target: Retire target_bulk_write_memory()
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2010 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   Copyright (C) 2011 by Broadcom Corporation                            *
18  *   Evan Hunter - ehunter@broadcom.com                                    *
19  *                                                                         *
20  *   Copyright (C) ST-Ericsson SA 2011                                     *
21  *   michel.jaouen@stericsson.com : smp minimum support                    *
22  *                                                                         *
23  *   Copyright (C) 2011 Andreas Fritiofson                                 *
24  *   andreas.fritiofson@gmail.com                                          *
25  *                                                                         *
26  *   This program is free software; you can redistribute it and/or modify  *
27  *   it under the terms of the GNU General Public License as published by  *
28  *   the Free Software Foundation; either version 2 of the License, or     *
29  *   (at your option) any later version.                                   *
30  *                                                                         *
31  *   This program is distributed in the hope that it will be useful,       *
32  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
33  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
34  *   GNU General Public License for more details.                          *
35  *                                                                         *
36  *   You should have received a copy of the GNU General Public License     *
37  *   along with this program; if not, write to the                         *
38  *   Free Software Foundation, Inc.,                                       *
39  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
40  ***************************************************************************/
41
42 #ifdef HAVE_CONFIG_H
43 #include "config.h"
44 #endif
45
46 #include <helper/time_support.h>
47 #include <jtag/jtag.h>
48 #include <flash/nor/core.h>
49
50 #include "target.h"
51 #include "target_type.h"
52 #include "target_request.h"
53 #include "breakpoints.h"
54 #include "register.h"
55 #include "trace.h"
56 #include "image.h"
57 #include "rtos/rtos.h"
58
59 static int target_read_buffer_default(struct target *target, uint32_t address,
60                 uint32_t size, uint8_t *buffer);
61 static int target_write_buffer_default(struct target *target, uint32_t address,
62                 uint32_t size, const uint8_t *buffer);
63 static int target_array2mem(Jim_Interp *interp, struct target *target,
64                 int argc, Jim_Obj * const *argv);
65 static int target_mem2array(Jim_Interp *interp, struct target *target,
66                 int argc, Jim_Obj * const *argv);
67 static int target_register_user_commands(struct command_context *cmd_ctx);
68
69 /* targets */
70 extern struct target_type arm7tdmi_target;
71 extern struct target_type arm720t_target;
72 extern struct target_type arm9tdmi_target;
73 extern struct target_type arm920t_target;
74 extern struct target_type arm966e_target;
75 extern struct target_type arm946e_target;
76 extern struct target_type arm926ejs_target;
77 extern struct target_type fa526_target;
78 extern struct target_type feroceon_target;
79 extern struct target_type dragonite_target;
80 extern struct target_type xscale_target;
81 extern struct target_type cortexm3_target;
82 extern struct target_type cortexa8_target;
83 extern struct target_type cortexr4_target;
84 extern struct target_type arm11_target;
85 extern struct target_type mips_m4k_target;
86 extern struct target_type avr_target;
87 extern struct target_type dsp563xx_target;
88 extern struct target_type dsp5680xx_target;
89 extern struct target_type testee_target;
90 extern struct target_type avr32_ap7k_target;
91 extern struct target_type hla_target;
92
93 static struct target_type *target_types[] = {
94         &arm7tdmi_target,
95         &arm9tdmi_target,
96         &arm920t_target,
97         &arm720t_target,
98         &arm966e_target,
99         &arm946e_target,
100         &arm926ejs_target,
101         &fa526_target,
102         &feroceon_target,
103         &dragonite_target,
104         &xscale_target,
105         &cortexm3_target,
106         &cortexa8_target,
107         &cortexr4_target,
108         &arm11_target,
109         &mips_m4k_target,
110         &avr_target,
111         &dsp563xx_target,
112         &dsp5680xx_target,
113         &testee_target,
114         &avr32_ap7k_target,
115         &hla_target,
116         NULL,
117 };
118
119 struct target *all_targets;
120 static struct target_event_callback *target_event_callbacks;
121 static struct target_timer_callback *target_timer_callbacks;
122 static const int polling_interval = 100;
123
124 static const Jim_Nvp nvp_assert[] = {
125         { .name = "assert", NVP_ASSERT },
126         { .name = "deassert", NVP_DEASSERT },
127         { .name = "T", NVP_ASSERT },
128         { .name = "F", NVP_DEASSERT },
129         { .name = "t", NVP_ASSERT },
130         { .name = "f", NVP_DEASSERT },
131         { .name = NULL, .value = -1 }
132 };
133
134 static const Jim_Nvp nvp_error_target[] = {
135         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
136         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
137         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
138         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
139         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
140         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
141         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
142         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
143         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
144         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
145         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
146         { .value = -1, .name = NULL }
147 };
148
149 static const char *target_strerror_safe(int err)
150 {
151         const Jim_Nvp *n;
152
153         n = Jim_Nvp_value2name_simple(nvp_error_target, err);
154         if (n->name == NULL)
155                 return "unknown";
156         else
157                 return n->name;
158 }
159
160 static const Jim_Nvp nvp_target_event[] = {
161
162         { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
163         { .value = TARGET_EVENT_HALTED, .name = "halted" },
164         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
165         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
166         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
167
168         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
169         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
170
171         { .value = TARGET_EVENT_RESET_START,         .name = "reset-start" },
172         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
173         { .value = TARGET_EVENT_RESET_ASSERT,        .name = "reset-assert" },
174         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
175         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
176         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
177         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
178         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
179         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
180         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
181         { .value = TARGET_EVENT_RESET_INIT,          .name = "reset-init" },
182         { .value = TARGET_EVENT_RESET_END,           .name = "reset-end" },
183
184         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
185         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
186
187         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
188         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
189
190         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
191         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
192
193         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
194         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
195
196         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
197         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
198
199         { .name = NULL, .value = -1 }
200 };
201
202 static const Jim_Nvp nvp_target_state[] = {
203         { .name = "unknown", .value = TARGET_UNKNOWN },
204         { .name = "running", .value = TARGET_RUNNING },
205         { .name = "halted",  .value = TARGET_HALTED },
206         { .name = "reset",   .value = TARGET_RESET },
207         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
208         { .name = NULL, .value = -1 },
209 };
210
211 static const Jim_Nvp nvp_target_debug_reason[] = {
212         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
213         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
214         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
215         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
216         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
217         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
218         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
219         { .name = NULL, .value = -1 },
220 };
221
222 static const Jim_Nvp nvp_target_endian[] = {
223         { .name = "big",    .value = TARGET_BIG_ENDIAN },
224         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
225         { .name = "be",     .value = TARGET_BIG_ENDIAN },
226         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
227         { .name = NULL,     .value = -1 },
228 };
229
230 static const Jim_Nvp nvp_reset_modes[] = {
231         { .name = "unknown", .value = RESET_UNKNOWN },
232         { .name = "run"    , .value = RESET_RUN },
233         { .name = "halt"   , .value = RESET_HALT },
234         { .name = "init"   , .value = RESET_INIT },
235         { .name = NULL     , .value = -1 },
236 };
237
238 const char *debug_reason_name(struct target *t)
239 {
240         const char *cp;
241
242         cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
243                         t->debug_reason)->name;
244         if (!cp) {
245                 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
246                 cp = "(*BUG*unknown*BUG*)";
247         }
248         return cp;
249 }
250
251 const char *target_state_name(struct target *t)
252 {
253         const char *cp;
254         cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
255         if (!cp) {
256                 LOG_ERROR("Invalid target state: %d", (int)(t->state));
257                 cp = "(*BUG*unknown*BUG*)";
258         }
259         return cp;
260 }
261
262 /* determine the number of the new target */
263 static int new_target_number(void)
264 {
265         struct target *t;
266         int x;
267
268         /* number is 0 based */
269         x = -1;
270         t = all_targets;
271         while (t) {
272                 if (x < t->target_number)
273                         x = t->target_number;
274                 t = t->next;
275         }
276         return x + 1;
277 }
278
279 /* read a uint32_t from a buffer in target memory endianness */
280 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
281 {
282         if (target->endianness == TARGET_LITTLE_ENDIAN)
283                 return le_to_h_u32(buffer);
284         else
285                 return be_to_h_u32(buffer);
286 }
287
288 /* read a uint24_t from a buffer in target memory endianness */
289 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
290 {
291         if (target->endianness == TARGET_LITTLE_ENDIAN)
292                 return le_to_h_u24(buffer);
293         else
294                 return be_to_h_u24(buffer);
295 }
296
297 /* read a uint16_t from a buffer in target memory endianness */
298 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
299 {
300         if (target->endianness == TARGET_LITTLE_ENDIAN)
301                 return le_to_h_u16(buffer);
302         else
303                 return be_to_h_u16(buffer);
304 }
305
306 /* read a uint8_t from a buffer in target memory endianness */
307 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
308 {
309         return *buffer & 0x0ff;
310 }
311
312 /* write a uint32_t to a buffer in target memory endianness */
313 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
314 {
315         if (target->endianness == TARGET_LITTLE_ENDIAN)
316                 h_u32_to_le(buffer, value);
317         else
318                 h_u32_to_be(buffer, value);
319 }
320
321 /* write a uint24_t to a buffer in target memory endianness */
322 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
323 {
324         if (target->endianness == TARGET_LITTLE_ENDIAN)
325                 h_u24_to_le(buffer, value);
326         else
327                 h_u24_to_be(buffer, value);
328 }
329
330 /* write a uint16_t to a buffer in target memory endianness */
331 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
332 {
333         if (target->endianness == TARGET_LITTLE_ENDIAN)
334                 h_u16_to_le(buffer, value);
335         else
336                 h_u16_to_be(buffer, value);
337 }
338
339 /* write a uint8_t to a buffer in target memory endianness */
340 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
341 {
342         *buffer = value;
343 }
344
345 /* write a uint32_t array to a buffer in target memory endianness */
346 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
347 {
348         uint32_t i;
349         for (i = 0; i < count; i++)
350                 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
351 }
352
353 /* write a uint16_t array to a buffer in target memory endianness */
354 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
355 {
356         uint32_t i;
357         for (i = 0; i < count; i++)
358                 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
359 }
360
361 /* write a uint32_t array to a buffer in target memory endianness */
362 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, uint32_t *srcbuf)
363 {
364         uint32_t i;
365         for (i = 0; i < count; i++)
366                 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
367 }
368
369 /* write a uint16_t array to a buffer in target memory endianness */
370 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, uint16_t *srcbuf)
371 {
372         uint32_t i;
373         for (i = 0; i < count; i++)
374                 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
375 }
376
377 /* return a pointer to a configured target; id is name or number */
378 struct target *get_target(const char *id)
379 {
380         struct target *target;
381
382         /* try as tcltarget name */
383         for (target = all_targets; target; target = target->next) {
384                 if (target_name(target) == NULL)
385                         continue;
386                 if (strcmp(id, target_name(target)) == 0)
387                         return target;
388         }
389
390         /* It's OK to remove this fallback sometime after August 2010 or so */
391
392         /* no match, try as number */
393         unsigned num;
394         if (parse_uint(id, &num) != ERROR_OK)
395                 return NULL;
396
397         for (target = all_targets; target; target = target->next) {
398                 if (target->target_number == (int)num) {
399                         LOG_WARNING("use '%s' as target identifier, not '%u'",
400                                         target_name(target), num);
401                         return target;
402                 }
403         }
404
405         return NULL;
406 }
407
408 /* returns a pointer to the n-th configured target */
409 static struct target *get_target_by_num(int num)
410 {
411         struct target *target = all_targets;
412
413         while (target) {
414                 if (target->target_number == num)
415                         return target;
416                 target = target->next;
417         }
418
419         return NULL;
420 }
421
422 struct target *get_current_target(struct command_context *cmd_ctx)
423 {
424         struct target *target = get_target_by_num(cmd_ctx->current_target);
425
426         if (target == NULL) {
427                 LOG_ERROR("BUG: current_target out of bounds");
428                 exit(-1);
429         }
430
431         return target;
432 }
433
434 int target_poll(struct target *target)
435 {
436         int retval;
437
438         /* We can't poll until after examine */
439         if (!target_was_examined(target)) {
440                 /* Fail silently lest we pollute the log */
441                 return ERROR_FAIL;
442         }
443
444         retval = target->type->poll(target);
445         if (retval != ERROR_OK)
446                 return retval;
447
448         if (target->halt_issued) {
449                 if (target->state == TARGET_HALTED)
450                         target->halt_issued = false;
451                 else {
452                         long long t = timeval_ms() - target->halt_issued_time;
453                         if (t > 1000) {
454                                 target->halt_issued = false;
455                                 LOG_INFO("Halt timed out, wake up GDB.");
456                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
457                         }
458                 }
459         }
460
461         return ERROR_OK;
462 }
463
464 int target_halt(struct target *target)
465 {
466         int retval;
467         /* We can't poll until after examine */
468         if (!target_was_examined(target)) {
469                 LOG_ERROR("Target not examined yet");
470                 return ERROR_FAIL;
471         }
472
473         retval = target->type->halt(target);
474         if (retval != ERROR_OK)
475                 return retval;
476
477         target->halt_issued = true;
478         target->halt_issued_time = timeval_ms();
479
480         return ERROR_OK;
481 }
482
483 /**
484  * Make the target (re)start executing using its saved execution
485  * context (possibly with some modifications).
486  *
487  * @param target Which target should start executing.
488  * @param current True to use the target's saved program counter instead
489  *      of the address parameter
490  * @param address Optionally used as the program counter.
491  * @param handle_breakpoints True iff breakpoints at the resumption PC
492  *      should be skipped.  (For example, maybe execution was stopped by
493  *      such a breakpoint, in which case it would be counterprodutive to
494  *      let it re-trigger.
495  * @param debug_execution False if all working areas allocated by OpenOCD
496  *      should be released and/or restored to their original contents.
497  *      (This would for example be true to run some downloaded "helper"
498  *      algorithm code, which resides in one such working buffer and uses
499  *      another for data storage.)
500  *
501  * @todo Resolve the ambiguity about what the "debug_execution" flag
502  * signifies.  For example, Target implementations don't agree on how
503  * it relates to invalidation of the register cache, or to whether
504  * breakpoints and watchpoints should be enabled.  (It would seem wrong
505  * to enable breakpoints when running downloaded "helper" algorithms
506  * (debug_execution true), since the breakpoints would be set to match
507  * target firmware being debugged, not the helper algorithm.... and
508  * enabling them could cause such helpers to malfunction (for example,
509  * by overwriting data with a breakpoint instruction.  On the other
510  * hand the infrastructure for running such helpers might use this
511  * procedure but rely on hardware breakpoint to detect termination.)
512  */
513 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
514 {
515         int retval;
516
517         /* We can't poll until after examine */
518         if (!target_was_examined(target)) {
519                 LOG_ERROR("Target not examined yet");
520                 return ERROR_FAIL;
521         }
522
523         target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
524
525         /* note that resume *must* be asynchronous. The CPU can halt before
526          * we poll. The CPU can even halt at the current PC as a result of
527          * a software breakpoint being inserted by (a bug?) the application.
528          */
529         retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
530         if (retval != ERROR_OK)
531                 return retval;
532
533         target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
534
535         return retval;
536 }
537
538 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
539 {
540         char buf[100];
541         int retval;
542         Jim_Nvp *n;
543         n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
544         if (n->name == NULL) {
545                 LOG_ERROR("invalid reset mode");
546                 return ERROR_FAIL;
547         }
548
549         /* disable polling during reset to make reset event scripts
550          * more predictable, i.e. dr/irscan & pathmove in events will
551          * not have JTAG operations injected into the middle of a sequence.
552          */
553         bool save_poll = jtag_poll_get_enabled();
554
555         jtag_poll_set_enabled(false);
556
557         sprintf(buf, "ocd_process_reset %s", n->name);
558         retval = Jim_Eval(cmd_ctx->interp, buf);
559
560         jtag_poll_set_enabled(save_poll);
561
562         if (retval != JIM_OK) {
563                 Jim_MakeErrorMessage(cmd_ctx->interp);
564                 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
565                 return ERROR_FAIL;
566         }
567
568         /* We want any events to be processed before the prompt */
569         retval = target_call_timer_callbacks_now();
570
571         struct target *target;
572         for (target = all_targets; target; target = target->next)
573                 target->type->check_reset(target);
574
575         return retval;
576 }
577
578 static int identity_virt2phys(struct target *target,
579                 uint32_t virtual, uint32_t *physical)
580 {
581         *physical = virtual;
582         return ERROR_OK;
583 }
584
585 static int no_mmu(struct target *target, int *enabled)
586 {
587         *enabled = 0;
588         return ERROR_OK;
589 }
590
591 static int default_examine(struct target *target)
592 {
593         target_set_examined(target);
594         return ERROR_OK;
595 }
596
597 /* no check by default */
598 static int default_check_reset(struct target *target)
599 {
600         return ERROR_OK;
601 }
602
603 int target_examine_one(struct target *target)
604 {
605         return target->type->examine(target);
606 }
607
608 static int jtag_enable_callback(enum jtag_event event, void *priv)
609 {
610         struct target *target = priv;
611
612         if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
613                 return ERROR_OK;
614
615         jtag_unregister_event_callback(jtag_enable_callback, target);
616
617         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
618
619         int retval = target_examine_one(target);
620         if (retval != ERROR_OK)
621                 return retval;
622
623         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
624
625         return retval;
626 }
627
628 /* Targets that correctly implement init + examine, i.e.
629  * no communication with target during init:
630  *
631  * XScale
632  */
633 int target_examine(void)
634 {
635         int retval = ERROR_OK;
636         struct target *target;
637
638         for (target = all_targets; target; target = target->next) {
639                 /* defer examination, but don't skip it */
640                 if (!target->tap->enabled) {
641                         jtag_register_event_callback(jtag_enable_callback,
642                                         target);
643                         continue;
644                 }
645
646                 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
647
648                 retval = target_examine_one(target);
649                 if (retval != ERROR_OK)
650                         return retval;
651
652                 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
653         }
654         return retval;
655 }
656
657 const char *target_type_name(struct target *target)
658 {
659         return target->type->name;
660 }
661
662 static int target_soft_reset_halt(struct target *target)
663 {
664         if (!target_was_examined(target)) {
665                 LOG_ERROR("Target not examined yet");
666                 return ERROR_FAIL;
667         }
668         if (!target->type->soft_reset_halt) {
669                 LOG_ERROR("Target %s does not support soft_reset_halt",
670                                 target_name(target));
671                 return ERROR_FAIL;
672         }
673         return target->type->soft_reset_halt(target);
674 }
675
676 /**
677  * Downloads a target-specific native code algorithm to the target,
678  * and executes it.  * Note that some targets may need to set up, enable,
679  * and tear down a breakpoint (hard or * soft) to detect algorithm
680  * termination, while others may support  lower overhead schemes where
681  * soft breakpoints embedded in the algorithm automatically terminate the
682  * algorithm.
683  *
684  * @param target used to run the algorithm
685  * @param arch_info target-specific description of the algorithm.
686  */
687 int target_run_algorithm(struct target *target,
688                 int num_mem_params, struct mem_param *mem_params,
689                 int num_reg_params, struct reg_param *reg_param,
690                 uint32_t entry_point, uint32_t exit_point,
691                 int timeout_ms, void *arch_info)
692 {
693         int retval = ERROR_FAIL;
694
695         if (!target_was_examined(target)) {
696                 LOG_ERROR("Target not examined yet");
697                 goto done;
698         }
699         if (!target->type->run_algorithm) {
700                 LOG_ERROR("Target type '%s' does not support %s",
701                                 target_type_name(target), __func__);
702                 goto done;
703         }
704
705         target->running_alg = true;
706         retval = target->type->run_algorithm(target,
707                         num_mem_params, mem_params,
708                         num_reg_params, reg_param,
709                         entry_point, exit_point, timeout_ms, arch_info);
710         target->running_alg = false;
711
712 done:
713         return retval;
714 }
715
716 /**
717  * Downloads a target-specific native code algorithm to the target,
718  * executes and leaves it running.
719  *
720  * @param target used to run the algorithm
721  * @param arch_info target-specific description of the algorithm.
722  */
723 int target_start_algorithm(struct target *target,
724                 int num_mem_params, struct mem_param *mem_params,
725                 int num_reg_params, struct reg_param *reg_params,
726                 uint32_t entry_point, uint32_t exit_point,
727                 void *arch_info)
728 {
729         int retval = ERROR_FAIL;
730
731         if (!target_was_examined(target)) {
732                 LOG_ERROR("Target not examined yet");
733                 goto done;
734         }
735         if (!target->type->start_algorithm) {
736                 LOG_ERROR("Target type '%s' does not support %s",
737                                 target_type_name(target), __func__);
738                 goto done;
739         }
740         if (target->running_alg) {
741                 LOG_ERROR("Target is already running an algorithm");
742                 goto done;
743         }
744
745         target->running_alg = true;
746         retval = target->type->start_algorithm(target,
747                         num_mem_params, mem_params,
748                         num_reg_params, reg_params,
749                         entry_point, exit_point, arch_info);
750
751 done:
752         return retval;
753 }
754
755 /**
756  * Waits for an algorithm started with target_start_algorithm() to complete.
757  *
758  * @param target used to run the algorithm
759  * @param arch_info target-specific description of the algorithm.
760  */
761 int target_wait_algorithm(struct target *target,
762                 int num_mem_params, struct mem_param *mem_params,
763                 int num_reg_params, struct reg_param *reg_params,
764                 uint32_t exit_point, int timeout_ms,
765                 void *arch_info)
766 {
767         int retval = ERROR_FAIL;
768
769         if (!target->type->wait_algorithm) {
770                 LOG_ERROR("Target type '%s' does not support %s",
771                                 target_type_name(target), __func__);
772                 goto done;
773         }
774         if (!target->running_alg) {
775                 LOG_ERROR("Target is not running an algorithm");
776                 goto done;
777         }
778
779         retval = target->type->wait_algorithm(target,
780                         num_mem_params, mem_params,
781                         num_reg_params, reg_params,
782                         exit_point, timeout_ms, arch_info);
783         if (retval != ERROR_TARGET_TIMEOUT)
784                 target->running_alg = false;
785
786 done:
787         return retval;
788 }
789
790 /**
791  * Executes a target-specific native code algorithm in the target.
792  * It differs from target_run_algorithm in that the algorithm is asynchronous.
793  * Because of this it requires an compliant algorithm:
794  * see contrib/loaders/flash/stm32f1x.S for example.
795  *
796  * @param target used to run the algorithm
797  */
798
799 int target_run_flash_async_algorithm(struct target *target,
800                 uint8_t *buffer, uint32_t count, int block_size,
801                 int num_mem_params, struct mem_param *mem_params,
802                 int num_reg_params, struct reg_param *reg_params,
803                 uint32_t buffer_start, uint32_t buffer_size,
804                 uint32_t entry_point, uint32_t exit_point, void *arch_info)
805 {
806         int retval;
807         int timeout = 0;
808
809         /* Set up working area. First word is write pointer, second word is read pointer,
810          * rest is fifo data area. */
811         uint32_t wp_addr = buffer_start;
812         uint32_t rp_addr = buffer_start + 4;
813         uint32_t fifo_start_addr = buffer_start + 8;
814         uint32_t fifo_end_addr = buffer_start + buffer_size;
815
816         uint32_t wp = fifo_start_addr;
817         uint32_t rp = fifo_start_addr;
818
819         /* validate block_size is 2^n */
820         assert(!block_size || !(block_size & (block_size - 1)));
821
822         retval = target_write_u32(target, wp_addr, wp);
823         if (retval != ERROR_OK)
824                 return retval;
825         retval = target_write_u32(target, rp_addr, rp);
826         if (retval != ERROR_OK)
827                 return retval;
828
829         /* Start up algorithm on target and let it idle while writing the first chunk */
830         retval = target_start_algorithm(target, num_mem_params, mem_params,
831                         num_reg_params, reg_params,
832                         entry_point,
833                         exit_point,
834                         arch_info);
835
836         if (retval != ERROR_OK) {
837                 LOG_ERROR("error starting target flash write algorithm");
838                 return retval;
839         }
840
841         while (count > 0) {
842
843                 retval = target_read_u32(target, rp_addr, &rp);
844                 if (retval != ERROR_OK) {
845                         LOG_ERROR("failed to get read pointer");
846                         break;
847                 }
848
849                 LOG_DEBUG("count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32, count, wp, rp);
850
851                 if (rp == 0) {
852                         LOG_ERROR("flash write algorithm aborted by target");
853                         retval = ERROR_FLASH_OPERATION_FAILED;
854                         break;
855                 }
856
857                 if ((rp & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
858                         LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
859                         break;
860                 }
861
862                 /* Count the number of bytes available in the fifo without
863                  * crossing the wrap around. Make sure to not fill it completely,
864                  * because that would make wp == rp and that's the empty condition. */
865                 uint32_t thisrun_bytes;
866                 if (rp > wp)
867                         thisrun_bytes = rp - wp - block_size;
868                 else if (rp > fifo_start_addr)
869                         thisrun_bytes = fifo_end_addr - wp;
870                 else
871                         thisrun_bytes = fifo_end_addr - wp - block_size;
872
873                 if (thisrun_bytes == 0) {
874                         /* Throttle polling a bit if transfer is (much) faster than flash
875                          * programming. The exact delay shouldn't matter as long as it's
876                          * less than buffer size / flash speed. This is very unlikely to
877                          * run when using high latency connections such as USB. */
878                         alive_sleep(10);
879
880                         /* to stop an infinite loop on some targets check and increment a timeout
881                          * this issue was observed on a stellaris using the new ICDI interface */
882                         if (timeout++ >= 500) {
883                                 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
884                                 return ERROR_FLASH_OPERATION_FAILED;
885                         }
886                         continue;
887                 }
888
889                 /* reset our timeout */
890                 timeout = 0;
891
892                 /* Limit to the amount of data we actually want to write */
893                 if (thisrun_bytes > count * block_size)
894                         thisrun_bytes = count * block_size;
895
896                 /* Write data to fifo */
897                 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
898                 if (retval != ERROR_OK)
899                         break;
900
901                 /* Update counters and wrap write pointer */
902                 buffer += thisrun_bytes;
903                 count -= thisrun_bytes / block_size;
904                 wp += thisrun_bytes;
905                 if (wp >= fifo_end_addr)
906                         wp = fifo_start_addr;
907
908                 /* Store updated write pointer to target */
909                 retval = target_write_u32(target, wp_addr, wp);
910                 if (retval != ERROR_OK)
911                         break;
912         }
913
914         if (retval != ERROR_OK) {
915                 /* abort flash write algorithm on target */
916                 target_write_u32(target, wp_addr, 0);
917         }
918
919         int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
920                         num_reg_params, reg_params,
921                         exit_point,
922                         10000,
923                         arch_info);
924
925         if (retval2 != ERROR_OK) {
926                 LOG_ERROR("error waiting for target flash write algorithm");
927                 retval = retval2;
928         }
929
930         return retval;
931 }
932
933 int target_read_memory(struct target *target,
934                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
935 {
936         if (!target_was_examined(target)) {
937                 LOG_ERROR("Target not examined yet");
938                 return ERROR_FAIL;
939         }
940         return target->type->read_memory(target, address, size, count, buffer);
941 }
942
943 int target_read_phys_memory(struct target *target,
944                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
945 {
946         if (!target_was_examined(target)) {
947                 LOG_ERROR("Target not examined yet");
948                 return ERROR_FAIL;
949         }
950         return target->type->read_phys_memory(target, address, size, count, buffer);
951 }
952
953 int target_write_memory(struct target *target,
954                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
955 {
956         if (!target_was_examined(target)) {
957                 LOG_ERROR("Target not examined yet");
958                 return ERROR_FAIL;
959         }
960         return target->type->write_memory(target, address, size, count, buffer);
961 }
962
963 int target_write_phys_memory(struct target *target,
964                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
965 {
966         if (!target_was_examined(target)) {
967                 LOG_ERROR("Target not examined yet");
968                 return ERROR_FAIL;
969         }
970         return target->type->write_phys_memory(target, address, size, count, buffer);
971 }
972
973 static int target_bulk_write_memory_default(struct target *target,
974                 uint32_t address, uint32_t count, const uint8_t *buffer)
975 {
976         return target_write_memory(target, address, 4, count, buffer);
977 }
978
979 int target_add_breakpoint(struct target *target,
980                 struct breakpoint *breakpoint)
981 {
982         if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
983                 LOG_WARNING("target %s is not halted", target_name(target));
984                 return ERROR_TARGET_NOT_HALTED;
985         }
986         return target->type->add_breakpoint(target, breakpoint);
987 }
988
989 int target_add_context_breakpoint(struct target *target,
990                 struct breakpoint *breakpoint)
991 {
992         if (target->state != TARGET_HALTED) {
993                 LOG_WARNING("target %s is not halted", target_name(target));
994                 return ERROR_TARGET_NOT_HALTED;
995         }
996         return target->type->add_context_breakpoint(target, breakpoint);
997 }
998
999 int target_add_hybrid_breakpoint(struct target *target,
1000                 struct breakpoint *breakpoint)
1001 {
1002         if (target->state != TARGET_HALTED) {
1003                 LOG_WARNING("target %s is not halted", target_name(target));
1004                 return ERROR_TARGET_NOT_HALTED;
1005         }
1006         return target->type->add_hybrid_breakpoint(target, breakpoint);
1007 }
1008
1009 int target_remove_breakpoint(struct target *target,
1010                 struct breakpoint *breakpoint)
1011 {
1012         return target->type->remove_breakpoint(target, breakpoint);
1013 }
1014
1015 int target_add_watchpoint(struct target *target,
1016                 struct watchpoint *watchpoint)
1017 {
1018         if (target->state != TARGET_HALTED) {
1019                 LOG_WARNING("target %s is not halted", target_name(target));
1020                 return ERROR_TARGET_NOT_HALTED;
1021         }
1022         return target->type->add_watchpoint(target, watchpoint);
1023 }
1024 int target_remove_watchpoint(struct target *target,
1025                 struct watchpoint *watchpoint)
1026 {
1027         return target->type->remove_watchpoint(target, watchpoint);
1028 }
1029
1030 int target_get_gdb_reg_list(struct target *target,
1031                 struct reg **reg_list[], int *reg_list_size)
1032 {
1033         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
1034 }
1035 int target_step(struct target *target,
1036                 int current, uint32_t address, int handle_breakpoints)
1037 {
1038         return target->type->step(target, current, address, handle_breakpoints);
1039 }
1040
1041 /**
1042  * Reset the @c examined flag for the given target.
1043  * Pure paranoia -- targets are zeroed on allocation.
1044  */
1045 static void target_reset_examined(struct target *target)
1046 {
1047         target->examined = false;
1048 }
1049
1050 static int err_read_phys_memory(struct target *target, uint32_t address,
1051                 uint32_t size, uint32_t count, uint8_t *buffer)
1052 {
1053         LOG_ERROR("Not implemented: %s", __func__);
1054         return ERROR_FAIL;
1055 }
1056
1057 static int err_write_phys_memory(struct target *target, uint32_t address,
1058                 uint32_t size, uint32_t count, const uint8_t *buffer)
1059 {
1060         LOG_ERROR("Not implemented: %s", __func__);
1061         return ERROR_FAIL;
1062 }
1063
1064 static int handle_target(void *priv);
1065
1066 static int target_init_one(struct command_context *cmd_ctx,
1067                 struct target *target)
1068 {
1069         target_reset_examined(target);
1070
1071         struct target_type *type = target->type;
1072         if (type->examine == NULL)
1073                 type->examine = default_examine;
1074
1075         if (type->check_reset == NULL)
1076                 type->check_reset = default_check_reset;
1077
1078         assert(type->init_target != NULL);
1079
1080         int retval = type->init_target(cmd_ctx, target);
1081         if (ERROR_OK != retval) {
1082                 LOG_ERROR("target '%s' init failed", target_name(target));
1083                 return retval;
1084         }
1085
1086         /* Sanity-check MMU support ... stub in what we must, to help
1087          * implement it in stages, but warn if we need to do so.
1088          */
1089         if (type->mmu) {
1090                 if (type->write_phys_memory == NULL) {
1091                         LOG_ERROR("type '%s' is missing write_phys_memory",
1092                                         type->name);
1093                         type->write_phys_memory = err_write_phys_memory;
1094                 }
1095                 if (type->read_phys_memory == NULL) {
1096                         LOG_ERROR("type '%s' is missing read_phys_memory",
1097                                         type->name);
1098                         type->read_phys_memory = err_read_phys_memory;
1099                 }
1100                 if (type->virt2phys == NULL) {
1101                         LOG_ERROR("type '%s' is missing virt2phys", type->name);
1102                         type->virt2phys = identity_virt2phys;
1103                 }
1104         } else {
1105                 /* Make sure no-MMU targets all behave the same:  make no
1106                  * distinction between physical and virtual addresses, and
1107                  * ensure that virt2phys() is always an identity mapping.
1108                  */
1109                 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1110                         LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1111
1112                 type->mmu = no_mmu;
1113                 type->write_phys_memory = type->write_memory;
1114                 type->read_phys_memory = type->read_memory;
1115                 type->virt2phys = identity_virt2phys;
1116         }
1117
1118         if (target->type->read_buffer == NULL)
1119                 target->type->read_buffer = target_read_buffer_default;
1120
1121         if (target->type->write_buffer == NULL)
1122                 target->type->write_buffer = target_write_buffer_default;
1123
1124         if (target->type->bulk_write_memory == NULL)
1125                 target->type->bulk_write_memory = target_bulk_write_memory_default;
1126
1127         return ERROR_OK;
1128 }
1129
1130 static int target_init(struct command_context *cmd_ctx)
1131 {
1132         struct target *target;
1133         int retval;
1134
1135         for (target = all_targets; target; target = target->next) {
1136                 retval = target_init_one(cmd_ctx, target);
1137                 if (ERROR_OK != retval)
1138                         return retval;
1139         }
1140
1141         if (!all_targets)
1142                 return ERROR_OK;
1143
1144         retval = target_register_user_commands(cmd_ctx);
1145         if (ERROR_OK != retval)
1146                 return retval;
1147
1148         retval = target_register_timer_callback(&handle_target,
1149                         polling_interval, 1, cmd_ctx->interp);
1150         if (ERROR_OK != retval)
1151                 return retval;
1152
1153         return ERROR_OK;
1154 }
1155
1156 COMMAND_HANDLER(handle_target_init_command)
1157 {
1158         int retval;
1159
1160         if (CMD_ARGC != 0)
1161                 return ERROR_COMMAND_SYNTAX_ERROR;
1162
1163         static bool target_initialized;
1164         if (target_initialized) {
1165                 LOG_INFO("'target init' has already been called");
1166                 return ERROR_OK;
1167         }
1168         target_initialized = true;
1169
1170         retval = command_run_line(CMD_CTX, "init_targets");
1171         if (ERROR_OK != retval)
1172                 return retval;
1173
1174         retval = command_run_line(CMD_CTX, "init_board");
1175         if (ERROR_OK != retval)
1176                 return retval;
1177
1178         LOG_DEBUG("Initializing targets...");
1179         return target_init(CMD_CTX);
1180 }
1181
1182 int target_register_event_callback(int (*callback)(struct target *target,
1183                 enum target_event event, void *priv), void *priv)
1184 {
1185         struct target_event_callback **callbacks_p = &target_event_callbacks;
1186
1187         if (callback == NULL)
1188                 return ERROR_COMMAND_SYNTAX_ERROR;
1189
1190         if (*callbacks_p) {
1191                 while ((*callbacks_p)->next)
1192                         callbacks_p = &((*callbacks_p)->next);
1193                 callbacks_p = &((*callbacks_p)->next);
1194         }
1195
1196         (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1197         (*callbacks_p)->callback = callback;
1198         (*callbacks_p)->priv = priv;
1199         (*callbacks_p)->next = NULL;
1200
1201         return ERROR_OK;
1202 }
1203
1204 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1205 {
1206         struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1207         struct timeval now;
1208
1209         if (callback == NULL)
1210                 return ERROR_COMMAND_SYNTAX_ERROR;
1211
1212         if (*callbacks_p) {
1213                 while ((*callbacks_p)->next)
1214                         callbacks_p = &((*callbacks_p)->next);
1215                 callbacks_p = &((*callbacks_p)->next);
1216         }
1217
1218         (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1219         (*callbacks_p)->callback = callback;
1220         (*callbacks_p)->periodic = periodic;
1221         (*callbacks_p)->time_ms = time_ms;
1222
1223         gettimeofday(&now, NULL);
1224         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
1225         time_ms -= (time_ms % 1000);
1226         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
1227         if ((*callbacks_p)->when.tv_usec > 1000000) {
1228                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
1229                 (*callbacks_p)->when.tv_sec += 1;
1230         }
1231
1232         (*callbacks_p)->priv = priv;
1233         (*callbacks_p)->next = NULL;
1234
1235         return ERROR_OK;
1236 }
1237
1238 int target_unregister_event_callback(int (*callback)(struct target *target,
1239                 enum target_event event, void *priv), void *priv)
1240 {
1241         struct target_event_callback **p = &target_event_callbacks;
1242         struct target_event_callback *c = target_event_callbacks;
1243
1244         if (callback == NULL)
1245                 return ERROR_COMMAND_SYNTAX_ERROR;
1246
1247         while (c) {
1248                 struct target_event_callback *next = c->next;
1249                 if ((c->callback == callback) && (c->priv == priv)) {
1250                         *p = next;
1251                         free(c);
1252                         return ERROR_OK;
1253                 } else
1254                         p = &(c->next);
1255                 c = next;
1256         }
1257
1258         return ERROR_OK;
1259 }
1260
1261 static int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1262 {
1263         struct target_timer_callback **p = &target_timer_callbacks;
1264         struct target_timer_callback *c = target_timer_callbacks;
1265
1266         if (callback == NULL)
1267                 return ERROR_COMMAND_SYNTAX_ERROR;
1268
1269         while (c) {
1270                 struct target_timer_callback *next = c->next;
1271                 if ((c->callback == callback) && (c->priv == priv)) {
1272                         *p = next;
1273                         free(c);
1274                         return ERROR_OK;
1275                 } else
1276                         p = &(c->next);
1277                 c = next;
1278         }
1279
1280         return ERROR_OK;
1281 }
1282
1283 int target_call_event_callbacks(struct target *target, enum target_event event)
1284 {
1285         struct target_event_callback *callback = target_event_callbacks;
1286         struct target_event_callback *next_callback;
1287
1288         if (event == TARGET_EVENT_HALTED) {
1289                 /* execute early halted first */
1290                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1291         }
1292
1293         LOG_DEBUG("target event %i (%s)", event,
1294                         Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1295
1296         target_handle_event(target, event);
1297
1298         while (callback) {
1299                 next_callback = callback->next;
1300                 callback->callback(target, event, callback->priv);
1301                 callback = next_callback;
1302         }
1303
1304         return ERROR_OK;
1305 }
1306
1307 static int target_timer_callback_periodic_restart(
1308                 struct target_timer_callback *cb, struct timeval *now)
1309 {
1310         int time_ms = cb->time_ms;
1311         cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1312         time_ms -= (time_ms % 1000);
1313         cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1314         if (cb->when.tv_usec > 1000000) {
1315                 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1316                 cb->when.tv_sec += 1;
1317         }
1318         return ERROR_OK;
1319 }
1320
1321 static int target_call_timer_callback(struct target_timer_callback *cb,
1322                 struct timeval *now)
1323 {
1324         cb->callback(cb->priv);
1325
1326         if (cb->periodic)
1327                 return target_timer_callback_periodic_restart(cb, now);
1328
1329         return target_unregister_timer_callback(cb->callback, cb->priv);
1330 }
1331
1332 static int target_call_timer_callbacks_check_time(int checktime)
1333 {
1334         keep_alive();
1335
1336         struct timeval now;
1337         gettimeofday(&now, NULL);
1338
1339         struct target_timer_callback *callback = target_timer_callbacks;
1340         while (callback) {
1341                 /* cleaning up may unregister and free this callback */
1342                 struct target_timer_callback *next_callback = callback->next;
1343
1344                 bool call_it = callback->callback &&
1345                         ((!checktime && callback->periodic) ||
1346                           now.tv_sec > callback->when.tv_sec ||
1347                          (now.tv_sec == callback->when.tv_sec &&
1348                           now.tv_usec >= callback->when.tv_usec));
1349
1350                 if (call_it) {
1351                         int retval = target_call_timer_callback(callback, &now);
1352                         if (retval != ERROR_OK)
1353                                 return retval;
1354                 }
1355
1356                 callback = next_callback;
1357         }
1358
1359         return ERROR_OK;
1360 }
1361
1362 int target_call_timer_callbacks(void)
1363 {
1364         return target_call_timer_callbacks_check_time(1);
1365 }
1366
1367 /* invoke periodic callbacks immediately */
1368 int target_call_timer_callbacks_now(void)
1369 {
1370         return target_call_timer_callbacks_check_time(0);
1371 }
1372
1373 /* Prints the working area layout for debug purposes */
1374 static void print_wa_layout(struct target *target)
1375 {
1376         struct working_area *c = target->working_areas;
1377
1378         while (c) {
1379                 LOG_DEBUG("%c%c 0x%08"PRIx32"-0x%08"PRIx32" (%"PRIu32" bytes)",
1380                         c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1381                         c->address, c->address + c->size - 1, c->size);
1382                 c = c->next;
1383         }
1384 }
1385
1386 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1387 static void target_split_working_area(struct working_area *area, uint32_t size)
1388 {
1389         assert(area->free); /* Shouldn't split an allocated area */
1390         assert(size <= area->size); /* Caller should guarantee this */
1391
1392         /* Split only if not already the right size */
1393         if (size < area->size) {
1394                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1395
1396                 if (new_wa == NULL)
1397                         return;
1398
1399                 new_wa->next = area->next;
1400                 new_wa->size = area->size - size;
1401                 new_wa->address = area->address + size;
1402                 new_wa->backup = NULL;
1403                 new_wa->user = NULL;
1404                 new_wa->free = true;
1405
1406                 area->next = new_wa;
1407                 area->size = size;
1408
1409                 /* If backup memory was allocated to this area, it has the wrong size
1410                  * now so free it and it will be reallocated if/when needed */
1411                 if (area->backup) {
1412                         free(area->backup);
1413                         area->backup = NULL;
1414                 }
1415         }
1416 }
1417
1418 /* Merge all adjacent free areas into one */
1419 static void target_merge_working_areas(struct target *target)
1420 {
1421         struct working_area *c = target->working_areas;
1422
1423         while (c && c->next) {
1424                 assert(c->next->address == c->address + c->size); /* This is an invariant */
1425
1426                 /* Find two adjacent free areas */
1427                 if (c->free && c->next->free) {
1428                         /* Merge the last into the first */
1429                         c->size += c->next->size;
1430
1431                         /* Remove the last */
1432                         struct working_area *to_be_freed = c->next;
1433                         c->next = c->next->next;
1434                         if (to_be_freed->backup)
1435                                 free(to_be_freed->backup);
1436                         free(to_be_freed);
1437
1438                         /* If backup memory was allocated to the remaining area, it's has
1439                          * the wrong size now */
1440                         if (c->backup) {
1441                                 free(c->backup);
1442                                 c->backup = NULL;
1443                         }
1444                 } else {
1445                         c = c->next;
1446                 }
1447         }
1448 }
1449
1450 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1451 {
1452         /* Reevaluate working area address based on MMU state*/
1453         if (target->working_areas == NULL) {
1454                 int retval;
1455                 int enabled;
1456
1457                 retval = target->type->mmu(target, &enabled);
1458                 if (retval != ERROR_OK)
1459                         return retval;
1460
1461                 if (!enabled) {
1462                         if (target->working_area_phys_spec) {
1463                                 LOG_DEBUG("MMU disabled, using physical "
1464                                         "address for working memory 0x%08"PRIx32,
1465                                         target->working_area_phys);
1466                                 target->working_area = target->working_area_phys;
1467                         } else {
1468                                 LOG_ERROR("No working memory available. "
1469                                         "Specify -work-area-phys to target.");
1470                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1471                         }
1472                 } else {
1473                         if (target->working_area_virt_spec) {
1474                                 LOG_DEBUG("MMU enabled, using virtual "
1475                                         "address for working memory 0x%08"PRIx32,
1476                                         target->working_area_virt);
1477                                 target->working_area = target->working_area_virt;
1478                         } else {
1479                                 LOG_ERROR("No working memory available. "
1480                                         "Specify -work-area-virt to target.");
1481                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1482                         }
1483                 }
1484
1485                 /* Set up initial working area on first call */
1486                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1487                 if (new_wa) {
1488                         new_wa->next = NULL;
1489                         new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1490                         new_wa->address = target->working_area;
1491                         new_wa->backup = NULL;
1492                         new_wa->user = NULL;
1493                         new_wa->free = true;
1494                 }
1495
1496                 target->working_areas = new_wa;
1497         }
1498
1499         /* only allocate multiples of 4 byte */
1500         if (size % 4)
1501                 size = (size + 3) & (~3UL);
1502
1503         struct working_area *c = target->working_areas;
1504
1505         /* Find the first large enough working area */
1506         while (c) {
1507                 if (c->free && c->size >= size)
1508                         break;
1509                 c = c->next;
1510         }
1511
1512         if (c == NULL)
1513                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1514
1515         /* Split the working area into the requested size */
1516         target_split_working_area(c, size);
1517
1518         LOG_DEBUG("allocated new working area of %"PRIu32" bytes at address 0x%08"PRIx32, size, c->address);
1519
1520         if (target->backup_working_area) {
1521                 if (c->backup == NULL) {
1522                         c->backup = malloc(c->size);
1523                         if (c->backup == NULL)
1524                                 return ERROR_FAIL;
1525                 }
1526
1527                 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1528                 if (retval != ERROR_OK)
1529                         return retval;
1530         }
1531
1532         /* mark as used, and return the new (reused) area */
1533         c->free = false;
1534         *area = c;
1535
1536         /* user pointer */
1537         c->user = area;
1538
1539         print_wa_layout(target);
1540
1541         return ERROR_OK;
1542 }
1543
1544 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1545 {
1546         int retval;
1547
1548         retval = target_alloc_working_area_try(target, size, area);
1549         if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1550                 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1551         return retval;
1552
1553 }
1554
1555 static int target_restore_working_area(struct target *target, struct working_area *area)
1556 {
1557         int retval = ERROR_OK;
1558
1559         if (target->backup_working_area && area->backup != NULL) {
1560                 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1561                 if (retval != ERROR_OK)
1562                         LOG_ERROR("failed to restore %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1563                                         area->size, area->address);
1564         }
1565
1566         return retval;
1567 }
1568
1569 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1570 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1571 {
1572         int retval = ERROR_OK;
1573
1574         if (area->free)
1575                 return retval;
1576
1577         if (restore) {
1578                 retval = target_restore_working_area(target, area);
1579                 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1580                 if (retval != ERROR_OK)
1581                         return retval;
1582         }
1583
1584         area->free = true;
1585
1586         LOG_DEBUG("freed %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1587                         area->size, area->address);
1588
1589         /* mark user pointer invalid */
1590         /* TODO: Is this really safe? It points to some previous caller's memory.
1591          * How could we know that the area pointer is still in that place and not
1592          * some other vital data? What's the purpose of this, anyway? */
1593         *area->user = NULL;
1594         area->user = NULL;
1595
1596         target_merge_working_areas(target);
1597
1598         print_wa_layout(target);
1599
1600         return retval;
1601 }
1602
1603 int target_free_working_area(struct target *target, struct working_area *area)
1604 {
1605         return target_free_working_area_restore(target, area, 1);
1606 }
1607
1608 /* free resources and restore memory, if restoring memory fails,
1609  * free up resources anyway
1610  */
1611 static void target_free_all_working_areas_restore(struct target *target, int restore)
1612 {
1613         struct working_area *c = target->working_areas;
1614
1615         LOG_DEBUG("freeing all working areas");
1616
1617         /* Loop through all areas, restoring the allocated ones and marking them as free */
1618         while (c) {
1619                 if (!c->free) {
1620                         if (restore)
1621                                 target_restore_working_area(target, c);
1622                         c->free = true;
1623                         *c->user = NULL; /* Same as above */
1624                         c->user = NULL;
1625                 }
1626                 c = c->next;
1627         }
1628
1629         /* Run a merge pass to combine all areas into one */
1630         target_merge_working_areas(target);
1631
1632         print_wa_layout(target);
1633 }
1634
1635 void target_free_all_working_areas(struct target *target)
1636 {
1637         target_free_all_working_areas_restore(target, 1);
1638 }
1639
1640 /* Find the largest number of bytes that can be allocated */
1641 uint32_t target_get_working_area_avail(struct target *target)
1642 {
1643         struct working_area *c = target->working_areas;
1644         uint32_t max_size = 0;
1645
1646         if (c == NULL)
1647                 return target->working_area_size;
1648
1649         while (c) {
1650                 if (c->free && max_size < c->size)
1651                         max_size = c->size;
1652
1653                 c = c->next;
1654         }
1655
1656         return max_size;
1657 }
1658
1659 int target_arch_state(struct target *target)
1660 {
1661         int retval;
1662         if (target == NULL) {
1663                 LOG_USER("No target has been configured");
1664                 return ERROR_OK;
1665         }
1666
1667         LOG_USER("target state: %s", target_state_name(target));
1668
1669         if (target->state != TARGET_HALTED)
1670                 return ERROR_OK;
1671
1672         retval = target->type->arch_state(target);
1673         return retval;
1674 }
1675
1676 /* Single aligned words are guaranteed to use 16 or 32 bit access
1677  * mode respectively, otherwise data is handled as quickly as
1678  * possible
1679  */
1680 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1681 {
1682         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1683                         (int)size, (unsigned)address);
1684
1685         if (!target_was_examined(target)) {
1686                 LOG_ERROR("Target not examined yet");
1687                 return ERROR_FAIL;
1688         }
1689
1690         if (size == 0)
1691                 return ERROR_OK;
1692
1693         if ((address + size - 1) < address) {
1694                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1695                 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1696                                   (unsigned)address,
1697                                   (unsigned)size);
1698                 return ERROR_FAIL;
1699         }
1700
1701         return target->type->write_buffer(target, address, size, buffer);
1702 }
1703
1704 static int target_write_buffer_default(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1705 {
1706         int retval = ERROR_OK;
1707
1708         if (((address % 2) == 0) && (size == 2))
1709                 return target_write_memory(target, address, 2, 1, buffer);
1710
1711         /* handle unaligned head bytes */
1712         if (address % 4) {
1713                 uint32_t unaligned = 4 - (address % 4);
1714
1715                 if (unaligned > size)
1716                         unaligned = size;
1717
1718                 retval = target_write_memory(target, address, 1, unaligned, buffer);
1719                 if (retval != ERROR_OK)
1720                         return retval;
1721
1722                 buffer += unaligned;
1723                 address += unaligned;
1724                 size -= unaligned;
1725         }
1726
1727         /* handle aligned words */
1728         if (size >= 4) {
1729                 int aligned = size - (size % 4);
1730
1731                 /* use bulk writes above a certain limit. This may have to be changed */
1732                 if (aligned > 128) {
1733                         retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer);
1734                         if (retval != ERROR_OK)
1735                                 return retval;
1736                 } else {
1737                         retval = target_write_memory(target, address, 4, aligned / 4, buffer);
1738                         if (retval != ERROR_OK)
1739                                 return retval;
1740                 }
1741
1742                 buffer += aligned;
1743                 address += aligned;
1744                 size -= aligned;
1745         }
1746
1747         /* handle tail writes of less than 4 bytes */
1748         if (size > 0) {
1749                 retval = target_write_memory(target, address, 1, size, buffer);
1750                 if (retval != ERROR_OK)
1751                         return retval;
1752         }
1753
1754         return retval;
1755 }
1756
1757 /* Single aligned words are guaranteed to use 16 or 32 bit access
1758  * mode respectively, otherwise data is handled as quickly as
1759  * possible
1760  */
1761 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1762 {
1763         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1764                           (int)size, (unsigned)address);
1765
1766         if (!target_was_examined(target)) {
1767                 LOG_ERROR("Target not examined yet");
1768                 return ERROR_FAIL;
1769         }
1770
1771         if (size == 0)
1772                 return ERROR_OK;
1773
1774         if ((address + size - 1) < address) {
1775                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1776                 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1777                                   address,
1778                                   size);
1779                 return ERROR_FAIL;
1780         }
1781
1782         return target->type->read_buffer(target, address, size, buffer);
1783 }
1784
1785 static int target_read_buffer_default(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1786 {
1787         int retval = ERROR_OK;
1788
1789         if (((address % 2) == 0) && (size == 2))
1790                 return target_read_memory(target, address, 2, 1, buffer);
1791
1792         /* handle unaligned head bytes */
1793         if (address % 4) {
1794                 uint32_t unaligned = 4 - (address % 4);
1795
1796                 if (unaligned > size)
1797                         unaligned = size;
1798
1799                 retval = target_read_memory(target, address, 1, unaligned, buffer);
1800                 if (retval != ERROR_OK)
1801                         return retval;
1802
1803                 buffer += unaligned;
1804                 address += unaligned;
1805                 size -= unaligned;
1806         }
1807
1808         /* handle aligned words */
1809         if (size >= 4) {
1810                 int aligned = size - (size % 4);
1811
1812                 retval = target_read_memory(target, address, 4, aligned / 4, buffer);
1813                 if (retval != ERROR_OK)
1814                         return retval;
1815
1816                 buffer += aligned;
1817                 address += aligned;
1818                 size -= aligned;
1819         }
1820
1821         /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1822         if (size        >= 2) {
1823                 int aligned = size - (size % 2);
1824                 retval = target_read_memory(target, address, 2, aligned / 2, buffer);
1825                 if (retval != ERROR_OK)
1826                         return retval;
1827
1828                 buffer += aligned;
1829                 address += aligned;
1830                 size -= aligned;
1831         }
1832         /* handle tail writes of less than 4 bytes */
1833         if (size > 0) {
1834                 retval = target_read_memory(target, address, 1, size, buffer);
1835                 if (retval != ERROR_OK)
1836                         return retval;
1837         }
1838
1839         return ERROR_OK;
1840 }
1841
1842 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1843 {
1844         uint8_t *buffer;
1845         int retval;
1846         uint32_t i;
1847         uint32_t checksum = 0;
1848         if (!target_was_examined(target)) {
1849                 LOG_ERROR("Target not examined yet");
1850                 return ERROR_FAIL;
1851         }
1852
1853         retval = target->type->checksum_memory(target, address, size, &checksum);
1854         if (retval != ERROR_OK) {
1855                 buffer = malloc(size);
1856                 if (buffer == NULL) {
1857                         LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1858                         return ERROR_COMMAND_SYNTAX_ERROR;
1859                 }
1860                 retval = target_read_buffer(target, address, size, buffer);
1861                 if (retval != ERROR_OK) {
1862                         free(buffer);
1863                         return retval;
1864                 }
1865
1866                 /* convert to target endianness */
1867                 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
1868                         uint32_t target_data;
1869                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1870                         target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1871                 }
1872
1873                 retval = image_calculate_checksum(buffer, size, &checksum);
1874                 free(buffer);
1875         }
1876
1877         *crc = checksum;
1878
1879         return retval;
1880 }
1881
1882 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
1883 {
1884         int retval;
1885         if (!target_was_examined(target)) {
1886                 LOG_ERROR("Target not examined yet");
1887                 return ERROR_FAIL;
1888         }
1889
1890         if (target->type->blank_check_memory == 0)
1891                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1892
1893         retval = target->type->blank_check_memory(target, address, size, blank);
1894
1895         return retval;
1896 }
1897
1898 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
1899 {
1900         uint8_t value_buf[4];
1901         if (!target_was_examined(target)) {
1902                 LOG_ERROR("Target not examined yet");
1903                 return ERROR_FAIL;
1904         }
1905
1906         int retval = target_read_memory(target, address, 4, 1, value_buf);
1907
1908         if (retval == ERROR_OK) {
1909                 *value = target_buffer_get_u32(target, value_buf);
1910                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1911                                   address,
1912                                   *value);
1913         } else {
1914                 *value = 0x0;
1915                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1916                                   address);
1917         }
1918
1919         return retval;
1920 }
1921
1922 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
1923 {
1924         uint8_t value_buf[2];
1925         if (!target_was_examined(target)) {
1926                 LOG_ERROR("Target not examined yet");
1927                 return ERROR_FAIL;
1928         }
1929
1930         int retval = target_read_memory(target, address, 2, 1, value_buf);
1931
1932         if (retval == ERROR_OK) {
1933                 *value = target_buffer_get_u16(target, value_buf);
1934                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
1935                                   address,
1936                                   *value);
1937         } else {
1938                 *value = 0x0;
1939                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1940                                   address);
1941         }
1942
1943         return retval;
1944 }
1945
1946 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
1947 {
1948         int retval = target_read_memory(target, address, 1, 1, value);
1949         if (!target_was_examined(target)) {
1950                 LOG_ERROR("Target not examined yet");
1951                 return ERROR_FAIL;
1952         }
1953
1954         if (retval == ERROR_OK) {
1955                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1956                                   address,
1957                                   *value);
1958         } else {
1959                 *value = 0x0;
1960                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1961                                   address);
1962         }
1963
1964         return retval;
1965 }
1966
1967 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
1968 {
1969         int retval;
1970         uint8_t value_buf[4];
1971         if (!target_was_examined(target)) {
1972                 LOG_ERROR("Target not examined yet");
1973                 return ERROR_FAIL;
1974         }
1975
1976         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1977                           address,
1978                           value);
1979
1980         target_buffer_set_u32(target, value_buf, value);
1981         retval = target_write_memory(target, address, 4, 1, value_buf);
1982         if (retval != ERROR_OK)
1983                 LOG_DEBUG("failed: %i", retval);
1984
1985         return retval;
1986 }
1987
1988 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
1989 {
1990         int retval;
1991         uint8_t value_buf[2];
1992         if (!target_was_examined(target)) {
1993                 LOG_ERROR("Target not examined yet");
1994                 return ERROR_FAIL;
1995         }
1996
1997         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
1998                           address,
1999                           value);
2000
2001         target_buffer_set_u16(target, value_buf, value);
2002         retval = target_write_memory(target, address, 2, 1, value_buf);
2003         if (retval != ERROR_OK)
2004                 LOG_DEBUG("failed: %i", retval);
2005
2006         return retval;
2007 }
2008
2009 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
2010 {
2011         int retval;
2012         if (!target_was_examined(target)) {
2013                 LOG_ERROR("Target not examined yet");
2014                 return ERROR_FAIL;
2015         }
2016
2017         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
2018                           address, value);
2019
2020         retval = target_write_memory(target, address, 1, 1, &value);
2021         if (retval != ERROR_OK)
2022                 LOG_DEBUG("failed: %i", retval);
2023
2024         return retval;
2025 }
2026
2027 static int find_target(struct command_context *cmd_ctx, const char *name)
2028 {
2029         struct target *target = get_target(name);
2030         if (target == NULL) {
2031                 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2032                 return ERROR_FAIL;
2033         }
2034         if (!target->tap->enabled) {
2035                 LOG_USER("Target: TAP %s is disabled, "
2036                          "can't be the current target\n",
2037                          target->tap->dotted_name);
2038                 return ERROR_FAIL;
2039         }
2040
2041         cmd_ctx->current_target = target->target_number;
2042         return ERROR_OK;
2043 }
2044
2045
2046 COMMAND_HANDLER(handle_targets_command)
2047 {
2048         int retval = ERROR_OK;
2049         if (CMD_ARGC == 1) {
2050                 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2051                 if (retval == ERROR_OK) {
2052                         /* we're done! */
2053                         return retval;
2054                 }
2055         }
2056
2057         struct target *target = all_targets;
2058         command_print(CMD_CTX, "    TargetName         Type       Endian TapName            State       ");
2059         command_print(CMD_CTX, "--  ------------------ ---------- ------ ------------------ ------------");
2060         while (target) {
2061                 const char *state;
2062                 char marker = ' ';
2063
2064                 if (target->tap->enabled)
2065                         state = target_state_name(target);
2066                 else
2067                         state = "tap-disabled";
2068
2069                 if (CMD_CTX->current_target == target->target_number)
2070                         marker = '*';
2071
2072                 /* keep columns lined up to match the headers above */
2073                 command_print(CMD_CTX,
2074                                 "%2d%c %-18s %-10s %-6s %-18s %s",
2075                                 target->target_number,
2076                                 marker,
2077                                 target_name(target),
2078                                 target_type_name(target),
2079                                 Jim_Nvp_value2name_simple(nvp_target_endian,
2080                                         target->endianness)->name,
2081                                 target->tap->dotted_name,
2082                                 state);
2083                 target = target->next;
2084         }
2085
2086         return retval;
2087 }
2088
2089 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2090
2091 static int powerDropout;
2092 static int srstAsserted;
2093
2094 static int runPowerRestore;
2095 static int runPowerDropout;
2096 static int runSrstAsserted;
2097 static int runSrstDeasserted;
2098
2099 static int sense_handler(void)
2100 {
2101         static int prevSrstAsserted;
2102         static int prevPowerdropout;
2103
2104         int retval = jtag_power_dropout(&powerDropout);
2105         if (retval != ERROR_OK)
2106                 return retval;
2107
2108         int powerRestored;
2109         powerRestored = prevPowerdropout && !powerDropout;
2110         if (powerRestored)
2111                 runPowerRestore = 1;
2112
2113         long long current = timeval_ms();
2114         static long long lastPower;
2115         int waitMore = lastPower + 2000 > current;
2116         if (powerDropout && !waitMore) {
2117                 runPowerDropout = 1;
2118                 lastPower = current;
2119         }
2120
2121         retval = jtag_srst_asserted(&srstAsserted);
2122         if (retval != ERROR_OK)
2123                 return retval;
2124
2125         int srstDeasserted;
2126         srstDeasserted = prevSrstAsserted && !srstAsserted;
2127
2128         static long long lastSrst;
2129         waitMore = lastSrst + 2000 > current;
2130         if (srstDeasserted && !waitMore) {
2131                 runSrstDeasserted = 1;
2132                 lastSrst = current;
2133         }
2134
2135         if (!prevSrstAsserted && srstAsserted)
2136                 runSrstAsserted = 1;
2137
2138         prevSrstAsserted = srstAsserted;
2139         prevPowerdropout = powerDropout;
2140
2141         if (srstDeasserted || powerRestored) {
2142                 /* Other than logging the event we can't do anything here.
2143                  * Issuing a reset is a particularly bad idea as we might
2144                  * be inside a reset already.
2145                  */
2146         }
2147
2148         return ERROR_OK;
2149 }
2150
2151 /* process target state changes */
2152 static int handle_target(void *priv)
2153 {
2154         Jim_Interp *interp = (Jim_Interp *)priv;
2155         int retval = ERROR_OK;
2156
2157         if (!is_jtag_poll_safe()) {
2158                 /* polling is disabled currently */
2159                 return ERROR_OK;
2160         }
2161
2162         /* we do not want to recurse here... */
2163         static int recursive;
2164         if (!recursive) {
2165                 recursive = 1;
2166                 sense_handler();
2167                 /* danger! running these procedures can trigger srst assertions and power dropouts.
2168                  * We need to avoid an infinite loop/recursion here and we do that by
2169                  * clearing the flags after running these events.
2170                  */
2171                 int did_something = 0;
2172                 if (runSrstAsserted) {
2173                         LOG_INFO("srst asserted detected, running srst_asserted proc.");
2174                         Jim_Eval(interp, "srst_asserted");
2175                         did_something = 1;
2176                 }
2177                 if (runSrstDeasserted) {
2178                         Jim_Eval(interp, "srst_deasserted");
2179                         did_something = 1;
2180                 }
2181                 if (runPowerDropout) {
2182                         LOG_INFO("Power dropout detected, running power_dropout proc.");
2183                         Jim_Eval(interp, "power_dropout");
2184                         did_something = 1;
2185                 }
2186                 if (runPowerRestore) {
2187                         Jim_Eval(interp, "power_restore");
2188                         did_something = 1;
2189                 }
2190
2191                 if (did_something) {
2192                         /* clear detect flags */
2193                         sense_handler();
2194                 }
2195
2196                 /* clear action flags */
2197
2198                 runSrstAsserted = 0;
2199                 runSrstDeasserted = 0;
2200                 runPowerRestore = 0;
2201                 runPowerDropout = 0;
2202
2203                 recursive = 0;
2204         }
2205
2206         /* Poll targets for state changes unless that's globally disabled.
2207          * Skip targets that are currently disabled.
2208          */
2209         for (struct target *target = all_targets;
2210                         is_jtag_poll_safe() && target;
2211                         target = target->next) {
2212                 if (!target->tap->enabled)
2213                         continue;
2214
2215                 if (target->backoff.times > target->backoff.count) {
2216                         /* do not poll this time as we failed previously */
2217                         target->backoff.count++;
2218                         continue;
2219                 }
2220                 target->backoff.count = 0;
2221
2222                 /* only poll target if we've got power and srst isn't asserted */
2223                 if (!powerDropout && !srstAsserted) {
2224                         /* polling may fail silently until the target has been examined */
2225                         retval = target_poll(target);
2226                         if (retval != ERROR_OK) {
2227                                 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2228                                 if (target->backoff.times * polling_interval < 5000) {
2229                                         target->backoff.times *= 2;
2230                                         target->backoff.times++;
2231                                 }
2232                                 LOG_USER("Polling target %s failed, GDB will be halted. Polling again in %dms",
2233                                                 target_name(target),
2234                                                 target->backoff.times * polling_interval);
2235
2236                                 /* Tell GDB to halt the debugger. This allows the user to
2237                                  * run monitor commands to handle the situation.
2238                                  */
2239                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2240                                 return retval;
2241                         }
2242                         /* Since we succeeded, we reset backoff count */
2243                         if (target->backoff.times > 0)
2244                                 LOG_USER("Polling target %s succeeded again", target_name(target));
2245                         target->backoff.times = 0;
2246                 }
2247         }
2248
2249         return retval;
2250 }
2251
2252 COMMAND_HANDLER(handle_reg_command)
2253 {
2254         struct target *target;
2255         struct reg *reg = NULL;
2256         unsigned count = 0;
2257         char *value;
2258
2259         LOG_DEBUG("-");
2260
2261         target = get_current_target(CMD_CTX);
2262
2263         /* list all available registers for the current target */
2264         if (CMD_ARGC == 0) {
2265                 struct reg_cache *cache = target->reg_cache;
2266
2267                 count = 0;
2268                 while (cache) {
2269                         unsigned i;
2270
2271                         command_print(CMD_CTX, "===== %s", cache->name);
2272
2273                         for (i = 0, reg = cache->reg_list;
2274                                         i < cache->num_regs;
2275                                         i++, reg++, count++) {
2276                                 /* only print cached values if they are valid */
2277                                 if (reg->valid) {
2278                                         value = buf_to_str(reg->value,
2279                                                         reg->size, 16);
2280                                         command_print(CMD_CTX,
2281                                                         "(%i) %s (/%" PRIu32 "): 0x%s%s",
2282                                                         count, reg->name,
2283                                                         reg->size, value,
2284                                                         reg->dirty
2285                                                                 ? " (dirty)"
2286                                                                 : "");
2287                                         free(value);
2288                                 } else {
2289                                         command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2290                                                           count, reg->name,
2291                                                           reg->size) ;
2292                                 }
2293                         }
2294                         cache = cache->next;
2295                 }
2296
2297                 return ERROR_OK;
2298         }
2299
2300         /* access a single register by its ordinal number */
2301         if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2302                 unsigned num;
2303                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2304
2305                 struct reg_cache *cache = target->reg_cache;
2306                 count = 0;
2307                 while (cache) {
2308                         unsigned i;
2309                         for (i = 0; i < cache->num_regs; i++) {
2310                                 if (count++ == num) {
2311                                         reg = &cache->reg_list[i];
2312                                         break;
2313                                 }
2314                         }
2315                         if (reg)
2316                                 break;
2317                         cache = cache->next;
2318                 }
2319
2320                 if (!reg) {
2321                         command_print(CMD_CTX, "%i is out of bounds, the current target "
2322                                         "has only %i registers (0 - %i)", num, count, count - 1);
2323                         return ERROR_OK;
2324                 }
2325         } else {
2326                 /* access a single register by its name */
2327                 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2328
2329                 if (!reg) {
2330                         command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2331                         return ERROR_OK;
2332                 }
2333         }
2334
2335         assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2336
2337         /* display a register */
2338         if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2339                         && (CMD_ARGV[1][0] <= '9')))) {
2340                 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2341                         reg->valid = 0;
2342
2343                 if (reg->valid == 0)
2344                         reg->type->get(reg);
2345                 value = buf_to_str(reg->value, reg->size, 16);
2346                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2347                 free(value);
2348                 return ERROR_OK;
2349         }
2350
2351         /* set register value */
2352         if (CMD_ARGC == 2) {
2353                 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2354                 if (buf == NULL)
2355                         return ERROR_FAIL;
2356                 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2357
2358                 reg->type->set(reg, buf);
2359
2360                 value = buf_to_str(reg->value, reg->size, 16);
2361                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2362                 free(value);
2363
2364                 free(buf);
2365
2366                 return ERROR_OK;
2367         }
2368
2369         return ERROR_COMMAND_SYNTAX_ERROR;
2370 }
2371
2372 COMMAND_HANDLER(handle_poll_command)
2373 {
2374         int retval = ERROR_OK;
2375         struct target *target = get_current_target(CMD_CTX);
2376
2377         if (CMD_ARGC == 0) {
2378                 command_print(CMD_CTX, "background polling: %s",
2379                                 jtag_poll_get_enabled() ? "on" : "off");
2380                 command_print(CMD_CTX, "TAP: %s (%s)",
2381                                 target->tap->dotted_name,
2382                                 target->tap->enabled ? "enabled" : "disabled");
2383                 if (!target->tap->enabled)
2384                         return ERROR_OK;
2385                 retval = target_poll(target);
2386                 if (retval != ERROR_OK)
2387                         return retval;
2388                 retval = target_arch_state(target);
2389                 if (retval != ERROR_OK)
2390                         return retval;
2391         } else if (CMD_ARGC == 1) {
2392                 bool enable;
2393                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2394                 jtag_poll_set_enabled(enable);
2395         } else
2396                 return ERROR_COMMAND_SYNTAX_ERROR;
2397
2398         return retval;
2399 }
2400
2401 COMMAND_HANDLER(handle_wait_halt_command)
2402 {
2403         if (CMD_ARGC > 1)
2404                 return ERROR_COMMAND_SYNTAX_ERROR;
2405
2406         unsigned ms = 5000;
2407         if (1 == CMD_ARGC) {
2408                 int retval = parse_uint(CMD_ARGV[0], &ms);
2409                 if (ERROR_OK != retval)
2410                         return ERROR_COMMAND_SYNTAX_ERROR;
2411                 /* convert seconds (given) to milliseconds (needed) */
2412                 ms *= 1000;
2413         }
2414
2415         struct target *target = get_current_target(CMD_CTX);
2416         return target_wait_state(target, TARGET_HALTED, ms);
2417 }
2418
2419 /* wait for target state to change. The trick here is to have a low
2420  * latency for short waits and not to suck up all the CPU time
2421  * on longer waits.
2422  *
2423  * After 500ms, keep_alive() is invoked
2424  */
2425 int target_wait_state(struct target *target, enum target_state state, int ms)
2426 {
2427         int retval;
2428         long long then = 0, cur;
2429         int once = 1;
2430
2431         for (;;) {
2432                 retval = target_poll(target);
2433                 if (retval != ERROR_OK)
2434                         return retval;
2435                 if (target->state == state)
2436                         break;
2437                 cur = timeval_ms();
2438                 if (once) {
2439                         once = 0;
2440                         then = timeval_ms();
2441                         LOG_DEBUG("waiting for target %s...",
2442                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2443                 }
2444
2445                 if (cur-then > 500)
2446                         keep_alive();
2447
2448                 if ((cur-then) > ms) {
2449                         LOG_ERROR("timed out while waiting for target %s",
2450                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2451                         return ERROR_FAIL;
2452                 }
2453         }
2454
2455         return ERROR_OK;
2456 }
2457
2458 COMMAND_HANDLER(handle_halt_command)
2459 {
2460         LOG_DEBUG("-");
2461
2462         struct target *target = get_current_target(CMD_CTX);
2463         int retval = target_halt(target);
2464         if (ERROR_OK != retval)
2465                 return retval;
2466
2467         if (CMD_ARGC == 1) {
2468                 unsigned wait_local;
2469                 retval = parse_uint(CMD_ARGV[0], &wait_local);
2470                 if (ERROR_OK != retval)
2471                         return ERROR_COMMAND_SYNTAX_ERROR;
2472                 if (!wait_local)
2473                         return ERROR_OK;
2474         }
2475
2476         return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2477 }
2478
2479 COMMAND_HANDLER(handle_soft_reset_halt_command)
2480 {
2481         struct target *target = get_current_target(CMD_CTX);
2482
2483         LOG_USER("requesting target halt and executing a soft reset");
2484
2485         target_soft_reset_halt(target);
2486
2487         return ERROR_OK;
2488 }
2489
2490 COMMAND_HANDLER(handle_reset_command)
2491 {
2492         if (CMD_ARGC > 1)
2493                 return ERROR_COMMAND_SYNTAX_ERROR;
2494
2495         enum target_reset_mode reset_mode = RESET_RUN;
2496         if (CMD_ARGC == 1) {
2497                 const Jim_Nvp *n;
2498                 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2499                 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
2500                         return ERROR_COMMAND_SYNTAX_ERROR;
2501                 reset_mode = n->value;
2502         }
2503
2504         /* reset *all* targets */
2505         return target_process_reset(CMD_CTX, reset_mode);
2506 }
2507
2508
2509 COMMAND_HANDLER(handle_resume_command)
2510 {
2511         int current = 1;
2512         if (CMD_ARGC > 1)
2513                 return ERROR_COMMAND_SYNTAX_ERROR;
2514
2515         struct target *target = get_current_target(CMD_CTX);
2516
2517         /* with no CMD_ARGV, resume from current pc, addr = 0,
2518          * with one arguments, addr = CMD_ARGV[0],
2519          * handle breakpoints, not debugging */
2520         uint32_t addr = 0;
2521         if (CMD_ARGC == 1) {
2522                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2523                 current = 0;
2524         }
2525
2526         return target_resume(target, current, addr, 1, 0);
2527 }
2528
2529 COMMAND_HANDLER(handle_step_command)
2530 {
2531         if (CMD_ARGC > 1)
2532                 return ERROR_COMMAND_SYNTAX_ERROR;
2533
2534         LOG_DEBUG("-");
2535
2536         /* with no CMD_ARGV, step from current pc, addr = 0,
2537          * with one argument addr = CMD_ARGV[0],
2538          * handle breakpoints, debugging */
2539         uint32_t addr = 0;
2540         int current_pc = 1;
2541         if (CMD_ARGC == 1) {
2542                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2543                 current_pc = 0;
2544         }
2545
2546         struct target *target = get_current_target(CMD_CTX);
2547
2548         return target->type->step(target, current_pc, addr, 1);
2549 }
2550
2551 static void handle_md_output(struct command_context *cmd_ctx,
2552                 struct target *target, uint32_t address, unsigned size,
2553                 unsigned count, const uint8_t *buffer)
2554 {
2555         const unsigned line_bytecnt = 32;
2556         unsigned line_modulo = line_bytecnt / size;
2557
2558         char output[line_bytecnt * 4 + 1];
2559         unsigned output_len = 0;
2560
2561         const char *value_fmt;
2562         switch (size) {
2563         case 4:
2564                 value_fmt = "%8.8x ";
2565                 break;
2566         case 2:
2567                 value_fmt = "%4.4x ";
2568                 break;
2569         case 1:
2570                 value_fmt = "%2.2x ";
2571                 break;
2572         default:
2573                 /* "can't happen", caller checked */
2574                 LOG_ERROR("invalid memory read size: %u", size);
2575                 return;
2576         }
2577
2578         for (unsigned i = 0; i < count; i++) {
2579                 if (i % line_modulo == 0) {
2580                         output_len += snprintf(output + output_len,
2581                                         sizeof(output) - output_len,
2582                                         "0x%8.8x: ",
2583                                         (unsigned)(address + (i*size)));
2584                 }
2585
2586                 uint32_t value = 0;
2587                 const uint8_t *value_ptr = buffer + i * size;
2588                 switch (size) {
2589                 case 4:
2590                         value = target_buffer_get_u32(target, value_ptr);
2591                         break;
2592                 case 2:
2593                         value = target_buffer_get_u16(target, value_ptr);
2594                         break;
2595                 case 1:
2596                         value = *value_ptr;
2597                 }
2598                 output_len += snprintf(output + output_len,
2599                                 sizeof(output) - output_len,
2600                                 value_fmt, value);
2601
2602                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
2603                         command_print(cmd_ctx, "%s", output);
2604                         output_len = 0;
2605                 }
2606         }
2607 }
2608
2609 COMMAND_HANDLER(handle_md_command)
2610 {
2611         if (CMD_ARGC < 1)
2612                 return ERROR_COMMAND_SYNTAX_ERROR;
2613
2614         unsigned size = 0;
2615         switch (CMD_NAME[2]) {
2616         case 'w':
2617                 size = 4;
2618                 break;
2619         case 'h':
2620                 size = 2;
2621                 break;
2622         case 'b':
2623                 size = 1;
2624                 break;
2625         default:
2626                 return ERROR_COMMAND_SYNTAX_ERROR;
2627         }
2628
2629         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2630         int (*fn)(struct target *target,
2631                         uint32_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
2632         if (physical) {
2633                 CMD_ARGC--;
2634                 CMD_ARGV++;
2635                 fn = target_read_phys_memory;
2636         } else
2637                 fn = target_read_memory;
2638         if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2639                 return ERROR_COMMAND_SYNTAX_ERROR;
2640
2641         uint32_t address;
2642         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2643
2644         unsigned count = 1;
2645         if (CMD_ARGC == 2)
2646                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2647
2648         uint8_t *buffer = calloc(count, size);
2649
2650         struct target *target = get_current_target(CMD_CTX);
2651         int retval = fn(target, address, size, count, buffer);
2652         if (ERROR_OK == retval)
2653                 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2654
2655         free(buffer);
2656
2657         return retval;
2658 }
2659
2660 typedef int (*target_write_fn)(struct target *target,
2661                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
2662
2663 static int target_write_memory_fast(struct target *target,
2664                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
2665 {
2666         return target_write_buffer(target, address, size * count, buffer);
2667 }
2668
2669 static int target_fill_mem(struct target *target,
2670                 uint32_t address,
2671                 target_write_fn fn,
2672                 unsigned data_size,
2673                 /* value */
2674                 uint32_t b,
2675                 /* count */
2676                 unsigned c)
2677 {
2678         /* We have to write in reasonably large chunks to be able
2679          * to fill large memory areas with any sane speed */
2680         const unsigned chunk_size = 16384;
2681         uint8_t *target_buf = malloc(chunk_size * data_size);
2682         if (target_buf == NULL) {
2683                 LOG_ERROR("Out of memory");
2684                 return ERROR_FAIL;
2685         }
2686
2687         for (unsigned i = 0; i < chunk_size; i++) {
2688                 switch (data_size) {
2689                 case 4:
2690                         target_buffer_set_u32(target, target_buf + i * data_size, b);
2691                         break;
2692                 case 2:
2693                         target_buffer_set_u16(target, target_buf + i * data_size, b);
2694                         break;
2695                 case 1:
2696                         target_buffer_set_u8(target, target_buf + i * data_size, b);
2697                         break;
2698                 default:
2699                         exit(-1);
2700                 }
2701         }
2702
2703         int retval = ERROR_OK;
2704
2705         for (unsigned x = 0; x < c; x += chunk_size) {
2706                 unsigned current;
2707                 current = c - x;
2708                 if (current > chunk_size)
2709                         current = chunk_size;
2710                 retval = fn(target, address + x * data_size, data_size, current, target_buf);
2711                 if (retval != ERROR_OK)
2712                         break;
2713                 /* avoid GDB timeouts */
2714                 keep_alive();
2715         }
2716         free(target_buf);
2717
2718         return retval;
2719 }
2720
2721
2722 COMMAND_HANDLER(handle_mw_command)
2723 {
2724         if (CMD_ARGC < 2)
2725                 return ERROR_COMMAND_SYNTAX_ERROR;
2726         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2727         target_write_fn fn;
2728         if (physical) {
2729                 CMD_ARGC--;
2730                 CMD_ARGV++;
2731                 fn = target_write_phys_memory;
2732         } else
2733                 fn = target_write_memory_fast;
2734         if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2735                 return ERROR_COMMAND_SYNTAX_ERROR;
2736
2737         uint32_t address;
2738         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2739
2740         uint32_t value;
2741         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2742
2743         unsigned count = 1;
2744         if (CMD_ARGC == 3)
2745                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2746
2747         struct target *target = get_current_target(CMD_CTX);
2748         unsigned wordsize;
2749         switch (CMD_NAME[2]) {
2750                 case 'w':
2751                         wordsize = 4;
2752                         break;
2753                 case 'h':
2754                         wordsize = 2;
2755                         break;
2756                 case 'b':
2757                         wordsize = 1;
2758                         break;
2759                 default:
2760                         return ERROR_COMMAND_SYNTAX_ERROR;
2761         }
2762
2763         return target_fill_mem(target, address, fn, wordsize, value, count);
2764 }
2765
2766 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2767                 uint32_t *min_address, uint32_t *max_address)
2768 {
2769         if (CMD_ARGC < 1 || CMD_ARGC > 5)
2770                 return ERROR_COMMAND_SYNTAX_ERROR;
2771
2772         /* a base address isn't always necessary,
2773          * default to 0x0 (i.e. don't relocate) */
2774         if (CMD_ARGC >= 2) {
2775                 uint32_t addr;
2776                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2777                 image->base_address = addr;
2778                 image->base_address_set = 1;
2779         } else
2780                 image->base_address_set = 0;
2781
2782         image->start_address_set = 0;
2783
2784         if (CMD_ARGC >= 4)
2785                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2786         if (CMD_ARGC == 5) {
2787                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2788                 /* use size (given) to find max (required) */
2789                 *max_address += *min_address;
2790         }
2791
2792         if (*min_address > *max_address)
2793                 return ERROR_COMMAND_SYNTAX_ERROR;
2794
2795         return ERROR_OK;
2796 }
2797
2798 COMMAND_HANDLER(handle_load_image_command)
2799 {
2800         uint8_t *buffer;
2801         size_t buf_cnt;
2802         uint32_t image_size;
2803         uint32_t min_address = 0;
2804         uint32_t max_address = 0xffffffff;
2805         int i;
2806         struct image image;
2807
2808         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2809                         &image, &min_address, &max_address);
2810         if (ERROR_OK != retval)
2811                 return retval;
2812
2813         struct target *target = get_current_target(CMD_CTX);
2814
2815         struct duration bench;
2816         duration_start(&bench);
2817
2818         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2819                 return ERROR_OK;
2820
2821         image_size = 0x0;
2822         retval = ERROR_OK;
2823         for (i = 0; i < image.num_sections; i++) {
2824                 buffer = malloc(image.sections[i].size);
2825                 if (buffer == NULL) {
2826                         command_print(CMD_CTX,
2827                                                   "error allocating buffer for section (%d bytes)",
2828                                                   (int)(image.sections[i].size));
2829                         break;
2830                 }
2831
2832                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
2833                 if (retval != ERROR_OK) {
2834                         free(buffer);
2835                         break;
2836                 }
2837
2838                 uint32_t offset = 0;
2839                 uint32_t length = buf_cnt;
2840
2841                 /* DANGER!!! beware of unsigned comparision here!!! */
2842
2843                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
2844                                 (image.sections[i].base_address < max_address)) {
2845
2846                         if (image.sections[i].base_address < min_address) {
2847                                 /* clip addresses below */
2848                                 offset += min_address-image.sections[i].base_address;
2849                                 length -= offset;
2850                         }
2851
2852                         if (image.sections[i].base_address + buf_cnt > max_address)
2853                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2854
2855                         retval = target_write_buffer(target,
2856                                         image.sections[i].base_address + offset, length, buffer + offset);
2857                         if (retval != ERROR_OK) {
2858                                 free(buffer);
2859                                 break;
2860                         }
2861                         image_size += length;
2862                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
2863                                         (unsigned int)length,
2864                                         image.sections[i].base_address + offset);
2865                 }
2866
2867                 free(buffer);
2868         }
2869
2870         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
2871                 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
2872                                 "in %fs (%0.3f KiB/s)", image_size,
2873                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2874         }
2875
2876         image_close(&image);
2877
2878         return retval;
2879
2880 }
2881
2882 COMMAND_HANDLER(handle_dump_image_command)
2883 {
2884         struct fileio fileio;
2885         uint8_t *buffer;
2886         int retval, retvaltemp;
2887         uint32_t address, size;
2888         struct duration bench;
2889         struct target *target = get_current_target(CMD_CTX);
2890
2891         if (CMD_ARGC != 3)
2892                 return ERROR_COMMAND_SYNTAX_ERROR;
2893
2894         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
2895         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
2896
2897         uint32_t buf_size = (size > 4096) ? 4096 : size;
2898         buffer = malloc(buf_size);
2899         if (!buffer)
2900                 return ERROR_FAIL;
2901
2902         retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
2903         if (retval != ERROR_OK) {
2904                 free(buffer);
2905                 return retval;
2906         }
2907
2908         duration_start(&bench);
2909
2910         while (size > 0) {
2911                 size_t size_written;
2912                 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
2913                 retval = target_read_buffer(target, address, this_run_size, buffer);
2914                 if (retval != ERROR_OK)
2915                         break;
2916
2917                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2918                 if (retval != ERROR_OK)
2919                         break;
2920
2921                 size -= this_run_size;
2922                 address += this_run_size;
2923         }
2924
2925         free(buffer);
2926
2927         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
2928                 int filesize;
2929                 retval = fileio_size(&fileio, &filesize);
2930                 if (retval != ERROR_OK)
2931                         return retval;
2932                 command_print(CMD_CTX,
2933                                 "dumped %ld bytes in %fs (%0.3f KiB/s)", (long)filesize,
2934                                 duration_elapsed(&bench), duration_kbps(&bench, filesize));
2935         }
2936
2937         retvaltemp = fileio_close(&fileio);
2938         if (retvaltemp != ERROR_OK)
2939                 return retvaltemp;
2940
2941         return retval;
2942 }
2943
2944 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
2945 {
2946         uint8_t *buffer;
2947         size_t buf_cnt;
2948         uint32_t image_size;
2949         int i;
2950         int retval;
2951         uint32_t checksum = 0;
2952         uint32_t mem_checksum = 0;
2953
2954         struct image image;
2955
2956         struct target *target = get_current_target(CMD_CTX);
2957
2958         if (CMD_ARGC < 1)
2959                 return ERROR_COMMAND_SYNTAX_ERROR;
2960
2961         if (!target) {
2962                 LOG_ERROR("no target selected");
2963                 return ERROR_FAIL;
2964         }
2965
2966         struct duration bench;
2967         duration_start(&bench);
2968
2969         if (CMD_ARGC >= 2) {
2970                 uint32_t addr;
2971                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2972                 image.base_address = addr;
2973                 image.base_address_set = 1;
2974         } else {
2975                 image.base_address_set = 0;
2976                 image.base_address = 0x0;
2977         }
2978
2979         image.start_address_set = 0;
2980
2981         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
2982         if (retval != ERROR_OK)
2983                 return retval;
2984
2985         image_size = 0x0;
2986         int diffs = 0;
2987         retval = ERROR_OK;
2988         for (i = 0; i < image.num_sections; i++) {
2989                 buffer = malloc(image.sections[i].size);
2990                 if (buffer == NULL) {
2991                         command_print(CMD_CTX,
2992                                         "error allocating buffer for section (%d bytes)",
2993                                         (int)(image.sections[i].size));
2994                         break;
2995                 }
2996                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
2997                 if (retval != ERROR_OK) {
2998                         free(buffer);
2999                         break;
3000                 }
3001
3002                 if (verify) {
3003                         /* calculate checksum of image */
3004                         retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3005                         if (retval != ERROR_OK) {
3006                                 free(buffer);
3007                                 break;
3008                         }
3009
3010                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3011                         if (retval != ERROR_OK) {
3012                                 free(buffer);
3013                                 break;
3014                         }
3015
3016                         if (checksum != mem_checksum) {
3017                                 /* failed crc checksum, fall back to a binary compare */
3018                                 uint8_t *data;
3019
3020                                 if (diffs == 0)
3021                                         LOG_ERROR("checksum mismatch - attempting binary compare");
3022
3023                                 data = (uint8_t *)malloc(buf_cnt);
3024
3025                                 /* Can we use 32bit word accesses? */
3026                                 int size = 1;
3027                                 int count = buf_cnt;
3028                                 if ((count % 4) == 0) {
3029                                         size *= 4;
3030                                         count /= 4;
3031                                 }
3032                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3033                                 if (retval == ERROR_OK) {
3034                                         uint32_t t;
3035                                         for (t = 0; t < buf_cnt; t++) {
3036                                                 if (data[t] != buffer[t]) {
3037                                                         command_print(CMD_CTX,
3038                                                                                   "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3039                                                                                   diffs,
3040                                                                                   (unsigned)(t + image.sections[i].base_address),
3041                                                                                   data[t],
3042                                                                                   buffer[t]);
3043                                                         if (diffs++ >= 127) {
3044                                                                 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3045                                                                 free(data);
3046                                                                 free(buffer);
3047                                                                 goto done;
3048                                                         }
3049                                                 }
3050                                                 keep_alive();
3051                                         }
3052                                 }
3053                                 free(data);
3054                         }
3055                 } else {
3056                         command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
3057                                                   image.sections[i].base_address,
3058                                                   buf_cnt);
3059                 }
3060
3061                 free(buffer);
3062                 image_size += buf_cnt;
3063         }
3064         if (diffs > 0)
3065                 command_print(CMD_CTX, "No more differences found.");
3066 done:
3067         if (diffs > 0)
3068                 retval = ERROR_FAIL;
3069         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3070                 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3071                                 "in %fs (%0.3f KiB/s)", image_size,
3072                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3073         }
3074
3075         image_close(&image);
3076
3077         return retval;
3078 }
3079
3080 COMMAND_HANDLER(handle_verify_image_command)
3081 {
3082         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
3083 }
3084
3085 COMMAND_HANDLER(handle_test_image_command)
3086 {
3087         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
3088 }
3089
3090 static int handle_bp_command_list(struct command_context *cmd_ctx)
3091 {
3092         struct target *target = get_current_target(cmd_ctx);
3093         struct breakpoint *breakpoint = target->breakpoints;
3094         while (breakpoint) {
3095                 if (breakpoint->type == BKPT_SOFT) {
3096                         char *buf = buf_to_str(breakpoint->orig_instr,
3097                                         breakpoint->length, 16);
3098                         command_print(cmd_ctx, "IVA breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
3099                                         breakpoint->address,
3100                                         breakpoint->length,
3101                                         breakpoint->set, buf);
3102                         free(buf);
3103                 } else {
3104                         if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3105                                 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3106                                                         breakpoint->asid,
3107                                                         breakpoint->length, breakpoint->set);
3108                         else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3109                                 command_print(cmd_ctx, "Hybrid breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3110                                                         breakpoint->address,
3111                                                         breakpoint->length, breakpoint->set);
3112                                 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3113                                                         breakpoint->asid);
3114                         } else
3115                                 command_print(cmd_ctx, "Breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3116                                                         breakpoint->address,
3117                                                         breakpoint->length, breakpoint->set);
3118                 }
3119
3120                 breakpoint = breakpoint->next;
3121         }
3122         return ERROR_OK;
3123 }
3124
3125 static int handle_bp_command_set(struct command_context *cmd_ctx,
3126                 uint32_t addr, uint32_t asid, uint32_t length, int hw)
3127 {
3128         struct target *target = get_current_target(cmd_ctx);
3129
3130         if (asid == 0) {
3131                 int retval = breakpoint_add(target, addr, length, hw);
3132                 if (ERROR_OK == retval)
3133                         command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
3134                 else {
3135                         LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3136                         return retval;
3137                 }
3138         } else if (addr == 0) {
3139                 int retval = context_breakpoint_add(target, asid, length, hw);
3140                 if (ERROR_OK == retval)
3141                         command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3142                 else {
3143                         LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3144                         return retval;
3145                 }
3146         } else {
3147                 int retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3148                 if (ERROR_OK == retval)
3149                         command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3150                 else {
3151                         LOG_ERROR("Failure setting breakpoint, the same address is already used");
3152                         return retval;
3153                 }
3154         }
3155         return ERROR_OK;
3156 }
3157
3158 COMMAND_HANDLER(handle_bp_command)
3159 {
3160         uint32_t addr;
3161         uint32_t asid;
3162         uint32_t length;
3163         int hw = BKPT_SOFT;
3164
3165         switch (CMD_ARGC) {
3166                 case 0:
3167                         return handle_bp_command_list(CMD_CTX);
3168
3169                 case 2:
3170                         asid = 0;
3171                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3172                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3173                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3174
3175                 case 3:
3176                         if (strcmp(CMD_ARGV[2], "hw") == 0) {
3177                                 hw = BKPT_HARD;
3178                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3179
3180                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3181
3182                                 asid = 0;
3183                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3184                         } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
3185                                 hw = BKPT_HARD;
3186                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3187                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3188                                 addr = 0;
3189                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3190                         }
3191
3192                 case 4:
3193                         hw = BKPT_HARD;
3194                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3195                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3196                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3197                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3198
3199                 default:
3200                         return ERROR_COMMAND_SYNTAX_ERROR;
3201         }
3202 }
3203
3204 COMMAND_HANDLER(handle_rbp_command)
3205 {
3206         if (CMD_ARGC != 1)
3207                 return ERROR_COMMAND_SYNTAX_ERROR;
3208
3209         uint32_t addr;
3210         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3211
3212         struct target *target = get_current_target(CMD_CTX);
3213         breakpoint_remove(target, addr);
3214
3215         return ERROR_OK;
3216 }
3217
3218 COMMAND_HANDLER(handle_wp_command)
3219 {
3220         struct target *target = get_current_target(CMD_CTX);
3221
3222         if (CMD_ARGC == 0) {
3223                 struct watchpoint *watchpoint = target->watchpoints;
3224
3225                 while (watchpoint) {
3226                         command_print(CMD_CTX, "address: 0x%8.8" PRIx32
3227                                         ", len: 0x%8.8" PRIx32
3228                                         ", r/w/a: %i, value: 0x%8.8" PRIx32
3229                                         ", mask: 0x%8.8" PRIx32,
3230                                         watchpoint->address,
3231                                         watchpoint->length,
3232                                         (int)watchpoint->rw,
3233                                         watchpoint->value,
3234                                         watchpoint->mask);
3235                         watchpoint = watchpoint->next;
3236                 }
3237                 return ERROR_OK;
3238         }
3239
3240         enum watchpoint_rw type = WPT_ACCESS;
3241         uint32_t addr = 0;
3242         uint32_t length = 0;
3243         uint32_t data_value = 0x0;
3244         uint32_t data_mask = 0xffffffff;
3245
3246         switch (CMD_ARGC) {
3247         case 5:
3248                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3249                 /* fall through */
3250         case 4:
3251                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3252                 /* fall through */
3253         case 3:
3254                 switch (CMD_ARGV[2][0]) {
3255                 case 'r':
3256                         type = WPT_READ;
3257                         break;
3258                 case 'w':
3259                         type = WPT_WRITE;
3260                         break;
3261                 case 'a':
3262                         type = WPT_ACCESS;
3263                         break;
3264                 default:
3265                         LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3266                         return ERROR_COMMAND_SYNTAX_ERROR;
3267                 }
3268                 /* fall through */
3269         case 2:
3270                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3271                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3272                 break;
3273
3274         default:
3275                 return ERROR_COMMAND_SYNTAX_ERROR;
3276         }
3277
3278         int retval = watchpoint_add(target, addr, length, type,
3279                         data_value, data_mask);
3280         if (ERROR_OK != retval)
3281                 LOG_ERROR("Failure setting watchpoints");
3282
3283         return retval;
3284 }
3285
3286 COMMAND_HANDLER(handle_rwp_command)
3287 {
3288         if (CMD_ARGC != 1)
3289                 return ERROR_COMMAND_SYNTAX_ERROR;
3290
3291         uint32_t addr;
3292         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3293
3294         struct target *target = get_current_target(CMD_CTX);
3295         watchpoint_remove(target, addr);
3296
3297         return ERROR_OK;
3298 }
3299
3300 /**
3301  * Translate a virtual address to a physical address.
3302  *
3303  * The low-level target implementation must have logged a detailed error
3304  * which is forwarded to telnet/GDB session.
3305  */
3306 COMMAND_HANDLER(handle_virt2phys_command)
3307 {
3308         if (CMD_ARGC != 1)
3309                 return ERROR_COMMAND_SYNTAX_ERROR;
3310
3311         uint32_t va;
3312         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
3313         uint32_t pa;
3314
3315         struct target *target = get_current_target(CMD_CTX);
3316         int retval = target->type->virt2phys(target, va, &pa);
3317         if (retval == ERROR_OK)
3318                 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
3319
3320         return retval;
3321 }
3322
3323 static void writeData(FILE *f, const void *data, size_t len)
3324 {
3325         size_t written = fwrite(data, 1, len, f);
3326         if (written != len)
3327                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3328 }
3329
3330 static void writeLong(FILE *f, int l)
3331 {
3332         int i;
3333         for (i = 0; i < 4; i++) {
3334                 char c = (l >> (i*8))&0xff;
3335                 writeData(f, &c, 1);
3336         }
3337
3338 }
3339
3340 static void writeString(FILE *f, char *s)
3341 {
3342         writeData(f, s, strlen(s));
3343 }
3344
3345 /* Dump a gmon.out histogram file. */
3346 static void writeGmon(uint32_t *samples, uint32_t sampleNum, const char *filename)
3347 {
3348         uint32_t i;
3349         FILE *f = fopen(filename, "w");
3350         if (f == NULL)
3351                 return;
3352         writeString(f, "gmon");
3353         writeLong(f, 0x00000001); /* Version */
3354         writeLong(f, 0); /* padding */
3355         writeLong(f, 0); /* padding */
3356         writeLong(f, 0); /* padding */
3357
3358         uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
3359         writeData(f, &zero, 1);
3360
3361         /* figure out bucket size */
3362         uint32_t min = samples[0];
3363         uint32_t max = samples[0];
3364         for (i = 0; i < sampleNum; i++) {
3365                 if (min > samples[i])
3366                         min = samples[i];
3367                 if (max < samples[i])
3368                         max = samples[i];
3369         }
3370
3371         int addressSpace = (max - min + 1);
3372         assert(addressSpace >= 2);
3373
3374         static const uint32_t maxBuckets = 16 * 1024; /* maximum buckets. */
3375         uint32_t length = addressSpace;
3376         if (length > maxBuckets)
3377                 length = maxBuckets;
3378         int *buckets = malloc(sizeof(int)*length);
3379         if (buckets == NULL) {
3380                 fclose(f);
3381                 return;
3382         }
3383         memset(buckets, 0, sizeof(int) * length);
3384         for (i = 0; i < sampleNum; i++) {
3385                 uint32_t address = samples[i];
3386                 long long a = address - min;
3387                 long long b = length - 1;
3388                 long long c = addressSpace - 1;
3389                 int index_t = (a * b) / c; /* danger!!!! int32 overflows */
3390                 buckets[index_t]++;
3391         }
3392
3393         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3394         writeLong(f, min);                      /* low_pc */
3395         writeLong(f, max);                      /* high_pc */
3396         writeLong(f, length);           /* # of samples */
3397         writeLong(f, 100);                      /* KLUDGE! We lie, ca. 100Hz best case. */
3398         writeString(f, "seconds");
3399         for (i = 0; i < (15-strlen("seconds")); i++)
3400                 writeData(f, &zero, 1);
3401         writeString(f, "s");
3402
3403         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3404
3405         char *data = malloc(2 * length);
3406         if (data != NULL) {
3407                 for (i = 0; i < length; i++) {
3408                         int val;
3409                         val = buckets[i];
3410                         if (val > 65535)
3411                                 val = 65535;
3412                         data[i * 2] = val&0xff;
3413                         data[i * 2 + 1] = (val >> 8) & 0xff;
3414                 }
3415                 free(buckets);
3416                 writeData(f, data, length * 2);
3417                 free(data);
3418         } else
3419                 free(buckets);
3420
3421         fclose(f);
3422 }
3423
3424 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3425  * which will be used as a random sampling of PC */
3426 COMMAND_HANDLER(handle_profile_command)
3427 {
3428         struct target *target = get_current_target(CMD_CTX);
3429         struct timeval timeout, now;
3430
3431         gettimeofday(&timeout, NULL);
3432         if (CMD_ARGC != 2)
3433                 return ERROR_COMMAND_SYNTAX_ERROR;
3434         unsigned offset;
3435         COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], offset);
3436
3437         timeval_add_time(&timeout, offset, 0);
3438
3439         /**
3440          * @todo: Some cores let us sample the PC without the
3441          * annoying halt/resume step; for example, ARMv7 PCSR.
3442          * Provide a way to use that more efficient mechanism.
3443          */
3444
3445         command_print(CMD_CTX, "Starting profiling. Halting and resuming the target as often as we can...");
3446
3447         static const int maxSample = 10000;
3448         uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
3449         if (samples == NULL)
3450                 return ERROR_OK;
3451
3452         int numSamples = 0;
3453         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
3454         struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
3455
3456         int retval = ERROR_OK;
3457         for (;;) {
3458                 target_poll(target);
3459                 if (target->state == TARGET_HALTED) {
3460                         uint32_t t = *((uint32_t *)reg->value);
3461                         samples[numSamples++] = t;
3462                         /* current pc, addr = 0, do not handle breakpoints, not debugging */
3463                         retval = target_resume(target, 1, 0, 0, 0);
3464                         target_poll(target);
3465                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
3466                 } else if (target->state == TARGET_RUNNING) {
3467                         /* We want to quickly sample the PC. */
3468                         retval = target_halt(target);
3469                         if (retval != ERROR_OK) {
3470                                 free(samples);
3471                                 return retval;
3472                         }
3473                 } else {
3474                         command_print(CMD_CTX, "Target not halted or running");
3475                         retval = ERROR_OK;
3476                         break;
3477                 }
3478                 if (retval != ERROR_OK)
3479                         break;
3480
3481                 gettimeofday(&now, NULL);
3482                 if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec)
3483                                 && (now.tv_usec >= timeout.tv_usec))) {
3484                         command_print(CMD_CTX, "Profiling completed. %d samples.", numSamples);
3485                         retval = target_poll(target);
3486                         if (retval != ERROR_OK) {
3487                                 free(samples);
3488                                 return retval;
3489                         }
3490                         if (target->state == TARGET_HALTED) {
3491                                 /* current pc, addr = 0, do not handle
3492                                  * breakpoints, not debugging */
3493                                 target_resume(target, 1, 0, 0, 0);
3494                         }
3495                         retval = target_poll(target);
3496                         if (retval != ERROR_OK) {
3497                                 free(samples);
3498                                 return retval;
3499                         }
3500                         writeGmon(samples, numSamples, CMD_ARGV[1]);
3501                         command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3502                         break;
3503                 }
3504         }
3505         free(samples);
3506
3507         return retval;
3508 }
3509
3510 static int new_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t val)
3511 {
3512         char *namebuf;
3513         Jim_Obj *nameObjPtr, *valObjPtr;
3514         int result;
3515
3516         namebuf = alloc_printf("%s(%d)", varname, idx);
3517         if (!namebuf)
3518                 return JIM_ERR;
3519
3520         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3521         valObjPtr = Jim_NewIntObj(interp, val);
3522         if (!nameObjPtr || !valObjPtr) {
3523                 free(namebuf);
3524                 return JIM_ERR;
3525         }
3526
3527         Jim_IncrRefCount(nameObjPtr);
3528         Jim_IncrRefCount(valObjPtr);
3529         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3530         Jim_DecrRefCount(interp, nameObjPtr);
3531         Jim_DecrRefCount(interp, valObjPtr);
3532         free(namebuf);
3533         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3534         return result;
3535 }
3536
3537 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3538 {
3539         struct command_context *context;
3540         struct target *target;
3541
3542         context = current_command_context(interp);
3543         assert(context != NULL);
3544
3545         target = get_current_target(context);
3546         if (target == NULL) {
3547                 LOG_ERROR("mem2array: no current target");
3548                 return JIM_ERR;
3549         }
3550
3551         return target_mem2array(interp, target, argc - 1, argv + 1);
3552 }
3553
3554 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3555 {
3556         long l;
3557         uint32_t width;
3558         int len;
3559         uint32_t addr;
3560         uint32_t count;
3561         uint32_t v;
3562         const char *varname;
3563         int  n, e, retval;
3564         uint32_t i;
3565
3566         /* argv[1] = name of array to receive the data
3567          * argv[2] = desired width
3568          * argv[3] = memory address
3569          * argv[4] = count of times to read
3570          */
3571         if (argc != 4) {
3572                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3573                 return JIM_ERR;
3574         }
3575         varname = Jim_GetString(argv[0], &len);
3576         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3577
3578         e = Jim_GetLong(interp, argv[1], &l);
3579         width = l;
3580         if (e != JIM_OK)
3581                 return e;
3582
3583         e = Jim_GetLong(interp, argv[2], &l);
3584         addr = l;
3585         if (e != JIM_OK)
3586                 return e;
3587         e = Jim_GetLong(interp, argv[3], &l);
3588         len = l;
3589         if (e != JIM_OK)
3590                 return e;
3591         switch (width) {
3592                 case 8:
3593                         width = 1;
3594                         break;
3595                 case 16:
3596                         width = 2;
3597                         break;
3598                 case 32:
3599                         width = 4;
3600                         break;
3601                 default:
3602                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3603                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3604                         return JIM_ERR;
3605         }
3606         if (len == 0) {
3607                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3608                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3609                 return JIM_ERR;
3610         }
3611         if ((addr + (len * width)) < addr) {
3612                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3613                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3614                 return JIM_ERR;
3615         }
3616         /* absurd transfer size? */
3617         if (len > 65536) {
3618                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3619                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3620                 return JIM_ERR;
3621         }
3622
3623         if ((width == 1) ||
3624                 ((width == 2) && ((addr & 1) == 0)) ||
3625                 ((width == 4) && ((addr & 3) == 0))) {
3626                 /* all is well */
3627         } else {
3628                 char buf[100];
3629                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3630                 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3631                                 addr,
3632                                 width);
3633                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3634                 return JIM_ERR;
3635         }
3636
3637         /* Transfer loop */
3638
3639         /* index counter */
3640         n = 0;
3641
3642         size_t buffersize = 4096;
3643         uint8_t *buffer = malloc(buffersize);
3644         if (buffer == NULL)
3645                 return JIM_ERR;
3646
3647         /* assume ok */
3648         e = JIM_OK;
3649         while (len) {
3650                 /* Slurp... in buffer size chunks */
3651
3652                 count = len; /* in objects.. */
3653                 if (count > (buffersize / width))
3654                         count = (buffersize / width);
3655
3656                 retval = target_read_memory(target, addr, width, count, buffer);
3657                 if (retval != ERROR_OK) {
3658                         /* BOO !*/
3659                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3660                                           (unsigned int)addr,
3661                                           (int)width,
3662                                           (int)count);
3663                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3664                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3665                         e = JIM_ERR;
3666                         break;
3667                 } else {
3668                         v = 0; /* shut up gcc */
3669                         for (i = 0; i < count ; i++, n++) {
3670                                 switch (width) {
3671                                         case 4:
3672                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
3673                                                 break;
3674                                         case 2:
3675                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
3676                                                 break;
3677                                         case 1:
3678                                                 v = buffer[i] & 0x0ff;
3679                                                 break;
3680                                 }
3681                                 new_int_array_element(interp, varname, n, v);
3682                         }
3683                         len -= count;
3684                 }
3685         }
3686
3687         free(buffer);
3688
3689         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3690
3691         return e;
3692 }
3693
3694 static int get_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t *val)
3695 {
3696         char *namebuf;
3697         Jim_Obj *nameObjPtr, *valObjPtr;
3698         int result;
3699         long l;
3700
3701         namebuf = alloc_printf("%s(%d)", varname, idx);
3702         if (!namebuf)
3703                 return JIM_ERR;
3704
3705         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3706         if (!nameObjPtr) {
3707                 free(namebuf);
3708                 return JIM_ERR;
3709         }
3710
3711         Jim_IncrRefCount(nameObjPtr);
3712         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3713         Jim_DecrRefCount(interp, nameObjPtr);
3714         free(namebuf);
3715         if (valObjPtr == NULL)
3716                 return JIM_ERR;
3717
3718         result = Jim_GetLong(interp, valObjPtr, &l);
3719         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3720         *val = l;
3721         return result;
3722 }
3723
3724 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3725 {
3726         struct command_context *context;
3727         struct target *target;
3728
3729         context = current_command_context(interp);
3730         assert(context != NULL);
3731
3732         target = get_current_target(context);
3733         if (target == NULL) {
3734                 LOG_ERROR("array2mem: no current target");
3735                 return JIM_ERR;
3736         }
3737
3738         return target_array2mem(interp, target, argc-1, argv + 1);
3739 }
3740
3741 static int target_array2mem(Jim_Interp *interp, struct target *target,
3742                 int argc, Jim_Obj *const *argv)
3743 {
3744         long l;
3745         uint32_t width;
3746         int len;
3747         uint32_t addr;
3748         uint32_t count;
3749         uint32_t v;
3750         const char *varname;
3751         int  n, e, retval;
3752         uint32_t i;
3753
3754         /* argv[1] = name of array to get the data
3755          * argv[2] = desired width
3756          * argv[3] = memory address
3757          * argv[4] = count to write
3758          */
3759         if (argc != 4) {
3760                 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems");
3761                 return JIM_ERR;
3762         }
3763         varname = Jim_GetString(argv[0], &len);
3764         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3765
3766         e = Jim_GetLong(interp, argv[1], &l);
3767         width = l;
3768         if (e != JIM_OK)
3769                 return e;
3770
3771         e = Jim_GetLong(interp, argv[2], &l);
3772         addr = l;
3773         if (e != JIM_OK)
3774                 return e;
3775         e = Jim_GetLong(interp, argv[3], &l);
3776         len = l;
3777         if (e != JIM_OK)
3778                 return e;
3779         switch (width) {
3780                 case 8:
3781                         width = 1;
3782                         break;
3783                 case 16:
3784                         width = 2;
3785                         break;
3786                 case 32:
3787                         width = 4;
3788                         break;
3789                 default:
3790                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3791                         Jim_AppendStrings(interp, Jim_GetResult(interp),
3792                                         "Invalid width param, must be 8/16/32", NULL);
3793                         return JIM_ERR;
3794         }
3795         if (len == 0) {
3796                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3797                 Jim_AppendStrings(interp, Jim_GetResult(interp),
3798                                 "array2mem: zero width read?", NULL);
3799                 return JIM_ERR;
3800         }
3801         if ((addr + (len * width)) < addr) {
3802                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3803                 Jim_AppendStrings(interp, Jim_GetResult(interp),
3804                                 "array2mem: addr + len - wraps to zero?", NULL);
3805                 return JIM_ERR;
3806         }
3807         /* absurd transfer size? */
3808         if (len > 65536) {
3809                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3810                 Jim_AppendStrings(interp, Jim_GetResult(interp),
3811                                 "array2mem: absurd > 64K item request", NULL);
3812                 return JIM_ERR;
3813         }
3814
3815         if ((width == 1) ||
3816                 ((width == 2) && ((addr & 1) == 0)) ||
3817                 ((width == 4) && ((addr & 3) == 0))) {
3818                 /* all is well */
3819         } else {
3820                 char buf[100];
3821                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3822                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
3823                                 (unsigned int)addr,
3824                                 (int)width);
3825                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3826                 return JIM_ERR;
3827         }
3828
3829         /* Transfer loop */
3830
3831         /* index counter */
3832         n = 0;
3833         /* assume ok */
3834         e = JIM_OK;
3835
3836         size_t buffersize = 4096;
3837         uint8_t *buffer = malloc(buffersize);
3838         if (buffer == NULL)
3839                 return JIM_ERR;
3840
3841         while (len) {
3842                 /* Slurp... in buffer size chunks */
3843
3844                 count = len; /* in objects.. */
3845                 if (count > (buffersize / width))
3846                         count = (buffersize / width);
3847
3848                 v = 0; /* shut up gcc */
3849                 for (i = 0; i < count; i++, n++) {
3850                         get_int_array_element(interp, varname, n, &v);
3851                         switch (width) {
3852                         case 4:
3853                                 target_buffer_set_u32(target, &buffer[i * width], v);
3854                                 break;
3855                         case 2:
3856                                 target_buffer_set_u16(target, &buffer[i * width], v);
3857                                 break;
3858                         case 1:
3859                                 buffer[i] = v & 0x0ff;
3860                                 break;
3861                         }
3862                 }
3863                 len -= count;
3864
3865                 retval = target_write_memory(target, addr, width, count, buffer);
3866                 if (retval != ERROR_OK) {
3867                         /* BOO !*/
3868                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
3869                                           (unsigned int)addr,
3870                                           (int)width,
3871                                           (int)count);
3872                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3873                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3874                         e = JIM_ERR;
3875                         break;
3876                 }
3877         }
3878
3879         free(buffer);
3880
3881         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3882
3883         return e;
3884 }
3885
3886 /* FIX? should we propagate errors here rather than printing them
3887  * and continuing?
3888  */
3889 void target_handle_event(struct target *target, enum target_event e)
3890 {
3891         struct target_event_action *teap;
3892
3893         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3894                 if (teap->event == e) {
3895                         LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
3896                                            target->target_number,
3897                                            target_name(target),
3898                                            target_type_name(target),
3899                                            e,
3900                                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
3901                                            Jim_GetString(teap->body, NULL));
3902                         if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK) {
3903                                 Jim_MakeErrorMessage(teap->interp);
3904                                 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(teap->interp), NULL));
3905                         }
3906                 }
3907         }
3908 }
3909
3910 /**
3911  * Returns true only if the target has a handler for the specified event.
3912  */
3913 bool target_has_event_action(struct target *target, enum target_event event)
3914 {
3915         struct target_event_action *teap;
3916
3917         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3918                 if (teap->event == event)
3919                         return true;
3920         }
3921         return false;
3922 }
3923
3924 enum target_cfg_param {
3925         TCFG_TYPE,
3926         TCFG_EVENT,
3927         TCFG_WORK_AREA_VIRT,
3928         TCFG_WORK_AREA_PHYS,
3929         TCFG_WORK_AREA_SIZE,
3930         TCFG_WORK_AREA_BACKUP,
3931         TCFG_ENDIAN,
3932         TCFG_VARIANT,
3933         TCFG_COREID,
3934         TCFG_CHAIN_POSITION,
3935         TCFG_DBGBASE,
3936         TCFG_RTOS,
3937 };
3938
3939 static Jim_Nvp nvp_config_opts[] = {
3940         { .name = "-type",             .value = TCFG_TYPE },
3941         { .name = "-event",            .value = TCFG_EVENT },
3942         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
3943         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
3944         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
3945         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3946         { .name = "-endian" ,          .value = TCFG_ENDIAN },
3947         { .name = "-variant",          .value = TCFG_VARIANT },
3948         { .name = "-coreid",           .value = TCFG_COREID },
3949         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
3950         { .name = "-dbgbase",          .value = TCFG_DBGBASE },
3951         { .name = "-rtos",             .value = TCFG_RTOS },
3952         { .name = NULL, .value = -1 }
3953 };
3954
3955 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
3956 {
3957         Jim_Nvp *n;
3958         Jim_Obj *o;
3959         jim_wide w;
3960         char *cp;
3961         int e;
3962
3963         /* parse config or cget options ... */
3964         while (goi->argc > 0) {
3965                 Jim_SetEmptyResult(goi->interp);
3966                 /* Jim_GetOpt_Debug(goi); */
3967
3968                 if (target->type->target_jim_configure) {
3969                         /* target defines a configure function */
3970                         /* target gets first dibs on parameters */
3971                         e = (*(target->type->target_jim_configure))(target, goi);
3972                         if (e == JIM_OK) {
3973                                 /* more? */
3974                                 continue;
3975                         }
3976                         if (e == JIM_ERR) {
3977                                 /* An error */
3978                                 return e;
3979                         }
3980                         /* otherwise we 'continue' below */
3981                 }
3982                 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
3983                 if (e != JIM_OK) {
3984                         Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
3985                         return e;
3986                 }
3987                 switch (n->value) {
3988                 case TCFG_TYPE:
3989                         /* not setable */
3990                         if (goi->isconfigure) {
3991                                 Jim_SetResultFormatted(goi->interp,
3992                                                 "not settable: %s", n->name);
3993                                 return JIM_ERR;
3994                         } else {
3995 no_params:
3996                                 if (goi->argc != 0) {
3997                                         Jim_WrongNumArgs(goi->interp,
3998                                                         goi->argc, goi->argv,
3999                                                         "NO PARAMS");
4000                                         return JIM_ERR;
4001                                 }
4002                         }
4003                         Jim_SetResultString(goi->interp,
4004                                         target_type_name(target), -1);
4005                         /* loop for more */
4006                         break;
4007                 case TCFG_EVENT:
4008                         if (goi->argc == 0) {
4009                                 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
4010                                 return JIM_ERR;
4011                         }
4012
4013                         e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
4014                         if (e != JIM_OK) {
4015                                 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
4016                                 return e;
4017                         }
4018
4019                         if (goi->isconfigure) {
4020                                 if (goi->argc != 1) {
4021                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
4022                                         return JIM_ERR;
4023                                 }
4024                         } else {
4025                                 if (goi->argc != 0) {
4026                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
4027                                         return JIM_ERR;
4028                                 }
4029                         }
4030
4031                         {
4032                                 struct target_event_action *teap;
4033
4034                                 teap = target->event_action;
4035                                 /* replace existing? */
4036                                 while (teap) {
4037                                         if (teap->event == (enum target_event)n->value)
4038                                                 break;
4039                                         teap = teap->next;
4040                                 }
4041
4042                                 if (goi->isconfigure) {
4043                                         bool replace = true;
4044                                         if (teap == NULL) {
4045                                                 /* create new */
4046                                                 teap = calloc(1, sizeof(*teap));
4047                                                 replace = false;
4048                                         }
4049                                         teap->event = n->value;
4050                                         teap->interp = goi->interp;
4051                                         Jim_GetOpt_Obj(goi, &o);
4052                                         if (teap->body)
4053                                                 Jim_DecrRefCount(teap->interp, teap->body);
4054                                         teap->body  = Jim_DuplicateObj(goi->interp, o);
4055                                         /*
4056                                          * FIXME:
4057                                          *     Tcl/TK - "tk events" have a nice feature.
4058                                          *     See the "BIND" command.
4059                                          *    We should support that here.
4060                                          *     You can specify %X and %Y in the event code.
4061                                          *     The idea is: %T - target name.
4062                                          *     The idea is: %N - target number
4063                                          *     The idea is: %E - event name.
4064                                          */
4065                                         Jim_IncrRefCount(teap->body);
4066
4067                                         if (!replace) {
4068                                                 /* add to head of event list */
4069                                                 teap->next = target->event_action;
4070                                                 target->event_action = teap;
4071                                         }
4072                                         Jim_SetEmptyResult(goi->interp);
4073                                 } else {
4074                                         /* get */
4075                                         if (teap == NULL)
4076                                                 Jim_SetEmptyResult(goi->interp);
4077                                         else
4078                                                 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
4079                                 }
4080                         }
4081                         /* loop for more */
4082                         break;
4083
4084                 case TCFG_WORK_AREA_VIRT:
4085                         if (goi->isconfigure) {
4086                                 target_free_all_working_areas(target);
4087                                 e = Jim_GetOpt_Wide(goi, &w);
4088                                 if (e != JIM_OK)
4089                                         return e;
4090                                 target->working_area_virt = w;
4091                                 target->working_area_virt_spec = true;
4092                         } else {
4093                                 if (goi->argc != 0)
4094                                         goto no_params;
4095                         }
4096                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
4097                         /* loop for more */
4098                         break;
4099
4100                 case TCFG_WORK_AREA_PHYS:
4101                         if (goi->isconfigure) {
4102                                 target_free_all_working_areas(target);
4103                                 e = Jim_GetOpt_Wide(goi, &w);
4104                                 if (e != JIM_OK)
4105                                         return e;
4106                                 target->working_area_phys = w;
4107                                 target->working_area_phys_spec = true;
4108                         } else {
4109                                 if (goi->argc != 0)
4110                                         goto no_params;
4111                         }
4112                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
4113                         /* loop for more */
4114                         break;
4115
4116                 case TCFG_WORK_AREA_SIZE:
4117                         if (goi->isconfigure) {
4118                                 target_free_all_working_areas(target);
4119                                 e = Jim_GetOpt_Wide(goi, &w);
4120                                 if (e != JIM_OK)
4121                                         return e;
4122                                 target->working_area_size = w;
4123                         } else {
4124                                 if (goi->argc != 0)
4125                                         goto no_params;
4126                         }
4127                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4128                         /* loop for more */
4129                         break;
4130
4131                 case TCFG_WORK_AREA_BACKUP:
4132                         if (goi->isconfigure) {
4133                                 target_free_all_working_areas(target);
4134                                 e = Jim_GetOpt_Wide(goi, &w);
4135                                 if (e != JIM_OK)
4136                                         return e;
4137                                 /* make this exactly 1 or 0 */
4138                                 target->backup_working_area = (!!w);
4139                         } else {
4140                                 if (goi->argc != 0)
4141                                         goto no_params;
4142                         }
4143                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
4144                         /* loop for more e*/
4145                         break;
4146
4147
4148                 case TCFG_ENDIAN:
4149                         if (goi->isconfigure) {
4150                                 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
4151                                 if (e != JIM_OK) {
4152                                         Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
4153                                         return e;
4154                                 }
4155                                 target->endianness = n->value;
4156                         } else {
4157                                 if (goi->argc != 0)
4158                                         goto no_params;
4159                         }
4160                         n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4161                         if (n->name == NULL) {
4162                                 target->endianness = TARGET_LITTLE_ENDIAN;
4163                                 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4164                         }
4165                         Jim_SetResultString(goi->interp, n->name, -1);
4166                         /* loop for more */
4167                         break;
4168
4169                 case TCFG_VARIANT:
4170                         if (goi->isconfigure) {
4171                                 if (goi->argc < 1) {
4172                                         Jim_SetResultFormatted(goi->interp,
4173                                                                                    "%s ?STRING?",
4174                                                                                    n->name);
4175                                         return JIM_ERR;
4176                                 }
4177                                 if (target->variant)
4178                                         free((void *)(target->variant));
4179                                 e = Jim_GetOpt_String(goi, &cp, NULL);
4180                                 if (e != JIM_OK)
4181                                         return e;
4182                                 target->variant = strdup(cp);
4183                         } else {
4184                                 if (goi->argc != 0)
4185                                         goto no_params;
4186                         }
4187                         Jim_SetResultString(goi->interp, target->variant, -1);
4188                         /* loop for more */
4189                         break;
4190
4191                 case TCFG_COREID:
4192                         if (goi->isconfigure) {
4193                                 e = Jim_GetOpt_Wide(goi, &w);
4194                                 if (e != JIM_OK)
4195                                         return e;
4196                                 target->coreid = (int32_t)w;
4197                         } else {
4198                                 if (goi->argc != 0)
4199                                         goto no_params;
4200                         }
4201                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4202                         /* loop for more */
4203                         break;
4204
4205                 case TCFG_CHAIN_POSITION:
4206                         if (goi->isconfigure) {
4207                                 Jim_Obj *o_t;
4208                                 struct jtag_tap *tap;
4209                                 target_free_all_working_areas(target);
4210                                 e = Jim_GetOpt_Obj(goi, &o_t);
4211                                 if (e != JIM_OK)
4212                                         return e;
4213                                 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
4214                                 if (tap == NULL)
4215                                         return JIM_ERR;
4216                                 /* make this exactly 1 or 0 */
4217                                 target->tap = tap;
4218                         } else {
4219                                 if (goi->argc != 0)
4220                                         goto no_params;
4221                         }
4222                         Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
4223                         /* loop for more e*/
4224                         break;
4225                 case TCFG_DBGBASE:
4226                         if (goi->isconfigure) {
4227                                 e = Jim_GetOpt_Wide(goi, &w);
4228                                 if (e != JIM_OK)
4229                                         return e;
4230                                 target->dbgbase = (uint32_t)w;
4231                                 target->dbgbase_set = true;
4232                         } else {
4233                                 if (goi->argc != 0)
4234                                         goto no_params;
4235                         }
4236                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
4237                         /* loop for more */
4238                         break;
4239
4240                 case TCFG_RTOS:
4241                         /* RTOS */
4242                         {
4243                                 int result = rtos_create(goi, target);
4244                                 if (result != JIM_OK)
4245                                         return result;
4246                         }
4247                         /* loop for more */
4248                         break;
4249                 }
4250         } /* while (goi->argc) */
4251
4252
4253                 /* done - we return */
4254         return JIM_OK;
4255 }
4256
4257 static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
4258 {
4259         Jim_GetOptInfo goi;
4260
4261         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4262         goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
4263         int need_args = 1 + goi.isconfigure;
4264         if (goi.argc < need_args) {
4265                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4266                         goi.isconfigure
4267                                 ? "missing: -option VALUE ..."
4268                                 : "missing: -option ...");
4269                 return JIM_ERR;
4270         }
4271         struct target *target = Jim_CmdPrivData(goi.interp);
4272         return target_configure(&goi, target);
4273 }
4274
4275 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4276 {
4277         const char *cmd_name = Jim_GetString(argv[0], NULL);
4278
4279         Jim_GetOptInfo goi;
4280         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4281
4282         if (goi.argc < 2 || goi.argc > 4) {
4283                 Jim_SetResultFormatted(goi.interp,
4284                                 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
4285                 return JIM_ERR;
4286         }
4287
4288         target_write_fn fn;
4289         fn = target_write_memory_fast;
4290
4291         int e;
4292         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4293                 /* consume it */
4294                 struct Jim_Obj *obj;
4295                 e = Jim_GetOpt_Obj(&goi, &obj);
4296                 if (e != JIM_OK)
4297                         return e;
4298
4299                 fn = target_write_phys_memory;
4300         }
4301
4302         jim_wide a;
4303         e = Jim_GetOpt_Wide(&goi, &a);
4304         if (e != JIM_OK)
4305                 return e;
4306
4307         jim_wide b;
4308         e = Jim_GetOpt_Wide(&goi, &b);
4309         if (e != JIM_OK)
4310                 return e;
4311
4312         jim_wide c = 1;
4313         if (goi.argc == 1) {
4314                 e = Jim_GetOpt_Wide(&goi, &c);
4315                 if (e != JIM_OK)
4316                         return e;
4317         }
4318
4319         /* all args must be consumed */
4320         if (goi.argc != 0)
4321                 return JIM_ERR;
4322
4323         struct target *target = Jim_CmdPrivData(goi.interp);
4324         unsigned data_size;
4325         if (strcasecmp(cmd_name, "mww") == 0)
4326                 data_size = 4;
4327         else if (strcasecmp(cmd_name, "mwh") == 0)
4328                 data_size = 2;
4329         else if (strcasecmp(cmd_name, "mwb") == 0)
4330                 data_size = 1;
4331         else {
4332                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4333                 return JIM_ERR;
4334         }
4335
4336         return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4337 }
4338
4339 /**
4340 *  @brief Reads an array of words/halfwords/bytes from target memory starting at specified address.
4341 *
4342 *  Usage: mdw [phys] <address> [<count>] - for 32 bit reads
4343 *         mdh [phys] <address> [<count>] - for 16 bit reads
4344 *         mdb [phys] <address> [<count>] - for  8 bit reads
4345 *
4346 *  Count defaults to 1.
4347 *
4348 *  Calls target_read_memory or target_read_phys_memory depending on
4349 *  the presence of the "phys" argument
4350 *  Reads the target memory in blocks of max. 32 bytes, and returns an array of ints formatted
4351 *  to int representation in base16.
4352 *  Also outputs read data in a human readable form using command_print
4353 *
4354 *  @param phys if present target_read_phys_memory will be used instead of target_read_memory
4355 *  @param address address where to start the read. May be specified in decimal or hex using the standard "0x" prefix
4356 *  @param count optional count parameter to read an array of values. If not specified, defaults to 1.
4357 *  @returns:  JIM_ERR on error or JIM_OK on success and sets the result string to an array of ascii formatted numbers
4358 *  on success, with [<count>] number of elements.
4359 *
4360 *  In case of little endian target:
4361 *      Example1: "mdw 0x00000000"  returns "10123456"
4362 *      Exmaple2: "mdh 0x00000000 1" returns "3456"
4363 *      Example3: "mdb 0x00000000" returns "56"
4364 *      Example4: "mdh 0x00000000 2" returns "3456 1012"
4365 *      Example5: "mdb 0x00000000 3" returns "56 34 12"
4366 **/
4367 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4368 {
4369         const char *cmd_name = Jim_GetString(argv[0], NULL);
4370
4371         Jim_GetOptInfo goi;
4372         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4373
4374         if ((goi.argc < 1) || (goi.argc > 3)) {
4375                 Jim_SetResultFormatted(goi.interp,
4376                                 "usage: %s [phys] <address> [<count>]", cmd_name);
4377                 return JIM_ERR;
4378         }
4379
4380         int (*fn)(struct target *target,
4381                         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
4382         fn = target_read_memory;
4383
4384         int e;
4385         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4386                 /* consume it */
4387                 struct Jim_Obj *obj;
4388                 e = Jim_GetOpt_Obj(&goi, &obj);
4389                 if (e != JIM_OK)
4390                         return e;
4391
4392                 fn = target_read_phys_memory;
4393         }
4394
4395         /* Read address parameter */
4396         jim_wide addr;
4397         e = Jim_GetOpt_Wide(&goi, &addr);
4398         if (e != JIM_OK)
4399                 return JIM_ERR;
4400
4401         /* If next parameter exists, read it out as the count parameter, if not, set it to 1 (default) */
4402         jim_wide count;
4403         if (goi.argc == 1) {
4404                 e = Jim_GetOpt_Wide(&goi, &count);
4405                 if (e != JIM_OK)
4406                         return JIM_ERR;
4407         } else
4408                 count = 1;
4409
4410         /* all args must be consumed */
4411         if (goi.argc != 0)
4412                 return JIM_ERR;
4413
4414         jim_wide dwidth = 1; /* shut up gcc */
4415         if (strcasecmp(cmd_name, "mdw") == 0)
4416                 dwidth = 4;
4417         else if (strcasecmp(cmd_name, "mdh") == 0)
4418                 dwidth = 2;
4419         else if (strcasecmp(cmd_name, "mdb") == 0)
4420                 dwidth = 1;
4421         else {
4422                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4423                 return JIM_ERR;
4424         }
4425
4426         /* convert count to "bytes" */
4427         int bytes = count * dwidth;
4428
4429         struct target *target = Jim_CmdPrivData(goi.interp);
4430         uint8_t  target_buf[32];
4431         jim_wide x, y, z;
4432         while (bytes > 0) {
4433                 y = (bytes < 16) ? bytes : 16; /* y = min(bytes, 16); */
4434
4435                 /* Try to read out next block */
4436                 e = fn(target, addr, dwidth, y / dwidth, target_buf);
4437
4438                 if (e != ERROR_OK) {
4439                         Jim_SetResultFormatted(interp, "error reading target @ 0x%08lx", (long)addr);
4440                         return JIM_ERR;
4441                 }
4442
4443                 command_print_sameline(NULL, "0x%08x ", (int)(addr));
4444                 switch (dwidth) {
4445                 case 4:
4446                         for (x = 0; x < 16 && x < y; x += 4) {
4447                                 z = target_buffer_get_u32(target, &(target_buf[x]));
4448                                 command_print_sameline(NULL, "%08x ", (int)(z));
4449                         }
4450                         for (; (x < 16) ; x += 4)
4451                                 command_print_sameline(NULL, "         ");
4452                         break;
4453                 case 2:
4454                         for (x = 0; x < 16 && x < y; x += 2) {
4455                                 z = target_buffer_get_u16(target, &(target_buf[x]));
4456                                 command_print_sameline(NULL, "%04x ", (int)(z));
4457                         }
4458                         for (; (x < 16) ; x += 2)
4459                                 command_print_sameline(NULL, "     ");
4460                         break;
4461                 case 1:
4462                 default:
4463                         for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4464                                 z = target_buffer_get_u8(target, &(target_buf[x]));
4465                                 command_print_sameline(NULL, "%02x ", (int)(z));
4466                         }
4467                         for (; (x < 16) ; x += 1)
4468                                 command_print_sameline(NULL, "   ");
4469                         break;
4470                 }
4471                 /* ascii-ify the bytes */
4472                 for (x = 0 ; x < y ; x++) {
4473                         if ((target_buf[x] >= 0x20) &&
4474                                 (target_buf[x] <= 0x7e)) {
4475                                 /* good */
4476                         } else {
4477                                 /* smack it */
4478                                 target_buf[x] = '.';
4479                         }
4480                 }
4481                 /* space pad  */
4482                 while (x < 16) {
4483                         target_buf[x] = ' ';
4484                         x++;
4485                 }
4486                 /* terminate */
4487                 target_buf[16] = 0;
4488                 /* print - with a newline */
4489                 command_print_sameline(NULL, "%s\n", target_buf);
4490                 /* NEXT... */
4491                 bytes -= 16;
4492                 addr += 16;
4493         }
4494         return JIM_OK;
4495 }
4496
4497 static int jim_target_mem2array(Jim_Interp *interp,
4498                 int argc, Jim_Obj *const *argv)
4499 {
4500         struct target *target = Jim_CmdPrivData(interp);
4501         return target_mem2array(interp, target, argc - 1, argv + 1);
4502 }
4503
4504 static int jim_target_array2mem(Jim_Interp *interp,
4505                 int argc, Jim_Obj *const *argv)
4506 {
4507         struct target *target = Jim_CmdPrivData(interp);
4508         return target_array2mem(interp, target, argc - 1, argv + 1);
4509 }
4510
4511 static int jim_target_tap_disabled(Jim_Interp *interp)
4512 {
4513         Jim_SetResultFormatted(interp, "[TAP is disabled]");
4514         return JIM_ERR;
4515 }
4516
4517 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4518 {
4519         if (argc != 1) {
4520                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4521                 return JIM_ERR;
4522         }
4523         struct target *target = Jim_CmdPrivData(interp);
4524         if (!target->tap->enabled)
4525                 return jim_target_tap_disabled(interp);
4526
4527         int e = target->type->examine(target);
4528         if (e != ERROR_OK)
4529                 return JIM_ERR;
4530         return JIM_OK;
4531 }
4532
4533 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4534 {
4535         if (argc != 1) {
4536                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4537                 return JIM_ERR;
4538         }
4539         struct target *target = Jim_CmdPrivData(interp);
4540
4541         if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
4542                 return JIM_ERR;
4543
4544         return JIM_OK;
4545 }
4546
4547 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4548 {
4549         if (argc != 1) {
4550                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4551                 return JIM_ERR;
4552         }
4553         struct target *target = Jim_CmdPrivData(interp);
4554         if (!target->tap->enabled)
4555                 return jim_target_tap_disabled(interp);
4556
4557         int e;
4558         if (!(target_was_examined(target)))
4559                 e = ERROR_TARGET_NOT_EXAMINED;
4560         else
4561                 e = target->type->poll(target);
4562         if (e != ERROR_OK)
4563                 return JIM_ERR;
4564         return JIM_OK;
4565 }
4566
4567 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4568 {
4569         Jim_GetOptInfo goi;
4570         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4571
4572         if (goi.argc != 2) {
4573                 Jim_WrongNumArgs(interp, 0, argv,
4574                                 "([tT]|[fF]|assert|deassert) BOOL");
4575                 return JIM_ERR;
4576         }
4577
4578         Jim_Nvp *n;
4579         int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4580         if (e != JIM_OK) {
4581                 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4582                 return e;
4583         }
4584         /* the halt or not param */
4585         jim_wide a;
4586         e = Jim_GetOpt_Wide(&goi, &a);
4587         if (e != JIM_OK)
4588                 return e;
4589
4590         struct target *target = Jim_CmdPrivData(goi.interp);
4591         if (!target->tap->enabled)
4592                 return jim_target_tap_disabled(interp);
4593         if (!(target_was_examined(target))) {
4594                 LOG_ERROR("Target not examined yet");
4595                 return ERROR_TARGET_NOT_EXAMINED;
4596         }
4597         if (!target->type->assert_reset || !target->type->deassert_reset) {
4598                 Jim_SetResultFormatted(interp,
4599                                 "No target-specific reset for %s",
4600                                 target_name(target));
4601                 return JIM_ERR;
4602         }
4603         /* determine if we should halt or not. */
4604         target->reset_halt = !!a;
4605         /* When this happens - all workareas are invalid. */
4606         target_free_all_working_areas_restore(target, 0);
4607
4608         /* do the assert */
4609         if (n->value == NVP_ASSERT)
4610                 e = target->type->assert_reset(target);
4611         else
4612                 e = target->type->deassert_reset(target);
4613         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4614 }
4615
4616 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4617 {
4618         if (argc != 1) {
4619                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4620                 return JIM_ERR;
4621         }
4622         struct target *target = Jim_CmdPrivData(interp);
4623         if (!target->tap->enabled)
4624                 return jim_target_tap_disabled(interp);
4625         int e = target->type->halt(target);
4626         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4627 }
4628
4629 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4630 {
4631         Jim_GetOptInfo goi;
4632         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4633
4634         /* params:  <name>  statename timeoutmsecs */
4635         if (goi.argc != 2) {
4636                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4637                 Jim_SetResultFormatted(goi.interp,
4638                                 "%s <state_name> <timeout_in_msec>", cmd_name);
4639                 return JIM_ERR;
4640         }
4641
4642         Jim_Nvp *n;
4643         int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4644         if (e != JIM_OK) {
4645                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state, 1);
4646                 return e;
4647         }
4648         jim_wide a;
4649         e = Jim_GetOpt_Wide(&goi, &a);
4650         if (e != JIM_OK)
4651                 return e;
4652         struct target *target = Jim_CmdPrivData(interp);
4653         if (!target->tap->enabled)
4654                 return jim_target_tap_disabled(interp);
4655
4656         e = target_wait_state(target, n->value, a);
4657         if (e != ERROR_OK) {
4658                 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
4659                 Jim_SetResultFormatted(goi.interp,
4660                                 "target: %s wait %s fails (%#s) %s",
4661                                 target_name(target), n->name,
4662                                 eObj, target_strerror_safe(e));
4663                 Jim_FreeNewObj(interp, eObj);
4664                 return JIM_ERR;
4665         }
4666         return JIM_OK;
4667 }
4668 /* List for human, Events defined for this target.
4669  * scripts/programs should use 'name cget -event NAME'
4670  */
4671 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4672 {
4673         struct command_context *cmd_ctx = current_command_context(interp);
4674         assert(cmd_ctx != NULL);
4675
4676         struct target *target = Jim_CmdPrivData(interp);
4677         struct target_event_action *teap = target->event_action;
4678         command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4679                                    target->target_number,
4680                                    target_name(target));
4681         command_print(cmd_ctx, "%-25s | Body", "Event");
4682         command_print(cmd_ctx, "------------------------- | "
4683                         "----------------------------------------");
4684         while (teap) {
4685                 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
4686                 command_print(cmd_ctx, "%-25s | %s",
4687                                 opt->name, Jim_GetString(teap->body, NULL));
4688                 teap = teap->next;
4689         }
4690         command_print(cmd_ctx, "***END***");
4691         return JIM_OK;
4692 }
4693 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4694 {
4695         if (argc != 1) {
4696                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4697                 return JIM_ERR;
4698         }
4699         struct target *target = Jim_CmdPrivData(interp);
4700         Jim_SetResultString(interp, target_state_name(target), -1);
4701         return JIM_OK;
4702 }
4703 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4704 {
4705         Jim_GetOptInfo goi;
4706         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4707         if (goi.argc != 1) {
4708                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4709                 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
4710                 return JIM_ERR;
4711         }
4712         Jim_Nvp *n;
4713         int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4714         if (e != JIM_OK) {
4715                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4716                 return e;
4717         }
4718         struct target *target = Jim_CmdPrivData(interp);
4719         target_handle_event(target, n->value);
4720         return JIM_OK;
4721 }
4722
4723 static const struct command_registration target_instance_command_handlers[] = {
4724         {
4725                 .name = "configure",
4726                 .mode = COMMAND_CONFIG,
4727                 .jim_handler = jim_target_configure,
4728                 .help  = "configure a new target for use",
4729                 .usage = "[target_attribute ...]",
4730         },
4731         {
4732                 .name = "cget",
4733                 .mode = COMMAND_ANY,
4734                 .jim_handler = jim_target_configure,
4735                 .help  = "returns the specified target attribute",
4736                 .usage = "target_attribute",
4737         },
4738         {
4739                 .name = "mww",
4740                 .mode = COMMAND_EXEC,
4741                 .jim_handler = jim_target_mw,
4742                 .help = "Write 32-bit word(s) to target memory",
4743                 .usage = "address data [count]",
4744         },
4745         {
4746                 .name = "mwh",
4747                 .mode = COMMAND_EXEC,
4748                 .jim_handler = jim_target_mw,
4749                 .help = "Write 16-bit half-word(s) to target memory",
4750                 .usage = "address data [count]",
4751         },
4752         {
4753                 .name = "mwb",
4754                 .mode = COMMAND_EXEC,
4755                 .jim_handler = jim_target_mw,
4756                 .help = "Write byte(s) to target memory",
4757                 .usage = "address data [count]",
4758         },
4759         {
4760                 .name = "mdw",
4761                 .mode = COMMAND_EXEC,
4762                 .jim_handler = jim_target_md,
4763                 .help = "Display target memory as 32-bit words",
4764                 .usage = "address [count]",
4765         },
4766         {
4767                 .name = "mdh",
4768                 .mode = COMMAND_EXEC,
4769                 .jim_handler = jim_target_md,
4770                 .help = "Display target memory as 16-bit half-words",
4771                 .usage = "address [count]",
4772         },
4773         {
4774                 .name = "mdb",
4775                 .mode = COMMAND_EXEC,
4776                 .jim_handler = jim_target_md,
4777                 .help = "Display target memory as 8-bit bytes",
4778                 .usage = "address [count]",
4779         },
4780         {
4781                 .name = "array2mem",
4782                 .mode = COMMAND_EXEC,
4783                 .jim_handler = jim_target_array2mem,
4784                 .help = "Writes Tcl array of 8/16/32 bit numbers "
4785                         "to target memory",
4786                 .usage = "arrayname bitwidth address count",
4787         },
4788         {
4789                 .name = "mem2array",
4790                 .mode = COMMAND_EXEC,
4791                 .jim_handler = jim_target_mem2array,
4792                 .help = "Loads Tcl array of 8/16/32 bit numbers "
4793                         "from target memory",
4794                 .usage = "arrayname bitwidth address count",
4795         },
4796         {
4797                 .name = "eventlist",
4798                 .mode = COMMAND_EXEC,
4799                 .jim_handler = jim_target_event_list,
4800                 .help = "displays a table of events defined for this target",
4801         },
4802         {
4803                 .name = "curstate",
4804                 .mode = COMMAND_EXEC,
4805                 .jim_handler = jim_target_current_state,
4806                 .help = "displays the current state of this target",
4807         },
4808         {
4809                 .name = "arp_examine",
4810                 .mode = COMMAND_EXEC,
4811                 .jim_handler = jim_target_examine,
4812                 .help = "used internally for reset processing",
4813         },
4814         {
4815                 .name = "arp_halt_gdb",
4816                 .mode = COMMAND_EXEC,
4817                 .jim_handler = jim_target_halt_gdb,
4818                 .help = "used internally for reset processing to halt GDB",
4819         },
4820         {
4821                 .name = "arp_poll",
4822                 .mode = COMMAND_EXEC,
4823                 .jim_handler = jim_target_poll,
4824                 .help = "used internally for reset processing",
4825         },
4826         {
4827                 .name = "arp_reset",
4828                 .mode = COMMAND_EXEC,
4829                 .jim_handler = jim_target_reset,
4830                 .help = "used internally for reset processing",
4831         },
4832         {
4833                 .name = "arp_halt",
4834                 .mode = COMMAND_EXEC,
4835                 .jim_handler = jim_target_halt,
4836                 .help = "used internally for reset processing",
4837         },
4838         {
4839                 .name = "arp_waitstate",
4840                 .mode = COMMAND_EXEC,
4841                 .jim_handler = jim_target_wait_state,
4842                 .help = "used internally for reset processing",
4843         },
4844         {
4845                 .name = "invoke-event",
4846                 .mode = COMMAND_EXEC,
4847                 .jim_handler = jim_target_invoke_event,
4848                 .help = "invoke handler for specified event",
4849                 .usage = "event_name",
4850         },
4851         COMMAND_REGISTRATION_DONE
4852 };
4853
4854 static int target_create(Jim_GetOptInfo *goi)
4855 {
4856         Jim_Obj *new_cmd;
4857         Jim_Cmd *cmd;
4858         const char *cp;
4859         char *cp2;
4860         int e;
4861         int x;
4862         struct target *target;
4863         struct command_context *cmd_ctx;
4864
4865         cmd_ctx = current_command_context(goi->interp);
4866         assert(cmd_ctx != NULL);
4867
4868         if (goi->argc < 3) {
4869                 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
4870                 return JIM_ERR;
4871         }
4872
4873         /* COMMAND */
4874         Jim_GetOpt_Obj(goi, &new_cmd);
4875         /* does this command exist? */
4876         cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
4877         if (cmd) {
4878                 cp = Jim_GetString(new_cmd, NULL);
4879                 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
4880                 return JIM_ERR;
4881         }
4882
4883         /* TYPE */
4884         e = Jim_GetOpt_String(goi, &cp2, NULL);
4885         if (e != JIM_OK)
4886                 return e;
4887         cp = cp2;
4888         /* now does target type exist */
4889         for (x = 0 ; target_types[x] ; x++) {
4890                 if (0 == strcmp(cp, target_types[x]->name)) {
4891                         /* found */
4892                         break;
4893                 }
4894
4895                 /* check for deprecated name */
4896                 if (target_types[x]->deprecated_name) {
4897                         if (0 == strcmp(cp, target_types[x]->deprecated_name)) {
4898                                 /* found */
4899                                 LOG_WARNING("target name is deprecated use: \'%s\'", target_types[x]->name);
4900                                 break;
4901                         }
4902                 }
4903         }
4904         if (target_types[x] == NULL) {
4905                 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
4906                 for (x = 0 ; target_types[x] ; x++) {
4907                         if (target_types[x + 1]) {
4908                                 Jim_AppendStrings(goi->interp,
4909                                                                    Jim_GetResult(goi->interp),
4910                                                                    target_types[x]->name,
4911                                                                    ", ", NULL);
4912                         } else {
4913                                 Jim_AppendStrings(goi->interp,
4914                                                                    Jim_GetResult(goi->interp),
4915                                                                    " or ",
4916                                                                    target_types[x]->name, NULL);
4917                         }
4918                 }
4919                 return JIM_ERR;
4920         }
4921
4922         /* Create it */
4923         target = calloc(1, sizeof(struct target));
4924         /* set target number */
4925         target->target_number = new_target_number();
4926
4927         /* allocate memory for each unique target type */
4928         target->type = (struct target_type *)calloc(1, sizeof(struct target_type));
4929
4930         memcpy(target->type, target_types[x], sizeof(struct target_type));
4931
4932         /* will be set by "-endian" */
4933         target->endianness = TARGET_ENDIAN_UNKNOWN;
4934
4935         /* default to first core, override with -coreid */
4936         target->coreid = 0;
4937
4938         target->working_area        = 0x0;
4939         target->working_area_size   = 0x0;
4940         target->working_areas       = NULL;
4941         target->backup_working_area = 0;
4942
4943         target->state               = TARGET_UNKNOWN;
4944         target->debug_reason        = DBG_REASON_UNDEFINED;
4945         target->reg_cache           = NULL;
4946         target->breakpoints         = NULL;
4947         target->watchpoints         = NULL;
4948         target->next                = NULL;
4949         target->arch_info           = NULL;
4950
4951         target->display             = 1;
4952
4953         target->halt_issued                     = false;
4954
4955         /* initialize trace information */
4956         target->trace_info = malloc(sizeof(struct trace));
4957         target->trace_info->num_trace_points         = 0;
4958         target->trace_info->trace_points_size        = 0;
4959         target->trace_info->trace_points             = NULL;
4960         target->trace_info->trace_history_size       = 0;
4961         target->trace_info->trace_history            = NULL;
4962         target->trace_info->trace_history_pos        = 0;
4963         target->trace_info->trace_history_overflowed = 0;
4964
4965         target->dbgmsg          = NULL;
4966         target->dbg_msg_enabled = 0;
4967
4968         target->endianness = TARGET_ENDIAN_UNKNOWN;
4969
4970         target->rtos = NULL;
4971         target->rtos_auto_detect = false;
4972
4973         /* Do the rest as "configure" options */
4974         goi->isconfigure = 1;
4975         e = target_configure(goi, target);
4976
4977         if (target->tap == NULL) {
4978                 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
4979                 e = JIM_ERR;
4980         }
4981
4982         if (e != JIM_OK) {
4983                 free(target->type);
4984                 free(target);
4985                 return e;
4986         }
4987
4988         if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
4989                 /* default endian to little if not specified */
4990                 target->endianness = TARGET_LITTLE_ENDIAN;
4991         }
4992
4993         /* incase variant is not set */
4994         if (!target->variant)
4995                 target->variant = strdup("");
4996
4997         cp = Jim_GetString(new_cmd, NULL);
4998         target->cmd_name = strdup(cp);
4999
5000         /* create the target specific commands */
5001         if (target->type->commands) {
5002                 e = register_commands(cmd_ctx, NULL, target->type->commands);
5003                 if (ERROR_OK != e)
5004                         LOG_ERROR("unable to register '%s' commands", cp);
5005         }
5006         if (target->type->target_create)
5007                 (*(target->type->target_create))(target, goi->interp);
5008
5009         /* append to end of list */
5010         {
5011                 struct target **tpp;
5012                 tpp = &(all_targets);
5013                 while (*tpp)
5014                         tpp = &((*tpp)->next);
5015                 *tpp = target;
5016         }
5017
5018         /* now - create the new target name command */
5019         const const struct command_registration target_subcommands[] = {
5020                 {
5021                         .chain = target_instance_command_handlers,
5022                 },
5023                 {
5024                         .chain = target->type->commands,
5025                 },
5026                 COMMAND_REGISTRATION_DONE
5027         };
5028         const const struct command_registration target_commands[] = {
5029                 {
5030                         .name = cp,
5031                         .mode = COMMAND_ANY,
5032                         .help = "target command group",
5033                         .usage = "",
5034                         .chain = target_subcommands,
5035                 },
5036                 COMMAND_REGISTRATION_DONE
5037         };
5038         e = register_commands(cmd_ctx, NULL, target_commands);
5039         if (ERROR_OK != e)
5040                 return JIM_ERR;
5041
5042         struct command *c = command_find_in_context(cmd_ctx, cp);
5043         assert(c);
5044         command_set_handler_data(c, target);
5045
5046         return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
5047 }
5048
5049 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5050 {
5051         if (argc != 1) {
5052                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5053                 return JIM_ERR;
5054         }
5055         struct command_context *cmd_ctx = current_command_context(interp);
5056         assert(cmd_ctx != NULL);
5057
5058         Jim_SetResultString(interp, target_name(get_current_target(cmd_ctx)), -1);
5059         return JIM_OK;
5060 }
5061
5062 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5063 {
5064         if (argc != 1) {
5065                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5066                 return JIM_ERR;
5067         }
5068         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5069         for (unsigned x = 0; NULL != target_types[x]; x++) {
5070                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5071                         Jim_NewStringObj(interp, target_types[x]->name, -1));
5072         }
5073         return JIM_OK;
5074 }
5075
5076 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5077 {
5078         if (argc != 1) {
5079                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5080                 return JIM_ERR;
5081         }
5082         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5083         struct target *target = all_targets;
5084         while (target) {
5085                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5086                         Jim_NewStringObj(interp, target_name(target), -1));
5087                 target = target->next;
5088         }
5089         return JIM_OK;
5090 }
5091
5092 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5093 {
5094         int i;
5095         const char *targetname;
5096         int retval, len;
5097         struct target *target = (struct target *) NULL;
5098         struct target_list *head, *curr, *new;
5099         curr = (struct target_list *) NULL;
5100         head = (struct target_list *) NULL;
5101
5102         retval = 0;
5103         LOG_DEBUG("%d", argc);
5104         /* argv[1] = target to associate in smp
5105          * argv[2] = target to assoicate in smp
5106          * argv[3] ...
5107          */
5108
5109         for (i = 1; i < argc; i++) {
5110
5111                 targetname = Jim_GetString(argv[i], &len);
5112                 target = get_target(targetname);
5113                 LOG_DEBUG("%s ", targetname);
5114                 if (target) {
5115                         new = malloc(sizeof(struct target_list));
5116                         new->target = target;
5117                         new->next = (struct target_list *)NULL;
5118                         if (head == (struct target_list *)NULL) {
5119                                 head = new;
5120                                 curr = head;
5121                         } else {
5122                                 curr->next = new;
5123                                 curr = new;
5124                         }
5125                 }
5126         }
5127         /*  now parse the list of cpu and put the target in smp mode*/
5128         curr = head;
5129
5130         while (curr != (struct target_list *)NULL) {
5131                 target = curr->target;
5132                 target->smp = 1;
5133                 target->head = head;
5134                 curr = curr->next;
5135         }
5136
5137         if (target && target->rtos)
5138                 retval = rtos_smp_init(head->target);
5139
5140         return retval;
5141 }
5142
5143
5144 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5145 {
5146         Jim_GetOptInfo goi;
5147         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5148         if (goi.argc < 3) {
5149                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5150                         "<name> <target_type> [<target_options> ...]");
5151                 return JIM_ERR;
5152         }
5153         return target_create(&goi);
5154 }
5155
5156 static int jim_target_number(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5157 {
5158         Jim_GetOptInfo goi;
5159         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5160
5161         /* It's OK to remove this mechanism sometime after August 2010 or so */
5162         LOG_WARNING("don't use numbers as target identifiers; use names");
5163         if (goi.argc != 1) {
5164                 Jim_SetResultFormatted(goi.interp, "usage: target number <number>");
5165                 return JIM_ERR;
5166         }
5167         jim_wide w;
5168         int e = Jim_GetOpt_Wide(&goi, &w);
5169         if (e != JIM_OK)
5170                 return JIM_ERR;
5171
5172         struct target *target;
5173         for (target = all_targets; NULL != target; target = target->next) {
5174                 if (target->target_number != w)
5175                         continue;
5176
5177                 Jim_SetResultString(goi.interp, target_name(target), -1);
5178                 return JIM_OK;
5179         }
5180         {
5181                 Jim_Obj *wObj = Jim_NewIntObj(goi.interp, w);
5182                 Jim_SetResultFormatted(goi.interp,
5183                         "Target: number %#s does not exist", wObj);
5184                 Jim_FreeNewObj(interp, wObj);
5185         }
5186         return JIM_ERR;
5187 }
5188
5189 static int jim_target_count(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5190 {
5191         if (argc != 1) {
5192                 Jim_WrongNumArgs(interp, 1, argv, "<no parameters>");
5193                 return JIM_ERR;
5194         }
5195         unsigned count = 0;
5196         struct target *target = all_targets;
5197         while (NULL != target) {
5198                 target = target->next;
5199                 count++;
5200         }
5201         Jim_SetResult(interp, Jim_NewIntObj(interp, count));
5202         return JIM_OK;
5203 }
5204
5205 static const struct command_registration target_subcommand_handlers[] = {
5206         {
5207                 .name = "init",
5208                 .mode = COMMAND_CONFIG,
5209                 .handler = handle_target_init_command,
5210                 .help = "initialize targets",
5211         },
5212         {
5213                 .name = "create",
5214                 /* REVISIT this should be COMMAND_CONFIG ... */
5215                 .mode = COMMAND_ANY,
5216                 .jim_handler = jim_target_create,
5217                 .usage = "name type '-chain-position' name [options ...]",
5218                 .help = "Creates and selects a new target",
5219         },
5220         {
5221                 .name = "current",
5222                 .mode = COMMAND_ANY,
5223                 .jim_handler = jim_target_current,
5224                 .help = "Returns the currently selected target",
5225         },
5226         {
5227                 .name = "types",
5228                 .mode = COMMAND_ANY,
5229                 .jim_handler = jim_target_types,
5230                 .help = "Returns the available target types as "
5231                                 "a list of strings",
5232         },
5233         {
5234                 .name = "names",
5235                 .mode = COMMAND_ANY,
5236                 .jim_handler = jim_target_names,
5237                 .help = "Returns the names of all targets as a list of strings",
5238         },
5239         {
5240                 .name = "number",
5241                 .mode = COMMAND_ANY,
5242                 .jim_handler = jim_target_number,
5243                 .usage = "number",
5244                 .help = "Returns the name of the numbered target "
5245                         "(DEPRECATED)",
5246         },
5247         {
5248                 .name = "count",
5249                 .mode = COMMAND_ANY,
5250                 .jim_handler = jim_target_count,
5251                 .help = "Returns the number of targets as an integer "
5252                         "(DEPRECATED)",
5253         },
5254         {
5255                 .name = "smp",
5256                 .mode = COMMAND_ANY,
5257                 .jim_handler = jim_target_smp,
5258                 .usage = "targetname1 targetname2 ...",
5259                 .help = "gather several target in a smp list"
5260         },
5261
5262         COMMAND_REGISTRATION_DONE
5263 };
5264
5265 struct FastLoad {
5266         uint32_t address;
5267         uint8_t *data;
5268         int length;
5269
5270 };
5271
5272 static int fastload_num;
5273 static struct FastLoad *fastload;
5274
5275 static void free_fastload(void)
5276 {
5277         if (fastload != NULL) {
5278                 int i;
5279                 for (i = 0; i < fastload_num; i++) {
5280                         if (fastload[i].data)
5281                                 free(fastload[i].data);
5282                 }
5283                 free(fastload);
5284                 fastload = NULL;
5285         }
5286 }
5287
5288 COMMAND_HANDLER(handle_fast_load_image_command)
5289 {
5290         uint8_t *buffer;
5291         size_t buf_cnt;
5292         uint32_t image_size;
5293         uint32_t min_address = 0;
5294         uint32_t max_address = 0xffffffff;
5295         int i;
5296
5297         struct image image;
5298
5299         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
5300                         &image, &min_address, &max_address);
5301         if (ERROR_OK != retval)
5302                 return retval;
5303
5304         struct duration bench;
5305         duration_start(&bench);
5306
5307         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
5308         if (retval != ERROR_OK)
5309                 return retval;
5310
5311         image_size = 0x0;
5312         retval = ERROR_OK;
5313         fastload_num = image.num_sections;
5314         fastload = (struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
5315         if (fastload == NULL) {
5316                 command_print(CMD_CTX, "out of memory");
5317                 image_close(&image);
5318                 return ERROR_FAIL;
5319         }
5320         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
5321         for (i = 0; i < image.num_sections; i++) {
5322                 buffer = malloc(image.sections[i].size);
5323                 if (buffer == NULL) {
5324                         command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5325                                                   (int)(image.sections[i].size));
5326                         retval = ERROR_FAIL;
5327                         break;
5328                 }
5329
5330                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
5331                 if (retval != ERROR_OK) {
5332                         free(buffer);
5333                         break;
5334                 }
5335
5336                 uint32_t offset = 0;
5337                 uint32_t length = buf_cnt;
5338
5339                 /* DANGER!!! beware of unsigned comparision here!!! */
5340
5341                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
5342                                 (image.sections[i].base_address < max_address)) {
5343                         if (image.sections[i].base_address < min_address) {
5344                                 /* clip addresses below */
5345                                 offset += min_address-image.sections[i].base_address;
5346                                 length -= offset;
5347                         }
5348
5349                         if (image.sections[i].base_address + buf_cnt > max_address)
5350                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5351
5352                         fastload[i].address = image.sections[i].base_address + offset;
5353                         fastload[i].data = malloc(length);
5354                         if (fastload[i].data == NULL) {
5355                                 free(buffer);
5356                                 command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5357                                                           length);
5358                                 retval = ERROR_FAIL;
5359                                 break;
5360                         }
5361                         memcpy(fastload[i].data, buffer + offset, length);
5362                         fastload[i].length = length;
5363
5364                         image_size += length;
5365                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
5366                                                   (unsigned int)length,
5367                                                   ((unsigned int)(image.sections[i].base_address + offset)));
5368                 }
5369
5370                 free(buffer);
5371         }
5372
5373         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
5374                 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
5375                                 "in %fs (%0.3f KiB/s)", image_size,
5376                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5377
5378                 command_print(CMD_CTX,
5379                                 "WARNING: image has not been loaded to target!"
5380                                 "You can issue a 'fast_load' to finish loading.");
5381         }
5382
5383         image_close(&image);
5384
5385         if (retval != ERROR_OK)
5386                 free_fastload();
5387
5388         return retval;
5389 }
5390
5391 COMMAND_HANDLER(handle_fast_load_command)
5392 {
5393         if (CMD_ARGC > 0)
5394                 return ERROR_COMMAND_SYNTAX_ERROR;
5395         if (fastload == NULL) {
5396                 LOG_ERROR("No image in memory");
5397                 return ERROR_FAIL;
5398         }
5399         int i;
5400         int ms = timeval_ms();
5401         int size = 0;
5402         int retval = ERROR_OK;
5403         for (i = 0; i < fastload_num; i++) {
5404                 struct target *target = get_current_target(CMD_CTX);
5405                 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
5406                                           (unsigned int)(fastload[i].address),
5407                                           (unsigned int)(fastload[i].length));
5408                 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5409                 if (retval != ERROR_OK)
5410                         break;
5411                 size += fastload[i].length;
5412         }
5413         if (retval == ERROR_OK) {
5414                 int after = timeval_ms();
5415                 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5416         }
5417         return retval;
5418 }
5419
5420 static const struct command_registration target_command_handlers[] = {
5421         {
5422                 .name = "targets",
5423                 .handler = handle_targets_command,
5424                 .mode = COMMAND_ANY,
5425                 .help = "change current default target (one parameter) "
5426                         "or prints table of all targets (no parameters)",
5427                 .usage = "[target]",
5428         },
5429         {
5430                 .name = "target",
5431                 .mode = COMMAND_CONFIG,
5432                 .help = "configure target",
5433
5434                 .chain = target_subcommand_handlers,
5435         },
5436         COMMAND_REGISTRATION_DONE
5437 };
5438
5439 int target_register_commands(struct command_context *cmd_ctx)
5440 {
5441         return register_commands(cmd_ctx, NULL, target_command_handlers);
5442 }
5443
5444 static bool target_reset_nag = true;
5445
5446 bool get_target_reset_nag(void)
5447 {
5448         return target_reset_nag;
5449 }
5450
5451 COMMAND_HANDLER(handle_target_reset_nag)
5452 {
5453         return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5454                         &target_reset_nag, "Nag after each reset about options to improve "
5455                         "performance");
5456 }
5457
5458 COMMAND_HANDLER(handle_ps_command)
5459 {
5460         struct target *target = get_current_target(CMD_CTX);
5461         char *display;
5462         if (target->state != TARGET_HALTED) {
5463                 LOG_INFO("target not halted !!");
5464                 return ERROR_OK;
5465         }
5466
5467         if ((target->rtos) && (target->rtos->type)
5468                         && (target->rtos->type->ps_command)) {
5469                 display = target->rtos->type->ps_command(target);
5470                 command_print(CMD_CTX, "%s", display);
5471                 free(display);
5472                 return ERROR_OK;
5473         } else {
5474                 LOG_INFO("failed");
5475                 return ERROR_TARGET_FAILURE;
5476         }
5477 }
5478
5479 static const struct command_registration target_exec_command_handlers[] = {
5480         {
5481                 .name = "fast_load_image",
5482                 .handler = handle_fast_load_image_command,
5483                 .mode = COMMAND_ANY,
5484                 .help = "Load image into server memory for later use by "
5485                         "fast_load; primarily for profiling",
5486                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5487                         "[min_address [max_length]]",
5488         },
5489         {
5490                 .name = "fast_load",
5491                 .handler = handle_fast_load_command,
5492                 .mode = COMMAND_EXEC,
5493                 .help = "loads active fast load image to current target "
5494                         "- mainly for profiling purposes",
5495                 .usage = "",
5496         },
5497         {
5498                 .name = "profile",
5499                 .handler = handle_profile_command,
5500                 .mode = COMMAND_EXEC,
5501                 .usage = "seconds filename",
5502                 .help = "profiling samples the CPU PC",
5503         },
5504         /** @todo don't register virt2phys() unless target supports it */
5505         {
5506                 .name = "virt2phys",
5507                 .handler = handle_virt2phys_command,
5508                 .mode = COMMAND_ANY,
5509                 .help = "translate a virtual address into a physical address",
5510                 .usage = "virtual_address",
5511         },
5512         {
5513                 .name = "reg",
5514                 .handler = handle_reg_command,
5515                 .mode = COMMAND_EXEC,
5516                 .help = "display or set a register; with no arguments, "
5517                         "displays all registers and their values",
5518                 .usage = "[(register_name|register_number) [value]]",
5519         },
5520         {
5521                 .name = "poll",
5522                 .handler = handle_poll_command,
5523                 .mode = COMMAND_EXEC,
5524                 .help = "poll target state; or reconfigure background polling",
5525                 .usage = "['on'|'off']",
5526         },
5527         {
5528                 .name = "wait_halt",
5529                 .handler = handle_wait_halt_command,
5530                 .mode = COMMAND_EXEC,
5531                 .help = "wait up to the specified number of milliseconds "
5532                         "(default 5) for a previously requested halt",
5533                 .usage = "[milliseconds]",
5534         },
5535         {
5536                 .name = "halt",
5537                 .handler = handle_halt_command,
5538                 .mode = COMMAND_EXEC,
5539                 .help = "request target to halt, then wait up to the specified"
5540                         "number of milliseconds (default 5) for it to complete",
5541                 .usage = "[milliseconds]",
5542         },
5543         {
5544                 .name = "resume",
5545                 .handler = handle_resume_command,
5546                 .mode = COMMAND_EXEC,
5547                 .help = "resume target execution from current PC or address",
5548                 .usage = "[address]",
5549         },
5550         {
5551                 .name = "reset",
5552                 .handler = handle_reset_command,
5553                 .mode = COMMAND_EXEC,
5554                 .usage = "[run|halt|init]",
5555                 .help = "Reset all targets into the specified mode."
5556                         "Default reset mode is run, if not given.",
5557         },
5558         {
5559                 .name = "soft_reset_halt",
5560                 .handler = handle_soft_reset_halt_command,
5561                 .mode = COMMAND_EXEC,
5562                 .usage = "",
5563                 .help = "halt the target and do a soft reset",
5564         },
5565         {
5566                 .name = "step",
5567                 .handler = handle_step_command,
5568                 .mode = COMMAND_EXEC,
5569                 .help = "step one instruction from current PC or address",
5570                 .usage = "[address]",
5571         },
5572         {
5573                 .name = "mdw",
5574                 .handler = handle_md_command,
5575                 .mode = COMMAND_EXEC,
5576                 .help = "display memory words",
5577                 .usage = "['phys'] address [count]",
5578         },
5579         {
5580                 .name = "mdh",
5581                 .handler = handle_md_command,
5582                 .mode = COMMAND_EXEC,
5583                 .help = "display memory half-words",
5584                 .usage = "['phys'] address [count]",
5585         },
5586         {
5587                 .name = "mdb",
5588                 .handler = handle_md_command,
5589                 .mode = COMMAND_EXEC,
5590                 .help = "display memory bytes",
5591                 .usage = "['phys'] address [count]",
5592         },
5593         {
5594                 .name = "mww",
5595                 .handler = handle_mw_command,
5596                 .mode = COMMAND_EXEC,
5597                 .help = "write memory word",
5598                 .usage = "['phys'] address value [count]",
5599         },
5600         {
5601                 .name = "mwh",
5602                 .handler = handle_mw_command,
5603                 .mode = COMMAND_EXEC,
5604                 .help = "write memory half-word",
5605                 .usage = "['phys'] address value [count]",
5606         },
5607         {
5608                 .name = "mwb",
5609                 .handler = handle_mw_command,
5610                 .mode = COMMAND_EXEC,
5611                 .help = "write memory byte",
5612                 .usage = "['phys'] address value [count]",
5613         },
5614         {
5615                 .name = "bp",
5616                 .handler = handle_bp_command,
5617                 .mode = COMMAND_EXEC,
5618                 .help = "list or set hardware or software breakpoint",
5619                 .usage = "<address> [<asid>]<length> ['hw'|'hw_ctx']",
5620         },
5621         {
5622                 .name = "rbp",
5623                 .handler = handle_rbp_command,
5624                 .mode = COMMAND_EXEC,
5625                 .help = "remove breakpoint",
5626                 .usage = "address",
5627         },
5628         {
5629                 .name = "wp",
5630                 .handler = handle_wp_command,
5631                 .mode = COMMAND_EXEC,
5632                 .help = "list (no params) or create watchpoints",
5633                 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
5634         },
5635         {
5636                 .name = "rwp",
5637                 .handler = handle_rwp_command,
5638                 .mode = COMMAND_EXEC,
5639                 .help = "remove watchpoint",
5640                 .usage = "address",
5641         },
5642         {
5643                 .name = "load_image",
5644                 .handler = handle_load_image_command,
5645                 .mode = COMMAND_EXEC,
5646                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5647                         "[min_address] [max_length]",
5648         },
5649         {
5650                 .name = "dump_image",
5651                 .handler = handle_dump_image_command,
5652                 .mode = COMMAND_EXEC,
5653                 .usage = "filename address size",
5654         },
5655         {
5656                 .name = "verify_image",
5657                 .handler = handle_verify_image_command,
5658                 .mode = COMMAND_EXEC,
5659                 .usage = "filename [offset [type]]",
5660         },
5661         {
5662                 .name = "test_image",
5663                 .handler = handle_test_image_command,
5664                 .mode = COMMAND_EXEC,
5665                 .usage = "filename [offset [type]]",
5666         },
5667         {
5668                 .name = "mem2array",
5669                 .mode = COMMAND_EXEC,
5670                 .jim_handler = jim_mem2array,
5671                 .help = "read 8/16/32 bit memory and return as a TCL array "
5672                         "for script processing",
5673                 .usage = "arrayname bitwidth address count",
5674         },
5675         {
5676                 .name = "array2mem",
5677                 .mode = COMMAND_EXEC,
5678                 .jim_handler = jim_array2mem,
5679                 .help = "convert a TCL array to memory locations "
5680                         "and write the 8/16/32 bit values",
5681                 .usage = "arrayname bitwidth address count",
5682         },
5683         {
5684                 .name = "reset_nag",
5685                 .handler = handle_target_reset_nag,
5686                 .mode = COMMAND_ANY,
5687                 .help = "Nag after each reset about options that could have been "
5688                                 "enabled to improve performance. ",
5689                 .usage = "['enable'|'disable']",
5690         },
5691         {
5692                 .name = "ps",
5693                 .handler = handle_ps_command,
5694                 .mode = COMMAND_EXEC,
5695                 .help = "list all tasks ",
5696                 .usage = " ",
5697         },
5698
5699         COMMAND_REGISTRATION_DONE
5700 };
5701 static int target_register_user_commands(struct command_context *cmd_ctx)
5702 {
5703         int retval = ERROR_OK;
5704         retval = target_request_register_commands(cmd_ctx);
5705         if (retval != ERROR_OK)
5706                 return retval;
5707
5708         retval = trace_register_commands(cmd_ctx);
5709         if (retval != ERROR_OK)
5710                 return retval;
5711
5712
5713         return register_commands(cmd_ctx, NULL, target_exec_command_handlers);
5714 }