;
2290                 }
2291
2292                 if (verify)
2293                 {
2294                         /* calculate checksum of image */
2295                         image_calculate_checksum( buffer, buf_cnt, &checksum );
2296
2297                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2298                         if( retval != ERROR_OK )
2299                         {
2300                                 free(buffer);
2301                                 break;
2302                         }
2303
2304                         if( checksum != mem_checksum )
2305                         {
2306                                 /* failed crc checksum, fall back to a binary compare */
2307                                 u8 *data;
2308
2309                                 command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
2310
2311                                 data = (u8*)malloc(buf_cnt);
2312
2313                                 /* Can we use 32bit word accesses? */
2314                                 int size = 1;
2315                                 int count = buf_cnt;
2316                                 if ((count % 4) == 0)
2317                                 {
2318                                         size *= 4;
2319                                         count /= 4;
2320                                 }
2321                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2322                                 if (retval == ERROR_OK)
2323                                 {
2324                                         u32 t;
2325                                         for (t = 0; t < buf_cnt; t++)
2326                                         {
2327                                                 if (data[t] != buffer[t])
2328                                                 {
2329                                                         command_print(cmd_ctx, "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n", t + image.sections[i].base_address, data[t], buffer[t]);
2330                                                         free(data);
2331                                                         free(buffer);
2332                                                         retval=ERROR_FAIL;
2333                                                         goto done;
2334                                                 }
2335                                                 if ((t%16384)==0)
2336                                                 {
2337                                                         keep_alive();
2338                                                 }
2339                                         }
2340                                 }
2341
2342                                 free(data);
2343                         }
2344                 } else
2345                 {
2346                         command_print(cmd_ctx, "address 0x%08x length 0x%08x", image.sections[i].base_address, buf_cnt);
2347                 }
2348
2349                 free(buffer);
2350                 image_size += buf_cnt;
2351         }
2352 done:
2353
2354         if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2355         {
2356                 image_close(&image);
2357                 return retvaltemp;
2358         }
2359
2360         if (retval==ERROR_OK)
2361         {
2362                 command_print(cmd_ctx, "verified %u bytes in %s", image_size, duration_text);
2363         }
2364         free(duration_text);
2365
2366         image_close(&image);
2367
2368         return retval;
2369 }
2370
2371 static int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2372 {
2373         return handle_verify_image_command_internal(cmd_ctx, cmd, args, argc, 1);
2374 }
2375
2376 static int handle_test_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2377 {
2378         return handle_verify_image_command_internal(cmd_ctx, cmd, args, argc, 0);
2379 }
2380
2381 static int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2382 {
2383         int retval;
2384         target_t *target = get_current_target(cmd_ctx);
2385
2386         if (argc == 0)
2387         {
2388                 breakpoint_t *breakpoint = target->breakpoints;
2389
2390                 while (breakpoint)
2391                 {
2392                         if (breakpoint->type == BKPT_SOFT)
2393                         {
2394                                 char* buf = buf_to_str(breakpoint->orig_instr, breakpoint->length, 16);
2395                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i, 0x%s", breakpoint->address, breakpoint->length, breakpoint->set, buf);
2396                                 free(buf);
2397                         }
2398                         else
2399                         {
2400                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i", breakpoint->address, breakpoint->length, breakpoint->set);
2401                         }
2402                         breakpoint = breakpoint->next;
2403                 }
2404         }
2405         else if (argc >= 2)
2406         {
2407                 int hw = BKPT_SOFT;
2408                 u32 length = 0;
2409
2410                 length = strtoul(args[1], NULL, 0);
2411
2412                 if (argc >= 3)
2413                         if (strcmp(args[2], "hw") == 0)
2414                                 hw = BKPT_HARD;
2415
2416                 if ((retval = breakpoint_add(target, strtoul(args[0], NULL, 0), length, hw)) != ERROR_OK)
2417                 {
2418                         LOG_ERROR("Failure setting breakpoints");
2419                 }
2420                 else
2421                 {
2422                         command_print(cmd_ctx, "breakpoint added at address 0x%8.8lx",
2423                                         strtoul(args[0], NULL, 0));
2424                 }
2425         }
2426         else
2427         {
2428                 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
2429         }
2430
2431         return ERROR_OK;
2432 }
2433
2434 static int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2435 {
2436         target_t *target = get_current_target(cmd_ctx);
2437
2438         if (argc > 0)
2439                 breakpoint_remove(target, strtoul(args[0], NULL, 0));
2440
2441         return ERROR_OK;
2442 }
2443
2444 static int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2445 {
2446         target_t *target = get_current_target(cmd_ctx);
2447         int retval;
2448
2449         if (argc == 0)
2450         {
2451                 watchpoint_t *watchpoint = target->watchpoints;
2452
2453                 while (watchpoint)
2454                 {
2455                         command_print(cmd_ctx, "address: 0x%8.8x, len: 0x%8.8x, r/w/a: %i, value: 0x%8.8x, mask: 0x%8.8x", watchpoint->address, watchpoint->length, watchpoint->rw, watchpoint->value, watchpoint->mask);
2456                         watchpoint = watchpoint->next;
2457                 }
2458         }
2459         else if (argc >= 2)
2460         {
2461                 enum watchpoint_rw type = WPT_ACCESS;
2462                 u32 data_value = 0x0;
2463                 u32 data_mask = 0xffffffff;
2464
2465                 if (argc >= 3)
2466                 {
2467                         switch(args[2][0])
2468                         {
2469                                 case 'r':
2470                                         type = WPT_READ;
2471                                         break;
2472                                 case 'w':
2473                                         type = WPT_WRITE;
2474                                         break;
2475                                 case 'a':
2476                                         type = WPT_ACCESS;
2477                                         break;
2478                                 default:
2479                                         command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2480                                         return ERROR_OK;
2481                         }
2482                 }
2483                 if (argc >= 4)
2484                 {
2485                         data_value = strtoul(args[3], NULL, 0);
2486                 }
2487                 if (argc >= 5)
2488                 {
2489                         data_mask = strtoul(args[4], NULL, 0);
2490                 }
2491
2492                 if ((retval = watchpoint_add(target, strtoul(args[0], NULL, 0),
2493                                 strtoul(args[1], NULL, 0), type, data_value, data_mask)) != ERROR_OK)
2494                 {
2495                         LOG_ERROR("Failure setting breakpoints");
2496                 }
2497         }
2498         else
2499         {
2500                 command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2501         }
2502
2503         return ERROR_OK;
2504 }
2505
2506 static int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2507 {
2508         target_t *target = get_current_target(cmd_ctx);
2509
2510         if (argc > 0)
2511                 watchpoint_remove(target, strtoul(args[0], NULL, 0));
2512
2513         return ERROR_OK;
2514 }
2515
2516 static int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc)
2517 {
2518         int retval;
2519         target_t *target = get_current_target(cmd_ctx);
2520         u32 va;
2521         u32 pa;
2522
2523         if (argc != 1)
2524         {
2525                 return ERROR_COMMAND_SYNTAX_ERROR;
2526         }
2527         va = strtoul(args[0], NULL, 0);
2528
2529         retval = target->type->virt2phys(target, va, &pa);
2530         if (retval == ERROR_OK)
2531         {
2532                 command_print(cmd_ctx, "Physical address 0x%08x", pa);
2533         }
2534         else
2535         {
2536                 /* lower levels will have logged a detailed error which is
2537                  * forwarded to telnet/GDB session.
2538                  */
2539         }
2540         return retval;
2541 }
2542
2543 static void writeData(FILE *f, const void *data, size_t len)
2544 {
2545         size_t written = fwrite(data, len, 1, f);
2546         if (written != len)
2547                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
2548 }
2549
2550 static void writeLong(FILE *f, int l)
2551 {
2552         int i;
2553         for (i=0; i<4; i++)
2554         {
2555                 char c=(l>>(i*8))&0xff;
2556                 writeData(f, &c, 1);
2557         }
2558
2559 }
2560
2561 static void writeString(FILE *f, char *s)
2562 {
2563         writeData(f, s, strlen(s));
2564 }
2565
2566 /* Dump a gmon.out histogram file. */
2567 static void writeGmon(u32 *samples, u32 sampleNum, char *filename)
2568 {
2569         u32 i;
2570         FILE *f=fopen(filename, "w");
2571         if (f==NULL)
2572                 return;
2573         writeString(f, "gmon");
2574         writeLong(f, 0x00000001); /* Version */
2575         writeLong(f, 0); /* padding */
2576         writeLong(f, 0); /* padding */
2577         writeLong(f, 0); /* padding */
2578
2579         u8 zero = 0;  /* GMON_TAG_TIME_HIST */
2580         writeData(f, &zero, 1);
2581
2582         /* figure out bucket size */
2583         u32 min=samples[0];
2584         u32 max=samples[0];
2585         for (i=0; i<sampleNum; i++)
2586         {
2587                 if (min>samples[i])
2588                 {
2589                         min=samples[i];
2590                 }
2591                 if (max<samples[i])
2592                 {
2593                         max=samples[i];
2594                 }
2595         }
2596
2597         int addressSpace=(max-min+1);
2598
2599         static const u32 maxBuckets = 256 * 1024; /* maximum buckets. */
2600         u32 length = addressSpace;
2601         if (length > maxBuckets)
2602         {
2603                 length=maxBuckets;
2604         }
2605         int *buckets=malloc(sizeof(int)*length);
2606         if (buckets==NULL)
2607         {
2608                 fclose(f);
2609                 return;
2610         }
2611         memset(buckets, 0, sizeof(int)*length);
2612         for (i=0; i<sampleNum;i++)
2613         {
2614                 u32 address=samples[i];
2615                 long long a=address-min;
2616                 long long b=length-1;
2617                 long long c=addressSpace-1;
2618                 int index=(a*b)/c; /* danger!!!! int32 overflows */
2619                 buckets[index]++;
2620         }
2621
2622         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
2623         writeLong(f, min);                      /* low_pc */
2624         writeLong(f, max);                      /* high_pc */
2625         writeLong(f, length);           /* # of samples */
2626         writeLong(f, 64000000);         /* 64MHz */
2627         writeString(f, "seconds");
2628         for (i=0; i<(15-strlen("seconds")); i++)
2629                 writeData(f, &zero, 1);
2630         writeString(f, "s");
2631
2632         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
2633
2634         char *data=malloc(2*length);
2635         if (data!=NULL)
2636         {
2637                 for (i=0; i<length;i++)
2638                 {
2639                         int val;
2640                         val=buckets[i];
2641                         if (val>65535)
2642                         {
2643                                 val=65535;
2644                         }
2645                         data[i*2]=val&0xff;
2646                         data[i*2+1]=(val>>8)&0xff;
2647                 }
2648                 free(buckets);
2649                 writeData(f, data, length * 2);
2650                 free(data);
2651         } else
2652         {
2653                 free(buckets);
2654         }
2655
2656         fclose(f);
2657 }
2658
2659 /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
2660 static int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2661 {
2662         target_t *target = get_current_target(cmd_ctx);
2663         struct timeval timeout, now;
2664
2665         gettimeofday(&timeout, NULL);
2666         if (argc!=2)
2667         {
2668                 return ERROR_COMMAND_SYNTAX_ERROR;
2669         }
2670         char *end;
2671         timeval_add_time(&timeout, strtoul(args[0], &end, 0), 0);
2672         if (*end)
2673         {
2674                 return ERROR_OK;
2675         }
2676
2677         command_print(cmd_ctx, "Starting profiling. Halting and resuming the target as often as we can...");
2678
2679         static const int maxSample=10000;
2680         u32 *samples=malloc(sizeof(u32)*maxSample);
2681         if (samples==NULL)
2682                 return ERROR_OK;
2683
2684         int numSamples=0;
2685         int retval=ERROR_OK;
2686         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2687         reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1);
2688
2689         for (;;)
2690         {
2691                 target_poll(target);
2692                 if (target->state == TARGET_HALTED)
2693                 {
2694                         u32 t=*((u32 *)reg->value);
2695                         samples[numSamples++]=t;
2696                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2697                         target_poll(target);
2698                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2699                 } else if (target->state == TARGET_RUNNING)
2700                 {
2701                         /* We want to quickly sample the PC. */
2702                         if((retval = target_halt(target)) != ERROR_OK)
2703                         {
2704                                 free(samples);
2705                                 return retval;
2706                         }
2707                 } else
2708                 {
2709                         command_print(cmd_ctx, "Target not halted or running");
2710                         retval=ERROR_OK;
2711                         break;
2712                 }
2713                 if (retval!=ERROR_OK)
2714                 {
2715                         break;
2716                 }
2717
2718                 gettimeofday(&now, NULL);
2719                 if ((numSamples>=maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
2720                 {
2721                         command_print(cmd_ctx, "Profiling completed. %d samples.", numSamples);
2722                         if((retval = target_poll(target)) != ERROR_OK)
2723                         {
2724                                 free(samples);
2725                                 return retval;
2726                         }
2727                         if (target->state == TARGET_HALTED)
2728                         {
2729                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2730                         }
2731                         if((retval = target_poll(target)) != ERROR_OK)
2732                         {
2733                                 free(samples);
2734                                 return retval;
2735                         }
2736                         writeGmon(samples, numSamples, args[1]);
2737                         command_print(cmd_ctx, "Wrote %s", args[1]);
2738                         break;
2739                 }
2740         }
2741         free(samples);
2742
2743         return ERROR_OK;
2744 }
2745
2746 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 val)
2747 {
2748         char *namebuf;
2749         Jim_Obj *nameObjPtr, *valObjPtr;
2750         int result;
2751
2752         namebuf = alloc_printf("%s(%d)", varname, idx);
2753         if (!namebuf)
2754                 return JIM_ERR;
2755
2756         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
2757         valObjPtr = Jim_NewIntObj(interp, val);
2758         if (!nameObjPtr || !valObjPtr)
2759         {
2760                 free(namebuf);
2761                 return JIM_ERR;
2762         }
2763
2764         Jim_IncrRefCount(nameObjPtr);
2765         Jim_IncrRefCount(valObjPtr);
2766         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
2767         Jim_DecrRefCount(interp, nameObjPtr);
2768         Jim_DecrRefCount(interp, valObjPtr);
2769         free(namebuf);
2770         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
2771         return result;
2772 }
2773
2774 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
2775 {
2776         command_context_t *context;
2777         target_t *target;
2778
2779         context = Jim_GetAssocData(interp, "context");
2780         if (context == NULL)
2781         {
2782                 LOG_ERROR("mem2array: no command context");
2783                 return JIM_ERR;
2784         }
2785         target = get_current_target(context);
2786         if (target == NULL)
2787         {
2788                 LOG_ERROR("mem2array: no current target");
2789                 return JIM_ERR;
2790         }
2791
2792         return  target_mem2array(interp, target, argc-1, argv+1);
2793 }
2794
2795 static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv)
2796 {
2797         long l;
2798         u32 width;
2799         int len;
2800         u32 addr;
2801         u32 count;
2802         u32 v;
2803         const char *varname;
2804         u8 buffer[4096];
2805         int  n, e, retval;
2806         u32 i;
2807
2808         /* argv[1] = name of array to receive the data
2809          * argv[2] = desired width
2810          * argv[3] = memory address
2811          * argv[4] = count of times to read
2812          */
2813         if (argc != 4) {
2814                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
2815                 return JIM_ERR;
2816         }
2817         varname = Jim_GetString(argv[0], &len);
2818         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
2819
2820         e = Jim_GetLong(interp, argv[1], &l);
2821         width = l;
2822         if (e != JIM_OK) {
2823                 return e;
2824         }
2825
2826         e = Jim_GetLong(interp, argv[2], &l);
2827         addr = l;
2828         if (e != JIM_OK) {
2829                 return e;
2830         }
2831         e = Jim_GetLong(interp, argv[3], &l);
2832         len = l;
2833         if (e != JIM_OK) {
2834                 return e;
2835         }
2836         switch (width) {
2837                 case 8:
2838                         width = 1;
2839                         break;
2840                 case 16:
2841                         width = 2;
2842                         break;
2843                 case 32:
2844                         width = 4;
2845                         break;
2846                 default:
2847                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2848                         Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
2849                         return JIM_ERR;
2850         }
2851         if (len == 0) {
2852                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2853                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
2854                 return JIM_ERR;
2855         }
2856         if ((addr + (len * width)) < addr) {
2857                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2858                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
2859                 return JIM_ERR;
2860         }
2861         /* absurd transfer size? */
2862         if (len > 65536) {
2863                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2864                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
2865                 return JIM_ERR;
2866         }
2867
2868         if ((width == 1) ||
2869                 ((width == 2) && ((addr & 1) == 0)) ||
2870                 ((width == 4) && ((addr & 3) == 0))) {
2871                 /* all is well */
2872         } else {
2873                 char buf[100];
2874                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2875                 sprintf(buf, "mem2array address: 0x%08x is not aligned for %d byte reads", addr, width);
2876                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
2877                 return JIM_ERR;
2878         }
2879
2880         /* Transfer loop */
2881
2882         /* index counter */
2883         n = 0;
2884         /* assume ok */
2885         e = JIM_OK;
2886         while (len) {
2887                 /* Slurp... in buffer size chunks */
2888
2889                 count = len; /* in objects.. */
2890                 if (count > (sizeof(buffer)/width)) {
2891                         count = (sizeof(buffer)/width);
2892                 }
2893
2894                 retval = target_read_memory( target, addr, width, count, buffer );
2895                 if (retval != ERROR_OK) {
2896                         /* BOO !*/
2897                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
2898                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2899                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
2900                         e = JIM_ERR;
2901                         len = 0;
2902                 } else {
2903                         v = 0; /* shut up gcc */
2904                         for (i = 0 ;i < count ;i++, n++) {
2905                                 switch (width) {
2906                                         case 4:
2907                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
2908                                                 break;
2909                                         case 2:
2910                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
2911                                                 break;
2912                                         case 1:
2913                                                 v = buffer[i] & 0x0ff;
2914                                                 break;
2915                                 }
2916                                 new_int_array_element(interp, varname, n, v);
2917                         }
2918                         len -= count;
2919                 }
2920         }
2921
2922         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2923
2924         return JIM_OK;
2925 }
2926
2927 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 *val)
2928 {
2929         char *namebuf;
2930         Jim_Obj *nameObjPtr, *valObjPtr;
2931         int result;
2932         long l;
2933
2934         namebuf = alloc_printf("%s(%d)", varname, idx);
2935         if (!namebuf)
2936                 return JIM_ERR;
2937
2938         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
2939         if (!nameObjPtr)
2940         {
2941                 free(namebuf);
2942                 return JIM_ERR;
2943         }
2944
2945         Jim_IncrRefCount(nameObjPtr);
2946         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
2947         Jim_DecrRefCount(interp, nameObjPtr);
2948         free(namebuf);
2949         if (valObjPtr == NULL)
2950                 return JIM_ERR;
2951
2952         result = Jim_GetLong(interp, valObjPtr, &l);
2953         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
2954         *val = l;
2955         return result;
2956 }
2957
2958 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
2959 {
2960         command_context_t *context;
2961         target_t *target;
2962
2963         context = Jim_GetAssocData(interp, "context");
2964         if (context == NULL){
2965                 LOG_ERROR("array2mem: no command context");
2966                 return JIM_ERR;
2967         }
2968         target = get_current_target(context);
2969         if (target == NULL){
2970                 LOG_ERROR("array2mem: no current target");
2971                 return JIM_ERR;
2972         }
2973
2974         return target_array2mem( interp,target, argc-1, argv+1 );
2975 }
2976
2977 static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv)
2978 {
2979         long l;
2980         u32 width;
2981         int len;
2982         u32 addr;
2983         u32 count;
2984         u32 v;
2985         const char *varname;
2986         u8 buffer[4096];
2987         int  n, e, retval;
2988         u32 i;
2989
2990         /* argv[1] = name of array to get the data
2991          * argv[2] = desired width
2992          * argv[3] = memory address
2993          * argv[4] = count to write
2994          */
2995         if (argc != 4) {
2996                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
2997                 return JIM_ERR;
2998         }
2999         varname = Jim_GetString(argv[0], &len);
3000         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3001
3002         e = Jim_GetLong(interp, argv[1], &l);
3003         width = l;
3004         if (e != JIM_OK) {
3005                 return e;
3006         }
3007
3008         e = Jim_GetLong(interp, argv[2], &l);
3009         addr = l;
3010         if (e != JIM_OK) {
3011                 return e;
3012         }
3013         e = Jim_GetLong(interp, argv[3], &l);
3014         len = l;
3015         if (e != JIM_OK) {
3016                 return e;
3017         }
3018         switch (width) {
3019                 case 8:
3020                         width = 1;
3021                         break;
3022                 case 16:
3023                         width = 2;
3024                         break;
3025                 case 32:
3026                         width = 4;
3027                         break;
3028                 default:
3029                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3030                         Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
3031                         return JIM_ERR;
3032         }
3033         if (len == 0) {
3034                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3035                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
3036                 return JIM_ERR;
3037         }
3038         if ((addr + (len * width)) < addr) {
3039                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3040                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
3041                 return JIM_ERR;
3042         }
3043         /* absurd transfer size? */
3044         if (len > 65536) {
3045                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3046                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
3047                 return JIM_ERR;
3048         }
3049
3050         if ((width == 1) ||
3051                 ((width == 2) && ((addr & 1) == 0)) ||
3052                 ((width == 4) && ((addr & 3) == 0))) {
3053                 /* all is well */
3054         } else {
3055                 char buf[100];
3056                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3057                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads", addr, width);
3058                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3059                 return JIM_ERR;
3060         }
3061
3062         /* Transfer loop */
3063
3064         /* index counter */
3065         n = 0;
3066         /* assume ok */
3067         e = JIM_OK;
3068         while (len) {
3069                 /* Slurp... in buffer size chunks */
3070
3071                 count = len; /* in objects.. */
3072                 if (count > (sizeof(buffer)/width)) {
3073                         count = (sizeof(buffer)/width);
3074                 }
3075
3076                 v = 0; /* shut up gcc */
3077                 for (i = 0 ;i < count ;i++, n++) {
3078                         get_int_array_element(interp, varname, n, &v);
3079                         switch (width) {
3080                         case 4:
3081                                 target_buffer_set_u32(target, &buffer[i*width], v);
3082                                 break;
3083                         case 2:
3084                                 target_buffer_set_u16(target, &buffer[i*width], v);
3085                                 break;
3086                         case 1:
3087                                 buffer[i] = v & 0x0ff;
3088                                 break;
3089                         }
3090                 }
3091                 len -= count;
3092
3093                 retval = target_write_memory(target, addr, width, count, buffer);
3094                 if (retval != ERROR_OK) {
3095                         /* BOO !*/
3096                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
3097                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3098                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3099                         e = JIM_ERR;
3100                         len = 0;
3101                 }
3102         }
3103
3104         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3105
3106         return JIM_OK;
3107 }
3108
3109 void target_all_handle_event( enum target_event e )
3110 {
3111         target_t *target;
3112
3113         LOG_DEBUG( "**all*targets: event: %d, %s",
3114                         e,
3115                         Jim_Nvp_value2name_simple( nvp_target_event, e )->name );
3116
3117         target = all_targets;
3118         while (target){
3119                 target_handle_event( target, e );
3120                 target = target->next;
3121         }
3122 }
3123
3124 void target_handle_event( target_t *target, enum target_event e )
3125 {
3126         target_event_action_t *teap;
3127         int done;
3128
3129         teap = target->event_action;
3130
3131         done = 0;
3132         while( teap ){
3133                 if( teap->event == e ){
3134                         done = 1;
3135                         LOG_DEBUG( "target: (%d) %s (%s) event: %d (%s) action: %s\n",
3136                                            target->target_number,
3137                                            target->cmd_name,
3138                                            target_get_name(target),
3139                                            e,
3140                                            Jim_Nvp_value2name_simple( nvp_target_event, e )->name,
3141                                            Jim_GetString( teap->body, NULL ) );
3142                         if (Jim_EvalObj( interp, teap->body )!=JIM_OK)
3143                         {
3144                                 Jim_PrintErrorMessage(interp);
3145                         }
3146                 }
3147                 teap = teap->next;
3148         }
3149         if( !done ){
3150                 LOG_DEBUG( "event: %d %s - no action",
3151                                    e,
3152                                    Jim_Nvp_value2name_simple( nvp_target_event, e )->name );
3153         }
3154 }
3155
3156 enum target_cfg_param {
3157         TCFG_TYPE,
3158         TCFG_EVENT,
3159         TCFG_WORK_AREA_VIRT,
3160         TCFG_WORK_AREA_PHYS,
3161         TCFG_WORK_AREA_SIZE,
3162         TCFG_WORK_AREA_BACKUP,
3163         TCFG_ENDIAN,
3164         TCFG_VARIANT,
3165         TCFG_CHAIN_POSITION,
3166 };
3167
3168 static Jim_Nvp nvp_config_opts[] = {
3169         { .name = "-type",             .value = TCFG_TYPE },
3170         { .name = "-event",            .value = TCFG_EVENT },
3171         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
3172         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
3173         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
3174         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3175         { .name = "-endian" ,          .value = TCFG_ENDIAN },
3176         { .name = "-variant",          .value = TCFG_VARIANT },
3177         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
3178
3179         { .name = NULL, .value = -1 }
3180 };
3181
3182 static int target_configure( Jim_GetOptInfo *goi, target_t *target )
3183 {
3184         Jim_Nvp *n;
3185         Jim_Obj *o;
3186         jim_wide w;
3187         char *cp;
3188         int e;
3189
3190         /* parse config or cget options ... */
3191         while( goi->argc > 0 ){
3192                 Jim_SetEmptyResult( goi->interp );
3193                 /* Jim_GetOpt_Debug( goi ); */
3194
3195                 if( target->type->target_jim_configure ){
3196                         /* target defines a configure function */
3197                         /* target gets first dibs on parameters */
3198                         e = (*(target->type->target_jim_configure))( target, goi );
3199                         if( e == JIM_OK ){
3200                                 /* more? */
3201                                 continue;
3202                         }
3203                         if( e == JIM_ERR ){
3204                                 /* An error */
3205                                 return e;
3206                         }
3207                         /* otherwise we 'continue' below */
3208                 }
3209                 e = Jim_GetOpt_Nvp( goi, nvp_config_opts, &n );
3210                 if( e != JIM_OK ){
3211                         Jim_GetOpt_NvpUnknown( goi, nvp_config_opts, 0 );
3212                         return e;
3213                 }
3214                 switch( n->value ){
3215                 case TCFG_TYPE:
3216                         /* not setable */
3217                         if( goi->isconfigure ){
3218                                 Jim_SetResult_sprintf( goi->interp, "not setable: %s", n->name );
3219                                 return JIM_ERR;
3220                         } else {
3221                         no_params:
3222                                 if( goi->argc != 0 ){
3223                                         Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "NO PARAMS");
3224                                         return JIM_ERR;
3225                                 }
3226                         }
3227                         Jim_SetResultString( goi->interp, target_get_name(target), -1 );
3228                         /* loop for more */
3229                         break;
3230                 case TCFG_EVENT:
3231                         if( goi->argc == 0 ){
3232                                 Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
3233                                 return JIM_ERR;
3234                         }
3235
3236                         e = Jim_GetOpt_Nvp( goi, nvp_target_event, &n );
3237                         if( e != JIM_OK ){
3238                                 Jim_GetOpt_NvpUnknown( goi, nvp_target_event, 1 );
3239                                 return e;
3240                         }
3241
3242                         if( goi->isconfigure ){
3243                                 if( goi->argc != 1 ){
3244                                         Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
3245                                         return JIM_ERR;
3246                                 }
3247                         } else {
3248                                 if( goi->argc != 0 ){
3249                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
3250                                         return JIM_ERR;
3251                                 }
3252                         }
3253
3254                         {
3255                                 target_event_action_t *teap;
3256
3257                                 teap = target->event_action;
3258                                 /* replace existing? */
3259                                 while( teap ){
3260                                         if( teap->event == (enum target_event)n->value ){
3261                                                 break;
3262                                         }
3263                                         teap = teap->next;
3264                                 }
3265
3266                                 if( goi->isconfigure ){
3267                                         if( teap == NULL ){
3268                                                 /* create new */
3269                                                 teap = calloc( 1, sizeof(*teap) );
3270                                         }
3271                                         teap->event = n->value;
3272                                         Jim_GetOpt_Obj( goi, &o );
3273                                         if( teap->body ){
3274                                                 Jim_DecrRefCount( interp, teap->body );
3275                                         }
3276                                         teap->body  = Jim_DuplicateObj( goi->interp, o );
3277                                         /*
3278                                          * FIXME:
3279                                          *     Tcl/TK - "tk events" have a nice feature.
3280                                          *     See the "BIND" command.
3281                                          *    We should support that here.
3282                                          *     You can specify %X and %Y in the event code.
3283                                          *     The idea is: %T - target name.
3284                                          *     The idea is: %N - target number
3285                                          *     The idea is: %E - event name.
3286                                          */
3287                                         Jim_IncrRefCount( teap->body );
3288
3289                                         /* add to head of event list */
3290                                         teap->next = target->event_action;
3291                                         target->event_action = teap;
3292                                         Jim_SetEmptyResult(goi->interp);
3293                                 } else {
3294                                         /* get */
3295                                         if( teap == NULL ){
3296                                                 Jim_SetEmptyResult( goi->interp );
3297                                         } else {
3298                                                 Jim_SetResult( goi->interp, Jim_DuplicateObj( goi->interp, teap->body ) );
3299                                         }
3300                                 }
3301                         }
3302                         /* loop for more */
3303                         break;
3304
3305                 case TCFG_WORK_AREA_VIRT:
3306                         if( goi->isconfigure ){
3307                                 target_free_all_working_areas(target);
3308                                 e = Jim_GetOpt_Wide( goi, &w );
3309                                 if( e != JIM_OK ){
3310                                         return e;
3311                                 }
3312                                 target->working_area_virt = w;
3313                         } else {
3314                                 if( goi->argc != 0 ){
3315                                         goto no_params;
3316                                 }
3317                         }
3318                         Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_virt ) );
3319                         /* loop for more */
3320                         break;
3321
3322                 case TCFG_WORK_AREA_PHYS:
3323                         if( goi->isconfigure ){
3324                                 target_free_all_working_areas(target);
3325                                 e = Jim_GetOpt_Wide( goi, &w );
3326                                 if( e != JIM_OK ){
3327                                         return e;
3328                                 }
3329                                 target->working_area_phys = w;
3330                         } else {
3331                                 if( goi->argc != 0 ){
3332                                         goto no_params;
3333                                 }
3334                         }
3335                         Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_phys ) );
3336                         /* loop for more */
3337                         break;
3338
3339                 case TCFG_WORK_AREA_SIZE:
3340                         if( goi->isconfigure ){
3341                                 target_free_all_working_areas(target);
3342                                 e = Jim_GetOpt_Wide( goi, &w );
3343                                 if( e != JIM_OK ){
3344                                         return e;
3345                                 }
3346                                 target->working_area_size = w;
3347                         } else {
3348                                 if( goi->argc != 0 ){
3349                                         goto no_params;
3350                                 }
3351                         }
3352                         Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_size ) );
3353                         /* loop for more */
3354                         break;
3355
3356                 case TCFG_WORK_AREA_BACKUP:
3357                         if( goi->isconfigure ){
3358                                 target_free_all_working_areas(target);
3359                                 e = Jim_GetOpt_Wide( goi, &w );
3360                                 if( e != JIM_OK ){
3361                                         return e;
3362                                 }
3363                                 /* make this exactly 1 or 0 */
3364                                 target->backup_working_area = (!!w);
3365                         } else {
3366                                 if( goi->argc != 0 ){
3367                                         goto no_params;
3368                                 }
3369                         }
3370                         Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_size ) );
3371                         /* loop for more e*/
3372                         break;
3373
3374                 case TCFG_ENDIAN:
3375                         if( goi->isconfigure ){
3376                                 e = Jim_GetOpt_Nvp( goi, nvp_target_endian, &n );
3377                                 if( e != JIM_OK ){
3378                                         Jim_GetOpt_NvpUnknown( goi, nvp_target_endian, 1 );
3379                                         return e;
3380                                 }
3381                                 target->endianness = n->value;
3382                         } else {
3383                                 if( goi->argc != 0 ){
3384                                         goto no_params;
3385                                 }
3386                         }
3387                         n = Jim_Nvp_value2name_simple( nvp_target_endian, target->endianness );
3388                         if( n->name == NULL ){
3389                                 target->endianness = TARGET_LITTLE_ENDIAN;
3390                                 n = Jim_Nvp_value2name_simple( nvp_target_endian, target->endianness );
3391                         }
3392                         Jim_SetResultString( goi->interp, n->name, -1 );
3393                         /* loop for more */
3394                         break;
3395
3396                 case TCFG_VARIANT:
3397                         if( goi->isconfigure ){
3398                                 if( goi->argc < 1 ){
3399                                         Jim_SetResult_sprintf( goi->interp,
3400                                                                                    "%s ?STRING?",
3401                                                                                    n->name );
3402                                         return JIM_ERR;
3403                                 }
3404                                 if( target->variant ){
3405                                         free((void *)(target->variant));
3406                                 }
3407                                 e = Jim_GetOpt_String( goi, &cp, NULL );
3408                                 target->variant = strdup(cp);
3409                         } else {
3410                                 if( goi->argc != 0 ){
3411                                         goto no_params;
3412                                 }
3413                         }
3414                         Jim_SetResultString( goi->interp, target->variant,-1 );
3415                         /* loop for more */
3416                         break;
3417                 case TCFG_CHAIN_POSITION:
3418                         if( goi->isconfigure ){
3419                                 Jim_Obj *o;
3420                                 jtag_tap_t *tap;
3421                                 target_free_all_working_areas(target);
3422                                 e = Jim_GetOpt_Obj( goi, &o );
3423                                 if( e != JIM_OK ){
3424                                         return e;
3425                                 }
3426                                 tap = jtag_TapByJimObj( goi->interp, o );
3427                                 if( tap == NULL ){
3428                                         return JIM_ERR;
3429                                 }
3430                                 /* make this exactly 1 or 0 */
3431                                 target->tap = tap;
3432                         } else {
3433                                 if( goi->argc != 0 ){
3434                                         goto no_params;
3435                                 }
3436                         }
3437                         Jim_SetResultString( interp, target->tap->dotted_name, -1 );
3438                         /* loop for more e*/
3439                         break;
3440                 }
3441         } /* while( goi->argc ) */
3442
3443
3444                 /* done - we return */
3445         return JIM_OK;
3446 }
3447
3448 /** this is the 'tcl' handler for the target specific command */
3449 static int tcl_target_func( Jim_Interp *interp, int argc, Jim_Obj *const *argv )
3450 {
3451         Jim_GetOptInfo goi;
3452         jim_wide a,b,c;
3453         int x,y,z;
3454         u8  target_buf[32];
3455         Jim_Nvp *n;
3456         target_t *target;
3457         struct command_context_s *cmd_ctx;
3458         int e;
3459
3460         enum {
3461                 TS_CMD_CONFIGURE,
3462                 TS_CMD_CGET,
3463
3464                 TS_CMD_MWW, TS_CMD_MWH, TS_CMD_MWB,
3465                 TS_CMD_MDW, TS_CMD_MDH, TS_CMD_MDB,
3466                 TS_CMD_MRW, TS_CMD_MRH, TS_CMD_MRB,
3467                 TS_CMD_MEM2ARRAY, TS_CMD_ARRAY2MEM,
3468                 TS_CMD_EXAMINE,
3469                 TS_CMD_POLL,
3470                 TS_CMD_RESET,
3471                 TS_CMD_HALT,
3472                 TS_CMD_WAITSTATE,
3473                 TS_CMD_EVENTLIST,
3474                 TS_CMD_CURSTATE,
3475                 TS_CMD_INVOKE_EVENT,
3476         };
3477
3478         static const Jim_Nvp target_options[] = {
3479                 { .name = "configure", .value = TS_CMD_CONFIGURE },
3480                 { .name = "cget", .value = TS_CMD_CGET },
3481                 { .name = "mww", .value = TS_CMD_MWW },
3482                 { .name = "mwh", .value = TS_CMD_MWH },
3483                 { .name = "mwb", .value = TS_CMD_MWB },
3484                 { .name = "mdw", .value = TS_CMD_MDW },
3485                 { .name = "mdh", .value = TS_CMD_MDH },
3486                 { .name = "mdb", .value = TS_CMD_MDB },
3487                 { .name = "mem2array", .value = TS_CMD_MEM2ARRAY },
3488                 { .name = "array2mem", .value = TS_CMD_ARRAY2MEM },
3489                 { .name = "eventlist", .value = TS_CMD_EVENTLIST },
3490                 { .name = "curstate",  .value = TS_CMD_CURSTATE },
3491
3492                 { .name = "arp_examine", .value = TS_CMD_EXAMINE },
3493                 { .name = "arp_poll", .value = TS_CMD_POLL },
3494                 { .name = "arp_reset", .value = TS_CMD_RESET },
3495                 { .name = "arp_halt", .value = TS_CMD_HALT },
3496                 { .name = "arp_waitstate", .value = TS_CMD_WAITSTATE },
3497                 { .name = "invoke-event", .value = TS_CMD_INVOKE_EVENT },
3498
3499                 { .name = NULL, .value = -1 },
3500         };
3501
3502         /* go past the "command" */
3503         Jim_GetOpt_Setup( &goi, interp, argc-1, argv+1 );
3504
3505         target = Jim_CmdPrivData( goi.interp );
3506         cmd_ctx = Jim_GetAssocData(goi.interp, "context");
3507
3508         /* commands here are in an NVP table */
3509         e = Jim_GetOpt_Nvp( &goi, target_options, &n );
3510         if( e != JIM_OK ){
3511                 Jim_GetOpt_NvpUnknown( &goi, target_options, 0 );
3512                 return e;
3513         }
3514         /* Assume blank result */
3515         Jim_SetEmptyResult( goi.interp );
3516
3517         switch( n->value ){
3518         case TS_CMD_CONFIGURE:
3519                 if( goi.argc < 2 ){
3520                         Jim_WrongNumArgs( goi.interp, goi.argc, goi.argv, "missing: -option VALUE ...");
3521                         return JIM_ERR;
3522                 }
3523                 goi.isconfigure = 1;
3524                 return target_configure( &goi, target );
3525         case TS_CMD_CGET:
3526                 // some things take params
3527                 if( goi.argc < 1 ){
3528                         Jim_WrongNumArgs( goi.interp, 0, goi.argv, "missing: ?-option?");
3529                         return JIM_ERR;
3530                 }
3531                 goi.isconfigure = 0;
3532                 return target_configure( &goi, target );
3533                 break;
3534         case TS_CMD_MWW:
3535         case TS_CMD_MWH:
3536         case TS_CMD_MWB:
3537                 /* argv[0] = cmd
3538                  * argv[1] = address
3539                  * argv[2] = data
3540                  * argv[3] = optional count.
3541                  */
3542
3543                 if( (goi.argc == 3) || (goi.argc == 4) ){
3544                         /* all is well */
3545                 } else {
3546                 mwx_error:
3547                         Jim_SetResult_sprintf( goi.interp, "expected: %s ADDR DATA [COUNT]", n->name );
3548                         return JIM_ERR;
3549                 }
3550
3551                 e = Jim_GetOpt_Wide( &goi, &a );
3552                 if( e != JIM_OK ){
3553                         goto mwx_error;
3554                 }
3555
3556                 e = Jim_GetOpt_Wide( &goi, &b );
3557                 if( e != JIM_OK ){
3558                         goto mwx_error;
3559                 }
3560                 if( goi.argc ){
3561                         e = Jim_GetOpt_Wide( &goi, &c );
3562                         if( e != JIM_OK ){
3563                                 goto mwx_error;
3564                         }
3565                 } else {
3566                         c = 1;
3567                 }
3568
3569                 switch( n->value ){
3570                 case TS_CMD_MWW:
3571                         target_buffer_set_u32( target, target_buf, b );
3572                         b = 4;
3573                         break;
3574                 case TS_CMD_MWH:
3575                         target_buffer_set_u16( target, target_buf, b );
3576                         b = 2;
3577                         break;
3578                 case TS_CMD_MWB:
3579                         target_buffer_set_u8( target, target_buf, b );
3580                         b = 1;
3581                         break;
3582                 }
3583                 for( x = 0 ; x < c ; x++ ){
3584                         e = target_write_memory( target, a, b, 1, target_buf );
3585                         if( e != ERROR_OK ){
3586                                 Jim_SetResult_sprintf( interp, "Error writing @ 0x%08x: %d\n", (int)(a), e );
3587                                 return JIM_ERR;
3588                         }
3589                         /* b = width */
3590                         a = a + b;
3591                 }
3592                 return JIM_OK;
3593                 break;
3594
3595                 /* display */
3596         case TS_CMD_MDW:
3597         case TS_CMD_MDH:
3598         case TS_CMD_MDB:
3599                 /* argv[0] = command
3600                  * argv[1] = address
3601                  * argv[2] = optional count
3602                  */
3603                 if( (goi.argc == 2) || (goi.argc == 3) ){
3604                         Jim_SetResult_sprintf( goi.interp, "expected: %s ADDR [COUNT]", n->name );
3605                         return JIM_ERR;
3606                 }
3607                 e = Jim_GetOpt_Wide( &goi, &a );
3608                 if( e != JIM_OK ){
3609                         return JIM_ERR;
3610                 }
3611                 if( goi.argc ){
3612                         e = Jim_GetOpt_Wide( &goi, &c );
3613                         if( e != JIM_OK ){
3614                                 return JIM_ERR;
3615                         }
3616                 } else {
3617                         c = 1;
3618                 }
3619                 b = 1; /* shut up gcc */
3620                 switch( n->value ){
3621                 case TS_CMD_MDW:
3622                         b =  4;
3623                         break;
3624                 case TS_CMD_MDH:
3625                         b = 2;
3626                         break;
3627                 case TS_CMD_MDB:
3628                         b = 1;
3629                         break;
3630                 }
3631
3632                 /* convert to "bytes" */
3633                 c = c * b;
3634                 /* count is now in 'BYTES' */
3635                 while( c > 0 ){
3636                         y = c;
3637                         if( y > 16 ){
3638                                 y = 16;
3639                         }
3640                         e = target_read_memory( target, a, b, y / b, target_buf );
3641                         if( e != ERROR_OK ){
3642                                 Jim_SetResult_sprintf( interp, "error reading target @ 0x%08lx", (int)(a) );
3643                                 return JIM_ERR;
3644                         }
3645
3646                         Jim_fprintf( interp, interp->cookie_stdout, "0x%08x ", (int)(a) );
3647                         switch( b ){
3648                         case 4:
3649                                 for( x = 0 ; (x < 16) && (x < y) ; x += 4 ){
3650                                         z = target_buffer_get_u32( target, &(target_buf[ x * 4 ]) );
3651                                         Jim_fprintf( interp, interp->cookie_stdout, "%08x ", (int)(z) );
3652                                 }
3653                                 for( ; (x < 16) ; x += 4 ){
3654                                         Jim_fprintf( interp, interp->cookie_stdout, "         " );
3655                                 }
3656                                 break;
3657                         case 2:
3658                                 for( x = 0 ; (x < 16) && (x < y) ; x += 2 ){
3659                                         z = target_buffer_get_u16( target, &(target_buf[ x * 2 ]) );
3660                                         Jim_fprintf( interp, interp->cookie_stdout, "%04x ", (int)(z) );
3661                                 }
3662                                 for( ; (x < 16) ; x += 2 ){
3663                                         Jim_fprintf( interp, interp->cookie_stdout, "     " );
3664                                 }
3665                                 break;
3666                         case 1:
3667                         default:
3668                                 for( x = 0 ; (x < 16) && (x < y) ; x += 1 ){
3669                                         z = target_buffer_get_u8( target, &(target_buf[ x * 4 ]) );
3670                                         Jim_fprintf( interp, interp->cookie_stdout, "%02x ", (int)(z) );
3671                                 }
3672                                 for( ; (x < 16) ; x += 1 ){
3673                                         Jim_fprintf( interp, interp->cookie_stdout, "   " );
3674                                 }
3675                                 break;
3676                         }
3677                         /* ascii-ify the bytes */
3678                         for( x = 0 ; x < y ; x++ ){
3679                                 if( (target_buf[x] >= 0x20) &&
3680                                         (target_buf[x] <= 0x7e) ){
3681                                         /* good */
3682                                 } else {
3683                                         /* smack it */
3684                                         target_buf[x] = '.';
3685                                 }
3686                         }
3687                         /* space pad  */
3688                         while( x < 16 ){
3689                                 target_buf[x] = ' ';
3690                                 x++;
3691                         }
3692                         /* terminate */
3693                         target_buf[16] = 0;
3694                         /* print - with a newline */
3695                         Jim_fprintf( interp, interp->cookie_stdout, "%s\n", target_buf );
3696                         /* NEXT... */
3697                         c -= 16;
3698                         a += 16;
3699                 }
3700                 return JIM_OK;
3701         case TS_CMD_MEM2ARRAY:
3702                 return target_mem2array( goi.interp, target, goi.argc, goi.argv );
3703                 break;
3704         case TS_CMD_ARRAY2MEM:
3705                 return target_array2mem( goi.interp, target, goi.argc, goi.argv );
3706                 break;
3707         case TS_CMD_EXAMINE:
3708                 if( goi.argc ){
3709                         Jim_WrongNumArgs( goi.interp, 2, argv, "[no parameters]");
3710                         return JIM_ERR;
3711                 }
3712                 e = target->type->examine( target );
3713                 if( e != ERROR_OK ){
3714                         Jim_SetResult_sprintf( interp, "examine-fails: %d", e );
3715                         return JIM_ERR;
3716                 }
3717                 return JIM_OK;
3718         case TS_CMD_POLL:
3719                 if( goi.argc ){
3720                         Jim_WrongNumArgs( goi.interp, 2, argv, "[no parameters]");
3721                         return JIM_ERR;
3722                 }
3723                 if( !(target_was_examined(target)) ){
3724                         e = ERROR_TARGET_NOT_EXAMINED;
3725                 } else {
3726                         e = target->type->poll( target );
3727                 }
3728                 if( e != ERROR_OK ){
3729                         Jim_SetResult_sprintf( interp, "poll-fails: %d", e );
3730                         return JIM_ERR;
3731                 } else {
3732                         return JIM_OK;
3733                 }
3734                 break;
3735         case TS_CMD_RESET:
3736                 if( goi.argc != 2 ){
3737                         Jim_WrongNumArgs( interp, 2, argv, "t|f|assert|deassert BOOL");
3738                         return JIM_ERR;
3739                 }
3740                 e = Jim_GetOpt_Nvp( &goi, nvp_assert, &n );
3741                 if( e != JIM_OK ){
3742                         Jim_GetOpt_NvpUnknown( &goi, nvp_assert, 1 );
3743                         return e;
3744                 }
3745                 /* the halt or not param */
3746                 e = Jim_GetOpt_Wide( &goi, &a);
3747                 if( e != JIM_OK ){
3748                         return e;
3749                 }
3750                 /* determine if we should halt or not. */
3751                 target->reset_halt = !!a;
3752                 /* When this happens - all workareas are invalid. */
3753                 target_free_all_working_areas_restore(target, 0);
3754
3755                 /* do the assert */
3756                 if( n->value == NVP_ASSERT ){
3757                         target->type->assert_reset( target );
3758                 } else {
3759                         target->type->deassert_reset( target );
3760                 }
3761                 return JIM_OK;
3762         case TS_CMD_HALT:
3763                 if( goi.argc ){
3764                         Jim_WrongNumArgs( goi.interp, 0, argv, "halt [no parameters]");
3765                         return JIM_ERR;
3766                 }
3767                 target->type->halt( target );
3768                 return JIM_OK;
3769         case TS_CMD_WAITSTATE:
3770                 /* params:  <name>  statename timeoutmsecs */
3771                 if( goi.argc != 2 ){
3772                         Jim_SetResult_sprintf( goi.interp, "%s STATENAME TIMEOUTMSECS", n->name );
3773                         return JIM_ERR;
3774                 }
3775                 e = Jim_GetOpt_Nvp( &goi, nvp_target_state, &n );
3776                 if( e != JIM_OK ){
3777                         Jim_GetOpt_NvpUnknown( &goi, nvp_target_state,1 );
3778                         return e;
3779                 }
3780                 e = Jim_GetOpt_Wide( &goi, &a );
3781                 if( e != JIM_OK ){
3782                         return e;
3783                 }
3784                 e = target_wait_state( target, n->value, a );
3785                 if( e != ERROR_OK ){
3786                         Jim_SetResult_sprintf( goi.interp,
3787                                                                    "target: %s wait %s fails (%d) %s",
3788                                                                    target->cmd_name,
3789                                                                    n->name,
3790                                                                    e, target_strerror_safe(e) );
3791                         return JIM_ERR;
3792                 } else {
3793                         return JIM_OK;
3794                 }
3795         case TS_CMD_EVENTLIST:
3796                 /* List for human, Events defined for this target.
3797                  * scripts/programs should use 'name cget -event NAME'
3798                  */
3799                 {
3800                         target_event_action_t *teap;
3801                         teap = target->event_action;
3802                         command_print( cmd_ctx, "Event actions for target (%d) %s\n",
3803                                                    target->target_number,
3804                                                    target->cmd_name );
3805                         command_print( cmd_ctx, "%-25s | Body", "Event");
3806                         command_print( cmd_ctx, "------------------------- | ----------------------------------------");
3807                         while( teap ){
3808                                 command_print( cmd_ctx,
3809                                                            "%-25s | %s",
3810                                                            Jim_Nvp_value2name_simple( nvp_target_event, teap->event )->name,
3811                                                            Jim_GetString( teap->body, NULL ) );
3812                                 teap = teap->next;
3813                         }
3814                         command_print( cmd_ctx, "***END***");
3815                         return JIM_OK;
3816                 }
3817         case TS_CMD_CURSTATE:
3818                 if( goi.argc != 0 ){
3819                         Jim_WrongNumArgs( goi.interp, 0, argv, "[no parameters]");
3820                         return JIM_ERR;
3821                 }
3822                 Jim_SetResultString( goi.interp,
3823                                                          Jim_Nvp_value2name_simple(nvp_target_state,target->state)->name,-1);
3824                 return JIM_OK;
3825         case TS_CMD_INVOKE_EVENT:
3826                 if( goi.argc != 1 ){
3827                         Jim_SetResult_sprintf( goi.interp, "%s ?EVENTNAME?",n->name);
3828                         return JIM_ERR;
3829                 }
3830                 e = Jim_GetOpt_Nvp( &goi, nvp_target_event, &n );
3831                 if( e != JIM_OK ){
3832                         Jim_GetOpt_NvpUnknown( &goi, nvp_target_event, 1 );
3833                         return e;
3834                 }
3835                 target_handle_event( target, n->value );
3836                 return JIM_OK;
3837         }
3838         return JIM_ERR;
3839 }
3840
3841 static int target_create( Jim_GetOptInfo *goi )
3842 {
3843         Jim_Obj *new_cmd;
3844         Jim_Cmd *cmd;
3845         const char *cp;
3846         char *cp2;
3847         int e;
3848         int x;
3849         target_t *target;
3850         struct command_context_s *cmd_ctx;
3851
3852         cmd_ctx = Jim_GetAssocData(goi->interp, "context");
3853         if( goi->argc < 3 ){
3854                 Jim_WrongNumArgs( goi->interp, 1, goi->argv, "?name? ?type? ..options...");
3855                 return JIM_ERR;
3856         }
3857
3858         /* COMMAND */
3859         Jim_GetOpt_Obj( goi, &new_cmd );
3860         /* does this command exist? */
3861         cmd = Jim_GetCommand( goi->interp, new_cmd, JIM_ERRMSG );
3862         if( cmd ){
3863                 cp = Jim_GetString( new_cmd, NULL );
3864                 Jim_SetResult_sprintf(goi->interp, "Command/target: %s Exists", cp);
3865                 return JIM_ERR;
3866         }
3867
3868         /* TYPE */
3869         e = Jim_GetOpt_String( goi, &cp2, NULL );
3870         cp = cp2;
3871         /* now does target type exist */
3872         for( x = 0 ; target_types[x] ; x++ ){
3873                 if( 0 == strcmp( cp, target_types[x]->name ) ){
3874                         /* found */
3875                         break;
3876                 }
3877         }
3878         if( target_types[x] == NULL ){
3879                 Jim_SetResult_sprintf( goi->interp, "Unknown target type %s, try one of ", cp );
3880                 for( x = 0 ; target_types[x] ; x++ ){
3881                         if( target_types[x+1] ){
3882                                 Jim_AppendStrings( goi->interp,
3883                                                                    Jim_GetResult(goi->interp),
3884                                                                    target_types[x]->name,
3885                                                                    ", ", NULL);
3886                         } else {
3887                                 Jim_AppendStrings( goi->interp,
3888                                                                    Jim_GetResult(goi->interp),
3889                                                                    " or ",
3890                                                                    target_types[x]->name,NULL );
3891                         }
3892                 }
3893                 return JIM_ERR;
3894         }
3895
3896         /* Create it */
3897         target = calloc(1,sizeof(target_t));
3898         /* set target number */
3899         target->target_number = new_target_number();
3900
3901         /* allocate memory for each unique target type */
3902         target->type = (target_type_t*)calloc(1,sizeof(target_type_t));
3903
3904         memcpy( target->type, target_types[x], sizeof(target_type_t));
3905
3906         /* will be set by "-endian" */
3907         target->endianness = TARGET_ENDIAN_UNKNOWN;
3908
3909         target->working_area        = 0x0;
3910         target->working_area_size   = 0x0;
3911         target->working_areas       = NULL;
3912         target->backup_working_area = 0;
3913
3914         target->state               = TARGET_UNKNOWN;
3915         target->debug_reason        = DBG_REASON_UNDEFINED;
3916         target->reg_cache           = NULL;
3917         target->breakpoints         = NULL;
3918         target->watchpoints         = NULL;
3919         target->next                = NULL;
3920         target->arch_info           = NULL;
3921
3922         target->display             = 1;
3923
3924         /* initialize trace information */
3925         target->trace_info = malloc(sizeof(trace_t));
3926         target->trace_info->num_trace_points         = 0;
3927         target->trace_info->trace_points_size        = 0;
3928         target->trace_info->trace_points             = NULL;
3929         target->trace_info->trace_history_size       = 0;
3930         target->trace_info->trace_history            = NULL;
3931         target->trace_info->trace_history_pos        = 0;
3932         target->trace_info->trace_history_overflowed = 0;
3933
3934         target->dbgmsg          = NULL;
3935         target->dbg_msg_enabled = 0;
3936
3937         target->endianness = TARGET_ENDIAN_UNKNOWN;
3938
3939         /* Do the rest as "configure" options */
3940         goi->isconfigure = 1;
3941         e = target_configure( goi, target);
3942
3943         if (target->tap == NULL)
3944         {
3945                 Jim_SetResultString( interp, "-chain-position required when creating target", -1);
3946                 e=JIM_ERR;
3947         }
3948
3949         if( e != JIM_OK ){
3950                 free( target->type );
3951                 free( target );
3952                 return e;
3953         }
3954
3955         if( target->endianness == TARGET_ENDIAN_UNKNOWN ){
3956                 /* default endian to little if not specified */
3957                 target->endianness = TARGET_LITTLE_ENDIAN;
3958         }
3959
3960         /* incase variant is not set */
3961         if (!target->variant)
3962                 target->variant = strdup("");
3963
3964         /* create the target specific commands */
3965         if( target->type->register_commands ){
3966                 (*(target->type->register_commands))( cmd_ctx );
3967         }
3968         if( target->type->target_create ){
3969                 (*(target->type->target_create))( target, goi->interp );
3970         }
3971
3972         /* append to end of list */
3973         {
3974                 target_t **tpp;
3975                 tpp = &(all_targets);
3976                 while( *tpp ){
3977                         tpp = &( (*tpp)->next );
3978                 }
3979                 *tpp = target;
3980         }
3981
3982         cp = Jim_GetString( new_cmd, NULL );
3983         target->cmd_name = strdup(cp);
3984
3985         /* now - create the new target name command */
3986         e = Jim_CreateCommand( goi->interp,
3987                                                    /* name */
3988                                                    cp,
3989                                                    tcl_target_func, /* C function */
3990                                                    target, /* private data */
3991                                                    NULL ); /* no del proc */
3992
3993         return e;
3994 }
3995
3996 static int jim_target( Jim_Interp *interp, int argc, Jim_Obj *const *argv )
3997 {
3998         int x,r,e;
3999         jim_wide w;
4000         struct command_context_s *cmd_ctx;
4001         target_t *target;
4002         Jim_GetOptInfo goi;
4003         enum tcmd {
4004                 /* TG = target generic */
4005                 TG_CMD_CREATE,
4006                 TG_CMD_TYPES,
4007                 TG_CMD_NAMES,
4008                 TG_CMD_CURRENT,
4009                 TG_CMD_NUMBER,
4010                 TG_CMD_COUNT,
4011         };
4012         const char *target_cmds[] = {
4013                 "create", "types", "names", "current", "number",
4014                 "count",
4015                 NULL /* terminate */
4016         };
4017
4018         LOG_DEBUG("Target command params:");
4019         LOG_DEBUG("%s", Jim_Debug_ArgvString(interp, argc, argv));
4020
4021         cmd_ctx = Jim_GetAssocData( interp, "context" );
4022
4023         Jim_GetOpt_Setup( &goi, interp, argc-1, argv+1 );
4024
4025         if( goi.argc == 0 ){
4026                 Jim_WrongNumArgs(interp, 1, argv, "missing: command ...");
4027                 return JIM_ERR;
4028         }
4029
4030         /* Jim_GetOpt_Debug( &goi ); */
4031         r = Jim_GetOpt_Enum( &goi, target_cmds, &x   );
4032         if( r != JIM_OK ){
4033                 return r;
4034         }
4035
4036         switch(x){
4037         default:
4038                 Jim_Panic(goi.interp,"Why am I here?");
4039                 return JIM_ERR;
4040         case TG_CMD_CURRENT:
4041                 if( goi.argc != 0 ){
4042                         Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters");
4043                         return JIM_ERR;
4044                 }
4045                 Jim_SetResultString( goi.interp, get_current_target( cmd_ctx )->cmd_name, -1 );
4046                 return JIM_OK;
4047         case TG_CMD_TYPES:
4048                 if( goi.argc != 0 ){
4049                         Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters" );
4050                         return JIM_ERR;
4051                 }
4052                 Jim_SetResult( goi.interp, Jim_NewListObj( goi.interp, NULL, 0 ) );
4053                 for( x = 0 ; target_types[x] ; x++ ){
4054                         Jim_ListAppendElement( goi.interp,
4055                                                                    Jim_GetResult(goi.interp),
4056                                                                    Jim_NewStringObj( goi.interp, target_types[x]->name, -1 ) );
4057                 }
4058                 return JIM_OK;
4059         case TG_CMD_NAMES:
4060                 if( goi.argc != 0 ){
4061                         Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters" );
4062                         return JIM_ERR;
4063                 }
4064                 Jim_SetResult( goi.interp, Jim_NewListObj( goi.interp, NULL, 0 ) );
4065                 target = all_targets;
4066                 while( target ){
4067                         Jim_ListAppendElement( goi.interp,
4068                                                                    Jim_GetResult(goi.interp),
4069                                                                    Jim_NewStringObj( goi.interp, target->cmd_name, -1 ) );
4070                         target = target->next;
4071                 }
4072                 return JIM_OK;
4073         case TG_CMD_CREATE:
4074                 if( goi.argc < 3 ){
4075                         Jim_WrongNumArgs( goi.interp, goi.argc, goi.argv, "?name  ... config options ...");
4076                         return JIM_ERR;
4077                 }
4078                 return target_create( &goi );
4079                 break;
4080         case TG_CMD_NUMBER:
4081                 if( goi.argc != 1 ){
4082                         Jim_SetResult_sprintf( goi.interp, "expected: target number ?NUMBER?");
4083                         return JIM_ERR;
4084                 }
4085                 e = Jim_GetOpt_Wide( &goi, &w );
4086                 if( e != JIM_OK ){
4087                         return JIM_ERR;
4088                 }
4089                 {
4090                         target_t *t;
4091                         t = get_target_by_num(w);
4092                         if( t == NULL ){
4093                                 Jim_SetResult_sprintf( goi.interp,"Target: number %d does not exist", (int)(w));
4094                                 return JIM_ERR;
4095                         }
4096                         Jim_SetResultString( goi.interp, t->cmd_name, -1 );
4097                         return JIM_OK;
4098                 }
4099         case TG_CMD_COUNT:
4100                 if( goi.argc != 0 ){
4101                         Jim_WrongNumArgs( goi.interp, 0, goi.argv, "<no parameters>");
4102                         return JIM_ERR;
4103                 }
4104                 Jim_SetResult( goi.interp,
4105                                            Jim_NewIntObj( goi.interp, max_target_number()));
4106                 return JIM_OK;
4107         }
4108
4109         return JIM_ERR;
4110 }
4111
4112
4113 struct FastLoad
4114 {
4115         u32 address;
4116         u8 *data;
4117         int length;
4118
4119 };
4120
4121 static int fastload_num;
4122 static struct FastLoad *fastload;
4123
4124 static void free_fastload(void)
4125 {
4126         if (fastload!=NULL)
4127         {
4128                 int i;
4129                 for (i=0; i<fastload_num; i++)
4130                 {
4131                         if (fastload[i].data)
4132                                 free(fastload[i].data);
4133                 }
4134                 free(fastload);
4135                 fastload=NULL;
4136         }
4137 }
4138
4139
4140
4141
4142 static int handle_fast_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
4143 {
4144         u8 *buffer;
4145         u32 buf_cnt;
4146         u32 image_size;
4147         u32 min_address=0;
4148         u32 max_address=0xffffffff;
4149         int i;
4150         int retval;
4151
4152         image_t image;
4153
4154         duration_t duration;
4155         char *duration_text;
4156
4157         if ((argc < 1)||(argc > 5))
4158         {
4159                 return ERROR_COMMAND_SYNTAX_ERROR;
4160         }
4161
4162         /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
4163         if (argc >= 2)
4164         {
4165                 image.base_address_set = 1;
4166                 image.base_address = strtoul(args[1], NULL, 0);
4167         }
4168         else
4169         {
4170                 image.base_address_set = 0;
4171         }
4172
4173
4174         image.start_address_set = 0;
4175
4176         if (argc>=4)
4177         {
4178                 min_address=strtoul(args[3], NULL, 0);
4179         }
4180         if (argc>=5)
4181         {
4182                 max_address=strtoul(args[4], NULL, 0)+min_address;
4183         }
4184
4185         if (min_address>max_address)
4186         {
4187                 return ERROR_COMMAND_SYNTAX_ERROR;
4188         }
4189
4190         duration_start_measure(&duration);
4191
4192         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
4193         {
4194                 return ERROR_OK;
4195         }
4196
4197         image_size = 0x0;
4198         retval = ERROR_OK;
4199         fastload_num=image.num_sections;
4200         fastload=(struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
4201         if (fastload==NULL)
4202         {
4203                 image_close(&image);
4204                 return ERROR_FAIL;
4205         }
4206         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
4207         for (i = 0; i < image.num_sections; i++)
4208         {
4209                 buffer = malloc(image.sections[i].size);
4210                 if (buffer == NULL)
4211                 {
4212                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
4213                         break;
4214                 }
4215
4216                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
4217                 {
4218                         free(buffer);
4219                         break;
4220                 }
4221
4222                 u32 offset=0;
4223                 u32 length=buf_cnt;
4224
4225
4226                 /* DANGER!!! beware of unsigned comparision here!!! */
4227
4228                 if ((image.sections[i].base_address+buf_cnt>=min_address)&&
4229                                 (image.sections[i].base_address<max_address))
4230                 {
4231                         if (image.sections[i].base_address<min_address)
4232                         {
4233                                 /* clip addresses below */
4234                                 offset+=min_address-image.sections[i].base_address;
4235                                 length-=offset;
4236                         }
4237
4238                         if (image.sections[i].base_address+buf_cnt>max_address)
4239                         {
4240                                 length-=(image.sections[i].base_address+buf_cnt)-max_address;
4241                         }
4242
4243                         fastload[i].address=image.sections[i].base_address+offset;
4244                         fastload[i].data=malloc(length);
4245                         if (fastload[i].data==NULL)
4246                         {
4247                                 free(buffer);
4248                                 break;
4249                         }
4250                         memcpy(fastload[i].data, buffer+offset, length);
4251                         fastload[i].length=length;
4252
4253                         image_size += length;
4254                         command_print(cmd_ctx, "%u byte written at address 0x%8.8x", length, image.sections[i].base_address+offset);
4255                 }
4256
4257                 free(buffer);
4258         }
4259
4260         duration_stop_measure(&duration, &duration_text);
4261         if (retval==ERROR_OK)
4262         {
4263                 command_print(cmd_ctx, "Loaded %u bytes in %s", image_size, duration_text);
4264                 command_print(cmd_ctx, "NB!!! image has not been loaded to target, issue a subsequent 'fast_load' to do so.");
4265         }
4266         free(duration_text);
4267
4268         image_close(&image);
4269
4270         if (retval!=ERROR_OK)
4271         {
4272                 free_fastload();
4273         }
4274
4275         return retval;
4276 }
4277
4278 static int handle_fast_load_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
4279 {
4280         if (argc>0)
4281                 return ERROR_COMMAND_SYNTAX_ERROR;
4282         if (fastload==NULL)
4283         {
4284                 LOG_ERROR("No image in memory");
4285                 return ERROR_FAIL;
4286         }
4287         int i;
4288         int ms=timeval_ms();
4289         int size=0;
4290         int retval=ERROR_OK;
4291         for (i=0; i<fastload_num;i++)
4292         {
4293                 target_t *target = get_current_target(cmd_ctx);
4294                 command_print(cmd_ctx, "Write to 0x%08x, length 0x%08x", fastload[i].address, fastload[i].length);
4295                 if (retval==ERROR_OK)
4296                 {
4297                         retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
4298                 }
4299                 size+=fastload[i].length;
4300         }
4301         int after=timeval_ms();
4302         command_print(cmd_ctx, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
4303         return retval;
4304 }