openocd: fix simple cases of NULL comparison
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2010 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   Copyright (C) 2011 by Broadcom Corporation                            *
18  *   Evan Hunter - ehunter@broadcom.com                                    *
19  *                                                                         *
20  *   Copyright (C) ST-Ericsson SA 2011                                     *
21  *   michel.jaouen@stericsson.com : smp minimum support                    *
22  *                                                                         *
23  *   Copyright (C) 2011 Andreas Fritiofson                                 *
24  *   andreas.fritiofson@gmail.com                                          *
25  *                                                                         *
26  *   This program is free software; you can redistribute it and/or modify  *
27  *   it under the terms of the GNU General Public License as published by  *
28  *   the Free Software Foundation; either version 2 of the License, or     *
29  *   (at your option) any later version.                                   *
30  *                                                                         *
31  *   This program is distributed in the hope that it will be useful,       *
32  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
33  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
34  *   GNU General Public License for more details.                          *
35  *                                                                         *
36  *   You should have received a copy of the GNU General Public License     *
37  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
38  ***************************************************************************/
39
40 #ifdef HAVE_CONFIG_H
41 #include "config.h"
42 #endif
43
44 #include <helper/time_support.h>
45 #include <jtag/jtag.h>
46 #include <flash/nor/core.h>
47
48 #include "target.h"
49 #include "target_type.h"
50 #include "target_request.h"
51 #include "breakpoints.h"
52 #include "register.h"
53 #include "trace.h"
54 #include "image.h"
55 #include "rtos/rtos.h"
56 #include "transport/transport.h"
57 #include "arm_cti.h"
58
59 /* default halt wait timeout (ms) */
60 #define DEFAULT_HALT_TIMEOUT 5000
61
62 static int target_read_buffer_default(struct target *target, target_addr_t address,
63                 uint32_t count, uint8_t *buffer);
64 static int target_write_buffer_default(struct target *target, target_addr_t address,
65                 uint32_t count, const uint8_t *buffer);
66 static int target_array2mem(Jim_Interp *interp, struct target *target,
67                 int argc, Jim_Obj * const *argv);
68 static int target_mem2array(Jim_Interp *interp, struct target *target,
69                 int argc, Jim_Obj * const *argv);
70 static int target_register_user_commands(struct command_context *cmd_ctx);
71 static int target_get_gdb_fileio_info_default(struct target *target,
72                 struct gdb_fileio_info *fileio_info);
73 static int target_gdb_fileio_end_default(struct target *target, int retcode,
74                 int fileio_errno, bool ctrl_c);
75
76 /* targets */
77 extern struct target_type arm7tdmi_target;
78 extern struct target_type arm720t_target;
79 extern struct target_type arm9tdmi_target;
80 extern struct target_type arm920t_target;
81 extern struct target_type arm966e_target;
82 extern struct target_type arm946e_target;
83 extern struct target_type arm926ejs_target;
84 extern struct target_type fa526_target;
85 extern struct target_type feroceon_target;
86 extern struct target_type dragonite_target;
87 extern struct target_type xscale_target;
88 extern struct target_type cortexm_target;
89 extern struct target_type cortexa_target;
90 extern struct target_type aarch64_target;
91 extern struct target_type cortexr4_target;
92 extern struct target_type arm11_target;
93 extern struct target_type ls1_sap_target;
94 extern struct target_type mips_m4k_target;
95 extern struct target_type mips_mips64_target;
96 extern struct target_type avr_target;
97 extern struct target_type dsp563xx_target;
98 extern struct target_type dsp5680xx_target;
99 extern struct target_type testee_target;
100 extern struct target_type avr32_ap7k_target;
101 extern struct target_type hla_target;
102 extern struct target_type nds32_v2_target;
103 extern struct target_type nds32_v3_target;
104 extern struct target_type nds32_v3m_target;
105 extern struct target_type or1k_target;
106 extern struct target_type quark_x10xx_target;
107 extern struct target_type quark_d20xx_target;
108 extern struct target_type stm8_target;
109 extern struct target_type riscv_target;
110 extern struct target_type mem_ap_target;
111 extern struct target_type esirisc_target;
112 extern struct target_type arcv2_target;
113
114 static struct target_type *target_types[] = {
115         &arm7tdmi_target,
116         &arm9tdmi_target,
117         &arm920t_target,
118         &arm720t_target,
119         &arm966e_target,
120         &arm946e_target,
121         &arm926ejs_target,
122         &fa526_target,
123         &feroceon_target,
124         &dragonite_target,
125         &xscale_target,
126         &cortexm_target,
127         &cortexa_target,
128         &cortexr4_target,
129         &arm11_target,
130         &ls1_sap_target,
131         &mips_m4k_target,
132         &avr_target,
133         &dsp563xx_target,
134         &dsp5680xx_target,
135         &testee_target,
136         &avr32_ap7k_target,
137         &hla_target,
138         &nds32_v2_target,
139         &nds32_v3_target,
140         &nds32_v3m_target,
141         &or1k_target,
142         &quark_x10xx_target,
143         &quark_d20xx_target,
144         &stm8_target,
145         &riscv_target,
146         &mem_ap_target,
147         &esirisc_target,
148         &arcv2_target,
149         &aarch64_target,
150         &mips_mips64_target,
151         NULL,
152 };
153
154 struct target *all_targets;
155 static struct target_event_callback *target_event_callbacks;
156 static struct target_timer_callback *target_timer_callbacks;
157 static LIST_HEAD(target_reset_callback_list);
158 static LIST_HEAD(target_trace_callback_list);
159 static const int polling_interval = 100;
160
161 static const struct jim_nvp nvp_assert[] = {
162         { .name = "assert", NVP_ASSERT },
163         { .name = "deassert", NVP_DEASSERT },
164         { .name = "T", NVP_ASSERT },
165         { .name = "F", NVP_DEASSERT },
166         { .name = "t", NVP_ASSERT },
167         { .name = "f", NVP_DEASSERT },
168         { .name = NULL, .value = -1 }
169 };
170
171 static const struct jim_nvp nvp_error_target[] = {
172         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
173         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
174         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
175         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
176         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
177         { .value = ERROR_TARGET_UNALIGNED_ACCESS, .name = "err-unaligned-access" },
178         { .value = ERROR_TARGET_DATA_ABORT, .name = "err-data-abort" },
179         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE, .name = "err-resource-not-available" },
180         { .value = ERROR_TARGET_TRANSLATION_FAULT, .name = "err-translation-fault" },
181         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
182         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
183         { .value = -1, .name = NULL }
184 };
185
186 static const char *target_strerror_safe(int err)
187 {
188         const struct jim_nvp *n;
189
190         n = jim_nvp_value2name_simple(nvp_error_target, err);
191         if (!n->name)
192                 return "unknown";
193         else
194                 return n->name;
195 }
196
197 static const struct jim_nvp nvp_target_event[] = {
198
199         { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
200         { .value = TARGET_EVENT_HALTED, .name = "halted" },
201         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
202         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
203         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
204         { .value = TARGET_EVENT_STEP_START, .name = "step-start" },
205         { .value = TARGET_EVENT_STEP_END, .name = "step-end" },
206
207         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
208         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
209
210         { .value = TARGET_EVENT_RESET_START,         .name = "reset-start" },
211         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
212         { .value = TARGET_EVENT_RESET_ASSERT,        .name = "reset-assert" },
213         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
214         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
215         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
216         { .value = TARGET_EVENT_RESET_INIT,          .name = "reset-init" },
217         { .value = TARGET_EVENT_RESET_END,           .name = "reset-end" },
218
219         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
220         { .value = TARGET_EVENT_EXAMINE_FAIL, .name = "examine-fail" },
221         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
222
223         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
224         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
225
226         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
227         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
228
229         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
230         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END,   .name = "gdb-flash-write-end"   },
231
232         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
233         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END,   .name = "gdb-flash-erase-end" },
234
235         { .value = TARGET_EVENT_TRACE_CONFIG, .name = "trace-config" },
236
237         { .name = NULL, .value = -1 }
238 };
239
240 static const struct jim_nvp nvp_target_state[] = {
241         { .name = "unknown", .value = TARGET_UNKNOWN },
242         { .name = "running", .value = TARGET_RUNNING },
243         { .name = "halted",  .value = TARGET_HALTED },
244         { .name = "reset",   .value = TARGET_RESET },
245         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
246         { .name = NULL, .value = -1 },
247 };
248
249 static const struct jim_nvp nvp_target_debug_reason[] = {
250         { .name = "debug-request",             .value = DBG_REASON_DBGRQ },
251         { .name = "breakpoint",                .value = DBG_REASON_BREAKPOINT },
252         { .name = "watchpoint",                .value = DBG_REASON_WATCHPOINT },
253         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
254         { .name = "single-step",               .value = DBG_REASON_SINGLESTEP },
255         { .name = "target-not-halted",         .value = DBG_REASON_NOTHALTED  },
256         { .name = "program-exit",              .value = DBG_REASON_EXIT },
257         { .name = "exception-catch",           .value = DBG_REASON_EXC_CATCH },
258         { .name = "undefined",                 .value = DBG_REASON_UNDEFINED },
259         { .name = NULL, .value = -1 },
260 };
261
262 static const struct jim_nvp nvp_target_endian[] = {
263         { .name = "big",    .value = TARGET_BIG_ENDIAN },
264         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
265         { .name = "be",     .value = TARGET_BIG_ENDIAN },
266         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
267         { .name = NULL,     .value = -1 },
268 };
269
270 static const struct jim_nvp nvp_reset_modes[] = {
271         { .name = "unknown", .value = RESET_UNKNOWN },
272         { .name = "run",     .value = RESET_RUN },
273         { .name = "halt",    .value = RESET_HALT },
274         { .name = "init",    .value = RESET_INIT },
275         { .name = NULL,      .value = -1 },
276 };
277
278 const char *debug_reason_name(struct target *t)
279 {
280         const char *cp;
281
282         cp = jim_nvp_value2name_simple(nvp_target_debug_reason,
283                         t->debug_reason)->name;
284         if (!cp) {
285                 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
286                 cp = "(*BUG*unknown*BUG*)";
287         }
288         return cp;
289 }
290
291 const char *target_state_name(struct target *t)
292 {
293         const char *cp;
294         cp = jim_nvp_value2name_simple(nvp_target_state, t->state)->name;
295         if (!cp) {
296                 LOG_ERROR("Invalid target state: %d", (int)(t->state));
297                 cp = "(*BUG*unknown*BUG*)";
298         }
299
300         if (!target_was_examined(t) && t->defer_examine)
301                 cp = "examine deferred";
302
303         return cp;
304 }
305
306 const char *target_event_name(enum target_event event)
307 {
308         const char *cp;
309         cp = jim_nvp_value2name_simple(nvp_target_event, event)->name;
310         if (!cp) {
311                 LOG_ERROR("Invalid target event: %d", (int)(event));
312                 cp = "(*BUG*unknown*BUG*)";
313         }
314         return cp;
315 }
316
317 const char *target_reset_mode_name(enum target_reset_mode reset_mode)
318 {
319         const char *cp;
320         cp = jim_nvp_value2name_simple(nvp_reset_modes, reset_mode)->name;
321         if (!cp) {
322                 LOG_ERROR("Invalid target reset mode: %d", (int)(reset_mode));
323                 cp = "(*BUG*unknown*BUG*)";
324         }
325         return cp;
326 }
327
328 /* determine the number of the new target */
329 static int new_target_number(void)
330 {
331         struct target *t;
332         int x;
333
334         /* number is 0 based */
335         x = -1;
336         t = all_targets;
337         while (t) {
338                 if (x < t->target_number)
339                         x = t->target_number;
340                 t = t->next;
341         }
342         return x + 1;
343 }
344
345 static void append_to_list_all_targets(struct target *target)
346 {
347         struct target **t = &all_targets;
348
349         while (*t)
350                 t = &((*t)->next);
351         *t = target;
352 }
353
354 /* read a uint64_t from a buffer in target memory endianness */
355 uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
356 {
357         if (target->endianness == TARGET_LITTLE_ENDIAN)
358                 return le_to_h_u64(buffer);
359         else
360                 return be_to_h_u64(buffer);
361 }
362
363 /* read a uint32_t from a buffer in target memory endianness */
364 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
365 {
366         if (target->endianness == TARGET_LITTLE_ENDIAN)
367                 return le_to_h_u32(buffer);
368         else
369                 return be_to_h_u32(buffer);
370 }
371
372 /* read a uint24_t from a buffer in target memory endianness */
373 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
374 {
375         if (target->endianness == TARGET_LITTLE_ENDIAN)
376                 return le_to_h_u24(buffer);
377         else
378                 return be_to_h_u24(buffer);
379 }
380
381 /* read a uint16_t from a buffer in target memory endianness */
382 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
383 {
384         if (target->endianness == TARGET_LITTLE_ENDIAN)
385                 return le_to_h_u16(buffer);
386         else
387                 return be_to_h_u16(buffer);
388 }
389
390 /* write a uint64_t to a buffer in target memory endianness */
391 void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
392 {
393         if (target->endianness == TARGET_LITTLE_ENDIAN)
394                 h_u64_to_le(buffer, value);
395         else
396                 h_u64_to_be(buffer, value);
397 }
398
399 /* write a uint32_t to a buffer in target memory endianness */
400 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
401 {
402         if (target->endianness == TARGET_LITTLE_ENDIAN)
403                 h_u32_to_le(buffer, value);
404         else
405                 h_u32_to_be(buffer, value);
406 }
407
408 /* write a uint24_t to a buffer in target memory endianness */
409 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
410 {
411         if (target->endianness == TARGET_LITTLE_ENDIAN)
412                 h_u24_to_le(buffer, value);
413         else
414                 h_u24_to_be(buffer, value);
415 }
416
417 /* write a uint16_t to a buffer in target memory endianness */
418 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
419 {
420         if (target->endianness == TARGET_LITTLE_ENDIAN)
421                 h_u16_to_le(buffer, value);
422         else
423                 h_u16_to_be(buffer, value);
424 }
425
426 /* write a uint8_t to a buffer in target memory endianness */
427 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
428 {
429         *buffer = value;
430 }
431
432 /* write a uint64_t array to a buffer in target memory endianness */
433 void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf)
434 {
435         uint32_t i;
436         for (i = 0; i < count; i++)
437                 dstbuf[i] = target_buffer_get_u64(target, &buffer[i * 8]);
438 }
439
440 /* write a uint32_t array to a buffer in target memory endianness */
441 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
442 {
443         uint32_t i;
444         for (i = 0; i < count; i++)
445                 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
446 }
447
448 /* write a uint16_t array to a buffer in target memory endianness */
449 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
450 {
451         uint32_t i;
452         for (i = 0; i < count; i++)
453                 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
454 }
455
456 /* write a uint64_t array to a buffer in target memory endianness */
457 void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf)
458 {
459         uint32_t i;
460         for (i = 0; i < count; i++)
461                 target_buffer_set_u64(target, &buffer[i * 8], srcbuf[i]);
462 }
463
464 /* write a uint32_t array to a buffer in target memory endianness */
465 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
466 {
467         uint32_t i;
468         for (i = 0; i < count; i++)
469                 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
470 }
471
472 /* write a uint16_t array to a buffer in target memory endianness */
473 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf)
474 {
475         uint32_t i;
476         for (i = 0; i < count; i++)
477                 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
478 }
479
480 /* return a pointer to a configured target; id is name or number */
481 struct target *get_target(const char *id)
482 {
483         struct target *target;
484
485         /* try as tcltarget name */
486         for (target = all_targets; target; target = target->next) {
487                 if (target_name(target) == NULL)
488                         continue;
489                 if (strcmp(id, target_name(target)) == 0)
490                         return target;
491         }
492
493         /* It's OK to remove this fallback sometime after August 2010 or so */
494
495         /* no match, try as number */
496         unsigned num;
497         if (parse_uint(id, &num) != ERROR_OK)
498                 return NULL;
499
500         for (target = all_targets; target; target = target->next) {
501                 if (target->target_number == (int)num) {
502                         LOG_WARNING("use '%s' as target identifier, not '%u'",
503                                         target_name(target), num);
504                         return target;
505                 }
506         }
507
508         return NULL;
509 }
510
511 /* returns a pointer to the n-th configured target */
512 struct target *get_target_by_num(int num)
513 {
514         struct target *target = all_targets;
515
516         while (target) {
517                 if (target->target_number == num)
518                         return target;
519                 target = target->next;
520         }
521
522         return NULL;
523 }
524
525 struct target *get_current_target(struct command_context *cmd_ctx)
526 {
527         struct target *target = get_current_target_or_null(cmd_ctx);
528
529         if (!target) {
530                 LOG_ERROR("BUG: current_target out of bounds");
531                 exit(-1);
532         }
533
534         return target;
535 }
536
537 struct target *get_current_target_or_null(struct command_context *cmd_ctx)
538 {
539         return cmd_ctx->current_target_override
540                 ? cmd_ctx->current_target_override
541                 : cmd_ctx->current_target;
542 }
543
544 int target_poll(struct target *target)
545 {
546         int retval;
547
548         /* We can't poll until after examine */
549         if (!target_was_examined(target)) {
550                 /* Fail silently lest we pollute the log */
551                 return ERROR_FAIL;
552         }
553
554         retval = target->type->poll(target);
555         if (retval != ERROR_OK)
556                 return retval;
557
558         if (target->halt_issued) {
559                 if (target->state == TARGET_HALTED)
560                         target->halt_issued = false;
561                 else {
562                         int64_t t = timeval_ms() - target->halt_issued_time;
563                         if (t > DEFAULT_HALT_TIMEOUT) {
564                                 target->halt_issued = false;
565                                 LOG_INFO("Halt timed out, wake up GDB.");
566                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
567                         }
568                 }
569         }
570
571         return ERROR_OK;
572 }
573
574 int target_halt(struct target *target)
575 {
576         int retval;
577         /* We can't poll until after examine */
578         if (!target_was_examined(target)) {
579                 LOG_ERROR("Target not examined yet");
580                 return ERROR_FAIL;
581         }
582
583         retval = target->type->halt(target);
584         if (retval != ERROR_OK)
585                 return retval;
586
587         target->halt_issued = true;
588         target->halt_issued_time = timeval_ms();
589
590         return ERROR_OK;
591 }
592
593 /**
594  * Make the target (re)start executing using its saved execution
595  * context (possibly with some modifications).
596  *
597  * @param target Which target should start executing.
598  * @param current True to use the target's saved program counter instead
599  *      of the address parameter
600  * @param address Optionally used as the program counter.
601  * @param handle_breakpoints True iff breakpoints at the resumption PC
602  *      should be skipped.  (For example, maybe execution was stopped by
603  *      such a breakpoint, in which case it would be counterproductive to
604  *      let it re-trigger.
605  * @param debug_execution False if all working areas allocated by OpenOCD
606  *      should be released and/or restored to their original contents.
607  *      (This would for example be true to run some downloaded "helper"
608  *      algorithm code, which resides in one such working buffer and uses
609  *      another for data storage.)
610  *
611  * @todo Resolve the ambiguity about what the "debug_execution" flag
612  * signifies.  For example, Target implementations don't agree on how
613  * it relates to invalidation of the register cache, or to whether
614  * breakpoints and watchpoints should be enabled.  (It would seem wrong
615  * to enable breakpoints when running downloaded "helper" algorithms
616  * (debug_execution true), since the breakpoints would be set to match
617  * target firmware being debugged, not the helper algorithm.... and
618  * enabling them could cause such helpers to malfunction (for example,
619  * by overwriting data with a breakpoint instruction.  On the other
620  * hand the infrastructure for running such helpers might use this
621  * procedure but rely on hardware breakpoint to detect termination.)
622  */
623 int target_resume(struct target *target, int current, target_addr_t address,
624                 int handle_breakpoints, int debug_execution)
625 {
626         int retval;
627
628         /* We can't poll until after examine */
629         if (!target_was_examined(target)) {
630                 LOG_ERROR("Target not examined yet");
631                 return ERROR_FAIL;
632         }
633
634         target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
635
636         /* note that resume *must* be asynchronous. The CPU can halt before
637          * we poll. The CPU can even halt at the current PC as a result of
638          * a software breakpoint being inserted by (a bug?) the application.
639          */
640         /*
641          * resume() triggers the event 'resumed'. The execution of TCL commands
642          * in the event handler causes the polling of targets. If the target has
643          * already halted for a breakpoint, polling will run the 'halted' event
644          * handler before the pending 'resumed' handler.
645          * Disable polling during resume() to guarantee the execution of handlers
646          * in the correct order.
647          */
648         bool save_poll = jtag_poll_get_enabled();
649         jtag_poll_set_enabled(false);
650         retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
651         jtag_poll_set_enabled(save_poll);
652         if (retval != ERROR_OK)
653                 return retval;
654
655         target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
656
657         return retval;
658 }
659
660 static int target_process_reset(struct command_invocation *cmd, enum target_reset_mode reset_mode)
661 {
662         char buf[100];
663         int retval;
664         struct jim_nvp *n;
665         n = jim_nvp_value2name_simple(nvp_reset_modes, reset_mode);
666         if (!n->name) {
667                 LOG_ERROR("invalid reset mode");
668                 return ERROR_FAIL;
669         }
670
671         struct target *target;
672         for (target = all_targets; target; target = target->next)
673                 target_call_reset_callbacks(target, reset_mode);
674
675         /* disable polling during reset to make reset event scripts
676          * more predictable, i.e. dr/irscan & pathmove in events will
677          * not have JTAG operations injected into the middle of a sequence.
678          */
679         bool save_poll = jtag_poll_get_enabled();
680
681         jtag_poll_set_enabled(false);
682
683         sprintf(buf, "ocd_process_reset %s", n->name);
684         retval = Jim_Eval(cmd->ctx->interp, buf);
685
686         jtag_poll_set_enabled(save_poll);
687
688         if (retval != JIM_OK) {
689                 Jim_MakeErrorMessage(cmd->ctx->interp);
690                 command_print(cmd, "%s", Jim_GetString(Jim_GetResult(cmd->ctx->interp), NULL));
691                 return ERROR_FAIL;
692         }
693
694         /* We want any events to be processed before the prompt */
695         retval = target_call_timer_callbacks_now();
696
697         for (target = all_targets; target; target = target->next) {
698                 target->type->check_reset(target);
699                 target->running_alg = false;
700         }
701
702         return retval;
703 }
704
705 static int identity_virt2phys(struct target *target,
706                 target_addr_t virtual, target_addr_t *physical)
707 {
708         *physical = virtual;
709         return ERROR_OK;
710 }
711
712 static int no_mmu(struct target *target, int *enabled)
713 {
714         *enabled = 0;
715         return ERROR_OK;
716 }
717
718 static int default_examine(struct target *target)
719 {
720         target_set_examined(target);
721         return ERROR_OK;
722 }
723
724 /* no check by default */
725 static int default_check_reset(struct target *target)
726 {
727         return ERROR_OK;
728 }
729
730 /* Equivalent Tcl code arp_examine_one is in src/target/startup.tcl
731  * Keep in sync */
732 int target_examine_one(struct target *target)
733 {
734         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
735
736         int retval = target->type->examine(target);
737         if (retval != ERROR_OK) {
738                 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_FAIL);
739                 return retval;
740         }
741
742         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
743
744         return ERROR_OK;
745 }
746
747 static int jtag_enable_callback(enum jtag_event event, void *priv)
748 {
749         struct target *target = priv;
750
751         if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
752                 return ERROR_OK;
753
754         jtag_unregister_event_callback(jtag_enable_callback, target);
755
756         return target_examine_one(target);
757 }
758
759 /* Targets that correctly implement init + examine, i.e.
760  * no communication with target during init:
761  *
762  * XScale
763  */
764 int target_examine(void)
765 {
766         int retval = ERROR_OK;
767         struct target *target;
768
769         for (target = all_targets; target; target = target->next) {
770                 /* defer examination, but don't skip it */
771                 if (!target->tap->enabled) {
772                         jtag_register_event_callback(jtag_enable_callback,
773                                         target);
774                         continue;
775                 }
776
777                 if (target->defer_examine)
778                         continue;
779
780                 int retval2 = target_examine_one(target);
781                 if (retval2 != ERROR_OK) {
782                         LOG_WARNING("target %s examination failed", target_name(target));
783                         retval = retval2;
784                 }
785         }
786         return retval;
787 }
788
789 const char *target_type_name(struct target *target)
790 {
791         return target->type->name;
792 }
793
794 static int target_soft_reset_halt(struct target *target)
795 {
796         if (!target_was_examined(target)) {
797                 LOG_ERROR("Target not examined yet");
798                 return ERROR_FAIL;
799         }
800         if (!target->type->soft_reset_halt) {
801                 LOG_ERROR("Target %s does not support soft_reset_halt",
802                                 target_name(target));
803                 return ERROR_FAIL;
804         }
805         return target->type->soft_reset_halt(target);
806 }
807
808 /**
809  * Downloads a target-specific native code algorithm to the target,
810  * and executes it.  * Note that some targets may need to set up, enable,
811  * and tear down a breakpoint (hard or * soft) to detect algorithm
812  * termination, while others may support  lower overhead schemes where
813  * soft breakpoints embedded in the algorithm automatically terminate the
814  * algorithm.
815  *
816  * @param target used to run the algorithm
817  * @param num_mem_params
818  * @param mem_params
819  * @param num_reg_params
820  * @param reg_param
821  * @param entry_point
822  * @param exit_point
823  * @param timeout_ms
824  * @param arch_info target-specific description of the algorithm.
825  */
826 int target_run_algorithm(struct target *target,
827                 int num_mem_params, struct mem_param *mem_params,
828                 int num_reg_params, struct reg_param *reg_param,
829                 uint32_t entry_point, uint32_t exit_point,
830                 int timeout_ms, void *arch_info)
831 {
832         int retval = ERROR_FAIL;
833
834         if (!target_was_examined(target)) {
835                 LOG_ERROR("Target not examined yet");
836                 goto done;
837         }
838         if (!target->type->run_algorithm) {
839                 LOG_ERROR("Target type '%s' does not support %s",
840                                 target_type_name(target), __func__);
841                 goto done;
842         }
843
844         target->running_alg = true;
845         retval = target->type->run_algorithm(target,
846                         num_mem_params, mem_params,
847                         num_reg_params, reg_param,
848                         entry_point, exit_point, timeout_ms, arch_info);
849         target->running_alg = false;
850
851 done:
852         return retval;
853 }
854
855 /**
856  * Executes a target-specific native code algorithm and leaves it running.
857  *
858  * @param target used to run the algorithm
859  * @param num_mem_params
860  * @param mem_params
861  * @param num_reg_params
862  * @param reg_params
863  * @param entry_point
864  * @param exit_point
865  * @param arch_info target-specific description of the algorithm.
866  */
867 int target_start_algorithm(struct target *target,
868                 int num_mem_params, struct mem_param *mem_params,
869                 int num_reg_params, struct reg_param *reg_params,
870                 uint32_t entry_point, uint32_t exit_point,
871                 void *arch_info)
872 {
873         int retval = ERROR_FAIL;
874
875         if (!target_was_examined(target)) {
876                 LOG_ERROR("Target not examined yet");
877                 goto done;
878         }
879         if (!target->type->start_algorithm) {
880                 LOG_ERROR("Target type '%s' does not support %s",
881                                 target_type_name(target), __func__);
882                 goto done;
883         }
884         if (target->running_alg) {
885                 LOG_ERROR("Target is already running an algorithm");
886                 goto done;
887         }
888
889         target->running_alg = true;
890         retval = target->type->start_algorithm(target,
891                         num_mem_params, mem_params,
892                         num_reg_params, reg_params,
893                         entry_point, exit_point, arch_info);
894
895 done:
896         return retval;
897 }
898
899 /**
900  * Waits for an algorithm started with target_start_algorithm() to complete.
901  *
902  * @param target used to run the algorithm
903  * @param num_mem_params
904  * @param mem_params
905  * @param num_reg_params
906  * @param reg_params
907  * @param exit_point
908  * @param timeout_ms
909  * @param arch_info target-specific description of the algorithm.
910  */
911 int target_wait_algorithm(struct target *target,
912                 int num_mem_params, struct mem_param *mem_params,
913                 int num_reg_params, struct reg_param *reg_params,
914                 uint32_t exit_point, int timeout_ms,
915                 void *arch_info)
916 {
917         int retval = ERROR_FAIL;
918
919         if (!target->type->wait_algorithm) {
920                 LOG_ERROR("Target type '%s' does not support %s",
921                                 target_type_name(target), __func__);
922                 goto done;
923         }
924         if (!target->running_alg) {
925                 LOG_ERROR("Target is not running an algorithm");
926                 goto done;
927         }
928
929         retval = target->type->wait_algorithm(target,
930                         num_mem_params, mem_params,
931                         num_reg_params, reg_params,
932                         exit_point, timeout_ms, arch_info);
933         if (retval != ERROR_TARGET_TIMEOUT)
934                 target->running_alg = false;
935
936 done:
937         return retval;
938 }
939
940 /**
941  * Streams data to a circular buffer on target intended for consumption by code
942  * running asynchronously on target.
943  *
944  * This is intended for applications where target-specific native code runs
945  * on the target, receives data from the circular buffer, does something with
946  * it (most likely writing it to a flash memory), and advances the circular
947  * buffer pointer.
948  *
949  * This assumes that the helper algorithm has already been loaded to the target,
950  * but has not been started yet. Given memory and register parameters are passed
951  * to the algorithm.
952  *
953  * The buffer is defined by (buffer_start, buffer_size) arguments and has the
954  * following format:
955  *
956  *     [buffer_start + 0, buffer_start + 4):
957  *         Write Pointer address (aka head). Written and updated by this
958  *         routine when new data is written to the circular buffer.
959  *     [buffer_start + 4, buffer_start + 8):
960  *         Read Pointer address (aka tail). Updated by code running on the
961  *         target after it consumes data.
962  *     [buffer_start + 8, buffer_start + buffer_size):
963  *         Circular buffer contents.
964  *
965  * See contrib/loaders/flash/stm32f1x.S for an example.
966  *
967  * @param target used to run the algorithm
968  * @param buffer address on the host where data to be sent is located
969  * @param count number of blocks to send
970  * @param block_size size in bytes of each block
971  * @param num_mem_params count of memory-based params to pass to algorithm
972  * @param mem_params memory-based params to pass to algorithm
973  * @param num_reg_params count of register-based params to pass to algorithm
974  * @param reg_params memory-based params to pass to algorithm
975  * @param buffer_start address on the target of the circular buffer structure
976  * @param buffer_size size of the circular buffer structure
977  * @param entry_point address on the target to execute to start the algorithm
978  * @param exit_point address at which to set a breakpoint to catch the
979  *     end of the algorithm; can be 0 if target triggers a breakpoint itself
980  * @param arch_info
981  */
982
983 int target_run_flash_async_algorithm(struct target *target,
984                 const uint8_t *buffer, uint32_t count, int block_size,
985                 int num_mem_params, struct mem_param *mem_params,
986                 int num_reg_params, struct reg_param *reg_params,
987                 uint32_t buffer_start, uint32_t buffer_size,
988                 uint32_t entry_point, uint32_t exit_point, void *arch_info)
989 {
990         int retval;
991         int timeout = 0;
992
993         const uint8_t *buffer_orig = buffer;
994
995         /* Set up working area. First word is write pointer, second word is read pointer,
996          * rest is fifo data area. */
997         uint32_t wp_addr = buffer_start;
998         uint32_t rp_addr = buffer_start + 4;
999         uint32_t fifo_start_addr = buffer_start + 8;
1000         uint32_t fifo_end_addr = buffer_start + buffer_size;
1001
1002         uint32_t wp = fifo_start_addr;
1003         uint32_t rp = fifo_start_addr;
1004
1005         /* validate block_size is 2^n */
1006         assert(!block_size || !(block_size & (block_size - 1)));
1007
1008         retval = target_write_u32(target, wp_addr, wp);
1009         if (retval != ERROR_OK)
1010                 return retval;
1011         retval = target_write_u32(target, rp_addr, rp);
1012         if (retval != ERROR_OK)
1013                 return retval;
1014
1015         /* Start up algorithm on target and let it idle while writing the first chunk */
1016         retval = target_start_algorithm(target, num_mem_params, mem_params,
1017                         num_reg_params, reg_params,
1018                         entry_point,
1019                         exit_point,
1020                         arch_info);
1021
1022         if (retval != ERROR_OK) {
1023                 LOG_ERROR("error starting target flash write algorithm");
1024                 return retval;
1025         }
1026
1027         while (count > 0) {
1028
1029                 retval = target_read_u32(target, rp_addr, &rp);
1030                 if (retval != ERROR_OK) {
1031                         LOG_ERROR("failed to get read pointer");
1032                         break;
1033                 }
1034
1035                 LOG_DEBUG("offs 0x%zx count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32,
1036                         (size_t) (buffer - buffer_orig), count, wp, rp);
1037
1038                 if (rp == 0) {
1039                         LOG_ERROR("flash write algorithm aborted by target");
1040                         retval = ERROR_FLASH_OPERATION_FAILED;
1041                         break;
1042                 }
1043
1044                 if (((rp - fifo_start_addr) & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
1045                         LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
1046                         break;
1047                 }
1048
1049                 /* Count the number of bytes available in the fifo without
1050                  * crossing the wrap around. Make sure to not fill it completely,
1051                  * because that would make wp == rp and that's the empty condition. */
1052                 uint32_t thisrun_bytes;
1053                 if (rp > wp)
1054                         thisrun_bytes = rp - wp - block_size;
1055                 else if (rp > fifo_start_addr)
1056                         thisrun_bytes = fifo_end_addr - wp;
1057                 else
1058                         thisrun_bytes = fifo_end_addr - wp - block_size;
1059
1060                 if (thisrun_bytes == 0) {
1061                         /* Throttle polling a bit if transfer is (much) faster than flash
1062                          * programming. The exact delay shouldn't matter as long as it's
1063                          * less than buffer size / flash speed. This is very unlikely to
1064                          * run when using high latency connections such as USB. */
1065                         alive_sleep(2);
1066
1067                         /* to stop an infinite loop on some targets check and increment a timeout
1068                          * this issue was observed on a stellaris using the new ICDI interface */
1069                         if (timeout++ >= 2500) {
1070                                 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
1071                                 return ERROR_FLASH_OPERATION_FAILED;
1072                         }
1073                         continue;
1074                 }
1075
1076                 /* reset our timeout */
1077                 timeout = 0;
1078
1079                 /* Limit to the amount of data we actually want to write */
1080                 if (thisrun_bytes > count * block_size)
1081                         thisrun_bytes = count * block_size;
1082
1083                 /* Force end of large blocks to be word aligned */
1084                 if (thisrun_bytes >= 16)
1085                         thisrun_bytes -= (rp + thisrun_bytes) & 0x03;
1086
1087                 /* Write data to fifo */
1088                 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
1089                 if (retval != ERROR_OK)
1090                         break;
1091
1092                 /* Update counters and wrap write pointer */
1093                 buffer += thisrun_bytes;
1094                 count -= thisrun_bytes / block_size;
1095                 wp += thisrun_bytes;
1096                 if (wp >= fifo_end_addr)
1097                         wp = fifo_start_addr;
1098
1099                 /* Store updated write pointer to target */
1100                 retval = target_write_u32(target, wp_addr, wp);
1101                 if (retval != ERROR_OK)
1102                         break;
1103
1104                 /* Avoid GDB timeouts */
1105                 keep_alive();
1106         }
1107
1108         if (retval != ERROR_OK) {
1109                 /* abort flash write algorithm on target */
1110                 target_write_u32(target, wp_addr, 0);
1111         }
1112
1113         int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
1114                         num_reg_params, reg_params,
1115                         exit_point,
1116                         10000,
1117                         arch_info);
1118
1119         if (retval2 != ERROR_OK) {
1120                 LOG_ERROR("error waiting for target flash write algorithm");
1121                 retval = retval2;
1122         }
1123
1124         if (retval == ERROR_OK) {
1125                 /* check if algorithm set rp = 0 after fifo writer loop finished */
1126                 retval = target_read_u32(target, rp_addr, &rp);
1127                 if (retval == ERROR_OK && rp == 0) {
1128                         LOG_ERROR("flash write algorithm aborted by target");
1129                         retval = ERROR_FLASH_OPERATION_FAILED;
1130                 }
1131         }
1132
1133         return retval;
1134 }
1135
1136 int target_run_read_async_algorithm(struct target *target,
1137                 uint8_t *buffer, uint32_t count, int block_size,
1138                 int num_mem_params, struct mem_param *mem_params,
1139                 int num_reg_params, struct reg_param *reg_params,
1140                 uint32_t buffer_start, uint32_t buffer_size,
1141                 uint32_t entry_point, uint32_t exit_point, void *arch_info)
1142 {
1143         int retval;
1144         int timeout = 0;
1145
1146         const uint8_t *buffer_orig = buffer;
1147
1148         /* Set up working area. First word is write pointer, second word is read pointer,
1149          * rest is fifo data area. */
1150         uint32_t wp_addr = buffer_start;
1151         uint32_t rp_addr = buffer_start + 4;
1152         uint32_t fifo_start_addr = buffer_start + 8;
1153         uint32_t fifo_end_addr = buffer_start + buffer_size;
1154
1155         uint32_t wp = fifo_start_addr;
1156         uint32_t rp = fifo_start_addr;
1157
1158         /* validate block_size is 2^n */
1159         assert(!block_size || !(block_size & (block_size - 1)));
1160
1161         retval = target_write_u32(target, wp_addr, wp);
1162         if (retval != ERROR_OK)
1163                 return retval;
1164         retval = target_write_u32(target, rp_addr, rp);
1165         if (retval != ERROR_OK)
1166                 return retval;
1167
1168         /* Start up algorithm on target */
1169         retval = target_start_algorithm(target, num_mem_params, mem_params,
1170                         num_reg_params, reg_params,
1171                         entry_point,
1172                         exit_point,
1173                         arch_info);
1174
1175         if (retval != ERROR_OK) {
1176                 LOG_ERROR("error starting target flash read algorithm");
1177                 return retval;
1178         }
1179
1180         while (count > 0) {
1181                 retval = target_read_u32(target, wp_addr, &wp);
1182                 if (retval != ERROR_OK) {
1183                         LOG_ERROR("failed to get write pointer");
1184                         break;
1185                 }
1186
1187                 LOG_DEBUG("offs 0x%zx count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32,
1188                         (size_t)(buffer - buffer_orig), count, wp, rp);
1189
1190                 if (wp == 0) {
1191                         LOG_ERROR("flash read algorithm aborted by target");
1192                         retval = ERROR_FLASH_OPERATION_FAILED;
1193                         break;
1194                 }
1195
1196                 if (((wp - fifo_start_addr) & (block_size - 1)) || wp < fifo_start_addr || wp >= fifo_end_addr) {
1197                         LOG_ERROR("corrupted fifo write pointer 0x%" PRIx32, wp);
1198                         break;
1199                 }
1200
1201                 /* Count the number of bytes available in the fifo without
1202                  * crossing the wrap around. */
1203                 uint32_t thisrun_bytes;
1204                 if (wp >= rp)
1205                         thisrun_bytes = wp - rp;
1206                 else
1207                         thisrun_bytes = fifo_end_addr - rp;
1208
1209                 if (thisrun_bytes == 0) {
1210                         /* Throttle polling a bit if transfer is (much) faster than flash
1211                          * reading. The exact delay shouldn't matter as long as it's
1212                          * less than buffer size / flash speed. This is very unlikely to
1213                          * run when using high latency connections such as USB. */
1214                         alive_sleep(2);
1215
1216                         /* to stop an infinite loop on some targets check and increment a timeout
1217                          * this issue was observed on a stellaris using the new ICDI interface */
1218                         if (timeout++ >= 2500) {
1219                                 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
1220                                 return ERROR_FLASH_OPERATION_FAILED;
1221                         }
1222                         continue;
1223                 }
1224
1225                 /* Reset our timeout */
1226                 timeout = 0;
1227
1228                 /* Limit to the amount of data we actually want to read */
1229                 if (thisrun_bytes > count * block_size)
1230                         thisrun_bytes = count * block_size;
1231
1232                 /* Force end of large blocks to be word aligned */
1233                 if (thisrun_bytes >= 16)
1234                         thisrun_bytes -= (rp + thisrun_bytes) & 0x03;
1235
1236                 /* Read data from fifo */
1237                 retval = target_read_buffer(target, rp, thisrun_bytes, buffer);
1238                 if (retval != ERROR_OK)
1239                         break;
1240
1241                 /* Update counters and wrap write pointer */
1242                 buffer += thisrun_bytes;
1243                 count -= thisrun_bytes / block_size;
1244                 rp += thisrun_bytes;
1245                 if (rp >= fifo_end_addr)
1246                         rp = fifo_start_addr;
1247
1248                 /* Store updated write pointer to target */
1249                 retval = target_write_u32(target, rp_addr, rp);
1250                 if (retval != ERROR_OK)
1251                         break;
1252
1253                 /* Avoid GDB timeouts */
1254                 keep_alive();
1255
1256         }
1257
1258         if (retval != ERROR_OK) {
1259                 /* abort flash write algorithm on target */
1260                 target_write_u32(target, rp_addr, 0);
1261         }
1262
1263         int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
1264                         num_reg_params, reg_params,
1265                         exit_point,
1266                         10000,
1267                         arch_info);
1268
1269         if (retval2 != ERROR_OK) {
1270                 LOG_ERROR("error waiting for target flash write algorithm");
1271                 retval = retval2;
1272         }
1273
1274         if (retval == ERROR_OK) {
1275                 /* check if algorithm set wp = 0 after fifo writer loop finished */
1276                 retval = target_read_u32(target, wp_addr, &wp);
1277                 if (retval == ERROR_OK && wp == 0) {
1278                         LOG_ERROR("flash read algorithm aborted by target");
1279                         retval = ERROR_FLASH_OPERATION_FAILED;
1280                 }
1281         }
1282
1283         return retval;
1284 }
1285
1286 int target_read_memory(struct target *target,
1287                 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1288 {
1289         if (!target_was_examined(target)) {
1290                 LOG_ERROR("Target not examined yet");
1291                 return ERROR_FAIL;
1292         }
1293         if (!target->type->read_memory) {
1294                 LOG_ERROR("Target %s doesn't support read_memory", target_name(target));
1295                 return ERROR_FAIL;
1296         }
1297         return target->type->read_memory(target, address, size, count, buffer);
1298 }
1299
1300 int target_read_phys_memory(struct target *target,
1301                 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1302 {
1303         if (!target_was_examined(target)) {
1304                 LOG_ERROR("Target not examined yet");
1305                 return ERROR_FAIL;
1306         }
1307         if (!target->type->read_phys_memory) {
1308                 LOG_ERROR("Target %s doesn't support read_phys_memory", target_name(target));
1309                 return ERROR_FAIL;
1310         }
1311         return target->type->read_phys_memory(target, address, size, count, buffer);
1312 }
1313
1314 int target_write_memory(struct target *target,
1315                 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1316 {
1317         if (!target_was_examined(target)) {
1318                 LOG_ERROR("Target not examined yet");
1319                 return ERROR_FAIL;
1320         }
1321         if (!target->type->write_memory) {
1322                 LOG_ERROR("Target %s doesn't support write_memory", target_name(target));
1323                 return ERROR_FAIL;
1324         }
1325         return target->type->write_memory(target, address, size, count, buffer);
1326 }
1327
1328 int target_write_phys_memory(struct target *target,
1329                 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1330 {
1331         if (!target_was_examined(target)) {
1332                 LOG_ERROR("Target not examined yet");
1333                 return ERROR_FAIL;
1334         }
1335         if (!target->type->write_phys_memory) {
1336                 LOG_ERROR("Target %s doesn't support write_phys_memory", target_name(target));
1337                 return ERROR_FAIL;
1338         }
1339         return target->type->write_phys_memory(target, address, size, count, buffer);
1340 }
1341
1342 int target_add_breakpoint(struct target *target,
1343                 struct breakpoint *breakpoint)
1344 {
1345         if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
1346                 LOG_WARNING("target %s is not halted (add breakpoint)", target_name(target));
1347                 return ERROR_TARGET_NOT_HALTED;
1348         }
1349         return target->type->add_breakpoint(target, breakpoint);
1350 }
1351
1352 int target_add_context_breakpoint(struct target *target,
1353                 struct breakpoint *breakpoint)
1354 {
1355         if (target->state != TARGET_HALTED) {
1356                 LOG_WARNING("target %s is not halted (add context breakpoint)", target_name(target));
1357                 return ERROR_TARGET_NOT_HALTED;
1358         }
1359         return target->type->add_context_breakpoint(target, breakpoint);
1360 }
1361
1362 int target_add_hybrid_breakpoint(struct target *target,
1363                 struct breakpoint *breakpoint)
1364 {
1365         if (target->state != TARGET_HALTED) {
1366                 LOG_WARNING("target %s is not halted (add hybrid breakpoint)", target_name(target));
1367                 return ERROR_TARGET_NOT_HALTED;
1368         }
1369         return target->type->add_hybrid_breakpoint(target, breakpoint);
1370 }
1371
1372 int target_remove_breakpoint(struct target *target,
1373                 struct breakpoint *breakpoint)
1374 {
1375         return target->type->remove_breakpoint(target, breakpoint);
1376 }
1377
1378 int target_add_watchpoint(struct target *target,
1379                 struct watchpoint *watchpoint)
1380 {
1381         if (target->state != TARGET_HALTED) {
1382                 LOG_WARNING("target %s is not halted (add watchpoint)", target_name(target));
1383                 return ERROR_TARGET_NOT_HALTED;
1384         }
1385         return target->type->add_watchpoint(target, watchpoint);
1386 }
1387 int target_remove_watchpoint(struct target *target,
1388                 struct watchpoint *watchpoint)
1389 {
1390         return target->type->remove_watchpoint(target, watchpoint);
1391 }
1392 int target_hit_watchpoint(struct target *target,
1393                 struct watchpoint **hit_watchpoint)
1394 {
1395         if (target->state != TARGET_HALTED) {
1396                 LOG_WARNING("target %s is not halted (hit watchpoint)", target->cmd_name);
1397                 return ERROR_TARGET_NOT_HALTED;
1398         }
1399
1400         if (target->type->hit_watchpoint == NULL) {
1401                 /* For backward compatible, if hit_watchpoint is not implemented,
1402                  * return ERROR_FAIL such that gdb_server will not take the nonsense
1403                  * information. */
1404                 return ERROR_FAIL;
1405         }
1406
1407         return target->type->hit_watchpoint(target, hit_watchpoint);
1408 }
1409
1410 const char *target_get_gdb_arch(struct target *target)
1411 {
1412         if (target->type->get_gdb_arch == NULL)
1413                 return NULL;
1414         return target->type->get_gdb_arch(target);
1415 }
1416
1417 int target_get_gdb_reg_list(struct target *target,
1418                 struct reg **reg_list[], int *reg_list_size,
1419                 enum target_register_class reg_class)
1420 {
1421         int result = ERROR_FAIL;
1422
1423         if (!target_was_examined(target)) {
1424                 LOG_ERROR("Target not examined yet");
1425                 goto done;
1426         }
1427
1428         result = target->type->get_gdb_reg_list(target, reg_list,
1429                         reg_list_size, reg_class);
1430
1431 done:
1432         if (result != ERROR_OK) {
1433                 *reg_list = NULL;
1434                 *reg_list_size = 0;
1435         }
1436         return result;
1437 }
1438
1439 int target_get_gdb_reg_list_noread(struct target *target,
1440                 struct reg **reg_list[], int *reg_list_size,
1441                 enum target_register_class reg_class)
1442 {
1443         if (target->type->get_gdb_reg_list_noread &&
1444                         target->type->get_gdb_reg_list_noread(target, reg_list,
1445                                 reg_list_size, reg_class) == ERROR_OK)
1446                 return ERROR_OK;
1447         return target_get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1448 }
1449
1450 bool target_supports_gdb_connection(struct target *target)
1451 {
1452         /*
1453          * exclude all the targets that don't provide get_gdb_reg_list
1454          * or that have explicit gdb_max_connection == 0
1455          */
1456         return !!target->type->get_gdb_reg_list && !!target->gdb_max_connections;
1457 }
1458
1459 int target_step(struct target *target,
1460                 int current, target_addr_t address, int handle_breakpoints)
1461 {
1462         int retval;
1463
1464         target_call_event_callbacks(target, TARGET_EVENT_STEP_START);
1465
1466         retval = target->type->step(target, current, address, handle_breakpoints);
1467         if (retval != ERROR_OK)
1468                 return retval;
1469
1470         target_call_event_callbacks(target, TARGET_EVENT_STEP_END);
1471
1472         return retval;
1473 }
1474
1475 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1476 {
1477         if (target->state != TARGET_HALTED) {
1478                 LOG_WARNING("target %s is not halted (gdb fileio)", target->cmd_name);
1479                 return ERROR_TARGET_NOT_HALTED;
1480         }
1481         return target->type->get_gdb_fileio_info(target, fileio_info);
1482 }
1483
1484 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1485 {
1486         if (target->state != TARGET_HALTED) {
1487                 LOG_WARNING("target %s is not halted (gdb fileio end)", target->cmd_name);
1488                 return ERROR_TARGET_NOT_HALTED;
1489         }
1490         return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1491 }
1492
1493 target_addr_t target_address_max(struct target *target)
1494 {
1495         unsigned bits = target_address_bits(target);
1496         if (sizeof(target_addr_t) * 8 == bits)
1497                 return (target_addr_t) -1;
1498         else
1499                 return (((target_addr_t) 1) << bits) - 1;
1500 }
1501
1502 unsigned target_address_bits(struct target *target)
1503 {
1504         if (target->type->address_bits)
1505                 return target->type->address_bits(target);
1506         return 32;
1507 }
1508
1509 unsigned int target_data_bits(struct target *target)
1510 {
1511         if (target->type->data_bits)
1512                 return target->type->data_bits(target);
1513         return 32;
1514 }
1515
1516 static int target_profiling(struct target *target, uint32_t *samples,
1517                         uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1518 {
1519         return target->type->profiling(target, samples, max_num_samples,
1520                         num_samples, seconds);
1521 }
1522
1523 /**
1524  * Reset the @c examined flag for the given target.
1525  * Pure paranoia -- targets are zeroed on allocation.
1526  */
1527 static void target_reset_examined(struct target *target)
1528 {
1529         target->examined = false;
1530 }
1531
1532 static int handle_target(void *priv);
1533
1534 static int target_init_one(struct command_context *cmd_ctx,
1535                 struct target *target)
1536 {
1537         target_reset_examined(target);
1538
1539         struct target_type *type = target->type;
1540         if (!type->examine)
1541                 type->examine = default_examine;
1542
1543         if (!type->check_reset)
1544                 type->check_reset = default_check_reset;
1545
1546         assert(type->init_target);
1547
1548         int retval = type->init_target(cmd_ctx, target);
1549         if (retval != ERROR_OK) {
1550                 LOG_ERROR("target '%s' init failed", target_name(target));
1551                 return retval;
1552         }
1553
1554         /* Sanity-check MMU support ... stub in what we must, to help
1555          * implement it in stages, but warn if we need to do so.
1556          */
1557         if (type->mmu) {
1558                 if (!type->virt2phys) {
1559                         LOG_ERROR("type '%s' is missing virt2phys", type->name);
1560                         type->virt2phys = identity_virt2phys;
1561                 }
1562         } else {
1563                 /* Make sure no-MMU targets all behave the same:  make no
1564                  * distinction between physical and virtual addresses, and
1565                  * ensure that virt2phys() is always an identity mapping.
1566                  */
1567                 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1568                         LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1569
1570                 type->mmu = no_mmu;
1571                 type->write_phys_memory = type->write_memory;
1572                 type->read_phys_memory = type->read_memory;
1573                 type->virt2phys = identity_virt2phys;
1574         }
1575
1576         if (target->type->read_buffer == NULL)
1577                 target->type->read_buffer = target_read_buffer_default;
1578
1579         if (target->type->write_buffer == NULL)
1580                 target->type->write_buffer = target_write_buffer_default;
1581
1582         if (target->type->get_gdb_fileio_info == NULL)
1583                 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1584
1585         if (target->type->gdb_fileio_end == NULL)
1586                 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1587
1588         if (target->type->profiling == NULL)
1589                 target->type->profiling = target_profiling_default;
1590
1591         return ERROR_OK;
1592 }
1593
1594 static int target_init(struct command_context *cmd_ctx)
1595 {
1596         struct target *target;
1597         int retval;
1598
1599         for (target = all_targets; target; target = target->next) {
1600                 retval = target_init_one(cmd_ctx, target);
1601                 if (retval != ERROR_OK)
1602                         return retval;
1603         }
1604
1605         if (!all_targets)
1606                 return ERROR_OK;
1607
1608         retval = target_register_user_commands(cmd_ctx);
1609         if (retval != ERROR_OK)
1610                 return retval;
1611
1612         retval = target_register_timer_callback(&handle_target,
1613                         polling_interval, TARGET_TIMER_TYPE_PERIODIC, cmd_ctx->interp);
1614         if (retval != ERROR_OK)
1615                 return retval;
1616
1617         return ERROR_OK;
1618 }
1619
1620 COMMAND_HANDLER(handle_target_init_command)
1621 {
1622         int retval;
1623
1624         if (CMD_ARGC != 0)
1625                 return ERROR_COMMAND_SYNTAX_ERROR;
1626
1627         static bool target_initialized;
1628         if (target_initialized) {
1629                 LOG_INFO("'target init' has already been called");
1630                 return ERROR_OK;
1631         }
1632         target_initialized = true;
1633
1634         retval = command_run_line(CMD_CTX, "init_targets");
1635         if (retval != ERROR_OK)
1636                 return retval;
1637
1638         retval = command_run_line(CMD_CTX, "init_target_events");
1639         if (retval != ERROR_OK)
1640                 return retval;
1641
1642         retval = command_run_line(CMD_CTX, "init_board");
1643         if (retval != ERROR_OK)
1644                 return retval;
1645
1646         LOG_DEBUG("Initializing targets...");
1647         return target_init(CMD_CTX);
1648 }
1649
1650 int target_register_event_callback(int (*callback)(struct target *target,
1651                 enum target_event event, void *priv), void *priv)
1652 {
1653         struct target_event_callback **callbacks_p = &target_event_callbacks;
1654
1655         if (!callback)
1656                 return ERROR_COMMAND_SYNTAX_ERROR;
1657
1658         if (*callbacks_p) {
1659                 while ((*callbacks_p)->next)
1660                         callbacks_p = &((*callbacks_p)->next);
1661                 callbacks_p = &((*callbacks_p)->next);
1662         }
1663
1664         (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1665         (*callbacks_p)->callback = callback;
1666         (*callbacks_p)->priv = priv;
1667         (*callbacks_p)->next = NULL;
1668
1669         return ERROR_OK;
1670 }
1671
1672 int target_register_reset_callback(int (*callback)(struct target *target,
1673                 enum target_reset_mode reset_mode, void *priv), void *priv)
1674 {
1675         struct target_reset_callback *entry;
1676
1677         if (!callback)
1678                 return ERROR_COMMAND_SYNTAX_ERROR;
1679
1680         entry = malloc(sizeof(struct target_reset_callback));
1681         if (!entry) {
1682                 LOG_ERROR("error allocating buffer for reset callback entry");
1683                 return ERROR_COMMAND_SYNTAX_ERROR;
1684         }
1685
1686         entry->callback = callback;
1687         entry->priv = priv;
1688         list_add(&entry->list, &target_reset_callback_list);
1689
1690
1691         return ERROR_OK;
1692 }
1693
1694 int target_register_trace_callback(int (*callback)(struct target *target,
1695                 size_t len, uint8_t *data, void *priv), void *priv)
1696 {
1697         struct target_trace_callback *entry;
1698
1699         if (!callback)
1700                 return ERROR_COMMAND_SYNTAX_ERROR;
1701
1702         entry = malloc(sizeof(struct target_trace_callback));
1703         if (!entry) {
1704                 LOG_ERROR("error allocating buffer for trace callback entry");
1705                 return ERROR_COMMAND_SYNTAX_ERROR;
1706         }
1707
1708         entry->callback = callback;
1709         entry->priv = priv;
1710         list_add(&entry->list, &target_trace_callback_list);
1711
1712
1713         return ERROR_OK;
1714 }
1715
1716 int target_register_timer_callback(int (*callback)(void *priv),
1717                 unsigned int time_ms, enum target_timer_type type, void *priv)
1718 {
1719         struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1720
1721         if (!callback)
1722                 return ERROR_COMMAND_SYNTAX_ERROR;
1723
1724         if (*callbacks_p) {
1725                 while ((*callbacks_p)->next)
1726                         callbacks_p = &((*callbacks_p)->next);
1727                 callbacks_p = &((*callbacks_p)->next);
1728         }
1729
1730         (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1731         (*callbacks_p)->callback = callback;
1732         (*callbacks_p)->type = type;
1733         (*callbacks_p)->time_ms = time_ms;
1734         (*callbacks_p)->removed = false;
1735
1736         gettimeofday(&(*callbacks_p)->when, NULL);
1737         timeval_add_time(&(*callbacks_p)->when, 0, time_ms * 1000);
1738
1739         (*callbacks_p)->priv = priv;
1740         (*callbacks_p)->next = NULL;
1741
1742         return ERROR_OK;
1743 }
1744
1745 int target_unregister_event_callback(int (*callback)(struct target *target,
1746                 enum target_event event, void *priv), void *priv)
1747 {
1748         struct target_event_callback **p = &target_event_callbacks;
1749         struct target_event_callback *c = target_event_callbacks;
1750
1751         if (!callback)
1752                 return ERROR_COMMAND_SYNTAX_ERROR;
1753
1754         while (c) {
1755                 struct target_event_callback *next = c->next;
1756                 if ((c->callback == callback) && (c->priv == priv)) {
1757                         *p = next;
1758                         free(c);
1759                         return ERROR_OK;
1760                 } else
1761                         p = &(c->next);
1762                 c = next;
1763         }
1764
1765         return ERROR_OK;
1766 }
1767
1768 int target_unregister_reset_callback(int (*callback)(struct target *target,
1769                 enum target_reset_mode reset_mode, void *priv), void *priv)
1770 {
1771         struct target_reset_callback *entry;
1772
1773         if (!callback)
1774                 return ERROR_COMMAND_SYNTAX_ERROR;
1775
1776         list_for_each_entry(entry, &target_reset_callback_list, list) {
1777                 if (entry->callback == callback && entry->priv == priv) {
1778                         list_del(&entry->list);
1779                         free(entry);
1780                         break;
1781                 }
1782         }
1783
1784         return ERROR_OK;
1785 }
1786
1787 int target_unregister_trace_callback(int (*callback)(struct target *target,
1788                 size_t len, uint8_t *data, void *priv), void *priv)
1789 {
1790         struct target_trace_callback *entry;
1791
1792         if (!callback)
1793                 return ERROR_COMMAND_SYNTAX_ERROR;
1794
1795         list_for_each_entry(entry, &target_trace_callback_list, list) {
1796                 if (entry->callback == callback && entry->priv == priv) {
1797                         list_del(&entry->list);
1798                         free(entry);
1799                         break;
1800                 }
1801         }
1802
1803         return ERROR_OK;
1804 }
1805
1806 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1807 {
1808         if (!callback)
1809                 return ERROR_COMMAND_SYNTAX_ERROR;
1810
1811         for (struct target_timer_callback *c = target_timer_callbacks;
1812              c; c = c->next) {
1813                 if ((c->callback == callback) && (c->priv == priv)) {
1814                         c->removed = true;
1815                         return ERROR_OK;
1816                 }
1817         }
1818
1819         return ERROR_FAIL;
1820 }
1821
1822 int target_call_event_callbacks(struct target *target, enum target_event event)
1823 {
1824         struct target_event_callback *callback = target_event_callbacks;
1825         struct target_event_callback *next_callback;
1826
1827         if (event == TARGET_EVENT_HALTED) {
1828                 /* execute early halted first */
1829                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1830         }
1831
1832         LOG_DEBUG("target event %i (%s) for core %s", event,
1833                         jim_nvp_value2name_simple(nvp_target_event, event)->name,
1834                         target_name(target));
1835
1836         target_handle_event(target, event);
1837
1838         while (callback) {
1839                 next_callback = callback->next;
1840                 callback->callback(target, event, callback->priv);
1841                 callback = next_callback;
1842         }
1843
1844         return ERROR_OK;
1845 }
1846
1847 int target_call_reset_callbacks(struct target *target, enum target_reset_mode reset_mode)
1848 {
1849         struct target_reset_callback *callback;
1850
1851         LOG_DEBUG("target reset %i (%s)", reset_mode,
1852                         jim_nvp_value2name_simple(nvp_reset_modes, reset_mode)->name);
1853
1854         list_for_each_entry(callback, &target_reset_callback_list, list)
1855                 callback->callback(target, reset_mode, callback->priv);
1856
1857         return ERROR_OK;
1858 }
1859
1860 int target_call_trace_callbacks(struct target *target, size_t len, uint8_t *data)
1861 {
1862         struct target_trace_callback *callback;
1863
1864         list_for_each_entry(callback, &target_trace_callback_list, list)
1865                 callback->callback(target, len, data, callback->priv);
1866
1867         return ERROR_OK;
1868 }
1869
1870 static int target_timer_callback_periodic_restart(
1871                 struct target_timer_callback *cb, struct timeval *now)
1872 {
1873         cb->when = *now;
1874         timeval_add_time(&cb->when, 0, cb->time_ms * 1000L);
1875         return ERROR_OK;
1876 }
1877
1878 static int target_call_timer_callback(struct target_timer_callback *cb,
1879                 struct timeval *now)
1880 {
1881         cb->callback(cb->priv);
1882
1883         if (cb->type == TARGET_TIMER_TYPE_PERIODIC)
1884                 return target_timer_callback_periodic_restart(cb, now);
1885
1886         return target_unregister_timer_callback(cb->callback, cb->priv);
1887 }
1888
1889 static int target_call_timer_callbacks_check_time(int checktime)
1890 {
1891         static bool callback_processing;
1892
1893         /* Do not allow nesting */
1894         if (callback_processing)
1895                 return ERROR_OK;
1896
1897         callback_processing = true;
1898
1899         keep_alive();
1900
1901         struct timeval now;
1902         gettimeofday(&now, NULL);
1903
1904         /* Store an address of the place containing a pointer to the
1905          * next item; initially, that's a standalone "root of the
1906          * list" variable. */
1907         struct target_timer_callback **callback = &target_timer_callbacks;
1908         while (callback && *callback) {
1909                 if ((*callback)->removed) {
1910                         struct target_timer_callback *p = *callback;
1911                         *callback = (*callback)->next;
1912                         free(p);
1913                         continue;
1914                 }
1915
1916                 bool call_it = (*callback)->callback &&
1917                         ((!checktime && (*callback)->type == TARGET_TIMER_TYPE_PERIODIC) ||
1918                          timeval_compare(&now, &(*callback)->when) >= 0);
1919
1920                 if (call_it)
1921                         target_call_timer_callback(*callback, &now);
1922
1923                 callback = &(*callback)->next;
1924         }
1925
1926         callback_processing = false;
1927         return ERROR_OK;
1928 }
1929
1930 int target_call_timer_callbacks(void)
1931 {
1932         return target_call_timer_callbacks_check_time(1);
1933 }
1934
1935 /* invoke periodic callbacks immediately */
1936 int target_call_timer_callbacks_now(void)
1937 {
1938         return target_call_timer_callbacks_check_time(0);
1939 }
1940
1941 /* Prints the working area layout for debug purposes */
1942 static void print_wa_layout(struct target *target)
1943 {
1944         struct working_area *c = target->working_areas;
1945
1946         while (c) {
1947                 LOG_DEBUG("%c%c " TARGET_ADDR_FMT "-" TARGET_ADDR_FMT " (%" PRIu32 " bytes)",
1948                         c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1949                         c->address, c->address + c->size - 1, c->size);
1950                 c = c->next;
1951         }
1952 }
1953
1954 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1955 static void target_split_working_area(struct working_area *area, uint32_t size)
1956 {
1957         assert(area->free); /* Shouldn't split an allocated area */
1958         assert(size <= area->size); /* Caller should guarantee this */
1959
1960         /* Split only if not already the right size */
1961         if (size < area->size) {
1962                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1963
1964                 if (!new_wa)
1965                         return;
1966
1967                 new_wa->next = area->next;
1968                 new_wa->size = area->size - size;
1969                 new_wa->address = area->address + size;
1970                 new_wa->backup = NULL;
1971                 new_wa->user = NULL;
1972                 new_wa->free = true;
1973
1974                 area->next = new_wa;
1975                 area->size = size;
1976
1977                 /* If backup memory was allocated to this area, it has the wrong size
1978                  * now so free it and it will be reallocated if/when needed */
1979                 free(area->backup);
1980                 area->backup = NULL;
1981         }
1982 }
1983
1984 /* Merge all adjacent free areas into one */
1985 static void target_merge_working_areas(struct target *target)
1986 {
1987         struct working_area *c = target->working_areas;
1988
1989         while (c && c->next) {
1990                 assert(c->next->address == c->address + c->size); /* This is an invariant */
1991
1992                 /* Find two adjacent free areas */
1993                 if (c->free && c->next->free) {
1994                         /* Merge the last into the first */
1995                         c->size += c->next->size;
1996
1997                         /* Remove the last */
1998                         struct working_area *to_be_freed = c->next;
1999                         c->next = c->next->next;
2000                         free(to_be_freed->backup);
2001                         free(to_be_freed);
2002
2003                         /* If backup memory was allocated to the remaining area, it's has
2004                          * the wrong size now */
2005                         free(c->backup);
2006                         c->backup = NULL;
2007                 } else {
2008                         c = c->next;
2009                 }
2010         }
2011 }
2012
2013 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
2014 {
2015         /* Reevaluate working area address based on MMU state*/
2016         if (!target->working_areas) {
2017                 int retval;
2018                 int enabled;
2019
2020                 retval = target->type->mmu(target, &enabled);
2021                 if (retval != ERROR_OK)
2022                         return retval;
2023
2024                 if (!enabled) {
2025                         if (target->working_area_phys_spec) {
2026                                 LOG_DEBUG("MMU disabled, using physical "
2027                                         "address for working memory " TARGET_ADDR_FMT,
2028                                         target->working_area_phys);
2029                                 target->working_area = target->working_area_phys;
2030                         } else {
2031                                 LOG_ERROR("No working memory available. "
2032                                         "Specify -work-area-phys to target.");
2033                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2034                         }
2035                 } else {
2036                         if (target->working_area_virt_spec) {
2037                                 LOG_DEBUG("MMU enabled, using virtual "
2038                                         "address for working memory " TARGET_ADDR_FMT,
2039                                         target->working_area_virt);
2040                                 target->working_area = target->working_area_virt;
2041                         } else {
2042                                 LOG_ERROR("No working memory available. "
2043                                         "Specify -work-area-virt to target.");
2044                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2045                         }
2046                 }
2047
2048                 /* Set up initial working area on first call */
2049                 struct working_area *new_wa = malloc(sizeof(*new_wa));
2050                 if (new_wa) {
2051                         new_wa->next = NULL;
2052                         new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
2053                         new_wa->address = target->working_area;
2054                         new_wa->backup = NULL;
2055                         new_wa->user = NULL;
2056                         new_wa->free = true;
2057                 }
2058
2059                 target->working_areas = new_wa;
2060         }
2061
2062         /* only allocate multiples of 4 byte */
2063         if (size % 4)
2064                 size = (size + 3) & (~3UL);
2065
2066         struct working_area *c = target->working_areas;
2067
2068         /* Find the first large enough working area */
2069         while (c) {
2070                 if (c->free && c->size >= size)
2071                         break;
2072                 c = c->next;
2073         }
2074
2075         if (!c)
2076                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2077
2078         /* Split the working area into the requested size */
2079         target_split_working_area(c, size);
2080
2081         LOG_DEBUG("allocated new working area of %" PRIu32 " bytes at address " TARGET_ADDR_FMT,
2082                           size, c->address);
2083
2084         if (target->backup_working_area) {
2085                 if (!c->backup) {
2086                         c->backup = malloc(c->size);
2087                         if (!c->backup)
2088                                 return ERROR_FAIL;
2089                 }
2090
2091                 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
2092                 if (retval != ERROR_OK)
2093                         return retval;
2094         }
2095
2096         /* mark as used, and return the new (reused) area */
2097         c->free = false;
2098         *area = c;
2099
2100         /* user pointer */
2101         c->user = area;
2102
2103         print_wa_layout(target);
2104
2105         return ERROR_OK;
2106 }
2107
2108 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
2109 {
2110         int retval;
2111
2112         retval = target_alloc_working_area_try(target, size, area);
2113         if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
2114                 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
2115         return retval;
2116
2117 }
2118
2119 static int target_restore_working_area(struct target *target, struct working_area *area)
2120 {
2121         int retval = ERROR_OK;
2122
2123         if (target->backup_working_area && area->backup != NULL) {
2124                 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
2125                 if (retval != ERROR_OK)
2126                         LOG_ERROR("failed to restore %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
2127                                         area->size, area->address);
2128         }
2129
2130         return retval;
2131 }
2132
2133 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
2134 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
2135 {
2136         int retval = ERROR_OK;
2137
2138         if (area->free)
2139                 return retval;
2140
2141         if (restore) {
2142                 retval = target_restore_working_area(target, area);
2143                 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
2144                 if (retval != ERROR_OK)
2145                         return retval;
2146         }
2147
2148         area->free = true;
2149
2150         LOG_DEBUG("freed %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
2151                         area->size, area->address);
2152
2153         /* mark user pointer invalid */
2154         /* TODO: Is this really safe? It points to some previous caller's memory.
2155          * How could we know that the area pointer is still in that place and not
2156          * some other vital data? What's the purpose of this, anyway? */
2157         *area->user = NULL;
2158         area->user = NULL;
2159
2160         target_merge_working_areas(target);
2161
2162         print_wa_layout(target);
2163
2164         return retval;
2165 }
2166
2167 int target_free_working_area(struct target *target, struct working_area *area)
2168 {
2169         return target_free_working_area_restore(target, area, 1);
2170 }
2171
2172 /* free resources and restore memory, if restoring memory fails,
2173  * free up resources anyway
2174  */
2175 static void target_free_all_working_areas_restore(struct target *target, int restore)
2176 {
2177         struct working_area *c = target->working_areas;
2178
2179         LOG_DEBUG("freeing all working areas");
2180
2181         /* Loop through all areas, restoring the allocated ones and marking them as free */
2182         while (c) {
2183                 if (!c->free) {
2184                         if (restore)
2185                                 target_restore_working_area(target, c);
2186                         c->free = true;
2187                         *c->user = NULL; /* Same as above */
2188                         c->user = NULL;
2189                 }
2190                 c = c->next;
2191         }
2192
2193         /* Run a merge pass to combine all areas into one */
2194         target_merge_working_areas(target);
2195
2196         print_wa_layout(target);
2197 }
2198
2199 void target_free_all_working_areas(struct target *target)
2200 {
2201         target_free_all_working_areas_restore(target, 1);
2202
2203         /* Now we have none or only one working area marked as free */
2204         if (target->working_areas) {
2205                 /* Free the last one to allow on-the-fly moving and resizing */
2206                 free(target->working_areas->backup);
2207                 free(target->working_areas);
2208                 target->working_areas = NULL;
2209         }
2210 }
2211
2212 /* Find the largest number of bytes that can be allocated */
2213 uint32_t target_get_working_area_avail(struct target *target)
2214 {
2215         struct working_area *c = target->working_areas;
2216         uint32_t max_size = 0;
2217
2218         if (!c)
2219                 return target->working_area_size;
2220
2221         while (c) {
2222                 if (c->free && max_size < c->size)
2223                         max_size = c->size;
2224
2225                 c = c->next;
2226         }
2227
2228         return max_size;
2229 }
2230
2231 static void target_destroy(struct target *target)
2232 {
2233         if (target->type->deinit_target)
2234                 target->type->deinit_target(target);
2235
2236         free(target->semihosting);
2237
2238         jtag_unregister_event_callback(jtag_enable_callback, target);
2239
2240         struct target_event_action *teap = target->event_action;
2241         while (teap) {
2242                 struct target_event_action *next = teap->next;
2243                 Jim_DecrRefCount(teap->interp, teap->body);
2244                 free(teap);
2245                 teap = next;
2246         }
2247
2248         target_free_all_working_areas(target);
2249
2250         /* release the targets SMP list */
2251         if (target->smp) {
2252                 struct target_list *head = target->head;
2253                 while (head) {
2254                         struct target_list *pos = head->next;
2255                         head->target->smp = 0;
2256                         free(head);
2257                         head = pos;
2258                 }
2259                 target->smp = 0;
2260         }
2261
2262         rtos_destroy(target);
2263
2264         free(target->gdb_port_override);
2265         free(target->type);
2266         free(target->trace_info);
2267         free(target->fileio_info);
2268         free(target->cmd_name);
2269         free(target);
2270 }
2271
2272 void target_quit(void)
2273 {
2274         struct target_event_callback *pe = target_event_callbacks;
2275         while (pe) {
2276                 struct target_event_callback *t = pe->next;
2277                 free(pe);
2278                 pe = t;
2279         }
2280         target_event_callbacks = NULL;
2281
2282         struct target_timer_callback *pt = target_timer_callbacks;
2283         while (pt) {
2284                 struct target_timer_callback *t = pt->next;
2285                 free(pt);
2286                 pt = t;
2287         }
2288         target_timer_callbacks = NULL;
2289
2290         for (struct target *target = all_targets; target;) {
2291                 struct target *tmp;
2292
2293                 tmp = target->next;
2294                 target_destroy(target);
2295                 target = tmp;
2296         }
2297
2298         all_targets = NULL;
2299 }
2300
2301 int target_arch_state(struct target *target)
2302 {
2303         int retval;
2304         if (!target) {
2305                 LOG_WARNING("No target has been configured");
2306                 return ERROR_OK;
2307         }
2308
2309         if (target->state != TARGET_HALTED)
2310                 return ERROR_OK;
2311
2312         retval = target->type->arch_state(target);
2313         return retval;
2314 }
2315
2316 static int target_get_gdb_fileio_info_default(struct target *target,
2317                 struct gdb_fileio_info *fileio_info)
2318 {
2319         /* If target does not support semi-hosting function, target
2320            has no need to provide .get_gdb_fileio_info callback.
2321            It just return ERROR_FAIL and gdb_server will return "Txx"
2322            as target halted every time.  */
2323         return ERROR_FAIL;
2324 }
2325
2326 static int target_gdb_fileio_end_default(struct target *target,
2327                 int retcode, int fileio_errno, bool ctrl_c)
2328 {
2329         return ERROR_OK;
2330 }
2331
2332 int target_profiling_default(struct target *target, uint32_t *samples,
2333                 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
2334 {
2335         struct timeval timeout, now;
2336
2337         gettimeofday(&timeout, NULL);
2338         timeval_add_time(&timeout, seconds, 0);
2339
2340         LOG_INFO("Starting profiling. Halting and resuming the"
2341                         " target as often as we can...");
2342
2343         uint32_t sample_count = 0;
2344         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2345         struct reg *reg = register_get_by_name(target->reg_cache, "pc", true);
2346
2347         int retval = ERROR_OK;
2348         for (;;) {
2349                 target_poll(target);
2350                 if (target->state == TARGET_HALTED) {
2351                         uint32_t t = buf_get_u32(reg->value, 0, 32);
2352                         samples[sample_count++] = t;
2353                         /* current pc, addr = 0, do not handle breakpoints, not debugging */
2354                         retval = target_resume(target, 1, 0, 0, 0);
2355                         target_poll(target);
2356                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2357                 } else if (target->state == TARGET_RUNNING) {
2358                         /* We want to quickly sample the PC. */
2359                         retval = target_halt(target);
2360                 } else {
2361                         LOG_INFO("Target not halted or running");
2362                         retval = ERROR_OK;
2363                         break;
2364                 }
2365
2366                 if (retval != ERROR_OK)
2367                         break;
2368
2369                 gettimeofday(&now, NULL);
2370                 if ((sample_count >= max_num_samples) || timeval_compare(&now, &timeout) >= 0) {
2371                         LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
2372                         break;
2373                 }
2374         }
2375
2376         *num_samples = sample_count;
2377         return retval;
2378 }
2379
2380 /* Single aligned words are guaranteed to use 16 or 32 bit access
2381  * mode respectively, otherwise data is handled as quickly as
2382  * possible
2383  */
2384 int target_write_buffer(struct target *target, target_addr_t address, uint32_t size, const uint8_t *buffer)
2385 {
2386         LOG_DEBUG("writing buffer of %" PRIu32 " byte at " TARGET_ADDR_FMT,
2387                           size, address);
2388
2389         if (!target_was_examined(target)) {
2390                 LOG_ERROR("Target not examined yet");
2391                 return ERROR_FAIL;
2392         }
2393
2394         if (size == 0)
2395                 return ERROR_OK;
2396
2397         if ((address + size - 1) < address) {
2398                 /* GDB can request this when e.g. PC is 0xfffffffc */
2399                 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2400                                   address,
2401                                   size);
2402                 return ERROR_FAIL;
2403         }
2404
2405         return target->type->write_buffer(target, address, size, buffer);
2406 }
2407
2408 static int target_write_buffer_default(struct target *target,
2409         target_addr_t address, uint32_t count, const uint8_t *buffer)
2410 {
2411         uint32_t size;
2412         unsigned int data_bytes = target_data_bits(target) / 8;
2413
2414         /* Align up to maximum bytes. The loop condition makes sure the next pass
2415          * will have something to do with the size we leave to it. */
2416         for (size = 1;
2417                         size < data_bytes && count >= size * 2 + (address & size);
2418                         size *= 2) {
2419                 if (address & size) {
2420                         int retval = target_write_memory(target, address, size, 1, buffer);
2421                         if (retval != ERROR_OK)
2422                                 return retval;
2423                         address += size;
2424                         count -= size;
2425                         buffer += size;
2426                 }
2427         }
2428
2429         /* Write the data with as large access size as possible. */
2430         for (; size > 0; size /= 2) {
2431                 uint32_t aligned = count - count % size;
2432                 if (aligned > 0) {
2433                         int retval = target_write_memory(target, address, size, aligned / size, buffer);
2434                         if (retval != ERROR_OK)
2435                                 return retval;
2436                         address += aligned;
2437                         count -= aligned;
2438                         buffer += aligned;
2439                 }
2440         }
2441
2442         return ERROR_OK;
2443 }
2444
2445 /* Single aligned words are guaranteed to use 16 or 32 bit access
2446  * mode respectively, otherwise data is handled as quickly as
2447  * possible
2448  */
2449 int target_read_buffer(struct target *target, target_addr_t address, uint32_t size, uint8_t *buffer)
2450 {
2451         LOG_DEBUG("reading buffer of %" PRIu32 " byte at " TARGET_ADDR_FMT,
2452                           size, address);
2453
2454         if (!target_was_examined(target)) {
2455                 LOG_ERROR("Target not examined yet");
2456                 return ERROR_FAIL;
2457         }
2458
2459         if (size == 0)
2460                 return ERROR_OK;
2461
2462         if ((address + size - 1) < address) {
2463                 /* GDB can request this when e.g. PC is 0xfffffffc */
2464                 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2465                                   address,
2466                                   size);
2467                 return ERROR_FAIL;
2468         }
2469
2470         return target->type->read_buffer(target, address, size, buffer);
2471 }
2472
2473 static int target_read_buffer_default(struct target *target, target_addr_t address, uint32_t count, uint8_t *buffer)
2474 {
2475         uint32_t size;
2476         unsigned int data_bytes = target_data_bits(target) / 8;
2477
2478         /* Align up to maximum bytes. The loop condition makes sure the next pass
2479          * will have something to do with the size we leave to it. */
2480         for (size = 1;
2481                         size < data_bytes && count >= size * 2 + (address & size);
2482                         size *= 2) {
2483                 if (address & size) {
2484                         int retval = target_read_memory(target, address, size, 1, buffer);
2485                         if (retval != ERROR_OK)
2486                                 return retval;
2487                         address += size;
2488                         count -= size;
2489                         buffer += size;
2490                 }
2491         }
2492
2493         /* Read the data with as large access size as possible. */
2494         for (; size > 0; size /= 2) {
2495                 uint32_t aligned = count - count % size;
2496                 if (aligned > 0) {
2497                         int retval = target_read_memory(target, address, size, aligned / size, buffer);
2498                         if (retval != ERROR_OK)
2499                                 return retval;
2500                         address += aligned;
2501                         count -= aligned;
2502                         buffer += aligned;
2503                 }
2504         }
2505
2506         return ERROR_OK;
2507 }
2508
2509 int target_checksum_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t *crc)
2510 {
2511         uint8_t *buffer;
2512         int retval;
2513         uint32_t i;
2514         uint32_t checksum = 0;
2515         if (!target_was_examined(target)) {
2516                 LOG_ERROR("Target not examined yet");
2517                 return ERROR_FAIL;
2518         }
2519
2520         retval = target->type->checksum_memory(target, address, size, &checksum);
2521         if (retval != ERROR_OK) {
2522                 buffer = malloc(size);
2523                 if (!buffer) {
2524                         LOG_ERROR("error allocating buffer for section (%" PRIu32 " bytes)", size);
2525                         return ERROR_COMMAND_SYNTAX_ERROR;
2526                 }
2527                 retval = target_read_buffer(target, address, size, buffer);
2528                 if (retval != ERROR_OK) {
2529                         free(buffer);
2530                         return retval;
2531                 }
2532
2533                 /* convert to target endianness */
2534                 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
2535                         uint32_t target_data;
2536                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
2537                         target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
2538                 }
2539
2540                 retval = image_calculate_checksum(buffer, size, &checksum);
2541                 free(buffer);
2542         }
2543
2544         *crc = checksum;
2545
2546         return retval;
2547 }
2548
2549 int target_blank_check_memory(struct target *target,
2550         struct target_memory_check_block *blocks, int num_blocks,
2551         uint8_t erased_value)
2552 {
2553         if (!target_was_examined(target)) {
2554                 LOG_ERROR("Target not examined yet");
2555                 return ERROR_FAIL;
2556         }
2557
2558         if (target->type->blank_check_memory == NULL)
2559                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2560
2561         return target->type->blank_check_memory(target, blocks, num_blocks, erased_value);
2562 }
2563
2564 int target_read_u64(struct target *target, target_addr_t address, uint64_t *value)
2565 {
2566         uint8_t value_buf[8];
2567         if (!target_was_examined(target)) {
2568                 LOG_ERROR("Target not examined yet");
2569                 return ERROR_FAIL;
2570         }
2571
2572         int retval = target_read_memory(target, address, 8, 1, value_buf);
2573
2574         if (retval == ERROR_OK) {
2575                 *value = target_buffer_get_u64(target, value_buf);
2576                 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2577                                   address,
2578                                   *value);
2579         } else {
2580                 *value = 0x0;
2581                 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2582                                   address);
2583         }
2584
2585         return retval;
2586 }
2587
2588 int target_read_u32(struct target *target, target_addr_t address, uint32_t *value)
2589 {
2590         uint8_t value_buf[4];
2591         if (!target_was_examined(target)) {
2592                 LOG_ERROR("Target not examined yet");
2593                 return ERROR_FAIL;
2594         }
2595
2596         int retval = target_read_memory(target, address, 4, 1, value_buf);
2597
2598         if (retval == ERROR_OK) {
2599                 *value = target_buffer_get_u32(target, value_buf);
2600                 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2601                                   address,
2602                                   *value);
2603         } else {
2604                 *value = 0x0;
2605                 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2606                                   address);
2607         }
2608
2609         return retval;
2610 }
2611
2612 int target_read_u16(struct target *target, target_addr_t address, uint16_t *value)
2613 {
2614         uint8_t value_buf[2];
2615         if (!target_was_examined(target)) {
2616                 LOG_ERROR("Target not examined yet");
2617                 return ERROR_FAIL;
2618         }
2619
2620         int retval = target_read_memory(target, address, 2, 1, value_buf);
2621
2622         if (retval == ERROR_OK) {
2623                 *value = target_buffer_get_u16(target, value_buf);
2624                 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%4.4" PRIx16,
2625                                   address,
2626                                   *value);
2627         } else {
2628                 *value = 0x0;
2629                 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2630                                   address);
2631         }
2632
2633         return retval;
2634 }
2635
2636 int target_read_u8(struct target *target, target_addr_t address, uint8_t *value)
2637 {
2638         if (!target_was_examined(target)) {
2639                 LOG_ERROR("Target not examined yet");
2640                 return ERROR_FAIL;
2641         }
2642
2643         int retval = target_read_memory(target, address, 1, 1, value);
2644
2645         if (retval == ERROR_OK) {
2646                 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2647                                   address,
2648                                   *value);
2649         } else {
2650                 *value = 0x0;
2651                 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2652                                   address);
2653         }
2654
2655         return retval;
2656 }
2657
2658 int target_write_u64(struct target *target, target_addr_t address, uint64_t value)
2659 {
2660         int retval;
2661         uint8_t value_buf[8];
2662         if (!target_was_examined(target)) {
2663                 LOG_ERROR("Target not examined yet");
2664                 return ERROR_FAIL;
2665         }
2666
2667         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2668                           address,
2669                           value);
2670
2671         target_buffer_set_u64(target, value_buf, value);
2672         retval = target_write_memory(target, address, 8, 1, value_buf);
2673         if (retval != ERROR_OK)
2674                 LOG_DEBUG("failed: %i", retval);
2675
2676         return retval;
2677 }
2678
2679 int target_write_u32(struct target *target, target_addr_t address, uint32_t value)
2680 {
2681         int retval;
2682         uint8_t value_buf[4];
2683         if (!target_was_examined(target)) {
2684                 LOG_ERROR("Target not examined yet");
2685                 return ERROR_FAIL;
2686         }
2687
2688         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2689                           address,
2690                           value);
2691
2692         target_buffer_set_u32(target, value_buf, value);
2693         retval = target_write_memory(target, address, 4, 1, value_buf);
2694         if (retval != ERROR_OK)
2695                 LOG_DEBUG("failed: %i", retval);
2696
2697         return retval;
2698 }
2699
2700 int target_write_u16(struct target *target, target_addr_t address, uint16_t value)
2701 {
2702         int retval;
2703         uint8_t value_buf[2];
2704         if (!target_was_examined(target)) {
2705                 LOG_ERROR("Target not examined yet");
2706                 return ERROR_FAIL;
2707         }
2708
2709         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2710                           address,
2711                           value);
2712
2713         target_buffer_set_u16(target, value_buf, value);
2714         retval = target_write_memory(target, address, 2, 1, value_buf);
2715         if (retval != ERROR_OK)
2716                 LOG_DEBUG("failed: %i", retval);
2717
2718         return retval;
2719 }
2720
2721 int target_write_u8(struct target *target, target_addr_t address, uint8_t value)
2722 {
2723         int retval;
2724         if (!target_was_examined(target)) {
2725                 LOG_ERROR("Target not examined yet");
2726                 return ERROR_FAIL;
2727         }
2728
2729         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2730                           address, value);
2731
2732         retval = target_write_memory(target, address, 1, 1, &value);
2733         if (retval != ERROR_OK)
2734                 LOG_DEBUG("failed: %i", retval);
2735
2736         return retval;
2737 }
2738
2739 int target_write_phys_u64(struct target *target, target_addr_t address, uint64_t value)
2740 {
2741         int retval;
2742         uint8_t value_buf[8];
2743         if (!target_was_examined(target)) {
2744                 LOG_ERROR("Target not examined yet");
2745                 return ERROR_FAIL;
2746         }
2747
2748         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2749                           address,
2750                           value);
2751
2752         target_buffer_set_u64(target, value_buf, value);
2753         retval = target_write_phys_memory(target, address, 8, 1, value_buf);
2754         if (retval != ERROR_OK)
2755                 LOG_DEBUG("failed: %i", retval);
2756
2757         return retval;
2758 }
2759
2760 int target_write_phys_u32(struct target *target, target_addr_t address, uint32_t value)
2761 {
2762         int retval;
2763         uint8_t value_buf[4];
2764         if (!target_was_examined(target)) {
2765                 LOG_ERROR("Target not examined yet");
2766                 return ERROR_FAIL;
2767         }
2768
2769         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2770                           address,
2771                           value);
2772
2773         target_buffer_set_u32(target, value_buf, value);
2774         retval = target_write_phys_memory(target, address, 4, 1, value_buf);
2775         if (retval != ERROR_OK)
2776                 LOG_DEBUG("failed: %i", retval);
2777
2778         return retval;
2779 }
2780
2781 int target_write_phys_u16(struct target *target, target_addr_t address, uint16_t value)
2782 {
2783         int retval;
2784         uint8_t value_buf[2];
2785         if (!target_was_examined(target)) {
2786                 LOG_ERROR("Target not examined yet");
2787                 return ERROR_FAIL;
2788         }
2789
2790         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2791                           address,
2792                           value);
2793
2794         target_buffer_set_u16(target, value_buf, value);
2795         retval = target_write_phys_memory(target, address, 2, 1, value_buf);
2796         if (retval != ERROR_OK)
2797                 LOG_DEBUG("failed: %i", retval);
2798
2799         return retval;
2800 }
2801
2802 int target_write_phys_u8(struct target *target, target_addr_t address, uint8_t value)
2803 {
2804         int retval;
2805         if (!target_was_examined(target)) {
2806                 LOG_ERROR("Target not examined yet");
2807                 return ERROR_FAIL;
2808         }
2809
2810         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2811                           address, value);
2812
2813         retval = target_write_phys_memory(target, address, 1, 1, &value);
2814         if (retval != ERROR_OK)
2815                 LOG_DEBUG("failed: %i", retval);
2816
2817         return retval;
2818 }
2819
2820 static int find_target(struct command_invocation *cmd, const char *name)
2821 {
2822         struct target *target = get_target(name);
2823         if (!target) {
2824                 command_print(cmd, "Target: %s is unknown, try one of:\n", name);
2825                 return ERROR_FAIL;
2826         }
2827         if (!target->tap->enabled) {
2828                 command_print(cmd, "Target: TAP %s is disabled, "
2829                          "can't be the current target\n",
2830                          target->tap->dotted_name);
2831                 return ERROR_FAIL;
2832         }
2833
2834         cmd->ctx->current_target = target;
2835         if (cmd->ctx->current_target_override)
2836                 cmd->ctx->current_target_override = target;
2837
2838         return ERROR_OK;
2839 }
2840
2841
2842 COMMAND_HANDLER(handle_targets_command)
2843 {
2844         int retval = ERROR_OK;
2845         if (CMD_ARGC == 1) {
2846                 retval = find_target(CMD, CMD_ARGV[0]);
2847                 if (retval == ERROR_OK) {
2848                         /* we're done! */
2849                         return retval;
2850                 }
2851         }
2852
2853         struct target *target = all_targets;
2854         command_print(CMD, "    TargetName         Type       Endian TapName            State       ");
2855         command_print(CMD, "--  ------------------ ---------- ------ ------------------ ------------");
2856         while (target) {
2857                 const char *state;
2858                 char marker = ' ';
2859
2860                 if (target->tap->enabled)
2861                         state = target_state_name(target);
2862                 else
2863                         state = "tap-disabled";
2864
2865                 if (CMD_CTX->current_target == target)
2866                         marker = '*';
2867
2868                 /* keep columns lined up to match the headers above */
2869                 command_print(CMD,
2870                                 "%2d%c %-18s %-10s %-6s %-18s %s",
2871                                 target->target_number,
2872                                 marker,
2873                                 target_name(target),
2874                                 target_type_name(target),
2875                                 jim_nvp_value2name_simple(nvp_target_endian,
2876                                         target->endianness)->name,
2877                                 target->tap->dotted_name,
2878                                 state);
2879                 target = target->next;
2880         }
2881
2882         return retval;
2883 }
2884
2885 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2886
2887 static int power_dropout;
2888 static int srst_asserted;
2889
2890 static int run_power_restore;
2891 static int run_power_dropout;
2892 static int run_srst_asserted;
2893 static int run_srst_deasserted;
2894
2895 static int sense_handler(void)
2896 {
2897         static int prev_srst_asserted;
2898         static int prev_power_dropout;
2899
2900         int retval = jtag_power_dropout(&power_dropout);
2901         if (retval != ERROR_OK)
2902                 return retval;
2903
2904         int power_restored;
2905         power_restored = prev_power_dropout && !power_dropout;
2906         if (power_restored)
2907                 run_power_restore = 1;
2908
2909         int64_t current = timeval_ms();
2910         static int64_t last_power;
2911         bool wait_more = last_power + 2000 > current;
2912         if (power_dropout && !wait_more) {
2913                 run_power_dropout = 1;
2914                 last_power = current;
2915         }
2916
2917         retval = jtag_srst_asserted(&srst_asserted);
2918         if (retval != ERROR_OK)
2919                 return retval;
2920
2921         int srst_deasserted;
2922         srst_deasserted = prev_srst_asserted && !srst_asserted;
2923
2924         static int64_t last_srst;
2925         wait_more = last_srst + 2000 > current;
2926         if (srst_deasserted && !wait_more) {
2927                 run_srst_deasserted = 1;
2928                 last_srst = current;
2929         }
2930
2931         if (!prev_srst_asserted && srst_asserted)
2932                 run_srst_asserted = 1;
2933
2934         prev_srst_asserted = srst_asserted;
2935         prev_power_dropout = power_dropout;
2936
2937         if (srst_deasserted || power_restored) {
2938                 /* Other than logging the event we can't do anything here.
2939                  * Issuing a reset is a particularly bad idea as we might
2940                  * be inside a reset already.
2941                  */
2942         }
2943
2944         return ERROR_OK;
2945 }
2946
2947 /* process target state changes */
2948 static int handle_target(void *priv)
2949 {
2950         Jim_Interp *interp = (Jim_Interp *)priv;
2951         int retval = ERROR_OK;
2952
2953         if (!is_jtag_poll_safe()) {
2954                 /* polling is disabled currently */
2955                 return ERROR_OK;
2956         }
2957
2958         /* we do not want to recurse here... */
2959         static int recursive;
2960         if (!recursive) {
2961                 recursive = 1;
2962                 sense_handler();
2963                 /* danger! running these procedures can trigger srst assertions and power dropouts.
2964                  * We need to avoid an infinite loop/recursion here and we do that by
2965                  * clearing the flags after running these events.
2966                  */
2967                 int did_something = 0;
2968                 if (run_srst_asserted) {
2969                         LOG_INFO("srst asserted detected, running srst_asserted proc.");
2970                         Jim_Eval(interp, "srst_asserted");
2971                         did_something = 1;
2972                 }
2973                 if (run_srst_deasserted) {
2974                         Jim_Eval(interp, "srst_deasserted");
2975                         did_something = 1;
2976                 }
2977                 if (run_power_dropout) {
2978                         LOG_INFO("Power dropout detected, running power_dropout proc.");
2979                         Jim_Eval(interp, "power_dropout");
2980                         did_something = 1;
2981                 }
2982                 if (run_power_restore) {
2983                         Jim_Eval(interp, "power_restore");
2984                         did_something = 1;
2985                 }
2986
2987                 if (did_something) {
2988                         /* clear detect flags */
2989                         sense_handler();
2990                 }
2991
2992                 /* clear action flags */
2993
2994                 run_srst_asserted = 0;
2995                 run_srst_deasserted = 0;
2996                 run_power_restore = 0;
2997                 run_power_dropout = 0;
2998
2999                 recursive = 0;
3000         }
3001
3002         /* Poll targets for state changes unless that's globally disabled.
3003          * Skip targets that are currently disabled.
3004          */
3005         for (struct target *target = all_targets;
3006                         is_jtag_poll_safe() && target;
3007                         target = target->next) {
3008
3009                 if (!target_was_examined(target))
3010                         continue;
3011
3012                 if (!target->tap->enabled)
3013                         continue;
3014
3015                 if (target->backoff.times > target->backoff.count) {
3016                         /* do not poll this time as we failed previously */
3017                         target->backoff.count++;
3018                         continue;
3019                 }
3020                 target->backoff.count = 0;
3021
3022                 /* only poll target if we've got power and srst isn't asserted */
3023                 if (!power_dropout && !srst_asserted) {
3024                         /* polling may fail silently until the target has been examined */
3025                         retval = target_poll(target);
3026                         if (retval != ERROR_OK) {
3027                                 /* 100ms polling interval. Increase interval between polling up to 5000ms */
3028                                 if (target->backoff.times * polling_interval < 5000) {
3029                                         target->backoff.times *= 2;
3030                                         target->backoff.times++;
3031                                 }
3032
3033                                 /* Tell GDB to halt the debugger. This allows the user to
3034                                  * run monitor commands to handle the situation.
3035                                  */
3036                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
3037                         }
3038                         if (target->backoff.times > 0) {
3039                                 LOG_USER("Polling target %s failed, trying to reexamine", target_name(target));
3040                                 target_reset_examined(target);
3041                                 retval = target_examine_one(target);
3042                                 /* Target examination could have failed due to unstable connection,
3043                                  * but we set the examined flag anyway to repoll it later */
3044                                 if (retval != ERROR_OK) {
3045                                         target->examined = true;
3046                                         LOG_USER("Examination failed, GDB will be halted. Polling again in %dms",
3047                                                  target->backoff.times * polling_interval);
3048                                         return retval;
3049                                 }
3050                         }
3051
3052                         /* Since we succeeded, we reset backoff count */
3053                         target->backoff.times = 0;
3054                 }
3055         }
3056
3057         return retval;
3058 }
3059
3060 COMMAND_HANDLER(handle_reg_command)
3061 {
3062         LOG_DEBUG("-");
3063
3064         struct target *target = get_current_target(CMD_CTX);
3065         struct reg *reg = NULL;
3066
3067         /* list all available registers for the current target */
3068         if (CMD_ARGC == 0) {
3069                 struct reg_cache *cache = target->reg_cache;
3070
3071                 unsigned int count = 0;
3072                 while (cache) {
3073                         unsigned i;
3074
3075                         command_print(CMD, "===== %s", cache->name);
3076
3077                         for (i = 0, reg = cache->reg_list;
3078                                         i < cache->num_regs;
3079                                         i++, reg++, count++) {
3080                                 if (reg->exist == false || reg->hidden)
3081                                         continue;
3082                                 /* only print cached values if they are valid */
3083                                 if (reg->valid) {
3084                                         char *value = buf_to_hex_str(reg->value,
3085                                                         reg->size);
3086                                         command_print(CMD,
3087                                                         "(%i) %s (/%" PRIu32 "): 0x%s%s",
3088                                                         count, reg->name,
3089                                                         reg->size, value,
3090                                                         reg->dirty
3091                                                                 ? " (dirty)"
3092                                                                 : "");
3093                                         free(value);
3094                                 } else {
3095                                         command_print(CMD, "(%i) %s (/%" PRIu32 ")",
3096                                                           count, reg->name,
3097                                                           reg->size);
3098                                 }
3099                         }
3100                         cache = cache->next;
3101                 }
3102
3103                 return ERROR_OK;
3104         }
3105
3106         /* access a single register by its ordinal number */
3107         if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
3108                 unsigned num;
3109                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
3110
3111                 struct reg_cache *cache = target->reg_cache;
3112                 unsigned int count = 0;
3113                 while (cache) {
3114                         unsigned i;
3115                         for (i = 0; i < cache->num_regs; i++) {
3116                                 if (count++ == num) {
3117                                         reg = &cache->reg_list[i];
3118                                         break;
3119                                 }
3120                         }
3121                         if (reg)
3122                                 break;
3123                         cache = cache->next;
3124                 }
3125
3126                 if (!reg) {
3127                         command_print(CMD, "%i is out of bounds, the current target "
3128                                         "has only %i registers (0 - %i)", num, count, count - 1);
3129                         return ERROR_OK;
3130                 }
3131         } else {
3132                 /* access a single register by its name */
3133                 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], true);
3134
3135                 if (!reg)
3136                         goto not_found;
3137         }
3138
3139         assert(reg); /* give clang a hint that we *know* reg is != NULL here */
3140
3141         if (!reg->exist)
3142                 goto not_found;
3143
3144         /* display a register */
3145         if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
3146                         && (CMD_ARGV[1][0] <= '9')))) {
3147                 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
3148                         reg->valid = 0;
3149
3150                 if (reg->valid == 0) {
3151                         int retval = reg->type->get(reg);
3152                         if (retval != ERROR_OK) {
3153                                 LOG_ERROR("Could not read register '%s'", reg->name);
3154                                 return retval;
3155                         }
3156                 }
3157                 char *value = buf_to_hex_str(reg->value, reg->size);
3158                 command_print(CMD, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
3159                 free(value);
3160                 return ERROR_OK;
3161         }
3162
3163         /* set register value */
3164         if (CMD_ARGC == 2) {
3165                 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
3166                 if (!buf)
3167                         return ERROR_FAIL;
3168                 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
3169
3170                 int retval = reg->type->set(reg, buf);
3171                 if (retval != ERROR_OK) {
3172                         LOG_ERROR("Could not write to register '%s'", reg->name);
3173                 } else {
3174                         char *value = buf_to_hex_str(reg->value, reg->size);
3175                         command_print(CMD, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
3176                         free(value);
3177                 }
3178
3179                 free(buf);
3180
3181                 return retval;
3182         }
3183
3184         return ERROR_COMMAND_SYNTAX_ERROR;
3185
3186 not_found:
3187         command_print(CMD, "register %s not found in current target", CMD_ARGV[0]);
3188         return ERROR_OK;
3189 }
3190
3191 COMMAND_HANDLER(handle_poll_command)
3192 {
3193         int retval = ERROR_OK;
3194         struct target *target = get_current_target(CMD_CTX);
3195
3196         if (CMD_ARGC == 0) {
3197                 command_print(CMD, "background polling: %s",
3198                                 jtag_poll_get_enabled() ? "on" : "off");
3199                 command_print(CMD, "TAP: %s (%s)",
3200                                 target->tap->dotted_name,
3201                                 target->tap->enabled ? "enabled" : "disabled");
3202                 if (!target->tap->enabled)
3203                         return ERROR_OK;
3204                 retval = target_poll(target);
3205                 if (retval != ERROR_OK)
3206                         return retval;
3207                 retval = target_arch_state(target);
3208                 if (retval != ERROR_OK)
3209                         return retval;
3210         } else if (CMD_ARGC == 1) {
3211                 bool enable;
3212                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
3213                 jtag_poll_set_enabled(enable);
3214         } else
3215                 return ERROR_COMMAND_SYNTAX_ERROR;
3216
3217         return retval;
3218 }
3219
3220 COMMAND_HANDLER(handle_wait_halt_command)
3221 {
3222         if (CMD_ARGC > 1)
3223                 return ERROR_COMMAND_SYNTAX_ERROR;
3224
3225         unsigned ms = DEFAULT_HALT_TIMEOUT;
3226         if (1 == CMD_ARGC) {
3227                 int retval = parse_uint(CMD_ARGV[0], &ms);
3228                 if (retval != ERROR_OK)
3229                         return ERROR_COMMAND_SYNTAX_ERROR;
3230         }
3231
3232         struct target *target = get_current_target(CMD_CTX);
3233         return target_wait_state(target, TARGET_HALTED, ms);
3234 }
3235
3236 /* wait for target state to change. The trick here is to have a low
3237  * latency for short waits and not to suck up all the CPU time
3238  * on longer waits.
3239  *
3240  * After 500ms, keep_alive() is invoked
3241  */
3242 int target_wait_state(struct target *target, enum target_state state, int ms)
3243 {
3244         int retval;
3245         int64_t then = 0, cur;
3246         bool once = true;
3247
3248         for (;;) {
3249                 retval = target_poll(target);
3250                 if (retval != ERROR_OK)
3251                         return retval;
3252                 if (target->state == state)
3253                         break;
3254                 cur = timeval_ms();
3255                 if (once) {
3256                         once = false;
3257                         then = timeval_ms();
3258                         LOG_DEBUG("waiting for target %s...",
3259                                 jim_nvp_value2name_simple(nvp_target_state, state)->name);
3260                 }
3261
3262                 if (cur-then > 500)
3263                         keep_alive();
3264
3265                 if ((cur-then) > ms) {
3266                         LOG_ERROR("timed out while waiting for target %s",
3267                                 jim_nvp_value2name_simple(nvp_target_state, state)->name);
3268                         return ERROR_FAIL;
3269                 }
3270         }
3271
3272         return ERROR_OK;
3273 }
3274
3275 COMMAND_HANDLER(handle_halt_command)
3276 {
3277         LOG_DEBUG("-");
3278
3279         struct target *target = get_current_target(CMD_CTX);
3280
3281         target->verbose_halt_msg = true;
3282
3283         int retval = target_halt(target);
3284         if (retval != ERROR_OK)
3285                 return retval;
3286
3287         if (CMD_ARGC == 1) {
3288                 unsigned wait_local;
3289                 retval = parse_uint(CMD_ARGV[0], &wait_local);
3290                 if (retval != ERROR_OK)
3291                         return ERROR_COMMAND_SYNTAX_ERROR;
3292                 if (!wait_local)
3293                         return ERROR_OK;
3294         }
3295
3296         return CALL_COMMAND_HANDLER(handle_wait_halt_command);
3297 }
3298
3299 COMMAND_HANDLER(handle_soft_reset_halt_command)
3300 {
3301         struct target *target = get_current_target(CMD_CTX);
3302
3303         LOG_USER("requesting target halt and executing a soft reset");
3304
3305         target_soft_reset_halt(target);
3306
3307         return ERROR_OK;
3308 }
3309
3310 COMMAND_HANDLER(handle_reset_command)
3311 {
3312         if (CMD_ARGC > 1)
3313                 return ERROR_COMMAND_SYNTAX_ERROR;
3314
3315         enum target_reset_mode reset_mode = RESET_RUN;
3316         if (CMD_ARGC == 1) {
3317                 const struct jim_nvp *n;
3318                 n = jim_nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
3319                 if ((!n->name) || (n->value == RESET_UNKNOWN))
3320                         return ERROR_COMMAND_SYNTAX_ERROR;
3321                 reset_mode = n->value;
3322         }
3323
3324         /* reset *all* targets */
3325         return target_process_reset(CMD, reset_mode);
3326 }
3327
3328
3329 COMMAND_HANDLER(handle_resume_command)
3330 {
3331         int current = 1;
3332         if (CMD_ARGC > 1)
3333                 return ERROR_COMMAND_SYNTAX_ERROR;
3334
3335         struct target *target = get_current_target(CMD_CTX);
3336
3337         /* with no CMD_ARGV, resume from current pc, addr = 0,
3338          * with one arguments, addr = CMD_ARGV[0],
3339          * handle breakpoints, not debugging */
3340         target_addr_t addr = 0;
3341         if (CMD_ARGC == 1) {
3342                 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3343                 current = 0;
3344         }
3345
3346         return target_resume(target, current, addr, 1, 0);
3347 }
3348
3349 COMMAND_HANDLER(handle_step_command)
3350 {
3351         if (CMD_ARGC > 1)
3352                 return ERROR_COMMAND_SYNTAX_ERROR;
3353
3354         LOG_DEBUG("-");
3355
3356         /* with no CMD_ARGV, step from current pc, addr = 0,
3357          * with one argument addr = CMD_ARGV[0],
3358          * handle breakpoints, debugging */
3359         target_addr_t addr = 0;
3360         int current_pc = 1;
3361         if (CMD_ARGC == 1) {
3362                 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3363                 current_pc = 0;
3364         }
3365
3366         struct target *target = get_current_target(CMD_CTX);
3367
3368         return target_step(target, current_pc, addr, 1);
3369 }
3370
3371 void target_handle_md_output(struct command_invocation *cmd,
3372                 struct target *target, target_addr_t address, unsigned size,
3373                 unsigned count, const uint8_t *buffer)
3374 {
3375         const unsigned line_bytecnt = 32;
3376         unsigned line_modulo = line_bytecnt / size;
3377
3378         char output[line_bytecnt * 4 + 1];
3379         unsigned output_len = 0;
3380
3381         const char *value_fmt;
3382         switch (size) {
3383         case 8:
3384                 value_fmt = "%16.16"PRIx64" ";
3385                 break;
3386         case 4:
3387                 value_fmt = "%8.8"PRIx64" ";
3388                 break;
3389         case 2:
3390                 value_fmt = "%4.4"PRIx64" ";
3391                 break;
3392         case 1:
3393                 value_fmt = "%2.2"PRIx64" ";
3394                 break;
3395         default:
3396                 /* "can't happen", caller checked */
3397                 LOG_ERROR("invalid memory read size: %u", size);
3398                 return;
3399         }
3400
3401         for (unsigned i = 0; i < count; i++) {
3402                 if (i % line_modulo == 0) {
3403                         output_len += snprintf(output + output_len,
3404                                         sizeof(output) - output_len,
3405                                         TARGET_ADDR_FMT ": ",
3406                                         (address + (i * size)));
3407                 }
3408
3409                 uint64_t value = 0;
3410                 const uint8_t *value_ptr = buffer + i * size;
3411                 switch (size) {
3412                 case 8:
3413                         value = target_buffer_get_u64(target, value_ptr);
3414                         break;
3415                 case 4:
3416                         value = target_buffer_get_u32(target, value_ptr);
3417                         break;
3418                 case 2:
3419                         value = target_buffer_get_u16(target, value_ptr);
3420                         break;
3421                 case 1:
3422                         value = *value_ptr;
3423                 }
3424                 output_len += snprintf(output + output_len,
3425                                 sizeof(output) - output_len,
3426                                 value_fmt, value);
3427
3428                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
3429                         command_print(cmd, "%s", output);
3430                         output_len = 0;
3431                 }
3432         }
3433 }
3434
3435 COMMAND_HANDLER(handle_md_command)
3436 {
3437         if (CMD_ARGC < 1)
3438                 return ERROR_COMMAND_SYNTAX_ERROR;
3439
3440         unsigned size = 0;
3441         switch (CMD_NAME[2]) {
3442         case 'd':
3443                 size = 8;
3444                 break;
3445         case 'w':
3446                 size = 4;
3447                 break;
3448         case 'h':
3449                 size = 2;
3450                 break;
3451         case 'b':
3452                 size = 1;
3453                 break;
3454         default:
3455                 return ERROR_COMMAND_SYNTAX_ERROR;
3456         }
3457
3458         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3459         int (*fn)(struct target *target,
3460                         target_addr_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
3461         if (physical) {
3462                 CMD_ARGC--;
3463                 CMD_ARGV++;
3464                 fn = target_read_phys_memory;
3465         } else
3466                 fn = target_read_memory;
3467         if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
3468                 return ERROR_COMMAND_SYNTAX_ERROR;
3469
3470         target_addr_t address;
3471         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3472
3473         unsigned count = 1;
3474         if (CMD_ARGC == 2)
3475                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
3476
3477         uint8_t *buffer = calloc(count, size);
3478         if (!buffer) {
3479                 LOG_ERROR("Failed to allocate md read buffer");
3480                 return ERROR_FAIL;
3481         }
3482
3483         struct target *target = get_current_target(CMD_CTX);
3484         int retval = fn(target, address, size, count, buffer);
3485         if (retval == ERROR_OK)
3486                 target_handle_md_output(CMD, target, address, size, count, buffer);
3487
3488         free(buffer);
3489
3490         return retval;
3491 }
3492
3493 typedef int (*target_write_fn)(struct target *target,
3494                 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
3495
3496 static int target_fill_mem(struct target *target,
3497                 target_addr_t address,
3498                 target_write_fn fn,
3499                 unsigned data_size,
3500                 /* value */
3501                 uint64_t b,
3502                 /* count */
3503                 unsigned c)
3504 {
3505         /* We have to write in reasonably large chunks to be able
3506          * to fill large memory areas with any sane speed */
3507         const unsigned chunk_size = 16384;
3508         uint8_t *target_buf = malloc(chunk_size * data_size);
3509         if (!target_buf) {
3510                 LOG_ERROR("Out of memory");
3511                 return ERROR_FAIL;
3512         }
3513
3514         for (unsigned i = 0; i < chunk_size; i++) {
3515                 switch (data_size) {
3516                 case 8:
3517                         target_buffer_set_u64(target, target_buf + i * data_size, b);
3518                         break;
3519                 case 4:
3520                         target_buffer_set_u32(target, target_buf + i * data_size, b);
3521                         break;
3522                 case 2:
3523                         target_buffer_set_u16(target, target_buf + i * data_size, b);
3524                         break;
3525                 case 1:
3526                         target_buffer_set_u8(target, target_buf + i * data_size, b);
3527                         break;
3528                 default:
3529                         exit(-1);
3530                 }
3531         }
3532
3533         int retval = ERROR_OK;
3534
3535         for (unsigned x = 0; x < c; x += chunk_size) {
3536                 unsigned current;
3537                 current = c - x;
3538                 if (current > chunk_size)
3539                         current = chunk_size;
3540                 retval = fn(target, address + x * data_size, data_size, current, target_buf);
3541                 if (retval != ERROR_OK)
3542                         break;
3543                 /* avoid GDB timeouts */
3544                 keep_alive();
3545         }
3546         free(target_buf);
3547
3548         return retval;
3549 }
3550
3551
3552 COMMAND_HANDLER(handle_mw_command)
3553 {
3554         if (CMD_ARGC < 2)
3555                 return ERROR_COMMAND_SYNTAX_ERROR;
3556         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3557         target_write_fn fn;
3558         if (physical) {
3559                 CMD_ARGC--;
3560                 CMD_ARGV++;
3561                 fn = target_write_phys_memory;
3562         } else
3563                 fn = target_write_memory;
3564         if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
3565                 return ERROR_COMMAND_SYNTAX_ERROR;
3566
3567         target_addr_t address;
3568         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3569
3570         uint64_t value;
3571         COMMAND_PARSE_NUMBER(u64, CMD_ARGV[1], value);
3572
3573         unsigned count = 1;
3574         if (CMD_ARGC == 3)
3575                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
3576
3577         struct target *target = get_current_target(CMD_CTX);
3578         unsigned wordsize;
3579         switch (CMD_NAME[2]) {
3580                 case 'd':
3581                         wordsize = 8;
3582                         break;
3583                 case 'w':
3584                         wordsize = 4;
3585                         break;
3586                 case 'h':
3587                         wordsize = 2;
3588                         break;
3589                 case 'b':
3590                         wordsize = 1;
3591                         break;
3592                 default:
3593                         return ERROR_COMMAND_SYNTAX_ERROR;
3594         }
3595
3596         return target_fill_mem(target, address, fn, wordsize, value, count);
3597 }
3598
3599 static COMMAND_HELPER(parse_load_image_command, struct image *image,
3600                 target_addr_t *min_address, target_addr_t *max_address)
3601 {
3602         if (CMD_ARGC < 1 || CMD_ARGC > 5)
3603                 return ERROR_COMMAND_SYNTAX_ERROR;
3604
3605         /* a base address isn't always necessary,
3606          * default to 0x0 (i.e. don't relocate) */
3607         if (CMD_ARGC >= 2) {
3608                 target_addr_t addr;
3609                 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3610                 image->base_address = addr;
3611                 image->base_address_set = true;
3612         } else
3613                 image->base_address_set = false;
3614
3615         image->start_address_set = false;
3616
3617         if (CMD_ARGC >= 4)
3618                 COMMAND_PARSE_ADDRESS(CMD_ARGV[3], *min_address);
3619         if (CMD_ARGC == 5) {
3620                 COMMAND_PARSE_ADDRESS(CMD_ARGV[4], *max_address);
3621                 /* use size (given) to find max (required) */
3622                 *max_address += *min_address;
3623         }
3624
3625         if (*min_address > *max_address)
3626                 return ERROR_COMMAND_SYNTAX_ERROR;
3627
3628         return ERROR_OK;
3629 }
3630
3631 COMMAND_HANDLER(handle_load_image_command)
3632 {
3633         uint8_t *buffer;
3634         size_t buf_cnt;
3635         uint32_t image_size;
3636         target_addr_t min_address = 0;
3637         target_addr_t max_address = -1;
3638         struct image image;
3639
3640         int retval = CALL_COMMAND_HANDLER(parse_load_image_command,
3641                         &image, &min_address, &max_address);
3642         if (retval != ERROR_OK)
3643                 return retval;
3644
3645         struct target *target = get_current_target(CMD_CTX);
3646
3647         struct duration bench;
3648         duration_start(&bench);
3649
3650         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
3651                 return ERROR_FAIL;
3652
3653         image_size = 0x0;
3654         retval = ERROR_OK;
3655         for (unsigned int i = 0; i < image.num_sections; i++) {
3656                 buffer = malloc(image.sections[i].size);
3657                 if (!buffer) {
3658                         command_print(CMD,
3659                                                   "error allocating buffer for section (%d bytes)",
3660                                                   (int)(image.sections[i].size));
3661                         retval = ERROR_FAIL;
3662                         break;
3663                 }
3664
3665                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3666                 if (retval != ERROR_OK) {
3667                         free(buffer);
3668                         break;
3669                 }
3670
3671                 uint32_t offset = 0;
3672                 uint32_t length = buf_cnt;
3673
3674                 /* DANGER!!! beware of unsigned comparison here!!! */
3675
3676                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
3677                                 (image.sections[i].base_address < max_address)) {
3678
3679                         if (image.sections[i].base_address < min_address) {
3680                                 /* clip addresses below */
3681                                 offset += min_address-image.sections[i].base_address;
3682                                 length -= offset;
3683                         }
3684
3685                         if (image.sections[i].base_address + buf_cnt > max_address)
3686                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
3687
3688                         retval = target_write_buffer(target,
3689                                         image.sections[i].base_address + offset, length, buffer + offset);
3690                         if (retval != ERROR_OK) {
3691                                 free(buffer);
3692                                 break;
3693                         }
3694                         image_size += length;
3695                         command_print(CMD, "%u bytes written at address " TARGET_ADDR_FMT "",
3696                                         (unsigned int)length,
3697                                         image.sections[i].base_address + offset);
3698                 }
3699
3700                 free(buffer);
3701         }
3702
3703         if ((retval == ERROR_OK) && (duration_measure(&bench) == ERROR_OK)) {
3704                 command_print(CMD, "downloaded %" PRIu32 " bytes "
3705                                 "in %fs (%0.3f KiB/s)", image_size,
3706                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3707         }
3708
3709         image_close(&image);
3710
3711         return retval;
3712
3713 }
3714
3715 COMMAND_HANDLER(handle_dump_image_command)
3716 {
3717         struct fileio *fileio;
3718         uint8_t *buffer;
3719         int retval, retvaltemp;
3720         target_addr_t address, size;
3721         struct duration bench;
3722         struct target *target = get_current_target(CMD_CTX);
3723
3724         if (CMD_ARGC != 3)
3725                 return ERROR_COMMAND_SYNTAX_ERROR;
3726
3727         COMMAND_PARSE_ADDRESS(CMD_ARGV[1], address);
3728         COMMAND_PARSE_ADDRESS(CMD_ARGV[2], size);
3729
3730         uint32_t buf_size = (size > 4096) ? 4096 : size;
3731         buffer = malloc(buf_size);
3732         if (!buffer)
3733                 return ERROR_FAIL;
3734
3735         retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
3736         if (retval != ERROR_OK) {
3737                 free(buffer);
3738                 return retval;
3739         }
3740
3741         duration_start(&bench);
3742
3743         while (size > 0) {
3744                 size_t size_written;
3745                 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
3746                 retval = target_read_buffer(target, address, this_run_size, buffer);
3747                 if (retval != ERROR_OK)
3748                         break;
3749
3750                 retval = fileio_write(fileio, this_run_size, buffer, &size_written);
3751                 if (retval != ERROR_OK)
3752                         break;
3753
3754                 size -= this_run_size;
3755                 address += this_run_size;
3756         }
3757
3758         free(buffer);
3759
3760         if ((retval == ERROR_OK) && (duration_measure(&bench) == ERROR_OK)) {
3761                 size_t filesize;
3762                 retval = fileio_size(fileio, &filesize);
3763                 if (retval != ERROR_OK)
3764                         return retval;
3765                 command_print(CMD,
3766                                 "dumped %zu bytes in %fs (%0.3f KiB/s)", filesize,
3767                                 duration_elapsed(&bench), duration_kbps(&bench, filesize));
3768         }
3769
3770         retvaltemp = fileio_close(fileio);
3771         if (retvaltemp != ERROR_OK)
3772                 return retvaltemp;
3773
3774         return retval;
3775 }
3776
3777 enum verify_mode {
3778         IMAGE_TEST = 0,
3779         IMAGE_VERIFY = 1,
3780         IMAGE_CHECKSUM_ONLY = 2
3781 };
3782
3783 static COMMAND_HELPER(handle_verify_image_command_internal, enum verify_mode verify)
3784 {
3785         uint8_t *buffer;
3786         size_t buf_cnt;
3787         uint32_t image_size;
3788         int retval;
3789         uint32_t checksum = 0;
3790         uint32_t mem_checksum = 0;
3791
3792         struct image image;
3793
3794         struct target *target = get_current_target(CMD_CTX);
3795
3796         if (CMD_ARGC < 1)
3797                 return ERROR_COMMAND_SYNTAX_ERROR;
3798
3799         if (!target) {
3800                 LOG_ERROR("no target selected");
3801                 return ERROR_FAIL;
3802         }
3803
3804         struct duration bench;
3805         duration_start(&bench);
3806
3807         if (CMD_ARGC >= 2) {
3808                 target_addr_t addr;
3809                 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3810                 image.base_address = addr;
3811                 image.base_address_set = true;
3812         } else {
3813                 image.base_address_set = false;
3814                 image.base_address = 0x0;
3815         }
3816
3817         image.start_address_set = false;
3818
3819         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
3820         if (retval != ERROR_OK)
3821                 return retval;
3822
3823         image_size = 0x0;
3824         int diffs = 0;
3825         retval = ERROR_OK;
3826         for (unsigned int i = 0; i < image.num_sections; i++) {
3827                 buffer = malloc(image.sections[i].size);
3828                 if (!buffer) {
3829                         command_print(CMD,
3830                                         "error allocating buffer for section (%" PRIu32 " bytes)",
3831                                         image.sections[i].size);
3832                         break;
3833                 }
3834                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3835                 if (retval != ERROR_OK) {
3836                         free(buffer);
3837                         break;
3838                 }
3839
3840                 if (verify >= IMAGE_VERIFY) {
3841                         /* calculate checksum of image */
3842                         retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3843                         if (retval != ERROR_OK) {
3844                                 free(buffer);
3845                                 break;
3846                         }
3847
3848                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3849                         if (retval != ERROR_OK) {
3850                                 free(buffer);
3851                                 break;
3852                         }
3853                         if ((checksum != mem_checksum) && (verify == IMAGE_CHECKSUM_ONLY)) {
3854                                 LOG_ERROR("checksum mismatch");
3855                                 free(buffer);
3856                                 retval = ERROR_FAIL;
3857                                 goto done;
3858                         }
3859                         if (checksum != mem_checksum) {
3860                                 /* failed crc checksum, fall back to a binary compare */
3861                                 uint8_t *data;
3862
3863                                 if (diffs == 0)
3864                                         LOG_ERROR("checksum mismatch - attempting binary compare");
3865
3866                                 data = malloc(buf_cnt);
3867
3868                                 retval = target_read_buffer(target, image.sections[i].base_address, buf_cnt, data);
3869                                 if (retval == ERROR_OK) {
3870                                         uint32_t t;
3871                                         for (t = 0; t < buf_cnt; t++) {
3872                                                 if (data[t] != buffer[t]) {
3873                                                         command_print(CMD,
3874                                                                                   "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3875                                                                                   diffs,
3876                                                                                   (unsigned)(t + image.sections[i].base_address),
3877                                                                                   data[t],
3878                                                                                   buffer[t]);
3879                                                         if (diffs++ >= 127) {
3880                                                                 command_print(CMD, "More than 128 errors, the rest are not printed.");
3881                                                                 free(data);
3882                                                                 free(buffer);
3883                                                                 goto done;
3884                                                         }
3885                                                 }
3886                                                 keep_alive();
3887                                         }
3888                                 }
3889                                 free(data);
3890                         }
3891                 } else {
3892                         command_print(CMD, "address " TARGET_ADDR_FMT " length 0x%08zx",
3893                                                   image.sections[i].base_address,
3894                                                   buf_cnt);
3895                 }
3896
3897                 free(buffer);
3898                 image_size += buf_cnt;
3899         }
3900         if (diffs > 0)
3901                 command_print(CMD, "No more differences found.");
3902 done:
3903         if (diffs > 0)
3904                 retval = ERROR_FAIL;
3905         if ((retval == ERROR_OK) && (duration_measure(&bench) == ERROR_OK)) {
3906                 command_print(CMD, "verified %" PRIu32 " bytes "
3907                                 "in %fs (%0.3f KiB/s)", image_size,
3908                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3909         }
3910
3911         image_close(&image);
3912
3913         return retval;
3914 }
3915
3916 COMMAND_HANDLER(handle_verify_image_checksum_command)
3917 {
3918         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_CHECKSUM_ONLY);
3919 }
3920
3921 COMMAND_HANDLER(handle_verify_image_command)
3922 {
3923         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_VERIFY);
3924 }
3925
3926 COMMAND_HANDLER(handle_test_image_command)
3927 {
3928         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_TEST);
3929 }
3930
3931 static int handle_bp_command_list(struct command_invocation *cmd)
3932 {
3933         struct target *target = get_current_target(cmd->ctx);
3934         struct breakpoint *breakpoint = target->breakpoints;
3935         while (breakpoint) {
3936                 if (breakpoint->type == BKPT_SOFT) {
3937                         char *buf = buf_to_hex_str(breakpoint->orig_instr,
3938                                         breakpoint->length);
3939                         command_print(cmd, "IVA breakpoint: " TARGET_ADDR_FMT ", 0x%x, %i, 0x%s",
3940                                         breakpoint->address,
3941                                         breakpoint->length,
3942                                         breakpoint->set, buf);
3943                         free(buf);
3944                 } else {
3945                         if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3946                                 command_print(cmd, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3947                                                         breakpoint->asid,
3948                                                         breakpoint->length, breakpoint->set);
3949                         else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3950                                 command_print(cmd, "Hybrid breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %i",
3951                                                         breakpoint->address,
3952                                                         breakpoint->length, breakpoint->set);
3953                                 command_print(cmd, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3954                                                         breakpoint->asid);
3955                         } else
3956                                 command_print(cmd, "Breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %i",
3957                                                         breakpoint->address,
3958                                                         breakpoint->length, breakpoint->set);
3959                 }
3960
3961                 breakpoint = breakpoint->next;
3962         }
3963         return ERROR_OK;
3964 }
3965
3966 static int handle_bp_command_set(struct command_invocation *cmd,
3967                 target_addr_t addr, uint32_t asid, uint32_t length, int hw)
3968 {
3969         struct target *target = get_current_target(cmd->ctx);
3970         int retval;
3971
3972         if (asid == 0) {
3973                 retval = breakpoint_add(target, addr, length, hw);
3974                 /* error is always logged in breakpoint_add(), do not print it again */
3975                 if (retval == ERROR_OK)
3976                         command_print(cmd, "breakpoint set at " TARGET_ADDR_FMT "", addr);
3977
3978         } else if (addr == 0) {
3979                 if (target->type->add_context_breakpoint == NULL) {
3980                         LOG_ERROR("Context breakpoint not available");
3981                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
3982                 }
3983                 retval = context_breakpoint_add(target, asid, length, hw);
3984                 /* error is always logged in context_breakpoint_add(), do not print it again */
3985                 if (retval == ERROR_OK)
3986                         command_print(cmd, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3987
3988         } else {
3989                 if (target->type->add_hybrid_breakpoint == NULL) {
3990                         LOG_ERROR("Hybrid breakpoint not available");
3991                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
3992                 }
3993                 retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3994                 /* error is always logged in hybrid_breakpoint_add(), do not print it again */
3995                 if (retval == ERROR_OK)
3996                         command_print(cmd, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3997         }
3998         return retval;
3999 }
4000
4001 COMMAND_HANDLER(handle_bp_command)
4002 {
4003         target_addr_t addr;
4004         uint32_t asid;
4005         uint32_t length;
4006         int hw = BKPT_SOFT;
4007
4008         switch (CMD_ARGC) {
4009                 case 0:
4010                         return handle_bp_command_list(CMD);
4011
4012                 case 2:
4013                         asid = 0;
4014                         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
4015                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
4016                         return handle_bp_command_set(CMD, addr, asid, length, hw);
4017
4018                 case 3:
4019                         if (strcmp(CMD_ARGV[2], "hw") == 0) {
4020                                 hw = BKPT_HARD;
4021                                 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
4022                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
4023                                 asid = 0;
4024                                 return handle_bp_command_set(CMD, addr, asid, length, hw);
4025                         } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
4026                                 hw = BKPT_HARD;
4027                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
4028                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
4029                                 addr = 0;
4030                                 return handle_bp_command_set(CMD, addr, asid, length, hw);
4031                         }
4032                         /* fallthrough */
4033                 case 4:
4034                         hw = BKPT_HARD;
4035                         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
4036                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
4037                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
4038                         return handle_bp_command_set(CMD, addr, asid, length, hw);
4039
4040                 default:
4041                         return ERROR_COMMAND_SYNTAX_ERROR;
4042         }
4043 }
4044
4045 COMMAND_HANDLER(handle_rbp_command)
4046 {
4047         if (CMD_ARGC != 1)
4048                 return ERROR_COMMAND_SYNTAX_ERROR;
4049
4050         struct target *target = get_current_target(CMD_CTX);
4051
4052         if (!strcmp(CMD_ARGV[0], "all")) {
4053                 breakpoint_remove_all(target);
4054         } else {
4055                 target_addr_t addr;
4056                 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
4057
4058                 breakpoint_remove(target, addr);
4059         }
4060
4061         return ERROR_OK;
4062 }
4063
4064 COMMAND_HANDLER(handle_wp_command)
4065 {
4066         struct target *target = get_current_target(CMD_CTX);
4067
4068         if (CMD_ARGC == 0) {
4069                 struct watchpoint *watchpoint = target->watchpoints;
4070
4071                 while (watchpoint) {
4072                         command_print(CMD, "address: " TARGET_ADDR_FMT
4073                                         ", len: 0x%8.8" PRIx32
4074                                         ", r/w/a: %i, value: 0x%8.8" PRIx32
4075                                         ", mask: 0x%8.8" PRIx32,
4076                                         watchpoint->address,
4077                                         watchpoint->length,
4078                                         (int)watchpoint->rw,
4079                                         watchpoint->value,
4080                                         watchpoint->mask);
4081                         watchpoint = watchpoint->next;
4082                 }
4083                 return ERROR_OK;
4084         }
4085
4086         enum watchpoint_rw type = WPT_ACCESS;
4087         target_addr_t addr = 0;
4088         uint32_t length = 0;
4089         uint32_t data_value = 0x0;
4090         uint32_t data_mask = 0xffffffff;
4091
4092         switch (CMD_ARGC) {
4093         case 5:
4094                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
4095                 /* fall through */
4096         case 4:
4097                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
4098                 /* fall through */
4099         case 3:
4100                 switch (CMD_ARGV[2][0]) {
4101                 case 'r':
4102                         type = WPT_READ;
4103                         break;
4104                 case 'w':
4105                         type = WPT_WRITE;
4106                         break;
4107                 case 'a':
4108                         type = WPT_ACCESS;
4109                         break;
4110                 default:
4111                         LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
4112                         return ERROR_COMMAND_SYNTAX_ERROR;
4113                 }
4114                 /* fall through */
4115         case 2:
4116                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
4117                 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
4118                 break;
4119
4120         default:
4121                 return ERROR_COMMAND_SYNTAX_ERROR;
4122         }
4123
4124         int retval = watchpoint_add(target, addr, length, type,
4125                         data_value, data_mask);
4126         if (retval != ERROR_OK)
4127                 LOG_ERROR("Failure setting watchpoints");
4128
4129         return retval;
4130 }
4131
4132 COMMAND_HANDLER(handle_rwp_command)
4133 {
4134         if (CMD_ARGC != 1)
4135                 return ERROR_COMMAND_SYNTAX_ERROR;
4136
4137         target_addr_t addr;
4138         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
4139
4140         struct target *target = get_current_target(CMD_CTX);
4141         watchpoint_remove(target, addr);
4142
4143         return ERROR_OK;
4144 }
4145
4146 /**
4147  * Translate a virtual address to a physical address.
4148  *
4149  * The low-level target implementation must have logged a detailed error
4150  * which is forwarded to telnet/GDB session.
4151  */
4152 COMMAND_HANDLER(handle_virt2phys_command)
4153 {
4154         if (CMD_ARGC != 1)
4155                 return ERROR_COMMAND_SYNTAX_ERROR;
4156
4157         target_addr_t va;
4158         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], va);
4159         target_addr_t pa;
4160
4161         struct target *target = get_current_target(CMD_CTX);
4162         int retval = target->type->virt2phys(target, va, &pa);
4163         if (retval == ERROR_OK)
4164                 command_print(CMD, "Physical address " TARGET_ADDR_FMT "", pa);
4165
4166         return retval;
4167 }
4168
4169 static void write_data(FILE *f, const void *data, size_t len)
4170 {
4171         size_t written = fwrite(data, 1, len, f);
4172         if (written != len)
4173                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
4174 }
4175
4176 static void write_long(FILE *f, int l, struct target *target)
4177 {
4178         uint8_t val[4];
4179
4180         target_buffer_set_u32(target, val, l);
4181         write_data(f, val, 4);
4182 }
4183
4184 static void write_string(FILE *f, char *s)
4185 {
4186         write_data(f, s, strlen(s));
4187 }
4188
4189 typedef unsigned char UNIT[2];  /* unit of profiling */
4190
4191 /* Dump a gmon.out histogram file. */
4192 static void write_gmon(uint32_t *samples, uint32_t sample_num, const char *filename, bool with_range,
4193                         uint32_t start_address, uint32_t end_address, struct target *target, uint32_t duration_ms)
4194 {
4195         uint32_t i;
4196         FILE *f = fopen(filename, "w");
4197         if (!f)
4198                 return;
4199         write_string(f, "gmon");
4200         write_long(f, 0x00000001, target); /* Version */
4201         write_long(f, 0, target); /* padding */
4202         write_long(f, 0, target); /* padding */
4203         write_long(f, 0, target); /* padding */
4204
4205         uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
4206         write_data(f, &zero, 1);
4207
4208         /* figure out bucket size */
4209         uint32_t min;
4210         uint32_t max;
4211         if (with_range) {
4212                 min = start_address;
4213                 max = end_address;
4214         } else {
4215                 min = samples[0];
4216                 max = samples[0];
4217                 for (i = 0; i < sample_num; i++) {
4218                         if (min > samples[i])
4219                                 min = samples[i];
4220                         if (max < samples[i])
4221                                 max = samples[i];
4222                 }
4223
4224                 /* max should be (largest sample + 1)
4225                  * Refer to binutils/gprof/hist.c (find_histogram_for_pc) */
4226                 max++;
4227         }
4228
4229         int address_space = max - min;
4230         assert(address_space >= 2);
4231
4232         /* FIXME: What is the reasonable number of buckets?
4233          * The profiling result will be more accurate if there are enough buckets. */
4234         static const uint32_t max_buckets = 128 * 1024; /* maximum buckets. */
4235         uint32_t num_buckets = address_space / sizeof(UNIT);
4236         if (num_buckets > max_buckets)
4237                 num_buckets = max_buckets;
4238         int *buckets = malloc(sizeof(int) * num_buckets);
4239         if (!buckets) {
4240                 fclose(f);
4241                 return;
4242         }
4243         memset(buckets, 0, sizeof(int) * num_buckets);
4244         for (i = 0; i < sample_num; i++) {
4245                 uint32_t address = samples[i];
4246
4247                 if ((address < min) || (max <= address))
4248                         continue;
4249
4250                 long long a = address - min;
4251                 long long b = num_buckets;
4252                 long long c = address_space;
4253                 int index_t = (a * b) / c; /* danger!!!! int32 overflows */
4254                 buckets[index_t]++;
4255         }
4256
4257         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
4258         write_long(f, min, target);                     /* low_pc */
4259         write_long(f, max, target);                     /* high_pc */
4260         write_long(f, num_buckets, target);     /* # of buckets */
4261         float sample_rate = sample_num / (duration_ms / 1000.0);
4262         write_long(f, sample_rate, target);
4263         write_string(f, "seconds");
4264         for (i = 0; i < (15-strlen("seconds")); i++)
4265                 write_data(f, &zero, 1);
4266         write_string(f, "s");
4267
4268         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
4269
4270         char *data = malloc(2 * num_buckets);
4271         if (data) {
4272                 for (i = 0; i < num_buckets; i++) {
4273                         int val;
4274                         val = buckets[i];
4275                         if (val > 65535)
4276                                 val = 65535;
4277                         data[i * 2] = val&0xff;
4278                         data[i * 2 + 1] = (val >> 8) & 0xff;
4279                 }
4280                 free(buckets);
4281                 write_data(f, data, num_buckets * 2);
4282                 free(data);
4283         } else
4284                 free(buckets);
4285
4286         fclose(f);
4287 }
4288
4289 /* profiling samples the CPU PC as quickly as OpenOCD is able,
4290  * which will be used as a random sampling of PC */
4291 COMMAND_HANDLER(handle_profile_command)
4292 {
4293         struct target *target = get_current_target(CMD_CTX);
4294
4295         if ((CMD_ARGC != 2) && (CMD_ARGC != 4))
4296                 return ERROR_COMMAND_SYNTAX_ERROR;
4297
4298         const uint32_t MAX_PROFILE_SAMPLE_NUM = 10000;
4299         uint32_t offset;
4300         uint32_t num_of_samples;
4301         int retval = ERROR_OK;
4302         bool halted_before_profiling = target->state == TARGET_HALTED;
4303
4304         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], offset);
4305
4306         uint32_t *samples = malloc(sizeof(uint32_t) * MAX_PROFILE_SAMPLE_NUM);
4307         if (!samples) {
4308                 LOG_ERROR("No memory to store samples.");
4309                 return ERROR_FAIL;
4310         }
4311
4312         uint64_t timestart_ms = timeval_ms();
4313         /**
4314          * Some cores let us sample the PC without the
4315          * annoying halt/resume step; for example, ARMv7 PCSR.
4316          * Provide a way to use that more efficient mechanism.
4317          */
4318         retval = target_profiling(target, samples, MAX_PROFILE_SAMPLE_NUM,
4319                                 &num_of_samples, offset);
4320         if (retval != ERROR_OK) {
4321                 free(samples);
4322                 return retval;
4323         }
4324         uint32_t duration_ms = timeval_ms() - timestart_ms;
4325
4326         assert(num_of_samples <= MAX_PROFILE_SAMPLE_NUM);
4327
4328         retval = target_poll(target);
4329         if (retval != ERROR_OK) {
4330                 free(samples);
4331                 return retval;
4332         }
4333
4334         if (target->state == TARGET_RUNNING && halted_before_profiling) {
4335                 /* The target was halted before we started and is running now. Halt it,
4336                  * for consistency. */
4337                 retval = target_halt(target);
4338                 if (retval != ERROR_OK) {
4339                         free(samples);
4340                         return retval;
4341                 }
4342         } else if (target->state == TARGET_HALTED && !halted_before_profiling) {
4343                 /* The target was running before we started and is halted now. Resume
4344                  * it, for consistency. */
4345                 retval = target_resume(target, 1, 0, 0, 0);
4346                 if (retval != ERROR_OK) {
4347                         free(samples);
4348                         return retval;
4349                 }
4350         }
4351
4352         retval = target_poll(target);
4353         if (retval != ERROR_OK) {
4354                 free(samples);
4355                 return retval;
4356         }
4357
4358         uint32_t start_address = 0;
4359         uint32_t end_address = 0;
4360         bool with_range = false;
4361         if (CMD_ARGC == 4) {
4362                 with_range = true;
4363                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], start_address);
4364                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], end_address);
4365         }
4366
4367         write_gmon(samples, num_of_samples, CMD_ARGV[1],
4368                    with_range, start_address, end_address, target, duration_ms);
4369         command_print(CMD, "Wrote %s", CMD_ARGV[1]);
4370
4371         free(samples);
4372         return retval;
4373 }
4374
4375 static int new_u64_array_element(Jim_Interp *interp, const char *varname, int idx, uint64_t val)
4376 {
4377         char *namebuf;
4378         Jim_Obj *obj_name, *obj_val;
4379         int result;
4380
4381         namebuf = alloc_printf("%s(%d)", varname, idx);
4382         if (!namebuf)
4383                 return JIM_ERR;
4384
4385         obj_name = Jim_NewStringObj(interp, namebuf, -1);
4386         jim_wide wide_val = val;
4387         obj_val = Jim_NewWideObj(interp, wide_val);
4388         if (!obj_name || !obj_val) {
4389                 free(namebuf);
4390                 return JIM_ERR;
4391         }
4392
4393         Jim_IncrRefCount(obj_name);
4394         Jim_IncrRefCount(obj_val);
4395         result = Jim_SetVariable(interp, obj_name, obj_val);
4396         Jim_DecrRefCount(interp, obj_name);
4397         Jim_DecrRefCount(interp, obj_val);
4398         free(namebuf);
4399         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
4400         return result;
4401 }
4402
4403 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4404 {
4405         struct command_context *context;
4406         struct target *target;
4407
4408         context = current_command_context(interp);
4409         assert(context);
4410
4411         target = get_current_target(context);
4412         if (!target) {
4413                 LOG_ERROR("mem2array: no current target");
4414                 return JIM_ERR;
4415         }
4416
4417         return target_mem2array(interp, target, argc - 1, argv + 1);
4418 }
4419
4420 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
4421 {
4422         int e;
4423
4424         /* argv[0] = name of array to receive the data
4425          * argv[1] = desired element width in bits
4426          * argv[2] = memory address
4427          * argv[3] = count of times to read
4428          * argv[4] = optional "phys"
4429          */
4430         if (argc < 4 || argc > 5) {
4431                 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems [phys]");
4432                 return JIM_ERR;
4433         }
4434
4435         /* Arg 0: Name of the array variable */
4436         const char *varname = Jim_GetString(argv[0], NULL);
4437
4438         /* Arg 1: Bit width of one element */
4439         long l;
4440         e = Jim_GetLong(interp, argv[1], &l);
4441         if (e != JIM_OK)
4442                 return e;
4443         const unsigned int width_bits = l;
4444
4445         if (width_bits != 8 &&
4446                         width_bits != 16 &&
4447                         width_bits != 32 &&
4448                         width_bits != 64) {
4449                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4450                 Jim_AppendStrings(interp, Jim_GetResult(interp),
4451                                 "Invalid width param. Must be one of: 8, 16, 32 or 64.", NULL);
4452                 return JIM_ERR;
4453         }
4454         const unsigned int width = width_bits / 8;
4455
4456         /* Arg 2: Memory address */
4457         jim_wide wide_addr;
4458         e = Jim_GetWide(interp, argv[2], &wide_addr);
4459         if (e != JIM_OK)
4460                 return e;
4461         target_addr_t addr = (target_addr_t)wide_addr;
4462
4463         /* Arg 3: Number of elements to read */
4464         e = Jim_GetLong(interp, argv[3], &l);
4465         if (e != JIM_OK)
4466                 return e;
4467         size_t len = l;
4468
4469         /* Arg 4: phys */
4470         bool is_phys = false;
4471         if (argc > 4) {
4472                 int str_len = 0;
4473                 const char *phys = Jim_GetString(argv[4], &str_len);
4474                 if (!strncmp(phys, "phys", str_len))
4475                         is_phys = true;
4476                 else
4477                         return JIM_ERR;
4478         }
4479
4480         /* Argument checks */
4481         if (len == 0) {
4482                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4483                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
4484                 return JIM_ERR;
4485         }
4486         if ((addr + (len * width)) < addr) {
4487                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4488                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
4489                 return JIM_ERR;
4490         }
4491         if (len > 65536) {
4492                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4493                 Jim_AppendStrings(interp, Jim_GetResult(interp),
4494                                 "mem2array: too large read request, exceeds 64K items", NULL);
4495                 return JIM_ERR;
4496         }
4497
4498         if ((width == 1) ||
4499                 ((width == 2) && ((addr & 1) == 0)) ||
4500                 ((width == 4) && ((addr & 3) == 0)) ||
4501                 ((width == 8) && ((addr & 7) == 0))) {
4502                 /* alignment correct */
4503         } else {
4504                 char buf[100];
4505                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4506                 sprintf(buf, "mem2array address: " TARGET_ADDR_FMT " is not aligned for %" PRIu32 " byte reads",
4507                                 addr,
4508                                 width);
4509                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
4510                 return JIM_ERR;
4511         }
4512
4513         /* Transfer loop */
4514
4515         /* index counter */
4516         size_t idx = 0;
4517
4518         const size_t buffersize = 4096;
4519         uint8_t *buffer = malloc(buffersize);
4520         if (!buffer)
4521                 return JIM_ERR;
4522
4523         /* assume ok */
4524         e = JIM_OK;
4525         while (len) {
4526                 /* Slurp... in buffer size chunks */
4527                 const unsigned int max_chunk_len = buffersize / width;
4528                 const size_t chunk_len = MIN(len, max_chunk_len); /* in elements.. */
4529
4530                 int retval;
4531                 if (is_phys)
4532                         retval = target_read_phys_memory(target, addr, width, chunk_len, buffer);
4533                 else
4534                         retval = target_read_memory(target, addr, width, chunk_len, buffer);
4535                 if (retval != ERROR_OK) {
4536                         /* BOO !*/
4537                         LOG_ERROR("mem2array: Read @ " TARGET_ADDR_FMT ", w=%u, cnt=%zu, failed",
4538                                           addr,
4539                                           width,
4540                                           chunk_len);
4541                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4542                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
4543                         e = JIM_ERR;
4544                         break;
4545                 } else {
4546                         for (size_t i = 0; i < chunk_len ; i++, idx++) {
4547                                 uint64_t v = 0;
4548                                 switch (width) {
4549                                         case 8:
4550                                                 v = target_buffer_get_u64(target, &buffer[i*width]);
4551                                                 break;
4552                                         case 4:
4553                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
4554                                                 break;
4555                                         case 2:
4556                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
4557                                                 break;
4558                                         case 1:
4559                                                 v = buffer[i] & 0x0ff;
4560                                                 break;
4561                                 }
4562                                 new_u64_array_element(interp, varname, idx, v);
4563                         }
4564                         len -= chunk_len;
4565                         addr += chunk_len * width;
4566                 }
4567         }
4568
4569         free(buffer);
4570
4571         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4572
4573         return e;
4574 }
4575
4576 static int get_u64_array_element(Jim_Interp *interp, const char *varname, size_t idx, uint64_t *val)
4577 {
4578         char *namebuf = alloc_printf("%s(%zu)", varname, idx);
4579         if (!namebuf)
4580                 return JIM_ERR;
4581
4582         Jim_Obj *obj_name = Jim_NewStringObj(interp, namebuf, -1);
4583         if (!obj_name) {
4584                 free(namebuf);
4585                 return JIM_ERR;
4586         }
4587
4588         Jim_IncrRefCount(obj_name);
4589         Jim_Obj *obj_val = Jim_GetVariable(interp, obj_name, JIM_ERRMSG);
4590         Jim_DecrRefCount(interp, obj_name);
4591         free(namebuf);
4592         if (!obj_val)
4593                 return JIM_ERR;
4594
4595         jim_wide wide_val;
4596         int result = Jim_GetWide(interp, obj_val, &wide_val);
4597         *val = wide_val;
4598         return result;
4599 }
4600
4601 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4602 {
4603         struct command_context *context;
4604         struct target *target;
4605
4606         context = current_command_context(interp);
4607         assert(context);
4608
4609         target = get_current_target(context);
4610         if (!target) {
4611                 LOG_ERROR("array2mem: no current target");
4612                 return JIM_ERR;
4613         }
4614
4615         return target_array2mem(interp, target, argc-1, argv + 1);
4616 }
4617
4618 static int target_array2mem(Jim_Interp *interp, struct target *target,
4619                 int argc, Jim_Obj *const *argv)
4620 {
4621         int e;
4622
4623         /* argv[0] = name of array from which to read the data
4624          * argv[1] = desired element width in bits
4625          * argv[2] = memory address
4626          * argv[3] = number of elements to write
4627          * argv[4] = optional "phys"
4628          */
4629         if (argc < 4 || argc > 5) {
4630                 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems [phys]");
4631                 return JIM_ERR;
4632         }
4633
4634         /* Arg 0: Name of the array variable */
4635         const char *varname = Jim_GetString(argv[0], NULL);
4636
4637         /* Arg 1: Bit width of one element */
4638         long l;
4639         e = Jim_GetLong(interp, argv[1], &l);
4640         if (e != JIM_OK)
4641                 return e;
4642         const unsigned int width_bits = l;
4643
4644         if (width_bits != 8 &&
4645                         width_bits != 16 &&
4646                         width_bits != 32 &&
4647                         width_bits != 64) {
4648                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4649                 Jim_AppendStrings(interp, Jim_GetResult(interp),
4650                                 "Invalid width param. Must be one of: 8, 16, 32 or 64.", NULL);
4651                 return JIM_ERR;
4652         }
4653         const unsigned int width = width_bits / 8;
4654
4655         /* Arg 2: Memory address */
4656         jim_wide wide_addr;
4657         e = Jim_GetWide(interp, argv[2], &wide_addr);
4658         if (e != JIM_OK)
4659                 return e;
4660         target_addr_t addr = (target_addr_t)wide_addr;
4661
4662         /* Arg 3: Number of elements to write */
4663         e = Jim_GetLong(interp, argv[3], &l);
4664         if (e != JIM_OK)
4665                 return e;
4666         size_t len = l;
4667
4668         /* Arg 4: Phys */
4669         bool is_phys = false;
4670         if (argc > 4) {
4671                 int str_len = 0;
4672                 const char *phys = Jim_GetString(argv[4], &str_len);
4673                 if (!strncmp(phys, "phys", str_len))
4674                         is_phys = true;
4675                 else
4676                         return JIM_ERR;
4677         }
4678
4679         /* Argument checks */
4680         if (len == 0) {
4681                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4682                 Jim_AppendStrings(interp, Jim_GetResult(interp),
4683                                 "array2mem: zero width read?", NULL);
4684                 return JIM_ERR;
4685         }
4686
4687         if ((addr + (len * width)) < addr) {
4688                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4689                 Jim_AppendStrings(interp, Jim_GetResult(interp),
4690                                 "array2mem: addr + len - wraps to zero?", NULL);
4691                 return JIM_ERR;
4692         }
4693
4694         if (len > 65536) {
4695                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4696                 Jim_AppendStrings(interp, Jim_GetResult(interp),
4697                                 "array2mem: too large memory write request, exceeds 64K items", NULL);
4698                 return JIM_ERR;
4699         }
4700
4701         if ((width == 1) ||
4702                 ((width == 2) && ((addr & 1) == 0)) ||
4703                 ((width == 4) && ((addr & 3) == 0)) ||
4704                 ((width == 8) && ((addr & 7) == 0))) {
4705                 /* alignment correct */
4706         } else {
4707                 char buf[100];
4708                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4709                 sprintf(buf, "array2mem address: " TARGET_ADDR_FMT " is not aligned for %" PRIu32 " byte reads",
4710                                 addr,
4711                                 width);
4712                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
4713                 return JIM_ERR;
4714         }
4715
4716         /* Transfer loop */
4717
4718         /* assume ok */
4719         e = JIM_OK;
4720
4721         const size_t buffersize = 4096;
4722         uint8_t *buffer = malloc(buffersize);
4723         if (!buffer)
4724                 return JIM_ERR;
4725
4726         /* index counter */
4727         size_t idx = 0;
4728
4729         while (len) {
4730                 /* Slurp... in buffer size chunks */
4731                 const unsigned int max_chunk_len = buffersize / width;
4732
4733                 const size_t chunk_len = MIN(len, max_chunk_len); /* in elements.. */
4734
4735                 /* Fill the buffer */
4736                 for (size_t i = 0; i < chunk_len; i++, idx++) {
4737                         uint64_t v = 0;
4738                         if (get_u64_array_element(interp, varname, idx, &v) != JIM_OK) {
4739                                 free(buffer);
4740                                 return JIM_ERR;
4741                         }
4742                         switch (width) {
4743                         case 8:
4744                                 target_buffer_set_u64(target, &buffer[i * width], v);
4745                                 break;
4746                         case 4:
4747                                 target_buffer_set_u32(target, &buffer[i * width], v);
4748                                 break;
4749                         case 2:
4750                                 target_buffer_set_u16(target, &buffer[i * width], v);
4751                                 break;
4752                         case 1:
4753                                 buffer[i] = v & 0x0ff;
4754                                 break;
4755                         }
4756                 }
4757                 len -= chunk_len;
4758
4759                 /* Write the buffer to memory */
4760                 int retval;
4761                 if (is_phys)
4762                         retval = target_write_phys_memory(target, addr, width, chunk_len, buffer);
4763                 else
4764                         retval = target_write_memory(target, addr, width, chunk_len, buffer);
4765                 if (retval != ERROR_OK) {
4766                         /* BOO !*/
4767                         LOG_ERROR("array2mem: Write @ " TARGET_ADDR_FMT ", w=%u, cnt=%zu, failed",
4768                                           addr,
4769                                           width,
4770                                           chunk_len);
4771                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4772                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
4773                         e = JIM_ERR;
4774                         break;
4775                 }
4776                 addr += chunk_len * width;
4777         }
4778
4779         free(buffer);
4780
4781         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4782
4783         return e;
4784 }
4785
4786 /* FIX? should we propagate errors here rather than printing them
4787  * and continuing?
4788  */
4789 void target_handle_event(struct target *target, enum target_event e)
4790 {
4791         struct target_event_action *teap;
4792         int retval;
4793
4794         for (teap = target->event_action; teap != NULL; teap = teap->next) {
4795                 if (teap->event == e) {
4796                         LOG_DEBUG("target(%d): %s (%s) event: %d (%s) action: %s",
4797                                            target->target_number,
4798                                            target_name(target),
4799                                            target_type_name(target),
4800                                            e,
4801                                            jim_nvp_value2name_simple(nvp_target_event, e)->name,
4802                                            Jim_GetString(teap->body, NULL));
4803
4804                         /* Override current target by the target an event
4805                          * is issued from (lot of scripts need it).
4806                          * Return back to previous override as soon
4807                          * as the handler processing is done */
4808                         struct command_context *cmd_ctx = current_command_context(teap->interp);
4809                         struct target *saved_target_override = cmd_ctx->current_target_override;
4810                         cmd_ctx->current_target_override = target;
4811
4812                         retval = Jim_EvalObj(teap->interp, teap->body);
4813
4814                         cmd_ctx->current_target_override = saved_target_override;
4815
4816                         if (retval == ERROR_COMMAND_CLOSE_CONNECTION)
4817                                 return;
4818
4819                         if (retval == JIM_RETURN)
4820                                 retval = teap->interp->returnCode;
4821
4822                         if (retval != JIM_OK) {
4823                                 Jim_MakeErrorMessage(teap->interp);
4824                                 LOG_USER("Error executing event %s on target %s:\n%s",
4825                                                   jim_nvp_value2name_simple(nvp_target_event, e)->name,
4826                                                   target_name(target),
4827                                                   Jim_GetString(Jim_GetResult(teap->interp), NULL));
4828                                 /* clean both error code and stacktrace before return */
4829                                 Jim_Eval(teap->interp, "error \"\" \"\"");
4830                         }
4831                 }
4832         }
4833 }
4834
4835 /**
4836  * Returns true only if the target has a handler for the specified event.
4837  */
4838 bool target_has_event_action(struct target *target, enum target_event event)
4839 {
4840         struct target_event_action *teap;
4841
4842         for (teap = target->event_action; teap != NULL; teap = teap->next) {
4843                 if (teap->event == event)
4844                         return true;
4845         }
4846         return false;
4847 }
4848
4849 enum target_cfg_param {
4850         TCFG_TYPE,
4851         TCFG_EVENT,
4852         TCFG_WORK_AREA_VIRT,
4853         TCFG_WORK_AREA_PHYS,
4854         TCFG_WORK_AREA_SIZE,
4855         TCFG_WORK_AREA_BACKUP,
4856         TCFG_ENDIAN,
4857         TCFG_COREID,
4858         TCFG_CHAIN_POSITION,
4859         TCFG_DBGBASE,
4860         TCFG_RTOS,
4861         TCFG_DEFER_EXAMINE,
4862         TCFG_GDB_PORT,
4863         TCFG_GDB_MAX_CONNECTIONS,
4864 };
4865
4866 static struct jim_nvp nvp_config_opts[] = {
4867         { .name = "-type",             .value = TCFG_TYPE },
4868         { .name = "-event",            .value = TCFG_EVENT },
4869         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
4870         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
4871         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
4872         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
4873         { .name = "-endian",           .value = TCFG_ENDIAN },
4874         { .name = "-coreid",           .value = TCFG_COREID },
4875         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
4876         { .name = "-dbgbase",          .value = TCFG_DBGBASE },
4877         { .name = "-rtos",             .value = TCFG_RTOS },
4878         { .name = "-defer-examine",    .value = TCFG_DEFER_EXAMINE },
4879         { .name = "-gdb-port",         .value = TCFG_GDB_PORT },
4880         { .name = "-gdb-max-connections",   .value = TCFG_GDB_MAX_CONNECTIONS },
4881         { .name = NULL, .value = -1 }
4882 };
4883
4884 static int target_configure(struct jim_getopt_info *goi, struct target *target)
4885 {
4886         struct jim_nvp *n;
4887         Jim_Obj *o;
4888         jim_wide w;
4889         int e;
4890
4891         /* parse config or cget options ... */
4892         while (goi->argc > 0) {
4893                 Jim_SetEmptyResult(goi->interp);
4894                 /* jim_getopt_debug(goi); */
4895
4896                 if (target->type->target_jim_configure) {
4897                         /* target defines a configure function */
4898                         /* target gets first dibs on parameters */
4899                         e = (*(target->type->target_jim_configure))(target, goi);
4900                         if (e == JIM_OK) {
4901                                 /* more? */
4902                                 continue;
4903                         }
4904                         if (e == JIM_ERR) {
4905                                 /* An error */
4906                                 return e;
4907                         }
4908                         /* otherwise we 'continue' below */
4909                 }
4910                 e = jim_getopt_nvp(goi, nvp_config_opts, &n);
4911                 if (e != JIM_OK) {
4912                         jim_getopt_nvp_unknown(goi, nvp_config_opts, 0);
4913                         return e;
4914                 }
4915                 switch (n->value) {
4916                 case TCFG_TYPE:
4917                         /* not settable */
4918                         if (goi->isconfigure) {
4919                                 Jim_SetResultFormatted(goi->interp,
4920                                                 "not settable: %s", n->name);
4921                                 return JIM_ERR;
4922                         } else {
4923 no_params:
4924                                 if (goi->argc != 0) {
4925                                         Jim_WrongNumArgs(goi->interp,
4926                                                         goi->argc, goi->argv,
4927                                                         "NO PARAMS");
4928                                         return JIM_ERR;
4929                                 }
4930                         }
4931                         Jim_SetResultString(goi->interp,
4932                                         target_type_name(target), -1);
4933                         /* loop for more */
4934                         break;
4935                 case TCFG_EVENT:
4936                         if (goi->argc == 0) {
4937                                 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
4938                                 return JIM_ERR;
4939                         }
4940
4941                         e = jim_getopt_nvp(goi, nvp_target_event, &n);
4942                         if (e != JIM_OK) {
4943                                 jim_getopt_nvp_unknown(goi, nvp_target_event, 1);
4944                                 return e;
4945                         }
4946
4947                         if (goi->isconfigure) {
4948                                 if (goi->argc != 1) {
4949                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
4950                                         return JIM_ERR;
4951                                 }
4952                         } else {
4953                                 if (goi->argc != 0) {
4954                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
4955                                         return JIM_ERR;
4956                                 }
4957                         }
4958
4959                         {
4960                                 struct target_event_action *teap;
4961
4962                                 teap = target->event_action;
4963                                 /* replace existing? */
4964                                 while (teap) {
4965                                         if (teap->event == (enum target_event)n->value)
4966                                                 break;
4967                                         teap = teap->next;
4968                                 }
4969
4970                                 if (goi->isconfigure) {
4971                                         /* START_DEPRECATED_TPIU */
4972                                         if (n->value == TARGET_EVENT_TRACE_CONFIG)
4973                                                 LOG_INFO("DEPRECATED target event %s", n->name);
4974                                         /* END_DEPRECATED_TPIU */
4975
4976                                         bool replace = true;
4977                                         if (!teap) {
4978                                                 /* create new */
4979                                                 teap = calloc(1, sizeof(*teap));
4980                                                 replace = false;
4981                                         }
4982                                         teap->event = n->value;
4983                                         teap->interp = goi->interp;
4984                                         jim_getopt_obj(goi, &o);
4985                                         if (teap->body)
4986                                                 Jim_DecrRefCount(teap->interp, teap->body);
4987                                         teap->body  = Jim_DuplicateObj(goi->interp, o);
4988                                         /*
4989                                          * FIXME:
4990                                          *     Tcl/TK - "tk events" have a nice feature.
4991                                          *     See the "BIND" command.
4992                                          *    We should support that here.
4993                                          *     You can specify %X and %Y in the event code.
4994                                          *     The idea is: %T - target name.
4995                                          *     The idea is: %N - target number
4996                                          *     The idea is: %E - event name.
4997                                          */
4998                                         Jim_IncrRefCount(teap->body);
4999
5000                                         if (!replace) {
5001                                                 /* add to head of event list */
5002                                                 teap->next = target->event_action;
5003                                                 target->event_action = teap;
5004                                         }
5005                                         Jim_SetEmptyResult(goi->interp);
5006                                 } else {
5007                                         /* get */
5008                                         if (!teap)
5009                                                 Jim_SetEmptyResult(goi->interp);
5010                                         else
5011                                                 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
5012                                 }
5013                         }
5014                         /* loop for more */
5015                         break;
5016
5017                 case TCFG_WORK_AREA_VIRT:
5018                         if (goi->isconfigure) {
5019                                 target_free_all_working_areas(target);
5020                                 e = jim_getopt_wide(goi, &w);
5021                                 if (e != JIM_OK)
5022                                         return e;
5023                                 target->working_area_virt = w;
5024                                 target->working_area_virt_spec = true;
5025                         } else {
5026                                 if (goi->argc != 0)
5027                                         goto no_params;
5028                         }
5029                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
5030                         /* loop for more */
5031                         break;
5032
5033                 case TCFG_WORK_AREA_PHYS:
5034                         if (goi->isconfigure) {
5035                                 target_free_all_working_areas(target);
5036                                 e = jim_getopt_wide(goi, &w);
5037                                 if (e != JIM_OK)
5038                                         return e;
5039                                 target->working_area_phys = w;
5040                                 target->working_area_phys_spec = true;
5041                         } else {
5042                                 if (goi->argc != 0)
5043                                         goto no_params;
5044                         }
5045                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
5046                         /* loop for more */
5047                         break;
5048
5049                 case TCFG_WORK_AREA_SIZE:
5050                         if (goi->isconfigure) {
5051                                 target_free_all_working_areas(target);
5052                                 e = jim_getopt_wide(goi, &w);
5053                                 if (e != JIM_OK)
5054                                         return e;
5055                                 target->working_area_size = w;
5056                         } else {
5057                                 if (goi->argc != 0)
5058                                         goto no_params;
5059                         }
5060                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
5061                         /* loop for more */
5062                         break;
5063
5064                 case TCFG_WORK_AREA_BACKUP:
5065                         if (goi->isconfigure) {
5066                                 target_free_all_working_areas(target);
5067                                 e = jim_getopt_wide(goi, &w);
5068                                 if (e != JIM_OK)
5069                                         return e;
5070                                 /* make this exactly 1 or 0 */
5071                                 target->backup_working_area = (!!w);
5072                         } else {
5073                                 if (goi->argc != 0)
5074                                         goto no_params;
5075                         }
5076                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
5077                         /* loop for more e*/
5078                         break;
5079
5080
5081                 case TCFG_ENDIAN:
5082                         if (goi->isconfigure) {
5083                                 e = jim_getopt_nvp(goi, nvp_target_endian, &n);
5084                                 if (e != JIM_OK) {
5085                                         jim_getopt_nvp_unknown(goi, nvp_target_endian, 1);
5086                                         return e;
5087                                 }
5088                                 target->endianness = n->value;
5089                         } else {
5090                                 if (goi->argc != 0)
5091                                         goto no_params;
5092                         }
5093                         n = jim_nvp_value2name_simple(nvp_target_endian, target->endianness);
5094                         if (!n->name) {
5095                                 target->endianness = TARGET_LITTLE_ENDIAN;
5096                                 n = jim_nvp_value2name_simple(nvp_target_endian, target->endianness);
5097                         }
5098                         Jim_SetResultString(goi->interp, n->name, -1);
5099                         /* loop for more */
5100                         break;
5101
5102                 case TCFG_COREID:
5103                         if (goi->isconfigure) {
5104                                 e = jim_getopt_wide(goi, &w);
5105                                 if (e != JIM_OK)
5106                                         return e;
5107                                 target->coreid = (int32_t)w;
5108                         } else {
5109                                 if (goi->argc != 0)
5110                                         goto no_params;
5111                         }
5112                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->coreid));
5113                         /* loop for more */
5114                         break;
5115
5116                 case TCFG_CHAIN_POSITION:
5117                         if (goi->isconfigure) {
5118                                 Jim_Obj *o_t;
5119                                 struct jtag_tap *tap;
5120
5121                                 if (target->has_dap) {
5122                                         Jim_SetResultString(goi->interp,
5123                                                 "target requires -dap parameter instead of -chain-position!", -1);
5124                                         return JIM_ERR;
5125                                 }
5126
5127                                 target_free_all_working_areas(target);
5128                                 e = jim_getopt_obj(goi, &o_t);
5129                                 if (e != JIM_OK)
5130                                         return e;
5131                                 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
5132                                 if (!tap)
5133                                         return JIM_ERR;
5134                                 target->tap = tap;
5135                                 target->tap_configured = true;
5136                         } else {
5137                                 if (goi->argc != 0)
5138                                         goto no_params;
5139                         }
5140                         Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
5141                         /* loop for more e*/
5142                         break;
5143                 case TCFG_DBGBASE:
5144                         if (goi->isconfigure) {
5145                                 e = jim_getopt_wide(goi, &w);
5146                                 if (e != JIM_OK)
5147                                         return e;
5148                                 target->dbgbase = (uint32_t)w;
5149                                 target->dbgbase_set = true;
5150                         } else {
5151                                 if (goi->argc != 0)
5152                                         goto no_params;
5153                         }
5154                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
5155                         /* loop for more */
5156                         break;
5157                 case TCFG_RTOS:
5158                         /* RTOS */
5159                         {
5160                                 int result = rtos_create(goi, target);
5161                                 if (result != JIM_OK)
5162                                         return result;
5163                         }
5164                         /* loop for more */
5165                         break;
5166
5167                 case TCFG_DEFER_EXAMINE:
5168                         /* DEFER_EXAMINE */
5169                         target->defer_examine = true;
5170                         /* loop for more */
5171                         break;
5172
5173                 case TCFG_GDB_PORT:
5174                         if (goi->isconfigure) {
5175                                 struct command_context *cmd_ctx = current_command_context(goi->interp);
5176                                 if (cmd_ctx->mode != COMMAND_CONFIG) {
5177                                         Jim_SetResultString(goi->interp, "-gdb-port must be configured before 'init'", -1);
5178                                         return JIM_ERR;
5179                                 }
5180
5181                                 const char *s;
5182                                 e = jim_getopt_string(goi, &s, NULL);
5183                                 if (e != JIM_OK)
5184                                         return e;
5185                                 free(target->gdb_port_override);
5186                                 target->gdb_port_override = strdup(s);
5187                         } else {
5188                                 if (goi->argc != 0)
5189                                         goto no_params;
5190                         }
5191                         Jim_SetResultString(goi->interp, target->gdb_port_override ? target->gdb_port_override : "undefined", -1);
5192                         /* loop for more */
5193                         break;
5194
5195                 case TCFG_GDB_MAX_CONNECTIONS:
5196                         if (goi->isconfigure) {
5197                                 struct command_context *cmd_ctx = current_command_context(goi->interp);
5198                                 if (cmd_ctx->mode != COMMAND_CONFIG) {
5199                                         Jim_SetResultString(goi->interp, "-gdb-max-connections must be configured before 'init'", -1);
5200                                         return JIM_ERR;
5201                                 }
5202
5203                                 e = jim_getopt_wide(goi, &w);
5204                                 if (e != JIM_OK)
5205                                         return e;
5206                                 target->gdb_max_connections = (w < 0) ? CONNECTION_LIMIT_UNLIMITED : (int)w;
5207                         } else {
5208                                 if (goi->argc != 0)
5209                                         goto no_params;
5210                         }
5211                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->gdb_max_connections));
5212                         break;
5213                 }
5214         } /* while (goi->argc) */
5215
5216
5217                 /* done - we return */
5218         return JIM_OK;
5219 }
5220
5221 static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
5222 {
5223         struct command *c = jim_to_command(interp);
5224         struct jim_getopt_info goi;
5225
5226         jim_getopt_setup(&goi, interp, argc - 1, argv + 1);
5227         goi.isconfigure = !strcmp(c->name, "configure");
5228         if (goi.argc < 1) {
5229                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5230                                  "missing: -option ...");
5231                 return JIM_ERR;
5232         }
5233         struct command_context *cmd_ctx = current_command_context(interp);
5234         assert(cmd_ctx);
5235         struct target *target = get_current_target(cmd_ctx);
5236         return target_configure(&goi, target);
5237 }
5238
5239 static int jim_target_mem2array(Jim_Interp *interp,
5240                 int argc, Jim_Obj *const *argv)
5241 {
5242         struct command_context *cmd_ctx = current_command_context(interp);
5243         assert(cmd_ctx);
5244         struct target *target = get_current_target(cmd_ctx);
5245         return target_mem2array(interp, target, argc - 1, argv + 1);
5246 }
5247
5248 static int jim_target_array2mem(Jim_Interp *interp,
5249                 int argc, Jim_Obj *const *argv)
5250 {
5251         struct command_context *cmd_ctx = current_command_context(interp);
5252         assert(cmd_ctx);
5253         struct target *target = get_current_target(cmd_ctx);
5254         return target_array2mem(interp, target, argc - 1, argv + 1);
5255 }
5256
5257 static int jim_target_tap_disabled(Jim_Interp *interp)
5258 {
5259         Jim_SetResultFormatted(interp, "[TAP is disabled]");
5260         return JIM_ERR;
5261 }
5262
5263 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5264 {
5265         bool allow_defer = false;
5266
5267         struct jim_getopt_info goi;
5268         jim_getopt_setup(&goi, interp, argc - 1, argv + 1);
5269         if (goi.argc > 1) {
5270                 const char *cmd_name = Jim_GetString(argv[0], NULL);
5271                 Jim_SetResultFormatted(goi.interp,
5272                                 "usage: %s ['allow-defer']", cmd_name);
5273                 return JIM_ERR;
5274         }
5275         if (goi.argc > 0 &&
5276             strcmp(Jim_GetString(argv[1], NULL), "allow-defer") == 0) {
5277                 /* consume it */
5278                 Jim_Obj *obj;
5279                 int e = jim_getopt_obj(&goi, &obj);
5280                 if (e != JIM_OK)
5281                         return e;
5282                 allow_defer = true;
5283         }
5284
5285         struct command_context *cmd_ctx = current_command_context(interp);
5286         assert(cmd_ctx);
5287         struct target *target = get_current_target(cmd_ctx);
5288         if (!target->tap->enabled)
5289                 return jim_target_tap_disabled(interp);
5290
5291         if (allow_defer && target->defer_examine) {
5292                 LOG_INFO("Deferring arp_examine of %s", target_name(target));
5293                 LOG_INFO("Use arp_examine command to examine it manually!");
5294                 return JIM_OK;
5295         }
5296
5297         int e = target->type->examine(target);
5298         if (e != ERROR_OK)
5299                 return JIM_ERR;
5300         return JIM_OK;
5301 }
5302
5303 static int jim_target_was_examined(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
5304 {
5305         struct command_context *cmd_ctx = current_command_context(interp);
5306         assert(cmd_ctx);
5307         struct target *target = get_current_target(cmd_ctx);
5308
5309         Jim_SetResultBool(interp, target_was_examined(target));
5310         return JIM_OK;
5311 }
5312
5313 static int jim_target_examine_deferred(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
5314 {
5315         struct command_context *cmd_ctx = current_command_context(interp);
5316         assert(cmd_ctx);
5317         struct target *target = get_current_target(cmd_ctx);
5318
5319         Jim_SetResultBool(interp, target->defer_examine);
5320         return JIM_OK;
5321 }
5322
5323 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5324 {
5325         if (argc != 1) {
5326                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5327                 return JIM_ERR;
5328         }
5329         struct command_context *cmd_ctx = current_command_context(interp);
5330         assert(cmd_ctx);
5331         struct target *target = get_current_target(cmd_ctx);
5332
5333         if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
5334                 return JIM_ERR;
5335
5336         return JIM_OK;
5337 }
5338
5339 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5340 {
5341         if (argc != 1) {
5342                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5343                 return JIM_ERR;
5344         }
5345         struct command_context *cmd_ctx = current_command_context(interp);
5346         assert(cmd_ctx);
5347         struct target *target = get_current_target(cmd_ctx);
5348         if (!target->tap->enabled)
5349                 return jim_target_tap_disabled(interp);
5350
5351         int e;
5352         if (!(target_was_examined(target)))
5353                 e = ERROR_TARGET_NOT_EXAMINED;
5354         else
5355                 e = target->type->poll(target);
5356         if (e != ERROR_OK)
5357                 return JIM_ERR;
5358         return JIM_OK;
5359 }
5360
5361 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5362 {
5363         struct jim_getopt_info goi;
5364         jim_getopt_setup(&goi, interp, argc - 1, argv + 1);
5365
5366         if (goi.argc != 2) {
5367                 Jim_WrongNumArgs(interp, 0, argv,
5368                                 "([tT]|[fF]|assert|deassert) BOOL");
5369                 return JIM_ERR;
5370         }
5371
5372         struct jim_nvp *n;
5373         int e = jim_getopt_nvp(&goi, nvp_assert, &n);
5374         if (e != JIM_OK) {
5375                 jim_getopt_nvp_unknown(&goi, nvp_assert, 1);
5376                 return e;
5377         }
5378         /* the halt or not param */
5379         jim_wide a;
5380         e = jim_getopt_wide(&goi, &a);
5381         if (e != JIM_OK)
5382                 return e;
5383
5384         struct command_context *cmd_ctx = current_command_context(interp);
5385         assert(cmd_ctx);
5386         struct target *target = get_current_target(cmd_ctx);
5387         if (!target->tap->enabled)
5388                 return jim_target_tap_disabled(interp);
5389
5390         if (!target->type->assert_reset || !target->type->deassert_reset) {
5391                 Jim_SetResultFormatted(interp,
5392                                 "No target-specific reset for %s",
5393                                 target_name(target));
5394                 return JIM_ERR;
5395         }
5396
5397         if (target->defer_examine)
5398                 target_reset_examined(target);
5399
5400         /* determine if we should halt or not. */
5401         target->reset_halt = (a != 0);
5402         /* When this happens - all workareas are invalid. */
5403         target_free_all_working_areas_restore(target, 0);
5404
5405         /* do the assert */
5406         if (n->value == NVP_ASSERT)
5407                 e = target->type->assert_reset(target);
5408         else
5409                 e = target->type->deassert_reset(target);
5410         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
5411 }
5412
5413 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5414 {
5415         if (argc != 1) {
5416                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5417                 return JIM_ERR;
5418         }
5419         struct command_context *cmd_ctx = current_command_context(interp);
5420         assert(cmd_ctx);
5421         struct target *target = get_current_target(cmd_ctx);
5422         if (!target->tap->enabled)
5423                 return jim_target_tap_disabled(interp);
5424         int e = target->type->halt(target);
5425         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
5426 }
5427
5428 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5429 {
5430         struct jim_getopt_info goi;
5431         jim_getopt_setup(&goi, interp, argc - 1, argv + 1);
5432
5433         /* params:  <name>  statename timeoutmsecs */
5434         if (goi.argc != 2) {
5435                 const char *cmd_name = Jim_GetString(argv[0], NULL);
5436                 Jim_SetResultFormatted(goi.interp,
5437                                 "%s <state_name> <timeout_in_msec>", cmd_name);
5438                 return JIM_ERR;
5439         }
5440
5441         struct jim_nvp *n;
5442         int e = jim_getopt_nvp(&goi, nvp_target_state, &n);
5443         if (e != JIM_OK) {
5444                 jim_getopt_nvp_unknown(&goi, nvp_target_state, 1);
5445                 return e;
5446         }
5447         jim_wide a;
5448         e = jim_getopt_wide(&goi, &a);
5449         if (e != JIM_OK)
5450                 return e;
5451         struct command_context *cmd_ctx = current_command_context(interp);
5452         assert(cmd_ctx);
5453         struct target *target = get_current_target(cmd_ctx);
5454         if (!target->tap->enabled)
5455                 return jim_target_tap_disabled(interp);
5456
5457         e = target_wait_state(target, n->value, a);
5458         if (e != ERROR_OK) {
5459                 Jim_Obj *obj = Jim_NewIntObj(interp, e);
5460                 Jim_SetResultFormatted(goi.interp,
5461                                 "target: %s wait %s fails (%#s) %s",
5462                                 target_name(target), n->name,
5463                                 obj, target_strerror_safe(e));
5464                 return JIM_ERR;
5465         }
5466         return JIM_OK;
5467 }
5468 /* List for human, Events defined for this target.
5469  * scripts/programs should use 'name cget -event NAME'
5470  */
5471 COMMAND_HANDLER(handle_target_event_list)
5472 {
5473         struct target *target = get_current_target(CMD_CTX);
5474         struct target_event_action *teap = target->event_action;
5475
5476         command_print(CMD, "Event actions for target (%d) %s\n",
5477                                    target->target_number,
5478                                    target_name(target));
5479         command_print(CMD, "%-25s | Body", "Event");
5480         command_print(CMD, "------------------------- | "
5481                         "----------------------------------------");
5482         while (teap) {
5483                 struct jim_nvp *opt = jim_nvp_value2name_simple(nvp_target_event, teap->event);
5484                 command_print(CMD, "%-25s | %s",
5485                                 opt->name, Jim_GetString(teap->body, NULL));
5486                 teap = teap->next;
5487         }
5488         command_print(CMD, "***END***");
5489         return ERROR_OK;
5490 }
5491 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5492 {
5493         if (argc != 1) {
5494                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5495                 return JIM_ERR;
5496         }
5497         struct command_context *cmd_ctx = current_command_context(interp);
5498         assert(cmd_ctx);
5499         struct target *target = get_current_target(cmd_ctx);
5500         Jim_SetResultString(interp, target_state_name(target), -1);
5501         return JIM_OK;
5502 }
5503 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5504 {
5505         struct jim_getopt_info goi;
5506         jim_getopt_setup(&goi, interp, argc - 1, argv + 1);
5507         if (goi.argc != 1) {
5508                 const char *cmd_name = Jim_GetString(argv[0], NULL);
5509                 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
5510                 return JIM_ERR;
5511         }
5512         struct jim_nvp *n;
5513         int e = jim_getopt_nvp(&goi, nvp_target_event, &n);
5514         if (e != JIM_OK) {
5515                 jim_getopt_nvp_unknown(&goi, nvp_target_event, 1);
5516                 return e;
5517         }
5518         struct command_context *cmd_ctx = current_command_context(interp);
5519         assert(cmd_ctx);
5520         struct target *target = get_current_target(cmd_ctx);
5521         target_handle_event(target, n->value);
5522         return JIM_OK;
5523 }
5524
5525 static const struct command_registration target_instance_command_handlers[] = {
5526         {
5527                 .name = "configure",
5528                 .mode = COMMAND_ANY,
5529                 .jim_handler = jim_target_configure,
5530                 .help  = "configure a new target for use",
5531                 .usage = "[target_attribute ...]",
5532         },
5533         {
5534                 .name = "cget",
5535                 .mode = COMMAND_ANY,
5536                 .jim_handler = jim_target_configure,
5537                 .help  = "returns the specified target attribute",
5538                 .usage = "target_attribute",
5539         },
5540         {
5541                 .name = "mwd",
5542                 .handler = handle_mw_command,
5543                 .mode = COMMAND_EXEC,
5544                 .help = "Write 64-bit word(s) to target memory",
5545                 .usage = "address data [count]",
5546         },
5547         {
5548                 .name = "mww",
5549                 .handler = handle_mw_command,
5550                 .mode = COMMAND_EXEC,
5551                 .help = "Write 32-bit word(s) to target memory",
5552                 .usage = "address data [count]",
5553         },
5554         {
5555                 .name = "mwh",
5556                 .handler = handle_mw_command,
5557                 .mode = COMMAND_EXEC,
5558                 .help = "Write 16-bit half-word(s) to target memory",
5559                 .usage = "address data [count]",
5560         },
5561         {
5562                 .name = "mwb",
5563                 .handler = handle_mw_command,
5564                 .mode = COMMAND_EXEC,
5565                 .help = "Write byte(s) to target memory",
5566                 .usage = "address data [count]",
5567         },
5568         {
5569                 .name = "mdd",
5570                 .handler = handle_md_command,
5571                 .mode = COMMAND_EXEC,
5572                 .help = "Display target memory as 64-bit words",
5573                 .usage = "address [count]",
5574         },
5575         {
5576                 .name = "mdw",
5577                 .handler = handle_md_command,
5578                 .mode = COMMAND_EXEC,
5579                 .help = "Display target memory as 32-bit words",
5580                 .usage = "address [count]",
5581         },
5582         {
5583                 .name = "mdh",
5584                 .handler = handle_md_command,
5585                 .mode = COMMAND_EXEC,
5586                 .help = "Display target memory as 16-bit half-words",
5587                 .usage = "address [count]",
5588         },
5589         {
5590                 .name = "mdb",
5591                 .handler = handle_md_command,
5592                 .mode = COMMAND_EXEC,
5593                 .help = "Display target memory as 8-bit bytes",
5594                 .usage = "address [count]",
5595         },
5596         {
5597                 .name = "array2mem",
5598                 .mode = COMMAND_EXEC,
5599                 .jim_handler = jim_target_array2mem,
5600                 .help = "Writes Tcl array of 8/16/32 bit numbers "
5601                         "to target memory",
5602                 .usage = "arrayname bitwidth address count",
5603         },
5604         {
5605                 .name = "mem2array",
5606                 .mode = COMMAND_EXEC,
5607                 .jim_handler = jim_target_mem2array,
5608                 .help = "Loads Tcl array of 8/16/32 bit numbers "
5609                         "from target memory",
5610                 .usage = "arrayname bitwidth address count",
5611         },
5612         {
5613                 .name = "eventlist",
5614                 .handler = handle_target_event_list,
5615                 .mode = COMMAND_EXEC,
5616                 .help = "displays a table of events defined for this target",
5617                 .usage = "",
5618         },
5619         {
5620                 .name = "curstate",
5621                 .mode = COMMAND_EXEC,
5622                 .jim_handler = jim_target_current_state,
5623                 .help = "displays the current state of this target",
5624         },
5625         {
5626                 .name = "arp_examine",
5627                 .mode = COMMAND_EXEC,
5628                 .jim_handler = jim_target_examine,
5629                 .help = "used internally for reset processing",
5630                 .usage = "['allow-defer']",
5631         },
5632         {
5633                 .name = "was_examined",
5634                 .mode = COMMAND_EXEC,
5635                 .jim_handler = jim_target_was_examined,
5636                 .help = "used internally for reset processing",
5637         },
5638         {
5639                 .name = "examine_deferred",
5640                 .mode = COMMAND_EXEC,
5641                 .jim_handler = jim_target_examine_deferred,
5642                 .help = "used internally for reset processing",
5643         },
5644         {
5645                 .name = "arp_halt_gdb",
5646                 .mode = COMMAND_EXEC,
5647                 .jim_handler = jim_target_halt_gdb,
5648                 .help = "used internally for reset processing to halt GDB",
5649         },
5650         {
5651                 .name = "arp_poll",
5652                 .mode = COMMAND_EXEC,
5653                 .jim_handler = jim_target_poll,
5654                 .help = "used internally for reset processing",
5655         },
5656         {
5657                 .name = "arp_reset",
5658                 .mode = COMMAND_EXEC,
5659                 .jim_handler = jim_target_reset,
5660                 .help = "used internally for reset processing",
5661         },
5662         {
5663                 .name = "arp_halt",
5664                 .mode = COMMAND_EXEC,
5665                 .jim_handler = jim_target_halt,
5666                 .help = "used internally for reset processing",
5667         },
5668         {
5669                 .name = "arp_waitstate",
5670                 .mode = COMMAND_EXEC,
5671                 .jim_handler = jim_target_wait_state,
5672                 .help = "used internally for reset processing",
5673         },
5674         {
5675                 .name = "invoke-event",
5676                 .mode = COMMAND_EXEC,
5677                 .jim_handler = jim_target_invoke_event,
5678                 .help = "invoke handler for specified event",
5679                 .usage = "event_name",
5680         },
5681         COMMAND_REGISTRATION_DONE
5682 };
5683
5684 static int target_create(struct jim_getopt_info *goi)
5685 {
5686         Jim_Obj *new_cmd;
5687         Jim_Cmd *cmd;
5688         const char *cp;
5689         int e;
5690         int x;
5691         struct target *target;
5692         struct command_context *cmd_ctx;
5693
5694         cmd_ctx = current_command_context(goi->interp);
5695         assert(cmd_ctx);
5696
5697         if (goi->argc < 3) {
5698                 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
5699                 return JIM_ERR;
5700         }
5701
5702         /* COMMAND */
5703         jim_getopt_obj(goi, &new_cmd);
5704         /* does this command exist? */
5705         cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
5706         if (cmd) {
5707                 cp = Jim_GetString(new_cmd, NULL);
5708                 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
5709                 return JIM_ERR;
5710         }
5711
5712         /* TYPE */
5713         e = jim_getopt_string(goi, &cp, NULL);
5714         if (e != JIM_OK)
5715                 return e;
5716         struct transport *tr = get_current_transport();
5717         if (tr->override_target) {
5718                 e = tr->override_target(&cp);
5719                 if (e != ERROR_OK) {
5720                         LOG_ERROR("The selected transport doesn't support this target");
5721                         return JIM_ERR;
5722                 }
5723                 LOG_INFO("The selected transport took over low-level target control. The results might differ compared to plain JTAG/SWD");
5724         }
5725         /* now does target type exist */
5726         for (x = 0 ; target_types[x] ; x++) {
5727                 if (0 == strcmp(cp, target_types[x]->name)) {
5728                         /* found */
5729                         break;
5730                 }
5731         }
5732         if (target_types[x] == NULL) {
5733                 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
5734                 for (x = 0 ; target_types[x] ; x++) {
5735                         if (target_types[x + 1]) {
5736                                 Jim_AppendStrings(goi->interp,
5737                                                                    Jim_GetResult(goi->interp),
5738                                                                    target_types[x]->name,
5739                                                                    ", ", NULL);
5740                         } else {
5741                                 Jim_AppendStrings(goi->interp,
5742                                                                    Jim_GetResult(goi->interp),
5743                                                                    " or ",
5744                                                                    target_types[x]->name, NULL);
5745                         }
5746                 }
5747                 return JIM_ERR;
5748         }
5749
5750         /* Create it */
5751         target = calloc(1, sizeof(struct target));
5752         if (!target) {
5753                 LOG_ERROR("Out of memory");
5754                 return JIM_ERR;
5755         }
5756
5757         /* set target number */
5758         target->target_number = new_target_number();
5759
5760         /* allocate memory for each unique target type */
5761         target->type = malloc(sizeof(struct target_type));
5762         if (!target->type) {
5763                 LOG_ERROR("Out of memory");
5764                 free(target);
5765                 return JIM_ERR;
5766         }
5767
5768         memcpy(target->type, target_types[x], sizeof(struct target_type));
5769
5770         /* default to first core, override with -coreid */
5771         target->coreid = 0;
5772
5773         target->working_area        = 0x0;
5774         target->working_area_size   = 0x0;
5775         target->working_areas       = NULL;
5776         target->backup_working_area = 0;
5777
5778         target->state               = TARGET_UNKNOWN;
5779         target->debug_reason        = DBG_REASON_UNDEFINED;
5780         target->reg_cache           = NULL;
5781         target->breakpoints         = NULL;
5782         target->watchpoints         = NULL;
5783         target->next                = NULL;
5784         target->arch_info           = NULL;
5785
5786         target->verbose_halt_msg        = true;
5787
5788         target->halt_issued                     = false;
5789
5790         /* initialize trace information */
5791         target->trace_info = calloc(1, sizeof(struct trace));
5792         if (!target->trace_info) {
5793                 LOG_ERROR("Out of memory");
5794                 free(target->type);
5795                 free(target);
5796                 return JIM_ERR;
5797         }
5798
5799         target->dbgmsg          = NULL;
5800         target->dbg_msg_enabled = 0;
5801
5802         target->endianness = TARGET_ENDIAN_UNKNOWN;
5803
5804         target->rtos = NULL;
5805         target->rtos_auto_detect = false;
5806
5807         target->gdb_port_override = NULL;
5808         target->gdb_max_connections = 1;
5809
5810         /* Do the rest as "configure" options */
5811         goi->isconfigure = 1;
5812         e = target_configure(goi, target);
5813
5814         if (e == JIM_OK) {
5815                 if (target->has_dap) {
5816                         if (!target->dap_configured) {
5817                                 Jim_SetResultString(goi->interp, "-dap ?name? required when creating target", -1);
5818                                 e = JIM_ERR;
5819                         }
5820                 } else {
5821                         if (!target->tap_configured) {
5822                                 Jim_SetResultString(goi->interp, "-chain-position ?name? required when creating target", -1);
5823                                 e = JIM_ERR;
5824                         }
5825                 }
5826                 /* tap must be set after target was configured */
5827                 if (!target->tap)
5828                         e = JIM_ERR;
5829         }
5830
5831         if (e != JIM_OK) {
5832                 rtos_destroy(target);
5833                 free(target->gdb_port_override);
5834                 free(target->trace_info);
5835                 free(target->type);
5836                 free(target);
5837                 return e;
5838         }
5839
5840         if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
5841                 /* default endian to little if not specified */
5842                 target->endianness = TARGET_LITTLE_ENDIAN;
5843         }
5844
5845         cp = Jim_GetString(new_cmd, NULL);
5846         target->cmd_name = strdup(cp);
5847         if (!target->cmd_name) {
5848                 LOG_ERROR("Out of memory");
5849                 rtos_destroy(target);
5850                 free(target->gdb_port_override);
5851                 free(target->trace_info);
5852                 free(target->type);
5853                 free(target);
5854                 return JIM_ERR;
5855         }
5856
5857         if (target->type->target_create) {
5858                 e = (*(target->type->target_create))(target, goi->interp);
5859                 if (e != ERROR_OK) {
5860                         LOG_DEBUG("target_create failed");
5861                         free(target->cmd_name);
5862                         rtos_destroy(target);
5863                         free(target->gdb_port_override);
5864                         free(target->trace_info);
5865                         free(target->type);
5866                         free(target);
5867                         return JIM_ERR;
5868                 }
5869         }
5870
5871         /* create the target specific commands */
5872         if (target->type->commands) {
5873                 e = register_commands(cmd_ctx, NULL, target->type->commands);
5874                 if (e != ERROR_OK)
5875                         LOG_ERROR("unable to register '%s' commands", cp);
5876         }
5877
5878         /* now - create the new target name command */
5879         const struct command_registration target_subcommands[] = {
5880                 {
5881                         .chain = target_instance_command_handlers,
5882                 },
5883                 {
5884                         .chain = target->type->commands,
5885                 },
5886                 COMMAND_REGISTRATION_DONE
5887         };
5888         const struct command_registration target_commands[] = {
5889                 {
5890                         .name = cp,
5891                         .mode = COMMAND_ANY,
5892                         .help = "target command group",
5893                         .usage = "",
5894                         .chain = target_subcommands,
5895                 },
5896                 COMMAND_REGISTRATION_DONE
5897         };
5898         e = register_commands_override_target(cmd_ctx, NULL, target_commands, target);
5899         if (e != ERROR_OK) {
5900                 if (target->type->deinit_target)
5901                         target->type->deinit_target(target);
5902                 free(target->cmd_name);
5903                 rtos_destroy(target);
5904                 free(target->gdb_port_override);
5905                 free(target->trace_info);
5906                 free(target->type);
5907                 free(target);
5908                 return JIM_ERR;
5909         }
5910
5911         /* append to end of list */
5912         append_to_list_all_targets(target);
5913
5914         cmd_ctx->current_target = target;
5915         return JIM_OK;
5916 }
5917
5918 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5919 {
5920         if (argc != 1) {
5921                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5922                 return JIM_ERR;
5923         }
5924         struct command_context *cmd_ctx = current_command_context(interp);
5925         assert(cmd_ctx);
5926
5927         struct target *target = get_current_target_or_null(cmd_ctx);
5928         if (target)
5929                 Jim_SetResultString(interp, target_name(target), -1);
5930         return JIM_OK;
5931 }
5932
5933 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5934 {
5935         if (argc != 1) {
5936                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5937                 return JIM_ERR;
5938         }
5939         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5940         for (unsigned x = 0; NULL != target_types[x]; x++) {
5941                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5942                         Jim_NewStringObj(interp, target_types[x]->name, -1));
5943         }
5944         return JIM_OK;
5945 }
5946
5947 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5948 {
5949         if (argc != 1) {
5950                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5951                 return JIM_ERR;
5952         }
5953         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5954         struct target *target = all_targets;
5955         while (target) {
5956                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5957                         Jim_NewStringObj(interp, target_name(target), -1));
5958                 target = target->next;
5959         }
5960         return JIM_OK;
5961 }
5962
5963 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5964 {
5965         int i;
5966         const char *targetname;
5967         int retval, len;
5968         struct target *target = (struct target *) NULL;
5969         struct target_list *head, *curr, *new;
5970         curr = (struct target_list *) NULL;
5971         head = (struct target_list *) NULL;
5972
5973         retval = 0;
5974         LOG_DEBUG("%d", argc);
5975         /* argv[1] = target to associate in smp
5976          * argv[2] = target to associate in smp
5977          * argv[3] ...
5978          */
5979
5980         for (i = 1; i < argc; i++) {
5981
5982                 targetname = Jim_GetString(argv[i], &len);
5983                 target = get_target(targetname);
5984                 LOG_DEBUG("%s ", targetname);
5985                 if (target) {
5986                         new = malloc(sizeof(struct target_list));
5987                         new->target = target;
5988                         new->next = (struct target_list *)NULL;
5989                         if (head == (struct target_list *)NULL) {
5990                                 head = new;
5991                                 curr = head;
5992                         } else {
5993                                 curr->next = new;
5994                                 curr = new;
5995                         }
5996                 }
5997         }
5998         /*  now parse the list of cpu and put the target in smp mode*/
5999         curr = head;
6000
6001         while (curr != (struct target_list *)NULL) {
6002                 target = curr->target;
6003                 target->smp = 1;
6004                 target->head = head;
6005                 curr = curr->next;
6006         }
6007
6008         if (target && target->rtos)
6009                 retval = rtos_smp_init(head->target);
6010
6011         return retval;
6012 }
6013
6014
6015 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
6016 {
6017         struct jim_getopt_info goi;
6018         jim_getopt_setup(&goi, interp, argc - 1, argv + 1);
6019         if (goi.argc < 3) {
6020                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
6021                         "<name> <target_type> [<target_options> ...]");
6022                 return JIM_ERR;
6023         }
6024         return target_create(&goi);
6025 }
6026
6027 static const struct command_registration target_subcommand_handlers[] = {
6028         {
6029                 .name = "init",
6030                 .mode = COMMAND_CONFIG,
6031                 .handler = handle_target_init_command,
6032                 .help = "initialize targets",
6033                 .usage = "",
6034         },
6035         {
6036                 .name = "create",
6037                 .mode = COMMAND_CONFIG,
6038                 .jim_handler = jim_target_create,
6039                 .usage = "name type '-chain-position' name [options ...]",
6040                 .help = "Creates and selects a new target",
6041         },
6042         {
6043                 .name = "current",
6044                 .mode = COMMAND_ANY,
6045                 .jim_handler = jim_target_current,
6046                 .help = "Returns the currently selected target",
6047         },
6048         {
6049                 .name = "types",
6050                 .mode = COMMAND_ANY,
6051                 .jim_handler = jim_target_types,
6052                 .help = "Returns the available target types as "
6053                                 "a list of strings",
6054         },
6055         {
6056                 .name = "names",
6057                 .mode = COMMAND_ANY,
6058                 .jim_handler = jim_target_names,
6059                 .help = "Returns the names of all targets as a list of strings",
6060         },
6061         {
6062                 .name = "smp",
6063                 .mode = COMMAND_ANY,
6064                 .jim_handler = jim_target_smp,
6065                 .usage = "targetname1 targetname2 ...",
6066                 .help = "gather several target in a smp list"
6067         },
6068
6069         COMMAND_REGISTRATION_DONE
6070 };
6071
6072 struct fast_load {
6073         target_addr_t address;
6074         uint8_t *data;
6075         int length;
6076
6077 };
6078
6079 static int fastload_num;
6080 static struct fast_load *fastload;
6081
6082 static void free_fastload(void)
6083 {
6084         if (fastload) {
6085                 for (int i = 0; i < fastload_num; i++)
6086                         free(fastload[i].data);
6087                 free(fastload);
6088                 fastload = NULL;
6089         }
6090 }
6091
6092 COMMAND_HANDLER(handle_fast_load_image_command)
6093 {
6094         uint8_t *buffer;
6095         size_t buf_cnt;
6096         uint32_t image_size;
6097         target_addr_t min_address = 0;
6098         target_addr_t max_address = -1;
6099
6100         struct image image;
6101
6102         int retval = CALL_COMMAND_HANDLER(parse_load_image_command,
6103                         &image, &min_address, &max_address);
6104         if (retval != ERROR_OK)
6105                 return retval;
6106
6107         struct duration bench;
6108         duration_start(&bench);
6109
6110         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
6111         if (retval != ERROR_OK)
6112                 return retval;
6113
6114         image_size = 0x0;
6115         retval = ERROR_OK;
6116         fastload_num = image.num_sections;
6117         fastload = malloc(sizeof(struct fast_load)*image.num_sections);
6118         if (!fastload) {
6119                 command_print(CMD, "out of memory");
6120                 image_close(&image);
6121                 return ERROR_FAIL;
6122         }
6123         memset(fastload, 0, sizeof(struct fast_load)*image.num_sections);
6124         for (unsigned int i = 0; i < image.num_sections; i++) {
6125                 buffer = malloc(image.sections[i].size);
6126                 if (!buffer) {
6127                         command_print(CMD, "error allocating buffer for section (%d bytes)",
6128                                                   (int)(image.sections[i].size));
6129                         retval = ERROR_FAIL;
6130                         break;
6131                 }
6132
6133                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
6134                 if (retval != ERROR_OK) {
6135                         free(buffer);
6136                         break;
6137                 }
6138
6139                 uint32_t offset = 0;
6140                 uint32_t length = buf_cnt;
6141
6142                 /* DANGER!!! beware of unsigned comparison here!!! */
6143
6144                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
6145                                 (image.sections[i].base_address < max_address)) {
6146                         if (image.sections[i].base_address < min_address) {
6147                                 /* clip addresses below */
6148                                 offset += min_address-image.sections[i].base_address;
6149                                 length -= offset;
6150                         }
6151
6152                         if (image.sections[i].base_address + buf_cnt > max_address)
6153                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
6154
6155                         fastload[i].address = image.sections[i].base_address + offset;
6156                         fastload[i].data = malloc(length);
6157                         if (fastload[i].data == NULL) {
6158                                 free(buffer);
6159                                 command_print(CMD, "error allocating buffer for section (%" PRIu32 " bytes)",
6160                                                           length);
6161                                 retval = ERROR_FAIL;
6162                                 break;
6163                         }
6164                         memcpy(fastload[i].data, buffer + offset, length);
6165                         fastload[i].length = length;
6166
6167                         image_size += length;
6168                         command_print(CMD, "%u bytes written at address 0x%8.8x",
6169                                                   (unsigned int)length,
6170                                                   ((unsigned int)(image.sections[i].base_address + offset)));
6171                 }
6172
6173                 free(buffer);
6174         }
6175
6176         if ((retval == ERROR_OK) && (duration_measure(&bench) == ERROR_OK)) {
6177                 command_print(CMD, "Loaded %" PRIu32 " bytes "
6178                                 "in %fs (%0.3f KiB/s)", image_size,
6179                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
6180
6181                 command_print(CMD,
6182                                 "WARNING: image has not been loaded to target!"
6183                                 "You can issue a 'fast_load' to finish loading.");
6184         }
6185
6186         image_close(&image);
6187
6188         if (retval != ERROR_OK)
6189                 free_fastload();
6190
6191         return retval;
6192 }
6193
6194 COMMAND_HANDLER(handle_fast_load_command)
6195 {
6196         if (CMD_ARGC > 0)
6197                 return ERROR_COMMAND_SYNTAX_ERROR;
6198         if (!fastload) {
6199                 LOG_ERROR("No image in memory");
6200                 return ERROR_FAIL;
6201         }
6202         int i;
6203         int64_t ms = timeval_ms();
6204         int size = 0;
6205         int retval = ERROR_OK;
6206         for (i = 0; i < fastload_num; i++) {
6207                 struct target *target = get_current_target(CMD_CTX);
6208                 command_print(CMD, "Write to 0x%08x, length 0x%08x",
6209                                           (unsigned int)(fastload[i].address),
6210                                           (unsigned int)(fastload[i].length));
6211                 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
6212                 if (retval != ERROR_OK)
6213                         break;
6214                 size += fastload[i].length;
6215         }
6216         if (retval == ERROR_OK) {
6217                 int64_t after = timeval_ms();
6218                 command_print(CMD, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
6219         }
6220         return retval;
6221 }
6222
6223 static const struct command_registration target_command_handlers[] = {
6224         {
6225                 .name = "targets",
6226                 .handler = handle_targets_command,
6227                 .mode = COMMAND_ANY,
6228                 .help = "change current default target (one parameter) "
6229                         "or prints table of all targets (no parameters)",
6230                 .usage = "[target]",
6231         },
6232         {
6233                 .name = "target",
6234                 .mode = COMMAND_CONFIG,
6235                 .help = "configure target",
6236                 .chain = target_subcommand_handlers,
6237                 .usage = "",
6238         },
6239         COMMAND_REGISTRATION_DONE
6240 };
6241
6242 int target_register_commands(struct command_context *cmd_ctx)
6243 {
6244         return register_commands(cmd_ctx, NULL, target_command_handlers);
6245 }
6246
6247 static bool target_reset_nag = true;
6248
6249 bool get_target_reset_nag(void)
6250 {
6251         return target_reset_nag;
6252 }
6253
6254 COMMAND_HANDLER(handle_target_reset_nag)
6255 {
6256         return CALL_COMMAND_HANDLER(handle_command_parse_bool,
6257                         &target_reset_nag, "Nag after each reset about options to improve "
6258                         "performance");
6259 }
6260
6261 COMMAND_HANDLER(handle_ps_command)
6262 {
6263         struct target *target = get_current_target(CMD_CTX);
6264         char *display;
6265         if (target->state != TARGET_HALTED) {
6266                 LOG_INFO("target not halted !!");
6267                 return ERROR_OK;
6268         }
6269
6270         if ((target->rtos) && (target->rtos->type)
6271                         && (target->rtos->type->ps_command)) {
6272                 display = target->rtos->type->ps_command(target);
6273                 command_print(CMD, "%s", display);
6274                 free(display);
6275                 return ERROR_OK;
6276         } else {
6277                 LOG_INFO("failed");
6278                 return ERROR_TARGET_FAILURE;
6279         }
6280 }
6281
6282 static void binprint(struct command_invocation *cmd, const char *text, const uint8_t *buf, int size)
6283 {
6284         if (text)
6285                 command_print_sameline(cmd, "%s", text);
6286         for (int i = 0; i < size; i++)
6287                 command_print_sameline(cmd, " %02x", buf[i]);
6288         command_print(cmd, " ");
6289 }
6290
6291 COMMAND_HANDLER(handle_test_mem_access_command)
6292 {
6293         struct target *target = get_current_target(CMD_CTX);
6294         uint32_t test_size;
6295         int retval = ERROR_OK;
6296
6297         if (target->state != TARGET_HALTED) {
6298                 LOG_INFO("target not halted !!");
6299                 return ERROR_FAIL;
6300         }
6301
6302         if (CMD_ARGC != 1)
6303                 return ERROR_COMMAND_SYNTAX_ERROR;
6304
6305         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], test_size);
6306
6307         /* Test reads */
6308         size_t num_bytes = test_size + 4;
6309
6310         struct working_area *wa = NULL;
6311         retval = target_alloc_working_area(target, num_bytes, &wa);
6312         if (retval != ERROR_OK) {
6313                 LOG_ERROR("Not enough working area");
6314                 return ERROR_FAIL;
6315         }
6316
6317         uint8_t *test_pattern = malloc(num_bytes);
6318
6319         for (size_t i = 0; i < num_bytes; i++)
6320                 test_pattern[i] = rand();
6321
6322         retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
6323         if (retval != ERROR_OK) {
6324                 LOG_ERROR("Test pattern write failed");
6325                 goto out;
6326         }
6327
6328         for (int host_offset = 0; host_offset <= 1; host_offset++) {
6329                 for (int size = 1; size <= 4; size *= 2) {
6330                         for (int offset = 0; offset < 4; offset++) {
6331                                 uint32_t count = test_size / size;
6332                                 size_t host_bufsiz = (count + 2) * size + host_offset;
6333                                 uint8_t *read_ref = malloc(host_bufsiz);
6334                                 uint8_t *read_buf = malloc(host_bufsiz);
6335
6336                                 for (size_t i = 0; i < host_bufsiz; i++) {
6337                                         read_ref[i] = rand();
6338                                         read_buf[i] = read_ref[i];
6339                                 }
6340                                 command_print_sameline(CMD,
6341                                                 "Test read %" PRIu32 " x %d @ %d to %saligned buffer: ", count,
6342                                                 size, offset, host_offset ? "un" : "");
6343
6344                                 struct duration bench;
6345                                 duration_start(&bench);
6346
6347                                 retval = target_read_memory(target, wa->address + offset, size, count,
6348                                                 read_buf + size + host_offset);
6349
6350                                 duration_measure(&bench);
6351
6352                                 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
6353                                         command_print(CMD, "Unsupported alignment");
6354                                         goto next;
6355                                 } else if (retval != ERROR_OK) {
6356                                         command_print(CMD, "Memory read failed");
6357                                         goto next;
6358                                 }
6359
6360                                 /* replay on host */
6361                                 memcpy(read_ref + size + host_offset, test_pattern + offset, count * size);
6362
6363                                 /* check result */
6364                                 int result = memcmp(read_ref, read_buf, host_bufsiz);
6365                                 if (result == 0) {
6366                                         command_print(CMD, "Pass in %fs (%0.3f KiB/s)",
6367                                                         duration_elapsed(&bench),
6368                                                         duration_kbps(&bench, count * size));
6369                                 } else {
6370                                         command_print(CMD, "Compare failed");
6371                                         binprint(CMD, "ref:", read_ref, host_bufsiz);
6372                                         binprint(CMD, "buf:", read_buf, host_bufsiz);
6373                                 }
6374 next:
6375                                 free(read_ref);
6376                                 free(read_buf);
6377                         }
6378                 }
6379         }
6380
6381 out:
6382         free(test_pattern);
6383
6384         if (wa)
6385                 target_free_working_area(target, wa);
6386
6387         /* Test writes */
6388         num_bytes = test_size + 4 + 4 + 4;
6389
6390         retval = target_alloc_working_area(target, num_bytes, &wa);
6391         if (retval != ERROR_OK) {
6392                 LOG_ERROR("Not enough working area");
6393                 return ERROR_FAIL;
6394         }
6395
6396         test_pattern = malloc(num_bytes);
6397
6398         for (size_t i = 0; i < num_bytes; i++)
6399                 test_pattern[i] = rand();
6400
6401         for (int host_offset = 0; host_offset <= 1; host_offset++) {
6402                 for (int size = 1; size <= 4; size *= 2) {
6403                         for (int offset = 0; offset < 4; offset++) {
6404                                 uint32_t count = test_size / size;
6405                                 size_t host_bufsiz = count * size + host_offset;
6406                                 uint8_t *read_ref = malloc(num_bytes);
6407                                 uint8_t *read_buf = malloc(num_bytes);
6408                                 uint8_t *write_buf = malloc(host_bufsiz);
6409
6410                                 for (size_t i = 0; i < host_bufsiz; i++)
6411                                         write_buf[i] = rand();
6412                                 command_print_sameline(CMD,
6413                                                 "Test write %" PRIu32 " x %d @ %d from %saligned buffer: ", count,
6414                                                 size, offset, host_offset ? "un" : "");
6415
6416                                 retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
6417                                 if (retval != ERROR_OK) {
6418                                         command_print(CMD, "Test pattern write failed");
6419                                         goto nextw;
6420                                 }
6421
6422                                 /* replay on host */
6423                                 memcpy(read_ref, test_pattern, num_bytes);
6424                                 memcpy(read_ref + size + offset, write_buf + host_offset, count * size);
6425
6426                                 struct duration bench;
6427                                 duration_start(&bench);
6428
6429                                 retval = target_write_memory(target, wa->address + size + offset, size, count,
6430                                                 write_buf + host_offset);
6431
6432                                 duration_measure(&bench);
6433
6434                                 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
6435                                         command_print(CMD, "Unsupported alignment");
6436                                         goto nextw;
6437                                 } else if (retval != ERROR_OK) {
6438                                         command_print(CMD, "Memory write failed");
6439                                         goto nextw;
6440                                 }
6441
6442                                 /* read back */
6443                                 retval = target_read_memory(target, wa->address, 1, num_bytes, read_buf);
6444                                 if (retval != ERROR_OK) {
6445                                         command_print(CMD, "Test pattern write failed");
6446                                         goto nextw;
6447                                 }
6448
6449                                 /* check result */
6450                                 int result = memcmp(read_ref, read_buf, num_bytes);
6451                                 if (result == 0) {
6452                                         command_print(CMD, "Pass in %fs (%0.3f KiB/s)",
6453                                                         duration_elapsed(&bench),
6454                                                         duration_kbps(&bench, count * size));
6455                                 } else {
6456                                         command_print(CMD, "Compare failed");
6457                                         binprint(CMD, "ref:", read_ref, num_bytes);
6458                                         binprint(CMD, "buf:", read_buf, num_bytes);
6459                                 }
6460 nextw:
6461                                 free(read_ref);
6462                                 free(read_buf);
6463                         }
6464                 }
6465         }
6466
6467         free(test_pattern);
6468
6469         if (wa)
6470                 target_free_working_area(target, wa);
6471         return retval;
6472 }
6473
6474 static const struct command_registration target_exec_command_handlers[] = {
6475         {
6476                 .name = "fast_load_image",
6477                 .handler = handle_fast_load_image_command,
6478                 .mode = COMMAND_ANY,
6479                 .help = "Load image into server memory for later use by "
6480                         "fast_load; primarily for profiling",
6481                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6482                         "[min_address [max_length]]",
6483         },
6484         {
6485                 .name = "fast_load",
6486                 .handler = handle_fast_load_command,
6487                 .mode = COMMAND_EXEC,
6488                 .help = "loads active fast load image to current target "
6489                         "- mainly for profiling purposes",
6490                 .usage = "",
6491         },
6492         {
6493                 .name = "profile",
6494                 .handler = handle_profile_command,
6495                 .mode = COMMAND_EXEC,
6496                 .usage = "seconds filename [start end]",
6497                 .help = "profiling samples the CPU PC",
6498         },
6499         /** @todo don't register virt2phys() unless target supports it */
6500         {
6501                 .name = "virt2phys",
6502                 .handler = handle_virt2phys_command,
6503                 .mode = COMMAND_ANY,
6504                 .help = "translate a virtual address into a physical address",
6505                 .usage = "virtual_address",
6506         },
6507         {
6508                 .name = "reg",
6509                 .handler = handle_reg_command,
6510                 .mode = COMMAND_EXEC,
6511                 .help = "display (reread from target with \"force\") or set a register; "
6512                         "with no arguments, displays all registers and their values",
6513                 .usage = "[(register_number|register_name) [(value|'force')]]",
6514         },
6515         {
6516                 .name = "poll",
6517                 .handler = handle_poll_command,
6518                 .mode = COMMAND_EXEC,
6519                 .help = "poll target state; or reconfigure background polling",
6520                 .usage = "['on'|'off']",
6521         },
6522         {
6523                 .name = "wait_halt",
6524                 .handler = handle_wait_halt_command,
6525                 .mode = COMMAND_EXEC,
6526                 .help = "wait up to the specified number of milliseconds "
6527                         "(default 5000) for a previously requested halt",
6528                 .usage = "[milliseconds]",
6529         },
6530         {
6531                 .name = "halt",
6532                 .handler = handle_halt_command,
6533                 .mode = COMMAND_EXEC,
6534                 .help = "request target to halt, then wait up to the specified "
6535                         "number of milliseconds (default 5000) for it to complete",
6536                 .usage = "[milliseconds]",
6537         },
6538         {
6539                 .name = "resume",
6540                 .handler = handle_resume_command,
6541                 .mode = COMMAND_EXEC,
6542                 .help = "resume target execution from current PC or address",
6543                 .usage = "[address]",
6544         },
6545         {
6546                 .name = "reset",
6547                 .handler = handle_reset_command,
6548                 .mode = COMMAND_EXEC,
6549                 .usage = "[run|halt|init]",
6550                 .help = "Reset all targets into the specified mode. "
6551                         "Default reset mode is run, if not given.",
6552         },
6553         {
6554                 .name = "soft_reset_halt",
6555                 .handler = handle_soft_reset_halt_command,
6556                 .mode = COMMAND_EXEC,
6557                 .usage = "",
6558                 .help = "halt the target and do a soft reset",
6559         },
6560         {
6561                 .name = "step",
6562                 .handler = handle_step_command,
6563                 .mode = COMMAND_EXEC,
6564                 .help = "step one instruction from current PC or address",
6565                 .usage = "[address]",
6566         },
6567         {
6568                 .name = "mdd",
6569                 .handler = handle_md_command,
6570                 .mode = COMMAND_EXEC,
6571                 .help = "display memory double-words",
6572                 .usage = "['phys'] address [count]",
6573         },
6574         {
6575                 .name = "mdw",
6576                 .handler = handle_md_command,
6577                 .mode = COMMAND_EXEC,
6578                 .help = "display memory words",
6579                 .usage = "['phys'] address [count]",
6580         },
6581         {
6582                 .name = "mdh",
6583                 .handler = handle_md_command,
6584                 .mode = COMMAND_EXEC,
6585                 .help = "display memory half-words",
6586                 .usage = "['phys'] address [count]",
6587         },
6588         {
6589                 .name = "mdb",
6590                 .handler = handle_md_command,
6591                 .mode = COMMAND_EXEC,
6592                 .help = "display memory bytes",
6593                 .usage = "['phys'] address [count]",
6594         },
6595         {
6596                 .name = "mwd",
6597                 .handler = handle_mw_command,
6598                 .mode = COMMAND_EXEC,
6599                 .help = "write memory double-word",
6600                 .usage = "['phys'] address value [count]",
6601         },
6602         {
6603                 .name = "mww",
6604                 .handler = handle_mw_command,
6605                 .mode = COMMAND_EXEC,
6606                 .help = "write memory word",
6607                 .usage = "['phys'] address value [count]",
6608         },
6609         {
6610                 .name = "mwh",
6611                 .handler = handle_mw_command,
6612                 .mode = COMMAND_EXEC,
6613                 .help = "write memory half-word",
6614                 .usage = "['phys'] address value [count]",
6615         },
6616         {
6617                 .name = "mwb",
6618                 .handler = handle_mw_command,
6619                 .mode = COMMAND_EXEC,
6620                 .help = "write memory byte",
6621                 .usage = "['phys'] address value [count]",
6622         },
6623         {
6624                 .name = "bp",
6625                 .handler = handle_bp_command,
6626                 .mode = COMMAND_EXEC,
6627                 .help = "list or set hardware or software breakpoint",
6628                 .usage = "[<address> [<asid>] <length> ['hw'|'hw_ctx']]",
6629         },
6630         {
6631                 .name = "rbp",
6632                 .handler = handle_rbp_command,
6633                 .mode = COMMAND_EXEC,
6634                 .help = "remove breakpoint",
6635                 .usage = "'all' | address",
6636         },
6637         {
6638                 .name = "wp",
6639                 .handler = handle_wp_command,
6640                 .mode = COMMAND_EXEC,
6641                 .help = "list (no params) or create watchpoints",
6642                 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
6643         },
6644         {
6645                 .name = "rwp",
6646                 .handler = handle_rwp_command,
6647                 .mode = COMMAND_EXEC,
6648                 .help = "remove watchpoint",
6649                 .usage = "address",
6650         },
6651         {
6652                 .name = "load_image",
6653                 .handler = handle_load_image_command,
6654                 .mode = COMMAND_EXEC,
6655                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6656                         "[min_address] [max_length]",
6657         },
6658         {
6659                 .name = "dump_image",
6660                 .handler = handle_dump_image_command,
6661                 .mode = COMMAND_EXEC,
6662                 .usage = "filename address size",
6663         },
6664         {
6665                 .name = "verify_image_checksum",
6666                 .handler = handle_verify_image_checksum_command,
6667                 .mode = COMMAND_EXEC,
6668                 .usage = "filename [offset [type]]",
6669         },
6670         {
6671                 .name = "verify_image",
6672                 .handler = handle_verify_image_command,
6673                 .mode = COMMAND_EXEC,
6674                 .usage = "filename [offset [type]]",
6675         },
6676         {
6677                 .name = "test_image",
6678                 .handler = handle_test_image_command,
6679                 .mode = COMMAND_EXEC,
6680                 .usage = "filename [offset [type]]",
6681         },
6682         {
6683                 .name = "mem2array",
6684                 .mode = COMMAND_EXEC,
6685                 .jim_handler = jim_mem2array,
6686                 .help = "read 8/16/32 bit memory and return as a TCL array "
6687                         "for script processing",
6688                 .usage = "arrayname bitwidth address count",
6689         },
6690         {
6691                 .name = "array2mem",
6692                 .mode = COMMAND_EXEC,
6693                 .jim_handler = jim_array2mem,
6694                 .help = "convert a TCL array to memory locations "
6695                         "and write the 8/16/32 bit values",
6696                 .usage = "arrayname bitwidth address count",
6697         },
6698         {
6699                 .name = "reset_nag",
6700                 .handler = handle_target_reset_nag,
6701                 .mode = COMMAND_ANY,
6702                 .help = "Nag after each reset about options that could have been "
6703                                 "enabled to improve performance.",
6704                 .usage = "['enable'|'disable']",
6705         },
6706         {
6707                 .name = "ps",
6708                 .handler = handle_ps_command,
6709                 .mode = COMMAND_EXEC,
6710                 .help = "list all tasks",
6711                 .usage = "",
6712         },
6713         {
6714                 .name = "test_mem_access",
6715                 .handler = handle_test_mem_access_command,
6716                 .mode = COMMAND_EXEC,
6717                 .help = "Test the target's memory access functions",
6718                 .usage = "size",
6719         },
6720
6721         COMMAND_REGISTRATION_DONE
6722 };
6723 static int target_register_user_commands(struct command_context *cmd_ctx)
6724 {
6725         int retval = ERROR_OK;
6726         retval = target_request_register_commands(cmd_ctx);
6727         if (retval != ERROR_OK)
6728                 return retval;
6729
6730         retval = trace_register_commands(cmd_ctx);
6731         if (retval != ERROR_OK)
6732                 return retval;
6733
6734
6735         return register_commands(cmd_ctx, NULL, target_exec_command_handlers);
6736 }