Wip - split target setup and target examination
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   This program is free software; you can redistribute it and/or modify  *
6  *   it under the terms of the GNU General Public License as published by  *
7  *   the Free Software Foundation; either version 2 of the License, or     *
8  *   (at your option) any later version.                                   *
9  *                                                                         *
10  *   This program is distributed in the hope that it will be useful,       *
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
13  *   GNU General Public License for more details.                          *
14  *                                                                         *
15  *   You should have received a copy of the GNU General Public License     *
16  *   along with this program; if not, write to the                         *
17  *   Free Software Foundation, Inc.,                                       *
18  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
19  ***************************************************************************/
20 #ifdef HAVE_CONFIG_H
21 #include "config.h"
22 #endif
23
24 #include "replacements.h"
25 #include "target.h"
26 #include "target_request.h"
27
28 #include "log.h"
29 #include "configuration.h"
30 #include "binarybuffer.h"
31 #include "jtag.h"
32
33 #include <string.h>
34 #include <stdlib.h>
35 #include <inttypes.h>
36
37 #include <sys/types.h>
38 #include <sys/stat.h>
39 #include <unistd.h>
40 #include <errno.h>
41
42 #include <sys/time.h>
43 #include <time.h>
44
45 #include <time_support.h>
46
47 #include <fileio.h>
48 #include <image.h>
49
50 int cli_target_callback_event_handler(struct target_s *target, enum target_event event, void *priv);
51
52
53 int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
54 int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
55
56 int handle_target_script_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
57 int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
58 int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
59
60 int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
61 int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
62 int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
63 int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
64 int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
65 int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
66 int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
67 int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
68 int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
69 int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
70 int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
71 int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
72 int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
73 int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
74 int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
75 int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
76 int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
77 int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc);
78 int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
79
80 /* targets
81  */
82 extern target_type_t arm7tdmi_target;
83 extern target_type_t arm720t_target;
84 extern target_type_t arm9tdmi_target;
85 extern target_type_t arm920t_target;
86 extern target_type_t arm966e_target;
87 extern target_type_t arm926ejs_target;
88 extern target_type_t feroceon_target;
89 extern target_type_t xscale_target;
90 extern target_type_t cortexm3_target;
91 extern target_type_t arm11_target;
92
93 target_type_t *target_types[] =
94 {
95         &arm7tdmi_target,
96         &arm9tdmi_target,
97         &arm920t_target,
98         &arm720t_target,
99         &arm966e_target,
100         &arm926ejs_target,
101         &feroceon_target,
102         &xscale_target,
103         &cortexm3_target,
104         &arm11_target,
105         NULL,
106 };
107
108 target_t *targets = NULL;
109 target_event_callback_t *target_event_callbacks = NULL;
110 target_timer_callback_t *target_timer_callbacks = NULL;
111
112 char *target_state_strings[] =
113 {
114         "unknown",
115         "running",
116         "halted",
117         "reset",
118         "debug_running",
119 };
120
121 char *target_debug_reason_strings[] =
122 {
123         "debug request", "breakpoint", "watchpoint",
124         "watchpoint and breakpoint", "single step",
125         "target not halted", "undefined"
126 };
127
128 char *target_endianess_strings[] =
129 {
130         "big endian",
131         "little endian",
132 };
133
134 static int target_continous_poll = 1;
135
136 /* read a u32 from a buffer in target memory endianness */
137 u32 target_buffer_get_u32(target_t *target, u8 *buffer)
138 {
139         if (target->endianness == TARGET_LITTLE_ENDIAN)
140                 return le_to_h_u32(buffer);
141         else
142                 return be_to_h_u32(buffer);
143 }
144
145 /* read a u16 from a buffer in target memory endianness */
146 u16 target_buffer_get_u16(target_t *target, u8 *buffer)
147 {
148         if (target->endianness == TARGET_LITTLE_ENDIAN)
149                 return le_to_h_u16(buffer);
150         else
151                 return be_to_h_u16(buffer);
152 }
153
154 /* write a u32 to a buffer in target memory endianness */
155 void target_buffer_set_u32(target_t *target, u8 *buffer, u32 value)
156 {
157         if (target->endianness == TARGET_LITTLE_ENDIAN)
158                 h_u32_to_le(buffer, value);
159         else
160                 h_u32_to_be(buffer, value);
161 }
162
163 /* write a u16 to a buffer in target memory endianness */
164 void target_buffer_set_u16(target_t *target, u8 *buffer, u16 value)
165 {
166         if (target->endianness == TARGET_LITTLE_ENDIAN)
167                 h_u16_to_le(buffer, value);
168         else
169                 h_u16_to_be(buffer, value);
170 }
171
172 /* returns a pointer to the n-th configured target */
173 target_t* get_target_by_num(int num)
174 {
175         target_t *target = targets;
176         int i = 0;
177
178         while (target)
179         {
180                 if (num == i)
181                         return target;
182                 target = target->next;
183                 i++;
184         }
185
186         return NULL;
187 }
188
189 int get_num_by_target(target_t *query_target)
190 {
191         target_t *target = targets;
192         int i = 0;      
193         
194         while (target)
195         {
196                 if (target == query_target)
197                         return i;
198                 target = target->next;
199                 i++;
200         }
201         
202         return -1;
203 }
204
205 target_t* get_current_target(command_context_t *cmd_ctx)
206 {
207         target_t *target = get_target_by_num(cmd_ctx->current_target);
208         
209         if (target == NULL)
210         {
211                 LOG_ERROR("BUG: current_target out of bounds");
212                 exit(-1);
213         }
214         
215         return target;
216 }
217
218 /* Process target initialization, when target entered debug out of reset
219  * the handler is unregistered at the end of this function, so it's only called once
220  */
221 int target_init_handler(struct target_s *target, enum target_event event, void *priv)
222 {
223         FILE *script;
224         struct command_context_s *cmd_ctx = priv;
225         
226         if ((event == TARGET_EVENT_HALTED) && (target->reset_script))
227         {
228                 target_unregister_event_callback(target_init_handler, priv);
229
230                 script = open_file_from_path(target->reset_script, "r");
231                 if (!script)
232                 {
233                         LOG_ERROR("couldn't open script file %s", target->reset_script);
234                                 return ERROR_OK;
235                 }
236
237                 LOG_INFO("executing reset script '%s'", target->reset_script);
238                 command_run_file(cmd_ctx, script, COMMAND_EXEC);
239                 fclose(script);
240
241                 jtag_execute_queue();
242         }
243         
244         return ERROR_OK;
245 }
246
247 int target_run_and_halt_handler(void *priv)
248 {
249         target_t *target = priv;
250         
251         target->type->halt(target);
252         
253         return ERROR_OK;
254 }
255
256 int target_process_reset(struct command_context_s *cmd_ctx)
257 {
258         int retval = ERROR_OK;
259         target_t *target;
260         struct timeval timeout, now;
261
262         jtag->speed(jtag_speed);
263
264         if ((retval = jtag_init_reset(cmd_ctx)) != ERROR_OK)
265                 return retval;
266         
267         if ((retval = target_examine(cmd_ctx)) != ERROR_OK)
268                 return retval;
269         
270         /* prepare reset_halt where necessary */
271         target = targets;
272         while (target)
273         {
274                 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
275                 {
276                         switch (target->reset_mode)
277                         {
278                                 case RESET_HALT:
279                                         command_print(cmd_ctx, "nSRST pulls nTRST, falling back to \"reset run_and_halt\"");
280                                         target->reset_mode = RESET_RUN_AND_HALT;
281                                         break;
282                                 case RESET_INIT:
283                                         command_print(cmd_ctx, "nSRST pulls nTRST, falling back to \"reset run_and_init\"");
284                                         target->reset_mode = RESET_RUN_AND_INIT;
285                                         break;
286                                 default:
287                                         break;
288                         } 
289                 }
290                 target = target->next;
291         }
292         
293         target = targets;
294         while (target)
295         {
296                 /* we have no idea what state the target is in, so we
297                  * have to drop working areas
298                  */
299                 target_free_all_working_areas_restore(target, 0);
300                 target->type->assert_reset(target);
301                 target = target->next;
302         }
303         if ((retval = jtag_execute_queue()) != ERROR_OK)
304         {
305                 LOG_WARNING("JTAG communication failed asserting reset.");
306                 retval = ERROR_OK;
307         }
308         
309         /* request target halt if necessary, and schedule further action */
310         target = targets;
311         while (target)
312         {
313                 switch (target->reset_mode)
314                 {
315                         case RESET_RUN:
316                                 /* nothing to do if target just wants to be run */
317                                 break;
318                         case RESET_RUN_AND_HALT:
319                                 /* schedule halt */
320                                 target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target);
321                                 break;
322                         case RESET_RUN_AND_INIT:
323                                 /* schedule halt */
324                                 target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target);
325                                 target_register_event_callback(target_init_handler, cmd_ctx);
326                                 break;
327                         case RESET_HALT:
328                                 target->type->halt(target);
329                                 break;
330                         case RESET_INIT:
331                                 target->type->halt(target);
332                                 target_register_event_callback(target_init_handler, cmd_ctx);
333                                 break;
334                         default:
335                                 LOG_ERROR("BUG: unknown target->reset_mode");
336                 }
337                 target = target->next;
338         }
339         
340         if ((retval = jtag_execute_queue()) != ERROR_OK)
341         {
342                 LOG_WARNING("JTAG communication failed while reset was asserted. Consider using srst_only for reset_config.");
343                 retval = ERROR_OK;              
344         }
345         
346         target = targets;
347         while (target)
348         {
349                 target->type->deassert_reset(target);
350                 target = target->next;
351         }
352         
353         if ((retval = jtag_execute_queue()) != ERROR_OK)
354         {
355                 LOG_WARNING("JTAG communication failed while deasserting reset.");
356                 retval = ERROR_OK;
357         }
358         
359         LOG_DEBUG("Waiting for halted stated as approperiate");
360         
361         /* Wait for reset to complete, maximum 5 seconds. */    
362         gettimeofday(&timeout, NULL);
363         timeval_add_time(&timeout, 5, 0);
364         for(;;)
365         {
366                 gettimeofday(&now, NULL);
367                 
368                 target_call_timer_callbacks_now();
369                 
370                 target = targets;
371                 while (target)
372                 {
373                         LOG_DEBUG("Polling target");
374                         target->type->poll(target);
375                         if ((target->reset_mode == RESET_RUN_AND_INIT) || 
376                                         (target->reset_mode == RESET_RUN_AND_HALT) ||
377                                         (target->reset_mode == RESET_HALT) ||
378                                         (target->reset_mode == RESET_INIT))
379                         {
380                                 if (target->state != TARGET_HALTED)
381                                 {
382                                         if ((now.tv_sec > timeout.tv_sec) || ((now.tv_sec == timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
383                                         {
384                                                 LOG_USER("Timed out waiting for halt after reset");
385                                                 goto done;
386                                         }
387                                         /* this will send alive messages on e.g. GDB remote protocol. */
388                                         usleep(500*1000); 
389                                         LOG_USER_N("%s", ""); /* avoid warning about zero length formatting message*/ 
390                                         goto again;
391                                 }
392                         }
393                         target = target->next;
394                 }
395                 /* All targets we're waiting for are halted */
396                 break;
397                 
398                 again:;
399         }
400         done:
401         
402         
403         /* We want any events to be processed before the prompt */
404         target_call_timer_callbacks_now();
405
406         /* if we timed out we need to unregister these handlers */
407         target = targets;
408         while (target)
409         {
410                 target_unregister_timer_callback(target_run_and_halt_handler, target);
411                 target = target->next;
412         }
413         target_unregister_event_callback(target_init_handler, cmd_ctx);
414                                 
415         
416         jtag->speed(jtag_speed_post_reset);
417         
418         return retval;
419 }
420
421 static int default_virt2phys(struct target_s *target, u32 virtual, u32 *physical)
422 {
423         *physical = virtual;
424         return ERROR_OK;
425 }
426
427 static int default_mmu(struct target_s *target, int *enabled)
428 {
429         *enabled = 0;
430         return ERROR_OK;
431 }
432
433 static int default_examine(struct command_context_s *cmd_ctx, struct target_s *target)
434 {
435         return ERROR_OK;
436 }
437
438
439 /* Targets that correctly implement init+examine, i.e.
440  * no communication with target during init:
441  * 
442  * XScale 
443  */
444 int target_examine(struct command_context_s *cmd_ctx)
445 {
446         int retval = ERROR_OK;
447         target_t *target = targets;
448         while (target)
449         {
450                 if ((retval = target->type->examine(cmd_ctx, target))!=ERROR_OK)
451                         return retval;
452                 target = target->next;
453         }
454         return retval;
455 }
456
457
458 int target_init(struct command_context_s *cmd_ctx)
459 {
460         target_t *target = targets;
461         
462         while (target)
463         {
464                 target->type->examined = 0;
465                 if (target->type->examine == NULL)
466                 {
467                         target->type->examine = default_examine;
468                 }
469                 
470                 if (target->type->init_target(cmd_ctx, target) != ERROR_OK)
471                 {
472                         LOG_ERROR("target '%s' init failed", target->type->name);
473                         exit(-1);
474                 }
475                 
476                 /* Set up default functions if none are provided by target */
477                 if (target->type->virt2phys == NULL)
478                 {
479                         target->type->virt2phys = default_virt2phys;
480                 }
481                 if (target->type->mmu == NULL)
482                 {
483                         target->type->mmu = default_mmu;
484                 }
485                 target = target->next;
486         }
487         
488         if (targets)
489         {
490                 target_register_user_commands(cmd_ctx);
491                 target_register_timer_callback(handle_target, 100, 1, NULL);
492         }
493                 
494         return ERROR_OK;
495 }
496
497 int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
498 {
499         target_event_callback_t **callbacks_p = &target_event_callbacks;
500         
501         if (callback == NULL)
502         {
503                 return ERROR_INVALID_ARGUMENTS;
504         }
505         
506         if (*callbacks_p)
507         {
508                 while ((*callbacks_p)->next)
509                         callbacks_p = &((*callbacks_p)->next);
510                 callbacks_p = &((*callbacks_p)->next);
511         }
512         
513         (*callbacks_p) = malloc(sizeof(target_event_callback_t));
514         (*callbacks_p)->callback = callback;
515         (*callbacks_p)->priv = priv;
516         (*callbacks_p)->next = NULL;
517         
518         return ERROR_OK;
519 }
520
521 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
522 {
523         target_timer_callback_t **callbacks_p = &target_timer_callbacks;
524         struct timeval now;
525         
526         if (callback == NULL)
527         {
528                 return ERROR_INVALID_ARGUMENTS;
529         }
530         
531         if (*callbacks_p)
532         {
533                 while ((*callbacks_p)->next)
534                         callbacks_p = &((*callbacks_p)->next);
535                 callbacks_p = &((*callbacks_p)->next);
536         }
537         
538         (*callbacks_p) = malloc(sizeof(target_timer_callback_t));
539         (*callbacks_p)->callback = callback;
540         (*callbacks_p)->periodic = periodic;
541         (*callbacks_p)->time_ms = time_ms;
542         
543         gettimeofday(&now, NULL);
544         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
545         time_ms -= (time_ms % 1000);
546         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
547         if ((*callbacks_p)->when.tv_usec > 1000000)
548         {
549                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
550                 (*callbacks_p)->when.tv_sec += 1;
551         }
552         
553         (*callbacks_p)->priv = priv;
554         (*callbacks_p)->next = NULL;
555         
556         return ERROR_OK;
557 }
558
559 int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
560 {
561         target_event_callback_t **p = &target_event_callbacks;
562         target_event_callback_t *c = target_event_callbacks;
563         
564         if (callback == NULL)
565         {
566                 return ERROR_INVALID_ARGUMENTS;
567         }
568                 
569         while (c)
570         {
571                 target_event_callback_t *next = c->next;
572                 if ((c->callback == callback) && (c->priv == priv))
573                 {
574                         *p = next;
575                         free(c);
576                         return ERROR_OK;
577                 }
578                 else
579                         p = &(c->next);
580                 c = next;
581         }
582         
583         return ERROR_OK;
584 }
585
586 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
587 {
588         target_timer_callback_t **p = &target_timer_callbacks;
589         target_timer_callback_t *c = target_timer_callbacks;
590         
591         if (callback == NULL)
592         {
593                 return ERROR_INVALID_ARGUMENTS;
594         }
595                 
596         while (c)
597         {
598                 target_timer_callback_t *next = c->next;
599                 if ((c->callback == callback) && (c->priv == priv))
600                 {
601                         *p = next;
602                         free(c);
603                         return ERROR_OK;
604                 }
605                 else
606                         p = &(c->next);
607                 c = next;
608         }
609         
610         return ERROR_OK;
611 }
612
613 int target_call_event_callbacks(target_t *target, enum target_event event)
614 {
615         target_event_callback_t *callback = target_event_callbacks;
616         target_event_callback_t *next_callback;
617         
618         LOG_DEBUG("target event %i", event);
619         
620         while (callback)
621         {
622                 next_callback = callback->next;
623                 callback->callback(target, event, callback->priv);
624                 callback = next_callback;
625         }
626         
627         return ERROR_OK;
628 }
629
630 static int target_call_timer_callbacks_check_time(int checktime)
631 {
632         target_timer_callback_t *callback = target_timer_callbacks;
633         target_timer_callback_t *next_callback;
634         struct timeval now;
635
636         gettimeofday(&now, NULL);
637         
638         while (callback)
639         {
640                 next_callback = callback->next;
641                 
642                 if ((!checktime&&callback->periodic)||
643                                 (((now.tv_sec >= callback->when.tv_sec) && (now.tv_usec >= callback->when.tv_usec))
644                                                 || (now.tv_sec > callback->when.tv_sec)))
645                 {
646                         callback->callback(callback->priv);
647                         if (callback->periodic)
648                         {
649                                 int time_ms = callback->time_ms;
650                                 callback->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
651                                 time_ms -= (time_ms % 1000);
652                                 callback->when.tv_sec = now.tv_sec + time_ms / 1000;
653                                 if (callback->when.tv_usec > 1000000)
654                                 {
655                                         callback->when.tv_usec = callback->when.tv_usec - 1000000;
656                                         callback->when.tv_sec += 1;
657                                 }
658                         }
659                         else
660                                 target_unregister_timer_callback(callback->callback, callback->priv);
661                 }
662                         
663                 callback = next_callback;
664         }
665         
666         return ERROR_OK;
667 }
668
669 int target_call_timer_callbacks()
670 {
671         return target_call_timer_callbacks_check_time(1);
672 }
673
674 /* invoke periodic callbacks immediately */
675 int target_call_timer_callbacks_now()
676 {
677         return target_call_timer_callbacks(0);
678 }
679
680
681 int target_alloc_working_area(struct target_s *target, u32 size, working_area_t **area)
682 {
683         working_area_t *c = target->working_areas;
684         working_area_t *new_wa = NULL;
685         
686         /* Reevaluate working area address based on MMU state*/
687         if (target->working_areas == NULL)
688         {
689                 int retval;
690                 int enabled;
691                 retval = target->type->mmu(target, &enabled);
692                 if (retval != ERROR_OK)
693                 {
694                         return retval;
695                 }
696                 if (enabled)
697                 {
698                         target->working_area = target->working_area_virt;
699                 }
700                 else
701                 {
702                         target->working_area = target->working_area_phys;
703                 }
704         }
705         
706         /* only allocate multiples of 4 byte */
707         if (size % 4)
708         {
709                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes, padding");
710                 size = CEIL(size, 4);
711         }
712         
713         /* see if there's already a matching working area */
714         while (c)
715         {
716                 if ((c->free) && (c->size == size))
717                 {
718                         new_wa = c;
719                         break;
720                 }
721                 c = c->next;
722         }
723         
724         /* if not, allocate a new one */
725         if (!new_wa)
726         {
727                 working_area_t **p = &target->working_areas;
728                 u32 first_free = target->working_area;
729                 u32 free_size = target->working_area_size;
730                 
731                 LOG_DEBUG("allocating new working area");
732                 
733                 c = target->working_areas;
734                 while (c)
735                 {
736                         first_free += c->size;
737                         free_size -= c->size;
738                         p = &c->next;
739                         c = c->next;
740                 }
741                 
742                 if (free_size < size)
743                 {
744                         LOG_WARNING("not enough working area available(requested %d, free %d)", size, free_size);
745                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
746                 }
747                 
748                 new_wa = malloc(sizeof(working_area_t));
749                 new_wa->next = NULL;
750                 new_wa->size = size;
751                 new_wa->address = first_free;
752                 
753                 if (target->backup_working_area)
754                 {
755                         new_wa->backup = malloc(new_wa->size);
756                         target->type->read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup);
757                 }
758                 else
759                 {
760                         new_wa->backup = NULL;
761                 }
762                 
763                 /* put new entry in list */
764                 *p = new_wa;
765         }
766         
767         /* mark as used, and return the new (reused) area */
768         new_wa->free = 0;
769         *area = new_wa;
770         
771         /* user pointer */
772         new_wa->user = area;
773         
774         return ERROR_OK;
775 }
776
777 int target_free_working_area_restore(struct target_s *target, working_area_t *area, int restore)
778 {
779         if (area->free)
780                 return ERROR_OK;
781         
782         if (restore&&target->backup_working_area)
783                 target->type->write_memory(target, area->address, 4, area->size / 4, area->backup);
784         
785         area->free = 1;
786         
787         /* mark user pointer invalid */
788         *area->user = NULL;
789         area->user = NULL;
790         
791         return ERROR_OK;
792 }
793
794 int target_free_working_area(struct target_s *target, working_area_t *area)
795 {
796         return target_free_working_area_restore(target, area, 1);
797 }
798
799 int target_free_all_working_areas_restore(struct target_s *target, int restore)
800 {
801         working_area_t *c = target->working_areas;
802
803         while (c)
804         {
805                 working_area_t *next = c->next;
806                 target_free_working_area_restore(target, c, restore);
807                 
808                 if (c->backup)
809                         free(c->backup);
810                 
811                 free(c);
812                 
813                 c = next;
814         }
815         
816         target->working_areas = NULL;
817         
818         return ERROR_OK;
819 }
820
821 int target_free_all_working_areas(struct target_s *target)
822 {
823         return target_free_all_working_areas_restore(target, 1); 
824 }
825
826 int target_register_commands(struct command_context_s *cmd_ctx)
827 {
828         register_command(cmd_ctx, NULL, "target", handle_target_command, COMMAND_CONFIG, "target <cpu> [reset_init default - DEPRECATED] <chainpos> <endianness> <variant> [cpu type specifc args]");
829         register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, NULL);
830         register_command(cmd_ctx, NULL, "target_script", handle_target_script_command, COMMAND_CONFIG, NULL);
831         register_command(cmd_ctx, NULL, "run_and_halt_time", handle_run_and_halt_time_command, COMMAND_CONFIG, "<target> <run time ms>");
832         register_command(cmd_ctx, NULL, "working_area", handle_working_area_command, COMMAND_ANY, "working_area <target#> <address> <size> <'backup'|'nobackup'> [virtual address]");
833         register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "virt2phys <virtual address>");
834         register_command(cmd_ctx, NULL, "profile", handle_profile_command, COMMAND_EXEC, "PRELIMINARY! - profile <seconds> <gmon.out>");
835
836         return ERROR_OK;
837 }
838
839 int target_arch_state(struct target_s *target)
840 {
841         int retval;
842         if (target==NULL)
843         {
844                 LOG_USER("No target has been configured");
845                 return ERROR_OK;
846         }
847         
848         LOG_USER("target state: %s", target_state_strings[target->state]);
849         
850         if (target->state!=TARGET_HALTED)
851                 return ERROR_OK;
852         
853         retval=target->type->arch_state(target);
854         return retval;
855 }
856
857 /* Single aligned words are guaranteed to use 16 or 32 bit access 
858  * mode respectively, otherwise data is handled as quickly as 
859  * possible
860  */
861 int target_write_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
862 {
863         int retval;
864         
865         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x", size, address);
866         
867         if (((address % 2) == 0) && (size == 2))
868         {
869                 return target->type->write_memory(target, address, 2, 1, buffer);
870         }
871         
872         /* handle unaligned head bytes */
873         if (address % 4)
874         {
875                 int unaligned = 4 - (address % 4);
876                 
877                 if (unaligned > size)
878                         unaligned = size;
879
880                 if ((retval = target->type->write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
881                         return retval;
882                 
883                 buffer += unaligned;
884                 address += unaligned;
885                 size -= unaligned;
886         }
887                 
888         /* handle aligned words */
889         if (size >= 4)
890         {
891                 int aligned = size - (size % 4);
892         
893                 /* use bulk writes above a certain limit. This may have to be changed */
894                 if (aligned > 128)
895                 {
896                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
897                                 return retval;
898                 }
899                 else
900                 {
901                         if ((retval = target->type->write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
902                                 return retval;
903                 }
904                 
905                 buffer += aligned;
906                 address += aligned;
907                 size -= aligned;
908         }
909         
910         /* handle tail writes of less than 4 bytes */
911         if (size > 0)
912         {
913                 if ((retval = target->type->write_memory(target, address, 1, size, buffer)) != ERROR_OK)
914                         return retval;
915         }
916         
917         return ERROR_OK;
918 }
919
920
921 /* Single aligned words are guaranteed to use 16 or 32 bit access 
922  * mode respectively, otherwise data is handled as quickly as 
923  * possible
924  */
925 int target_read_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
926 {
927         int retval;
928         
929         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x", size, address);
930         
931         if (((address % 2) == 0) && (size == 2))
932         {
933                 return target->type->read_memory(target, address, 2, 1, buffer);
934         }
935         
936         /* handle unaligned head bytes */
937         if (address % 4)
938         {
939                 int unaligned = 4 - (address % 4);
940                 
941                 if (unaligned > size)
942                         unaligned = size;
943
944                 if ((retval = target->type->read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
945                         return retval;
946                 
947                 buffer += unaligned;
948                 address += unaligned;
949                 size -= unaligned;
950         }
951                 
952         /* handle aligned words */
953         if (size >= 4)
954         {
955                 int aligned = size - (size % 4);
956         
957                 if ((retval = target->type->read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
958                         return retval;
959                 
960                 buffer += aligned;
961                 address += aligned;
962                 size -= aligned;
963         }
964         
965         /* handle tail writes of less than 4 bytes */
966         if (size > 0)
967         {
968                 if ((retval = target->type->read_memory(target, address, 1, size, buffer)) != ERROR_OK)
969                         return retval;
970         }
971         
972         return ERROR_OK;
973 }
974
975 int target_checksum_memory(struct target_s *target, u32 address, u32 size, u32* crc)
976 {
977         u8 *buffer;
978         int retval;
979         int i;
980         u32 checksum = 0;
981         
982         if ((retval = target->type->checksum_memory(target, address,
983                 size, &checksum)) == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
984         {
985                 buffer = malloc(size);
986                 if (buffer == NULL)
987                 {
988                         LOG_ERROR("error allocating buffer for section (%d bytes)", size);
989                         return ERROR_INVALID_ARGUMENTS;
990                 }
991                 retval = target_read_buffer(target, address, size, buffer);
992                 if (retval != ERROR_OK)
993                 {
994                         free(buffer);
995                         return retval;
996                 }
997
998                 /* convert to target endianess */
999                 for (i = 0; i < (size/sizeof(u32)); i++)
1000                 {
1001                         u32 target_data;
1002                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(u32)]);
1003                         target_buffer_set_u32(target, &buffer[i*sizeof(u32)], target_data);
1004                 }
1005
1006                 retval = image_calculate_checksum( buffer, size, &checksum );
1007                 free(buffer);
1008         }
1009         
1010         *crc = checksum;
1011         
1012         return retval;
1013 }
1014
1015 int target_read_u32(struct target_s *target, u32 address, u32 *value)
1016 {
1017         u8 value_buf[4];
1018
1019         int retval = target->type->read_memory(target, address, 4, 1, value_buf);
1020         
1021         if (retval == ERROR_OK)
1022         {
1023                 *value = target_buffer_get_u32(target, value_buf);
1024                 LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, *value);
1025         }
1026         else
1027         {
1028                 *value = 0x0;
1029                 LOG_DEBUG("address: 0x%8.8x failed", address);
1030         }
1031         
1032         return retval;
1033 }
1034
1035 int target_read_u16(struct target_s *target, u32 address, u16 *value)
1036 {
1037         u8 value_buf[2];
1038         
1039         int retval = target->type->read_memory(target, address, 2, 1, value_buf);
1040         
1041         if (retval == ERROR_OK)
1042         {
1043                 *value = target_buffer_get_u16(target, value_buf);
1044                 LOG_DEBUG("address: 0x%8.8x, value: 0x%4.4x", address, *value);
1045         }
1046         else
1047         {
1048                 *value = 0x0;
1049                 LOG_DEBUG("address: 0x%8.8x failed", address);
1050         }
1051         
1052         return retval;
1053 }
1054
1055 int target_read_u8(struct target_s *target, u32 address, u8 *value)
1056 {
1057         int retval = target->type->read_memory(target, address, 1, 1, value);
1058
1059         if (retval == ERROR_OK)
1060         {
1061                 LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, *value);
1062         }
1063         else
1064         {
1065                 *value = 0x0;
1066                 LOG_DEBUG("address: 0x%8.8x failed", address);
1067         }
1068         
1069         return retval;
1070 }
1071
1072 int target_write_u32(struct target_s *target, u32 address, u32 value)
1073 {
1074         int retval;
1075         u8 value_buf[4];
1076
1077         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1078
1079         target_buffer_set_u32(target, value_buf, value);        
1080         if ((retval = target->type->write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1081         {
1082                 LOG_DEBUG("failed: %i", retval);
1083         }
1084         
1085         return retval;
1086 }
1087
1088 int target_write_u16(struct target_s *target, u32 address, u16 value)
1089 {
1090         int retval;
1091         u8 value_buf[2];
1092         
1093         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1094
1095         target_buffer_set_u16(target, value_buf, value);        
1096         if ((retval = target->type->write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1097         {
1098                 LOG_DEBUG("failed: %i", retval);
1099         }
1100         
1101         return retval;
1102 }
1103
1104 int target_write_u8(struct target_s *target, u32 address, u8 value)
1105 {
1106         int retval;
1107         
1108         LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, value);
1109
1110         if ((retval = target->type->read_memory(target, address, 1, 1, &value)) != ERROR_OK)
1111         {
1112                 LOG_DEBUG("failed: %i", retval);
1113         }
1114         
1115         return retval;
1116 }
1117
1118 int target_register_user_commands(struct command_context_s *cmd_ctx)
1119 {
1120         register_command(cmd_ctx,  NULL, "reg", handle_reg_command, COMMAND_EXEC, NULL);
1121         register_command(cmd_ctx,  NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state");
1122         register_command(cmd_ctx,  NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]");
1123         register_command(cmd_ctx,  NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target");
1124         register_command(cmd_ctx,  NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]");
1125         register_command(cmd_ctx,  NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]");
1126         register_command(cmd_ctx,  NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run|halt|init|run_and_halt|run_and_init]");
1127         register_command(cmd_ctx,  NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset");
1128
1129         register_command(cmd_ctx,  NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words <addr> [count]");
1130         register_command(cmd_ctx,  NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words <addr> [count]");
1131         register_command(cmd_ctx,  NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes <addr> [count]");
1132         
1133         register_command(cmd_ctx,  NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word <addr> <value> [count]");
1134         register_command(cmd_ctx,  NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word <addr> <value> [count]");
1135         register_command(cmd_ctx,  NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte <addr> <value> [count]");
1136         
1137         register_command(cmd_ctx,  NULL, "bp", handle_bp_command, COMMAND_EXEC, "set breakpoint <address> <length> [hw]");      
1138         register_command(cmd_ctx,  NULL, "rbp", handle_rbp_command, COMMAND_EXEC, "remove breakpoint <adress>");
1139         register_command(cmd_ctx,  NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint <address> <length> <r/w/a> [value] [mask]");    
1140         register_command(cmd_ctx,  NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint <adress>");
1141         
1142         register_command(cmd_ctx,  NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> ['bin'|'ihex'|'elf'|'s19']");
1143         register_command(cmd_ctx,  NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>");
1144         register_command(cmd_ctx,  NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image <file> [offset] [type]");
1145         register_command(cmd_ctx,  NULL, "load_binary", handle_load_image_command, COMMAND_EXEC, "[DEPRECATED] load_binary <file> <address>");
1146         register_command(cmd_ctx,  NULL, "dump_binary", handle_dump_image_command, COMMAND_EXEC, "[DEPRECATED] dump_binary <file> <address> <size>");
1147         
1148         target_request_register_commands(cmd_ctx);
1149         trace_register_commands(cmd_ctx);
1150         
1151         return ERROR_OK;
1152 }
1153
1154 int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1155 {
1156         target_t *target = targets;
1157         int count = 0;
1158         
1159         if (argc == 1)
1160         {
1161                 int num = strtoul(args[0], NULL, 0);
1162                 
1163                 while (target)
1164                 {
1165                         count++;
1166                         target = target->next;
1167                 }
1168                 
1169                 if (num < count)
1170                         cmd_ctx->current_target = num;
1171                 else
1172                         command_print(cmd_ctx, "%i is out of bounds, only %i targets are configured", num, count);
1173                         
1174                 return ERROR_OK;
1175         }
1176                 
1177         while (target)
1178         {
1179                 command_print(cmd_ctx, "%i: %s (%s), state: %s", count++, target->type->name, target_endianess_strings[target->endianness], target_state_strings[target->state]);
1180                 target = target->next;
1181         }
1182         
1183         return ERROR_OK;
1184 }
1185
1186 int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1187 {
1188         int i;
1189         int found = 0;
1190         
1191         if (argc < 3)
1192         {
1193                 return ERROR_COMMAND_SYNTAX_ERROR;
1194         }
1195         
1196         /* search for the specified target */
1197         if (args[0] && (args[0][0] != 0))
1198         {
1199                 for (i = 0; target_types[i]; i++)
1200                 {
1201                         if (strcmp(args[0], target_types[i]->name) == 0)
1202                         {
1203                                 target_t **last_target_p = &targets;
1204                                 
1205                                 /* register target specific commands */
1206                                 if (target_types[i]->register_commands(cmd_ctx) != ERROR_OK)
1207                                 {
1208                                         LOG_ERROR("couldn't register '%s' commands", args[0]);
1209                                         exit(-1);
1210                                 }
1211
1212                                 if (*last_target_p)
1213                                 {
1214                                         while ((*last_target_p)->next)
1215                                                 last_target_p = &((*last_target_p)->next);
1216                                         last_target_p = &((*last_target_p)->next);
1217                                 }
1218
1219                                 *last_target_p = malloc(sizeof(target_t));
1220                                 
1221                                 (*last_target_p)->type = target_types[i];
1222                                 
1223                                 if (strcmp(args[1], "big") == 0)
1224                                         (*last_target_p)->endianness = TARGET_BIG_ENDIAN;
1225                                 else if (strcmp(args[1], "little") == 0)
1226                                         (*last_target_p)->endianness = TARGET_LITTLE_ENDIAN;
1227                                 else
1228                                 {
1229                                         LOG_ERROR("endianness must be either 'little' or 'big', not '%s'", args[1]);
1230                                         return ERROR_COMMAND_SYNTAX_ERROR;
1231                                 }
1232                                 
1233                                 /* what to do on a target reset */
1234                                 (*last_target_p)->reset_mode = RESET_INIT; /* default */
1235                                 if (strcmp(args[2], "reset_halt") == 0)
1236                                         (*last_target_p)->reset_mode = RESET_HALT;
1237                                 else if (strcmp(args[2], "reset_run") == 0)
1238                                         (*last_target_p)->reset_mode = RESET_RUN;
1239                                 else if (strcmp(args[2], "reset_init") == 0)
1240                                         (*last_target_p)->reset_mode = RESET_INIT;
1241                                 else if (strcmp(args[2], "run_and_halt") == 0)
1242                                         (*last_target_p)->reset_mode = RESET_RUN_AND_HALT;
1243                                 else if (strcmp(args[2], "run_and_init") == 0)
1244                                         (*last_target_p)->reset_mode = RESET_RUN_AND_INIT;
1245                                 else
1246                                 {
1247                                         /* Kludge! we want to make this reset arg optional while remaining compatible! */
1248                                         args--;
1249                                         argc++;
1250                                 }
1251                                 (*last_target_p)->run_and_halt_time = 1000; /* default 1s */
1252                                 
1253                                 (*last_target_p)->reset_script = NULL;
1254                                 (*last_target_p)->post_halt_script = NULL;
1255                                 (*last_target_p)->pre_resume_script = NULL;
1256                                 (*last_target_p)->gdb_program_script = NULL;
1257                                 
1258                                 (*last_target_p)->working_area = 0x0;
1259                                 (*last_target_p)->working_area_size = 0x0;
1260                                 (*last_target_p)->working_areas = NULL;
1261                                 (*last_target_p)->backup_working_area = 0;
1262                                 
1263                                 (*last_target_p)->state = TARGET_UNKNOWN;
1264                                 (*last_target_p)->debug_reason = DBG_REASON_UNDEFINED;
1265                                 (*last_target_p)->reg_cache = NULL;
1266                                 (*last_target_p)->breakpoints = NULL;
1267                                 (*last_target_p)->watchpoints = NULL;
1268                                 (*last_target_p)->next = NULL;
1269                                 (*last_target_p)->arch_info = NULL;
1270                                 
1271                                 /* initialize trace information */
1272                                 (*last_target_p)->trace_info = malloc(sizeof(trace_t));
1273                                 (*last_target_p)->trace_info->num_trace_points = 0;
1274                                 (*last_target_p)->trace_info->trace_points_size = 0;
1275                                 (*last_target_p)->trace_info->trace_points = NULL;
1276                                 (*last_target_p)->trace_info->trace_history_size = 0;
1277                                 (*last_target_p)->trace_info->trace_history = NULL;
1278                                 (*last_target_p)->trace_info->trace_history_pos = 0;
1279                                 (*last_target_p)->trace_info->trace_history_overflowed = 0;
1280                                 
1281                                 (*last_target_p)->dbgmsg = NULL;
1282                                 (*last_target_p)->dbg_msg_enabled = 0;
1283                                                                 
1284                                 (*last_target_p)->type->target_command(cmd_ctx, cmd, args, argc, *last_target_p);
1285                                 
1286                                 found = 1;
1287                                 break;
1288                         }
1289                 }
1290         }
1291         
1292         /* no matching target found */
1293         if (!found)
1294         {
1295                 LOG_ERROR("target '%s' not found", args[0]);
1296                 return ERROR_COMMAND_SYNTAX_ERROR;
1297         }
1298
1299         return ERROR_OK;
1300 }
1301
1302 /* usage: target_script <target#> <event> <script_file> */
1303 int handle_target_script_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1304 {
1305         target_t *target = NULL;
1306         
1307         if (argc < 3)
1308         {
1309                 LOG_ERROR("incomplete target_script command");
1310                 return ERROR_COMMAND_SYNTAX_ERROR;
1311         }
1312         
1313         target = get_target_by_num(strtoul(args[0], NULL, 0));
1314         
1315         if (!target)
1316         {
1317                 return ERROR_COMMAND_SYNTAX_ERROR;
1318         }
1319         
1320         if (strcmp(args[1], "reset") == 0)
1321         {
1322                 if (target->reset_script)
1323                         free(target->reset_script);
1324                 target->reset_script = strdup(args[2]);
1325         }
1326         else if (strcmp(args[1], "post_halt") == 0)
1327         {
1328                 if (target->post_halt_script)
1329                         free(target->post_halt_script);
1330                 target->post_halt_script = strdup(args[2]);
1331         }
1332         else if (strcmp(args[1], "pre_resume") == 0)
1333         {
1334                 if (target->pre_resume_script)
1335                         free(target->pre_resume_script);
1336                 target->pre_resume_script = strdup(args[2]);
1337         }
1338         else if (strcmp(args[1], "gdb_program_config") == 0)
1339         {
1340                 if (target->gdb_program_script)
1341                         free(target->gdb_program_script);
1342                 target->gdb_program_script = strdup(args[2]);
1343         }
1344         else
1345         {
1346                 LOG_ERROR("unknown event type: '%s", args[1]);
1347                 return ERROR_COMMAND_SYNTAX_ERROR;
1348         }
1349         
1350         return ERROR_OK;
1351 }
1352
1353 int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1354 {
1355         target_t *target = NULL;
1356         
1357         if (argc < 2)
1358         {
1359                 return ERROR_COMMAND_SYNTAX_ERROR;
1360         }
1361         
1362         target = get_target_by_num(strtoul(args[0], NULL, 0));
1363         if (!target)
1364         {
1365                 return ERROR_COMMAND_SYNTAX_ERROR;
1366         }
1367         
1368         target->run_and_halt_time = strtoul(args[1], NULL, 0);
1369         
1370         return ERROR_OK;
1371 }
1372
1373 int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1374 {
1375         target_t *target = NULL;
1376         
1377         if ((argc < 4) || (argc > 5))
1378         {
1379                 return ERROR_COMMAND_SYNTAX_ERROR;
1380         }
1381         
1382         target = get_target_by_num(strtoul(args[0], NULL, 0));
1383         if (!target)
1384         {
1385                 return ERROR_COMMAND_SYNTAX_ERROR;
1386         }
1387         target_free_all_working_areas(target);
1388         
1389         target->working_area_phys = target->working_area_virt = strtoul(args[1], NULL, 0);
1390         if (argc == 5)
1391         {
1392                 target->working_area_virt = strtoul(args[4], NULL, 0);
1393         }
1394         target->working_area_size = strtoul(args[2], NULL, 0);
1395         
1396         if (strcmp(args[3], "backup") == 0)
1397         {
1398                 target->backup_working_area = 1;
1399         }
1400         else if (strcmp(args[3], "nobackup") == 0)
1401         {
1402                 target->backup_working_area = 0;
1403         }
1404         else
1405         {
1406                 LOG_ERROR("unrecognized <backup|nobackup> argument (%s)", args[3]);
1407                 return ERROR_COMMAND_SYNTAX_ERROR;
1408         }
1409         
1410         return ERROR_OK;
1411 }
1412
1413
1414 /* process target state changes */
1415 int handle_target(void *priv)
1416 {
1417         int retval;
1418         target_t *target = targets;
1419         
1420         while (target)
1421         {
1422                 /* only poll if target isn't already halted */
1423                 if (target->state != TARGET_HALTED)
1424                 {
1425                         if (target_continous_poll)
1426                                 if ((retval = target->type->poll(target)) != ERROR_OK)
1427                                 {
1428                                         LOG_ERROR("couldn't poll target(%d). It's due for a reset.", retval);
1429                                 }
1430                 }
1431         
1432                 target = target->next;
1433         }
1434         
1435         return ERROR_OK;
1436 }
1437
1438 int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1439 {
1440         target_t *target;
1441         reg_t *reg = NULL;
1442         int count = 0;
1443         char *value;
1444         
1445         LOG_DEBUG("-");
1446         
1447         target = get_current_target(cmd_ctx);
1448         
1449         /* list all available registers for the current target */
1450         if (argc == 0)
1451         {
1452                 reg_cache_t *cache = target->reg_cache;
1453                 
1454                 count = 0;
1455                 while(cache)
1456                 {
1457                         int i;
1458                         for (i = 0; i < cache->num_regs; i++)
1459                         {
1460                                 value = buf_to_str(cache->reg_list[i].value, cache->reg_list[i].size, 16);
1461                                 command_print(cmd_ctx, "(%i) %s (/%i): 0x%s (dirty: %i, valid: %i)", count++, cache->reg_list[i].name, cache->reg_list[i].size, value, cache->reg_list[i].dirty, cache->reg_list[i].valid);
1462                                 free(value);
1463                         }
1464                         cache = cache->next;
1465                 }
1466                 
1467                 return ERROR_OK;
1468         }
1469         
1470         /* access a single register by its ordinal number */
1471         if ((args[0][0] >= '0') && (args[0][0] <= '9'))
1472         {
1473                 int num = strtoul(args[0], NULL, 0);
1474                 reg_cache_t *cache = target->reg_cache;
1475                 
1476                 count = 0;
1477                 while(cache)
1478                 {
1479                         int i;
1480                         for (i = 0; i < cache->num_regs; i++)
1481                         {
1482                                 if (count++ == num)
1483                                 {
1484                                         reg = &cache->reg_list[i];
1485                                         break;
1486                                 }
1487                         }
1488                         if (reg)
1489                                 break;
1490                         cache = cache->next;
1491                 }
1492                 
1493                 if (!reg)
1494                 {
1495                         command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1496                         return ERROR_OK;
1497                 }
1498         } else /* access a single register by its name */
1499         {
1500                 reg = register_get_by_name(target->reg_cache, args[0], 1);
1501                 
1502                 if (!reg)
1503                 {
1504                         command_print(cmd_ctx, "register %s not found in current target", args[0]);
1505                         return ERROR_OK;
1506                 }
1507         }
1508
1509         /* display a register */
1510         if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
1511         {
1512                 if ((argc == 2) && (strcmp(args[1], "force") == 0))
1513                         reg->valid = 0;
1514                 
1515                 if (reg->valid == 0)
1516                 {
1517                         reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1518                         if (arch_type == NULL)
1519                         {
1520                                 LOG_ERROR("BUG: encountered unregistered arch type");
1521                                 return ERROR_OK;
1522                         }
1523                         arch_type->get(reg);
1524                 }
1525                 value = buf_to_str(reg->value, reg->size, 16);
1526                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1527                 free(value);
1528                 return ERROR_OK;
1529         }
1530         
1531         /* set register value */
1532         if (argc == 2)
1533         {
1534                 u8 *buf = malloc(CEIL(reg->size, 8));
1535                 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
1536
1537                 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1538                 if (arch_type == NULL)
1539                 {
1540                         LOG_ERROR("BUG: encountered unregistered arch type");
1541                         return ERROR_OK;
1542                 }
1543                 
1544                 arch_type->set(reg, buf);
1545                 
1546                 value = buf_to_str(reg->value, reg->size, 16);
1547                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1548                 free(value);
1549                 
1550                 free(buf);
1551                 
1552                 return ERROR_OK;
1553         }
1554         
1555         command_print(cmd_ctx, "usage: reg <#|name> [value]");
1556         
1557         return ERROR_OK;
1558 }
1559
1560 static int wait_state(struct command_context_s *cmd_ctx, char *cmd, enum target_state state, int ms);
1561
1562 int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1563 {
1564         target_t *target = get_current_target(cmd_ctx);
1565
1566         if (argc == 0)
1567         {
1568                 target->type->poll(target);
1569                 target_arch_state(target);
1570         }
1571         else
1572         {
1573                 if (strcmp(args[0], "on") == 0)
1574                 {
1575                         target_continous_poll = 1;
1576                 }
1577                 else if (strcmp(args[0], "off") == 0)
1578                 {
1579                         target_continous_poll = 0;
1580                 }
1581                 else
1582                 {
1583                         command_print(cmd_ctx, "arg is \"on\" or \"off\"");
1584                 }
1585         }
1586         
1587         
1588         return ERROR_OK;
1589 }
1590
1591 int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1592 {
1593         int ms = 5000;
1594         
1595         if (argc > 0)
1596         {
1597                 char *end;
1598
1599                 ms = strtoul(args[0], &end, 0) * 1000;
1600                 if (*end)
1601                 {
1602                         command_print(cmd_ctx, "usage: %s [seconds]", cmd);
1603                         return ERROR_OK;
1604                 }
1605         }
1606
1607         return wait_state(cmd_ctx, cmd, TARGET_HALTED, ms); 
1608 }
1609
1610 static void target_process_events(struct command_context_s *cmd_ctx)
1611 {
1612         target_t *target = get_current_target(cmd_ctx);
1613         target->type->poll(target);
1614         target_call_timer_callbacks_now();
1615 }
1616
1617 static int wait_state(struct command_context_s *cmd_ctx, char *cmd, enum target_state state, int ms)
1618 {
1619         int retval;
1620         struct timeval timeout, now;
1621         int once=1;
1622         gettimeofday(&timeout, NULL);
1623         timeval_add_time(&timeout, 0, ms * 1000);
1624         
1625         target_t *target = get_current_target(cmd_ctx);
1626         for (;;)
1627         {
1628                 if ((retval=target->type->poll(target))!=ERROR_OK)
1629                         return retval;
1630                 target_call_timer_callbacks_now();
1631                 if (target->state == state)
1632                 {
1633                         break;
1634                 }
1635                 if (once)
1636                 {
1637                         once=0;
1638                         command_print(cmd_ctx, "waiting for target %s...", target_state_strings[state]);
1639                 }
1640                 
1641                 gettimeofday(&now, NULL);
1642                 if ((now.tv_sec > timeout.tv_sec) || ((now.tv_sec == timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
1643                 {
1644                         LOG_ERROR("timed out while waiting for target %s", target_state_strings[state]);
1645                         break;
1646                 }
1647         }
1648         
1649         return ERROR_OK;
1650 }
1651
1652 int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1653 {
1654         int retval;
1655         target_t *target = get_current_target(cmd_ctx);
1656
1657         LOG_DEBUG("-");
1658
1659         if ((retval = target->type->halt(target)) != ERROR_OK)
1660         {
1661                 return retval;
1662         }
1663         
1664         return handle_wait_halt_command(cmd_ctx, cmd, args, argc);
1665 }
1666
1667                 
1668 int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1669 {
1670         target_t *target = get_current_target(cmd_ctx);
1671         
1672         LOG_USER("requesting target halt and executing a soft reset");
1673         
1674         target->type->soft_reset_halt(target);
1675         
1676         return ERROR_OK;
1677 }
1678
1679 int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1680 {
1681         target_t *target = get_current_target(cmd_ctx);
1682         enum target_reset_mode reset_mode = target->reset_mode;
1683         enum target_reset_mode save = target->reset_mode;
1684         
1685         LOG_DEBUG("-");
1686         
1687         if (argc >= 1)
1688         {
1689                 if (strcmp("run", args[0]) == 0)
1690                         reset_mode = RESET_RUN;
1691                 else if (strcmp("halt", args[0]) == 0)
1692                         reset_mode = RESET_HALT;
1693                 else if (strcmp("init", args[0]) == 0)
1694                         reset_mode = RESET_INIT;
1695                 else if (strcmp("run_and_halt", args[0]) == 0)
1696                 {
1697                         reset_mode = RESET_RUN_AND_HALT;
1698                         if (argc >= 2)
1699                         {
1700                                 target->run_and_halt_time = strtoul(args[1], NULL, 0);
1701                         }
1702                 }
1703                 else if (strcmp("run_and_init", args[0]) == 0)
1704                 {
1705                         reset_mode = RESET_RUN_AND_INIT;
1706                         if (argc >= 2)
1707                         {
1708                                 target->run_and_halt_time = strtoul(args[1], NULL, 0);
1709                         }
1710                 }
1711                 else
1712                 {
1713                         command_print(cmd_ctx, "usage: reset ['run', 'halt', 'init', 'run_and_halt', 'run_and_init]");
1714                         return ERROR_OK;
1715                 }
1716         }
1717         
1718         /* temporarily modify mode of current reset target */
1719         target->reset_mode = reset_mode;
1720
1721         /* reset *all* targets */
1722         target_process_reset(cmd_ctx);
1723         
1724         /* Restore default reset mode for this target */
1725     target->reset_mode = save;
1726         
1727         return ERROR_OK;
1728 }
1729
1730 int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1731 {
1732         int retval;
1733         target_t *target = get_current_target(cmd_ctx);
1734         
1735         if (argc == 0)
1736                 retval = target->type->resume(target, 1, 0, 1, 0); /* current pc, addr = 0, handle breakpoints, not debugging */
1737         else if (argc == 1)
1738                 retval = target->type->resume(target, 0, strtoul(args[0], NULL, 0), 1, 0); /* addr = args[0], handle breakpoints, not debugging */
1739         else
1740         {
1741                 return ERROR_COMMAND_SYNTAX_ERROR;
1742         }
1743
1744         target_process_events(cmd_ctx);
1745         
1746         return retval;
1747 }
1748
1749 int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1750 {
1751         target_t *target = get_current_target(cmd_ctx);
1752         
1753         LOG_DEBUG("-");
1754         
1755         if (argc == 0)
1756                 target->type->step(target, 1, 0, 1); /* current pc, addr = 0, handle breakpoints */
1757
1758         if (argc == 1)
1759                 target->type->step(target, 0, strtoul(args[0], NULL, 0), 1); /* addr = args[0], handle breakpoints */
1760         
1761         return ERROR_OK;
1762 }
1763
1764 int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1765 {
1766         const int line_bytecnt = 32;
1767         int count = 1;
1768         int size = 4;
1769         u32 address = 0;
1770         int line_modulo;
1771         int i;
1772
1773         char output[128];
1774         int output_len;
1775
1776         int retval;
1777
1778         u8 *buffer;
1779         target_t *target = get_current_target(cmd_ctx);
1780
1781         if (argc < 1)
1782                 return ERROR_OK;
1783
1784         if (argc == 2)
1785                 count = strtoul(args[1], NULL, 0);
1786
1787         address = strtoul(args[0], NULL, 0);
1788         
1789
1790         switch (cmd[2])
1791         {
1792                 case 'w':
1793                         size = 4; line_modulo = line_bytecnt / 4;
1794                         break;
1795                 case 'h':
1796                         size = 2; line_modulo = line_bytecnt / 2;
1797                         break;
1798                 case 'b':
1799                         size = 1; line_modulo = line_bytecnt / 1;
1800                         break;
1801                 default:
1802                         return ERROR_OK;
1803         }
1804
1805         buffer = calloc(count, size);
1806         retval  = target->type->read_memory(target, address, size, count, buffer);
1807         if (retval == ERROR_OK)
1808         {
1809                 output_len = 0;
1810         
1811                 for (i = 0; i < count; i++)
1812                 {
1813                         if (i%line_modulo == 0)
1814                                 output_len += snprintf(output + output_len, 128 - output_len, "0x%8.8x: ", address + (i*size));
1815                         
1816                         switch (size)
1817                         {
1818                                 case 4:
1819                                         output_len += snprintf(output + output_len, 128 - output_len, "%8.8x ", target_buffer_get_u32(target, &buffer[i*4]));
1820                                         break;
1821                                 case 2:
1822                                         output_len += snprintf(output + output_len, 128 - output_len, "%4.4x ", target_buffer_get_u16(target, &buffer[i*2]));
1823                                         break;
1824                                 case 1:
1825                                         output_len += snprintf(output + output_len, 128 - output_len, "%2.2x ", buffer[i*1]);
1826                                         break;
1827                         }
1828         
1829                         if ((i%line_modulo == line_modulo-1) || (i == count - 1))
1830                         {
1831                                 command_print(cmd_ctx, output);
1832                                 output_len = 0;
1833                         }
1834                 }
1835         } else
1836         {
1837                 LOG_ERROR("Failure examining memory");
1838         }
1839
1840         free(buffer);
1841         
1842         return ERROR_OK;
1843 }
1844
1845 int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1846 {
1847         u32 address = 0;
1848         u32 value = 0;
1849         int count = 1;
1850         int i;
1851         int wordsize;
1852         target_t *target = get_current_target(cmd_ctx);
1853         u8 value_buf[4];
1854
1855          if ((argc < 2) || (argc > 3))
1856                 return ERROR_COMMAND_SYNTAX_ERROR;
1857
1858         address = strtoul(args[0], NULL, 0);
1859         value = strtoul(args[1], NULL, 0);
1860         if (argc == 3)
1861                 count = strtoul(args[2], NULL, 0);
1862
1863
1864         switch (cmd[2])
1865         {
1866                 case 'w':
1867                         wordsize = 4;
1868                         target_buffer_set_u32(target, value_buf, value);
1869                         break;
1870                 case 'h':
1871                         wordsize = 2;
1872                         target_buffer_set_u16(target, value_buf, value);
1873                         break;
1874                 case 'b':
1875                         wordsize = 1;
1876                         value_buf[0] = value;
1877                         break;
1878                 default:
1879                         return ERROR_COMMAND_SYNTAX_ERROR;
1880         }
1881         for (i=0; i<count; i++)
1882         {
1883                 int retval;
1884                 switch (wordsize)
1885                 {
1886                         case 4:
1887                                 retval = target->type->write_memory(target, address + i*wordsize, 4, 1, value_buf);
1888                                 break;
1889                         case 2:
1890                                 retval = target->type->write_memory(target, address + i*wordsize, 2, 1, value_buf);
1891                                 break;
1892                         case 1:
1893                                 retval = target->type->write_memory(target, address + i*wordsize, 1, 1, value_buf);
1894                         break;
1895                         default:
1896                         return ERROR_OK;
1897                 }
1898                 if (retval!=ERROR_OK)
1899                 {
1900                         return retval;
1901                 }
1902         }
1903
1904         return ERROR_OK;
1905
1906 }
1907
1908 int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1909 {
1910         u8 *buffer;
1911         u32 buf_cnt;
1912         u32 image_size;
1913         int i;
1914         int retval;
1915
1916         image_t image;  
1917         
1918         duration_t duration;
1919         char *duration_text;
1920         
1921         target_t *target = get_current_target(cmd_ctx);
1922
1923         if (argc < 1)
1924         {
1925                 command_print(cmd_ctx, "usage: load_image <filename> [address] [type]");
1926                 return ERROR_OK;
1927         }
1928         
1929         /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
1930         if (argc >= 2)
1931         {
1932                 image.base_address_set = 1;
1933                 image.base_address = strtoul(args[1], NULL, 0);
1934         }
1935         else
1936         {
1937                 image.base_address_set = 0;
1938         }
1939         
1940         image.start_address_set = 0;
1941
1942         duration_start_measure(&duration);
1943         
1944         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
1945         {
1946                 return ERROR_OK;
1947         }
1948         
1949         image_size = 0x0;
1950         retval = ERROR_OK;
1951         for (i = 0; i < image.num_sections; i++)
1952         {
1953                 buffer = malloc(image.sections[i].size);
1954                 if (buffer == NULL)
1955                 {
1956                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
1957                         break;
1958                 }
1959                 
1960                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
1961                 {
1962                         free(buffer);
1963                         break;
1964                 }
1965                 if ((retval = target_write_buffer(target, image.sections[i].base_address, buf_cnt, buffer)) != ERROR_OK)
1966                 {
1967                         free(buffer);
1968                         break;
1969                 }
1970                 image_size += buf_cnt;
1971                 command_print(cmd_ctx, "%u byte written at address 0x%8.8x", buf_cnt, image.sections[i].base_address);
1972                 
1973                 free(buffer);
1974         }
1975
1976         duration_stop_measure(&duration, &duration_text);
1977         if (retval==ERROR_OK)
1978         {
1979                 command_print(cmd_ctx, "downloaded %u byte in %s", image_size, duration_text);
1980         }
1981         free(duration_text);
1982         
1983         image_close(&image);
1984
1985         return retval;
1986
1987 }
1988
1989 int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1990 {
1991         fileio_t fileio;
1992         
1993         u32 address;
1994         u32 size;
1995         u8 buffer[560];
1996         int retval=ERROR_OK;
1997         
1998         duration_t duration;
1999         char *duration_text;
2000         
2001         target_t *target = get_current_target(cmd_ctx);
2002
2003         if (argc != 3)
2004         {
2005                 command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
2006                 return ERROR_OK;
2007         }
2008
2009         address = strtoul(args[1], NULL, 0);
2010         size = strtoul(args[2], NULL, 0);
2011
2012         if ((address & 3) || (size & 3))
2013         {
2014                 command_print(cmd_ctx, "only 32-bit aligned address and size are supported");
2015                 return ERROR_OK;
2016         }
2017         
2018         if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2019         {
2020                 return ERROR_OK;
2021         }
2022         
2023         duration_start_measure(&duration);
2024         
2025         while (size > 0)
2026         {
2027                 u32 size_written;
2028                 u32 this_run_size = (size > 560) ? 560 : size;
2029                 
2030                 retval = target->type->read_memory(target, address, 4, this_run_size / 4, buffer);
2031                 if (retval != ERROR_OK)
2032                 {
2033                         break;
2034                 }
2035                 
2036                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2037                 if (retval != ERROR_OK)
2038                 {
2039                         break;
2040                 }
2041                 
2042                 size -= this_run_size;
2043                 address += this_run_size;
2044         }
2045
2046         fileio_close(&fileio);
2047
2048         duration_stop_measure(&duration, &duration_text);
2049         if (retval==ERROR_OK)
2050         {
2051                 command_print(cmd_ctx, "dumped %"PRIi64" byte in %s", fileio.size, duration_text);
2052         }
2053         free(duration_text);
2054         
2055         return ERROR_OK;
2056 }
2057
2058 int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2059 {
2060         u8 *buffer;
2061         u32 buf_cnt;
2062         u32 image_size;
2063         int i;
2064         int retval;
2065         u32 checksum = 0;
2066         u32 mem_checksum = 0;
2067
2068         image_t image;  
2069         
2070         duration_t duration;
2071         char *duration_text;
2072         
2073         target_t *target = get_current_target(cmd_ctx);
2074         
2075         if (argc < 1)
2076         {
2077                 return ERROR_COMMAND_SYNTAX_ERROR;
2078         }
2079         
2080         if (!target)
2081         {
2082                 LOG_ERROR("no target selected");
2083                 return ERROR_FAIL;
2084         }
2085         
2086         duration_start_measure(&duration);
2087         
2088         if (argc >= 2)
2089         {
2090                 image.base_address_set = 1;
2091                 image.base_address = strtoul(args[1], NULL, 0);
2092         }
2093         else
2094         {
2095                 image.base_address_set = 0;
2096                 image.base_address = 0x0;
2097         }
2098
2099         image.start_address_set = 0;
2100
2101         if ((retval=image_open(&image, args[0], (argc == 3) ? args[2] : NULL)) != ERROR_OK)
2102         {
2103                 return retval;
2104         }
2105         
2106         image_size = 0x0;
2107         retval=ERROR_OK;
2108         for (i = 0; i < image.num_sections; i++)
2109         {
2110                 buffer = malloc(image.sections[i].size);
2111                 if (buffer == NULL)
2112                 {
2113                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2114                         break;
2115                 }
2116                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2117                 {
2118                         free(buffer);
2119                         break;
2120                 }
2121                 
2122                 /* calculate checksum of image */
2123                 image_calculate_checksum( buffer, buf_cnt, &checksum );
2124                 
2125                 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2126                 if( retval != ERROR_OK )
2127                 {
2128                         free(buffer);
2129                         break;
2130                 }
2131                 
2132                 if( checksum != mem_checksum )
2133                 {
2134                         /* failed crc checksum, fall back to a binary compare */
2135                         u8 *data;
2136                         
2137                         command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
2138                         
2139                         data = (u8*)malloc(buf_cnt);
2140                         
2141                         /* Can we use 32bit word accesses? */
2142                         int size = 1;
2143                         int count = buf_cnt;
2144                         if ((count % 4) == 0)
2145                         {
2146                                 size *= 4;
2147                                 count /= 4;
2148                         }
2149                         retval = target->type->read_memory(target, image.sections[i].base_address, size, count, data);
2150                         if (retval == ERROR_OK)
2151                         {
2152                                 int t;
2153                                 for (t = 0; t < buf_cnt; t++)
2154                                 {
2155                                         if (data[t] != buffer[t])
2156                                         {
2157                                                 command_print(cmd_ctx, "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n", t + image.sections[i].base_address, data[t], buffer[t]);
2158                                                 free(data);
2159                                                 free(buffer);
2160                                                 retval=ERROR_FAIL;
2161                                                 goto done;
2162                                         }
2163                                 }
2164                         }
2165                         
2166                         free(data);
2167                 }
2168                 
2169                 free(buffer);
2170                 image_size += buf_cnt;
2171         }
2172 done:   
2173         duration_stop_measure(&duration, &duration_text);
2174         if (retval==ERROR_OK)
2175         {
2176                 command_print(cmd_ctx, "verified %u bytes in %s", image_size, duration_text);
2177         }
2178         free(duration_text);
2179         
2180         image_close(&image);
2181         
2182         return retval;
2183 }
2184
2185 int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2186 {
2187         int retval;
2188         target_t *target = get_current_target(cmd_ctx);
2189
2190         if (argc == 0)
2191         {
2192                 breakpoint_t *breakpoint = target->breakpoints;
2193
2194                 while (breakpoint)
2195                 {
2196                         if (breakpoint->type == BKPT_SOFT)
2197                         {
2198                                 char* buf = buf_to_str(breakpoint->orig_instr, breakpoint->length, 16);
2199                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i, 0x%s", breakpoint->address, breakpoint->length, breakpoint->set, buf);
2200                                 free(buf);
2201                         }
2202                         else
2203                         {
2204                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i", breakpoint->address, breakpoint->length, breakpoint->set);
2205                         }
2206                         breakpoint = breakpoint->next;
2207                 }
2208         }
2209         else if (argc >= 2)
2210         {
2211                 int hw = BKPT_SOFT;
2212                 u32 length = 0;
2213
2214                 length = strtoul(args[1], NULL, 0);
2215                 
2216                 if (argc >= 3)
2217                         if (strcmp(args[2], "hw") == 0)
2218                                 hw = BKPT_HARD;
2219
2220                 if ((retval = breakpoint_add(target, strtoul(args[0], NULL, 0), length, hw)) != ERROR_OK)
2221                 {
2222                         LOG_ERROR("Failure setting breakpoints");
2223                 }
2224                 else
2225                 {
2226                         command_print(cmd_ctx, "breakpoint added at address 0x%8.8x", strtoul(args[0], NULL, 0));
2227                 }
2228         }
2229         else
2230         {
2231                 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
2232         }
2233
2234         return ERROR_OK;
2235 }
2236
2237 int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2238 {
2239         target_t *target = get_current_target(cmd_ctx);
2240
2241         if (argc > 0)
2242                 breakpoint_remove(target, strtoul(args[0], NULL, 0));
2243
2244         return ERROR_OK;
2245 }
2246
2247 int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2248 {
2249         target_t *target = get_current_target(cmd_ctx);
2250         int retval;
2251
2252         if (argc == 0)
2253         {
2254                 watchpoint_t *watchpoint = target->watchpoints;
2255
2256                 while (watchpoint)
2257                 {
2258                         command_print(cmd_ctx, "address: 0x%8.8x, mask: 0x%8.8x, r/w/a: %i, value: 0x%8.8x, mask: 0x%8.8x", watchpoint->address, watchpoint->length, watchpoint->rw, watchpoint->value, watchpoint->mask);
2259                         watchpoint = watchpoint->next;
2260                 }
2261         } 
2262         else if (argc >= 2)
2263         {
2264                 enum watchpoint_rw type = WPT_ACCESS;
2265                 u32 data_value = 0x0;
2266                 u32 data_mask = 0xffffffff;
2267                 
2268                 if (argc >= 3)
2269                 {
2270                         switch(args[2][0])
2271                         {
2272                                 case 'r':
2273                                         type = WPT_READ;
2274                                         break;
2275                                 case 'w':
2276                                         type = WPT_WRITE;
2277                                         break;
2278                                 case 'a':
2279                                         type = WPT_ACCESS;
2280                                         break;
2281                                 default:
2282                                         command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2283                                         return ERROR_OK;
2284                         }
2285                 }
2286                 if (argc >= 4)
2287                 {
2288                         data_value = strtoul(args[3], NULL, 0);
2289                 }
2290                 if (argc >= 5)
2291                 {
2292                         data_mask = strtoul(args[4], NULL, 0);
2293                 }
2294                 
2295                 if ((retval = watchpoint_add(target, strtoul(args[0], NULL, 0),
2296                                 strtoul(args[1], NULL, 0), type, data_value, data_mask)) != ERROR_OK)
2297                 {
2298                         LOG_ERROR("Failure setting breakpoints");
2299                 }
2300         }
2301         else
2302         {
2303                 command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2304         }
2305                 
2306         return ERROR_OK;
2307 }
2308
2309 int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2310 {
2311         target_t *target = get_current_target(cmd_ctx);
2312
2313         if (argc > 0)
2314                 watchpoint_remove(target, strtoul(args[0], NULL, 0));
2315         
2316         return ERROR_OK;
2317 }
2318
2319 int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc)
2320 {
2321         int retval;
2322         target_t *target = get_current_target(cmd_ctx);
2323         u32 va;
2324         u32 pa;
2325
2326         if (argc != 1)
2327         {
2328                 return ERROR_COMMAND_SYNTAX_ERROR;
2329         }
2330         va = strtoul(args[0], NULL, 0);
2331
2332         retval = target->type->virt2phys(target, va, &pa);
2333         if (retval == ERROR_OK)
2334         {
2335                 command_print(cmd_ctx, "Physical address 0x%08x", pa);
2336         }
2337         else
2338         {
2339                 /* lower levels will have logged a detailed error which is 
2340                  * forwarded to telnet/GDB session.  
2341                  */
2342         }
2343         return retval;
2344 }
2345 static void writeLong(FILE *f, int l)
2346 {
2347         int i;
2348         for (i=0; i<4; i++)
2349         {
2350                 char c=(l>>(i*8))&0xff;
2351                 fwrite(&c, 1, 1, f); 
2352         }
2353         
2354 }
2355 static void writeString(FILE *f, char *s)
2356 {
2357         fwrite(s, 1, strlen(s), f); 
2358 }
2359
2360
2361
2362 // Dump a gmon.out histogram file.
2363 static void writeGmon(u32 *samples, int sampleNum, char *filename)
2364 {
2365         int i;
2366         FILE *f=fopen(filename, "w");
2367         if (f==NULL)
2368                 return;
2369         fwrite("gmon", 1, 4, f);
2370         writeLong(f, 0x00000001); // Version
2371         writeLong(f, 0); // padding
2372         writeLong(f, 0); // padding
2373         writeLong(f, 0); // padding
2374                                 
2375         fwrite("", 1, 1, f);  // GMON_TAG_TIME_HIST 
2376
2377         // figure out bucket size
2378         u32 min=samples[0];
2379         u32 max=samples[0];
2380         for (i=0; i<sampleNum; i++)
2381         {
2382                 if (min>samples[i])
2383                 {
2384                         min=samples[i];
2385                 }
2386                 if (max<samples[i])
2387                 {
2388                         max=samples[i];
2389                 }
2390         }
2391
2392         int addressSpace=(max-min+1);
2393         
2394         static int const maxBuckets=256*1024; // maximum buckets.
2395         int length=addressSpace;
2396         if (length > maxBuckets)
2397         {
2398                 length=maxBuckets; 
2399         }
2400         int *buckets=malloc(sizeof(int)*length);
2401         if (buckets==NULL)
2402         {
2403                 fclose(f);
2404                 return;
2405         }
2406         memset(buckets, 0, sizeof(int)*length);
2407         for (i=0; i<sampleNum;i++)
2408         {
2409                 u32 address=samples[i];
2410                 long long a=address-min;
2411                 long long b=length-1;
2412                 long long c=addressSpace-1;
2413                 int index=(a*b)/c; // danger!!!! int32 overflows 
2414                 buckets[index]++;
2415         }
2416         
2417         //                         append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr))
2418         writeLong(f, min);                                      // low_pc
2419         writeLong(f, max);              // high_pc
2420         writeLong(f, length);           // # of samples
2421         writeLong(f, 64000000);                         // 64MHz
2422         writeString(f, "seconds");
2423         for (i=0; i<(15-strlen("seconds")); i++)
2424         {
2425                 fwrite("", 1, 1, f);  // padding
2426         }
2427         writeString(f, "s");
2428                 
2429 //                         append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size)
2430         
2431         char *data=malloc(2*length);
2432         if (data!=NULL)
2433         {
2434                 for (i=0; i<length;i++)
2435                 {
2436                         int val;
2437                         val=buckets[i];
2438                         if (val>65535)
2439                         {
2440                                 val=65535;
2441                         }
2442                         data[i*2]=val&0xff;
2443                         data[i*2+1]=(val>>8)&0xff;
2444                 }
2445                 free(buckets);
2446                 fwrite(data, 1, length*2, f);
2447                 free(data);
2448         } else
2449         {
2450                 free(buckets);
2451         }
2452
2453         fclose(f);
2454 }
2455
2456 /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
2457 int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2458 {
2459         target_t *target = get_current_target(cmd_ctx);
2460         struct timeval timeout, now;
2461         
2462         gettimeofday(&timeout, NULL);
2463         if (argc!=2)
2464         {
2465                 return ERROR_COMMAND_SYNTAX_ERROR;
2466         }
2467         char *end;
2468         timeval_add_time(&timeout, strtoul(args[0], &end, 0), 0);
2469         if (*end) 
2470         {
2471                 return ERROR_OK;
2472         }
2473         
2474         command_print(cmd_ctx, "Starting profiling. Halting and resuming the target as often as we can...");
2475
2476         static const int maxSample=10000;
2477         u32 *samples=malloc(sizeof(u32)*maxSample);
2478         if (samples==NULL)
2479                 return ERROR_OK;
2480         
2481         int numSamples=0;
2482         int retval=ERROR_OK;
2483         // hopefully it is safe to cache! We want to stop/restart as quickly as possible.
2484         reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1);
2485         
2486         for (;;)
2487         {
2488                 target->type->poll(target);
2489                 if (target->state == TARGET_HALTED)
2490                 {
2491                         u32 t=*((u32 *)reg->value);
2492                         samples[numSamples++]=t;
2493                         retval = target->type->resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2494                         target->type->poll(target);
2495                         usleep(10*1000); // sleep 10ms, i.e. <100 samples/second.
2496                 } else if (target->state == TARGET_RUNNING)
2497                 {
2498                         // We want to quickly sample the PC.
2499                         target->type->halt(target);
2500                 } else
2501                 {
2502                         command_print(cmd_ctx, "Target not halted or running");
2503                         retval=ERROR_OK;
2504                         break;
2505                 }
2506                 if (retval!=ERROR_OK)
2507                 {
2508                         break;
2509                 }
2510                 
2511                 gettimeofday(&now, NULL);
2512                 if ((numSamples>=maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
2513                 {
2514                         command_print(cmd_ctx, "Profiling completed. %d samples.", numSamples);
2515                         target->type->poll(target);
2516                         if (target->state == TARGET_HALTED)
2517                         {
2518                                 target->type->resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2519                         }
2520                         target->type->poll(target);
2521                         writeGmon(samples, numSamples, args[1]);
2522                         command_print(cmd_ctx, "Wrote %s", args[1]);
2523                         break;
2524                 }
2525         }
2526         free(samples);
2527         
2528         return ERROR_OK;
2529 }
2530