- Fixed various error handling when looking for memory leaks
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   This program is free software; you can redistribute it and/or modify  *
6  *   it under the terms of the GNU General Public License as published by  *
7  *   the Free Software Foundation; either version 2 of the License, or     *
8  *   (at your option) any later version.                                   *
9  *                                                                         *
10  *   This program is distributed in the hope that it will be useful,       *
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
13  *   GNU General Public License for more details.                          *
14  *                                                                         *
15  *   You should have received a copy of the GNU General Public License     *
16  *   along with this program; if not, write to the                         *
17  *   Free Software Foundation, Inc.,                                       *
18  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
19  ***************************************************************************/
20 #ifdef HAVE_CONFIG_H
21 #include "config.h"
22 #endif
23
24 #include "replacements.h"
25 #include "target.h"
26 #include "target_request.h"
27
28 #include "log.h"
29 #include "configuration.h"
30 #include "binarybuffer.h"
31 #include "jtag.h"
32
33 #include <string.h>
34 #include <stdlib.h>
35 #include <inttypes.h>
36
37 #include <sys/types.h>
38 #include <sys/stat.h>
39 #include <unistd.h>
40 #include <errno.h>
41
42 #include <sys/time.h>
43 #include <time.h>
44
45 #include <time_support.h>
46
47 #include <fileio.h>
48 #include <image.h>
49
50 int cli_target_callback_event_handler(struct target_s *target, enum target_event event, void *priv);
51
52
53 int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
54 int handle_daemon_startup_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
55 int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
56
57 int handle_target_script_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
58 int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
59 int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
60
61 int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
62 int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
63 int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
64 int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
65 int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
66 int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
67 int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
68 int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
69 int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
70 int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
71 int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
72 int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
73 int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
74 int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
75 int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
76 int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
77 int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
78 int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc);
79
80 /* targets
81  */
82 extern target_type_t arm7tdmi_target;
83 extern target_type_t arm720t_target;
84 extern target_type_t arm9tdmi_target;
85 extern target_type_t arm920t_target;
86 extern target_type_t arm966e_target;
87 extern target_type_t arm926ejs_target;
88 extern target_type_t feroceon_target;
89 extern target_type_t xscale_target;
90 extern target_type_t cortexm3_target;
91 extern target_type_t arm11_target;
92
93 target_type_t *target_types[] =
94 {
95         &arm7tdmi_target,
96         &arm9tdmi_target,
97         &arm920t_target,
98         &arm720t_target,
99         &arm966e_target,
100         &arm926ejs_target,
101         &feroceon_target,
102         &xscale_target,
103         &cortexm3_target,
104         &arm11_target,
105         NULL,
106 };
107
108 target_t *targets = NULL;
109 target_event_callback_t *target_event_callbacks = NULL;
110 target_timer_callback_t *target_timer_callbacks = NULL;
111
112 char *target_state_strings[] =
113 {
114         "unknown",
115         "running",
116         "halted",
117         "reset",
118         "debug_running",
119 };
120
121 char *target_debug_reason_strings[] =
122 {
123         "debug request", "breakpoint", "watchpoint",
124         "watchpoint and breakpoint", "single step",
125         "target not halted", "undefined"
126 };
127
128 char *target_endianess_strings[] =
129 {
130         "big endian",
131         "little endian",
132 };
133
134 enum daemon_startup_mode startup_mode = DAEMON_ATTACH;
135
136 static int target_continous_poll = 1;
137
138 /* read a u32 from a buffer in target memory endianness */
139 u32 target_buffer_get_u32(target_t *target, u8 *buffer)
140 {
141         if (target->endianness == TARGET_LITTLE_ENDIAN)
142                 return le_to_h_u32(buffer);
143         else
144                 return be_to_h_u32(buffer);
145 }
146
147 /* read a u16 from a buffer in target memory endianness */
148 u16 target_buffer_get_u16(target_t *target, u8 *buffer)
149 {
150         if (target->endianness == TARGET_LITTLE_ENDIAN)
151                 return le_to_h_u16(buffer);
152         else
153                 return be_to_h_u16(buffer);
154 }
155
156 /* write a u32 to a buffer in target memory endianness */
157 void target_buffer_set_u32(target_t *target, u8 *buffer, u32 value)
158 {
159         if (target->endianness == TARGET_LITTLE_ENDIAN)
160                 h_u32_to_le(buffer, value);
161         else
162                 h_u32_to_be(buffer, value);
163 }
164
165 /* write a u16 to a buffer in target memory endianness */
166 void target_buffer_set_u16(target_t *target, u8 *buffer, u16 value)
167 {
168         if (target->endianness == TARGET_LITTLE_ENDIAN)
169                 h_u16_to_le(buffer, value);
170         else
171                 h_u16_to_be(buffer, value);
172 }
173
174 /* returns a pointer to the n-th configured target */
175 target_t* get_target_by_num(int num)
176 {
177         target_t *target = targets;
178         int i = 0;
179
180         while (target)
181         {
182                 if (num == i)
183                         return target;
184                 target = target->next;
185                 i++;
186         }
187
188         return NULL;
189 }
190
191 int get_num_by_target(target_t *query_target)
192 {
193         target_t *target = targets;
194         int i = 0;      
195         
196         while (target)
197         {
198                 if (target == query_target)
199                         return i;
200                 target = target->next;
201                 i++;
202         }
203         
204         return -1;
205 }
206
207 target_t* get_current_target(command_context_t *cmd_ctx)
208 {
209         target_t *target = get_target_by_num(cmd_ctx->current_target);
210         
211         if (target == NULL)
212         {
213                 ERROR("BUG: current_target out of bounds");
214                 exit(-1);
215         }
216         
217         return target;
218 }
219
220 /* Process target initialization, when target entered debug out of reset
221  * the handler is unregistered at the end of this function, so it's only called once
222  */
223 int target_init_handler(struct target_s *target, enum target_event event, void *priv)
224 {
225         FILE *script;
226         struct command_context_s *cmd_ctx = priv;
227         
228         if ((event == TARGET_EVENT_HALTED) && (target->reset_script))
229         {
230                 target_unregister_event_callback(target_init_handler, priv);
231
232                 script = open_file_from_path(target->reset_script, "r");
233                 if (!script)
234                 {
235                         ERROR("couldn't open script file %s", target->reset_script);
236                                 return ERROR_OK;
237                 }
238
239                 INFO("executing reset script '%s'", target->reset_script);
240                 command_run_file(cmd_ctx, script, COMMAND_EXEC);
241                 fclose(script);
242
243                 jtag_execute_queue();
244         }
245         
246         return ERROR_OK;
247 }
248
249 int target_run_and_halt_handler(void *priv)
250 {
251         target_t *target = priv;
252         
253         target->type->halt(target);
254         
255         return ERROR_OK;
256 }
257
258 int target_process_reset(struct command_context_s *cmd_ctx)
259 {
260         int retval = ERROR_OK;
261         target_t *target;
262         struct timeval timeout, now;
263         
264         /* prepare reset_halt where necessary */
265         target = targets;
266         while (target)
267         {
268                 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
269                 {
270                         switch (target->reset_mode)
271                         {
272                                 case RESET_HALT:
273                                         command_print(cmd_ctx, "nSRST pulls nTRST, falling back to \"reset run_and_halt\"");
274                                         target->reset_mode = RESET_RUN_AND_HALT;
275                                         break;
276                                 case RESET_INIT:
277                                         command_print(cmd_ctx, "nSRST pulls nTRST, falling back to \"reset run_and_init\"");
278                                         target->reset_mode = RESET_RUN_AND_INIT;
279                                         break;
280                                 default:
281                                         break;
282                         } 
283                 }
284                 switch (target->reset_mode)
285                 {
286                         case RESET_HALT:
287                         case RESET_INIT:
288                                 target->type->prepare_reset_halt(target);
289                                 break;
290                         default:
291                                 break;
292                 }
293                 target = target->next;
294         }
295         
296         target = targets;
297         while (target)
298         {
299                 target->type->assert_reset(target);
300                 target = target->next;
301         }
302         jtag_execute_queue();
303         
304         /* request target halt if necessary, and schedule further action */
305         target = targets;
306         while (target)
307         {
308                 switch (target->reset_mode)
309                 {
310                         case RESET_RUN:
311                                 /* nothing to do if target just wants to be run */
312                                 break;
313                         case RESET_RUN_AND_HALT:
314                                 /* schedule halt */
315                                 target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target);
316                                 break;
317                         case RESET_RUN_AND_INIT:
318                                 /* schedule halt */
319                                 target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target);
320                                 target_register_event_callback(target_init_handler, cmd_ctx);
321                                 break;
322                         case RESET_HALT:
323                                 target->type->halt(target);
324                                 break;
325                         case RESET_INIT:
326                                 target->type->halt(target);
327                                 target_register_event_callback(target_init_handler, cmd_ctx);
328                                 break;
329                         default:
330                                 ERROR("BUG: unknown target->reset_mode");
331                 }
332                 target = target->next;
333         }
334         
335         target = targets;
336         while (target)
337         {
338                 target->type->deassert_reset(target);
339                 target = target->next;
340         }
341         jtag_execute_queue();
342
343         /* Wait for reset to complete, maximum 5 seconds. */    
344         gettimeofday(&timeout, NULL);
345         timeval_add_time(&timeout, 5, 0);
346         for(;;)
347         {
348                 gettimeofday(&now, NULL);
349                 
350                 target_call_timer_callbacks();
351                 
352                 target = targets;
353                 while (target)
354                 {
355                         target->type->poll(target);
356                         if ((target->reset_mode == RESET_RUN_AND_INIT) || (target->reset_mode == RESET_RUN_AND_HALT))
357                         {
358                                 if (target->state != TARGET_HALTED)
359                                 {
360                                         if ((now.tv_sec > timeout.tv_sec) || ((now.tv_sec == timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
361                                         {
362                                                 USER("Timed out waiting for reset");
363                                                 goto done;
364                                         }
365                                         /* this will send alive messages on e.g. GDB remote protocol. */
366                                         usleep(500*1000); 
367                                         USER_N("%s", ""); /* avoid warning about zero length formatting message*/ 
368                                         goto again;
369                                 }
370                         }
371                         target = target->next;
372                 }
373                 /* All targets we're waiting for are halted */
374                 break;
375                 
376                 again:;
377         }
378         done:
379         
380         
381         /* We want any events to be processed before the prompt */
382         target_call_timer_callbacks();
383         
384         return retval;
385 }
386
387 static int default_virt2phys(struct target_s *target, u32 virtual, u32 *physical)
388 {
389         *physical = virtual;
390         return ERROR_OK;
391 }
392
393 static int default_mmu(struct target_s *target, int *enabled)
394 {
395         *enabled = 0;
396         return ERROR_OK;
397 }
398
399 int target_init(struct command_context_s *cmd_ctx)
400 {
401         target_t *target = targets;
402         
403         while (target)
404         {
405                 if (target->type->init_target(cmd_ctx, target) != ERROR_OK)
406                 {
407                         ERROR("target '%s' init failed", target->type->name);
408                         exit(-1);
409                 }
410                 
411                 /* Set up default functions if none are provided by target */
412                 if (target->type->virt2phys == NULL)
413                 {
414                         target->type->virt2phys = default_virt2phys;
415                 }
416                 if (target->type->mmu == NULL)
417                 {
418                         target->type->mmu = default_mmu;
419                 }
420                 target = target->next;
421         }
422         
423         if (targets)
424         {
425                 target_register_user_commands(cmd_ctx);
426                 target_register_timer_callback(handle_target, 100, 1, NULL);
427         }
428                 
429         return ERROR_OK;
430 }
431
432 int target_init_reset(struct command_context_s *cmd_ctx)
433 {
434         if (startup_mode == DAEMON_RESET)
435                 target_process_reset(cmd_ctx);
436         
437         return ERROR_OK;
438 }
439
440 int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
441 {
442         target_event_callback_t **callbacks_p = &target_event_callbacks;
443         
444         if (callback == NULL)
445         {
446                 return ERROR_INVALID_ARGUMENTS;
447         }
448         
449         if (*callbacks_p)
450         {
451                 while ((*callbacks_p)->next)
452                         callbacks_p = &((*callbacks_p)->next);
453                 callbacks_p = &((*callbacks_p)->next);
454         }
455         
456         (*callbacks_p) = malloc(sizeof(target_event_callback_t));
457         (*callbacks_p)->callback = callback;
458         (*callbacks_p)->priv = priv;
459         (*callbacks_p)->next = NULL;
460         
461         return ERROR_OK;
462 }
463
464 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
465 {
466         target_timer_callback_t **callbacks_p = &target_timer_callbacks;
467         struct timeval now;
468         
469         if (callback == NULL)
470         {
471                 return ERROR_INVALID_ARGUMENTS;
472         }
473         
474         if (*callbacks_p)
475         {
476                 while ((*callbacks_p)->next)
477                         callbacks_p = &((*callbacks_p)->next);
478                 callbacks_p = &((*callbacks_p)->next);
479         }
480         
481         (*callbacks_p) = malloc(sizeof(target_timer_callback_t));
482         (*callbacks_p)->callback = callback;
483         (*callbacks_p)->periodic = periodic;
484         (*callbacks_p)->time_ms = time_ms;
485         
486         gettimeofday(&now, NULL);
487         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
488         time_ms -= (time_ms % 1000);
489         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
490         if ((*callbacks_p)->when.tv_usec > 1000000)
491         {
492                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
493                 (*callbacks_p)->when.tv_sec += 1;
494         }
495         
496         (*callbacks_p)->priv = priv;
497         (*callbacks_p)->next = NULL;
498         
499         return ERROR_OK;
500 }
501
502 int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
503 {
504         target_event_callback_t **p = &target_event_callbacks;
505         target_event_callback_t *c = target_event_callbacks;
506         
507         if (callback == NULL)
508         {
509                 return ERROR_INVALID_ARGUMENTS;
510         }
511                 
512         while (c)
513         {
514                 target_event_callback_t *next = c->next;
515                 if ((c->callback == callback) && (c->priv == priv))
516                 {
517                         *p = next;
518                         free(c);
519                         return ERROR_OK;
520                 }
521                 else
522                         p = &(c->next);
523                 c = next;
524         }
525         
526         return ERROR_OK;
527 }
528
529 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
530 {
531         target_timer_callback_t **p = &target_timer_callbacks;
532         target_timer_callback_t *c = target_timer_callbacks;
533         
534         if (callback == NULL)
535         {
536                 return ERROR_INVALID_ARGUMENTS;
537         }
538                 
539         while (c)
540         {
541                 target_timer_callback_t *next = c->next;
542                 if ((c->callback == callback) && (c->priv == priv))
543                 {
544                         *p = next;
545                         free(c);
546                         return ERROR_OK;
547                 }
548                 else
549                         p = &(c->next);
550                 c = next;
551         }
552         
553         return ERROR_OK;
554 }
555
556 int target_call_event_callbacks(target_t *target, enum target_event event)
557 {
558         target_event_callback_t *callback = target_event_callbacks;
559         target_event_callback_t *next_callback;
560         
561         DEBUG("target event %i", event);
562         
563         while (callback)
564         {
565                 next_callback = callback->next;
566                 callback->callback(target, event, callback->priv);
567                 callback = next_callback;
568         }
569         
570         return ERROR_OK;
571 }
572
573 int target_call_timer_callbacks()
574 {
575         target_timer_callback_t *callback = target_timer_callbacks;
576         target_timer_callback_t *next_callback;
577         struct timeval now;
578
579         gettimeofday(&now, NULL);
580         
581         while (callback)
582         {
583                 next_callback = callback->next;
584                 
585                 if (((now.tv_sec >= callback->when.tv_sec) && (now.tv_usec >= callback->when.tv_usec))
586                         || (now.tv_sec > callback->when.tv_sec))
587                 {
588                         callback->callback(callback->priv);
589                         if (callback->periodic)
590                         {
591                                 int time_ms = callback->time_ms;
592                                 callback->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
593                                 time_ms -= (time_ms % 1000);
594                                 callback->when.tv_sec = now.tv_sec + time_ms / 1000;
595                                 if (callback->when.tv_usec > 1000000)
596                                 {
597                                         callback->when.tv_usec = callback->when.tv_usec - 1000000;
598                                         callback->when.tv_sec += 1;
599                                 }
600                         }
601                         else
602                                 target_unregister_timer_callback(callback->callback, callback->priv);
603                 }
604                         
605                 callback = next_callback;
606         }
607         
608         return ERROR_OK;
609 }
610
611 int target_alloc_working_area(struct target_s *target, u32 size, working_area_t **area)
612 {
613         working_area_t *c = target->working_areas;
614         working_area_t *new_wa = NULL;
615         
616         /* Reevaluate working area address based on MMU state*/
617         if (target->working_areas == NULL)
618         {
619                 int retval;
620                 int enabled;
621                 retval = target->type->mmu(target, &enabled);
622                 if (retval != ERROR_OK)
623                 {
624                         return retval;
625                 }
626                 if (enabled)
627                 {
628                         target->working_area = target->working_area_virt;
629                 }
630                 else
631                 {
632                         target->working_area = target->working_area_phys;
633                 }
634         }
635         
636         /* only allocate multiples of 4 byte */
637         if (size % 4)
638         {
639                 ERROR("BUG: code tried to allocate unaligned number of bytes, padding");
640                 size = CEIL(size, 4);
641         }
642         
643         /* see if there's already a matching working area */
644         while (c)
645         {
646                 if ((c->free) && (c->size == size))
647                 {
648                         new_wa = c;
649                         break;
650                 }
651                 c = c->next;
652         }
653         
654         /* if not, allocate a new one */
655         if (!new_wa)
656         {
657                 working_area_t **p = &target->working_areas;
658                 u32 first_free = target->working_area;
659                 u32 free_size = target->working_area_size;
660                 
661                 DEBUG("allocating new working area");
662                 
663                 c = target->working_areas;
664                 while (c)
665                 {
666                         first_free += c->size;
667                         free_size -= c->size;
668                         p = &c->next;
669                         c = c->next;
670                 }
671                 
672                 if (free_size < size)
673                 {
674                         WARNING("not enough working area available(requested %d, free %d)", size, free_size);
675                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
676                 }
677                 
678                 new_wa = malloc(sizeof(working_area_t));
679                 new_wa->next = NULL;
680                 new_wa->size = size;
681                 new_wa->address = first_free;
682                 
683                 if (target->backup_working_area)
684                 {
685                         new_wa->backup = malloc(new_wa->size);
686                         target->type->read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup);
687                 }
688                 else
689                 {
690                         new_wa->backup = NULL;
691                 }
692                 
693                 /* put new entry in list */
694                 *p = new_wa;
695         }
696         
697         /* mark as used, and return the new (reused) area */
698         new_wa->free = 0;
699         *area = new_wa;
700         
701         /* user pointer */
702         new_wa->user = area;
703         
704         return ERROR_OK;
705 }
706
707 int target_free_working_area(struct target_s *target, working_area_t *area)
708 {
709         if (area->free)
710                 return ERROR_OK;
711         
712         if (target->backup_working_area)
713                 target->type->write_memory(target, area->address, 4, area->size / 4, area->backup);
714         
715         area->free = 1;
716         
717         /* mark user pointer invalid */
718         *area->user = NULL;
719         area->user = NULL;
720         
721         return ERROR_OK;
722 }
723
724 int target_free_all_working_areas(struct target_s *target)
725 {
726         working_area_t *c = target->working_areas;
727
728         while (c)
729         {
730                 working_area_t *next = c->next;
731                 target_free_working_area(target, c);
732                 
733                 if (c->backup)
734                         free(c->backup);
735                 
736                 free(c);
737                 
738                 c = next;
739         }
740         
741         target->working_areas = NULL;
742         
743         return ERROR_OK;
744 }
745
746 int target_register_commands(struct command_context_s *cmd_ctx)
747 {
748         register_command(cmd_ctx, NULL, "target", handle_target_command, COMMAND_CONFIG, NULL);
749         register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, NULL);
750         register_command(cmd_ctx, NULL, "daemon_startup", handle_daemon_startup_command, COMMAND_CONFIG, NULL);
751         register_command(cmd_ctx, NULL, "target_script", handle_target_script_command, COMMAND_CONFIG, NULL);
752         register_command(cmd_ctx, NULL, "run_and_halt_time", handle_run_and_halt_time_command, COMMAND_CONFIG, "<target> <run time ms>");
753         register_command(cmd_ctx, NULL, "working_area", handle_working_area_command, COMMAND_ANY, "working_area <target#> <address> <size> <'backup'|'nobackup'> [virtual address]");
754         register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "virt2phys <virtual address>");
755
756         return ERROR_OK;
757 }
758
759 int target_arch_state(struct target_s *target)
760 {
761         int retval;
762         if (target==NULL)
763         {
764                 USER("No target has been configured");
765                 return ERROR_OK;
766         }
767         
768         USER("target state: %s", target_state_strings[target->state]);
769         
770         if (target->state!=TARGET_HALTED)
771                 return ERROR_OK;
772         
773         retval=target->type->arch_state(target);
774         return retval;
775 }
776
777 /* Single aligned words are guaranteed to use 16 or 32 bit access 
778  * mode respectively, otherwise data is handled as quickly as 
779  * possible
780  */
781 int target_write_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
782 {
783         int retval;
784         
785         DEBUG("writing buffer of %i byte at 0x%8.8x", size, address);
786         
787         if (((address % 2) == 0) && (size == 2))
788         {
789                 return target->type->write_memory(target, address, 2, 1, buffer);
790         }
791         
792         /* handle unaligned head bytes */
793         if (address % 4)
794         {
795                 int unaligned = 4 - (address % 4);
796                 
797                 if (unaligned > size)
798                         unaligned = size;
799
800                 if ((retval = target->type->write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
801                         return retval;
802                 
803                 buffer += unaligned;
804                 address += unaligned;
805                 size -= unaligned;
806         }
807                 
808         /* handle aligned words */
809         if (size >= 4)
810         {
811                 int aligned = size - (size % 4);
812         
813                 /* use bulk writes above a certain limit. This may have to be changed */
814                 if (aligned > 128)
815                 {
816                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
817                                 return retval;
818                 }
819                 else
820                 {
821                         if ((retval = target->type->write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
822                                 return retval;
823                 }
824                 
825                 buffer += aligned;
826                 address += aligned;
827                 size -= aligned;
828         }
829         
830         /* handle tail writes of less than 4 bytes */
831         if (size > 0)
832         {
833                 if ((retval = target->type->write_memory(target, address, 1, size, buffer)) != ERROR_OK)
834                         return retval;
835         }
836         
837         return ERROR_OK;
838 }
839
840
841 /* Single aligned words are guaranteed to use 16 or 32 bit access 
842  * mode respectively, otherwise data is handled as quickly as 
843  * possible
844  */
845 int target_read_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
846 {
847         int retval;
848         
849         DEBUG("reading buffer of %i byte at 0x%8.8x", size, address);
850         
851         if (((address % 2) == 0) && (size == 2))
852         {
853                 return target->type->read_memory(target, address, 2, 1, buffer);
854         }
855         
856         /* handle unaligned head bytes */
857         if (address % 4)
858         {
859                 int unaligned = 4 - (address % 4);
860                 
861                 if (unaligned > size)
862                         unaligned = size;
863
864                 if ((retval = target->type->read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
865                         return retval;
866                 
867                 buffer += unaligned;
868                 address += unaligned;
869                 size -= unaligned;
870         }
871                 
872         /* handle aligned words */
873         if (size >= 4)
874         {
875                 int aligned = size - (size % 4);
876         
877                 if ((retval = target->type->read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
878                         return retval;
879                 
880                 buffer += aligned;
881                 address += aligned;
882                 size -= aligned;
883         }
884         
885         /* handle tail writes of less than 4 bytes */
886         if (size > 0)
887         {
888                 if ((retval = target->type->read_memory(target, address, 1, size, buffer)) != ERROR_OK)
889                         return retval;
890         }
891         
892         return ERROR_OK;
893 }
894
895 int target_checksum_memory(struct target_s *target, u32 address, u32 size, u32* crc)
896 {
897         u8 *buffer;
898         int retval;
899         int i;
900         u32 checksum = 0;
901         
902         if ((retval = target->type->checksum_memory(target, address,
903                 size, &checksum)) == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
904         {
905                 buffer = malloc(size);
906                 if (buffer == NULL)
907                 {
908                         ERROR("error allocating buffer for section (%d bytes)", size);
909                         return ERROR_INVALID_ARGUMENTS;
910                 }
911                 retval = target_read_buffer(target, address, size, buffer);
912                 if (retval != ERROR_OK)
913                 {
914                         free(buffer);
915                         return retval;
916                 }
917
918                 /* convert to target endianess */
919                 for (i = 0; i < (size/sizeof(u32)); i++)
920                 {
921                         u32 target_data;
922                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(u32)]);
923                         target_buffer_set_u32(target, &buffer[i*sizeof(u32)], target_data);
924                 }
925
926                 retval = image_calculate_checksum( buffer, size, &checksum );
927                 free(buffer);
928         }
929         
930         *crc = checksum;
931         
932         return retval;
933 }
934
935 int target_read_u32(struct target_s *target, u32 address, u32 *value)
936 {
937         u8 value_buf[4];
938
939         int retval = target->type->read_memory(target, address, 4, 1, value_buf);
940         
941         if (retval == ERROR_OK)
942         {
943                 *value = target_buffer_get_u32(target, value_buf);
944                 DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, *value);
945         }
946         else
947         {
948                 *value = 0x0;
949                 DEBUG("address: 0x%8.8x failed", address);
950         }
951         
952         return retval;
953 }
954
955 int target_read_u16(struct target_s *target, u32 address, u16 *value)
956 {
957         u8 value_buf[2];
958         
959         int retval = target->type->read_memory(target, address, 2, 1, value_buf);
960         
961         if (retval == ERROR_OK)
962         {
963                 *value = target_buffer_get_u16(target, value_buf);
964                 DEBUG("address: 0x%8.8x, value: 0x%4.4x", address, *value);
965         }
966         else
967         {
968                 *value = 0x0;
969                 DEBUG("address: 0x%8.8x failed", address);
970         }
971         
972         return retval;
973 }
974
975 int target_read_u8(struct target_s *target, u32 address, u8 *value)
976 {
977         int retval = target->type->read_memory(target, address, 1, 1, value);
978
979         if (retval == ERROR_OK)
980         {
981                 DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, *value);
982         }
983         else
984         {
985                 *value = 0x0;
986                 DEBUG("address: 0x%8.8x failed", address);
987         }
988         
989         return retval;
990 }
991
992 int target_write_u32(struct target_s *target, u32 address, u32 value)
993 {
994         int retval;
995         u8 value_buf[4];
996
997         DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
998
999         target_buffer_set_u32(target, value_buf, value);        
1000         if ((retval = target->type->write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1001         {
1002                 DEBUG("failed: %i", retval);
1003         }
1004         
1005         return retval;
1006 }
1007
1008 int target_write_u16(struct target_s *target, u32 address, u16 value)
1009 {
1010         int retval;
1011         u8 value_buf[2];
1012         
1013         DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1014
1015         target_buffer_set_u16(target, value_buf, value);        
1016         if ((retval = target->type->write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1017         {
1018                 DEBUG("failed: %i", retval);
1019         }
1020         
1021         return retval;
1022 }
1023
1024 int target_write_u8(struct target_s *target, u32 address, u8 value)
1025 {
1026         int retval;
1027         
1028         DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, value);
1029
1030         if ((retval = target->type->read_memory(target, address, 1, 1, &value)) != ERROR_OK)
1031         {
1032                 DEBUG("failed: %i", retval);
1033         }
1034         
1035         return retval;
1036 }
1037
1038 int target_register_user_commands(struct command_context_s *cmd_ctx)
1039 {
1040         register_command(cmd_ctx,  NULL, "reg", handle_reg_command, COMMAND_EXEC, NULL);
1041         register_command(cmd_ctx,  NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state");
1042         register_command(cmd_ctx,  NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]");
1043         register_command(cmd_ctx,  NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target");
1044         register_command(cmd_ctx,  NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]");
1045         register_command(cmd_ctx,  NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]");
1046         register_command(cmd_ctx,  NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run|halt|init|run_and_halt|run_and_init]");
1047         register_command(cmd_ctx,  NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset");
1048
1049         register_command(cmd_ctx,  NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words <addr> [count]");
1050         register_command(cmd_ctx,  NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words <addr> [count]");
1051         register_command(cmd_ctx,  NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes <addr> [count]");
1052         
1053         register_command(cmd_ctx,  NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word <addr> <value>");
1054         register_command(cmd_ctx,  NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word <addr> <value>");
1055         register_command(cmd_ctx,  NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte <addr> <value>");
1056         
1057         register_command(cmd_ctx,  NULL, "bp", handle_bp_command, COMMAND_EXEC, "set breakpoint <address> <length> [hw]");      
1058         register_command(cmd_ctx,  NULL, "rbp", handle_rbp_command, COMMAND_EXEC, "remove breakpoint <adress>");
1059         register_command(cmd_ctx,  NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint <address> <length> <r/w/a> [value] [mask]");    
1060         register_command(cmd_ctx,  NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint <adress>");
1061         
1062         register_command(cmd_ctx,  NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> ['bin'|'ihex'|'elf'|'s19']");
1063         register_command(cmd_ctx,  NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>");
1064         register_command(cmd_ctx,  NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image <file> [offset] [type]");
1065         register_command(cmd_ctx,  NULL, "load_binary", handle_load_image_command, COMMAND_EXEC, "[DEPRECATED] load_binary <file> <address>");
1066         register_command(cmd_ctx,  NULL, "dump_binary", handle_dump_image_command, COMMAND_EXEC, "[DEPRECATED] dump_binary <file> <address> <size>");
1067         
1068         target_request_register_commands(cmd_ctx);
1069         trace_register_commands(cmd_ctx);
1070         
1071         return ERROR_OK;
1072 }
1073
1074 int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1075 {
1076         target_t *target = targets;
1077         int count = 0;
1078         
1079         if (argc == 1)
1080         {
1081                 int num = strtoul(args[0], NULL, 0);
1082                 
1083                 while (target)
1084                 {
1085                         count++;
1086                         target = target->next;
1087                 }
1088                 
1089                 if (num < count)
1090                         cmd_ctx->current_target = num;
1091                 else
1092                         command_print(cmd_ctx, "%i is out of bounds, only %i targets are configured", num, count);
1093                         
1094                 return ERROR_OK;
1095         }
1096                 
1097         while (target)
1098         {
1099                 command_print(cmd_ctx, "%i: %s (%s), state: %s", count++, target->type->name, target_endianess_strings[target->endianness], target_state_strings[target->state]);
1100                 target = target->next;
1101         }
1102         
1103         return ERROR_OK;
1104 }
1105
1106 int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1107 {
1108         int i;
1109         int found = 0;
1110         
1111         if (argc < 3)
1112         {
1113                 return ERROR_COMMAND_SYNTAX_ERROR;
1114         }
1115         
1116         /* search for the specified target */
1117         if (args[0] && (args[0][0] != 0))
1118         {
1119                 for (i = 0; target_types[i]; i++)
1120                 {
1121                         if (strcmp(args[0], target_types[i]->name) == 0)
1122                         {
1123                                 target_t **last_target_p = &targets;
1124                                 
1125                                 /* register target specific commands */
1126                                 if (target_types[i]->register_commands(cmd_ctx) != ERROR_OK)
1127                                 {
1128                                         ERROR("couldn't register '%s' commands", args[0]);
1129                                         exit(-1);
1130                                 }
1131
1132                                 if (*last_target_p)
1133                                 {
1134                                         while ((*last_target_p)->next)
1135                                                 last_target_p = &((*last_target_p)->next);
1136                                         last_target_p = &((*last_target_p)->next);
1137                                 }
1138
1139                                 *last_target_p = malloc(sizeof(target_t));
1140                                 
1141                                 (*last_target_p)->type = target_types[i];
1142                                 
1143                                 if (strcmp(args[1], "big") == 0)
1144                                         (*last_target_p)->endianness = TARGET_BIG_ENDIAN;
1145                                 else if (strcmp(args[1], "little") == 0)
1146                                         (*last_target_p)->endianness = TARGET_LITTLE_ENDIAN;
1147                                 else
1148                                 {
1149                                         ERROR("endianness must be either 'little' or 'big', not '%s'", args[1]);
1150                                         return ERROR_COMMAND_SYNTAX_ERROR;
1151                                 }
1152                                 
1153                                 /* what to do on a target reset */
1154                                 if (strcmp(args[2], "reset_halt") == 0)
1155                                         (*last_target_p)->reset_mode = RESET_HALT;
1156                                 else if (strcmp(args[2], "reset_run") == 0)
1157                                         (*last_target_p)->reset_mode = RESET_RUN;
1158                                 else if (strcmp(args[2], "reset_init") == 0)
1159                                         (*last_target_p)->reset_mode = RESET_INIT;
1160                                 else if (strcmp(args[2], "run_and_halt") == 0)
1161                                         (*last_target_p)->reset_mode = RESET_RUN_AND_HALT;
1162                                 else if (strcmp(args[2], "run_and_init") == 0)
1163                                         (*last_target_p)->reset_mode = RESET_RUN_AND_INIT;
1164                                 else
1165                                 {
1166                                         ERROR("unknown target startup mode %s", args[2]);
1167                                         return ERROR_COMMAND_SYNTAX_ERROR;
1168                                 }
1169                                 (*last_target_p)->run_and_halt_time = 1000; /* default 1s */
1170                                 
1171                                 (*last_target_p)->reset_script = NULL;
1172                                 (*last_target_p)->post_halt_script = NULL;
1173                                 (*last_target_p)->pre_resume_script = NULL;
1174                                 (*last_target_p)->gdb_program_script = NULL;
1175                                 
1176                                 (*last_target_p)->working_area = 0x0;
1177                                 (*last_target_p)->working_area_size = 0x0;
1178                                 (*last_target_p)->working_areas = NULL;
1179                                 (*last_target_p)->backup_working_area = 0;
1180                                 
1181                                 (*last_target_p)->state = TARGET_UNKNOWN;
1182                                 (*last_target_p)->debug_reason = DBG_REASON_UNDEFINED;
1183                                 (*last_target_p)->reg_cache = NULL;
1184                                 (*last_target_p)->breakpoints = NULL;
1185                                 (*last_target_p)->watchpoints = NULL;
1186                                 (*last_target_p)->next = NULL;
1187                                 (*last_target_p)->arch_info = NULL;
1188                                 
1189                                 /* initialize trace information */
1190                                 (*last_target_p)->trace_info = malloc(sizeof(trace_t));
1191                                 (*last_target_p)->trace_info->num_trace_points = 0;
1192                                 (*last_target_p)->trace_info->trace_points_size = 0;
1193                                 (*last_target_p)->trace_info->trace_points = NULL;
1194                                 (*last_target_p)->trace_info->trace_history_size = 0;
1195                                 (*last_target_p)->trace_info->trace_history = NULL;
1196                                 (*last_target_p)->trace_info->trace_history_pos = 0;
1197                                 (*last_target_p)->trace_info->trace_history_overflowed = 0;
1198                                 
1199                                 (*last_target_p)->dbgmsg = NULL;
1200                                 (*last_target_p)->dbg_msg_enabled = 0;
1201                                                                 
1202                                 (*last_target_p)->type->target_command(cmd_ctx, cmd, args, argc, *last_target_p);
1203                                 
1204                                 found = 1;
1205                                 break;
1206                         }
1207                 }
1208         }
1209         
1210         /* no matching target found */
1211         if (!found)
1212         {
1213                 ERROR("target '%s' not found", args[0]);
1214                 return ERROR_COMMAND_SYNTAX_ERROR;
1215         }
1216
1217         return ERROR_OK;
1218 }
1219
1220 /* usage: target_script <target#> <event> <script_file> */
1221 int handle_target_script_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1222 {
1223         target_t *target = NULL;
1224         
1225         if (argc < 3)
1226         {
1227                 ERROR("incomplete target_script command");
1228                 return ERROR_COMMAND_SYNTAX_ERROR;
1229         }
1230         
1231         target = get_target_by_num(strtoul(args[0], NULL, 0));
1232         
1233         if (!target)
1234         {
1235                 return ERROR_COMMAND_SYNTAX_ERROR;
1236         }
1237         
1238         if (strcmp(args[1], "reset") == 0)
1239         {
1240                 if (target->reset_script)
1241                         free(target->reset_script);
1242                 target->reset_script = strdup(args[2]);
1243         }
1244         else if (strcmp(args[1], "post_halt") == 0)
1245         {
1246                 if (target->post_halt_script)
1247                         free(target->post_halt_script);
1248                 target->post_halt_script = strdup(args[2]);
1249         }
1250         else if (strcmp(args[1], "pre_resume") == 0)
1251         {
1252                 if (target->pre_resume_script)
1253                         free(target->pre_resume_script);
1254                 target->pre_resume_script = strdup(args[2]);
1255         }
1256         else if (strcmp(args[1], "gdb_program_config") == 0)
1257         {
1258                 if (target->gdb_program_script)
1259                         free(target->gdb_program_script);
1260                 target->gdb_program_script = strdup(args[2]);
1261         }
1262         else
1263         {
1264                 ERROR("unknown event type: '%s", args[1]);
1265                 return ERROR_COMMAND_SYNTAX_ERROR;
1266         }
1267         
1268         return ERROR_OK;
1269 }
1270
1271 int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1272 {
1273         target_t *target = NULL;
1274         
1275         if (argc < 2)
1276         {
1277                 return ERROR_COMMAND_SYNTAX_ERROR;
1278         }
1279         
1280         target = get_target_by_num(strtoul(args[0], NULL, 0));
1281         
1282         if (!target)
1283         {
1284                 return ERROR_COMMAND_SYNTAX_ERROR;
1285         }
1286         
1287         target->run_and_halt_time = strtoul(args[1], NULL, 0);
1288         
1289         return ERROR_OK;
1290 }
1291
1292 int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1293 {
1294         target_t *target = NULL;
1295         
1296         if ((argc < 4) || (argc > 5))
1297         {
1298                 return ERROR_COMMAND_SYNTAX_ERROR;
1299         }
1300         
1301         target = get_target_by_num(strtoul(args[0], NULL, 0));
1302         
1303         if (!target)
1304         {
1305                 return ERROR_COMMAND_SYNTAX_ERROR;
1306         }
1307         target_free_all_working_areas(target);
1308         
1309         target->working_area_phys = target->working_area_virt = strtoul(args[1], NULL, 0);
1310         if (argc == 5)
1311         {
1312                 target->working_area_virt = strtoul(args[4], NULL, 0);
1313         }
1314         target->working_area_size = strtoul(args[2], NULL, 0);
1315         
1316         if (strcmp(args[3], "backup") == 0)
1317         {
1318                 target->backup_working_area = 1;
1319         }
1320         else if (strcmp(args[3], "nobackup") == 0)
1321         {
1322                 target->backup_working_area = 0;
1323         }
1324         else
1325         {
1326                 ERROR("unrecognized <backup|nobackup> argument (%s)", args[3]);
1327                 return ERROR_COMMAND_SYNTAX_ERROR;
1328         }
1329         
1330         return ERROR_OK;
1331 }
1332
1333
1334 /* process target state changes */
1335 int handle_target(void *priv)
1336 {
1337         int retval;
1338         target_t *target = targets;
1339         
1340         while (target)
1341         {
1342                 /* only poll if target isn't already halted */
1343                 if (target->state != TARGET_HALTED)
1344                 {
1345                         if (target_continous_poll)
1346                                 if ((retval = target->type->poll(target)) != ERROR_OK)
1347                                 {
1348                                         ERROR("couldn't poll target(%d). It's due for a reset.", retval);
1349                                 }
1350                 }
1351         
1352                 target = target->next;
1353         }
1354         
1355         return ERROR_OK;
1356 }
1357
1358 int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1359 {
1360         target_t *target;
1361         reg_t *reg = NULL;
1362         int count = 0;
1363         char *value;
1364         
1365         DEBUG("-");
1366         
1367         target = get_current_target(cmd_ctx);
1368         
1369         /* list all available registers for the current target */
1370         if (argc == 0)
1371         {
1372                 reg_cache_t *cache = target->reg_cache;
1373                 
1374                 count = 0;
1375                 while(cache)
1376                 {
1377                         int i;
1378                         for (i = 0; i < cache->num_regs; i++)
1379                         {
1380                                 value = buf_to_str(cache->reg_list[i].value, cache->reg_list[i].size, 16);
1381                                 command_print(cmd_ctx, "(%i) %s (/%i): 0x%s (dirty: %i, valid: %i)", count++, cache->reg_list[i].name, cache->reg_list[i].size, value, cache->reg_list[i].dirty, cache->reg_list[i].valid);
1382                                 free(value);
1383                         }
1384                         cache = cache->next;
1385                 }
1386                 
1387                 return ERROR_OK;
1388         }
1389         
1390         /* access a single register by its ordinal number */
1391         if ((args[0][0] >= '0') && (args[0][0] <= '9'))
1392         {
1393                 int num = strtoul(args[0], NULL, 0);
1394                 reg_cache_t *cache = target->reg_cache;
1395                 
1396                 count = 0;
1397                 while(cache)
1398                 {
1399                         int i;
1400                         for (i = 0; i < cache->num_regs; i++)
1401                         {
1402                                 if (count++ == num)
1403                                 {
1404                                         reg = &cache->reg_list[i];
1405                                         break;
1406                                 }
1407                         }
1408                         if (reg)
1409                                 break;
1410                         cache = cache->next;
1411                 }
1412                 
1413                 if (!reg)
1414                 {
1415                         command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1416                         return ERROR_OK;
1417                 }
1418         } else /* access a single register by its name */
1419         {
1420                 reg = register_get_by_name(target->reg_cache, args[0], 1);
1421                 
1422                 if (!reg)
1423                 {
1424                         command_print(cmd_ctx, "register %s not found in current target", args[0]);
1425                         return ERROR_OK;
1426                 }
1427         }
1428
1429         /* display a register */
1430         if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
1431         {
1432                 if ((argc == 2) && (strcmp(args[1], "force") == 0))
1433                         reg->valid = 0;
1434                 
1435                 if (reg->valid == 0)
1436                 {
1437                         reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1438                         if (arch_type == NULL)
1439                         {
1440                                 ERROR("BUG: encountered unregistered arch type");
1441                                 return ERROR_OK;
1442                         }
1443                         arch_type->get(reg);
1444                 }
1445                 value = buf_to_str(reg->value, reg->size, 16);
1446                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1447                 free(value);
1448                 return ERROR_OK;
1449         }
1450         
1451         /* set register value */
1452         if (argc == 2)
1453         {
1454                 u8 *buf = malloc(CEIL(reg->size, 8));
1455                 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
1456
1457                 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1458                 if (arch_type == NULL)
1459                 {
1460                         ERROR("BUG: encountered unregistered arch type");
1461                         return ERROR_OK;
1462                 }
1463                 
1464                 arch_type->set(reg, buf);
1465                 
1466                 value = buf_to_str(reg->value, reg->size, 16);
1467                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1468                 free(value);
1469                 
1470                 free(buf);
1471                 
1472                 return ERROR_OK;
1473         }
1474         
1475         command_print(cmd_ctx, "usage: reg <#|name> [value]");
1476         
1477         return ERROR_OK;
1478 }
1479
1480 static int wait_state(struct command_context_s *cmd_ctx, char *cmd, enum target_state state, int ms);
1481
1482 int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1483 {
1484         target_t *target = get_current_target(cmd_ctx);
1485
1486         if (argc == 0)
1487         {
1488                 target->type->poll(target);
1489                         target_arch_state(target);
1490         }
1491         else
1492         {
1493                 if (strcmp(args[0], "on") == 0)
1494                 {
1495                         target_continous_poll = 1;
1496                 }
1497                 else if (strcmp(args[0], "off") == 0)
1498                 {
1499                         target_continous_poll = 0;
1500                 }
1501                 else
1502                 {
1503                         command_print(cmd_ctx, "arg is \"on\" or \"off\"");
1504                 }
1505         }
1506         
1507         
1508         return ERROR_OK;
1509 }
1510
1511 int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1512 {
1513         int ms = 5000;
1514         
1515         if (argc > 0)
1516         {
1517                 char *end;
1518
1519                 ms = strtoul(args[0], &end, 0) * 1000;
1520                 if (*end)
1521                 {
1522                         command_print(cmd_ctx, "usage: %s [seconds]", cmd);
1523                         return ERROR_OK;
1524                 }
1525         }
1526
1527         return wait_state(cmd_ctx, cmd, TARGET_HALTED, ms); 
1528 }
1529
1530 static void target_process_events(struct command_context_s *cmd_ctx)
1531 {
1532         target_t *target = get_current_target(cmd_ctx);
1533         target->type->poll(target);
1534         target_call_timer_callbacks();
1535 }
1536
1537 static int wait_state(struct command_context_s *cmd_ctx, char *cmd, enum target_state state, int ms)
1538 {
1539         int retval;
1540         struct timeval timeout, now;
1541         int once=1;
1542         gettimeofday(&timeout, NULL);
1543         timeval_add_time(&timeout, 0, ms * 1000);
1544         
1545         target_t *target = get_current_target(cmd_ctx);
1546         for (;;)
1547         {
1548                 if ((retval=target->type->poll(target))!=ERROR_OK)
1549                         return retval;
1550                 target_call_timer_callbacks();
1551                 if (target->state == state)
1552                 {
1553                         break;
1554                 }
1555                 if (once)
1556                 {
1557                         once=0;
1558                         command_print(cmd_ctx, "waiting for target %s...", target_state_strings[state]);
1559                 }
1560                 
1561                 gettimeofday(&now, NULL);
1562                 if ((now.tv_sec > timeout.tv_sec) || ((now.tv_sec == timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
1563                 {
1564                         ERROR("timed out while waiting for target %s", target_state_strings[state]);
1565                         break;
1566                 }
1567         }
1568         
1569         return ERROR_OK;
1570 }
1571
1572 int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1573 {
1574         int retval;
1575         target_t *target = get_current_target(cmd_ctx);
1576
1577         DEBUG("-");
1578
1579         if ((retval = target->type->halt(target)) != ERROR_OK)
1580                 {
1581                                 return retval;
1582                 }
1583         
1584         return handle_wait_halt_command(cmd_ctx, cmd, args, argc);
1585 }
1586
1587 /* what to do on daemon startup */
1588 int handle_daemon_startup_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1589 {
1590         if (argc == 1)
1591         {
1592                 if (strcmp(args[0], "attach") == 0)
1593                 {
1594                         startup_mode = DAEMON_ATTACH;
1595                         return ERROR_OK;
1596                 }
1597                 else if (strcmp(args[0], "reset") == 0)
1598                 {
1599                         startup_mode = DAEMON_RESET;
1600                         return ERROR_OK;
1601                 }
1602         }
1603         
1604         WARNING("invalid daemon_startup configuration directive: %s", args[0]);
1605         return ERROR_OK;
1606
1607 }
1608                 
1609 int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1610 {
1611         target_t *target = get_current_target(cmd_ctx);
1612         
1613         USER("requesting target halt and executing a soft reset");
1614         
1615         target->type->soft_reset_halt(target);
1616         
1617         return ERROR_OK;
1618 }
1619
1620 int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1621 {
1622         target_t *target = get_current_target(cmd_ctx);
1623         enum target_reset_mode reset_mode = target->reset_mode;
1624         enum target_reset_mode save = target->reset_mode;
1625         
1626         DEBUG("-");
1627         
1628         if (argc >= 1)
1629         {
1630                 if (strcmp("run", args[0]) == 0)
1631                         reset_mode = RESET_RUN;
1632                 else if (strcmp("halt", args[0]) == 0)
1633                         reset_mode = RESET_HALT;
1634                 else if (strcmp("init", args[0]) == 0)
1635                         reset_mode = RESET_INIT;
1636                 else if (strcmp("run_and_halt", args[0]) == 0)
1637                 {
1638                         reset_mode = RESET_RUN_AND_HALT;
1639                         if (argc >= 2)
1640                         {
1641                                 target->run_and_halt_time = strtoul(args[1], NULL, 0);
1642                         }
1643                 }
1644                 else if (strcmp("run_and_init", args[0]) == 0)
1645                 {
1646                         reset_mode = RESET_RUN_AND_INIT;
1647                         if (argc >= 2)
1648                         {
1649                                 target->run_and_halt_time = strtoul(args[1], NULL, 0);
1650                         }
1651                 }
1652                 else
1653                 {
1654                         command_print(cmd_ctx, "usage: reset ['run', 'halt', 'init', 'run_and_halt', 'run_and_init]");
1655                         return ERROR_OK;
1656                 }
1657         }
1658         
1659         /* temporarily modify mode of current reset target */
1660         target->reset_mode = reset_mode;
1661
1662         /* reset *all* targets */
1663         target_process_reset(cmd_ctx);
1664         
1665         /* Restore default reset mode for this target */
1666     target->reset_mode = save;
1667         
1668         return ERROR_OK;
1669 }
1670
1671 int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1672 {
1673         int retval;
1674         target_t *target = get_current_target(cmd_ctx);
1675         
1676         if (argc == 0)
1677                 retval = target->type->resume(target, 1, 0, 1, 0); /* current pc, addr = 0, handle breakpoints, not debugging */
1678         else if (argc == 1)
1679                 retval = target->type->resume(target, 0, strtoul(args[0], NULL, 0), 1, 0); /* addr = args[0], handle breakpoints, not debugging */
1680         else
1681         {
1682                 return ERROR_COMMAND_SYNTAX_ERROR;
1683         }
1684
1685         target_process_events(cmd_ctx);
1686         
1687         return retval;
1688 }
1689
1690 int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1691 {
1692         target_t *target = get_current_target(cmd_ctx);
1693         
1694         DEBUG("-");
1695         
1696         if (argc == 0)
1697                 target->type->step(target, 1, 0, 1); /* current pc, addr = 0, handle breakpoints */
1698
1699         if (argc == 1)
1700                 target->type->step(target, 0, strtoul(args[0], NULL, 0), 1); /* addr = args[0], handle breakpoints */
1701         
1702         return ERROR_OK;
1703 }
1704
1705 int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1706 {
1707         const int line_bytecnt = 32;
1708         int count = 1;
1709         int size = 4;
1710         u32 address = 0;
1711         int line_modulo;
1712         int i;
1713
1714         char output[128];
1715         int output_len;
1716
1717         int retval;
1718
1719         u8 *buffer;
1720         target_t *target = get_current_target(cmd_ctx);
1721
1722         if (argc < 1)
1723                 return ERROR_OK;
1724
1725         if (argc == 2)
1726                 count = strtoul(args[1], NULL, 0);
1727
1728         address = strtoul(args[0], NULL, 0);
1729         
1730
1731         switch (cmd[2])
1732         {
1733                 case 'w':
1734                         size = 4; line_modulo = line_bytecnt / 4;
1735                         break;
1736                 case 'h':
1737                         size = 2; line_modulo = line_bytecnt / 2;
1738                         break;
1739                 case 'b':
1740                         size = 1; line_modulo = line_bytecnt / 1;
1741                         break;
1742                 default:
1743                         return ERROR_OK;
1744         }
1745
1746         buffer = calloc(count, size);
1747         retval  = target->type->read_memory(target, address, size, count, buffer);
1748         if (retval != ERROR_OK)
1749         {
1750                 switch (retval)
1751                 {
1752                         case ERROR_TARGET_UNALIGNED_ACCESS:
1753                                 command_print(cmd_ctx, "error: address not aligned");
1754                                 break;
1755                         case ERROR_TARGET_NOT_HALTED:
1756                                 command_print(cmd_ctx, "error: target must be halted for memory accesses");
1757                                 break;                  
1758                         case ERROR_TARGET_DATA_ABORT:
1759                                 command_print(cmd_ctx, "error: access caused data abort, system possibly corrupted");
1760                                 break;
1761                         default:
1762                                 command_print(cmd_ctx, "error: unknown error");
1763                                 break;
1764                 }
1765                 return ERROR_OK;
1766         }
1767
1768         output_len = 0;
1769
1770         for (i = 0; i < count; i++)
1771         {
1772                 if (i%line_modulo == 0)
1773                         output_len += snprintf(output + output_len, 128 - output_len, "0x%8.8x: ", address + (i*size));
1774                 
1775                 switch (size)
1776                 {
1777                         case 4:
1778                                 output_len += snprintf(output + output_len, 128 - output_len, "%8.8x ", target_buffer_get_u32(target, &buffer[i*4]));
1779                                 break;
1780                         case 2:
1781                                 output_len += snprintf(output + output_len, 128 - output_len, "%4.4x ", target_buffer_get_u16(target, &buffer[i*2]));
1782                                 break;
1783                         case 1:
1784                                 output_len += snprintf(output + output_len, 128 - output_len, "%2.2x ", buffer[i*1]);
1785                                 break;
1786                 }
1787
1788                 if ((i%line_modulo == line_modulo-1) || (i == count - 1))
1789                 {
1790                         command_print(cmd_ctx, output);
1791                         output_len = 0;
1792                 }
1793         }
1794
1795         free(buffer);
1796         
1797         return ERROR_OK;
1798 }
1799
1800 int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1801 {
1802         u32 address = 0;
1803         u32 value = 0;
1804         int retval;
1805         target_t *target = get_current_target(cmd_ctx);
1806         u8 value_buf[4];
1807
1808         if (argc < 2)
1809                 return ERROR_OK;
1810
1811         address = strtoul(args[0], NULL, 0);
1812         value = strtoul(args[1], NULL, 0);
1813
1814         switch (cmd[2])
1815         {
1816                 case 'w':
1817                         target_buffer_set_u32(target, value_buf, value);
1818                         retval = target->type->write_memory(target, address, 4, 1, value_buf);
1819                         break;
1820                 case 'h':
1821                         target_buffer_set_u16(target, value_buf, value);
1822                         retval = target->type->write_memory(target, address, 2, 1, value_buf);
1823                         break;
1824                 case 'b':
1825                         value_buf[0] = value;
1826                         retval = target->type->write_memory(target, address, 1, 1, value_buf);
1827                         break;
1828                 default:
1829                         return ERROR_OK;
1830         }
1831
1832         switch (retval)
1833         {
1834                 case ERROR_TARGET_UNALIGNED_ACCESS:
1835                         command_print(cmd_ctx, "error: address not aligned");
1836                         break;
1837                 case ERROR_TARGET_DATA_ABORT:
1838                         command_print(cmd_ctx, "error: access caused data abort, system possibly corrupted");
1839                         break;
1840                 case ERROR_TARGET_NOT_HALTED:
1841                         command_print(cmd_ctx, "error: target must be halted for memory accesses");
1842                         break;
1843                 case ERROR_OK:
1844                         break;
1845                 default:
1846                         command_print(cmd_ctx, "error: unknown error");
1847                         break;
1848         }
1849
1850         return ERROR_OK;
1851
1852 }
1853
1854 int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1855 {
1856         u8 *buffer;
1857         u32 buf_cnt;
1858         u32 image_size;
1859         int i;
1860         int retval;
1861
1862         image_t image;  
1863         
1864         duration_t duration;
1865         char *duration_text;
1866         
1867         target_t *target = get_current_target(cmd_ctx);
1868
1869         if (argc < 1)
1870         {
1871                 command_print(cmd_ctx, "usage: load_image <filename> [address] [type]");
1872                 return ERROR_OK;
1873         }
1874         
1875         /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
1876         if (argc >= 2)
1877         {
1878                 image.base_address_set = 1;
1879                 image.base_address = strtoul(args[1], NULL, 0);
1880         }
1881         else
1882         {
1883                 image.base_address_set = 0;
1884         }
1885         
1886         image.start_address_set = 0;
1887
1888         duration_start_measure(&duration);
1889         
1890         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
1891         {
1892                 return ERROR_OK;
1893         }
1894         
1895         image_size = 0x0;
1896         retval = ERROR_OK;
1897         for (i = 0; i < image.num_sections; i++)
1898         {
1899                 buffer = malloc(image.sections[i].size);
1900                 if (buffer == NULL)
1901                 {
1902                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
1903                         break;
1904                 }
1905                 
1906                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
1907                 {
1908                         free(buffer);
1909                         break;
1910                 }
1911                 if ((retval = target_write_buffer(target, image.sections[i].base_address, buf_cnt, buffer)) != ERROR_OK)
1912                 {
1913                         free(buffer);
1914                         break;
1915                 }
1916                 image_size += buf_cnt;
1917                 command_print(cmd_ctx, "%u byte written at address 0x%8.8x", buf_cnt, image.sections[i].base_address);
1918                 
1919                 free(buffer);
1920         }
1921
1922         duration_stop_measure(&duration, &duration_text);
1923         if (retval==ERROR_OK)
1924         {
1925                 command_print(cmd_ctx, "downloaded %u byte in %s", image_size, duration_text);
1926         }
1927         free(duration_text);
1928         
1929         image_close(&image);
1930
1931         return retval;
1932
1933 }
1934
1935 int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1936 {
1937         fileio_t fileio;
1938         
1939         u32 address;
1940         u32 size;
1941         u8 buffer[560];
1942         int retval=ERROR_OK;
1943         
1944         duration_t duration;
1945         char *duration_text;
1946         
1947         target_t *target = get_current_target(cmd_ctx);
1948
1949         if (argc != 3)
1950         {
1951                 command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
1952                 return ERROR_OK;
1953         }
1954
1955         address = strtoul(args[1], NULL, 0);
1956         size = strtoul(args[2], NULL, 0);
1957
1958         if ((address & 3) || (size & 3))
1959         {
1960                 command_print(cmd_ctx, "only 32-bit aligned address and size are supported");
1961                 return ERROR_OK;
1962         }
1963         
1964         if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
1965         {
1966                 return ERROR_OK;
1967         }
1968         
1969         duration_start_measure(&duration);
1970         
1971         while (size > 0)
1972         {
1973                 u32 size_written;
1974                 u32 this_run_size = (size > 560) ? 560 : size;
1975                 
1976                 retval = target->type->read_memory(target, address, 4, this_run_size / 4, buffer);
1977                 if (retval != ERROR_OK)
1978                 {
1979                         break;
1980                 }
1981                 
1982                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
1983                 if (retval != ERROR_OK)
1984                 {
1985                         break;
1986                 }
1987                 
1988                 size -= this_run_size;
1989                 address += this_run_size;
1990         }
1991
1992         fileio_close(&fileio);
1993
1994         duration_stop_measure(&duration, &duration_text);
1995         if (retval==ERROR_OK)
1996         {
1997                 command_print(cmd_ctx, "dumped %"PRIi64" byte in %s", fileio.size, duration_text);
1998         }
1999         free(duration_text);
2000         
2001         return ERROR_OK;
2002 }
2003
2004 int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2005 {
2006         u8 *buffer;
2007         u32 buf_cnt;
2008         u32 image_size;
2009         int i;
2010         int retval;
2011         u32 checksum = 0;
2012         u32 mem_checksum = 0;
2013
2014         image_t image;  
2015         
2016         duration_t duration;
2017         char *duration_text;
2018         
2019         target_t *target = get_current_target(cmd_ctx);
2020         
2021         if (argc < 1)
2022         {
2023                 command_print(cmd_ctx, "usage: verify_image <file> [offset] [type]");
2024                 return ERROR_OK;
2025         }
2026         
2027         if (!target)
2028         {
2029                 ERROR("no target selected");
2030                 return ERROR_OK;
2031         }
2032         
2033         duration_start_measure(&duration);
2034         
2035         if (argc >= 2)
2036         {
2037                 image.base_address_set = 1;
2038                 image.base_address = strtoul(args[1], NULL, 0);
2039         }
2040         else
2041         {
2042                 image.base_address_set = 0;
2043                 image.base_address = 0x0;
2044         }
2045
2046         image.start_address_set = 0;
2047
2048         if (image_open(&image, args[0], (argc == 3) ? args[2] : NULL) != ERROR_OK)
2049         {
2050                 return ERROR_OK;
2051         }
2052         
2053         image_size = 0x0;
2054         retval=ERROR_OK;
2055         for (i = 0; i < image.num_sections; i++)
2056         {
2057                 buffer = malloc(image.sections[i].size);
2058                 if (buffer == NULL)
2059                 {
2060                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2061                         break;
2062                 }
2063                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2064                 {
2065                         free(buffer);
2066                         break;
2067                 }
2068                 
2069                 /* calculate checksum of image */
2070                 image_calculate_checksum( buffer, buf_cnt, &checksum );
2071                 
2072                 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2073                 
2074                 if( retval != ERROR_OK )
2075                 {
2076                         free(buffer);
2077                         break;
2078                 }
2079                 
2080                 if( checksum != mem_checksum )
2081                 {
2082                         /* failed crc checksum, fall back to a binary compare */
2083                         u8 *data;
2084                         
2085                         command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
2086                         
2087                         data = (u8*)malloc(buf_cnt);
2088                         
2089                         /* Can we use 32bit word accesses? */
2090                         int size = 1;
2091                         int count = buf_cnt;
2092                         if ((count % 4) == 0)
2093                         {
2094                                 size *= 4;
2095                                 count /= 4;
2096                         }
2097                         retval = target->type->read_memory(target, image.sections[i].base_address, size, count, data);
2098         
2099                         if (retval == ERROR_OK)
2100                         {
2101                                 int t;
2102                                 for (t = 0; t < buf_cnt; t++)
2103                                 {
2104                                         if (data[t] != buffer[t])
2105                                         {
2106                                                 command_print(cmd_ctx, "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n", t + image.sections[i].base_address, data[t], buffer[t]);
2107                                                 free(data);
2108                                                 free(buffer);
2109                                                 retval=ERROR_FAIL;
2110                                                 goto done;
2111                                         }
2112                                 }
2113                         }
2114                         
2115                         free(data);
2116                 }
2117                 
2118                 free(buffer);
2119                 image_size += buf_cnt;
2120         }
2121 done:   
2122         duration_stop_measure(&duration, &duration_text);
2123         if (retval==ERROR_OK)
2124         {
2125                 command_print(cmd_ctx, "verified %u bytes in %s", image_size, duration_text);
2126         }
2127         free(duration_text);
2128         
2129         image_close(&image);
2130         
2131         return retval;
2132 }
2133
2134 int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2135 {
2136         int retval;
2137         target_t *target = get_current_target(cmd_ctx);
2138
2139         if (argc == 0)
2140         {
2141                 breakpoint_t *breakpoint = target->breakpoints;
2142
2143                 while (breakpoint)
2144                 {
2145                         if (breakpoint->type == BKPT_SOFT)
2146                         {
2147                                 char* buf = buf_to_str(breakpoint->orig_instr, breakpoint->length, 16);
2148                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i, 0x%s", breakpoint->address, breakpoint->length, breakpoint->set, buf);
2149                                 free(buf);
2150                         }
2151                         else
2152                         {
2153                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i", breakpoint->address, breakpoint->length, breakpoint->set);
2154                         }
2155                         breakpoint = breakpoint->next;
2156                 }
2157         }
2158         else if (argc >= 2)
2159         {
2160                 int hw = BKPT_SOFT;
2161                 u32 length = 0;
2162
2163                 length = strtoul(args[1], NULL, 0);
2164                 
2165                 if (argc >= 3)
2166                         if (strcmp(args[2], "hw") == 0)
2167                                 hw = BKPT_HARD;
2168
2169                 if ((retval = breakpoint_add(target, strtoul(args[0], NULL, 0), length, hw)) != ERROR_OK)
2170                 {
2171                         switch (retval)
2172                         {
2173                                 case ERROR_TARGET_NOT_HALTED:
2174                                         command_print(cmd_ctx, "target must be halted to set breakpoints");
2175                                         break;
2176                                 case ERROR_TARGET_RESOURCE_NOT_AVAILABLE:
2177                                         command_print(cmd_ctx, "no more breakpoints available");
2178                                         break;
2179                                 default:
2180                                         command_print(cmd_ctx, "unknown error, breakpoint not set");
2181                                         break;
2182                         }
2183                 }
2184                 else
2185                 {
2186                         command_print(cmd_ctx, "breakpoint added at address 0x%8.8x", strtoul(args[0], NULL, 0));
2187                 }
2188         }
2189         else
2190         {
2191                 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
2192         }
2193
2194         return ERROR_OK;
2195 }
2196
2197 int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2198 {
2199         target_t *target = get_current_target(cmd_ctx);
2200
2201         if (argc > 0)
2202                 breakpoint_remove(target, strtoul(args[0], NULL, 0));
2203
2204         return ERROR_OK;
2205 }
2206
2207 int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2208 {
2209         target_t *target = get_current_target(cmd_ctx);
2210         int retval;
2211
2212         if (argc == 0)
2213         {
2214                 watchpoint_t *watchpoint = target->watchpoints;
2215
2216                 while (watchpoint)
2217                 {
2218                         command_print(cmd_ctx, "address: 0x%8.8x, mask: 0x%8.8x, r/w/a: %i, value: 0x%8.8x, mask: 0x%8.8x", watchpoint->address, watchpoint->length, watchpoint->rw, watchpoint->value, watchpoint->mask);
2219                         watchpoint = watchpoint->next;
2220                 }
2221         } 
2222         else if (argc >= 2)
2223         {
2224                 enum watchpoint_rw type = WPT_ACCESS;
2225                 u32 data_value = 0x0;
2226                 u32 data_mask = 0xffffffff;
2227                 
2228                 if (argc >= 3)
2229                 {
2230                         switch(args[2][0])
2231                         {
2232                                 case 'r':
2233                                         type = WPT_READ;
2234                                         break;
2235                                 case 'w':
2236                                         type = WPT_WRITE;
2237                                         break;
2238                                 case 'a':
2239                                         type = WPT_ACCESS;
2240                                         break;
2241                                 default:
2242                                         command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2243                                         return ERROR_OK;
2244                         }
2245                 }
2246                 if (argc >= 4)
2247                 {
2248                         data_value = strtoul(args[3], NULL, 0);
2249                 }
2250                 if (argc >= 5)
2251                 {
2252                         data_mask = strtoul(args[4], NULL, 0);
2253                 }
2254                 
2255                 if ((retval = watchpoint_add(target, strtoul(args[0], NULL, 0),
2256                                 strtoul(args[1], NULL, 0), type, data_value, data_mask)) != ERROR_OK)
2257                 {
2258                         switch (retval)
2259                         {
2260                                 case ERROR_TARGET_NOT_HALTED:
2261                                         command_print(cmd_ctx, "target must be halted to set watchpoints");
2262                                         break;
2263                                 case ERROR_TARGET_RESOURCE_NOT_AVAILABLE:
2264                                         command_print(cmd_ctx, "no more watchpoints available");
2265                                         break;
2266                                 default:
2267                                         command_print(cmd_ctx, "unknown error, watchpoint not set");
2268                                         break;
2269                         }       
2270                 }
2271         }
2272         else
2273         {
2274                 command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2275         }
2276                 
2277         return ERROR_OK;
2278 }
2279
2280 int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2281 {
2282         target_t *target = get_current_target(cmd_ctx);
2283
2284         if (argc > 0)
2285                 watchpoint_remove(target, strtoul(args[0], NULL, 0));
2286         
2287         return ERROR_OK;
2288 }
2289
2290 int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc)
2291 {
2292         int retval;
2293         target_t *target = get_current_target(cmd_ctx);
2294         u32 va;
2295         u32 pa;
2296
2297         if (argc != 1)
2298         {
2299                 return ERROR_COMMAND_SYNTAX_ERROR;
2300         }
2301         va = strtoul(args[0], NULL, 0);
2302
2303         retval = target->type->virt2phys(target, va, &pa);
2304         if (retval == ERROR_OK)
2305         {
2306                 command_print(cmd_ctx, "Physical address 0x%08x", pa);
2307         }
2308         else
2309         {
2310                 /* lower levels will have logged a detailed error which is 
2311                  * forwarded to telnet/GDB session.  
2312                  */
2313         }
2314         return retval;
2315 }