Final step in isolating target_type_s structure:
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007,2008 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   This program is free software; you can redistribute it and/or modify  *
18  *   it under the terms of the GNU General Public License as published by  *
19  *   the Free Software Foundation; either version 2 of the License, or     *
20  *   (at your option) any later version.                                   *
21  *                                                                         *
22  *   This program is distributed in the hope that it will be useful,       *
23  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
24  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
25  *   GNU General Public License for more details.                          *
26  *                                                                         *
27  *   You should have received a copy of the GNU General Public License     *
28  *   along with this program; if not, write to the                         *
29  *   Free Software Foundation, Inc.,                                       *
30  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "target.h"
37 #include "target_type.h"
38 #include "target_request.h"
39 #include "time_support.h"
40 #include "register.h"
41 #include "trace.h"
42 #include "image.h"
43 #include "jtag.h"
44
45 #include <inttypes.h>
46
47
48 static int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
49
50 static int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
51 static int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
52 static int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
53 static int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
54 static int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
55 static int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
56 static int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
57 static int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
58 static int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
59 static int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
60 static int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
61 static int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
62 static int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
63 static int handle_test_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
64 static int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
65 static int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
66 static int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
67 static int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
68 static int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc);
69 static int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
70 static int handle_fast_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
71 static int handle_fast_load_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
72
73 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
74 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
75 static int jim_target( Jim_Interp *interp, int argc, Jim_Obj *const *argv);
76
77 static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv);
78 static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv);
79
80 /* targets */
81 extern target_type_t arm7tdmi_target;
82 extern target_type_t arm720t_target;
83 extern target_type_t arm9tdmi_target;
84 extern target_type_t arm920t_target;
85 extern target_type_t arm966e_target;
86 extern target_type_t arm926ejs_target;
87 extern target_type_t feroceon_target;
88 extern target_type_t xscale_target;
89 extern target_type_t cortexm3_target;
90 extern target_type_t cortexa8_target;
91 extern target_type_t arm11_target;
92 extern target_type_t mips_m4k_target;
93 extern target_type_t avr_target;
94
95 target_type_t *target_types[] =
96 {
97         &arm7tdmi_target,
98         &arm9tdmi_target,
99         &arm920t_target,
100         &arm720t_target,
101         &arm966e_target,
102         &arm926ejs_target,
103         &feroceon_target,
104         &xscale_target,
105         &cortexm3_target,
106         &cortexa8_target,
107         &arm11_target,
108         &mips_m4k_target,
109         &avr_target,
110         NULL,
111 };
112
113 target_t *all_targets = NULL;
114 target_event_callback_t *target_event_callbacks = NULL;
115 target_timer_callback_t *target_timer_callbacks = NULL;
116
117 const Jim_Nvp nvp_assert[] = {
118         { .name = "assert", NVP_ASSERT },
119         { .name = "deassert", NVP_DEASSERT },
120         { .name = "T", NVP_ASSERT },
121         { .name = "F", NVP_DEASSERT },
122         { .name = "t", NVP_ASSERT },
123         { .name = "f", NVP_DEASSERT },
124         { .name = NULL, .value = -1 }
125 };
126
127 const Jim_Nvp nvp_error_target[] = {
128         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
129         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
130         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
131         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
132         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
133         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
134         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
135         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
136         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
137         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
138         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
139         { .value = -1, .name = NULL }
140 };
141
142 const char *target_strerror_safe( int err )
143 {
144         const Jim_Nvp *n;
145
146         n = Jim_Nvp_value2name_simple( nvp_error_target, err );
147         if( n->name == NULL ){
148                 return "unknown";
149         } else {
150                 return n->name;
151         }
152 }
153
154 static const Jim_Nvp nvp_target_event[] = {
155         { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
156         { .value = TARGET_EVENT_OLD_pre_resume         , .name = "old-pre_resume" },
157
158         { .value = TARGET_EVENT_EARLY_HALTED, .name = "early-halted" },
159         { .value = TARGET_EVENT_HALTED, .name = "halted" },
160         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
161         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
162         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
163
164         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
165         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
166
167         /* historical name */
168
169         { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
170
171         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
172         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
173         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
174         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
175         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
176         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
177         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
178         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
179         { .value = TARGET_EVENT_RESET_INIT , .name = "reset-init" },
180         { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
181
182         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
183         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
184
185         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
186         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
187
188         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
189         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
190
191         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
192         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
193
194         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
195         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
196
197         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
198         { .value = TARGET_EVENT_RESUMED     , .name = "resume-ok" },
199         { .value = TARGET_EVENT_RESUME_END  , .name = "resume-end" },
200
201         { .name = NULL, .value = -1 }
202 };
203
204 const Jim_Nvp nvp_target_state[] = {
205         { .name = "unknown", .value = TARGET_UNKNOWN },
206         { .name = "running", .value = TARGET_RUNNING },
207         { .name = "halted",  .value = TARGET_HALTED },
208         { .name = "reset",   .value = TARGET_RESET },
209         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
210         { .name = NULL, .value = -1 },
211 };
212
213 const Jim_Nvp nvp_target_debug_reason [] = {
214         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
215         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
216         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
217         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
218         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
219         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
220         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
221         { .name = NULL, .value = -1 },
222 };
223
224 const Jim_Nvp nvp_target_endian[] = {
225         { .name = "big",    .value = TARGET_BIG_ENDIAN },
226         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
227         { .name = "be",     .value = TARGET_BIG_ENDIAN },
228         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
229         { .name = NULL,     .value = -1 },
230 };
231
232 const Jim_Nvp nvp_reset_modes[] = {
233         { .name = "unknown", .value = RESET_UNKNOWN },
234         { .name = "run"    , .value = RESET_RUN },
235         { .name = "halt"   , .value = RESET_HALT },
236         { .name = "init"   , .value = RESET_INIT },
237         { .name = NULL     , .value = -1 },
238 };
239
240 static int max_target_number(void)
241 {
242         target_t *t;
243         int x;
244
245         x = -1;
246         t = all_targets;
247         while( t ){
248                 if( x < t->target_number ){
249                         x = (t->target_number)+1;
250                 }
251                 t = t->next;
252         }
253         return x;
254 }
255
256 /* determine the number of the new target */
257 static int new_target_number(void)
258 {
259         target_t *t;
260         int x;
261
262         /* number is 0 based */
263         x = -1;
264         t = all_targets;
265         while(t){
266                 if( x < t->target_number ){
267                         x = t->target_number;
268                 }
269                 t = t->next;
270         }
271         return x+1;
272 }
273
274 static int target_continous_poll = 1;
275
276 /* read a u32 from a buffer in target memory endianness */
277 u32 target_buffer_get_u32(target_t *target, const u8 *buffer)
278 {
279         if (target->endianness == TARGET_LITTLE_ENDIAN)
280                 return le_to_h_u32(buffer);
281         else
282                 return be_to_h_u32(buffer);
283 }
284
285 /* read a u16 from a buffer in target memory endianness */
286 u16 target_buffer_get_u16(target_t *target, const u8 *buffer)
287 {
288         if (target->endianness == TARGET_LITTLE_ENDIAN)
289                 return le_to_h_u16(buffer);
290         else
291                 return be_to_h_u16(buffer);
292 }
293
294 /* read a u8 from a buffer in target memory endianness */
295 u8 target_buffer_get_u8(target_t *target, const u8 *buffer)
296 {
297         return *buffer & 0x0ff;
298 }
299
300 /* write a u32 to a buffer in target memory endianness */
301 void target_buffer_set_u32(target_t *target, u8 *buffer, u32 value)
302 {
303         if (target->endianness == TARGET_LITTLE_ENDIAN)
304                 h_u32_to_le(buffer, value);
305         else
306                 h_u32_to_be(buffer, value);
307 }
308
309 /* write a u16 to a buffer in target memory endianness */
310 void target_buffer_set_u16(target_t *target, u8 *buffer, u16 value)
311 {
312         if (target->endianness == TARGET_LITTLE_ENDIAN)
313                 h_u16_to_le(buffer, value);
314         else
315                 h_u16_to_be(buffer, value);
316 }
317
318 /* write a u8 to a buffer in target memory endianness */
319 void target_buffer_set_u8(target_t *target, u8 *buffer, u8 value)
320 {
321         *buffer = value;
322 }
323
324 /* return a pointer to a configured target; id is name or number */
325 target_t *get_target(const char *id)
326 {
327         target_t *target;
328         char *endptr;
329         int num;
330
331         /* try as tcltarget name */
332         for (target = all_targets; target; target = target->next) {
333                 if (target->cmd_name == NULL)
334                         continue;
335                 if (strcmp(id, target->cmd_name) == 0)
336                         return target;
337         }
338
339         /* no match, try as number */
340         num = strtoul(id, &endptr, 0);
341         if (*endptr != 0)
342                 return NULL;
343
344         for (target = all_targets; target; target = target->next) {
345                 if (target->target_number == num)
346                         return target;
347         }
348
349         return NULL;
350 }
351
352 /* returns a pointer to the n-th configured target */
353 static target_t *get_target_by_num(int num)
354 {
355         target_t *target = all_targets;
356
357         while (target){
358                 if( target->target_number == num ){
359                         return target;
360                 }
361                 target = target->next;
362         }
363
364         return NULL;
365 }
366
367 int get_num_by_target(target_t *query_target)
368 {
369         return query_target->target_number;
370 }
371
372 target_t* get_current_target(command_context_t *cmd_ctx)
373 {
374         target_t *target = get_target_by_num(cmd_ctx->current_target);
375
376         if (target == NULL)
377         {
378                 LOG_ERROR("BUG: current_target out of bounds");
379                 exit(-1);
380         }
381
382         return target;
383 }
384
385 int target_poll(struct target_s *target)
386 {
387         /* We can't poll until after examine */
388         if (!target_was_examined(target))
389         {
390                 /* Fail silently lest we pollute the log */
391                 return ERROR_FAIL;
392         }
393         return target->type->poll(target);
394 }
395
396 int target_halt(struct target_s *target)
397 {
398         /* We can't poll until after examine */
399         if (!target_was_examined(target))
400         {
401                 LOG_ERROR("Target not examined yet");
402                 return ERROR_FAIL;
403         }
404         return target->type->halt(target);
405 }
406
407 int target_resume(struct target_s *target, int current, u32 address, int handle_breakpoints, int debug_execution)
408 {
409         int retval;
410
411         /* We can't poll until after examine */
412         if (!target_was_examined(target))
413         {
414                 LOG_ERROR("Target not examined yet");
415                 return ERROR_FAIL;
416         }
417
418         /* note that resume *must* be asynchronous. The CPU can halt before we poll. The CPU can
419          * even halt at the current PC as a result of a software breakpoint being inserted by (a bug?)
420          * the application.
421          */
422         if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
423                 return retval;
424
425         return retval;
426 }
427
428 int target_process_reset(struct command_context_s *cmd_ctx, enum target_reset_mode reset_mode)
429 {
430         char buf[100];
431         int retval;
432         Jim_Nvp *n;
433         n = Jim_Nvp_value2name_simple( nvp_reset_modes, reset_mode );
434         if( n->name == NULL ){
435                 LOG_ERROR("invalid reset mode");
436                 return ERROR_FAIL;
437         }
438
439         sprintf( buf, "ocd_process_reset %s", n->name );
440         retval = Jim_Eval( interp, buf );
441
442         if(retval != JIM_OK) {
443                 Jim_PrintErrorMessage(interp);
444                 return ERROR_FAIL;
445         }
446
447         /* We want any events to be processed before the prompt */
448         retval = target_call_timer_callbacks_now();
449
450         return retval;
451 }
452
453 static int default_virt2phys(struct target_s *target, u32 virtual, u32 *physical)
454 {
455         *physical = virtual;
456         return ERROR_OK;
457 }
458
459 static int default_mmu(struct target_s *target, int *enabled)
460 {
461         *enabled = 0;
462         return ERROR_OK;
463 }
464
465 static int default_examine(struct target_s *target)
466 {
467         target_set_examined(target);
468         return ERROR_OK;
469 }
470
471 int target_examine_one(struct target_s *target)
472 {
473         return target->type->examine(target);
474 }
475
476 /* Targets that correctly implement init+examine, i.e.
477  * no communication with target during init:
478  *
479  * XScale
480  */
481 int target_examine(void)
482 {
483         int retval = ERROR_OK;
484         target_t *target = all_targets;
485         while (target)
486         {
487                 if ((retval = target_examine_one(target)) != ERROR_OK)
488                         return retval;
489                 target = target->next;
490         }
491         return retval;
492 }
493 const char *target_get_name(struct target_s *target)
494 {
495         return target->type->name;
496 }
497
498 static int target_write_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
499 {
500         if (!target_was_examined(target))
501         {
502                 LOG_ERROR("Target not examined yet");
503                 return ERROR_FAIL;
504         }
505         return target->type->write_memory_imp(target, address, size, count, buffer);
506 }
507
508 static int target_read_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
509 {
510         if (!target_was_examined(target))
511         {
512                 LOG_ERROR("Target not examined yet");
513                 return ERROR_FAIL;
514         }
515         return target->type->read_memory_imp(target, address, size, count, buffer);
516 }
517
518 static int target_soft_reset_halt_imp(struct target_s *target)
519 {
520         if (!target_was_examined(target))
521         {
522                 LOG_ERROR("Target not examined yet");
523                 return ERROR_FAIL;
524         }
525         return target->type->soft_reset_halt_imp(target);
526 }
527
528 static int target_run_algorithm_imp(struct target_s *target, int num_mem_params, mem_param_t *mem_params, int num_reg_params, reg_param_t *reg_param, u32 entry_point, u32 exit_point, int timeout_ms, void *arch_info)
529 {
530         if (!target_was_examined(target))
531         {
532                 LOG_ERROR("Target not examined yet");
533                 return ERROR_FAIL;
534         }
535         return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
536 }
537
538 int target_read_memory(struct target_s *target,
539                 u32 address, u32 size, u32 count, u8 *buffer)
540 {
541         return target->type->read_memory(target, address, size, count, buffer);
542 }
543
544 int target_write_memory(struct target_s *target,
545                 u32 address, u32 size, u32 count, u8 *buffer)
546 {
547         return target->type->write_memory(target, address, size, count, buffer);
548 }
549 int target_bulk_write_memory(struct target_s *target,
550                 u32 address, u32 count, u8 *buffer)
551 {
552         return target->type->bulk_write_memory(target, address, count, buffer);
553 }
554
555 int target_add_breakpoint(struct target_s *target,
556                 struct breakpoint_s *breakpoint)
557 {
558         return target->type->add_breakpoint(target, breakpoint);
559 }
560 int target_remove_breakpoint(struct target_s *target,
561                 struct breakpoint_s *breakpoint)
562 {
563         return target->type->remove_breakpoint(target, breakpoint);
564 }
565
566 int target_add_watchpoint(struct target_s *target,
567                 struct watchpoint_s *watchpoint)
568 {
569         return target->type->add_watchpoint(target, watchpoint);
570 }
571 int target_remove_watchpoint(struct target_s *target,
572                 struct watchpoint_s *watchpoint)
573 {
574         return target->type->remove_watchpoint(target, watchpoint);
575 }
576
577 int target_get_gdb_reg_list(struct target_s *target,
578                 struct reg_s **reg_list[], int *reg_list_size)
579 {
580         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
581 }
582 int target_step(struct target_s *target,
583                 int current, u32 address, int handle_breakpoints)
584 {
585         return target->type->step(target, current, address, handle_breakpoints);
586 }
587
588
589 int target_run_algorithm(struct target_s *target,
590                 int num_mem_params, mem_param_t *mem_params,
591                 int num_reg_params, reg_param_t *reg_param,
592                 u32 entry_point, u32 exit_point,
593                 int timeout_ms, void *arch_info)
594 {
595         return target->type->run_algorithm(target,
596                         num_mem_params, mem_params, num_reg_params, reg_param,
597                         entry_point, exit_point, timeout_ms, arch_info);
598 }
599
600 /// @returns @c true if the target has been examined.
601 bool target_was_examined(struct target_s *target)
602 {
603         return target->type->examined;
604 }
605 /// Sets the @c examined flag for the given target.
606 void target_set_examined(struct target_s *target)
607 {
608         target->type->examined = true;
609 }
610 // Reset the @c examined flag for the given target.
611 void target_reset_examined(struct target_s *target)
612 {
613         target->type->examined = false;
614 }
615
616
617 int target_init(struct command_context_s *cmd_ctx)
618 {
619         target_t *target = all_targets;
620         int retval;
621
622         while (target)
623         {
624                 target_reset_examined(target);
625                 if (target->type->examine == NULL)
626                 {
627                         target->type->examine = default_examine;
628                 }
629
630                 if ((retval = target->type->init_target(cmd_ctx, target)) != ERROR_OK)
631                 {
632                         LOG_ERROR("target '%s' init failed", target_get_name(target));
633                         return retval;
634                 }
635
636                 /* Set up default functions if none are provided by target */
637                 if (target->type->virt2phys == NULL)
638                 {
639                         target->type->virt2phys = default_virt2phys;
640                 }
641                 target->type->virt2phys = default_virt2phys;
642                 /* a non-invasive way(in terms of patches) to add some code that
643                  * runs before the type->write/read_memory implementation
644                  */
645                 target->type->write_memory_imp = target->type->write_memory;
646                 target->type->write_memory = target_write_memory_imp;
647                 target->type->read_memory_imp = target->type->read_memory;
648                 target->type->read_memory = target_read_memory_imp;
649                 target->type->soft_reset_halt_imp = target->type->soft_reset_halt;
650                 target->type->soft_reset_halt = target_soft_reset_halt_imp;
651                 target->type->run_algorithm_imp = target->type->run_algorithm;
652                 target->type->run_algorithm = target_run_algorithm_imp;
653
654                 if (target->type->mmu == NULL)
655                 {
656                         target->type->mmu = default_mmu;
657                 }
658                 target = target->next;
659         }
660
661         if (all_targets)
662         {
663                 if((retval = target_register_user_commands(cmd_ctx)) != ERROR_OK)
664                         return retval;
665                 if((retval = target_register_timer_callback(handle_target, 100, 1, NULL)) != ERROR_OK)
666                         return retval;
667         }
668
669         return ERROR_OK;
670 }
671
672 int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
673 {
674         target_event_callback_t **callbacks_p = &target_event_callbacks;
675
676         if (callback == NULL)
677         {
678                 return ERROR_INVALID_ARGUMENTS;
679         }
680
681         if (*callbacks_p)
682         {
683                 while ((*callbacks_p)->next)
684                         callbacks_p = &((*callbacks_p)->next);
685                 callbacks_p = &((*callbacks_p)->next);
686         }
687
688         (*callbacks_p) = malloc(sizeof(target_event_callback_t));
689         (*callbacks_p)->callback = callback;
690         (*callbacks_p)->priv = priv;
691         (*callbacks_p)->next = NULL;
692
693         return ERROR_OK;
694 }
695
696 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
697 {
698         target_timer_callback_t **callbacks_p = &target_timer_callbacks;
699         struct timeval now;
700
701         if (callback == NULL)
702         {
703                 return ERROR_INVALID_ARGUMENTS;
704         }
705
706         if (*callbacks_p)
707         {
708                 while ((*callbacks_p)->next)
709                         callbacks_p = &((*callbacks_p)->next);
710                 callbacks_p = &((*callbacks_p)->next);
711         }
712
713         (*callbacks_p) = malloc(sizeof(target_timer_callback_t));
714         (*callbacks_p)->callback = callback;
715         (*callbacks_p)->periodic = periodic;
716         (*callbacks_p)->time_ms = time_ms;
717
718         gettimeofday(&now, NULL);
719         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
720         time_ms -= (time_ms % 1000);
721         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
722         if ((*callbacks_p)->when.tv_usec > 1000000)
723         {
724                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
725                 (*callbacks_p)->when.tv_sec += 1;
726         }
727
728         (*callbacks_p)->priv = priv;
729         (*callbacks_p)->next = NULL;
730
731         return ERROR_OK;
732 }
733
734 int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
735 {
736         target_event_callback_t **p = &target_event_callbacks;
737         target_event_callback_t *c = target_event_callbacks;
738
739         if (callback == NULL)
740         {
741                 return ERROR_INVALID_ARGUMENTS;
742         }
743
744         while (c)
745         {
746                 target_event_callback_t *next = c->next;
747                 if ((c->callback == callback) && (c->priv == priv))
748                 {
749                         *p = next;
750                         free(c);
751                         return ERROR_OK;
752                 }
753                 else
754                         p = &(c->next);
755                 c = next;
756         }
757
758         return ERROR_OK;
759 }
760
761 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
762 {
763         target_timer_callback_t **p = &target_timer_callbacks;
764         target_timer_callback_t *c = target_timer_callbacks;
765
766         if (callback == NULL)
767         {
768                 return ERROR_INVALID_ARGUMENTS;
769         }
770
771         while (c)
772         {
773                 target_timer_callback_t *next = c->next;
774                 if ((c->callback == callback) && (c->priv == priv))
775                 {
776                         *p = next;
777                         free(c);
778                         return ERROR_OK;
779                 }
780                 else
781                         p = &(c->next);
782                 c = next;
783         }
784
785         return ERROR_OK;
786 }
787
788 int target_call_event_callbacks(target_t *target, enum target_event event)
789 {
790         target_event_callback_t *callback = target_event_callbacks;
791         target_event_callback_t *next_callback;
792
793         if (event == TARGET_EVENT_HALTED)
794         {
795                 /* execute early halted first */
796                 target_call_event_callbacks(target, TARGET_EVENT_EARLY_HALTED);
797         }
798
799         LOG_DEBUG("target event %i (%s)",
800                           event,
801                           Jim_Nvp_value2name_simple( nvp_target_event, event )->name );
802
803         target_handle_event( target, event );
804
805         while (callback)
806         {
807                 next_callback = callback->next;
808                 callback->callback(target, event, callback->priv);
809                 callback = next_callback;
810         }
811
812         return ERROR_OK;
813 }
814
815 static int target_call_timer_callbacks_check_time(int checktime)
816 {
817         target_timer_callback_t *callback = target_timer_callbacks;
818         target_timer_callback_t *next_callback;
819         struct timeval now;
820
821         keep_alive();
822
823         gettimeofday(&now, NULL);
824
825         while (callback)
826         {
827                 next_callback = callback->next;
828
829                 if ((!checktime&&callback->periodic)||
830                                 (((now.tv_sec >= callback->when.tv_sec) && (now.tv_usec >= callback->when.tv_usec))
831                                                 || (now.tv_sec > callback->when.tv_sec)))
832                 {
833                         if(callback->callback != NULL)
834                         {
835                                 callback->callback(callback->priv);
836                                 if (callback->periodic)
837                                 {
838                                         int time_ms = callback->time_ms;
839                                         callback->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
840                                         time_ms -= (time_ms % 1000);
841                                         callback->when.tv_sec = now.tv_sec + time_ms / 1000;
842                                         if (callback->when.tv_usec > 1000000)
843                                         {
844                                                 callback->when.tv_usec = callback->when.tv_usec - 1000000;
845                                                 callback->when.tv_sec += 1;
846                                         }
847                                 }
848                                 else
849                                 {
850                                         int retval;
851                                         if((retval = target_unregister_timer_callback(callback->callback, callback->priv)) != ERROR_OK)
852                                                 return retval;
853                                 }
854                         }
855                 }
856
857                 callback = next_callback;
858         }
859
860         return ERROR_OK;
861 }
862
863 int target_call_timer_callbacks(void)
864 {
865         return target_call_timer_callbacks_check_time(1);
866 }
867
868 /* invoke periodic callbacks immediately */
869 int target_call_timer_callbacks_now(void)
870 {
871         return target_call_timer_callbacks_check_time(0);
872 }
873
874 int target_alloc_working_area(struct target_s *target, u32 size, working_area_t **area)
875 {
876         working_area_t *c = target->working_areas;
877         working_area_t *new_wa = NULL;
878
879         /* Reevaluate working area address based on MMU state*/
880         if (target->working_areas == NULL)
881         {
882                 int retval;
883                 int enabled;
884                 retval = target->type->mmu(target, &enabled);
885                 if (retval != ERROR_OK)
886                 {
887                         return retval;
888                 }
889                 if (enabled)
890                 {
891                         target->working_area = target->working_area_virt;
892                 }
893                 else
894                 {
895                         target->working_area = target->working_area_phys;
896                 }
897         }
898
899         /* only allocate multiples of 4 byte */
900         if (size % 4)
901         {
902                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes, padding");
903                 size = CEIL(size, 4);
904         }
905
906         /* see if there's already a matching working area */
907         while (c)
908         {
909                 if ((c->free) && (c->size == size))
910                 {
911                         new_wa = c;
912                         break;
913                 }
914                 c = c->next;
915         }
916
917         /* if not, allocate a new one */
918         if (!new_wa)
919         {
920                 working_area_t **p = &target->working_areas;
921                 u32 first_free = target->working_area;
922                 u32 free_size = target->working_area_size;
923
924                 LOG_DEBUG("allocating new working area");
925
926                 c = target->working_areas;
927                 while (c)
928                 {
929                         first_free += c->size;
930                         free_size -= c->size;
931                         p = &c->next;
932                         c = c->next;
933                 }
934
935                 if (free_size < size)
936                 {
937                         LOG_WARNING("not enough working area available(requested %d, free %d)", size, free_size);
938                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
939                 }
940
941                 new_wa = malloc(sizeof(working_area_t));
942                 new_wa->next = NULL;
943                 new_wa->size = size;
944                 new_wa->address = first_free;
945
946                 if (target->backup_working_area)
947                 {
948                         int retval;
949                         new_wa->backup = malloc(new_wa->size);
950                         if((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
951                         {
952                                 free(new_wa->backup);
953                                 free(new_wa);
954                                 return retval;
955                         }
956                 }
957                 else
958                 {
959                         new_wa->backup = NULL;
960                 }
961
962                 /* put new entry in list */
963                 *p = new_wa;
964         }
965
966         /* mark as used, and return the new (reused) area */
967         new_wa->free = 0;
968         *area = new_wa;
969
970         /* user pointer */
971         new_wa->user = area;
972
973         return ERROR_OK;
974 }
975
976 int target_free_working_area_restore(struct target_s *target, working_area_t *area, int restore)
977 {
978         if (area->free)
979                 return ERROR_OK;
980
981         if (restore&&target->backup_working_area)
982         {
983                 int retval;
984                 if((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
985                         return retval;
986         }
987
988         area->free = 1;
989
990         /* mark user pointer invalid */
991         *area->user = NULL;
992         area->user = NULL;
993
994         return ERROR_OK;
995 }
996
997 int target_free_working_area(struct target_s *target, working_area_t *area)
998 {
999         return target_free_working_area_restore(target, area, 1);
1000 }
1001
1002 /* free resources and restore memory, if restoring memory fails,
1003  * free up resources anyway
1004  */
1005 void target_free_all_working_areas_restore(struct target_s *target, int restore)
1006 {
1007         working_area_t *c = target->working_areas;
1008
1009         while (c)
1010         {
1011                 working_area_t *next = c->next;
1012                 target_free_working_area_restore(target, c, restore);
1013
1014                 if (c->backup)
1015                         free(c->backup);
1016
1017                 free(c);
1018
1019                 c = next;
1020         }
1021
1022         target->working_areas = NULL;
1023 }
1024
1025 void target_free_all_working_areas(struct target_s *target)
1026 {
1027         target_free_all_working_areas_restore(target, 1);
1028 }
1029
1030 int target_register_commands(struct command_context_s *cmd_ctx)
1031 {
1032
1033         register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, "change the current command line target (one parameter) or lists targets (with no parameter)");
1034
1035
1036
1037
1038         register_jim(cmd_ctx, "target", jim_target, "configure target" );
1039
1040         return ERROR_OK;
1041 }
1042
1043 int target_arch_state(struct target_s *target)
1044 {
1045         int retval;
1046         if (target==NULL)
1047         {
1048                 LOG_USER("No target has been configured");
1049                 return ERROR_OK;
1050         }
1051
1052         LOG_USER("target state: %s",
1053                  Jim_Nvp_value2name_simple(nvp_target_state,target->state)->name);
1054
1055         if (target->state!=TARGET_HALTED)
1056                 return ERROR_OK;
1057
1058         retval=target->type->arch_state(target);
1059         return retval;
1060 }
1061
1062 /* Single aligned words are guaranteed to use 16 or 32 bit access
1063  * mode respectively, otherwise data is handled as quickly as
1064  * possible
1065  */
1066 int target_write_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
1067 {
1068         int retval;
1069         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x", size, address);
1070
1071         if (!target_was_examined(target))
1072         {
1073                 LOG_ERROR("Target not examined yet");
1074                 return ERROR_FAIL;
1075         }
1076
1077         if (size == 0) {
1078                 return ERROR_OK;
1079         }
1080
1081         if ((address + size - 1) < address)
1082         {
1083                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1084                 LOG_ERROR("address+size wrapped(0x%08x, 0x%08x)", address, size);
1085                 return ERROR_FAIL;
1086         }
1087
1088         if (((address % 2) == 0) && (size == 2))
1089         {
1090                 return target_write_memory(target, address, 2, 1, buffer);
1091         }
1092
1093         /* handle unaligned head bytes */
1094         if (address % 4)
1095         {
1096                 u32 unaligned = 4 - (address % 4);
1097
1098                 if (unaligned > size)
1099                         unaligned = size;
1100
1101                 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1102                         return retval;
1103
1104                 buffer += unaligned;
1105                 address += unaligned;
1106                 size -= unaligned;
1107         }
1108
1109         /* handle aligned words */
1110         if (size >= 4)
1111         {
1112                 int aligned = size - (size % 4);
1113
1114                 /* use bulk writes above a certain limit. This may have to be changed */
1115                 if (aligned > 128)
1116                 {
1117                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1118                                 return retval;
1119                 }
1120                 else
1121                 {
1122                         if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1123                                 return retval;
1124                 }
1125
1126                 buffer += aligned;
1127                 address += aligned;
1128                 size -= aligned;
1129         }
1130
1131         /* handle tail writes of less than 4 bytes */
1132         if (size > 0)
1133         {
1134                 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1135                         return retval;
1136         }
1137
1138         return ERROR_OK;
1139 }
1140
1141 /* Single aligned words are guaranteed to use 16 or 32 bit access
1142  * mode respectively, otherwise data is handled as quickly as
1143  * possible
1144  */
1145 int target_read_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
1146 {
1147         int retval;
1148         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x", size, address);
1149
1150         if (!target_was_examined(target))
1151         {
1152                 LOG_ERROR("Target not examined yet");
1153                 return ERROR_FAIL;
1154         }
1155
1156         if (size == 0) {
1157                 return ERROR_OK;
1158         }
1159
1160         if ((address + size - 1) < address)
1161         {
1162                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1163                 LOG_ERROR("address+size wrapped(0x%08x, 0x%08x)", address, size);
1164                 return ERROR_FAIL;
1165         }
1166
1167         if (((address % 2) == 0) && (size == 2))
1168         {
1169                 return target_read_memory(target, address, 2, 1, buffer);
1170         }
1171
1172         /* handle unaligned head bytes */
1173         if (address % 4)
1174         {
1175                 u32 unaligned = 4 - (address % 4);
1176
1177                 if (unaligned > size)
1178                         unaligned = size;
1179
1180                 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1181                         return retval;
1182
1183                 buffer += unaligned;
1184                 address += unaligned;
1185                 size -= unaligned;
1186         }
1187
1188         /* handle aligned words */
1189         if (size >= 4)
1190         {
1191                 int aligned = size - (size % 4);
1192
1193                 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1194                         return retval;
1195
1196                 buffer += aligned;
1197                 address += aligned;
1198                 size -= aligned;
1199         }
1200
1201         /* handle tail writes of less than 4 bytes */
1202         if (size > 0)
1203         {
1204                 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1205                         return retval;
1206         }
1207
1208         return ERROR_OK;
1209 }
1210
1211 int target_checksum_memory(struct target_s *target, u32 address, u32 size, u32* crc)
1212 {
1213         u8 *buffer;
1214         int retval;
1215         u32 i;
1216         u32 checksum = 0;
1217         if (!target_was_examined(target))
1218         {
1219                 LOG_ERROR("Target not examined yet");
1220                 return ERROR_FAIL;
1221         }
1222
1223         if ((retval = target->type->checksum_memory(target, address,
1224                 size, &checksum)) != ERROR_OK)
1225         {
1226                 buffer = malloc(size);
1227                 if (buffer == NULL)
1228                 {
1229                         LOG_ERROR("error allocating buffer for section (%d bytes)", size);
1230                         return ERROR_INVALID_ARGUMENTS;
1231                 }
1232                 retval = target_read_buffer(target, address, size, buffer);
1233                 if (retval != ERROR_OK)
1234                 {
1235                         free(buffer);
1236                         return retval;
1237                 }
1238
1239                 /* convert to target endianess */
1240                 for (i = 0; i < (size/sizeof(u32)); i++)
1241                 {
1242                         u32 target_data;
1243                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(u32)]);
1244                         target_buffer_set_u32(target, &buffer[i*sizeof(u32)], target_data);
1245                 }
1246
1247                 retval = image_calculate_checksum( buffer, size, &checksum );
1248                 free(buffer);
1249         }
1250
1251         *crc = checksum;
1252
1253         return retval;
1254 }
1255
1256 int target_blank_check_memory(struct target_s *target, u32 address, u32 size, u32* blank)
1257 {
1258         int retval;
1259         if (!target_was_examined(target))
1260         {
1261                 LOG_ERROR("Target not examined yet");
1262                 return ERROR_FAIL;
1263         }
1264
1265         if (target->type->blank_check_memory == 0)
1266                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1267
1268         retval = target->type->blank_check_memory(target, address, size, blank);
1269
1270         return retval;
1271 }
1272
1273 int target_read_u32(struct target_s *target, u32 address, u32 *value)
1274 {
1275         u8 value_buf[4];
1276         if (!target_was_examined(target))
1277         {
1278                 LOG_ERROR("Target not examined yet");
1279                 return ERROR_FAIL;
1280         }
1281
1282         int retval = target_read_memory(target, address, 4, 1, value_buf);
1283
1284         if (retval == ERROR_OK)
1285         {
1286                 *value = target_buffer_get_u32(target, value_buf);
1287                 LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, *value);
1288         }
1289         else
1290         {
1291                 *value = 0x0;
1292                 LOG_DEBUG("address: 0x%8.8x failed", address);
1293         }
1294
1295         return retval;
1296 }
1297
1298 int target_read_u16(struct target_s *target, u32 address, u16 *value)
1299 {
1300         u8 value_buf[2];
1301         if (!target_was_examined(target))
1302         {
1303                 LOG_ERROR("Target not examined yet");
1304                 return ERROR_FAIL;
1305         }
1306
1307         int retval = target_read_memory(target, address, 2, 1, value_buf);
1308
1309         if (retval == ERROR_OK)
1310         {
1311                 *value = target_buffer_get_u16(target, value_buf);
1312                 LOG_DEBUG("address: 0x%8.8x, value: 0x%4.4x", address, *value);
1313         }
1314         else
1315         {
1316                 *value = 0x0;
1317                 LOG_DEBUG("address: 0x%8.8x failed", address);
1318         }
1319
1320         return retval;
1321 }
1322
1323 int target_read_u8(struct target_s *target, u32 address, u8 *value)
1324 {
1325         int retval = target_read_memory(target, address, 1, 1, value);
1326         if (!target_was_examined(target))
1327         {
1328                 LOG_ERROR("Target not examined yet");
1329                 return ERROR_FAIL;
1330         }
1331
1332         if (retval == ERROR_OK)
1333         {
1334                 LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, *value);
1335         }
1336         else
1337         {
1338                 *value = 0x0;
1339                 LOG_DEBUG("address: 0x%8.8x failed", address);
1340         }
1341
1342         return retval;
1343 }
1344
1345 int target_write_u32(struct target_s *target, u32 address, u32 value)
1346 {
1347         int retval;
1348         u8 value_buf[4];
1349         if (!target_was_examined(target))
1350         {
1351                 LOG_ERROR("Target not examined yet");
1352                 return ERROR_FAIL;
1353         }
1354
1355         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1356
1357         target_buffer_set_u32(target, value_buf, value);
1358         if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1359         {
1360                 LOG_DEBUG("failed: %i", retval);
1361         }
1362
1363         return retval;
1364 }
1365
1366 int target_write_u16(struct target_s *target, u32 address, u16 value)
1367 {
1368         int retval;
1369         u8 value_buf[2];
1370         if (!target_was_examined(target))
1371         {
1372                 LOG_ERROR("Target not examined yet");
1373                 return ERROR_FAIL;
1374         }
1375
1376         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1377
1378         target_buffer_set_u16(target, value_buf, value);
1379         if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1380         {
1381                 LOG_DEBUG("failed: %i", retval);
1382         }
1383
1384         return retval;
1385 }
1386
1387 int target_write_u8(struct target_s *target, u32 address, u8 value)
1388 {
1389         int retval;
1390         if (!target_was_examined(target))
1391         {
1392                 LOG_ERROR("Target not examined yet");
1393                 return ERROR_FAIL;
1394         }
1395
1396         LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, value);
1397
1398         if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1399         {
1400                 LOG_DEBUG("failed: %i", retval);
1401         }
1402
1403         return retval;
1404 }
1405
1406 int target_register_user_commands(struct command_context_s *cmd_ctx)
1407 {
1408         int retval = ERROR_OK;
1409
1410
1411         /* script procedures */
1412         register_command(cmd_ctx, NULL, "profile", handle_profile_command, COMMAND_EXEC, "profiling samples the CPU PC");
1413         register_jim(cmd_ctx, "ocd_mem2array", jim_mem2array, "read memory and return as a TCL array for script processing <ARRAYNAME> <WIDTH=32/16/8> <ADDRESS> <COUNT>");
1414         register_jim(cmd_ctx, "ocd_array2mem", jim_array2mem, "convert a TCL array to memory locations and write the values  <ARRAYNAME> <WIDTH=32/16/8> <ADDRESS> <COUNT>");
1415
1416         register_command(cmd_ctx, NULL, "fast_load_image", handle_fast_load_image_command, COMMAND_ANY,
1417                         "same args as load_image, image stored in memory - mainly for profiling purposes");
1418
1419         register_command(cmd_ctx, NULL, "fast_load", handle_fast_load_command, COMMAND_ANY,
1420                         "loads active fast load image to current target - mainly for profiling purposes");
1421
1422
1423         register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "translate a virtual address into a physical address");
1424         register_command(cmd_ctx,  NULL, "reg", handle_reg_command, COMMAND_EXEC, "display or set a register");
1425         register_command(cmd_ctx,  NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state");
1426         register_command(cmd_ctx,  NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]");
1427         register_command(cmd_ctx,  NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target");
1428         register_command(cmd_ctx,  NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]");
1429         register_command(cmd_ctx,  NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]");
1430         register_command(cmd_ctx,  NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run|halt|init] - default is run");
1431         register_command(cmd_ctx,  NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset");
1432
1433         register_command(cmd_ctx,  NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words <addr> [count]");
1434         register_command(cmd_ctx,  NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words <addr> [count]");
1435         register_command(cmd_ctx,  NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes <addr> [count]");
1436
1437         register_command(cmd_ctx,  NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word <addr> <value> [count]");
1438         register_command(cmd_ctx,  NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word <addr> <value> [count]");
1439         register_command(cmd_ctx,  NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte <addr> <value> [count]");
1440
1441         register_command(cmd_ctx,  NULL, "bp", handle_bp_command, COMMAND_EXEC, "set breakpoint <address> <length> [hw]");
1442         register_command(cmd_ctx,  NULL, "rbp", handle_rbp_command, COMMAND_EXEC, "remove breakpoint <adress>");
1443         register_command(cmd_ctx,  NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint <address> <length> <r/w/a> [value] [mask]");
1444         register_command(cmd_ctx,  NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint <adress>");
1445
1446         register_command(cmd_ctx,  NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> ['bin'|'ihex'|'elf'|'s19'] [min_address] [max_length]");
1447         register_command(cmd_ctx,  NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>");
1448         register_command(cmd_ctx,  NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image <file> [offset] [type]");
1449         register_command(cmd_ctx,  NULL, "test_image", handle_test_image_command, COMMAND_EXEC, "test_image <file> [offset] [type]");
1450
1451         if((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
1452                 return retval;
1453         if((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
1454                 return retval;
1455
1456         return retval;
1457 }
1458
1459 static int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1460 {
1461         target_t *target = all_targets;
1462
1463         if (argc == 1)
1464         {
1465                 target = get_target(args[0]);
1466                 if (target == NULL) {
1467                         command_print(cmd_ctx,"Target: %s is unknown, try one of:\n", args[0] );
1468                         goto DumpTargets;
1469                 }
1470
1471                 cmd_ctx->current_target = target->target_number;
1472                 return ERROR_OK;
1473         }
1474 DumpTargets:
1475
1476         target = all_targets;
1477         command_print(cmd_ctx, "    CmdName    Type       Endian     AbsChainPos Name          State     ");
1478         command_print(cmd_ctx, "--  ---------- ---------- ---------- ----------- ------------- ----------");
1479         while (target)
1480         {
1481                 /* XX: abcdefghij abcdefghij abcdefghij abcdefghij */
1482                 command_print(cmd_ctx, "%2d: %-10s %-10s %-10s %10d %14s %s",
1483                                           target->target_number,
1484                                           target->cmd_name,
1485                                           target_get_name(target),
1486                                           Jim_Nvp_value2name_simple( nvp_target_endian, target->endianness )->name,
1487                                           target->tap->abs_chain_position,
1488                                           target->tap->dotted_name,
1489                                           Jim_Nvp_value2name_simple( nvp_target_state, target->state )->name );
1490                 target = target->next;
1491         }
1492
1493         return ERROR_OK;
1494 }
1495
1496 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1497
1498 static int powerDropout;
1499 static int srstAsserted;
1500
1501 static int runPowerRestore;
1502 static int runPowerDropout;
1503 static int runSrstAsserted;
1504 static int runSrstDeasserted;
1505
1506 static int sense_handler(void)
1507 {
1508         static int prevSrstAsserted = 0;
1509         static int prevPowerdropout = 0;
1510
1511         int retval;
1512         if ((retval=jtag_power_dropout(&powerDropout))!=ERROR_OK)
1513                 return retval;
1514
1515         int powerRestored;
1516         powerRestored = prevPowerdropout && !powerDropout;
1517         if (powerRestored)
1518         {
1519                 runPowerRestore = 1;
1520         }
1521
1522         long long current = timeval_ms();
1523         static long long lastPower = 0;
1524         int waitMore = lastPower + 2000 > current;
1525         if (powerDropout && !waitMore)
1526         {
1527                 runPowerDropout = 1;
1528                 lastPower = current;
1529         }
1530
1531         if ((retval=jtag_srst_asserted(&srstAsserted))!=ERROR_OK)
1532                 return retval;
1533
1534         int srstDeasserted;
1535         srstDeasserted = prevSrstAsserted && !srstAsserted;
1536
1537         static long long lastSrst = 0;
1538         waitMore = lastSrst + 2000 > current;
1539         if (srstDeasserted && !waitMore)
1540         {
1541                 runSrstDeasserted = 1;
1542                 lastSrst = current;
1543         }
1544
1545         if (!prevSrstAsserted && srstAsserted)
1546         {
1547                 runSrstAsserted = 1;
1548         }
1549
1550         prevSrstAsserted = srstAsserted;
1551         prevPowerdropout = powerDropout;
1552
1553         if (srstDeasserted || powerRestored)
1554         {
1555                 /* Other than logging the event we can't do anything here.
1556                  * Issuing a reset is a particularly bad idea as we might
1557                  * be inside a reset already.
1558                  */
1559         }
1560
1561         return ERROR_OK;
1562 }
1563
1564 /* process target state changes */
1565 int handle_target(void *priv)
1566 {
1567         int retval = ERROR_OK;
1568
1569         /* we do not want to recurse here... */
1570         static int recursive = 0;
1571         if (! recursive)
1572         {
1573                 recursive = 1;
1574                 sense_handler();
1575                 /* danger! running these procedures can trigger srst assertions and power dropouts.
1576                  * We need to avoid an infinite loop/recursion here and we do that by
1577                  * clearing the flags after running these events.
1578                  */
1579                 int did_something = 0;
1580                 if (runSrstAsserted)
1581                 {
1582                         Jim_Eval( interp, "srst_asserted");
1583                         did_something = 1;
1584                 }
1585                 if (runSrstDeasserted)
1586                 {
1587                         Jim_Eval( interp, "srst_deasserted");
1588                         did_something = 1;
1589                 }
1590                 if (runPowerDropout)
1591                 {
1592                         Jim_Eval( interp, "power_dropout");
1593                         did_something = 1;
1594                 }
1595                 if (runPowerRestore)
1596                 {
1597                         Jim_Eval( interp, "power_restore");
1598                         did_something = 1;
1599                 }
1600
1601                 if (did_something)
1602                 {
1603                         /* clear detect flags */
1604                         sense_handler();
1605                 }
1606
1607                 /* clear action flags */
1608
1609                 runSrstAsserted=0;
1610                 runSrstDeasserted=0;
1611                 runPowerRestore=0;
1612                 runPowerDropout=0;
1613
1614                 recursive = 0;
1615         }
1616
1617         target_t *target = all_targets;
1618
1619         while (target)
1620         {
1621
1622                 /* only poll target if we've got power and srst isn't asserted */
1623                 if (target_continous_poll&&!powerDropout&&!srstAsserted)
1624                 {
1625                         /* polling may fail silently until the target has been examined */
1626                         if((retval = target_poll(target)) != ERROR_OK)
1627                                 return retval;
1628                 }
1629
1630                 target = target->next;
1631         }
1632
1633         return retval;
1634 }
1635
1636 static int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1637 {
1638         target_t *target;
1639         reg_t *reg = NULL;
1640         int count = 0;
1641         char *value;
1642
1643         LOG_DEBUG("-");
1644
1645         target = get_current_target(cmd_ctx);
1646
1647         /* list all available registers for the current target */
1648         if (argc == 0)
1649         {
1650                 reg_cache_t *cache = target->reg_cache;
1651
1652                 count = 0;
1653                 while(cache)
1654                 {
1655                         int i;
1656                         for (i = 0; i < cache->num_regs; i++)
1657                         {
1658                                 value = buf_to_str(cache->reg_list[i].value, cache->reg_list[i].size, 16);
1659                                 command_print(cmd_ctx, "(%i) %s (/%i): 0x%s (dirty: %i, valid: %i)", count++, cache->reg_list[i].name, cache->reg_list[i].size, value, cache->reg_list[i].dirty, cache->reg_list[i].valid);
1660                                 free(value);
1661                         }
1662                         cache = cache->next;
1663                 }
1664
1665                 return ERROR_OK;
1666         }
1667
1668         /* access a single register by its ordinal number */
1669         if ((args[0][0] >= '0') && (args[0][0] <= '9'))
1670         {
1671                 int num = strtoul(args[0], NULL, 0);
1672                 reg_cache_t *cache = target->reg_cache;
1673
1674                 count = 0;
1675                 while(cache)
1676                 {
1677                         int i;
1678                         for (i = 0; i < cache->num_regs; i++)
1679                         {
1680                                 if (count++ == num)
1681                                 {
1682                                         reg = &cache->reg_list[i];
1683                                         break;
1684                                 }
1685                         }
1686                         if (reg)
1687                                 break;
1688                         cache = cache->next;
1689                 }
1690
1691                 if (!reg)
1692                 {
1693                         command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1694                         return ERROR_OK;
1695                 }
1696         } else /* access a single register by its name */
1697         {
1698                 reg = register_get_by_name(target->reg_cache, args[0], 1);
1699
1700                 if (!reg)
1701                 {
1702                         command_print(cmd_ctx, "register %s not found in current target", args[0]);
1703                         return ERROR_OK;
1704                 }
1705         }
1706
1707         /* display a register */
1708         if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
1709         {
1710                 if ((argc == 2) && (strcmp(args[1], "force") == 0))
1711                         reg->valid = 0;
1712
1713                 if (reg->valid == 0)
1714                 {
1715                         reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1716                         arch_type->get(reg);
1717                 }
1718                 value = buf_to_str(reg->value, reg->size, 16);
1719                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1720                 free(value);
1721                 return ERROR_OK;
1722         }
1723
1724         /* set register value */
1725         if (argc == 2)
1726         {
1727                 u8 *buf = malloc(CEIL(reg->size, 8));
1728                 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
1729
1730                 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1731                 arch_type->set(reg, buf);
1732
1733                 value = buf_to_str(reg->value, reg->size, 16);
1734                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1735                 free(value);
1736
1737                 free(buf);
1738
1739                 return ERROR_OK;
1740         }
1741
1742         command_print(cmd_ctx, "usage: reg <#|name> [value]");
1743
1744         return ERROR_OK;
1745 }
1746
1747 static int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1748 {
1749         int retval = ERROR_OK;
1750         target_t *target = get_current_target(cmd_ctx);
1751
1752         if (argc == 0)
1753         {
1754                 if((retval = target_poll(target)) != ERROR_OK)
1755                         return retval;
1756                 if((retval = target_arch_state(target)) != ERROR_OK)
1757                         return retval;
1758
1759         }
1760         else if (argc==1)
1761         {
1762                 if (strcmp(args[0], "on") == 0)
1763                 {
1764                         target_continous_poll = 1;
1765                 }
1766                 else if (strcmp(args[0], "off") == 0)
1767                 {
1768                         target_continous_poll = 0;
1769                 }
1770                 else
1771                 {
1772                         command_print(cmd_ctx, "arg is \"on\" or \"off\"");
1773                 }
1774         } else
1775         {
1776                 return ERROR_COMMAND_SYNTAX_ERROR;
1777         }
1778
1779         return retval;
1780 }
1781
1782 static int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1783 {
1784         int ms = 5000;
1785
1786         if (argc > 0)
1787         {
1788                 char *end;
1789
1790                 ms = strtoul(args[0], &end, 0) * 1000;
1791                 if (*end)
1792                 {
1793                         command_print(cmd_ctx, "usage: %s [seconds]", cmd);
1794                         return ERROR_OK;
1795                 }
1796         }
1797         target_t *target = get_current_target(cmd_ctx);
1798
1799         return target_wait_state(target, TARGET_HALTED, ms);
1800 }
1801
1802 /* wait for target state to change. The trick here is to have a low
1803  * latency for short waits and not to suck up all the CPU time
1804  * on longer waits.
1805  *
1806  * After 500ms, keep_alive() is invoked
1807  */
1808 int target_wait_state(target_t *target, enum target_state state, int ms)
1809 {
1810         int retval;
1811         long long then=0, cur;
1812         int once=1;
1813
1814         for (;;)
1815         {
1816                 if ((retval=target_poll(target))!=ERROR_OK)
1817                         return retval;
1818                 if (target->state == state)
1819                 {
1820                         break;
1821                 }
1822                 cur = timeval_ms();
1823                 if (once)
1824                 {
1825                         once=0;
1826                         then = timeval_ms();
1827                         LOG_DEBUG("waiting for target %s...",
1828                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
1829                 }
1830
1831                 if (cur-then>500)
1832                 {
1833                         keep_alive();
1834                 }
1835
1836                 if ((cur-then)>ms)
1837                 {
1838                         LOG_ERROR("timed out while waiting for target %s",
1839                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
1840                         return ERROR_FAIL;
1841                 }
1842         }
1843
1844         return ERROR_OK;
1845 }
1846
1847 static int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1848 {
1849         int retval;
1850         target_t *target = get_current_target(cmd_ctx);
1851
1852         LOG_DEBUG("-");
1853
1854         if ((retval = target_halt(target)) != ERROR_OK)
1855         {
1856                 return retval;
1857         }
1858
1859         if (argc == 1)
1860         {
1861                 int wait;
1862                 char *end;
1863
1864                 wait = strtoul(args[0], &end, 0);
1865                 if (!*end && !wait)
1866                         return ERROR_OK;
1867         }
1868
1869         return handle_wait_halt_command(cmd_ctx, cmd, args, argc);
1870 }
1871
1872 static int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1873 {
1874         target_t *target = get_current_target(cmd_ctx);
1875
1876         LOG_USER("requesting target halt and executing a soft reset");
1877
1878         target->type->soft_reset_halt(target);
1879
1880         return ERROR_OK;
1881 }
1882
1883 static int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1884 {
1885         const Jim_Nvp *n;
1886         enum target_reset_mode reset_mode = RESET_RUN;
1887
1888         if (argc >= 1)
1889         {
1890                 n = Jim_Nvp_name2value_simple( nvp_reset_modes, args[0] );
1891                 if( (n->name == NULL) || (n->value == RESET_UNKNOWN) ){
1892                         return ERROR_COMMAND_SYNTAX_ERROR;
1893                 }
1894                 reset_mode = n->value;
1895         }
1896
1897         /* reset *all* targets */
1898         return target_process_reset(cmd_ctx, reset_mode);
1899 }
1900
1901
1902 static int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1903 {
1904         int retval;
1905         target_t *target = get_current_target(cmd_ctx);
1906
1907         target_handle_event( target, TARGET_EVENT_OLD_pre_resume );
1908
1909         if (argc == 0)
1910                 retval = target_resume(target, 1, 0, 1, 0); /* current pc, addr = 0, handle breakpoints, not debugging */
1911         else if (argc == 1)
1912                 retval = target_resume(target, 0, strtoul(args[0], NULL, 0), 1, 0); /* addr = args[0], handle breakpoints, not debugging */
1913         else
1914         {
1915                 retval = ERROR_COMMAND_SYNTAX_ERROR;
1916         }
1917
1918         return retval;
1919 }
1920
1921 static int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1922 {
1923         target_t *target = get_current_target(cmd_ctx);
1924
1925         LOG_DEBUG("-");
1926
1927         if (argc == 0)
1928                 return target->type->step(target, 1, 0, 1); /* current pc, addr = 0, handle breakpoints */
1929
1930         if (argc == 1)
1931                 return target->type->step(target, 0, strtoul(args[0], NULL, 0), 1); /* addr = args[0], handle breakpoints */
1932
1933         return ERROR_OK;
1934 }
1935
1936 static void handle_md_output(struct command_context_s *cmd_ctx,
1937                 struct target_s *target, u32 address, unsigned size,
1938                 unsigned count, const u8 *buffer)
1939 {
1940         const unsigned line_bytecnt = 32;
1941         unsigned line_modulo = line_bytecnt / size;
1942
1943         char output[line_bytecnt * 4 + 1];
1944         unsigned output_len = 0;
1945
1946         const char *value_fmt;
1947         switch (size) {
1948         case 4: value_fmt = "%8.8x"; break;
1949         case 2: value_fmt = "%4.2x"; break;
1950         case 1: value_fmt = "%2.2x"; break;
1951         default:
1952                 LOG_ERROR("invalid memory read size: %u", size);
1953                 exit(-1);
1954         }
1955
1956         for (unsigned i = 0; i < count; i++)
1957         {
1958                 if (i % line_modulo == 0)
1959                 {
1960                         output_len += snprintf(output + output_len,
1961                                         sizeof(output) - output_len,
1962                                         "0x%8.8x: ", address + (i*size));
1963                 }
1964
1965                 u32 value;
1966                 const u8 *value_ptr = buffer + i * size;
1967                 switch (size) {
1968                 case 4: value = target_buffer_get_u32(target, value_ptr); break;
1969                 case 2: value = target_buffer_get_u16(target, value_ptr); break;
1970                 case 1: value = *value_ptr;
1971                 }
1972                 output_len += snprintf(output + output_len,
1973                                 sizeof(output) - output_len,
1974                                 value_fmt, value);
1975
1976                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
1977                 {
1978                         command_print(cmd_ctx, "%s", output);
1979                         output_len = 0;
1980                 }
1981         }
1982 }
1983
1984 static int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1985 {
1986         if (argc < 1)
1987                 return ERROR_COMMAND_SYNTAX_ERROR;
1988
1989         unsigned size = 0;
1990         switch (cmd[2]) {
1991         case 'w': size = 4; break;
1992         case 'h': size = 2; break;
1993         case 'b': size = 1; break;
1994         default: return ERROR_COMMAND_SYNTAX_ERROR;
1995         }
1996
1997         u32 address = strtoul(args[0], NULL, 0);
1998
1999         unsigned count = 1;
2000         if (argc == 2)
2001                 count = strtoul(args[1], NULL, 0);
2002
2003         u8 *buffer = calloc(count, size);
2004
2005         target_t *target = get_current_target(cmd_ctx);
2006         int retval = target_read_memory(target,
2007                                 address, size, count, buffer);
2008         if (ERROR_OK == retval)
2009                 handle_md_output(cmd_ctx, target, address, size, count, buffer);
2010
2011         free(buffer);
2012
2013         return retval;
2014 }
2015
2016 static int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2017 {
2018         u32 address = 0;
2019         u32 value = 0;
2020         int count = 1;
2021         int i;
2022         int wordsize;
2023         target_t *target = get_current_target(cmd_ctx);
2024         u8 value_buf[4];
2025
2026          if ((argc < 2) || (argc > 3))
2027                 return ERROR_COMMAND_SYNTAX_ERROR;
2028
2029         address = strtoul(args[0], NULL, 0);
2030         value = strtoul(args[1], NULL, 0);
2031         if (argc == 3)
2032                 count = strtoul(args[2], NULL, 0);
2033
2034         switch (cmd[2])
2035         {
2036                 case 'w':
2037                         wordsize = 4;
2038                         target_buffer_set_u32(target, value_buf, value);
2039                         break;
2040                 case 'h':
2041                         wordsize = 2;
2042                         target_buffer_set_u16(target, value_buf, value);
2043                         break;
2044                 case 'b':
2045                         wordsize = 1;
2046                         value_buf[0] = value;
2047                         break;
2048                 default:
2049                         return ERROR_COMMAND_SYNTAX_ERROR;
2050         }
2051         for (i=0; i<count; i++)
2052         {
2053                 int retval = target_write_memory(target,
2054                                 address + i * wordsize, wordsize, 1, value_buf);
2055                 if (ERROR_OK != retval)
2056                         return retval;
2057                 keep_alive();
2058         }
2059
2060         return ERROR_OK;
2061
2062 }
2063
2064 static int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2065 {
2066         u8 *buffer;
2067         u32 buf_cnt;
2068         u32 image_size;
2069         u32 min_address=0;
2070         u32 max_address=0xffffffff;
2071         int i;
2072         int retval, retvaltemp;
2073
2074         image_t image;
2075
2076         duration_t duration;
2077         char *duration_text;
2078
2079         target_t *target = get_current_target(cmd_ctx);
2080
2081         if ((argc < 1)||(argc > 5))
2082         {
2083                 return ERROR_COMMAND_SYNTAX_ERROR;
2084         }
2085
2086         /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
2087         if (argc >= 2)
2088         {
2089                 image.base_address_set = 1;
2090                 image.base_address = strtoul(args[1], NULL, 0);
2091         }
2092         else
2093         {
2094                 image.base_address_set = 0;
2095         }
2096
2097
2098         image.start_address_set = 0;
2099
2100         if (argc>=4)
2101         {
2102                 min_address=strtoul(args[3], NULL, 0);
2103         }
2104         if (argc>=5)
2105         {
2106                 max_address=strtoul(args[4], NULL, 0)+min_address;
2107         }
2108
2109         if (min_address>max_address)
2110         {
2111                 return ERROR_COMMAND_SYNTAX_ERROR;
2112         }
2113
2114         duration_start_measure(&duration);
2115
2116         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
2117         {
2118                 return ERROR_OK;
2119         }
2120
2121         image_size = 0x0;
2122         retval = ERROR_OK;
2123         for (i = 0; i < image.num_sections; i++)
2124         {
2125                 buffer = malloc(image.sections[i].size);
2126                 if (buffer == NULL)
2127                 {
2128                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2129                         break;
2130                 }
2131
2132                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2133                 {
2134                         free(buffer);
2135                         break;
2136                 }
2137
2138                 u32 offset=0;
2139                 u32 length=buf_cnt;
2140
2141                 /* DANGER!!! beware of unsigned comparision here!!! */
2142
2143                 if ((image.sections[i].base_address+buf_cnt>=min_address)&&
2144                                 (image.sections[i].base_address<max_address))
2145                 {
2146                         if (image.sections[i].base_address<min_address)
2147                         {
2148                                 /* clip addresses below */
2149                                 offset+=min_address-image.sections[i].base_address;
2150                                 length-=offset;
2151                         }
2152
2153                         if (image.sections[i].base_address+buf_cnt>max_address)
2154                         {
2155                                 length-=(image.sections[i].base_address+buf_cnt)-max_address;
2156                         }
2157
2158                         if ((retval = target_write_buffer(target, image.sections[i].base_address+offset, length, buffer+offset)) != ERROR_OK)
2159                         {
2160                                 free(buffer);
2161                                 break;
2162                         }
2163                         image_size += length;
2164                         command_print(cmd_ctx, "%u byte written at address 0x%8.8x", length, image.sections[i].base_address+offset);
2165                 }
2166
2167                 free(buffer);
2168         }
2169
2170         if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2171         {
2172                 image_close(&image);
2173                 return retvaltemp;
2174         }
2175
2176         if (retval==ERROR_OK)
2177         {
2178                 command_print(cmd_ctx, "downloaded %u byte in %s", image_size, duration_text);
2179         }
2180         free(duration_text);
2181
2182         image_close(&image);
2183
2184         return retval;
2185
2186 }
2187
2188 static int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2189 {
2190         fileio_t fileio;
2191
2192         u32 address;
2193         u32 size;
2194         u8 buffer[560];
2195         int retval=ERROR_OK, retvaltemp;
2196
2197         duration_t duration;
2198         char *duration_text;
2199
2200         target_t *target = get_current_target(cmd_ctx);
2201
2202         if (argc != 3)
2203         {
2204                 command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
2205                 return ERROR_OK;
2206         }
2207
2208         address = strtoul(args[1], NULL, 0);
2209         size = strtoul(args[2], NULL, 0);
2210
2211         if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2212         {
2213                 return ERROR_OK;
2214         }
2215
2216         duration_start_measure(&duration);
2217
2218         while (size > 0)
2219         {
2220                 u32 size_written;
2221                 u32 this_run_size = (size > 560) ? 560 : size;
2222
2223                 retval = target_read_buffer(target, address, this_run_size, buffer);
2224                 if (retval != ERROR_OK)
2225                 {
2226                         break;
2227                 }
2228
2229                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2230                 if (retval != ERROR_OK)
2231                 {
2232                         break;
2233                 }
2234
2235                 size -= this_run_size;
2236                 address += this_run_size;
2237         }
2238
2239         if((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2240                 return retvaltemp;
2241
2242         if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2243                 return retvaltemp;
2244
2245         if (retval==ERROR_OK)
2246         {
2247                 command_print(cmd_ctx, "dumped %lld byte in %s",
2248                                 fileio.size, duration_text);
2249                 free(duration_text);
2250         }
2251
2252         return retval;
2253 }
2254
2255 static int handle_verify_image_command_internal(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc, int verify)
2256 {
2257         u8 *buffer;
2258         u32 buf_cnt;
2259         u32 image_size;
2260         int i;
2261         int retval, retvaltemp;
2262         u32 checksum = 0;
2263         u32 mem_checksum = 0;
2264
2265         image_t image;
2266
2267         duration_t duration;
2268         char *duration_text;
2269
2270         target_t *target = get_current_target(cmd_ctx);
2271
2272         if (argc < 1)
2273         {
2274                 return ERROR_COMMAND_SYNTAX_ERROR;
2275         }
2276
2277         if (!target)
2278         {
2279                 LOG_ERROR("no target selected");
2280                 return ERROR_FAIL;
2281         }
2282
2283         duration_start_measure(&duration);
2284
2285         if (argc >= 2)
2286         {
2287                 image.base_address_set = 1;
2288                 image.base_address = strtoul(args[1], NULL, 0);
2289         }
2290         else
2291         {
2292                 image.base_address_set = 0;
2293                 image.base_address = 0x0;
2294         }
2295
2296         image.start_address_set = 0;
2297
2298         if ((retval=image_open(&image, args[0], (argc == 3) ? args[2] : NULL)) != ERROR_OK)
2299         {
2300                 return retval;
2301         }
2302
2303         image_size = 0x0;
2304         retval=ERROR_OK;
2305         for (i = 0; i < image.num_sections; i++)
2306         {
2307                 buffer = malloc(image.sections[i].size);
2308                 if (buffer == NULL)
2309                 {
2310                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2311                         break;
2312                 }
2313                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2314                 {
2315                         free(buffer);
2316                         break;
2317                 }
2318
2319                 if (verify)
2320                 {
2321                         /* calculate checksum of image */
2322                         image_calculate_checksum( buffer, buf_cnt, &checksum );
2323
2324                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2325                         if( retval != ERROR_OK )
2326                         {
2327                                 free(buffer);
2328                                 break;
2329                         }
2330
2331                         if( checksum != mem_checksum )
2332                         {
2333                                 /* failed crc checksum, fall back to a binary compare */
2334                                 u8 *data;
2335
2336                                 command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
2337
2338                                 data = (u8*)malloc(buf_cnt);
2339
2340                                 /* Can we use 32bit word accesses? */
2341                                 int size = 1;
2342                                 int count = buf_cnt;
2343                                 if ((count % 4) == 0)
2344                                 {
2345                                         size *= 4;
2346                                         count /= 4;
2347                                 }
2348                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2349                                 if (retval == ERROR_OK)
2350                                 {
2351                                         u32 t;
2352                                         for (t = 0; t < buf_cnt; t++)
2353                                         {
2354                                                 if (data[t] != buffer[t])
2355                                                 {
2356                                                         command_print(cmd_ctx, "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n", t + image.sections[i].base_address, data[t], buffer[t]);
2357                                                         free(data);
2358                                                         free(buffer);
2359                                                         retval=ERROR_FAIL;
2360                                                         goto done;
2361                                                 }
2362                                                 if ((t%16384)==0)
2363                                                 {
2364                                                         keep_alive();
2365                                                 }
2366                                         }
2367                                 }
2368
2369                                 free(data);
2370                         }
2371                 } else
2372                 {
2373                         command_print(cmd_ctx, "address 0x%08x length 0x%08x", image.sections[i].base_address, buf_cnt);
2374                 }
2375
2376                 free(buffer);
2377                 image_size += buf_cnt;
2378         }
2379 done:
2380
2381         if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2382         {
2383                 image_close(&image);
2384                 return retvaltemp;
2385         }
2386
2387         if (retval==ERROR_OK)
2388         {
2389                 command_print(cmd_ctx, "verified %u bytes in %s", image_size, duration_text);
2390         }
2391         free(duration_text);
2392
2393         image_close(&image);
2394
2395         return retval;
2396 }
2397
2398 static int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2399 {
2400         return handle_verify_image_command_internal(cmd_ctx, cmd, args, argc, 1);
2401 }
2402
2403 static int handle_test_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2404 {
2405         return handle_verify_image_command_internal(cmd_ctx, cmd, args, argc, 0);
2406 }
2407
2408 static int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2409 {
2410         int retval;
2411         target_t *target = get_current_target(cmd_ctx);
2412
2413         if (argc == 0)
2414         {
2415                 breakpoint_t *breakpoint = target->breakpoints;
2416
2417                 while (breakpoint)
2418                 {
2419                         if (breakpoint->type == BKPT_SOFT)
2420                         {
2421                                 char* buf = buf_to_str(breakpoint->orig_instr, breakpoint->length, 16);
2422                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i, 0x%s", breakpoint->address, breakpoint->length, breakpoint->set, buf);
2423                                 free(buf);
2424                         }
2425                         else
2426                         {
2427                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i", breakpoint->address, breakpoint->length, breakpoint->set);
2428                         }
2429                         breakpoint = breakpoint->next;
2430                 }
2431         }
2432         else if (argc >= 2)
2433         {
2434                 int hw = BKPT_SOFT;
2435                 u32 length = 0;
2436
2437                 length = strtoul(args[1], NULL, 0);
2438
2439                 if (argc >= 3)
2440                         if (strcmp(args[2], "hw") == 0)
2441                                 hw = BKPT_HARD;
2442
2443                 if ((retval = breakpoint_add(target, strtoul(args[0], NULL, 0), length, hw)) != ERROR_OK)
2444                 {
2445                         LOG_ERROR("Failure setting breakpoints");
2446                 }
2447                 else
2448                 {
2449                         command_print(cmd_ctx, "breakpoint added at address 0x%8.8lx",
2450                                         strtoul(args[0], NULL, 0));
2451                 }
2452         }
2453         else
2454         {
2455                 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
2456         }
2457
2458         return ERROR_OK;
2459 }
2460
2461 static int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2462 {
2463         target_t *target = get_current_target(cmd_ctx);
2464
2465         if (argc > 0)
2466                 breakpoint_remove(target, strtoul(args[0], NULL, 0));
2467
2468         return ERROR_OK;
2469 }
2470
2471 static int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2472 {
2473         target_t *target = get_current_target(cmd_ctx);
2474         int retval;
2475
2476         if (argc == 0)
2477         {
2478                 watchpoint_t *watchpoint = target->watchpoints;
2479
2480                 while (watchpoint)
2481                 {
2482                         command_print(cmd_ctx, "address: 0x%8.8x, len: 0x%8.8x, r/w/a: %i, value: 0x%8.8x, mask: 0x%8.8x", watchpoint->address, watchpoint->length, watchpoint->rw, watchpoint->value, watchpoint->mask);
2483                         watchpoint = watchpoint->next;
2484                 }
2485         }
2486         else if (argc >= 2)
2487         {
2488                 enum watchpoint_rw type = WPT_ACCESS;
2489                 u32 data_value = 0x0;
2490                 u32 data_mask = 0xffffffff;
2491
2492                 if (argc >= 3)
2493                 {
2494                         switch(args[2][0])
2495                         {
2496                                 case 'r':
2497                                         type = WPT_READ;
2498                                         break;
2499                                 case 'w':
2500                                         type = WPT_WRITE;
2501                                         break;
2502                                 case 'a':
2503                                         type = WPT_ACCESS;
2504                                         break;
2505                                 default:
2506                                         command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2507                                         return ERROR_OK;
2508                         }
2509                 }
2510                 if (argc >= 4)
2511                 {
2512                         data_value = strtoul(args[3], NULL, 0);
2513                 }
2514                 if (argc >= 5)
2515                 {
2516                         data_mask = strtoul(args[4], NULL, 0);
2517                 }
2518
2519                 if ((retval = watchpoint_add(target, strtoul(args[0], NULL, 0),
2520                                 strtoul(args[1], NULL, 0), type, data_value, data_mask)) != ERROR_OK)
2521                 {
2522                         LOG_ERROR("Failure setting breakpoints");
2523                 }
2524         }
2525         else
2526         {
2527                 command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2528         }
2529
2530         return ERROR_OK;
2531 }
2532
2533 static int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2534 {
2535         target_t *target = get_current_target(cmd_ctx);
2536
2537         if (argc > 0)
2538                 watchpoint_remove(target, strtoul(args[0], NULL, 0));
2539
2540         return ERROR_OK;
2541 }
2542
2543 static int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc)
2544 {
2545         int retval;
2546         target_t *target = get_current_target(cmd_ctx);
2547         u32 va;
2548         u32 pa;
2549
2550         if (argc != 1)
2551         {
2552                 return ERROR_COMMAND_SYNTAX_ERROR;
2553         }
2554         va = strtoul(args[0], NULL, 0);
2555
2556         retval = target->type->virt2phys(target, va, &pa);
2557         if (retval == ERROR_OK)
2558         {
2559                 command_print(cmd_ctx, "Physical address 0x%08x", pa);
2560         }
2561         else
2562         {
2563                 /* lower levels will have logged a detailed error which is
2564                  * forwarded to telnet/GDB session.
2565                  */
2566         }
2567         return retval;
2568 }
2569
2570 static void writeData(FILE *f, const void *data, size_t len)
2571 {
2572         size_t written = fwrite(data, len, 1, f);
2573         if (written != len)
2574                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
2575 }
2576
2577 static void writeLong(FILE *f, int l)
2578 {
2579         int i;
2580         for (i=0; i<4; i++)
2581         {
2582                 char c=(l>>(i*8))&0xff;
2583                 writeData(f, &c, 1);
2584         }
2585
2586 }
2587
2588 static void writeString(FILE *f, char *s)
2589 {
2590         writeData(f, s, strlen(s));
2591 }
2592
2593 /* Dump a gmon.out histogram file. */
2594 static void writeGmon(u32 *samples, u32 sampleNum, char *filename)
2595 {
2596         u32 i;
2597         FILE *f=fopen(filename, "w");
2598         if (f==NULL)
2599                 return;
2600         writeString(f, "gmon");
2601         writeLong(f, 0x00000001); /* Version */
2602         writeLong(f, 0); /* padding */
2603         writeLong(f, 0); /* padding */
2604         writeLong(f, 0); /* padding */
2605
2606         u8 zero = 0;  /* GMON_TAG_TIME_HIST */
2607         writeData(f, &zero, 1);
2608
2609         /* figure out bucket size */
2610         u32 min=samples[0];
2611         u32 max=samples[0];
2612         for (i=0; i<sampleNum; i++)
2613         {
2614                 if (min>samples[i])
2615                 {
2616                         min=samples[i];
2617                 }
2618                 if (max<samples[i])
2619                 {
2620                         max=samples[i];
2621                 }
2622         }
2623
2624         int addressSpace=(max-min+1);
2625
2626         static const u32 maxBuckets = 256 * 1024; /* maximum buckets. */
2627         u32 length = addressSpace;
2628         if (length > maxBuckets)
2629         {
2630                 length=maxBuckets;
2631         }
2632         int *buckets=malloc(sizeof(int)*length);
2633         if (buckets==NULL)
2634         {
2635                 fclose(f);
2636                 return;
2637         }
2638         memset(buckets, 0, sizeof(int)*length);
2639         for (i=0; i<sampleNum;i++)
2640         {
2641                 u32 address=samples[i];
2642                 long long a=address-min;
2643                 long long b=length-1;
2644                 long long c=addressSpace-1;
2645                 int index=(a*b)/c; /* danger!!!! int32 overflows */
2646                 buckets[index]++;
2647         }
2648
2649         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
2650         writeLong(f, min);                      /* low_pc */
2651         writeLong(f, max);                      /* high_pc */
2652         writeLong(f, length);           /* # of samples */
2653         writeLong(f, 64000000);         /* 64MHz */
2654         writeString(f, "seconds");
2655         for (i=0; i<(15-strlen("seconds")); i++)
2656                 writeData(f, &zero, 1);
2657         writeString(f, "s");
2658
2659         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
2660
2661         char *data=malloc(2*length);
2662         if (data!=NULL)
2663         {
2664                 for (i=0; i<length;i++)
2665                 {
2666                         int val;
2667                         val=buckets[i];
2668                         if (val>65535)
2669                         {
2670                                 val=65535;
2671                         }
2672                         data[i*2]=val&0xff;
2673                         data[i*2+1]=(val>>8)&0xff;
2674                 }
2675                 free(buckets);
2676                 writeData(f, data, length * 2);
2677                 free(data);
2678         } else
2679         {
2680                 free(buckets);
2681         }
2682
2683         fclose(f);
2684 }
2685
2686 /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
2687 static int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2688 {
2689         target_t *target = get_current_target(cmd_ctx);
2690         struct timeval timeout, now;
2691
2692         gettimeofday(&timeout, NULL);
2693         if (argc!=2)
2694         {
2695                 return ERROR_COMMAND_SYNTAX_ERROR;
2696         }
2697         char *end;
2698         timeval_add_time(&timeout, strtoul(args[0], &end, 0), 0);
2699         if (*end)
2700         {
2701                 return ERROR_OK;
2702         }
2703
2704         command_print(cmd_ctx, "Starting profiling. Halting and resuming the target as often as we can...");
2705
2706         static const int maxSample=10000;
2707         u32 *samples=malloc(sizeof(u32)*maxSample);
2708         if (samples==NULL)
2709                 return ERROR_OK;
2710
2711         int numSamples=0;
2712         int retval=ERROR_OK;
2713         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2714         reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1);
2715
2716         for (;;)
2717         {
2718                 target_poll(target);
2719                 if (target->state == TARGET_HALTED)
2720                 {
2721                         u32 t=*((u32 *)reg->value);
2722                         samples[numSamples++]=t;
2723                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2724                         target_poll(target);
2725                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2726                 } else if (target->state == TARGET_RUNNING)
2727                 {
2728                         /* We want to quickly sample the PC. */
2729                         if((retval = target_halt(target)) != ERROR_OK)
2730                         {
2731                                 free(samples);
2732                                 return retval;
2733                         }
2734                 } else
2735                 {
2736                         command_print(cmd_ctx, "Target not halted or running");
2737                         retval=ERROR_OK;
2738                         break;
2739                 }
2740                 if (retval!=ERROR_OK)
2741                 {
2742                         break;
2743                 }
2744
2745                 gettimeofday(&now, NULL);
2746                 if ((numSamples>=maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
2747                 {
2748                         command_print(cmd_ctx, "Profiling completed. %d samples.", numSamples);
2749                         if((retval = target_poll(target)) != ERROR_OK)
2750                         {
2751                                 free(samples);
2752                                 return retval;
2753                         }
2754                         if (target->state == TARGET_HALTED)
2755                         {
2756                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2757                         }
2758                         if((retval = target_poll(target)) != ERROR_OK)
2759                         {
2760                                 free(samples);
2761                                 return retval;
2762                         }
2763                         writeGmon(samples, numSamples, args[1]);
2764                         command_print(cmd_ctx, "Wrote %s", args[1]);
2765                         break;
2766                 }
2767         }
2768         free(samples);
2769
2770         return ERROR_OK;
2771 }
2772
2773 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 val)
2774 {
2775         char *namebuf;
2776         Jim_Obj *nameObjPtr, *valObjPtr;
2777         int result;
2778
2779         namebuf = alloc_printf("%s(%d)", varname, idx);
2780         if (!namebuf)
2781                 return JIM_ERR;
2782
2783         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
2784         valObjPtr = Jim_NewIntObj(interp, val);
2785         if (!nameObjPtr || !valObjPtr)
2786         {
2787                 free(namebuf);
2788                 return JIM_ERR;
2789         }
2790
2791         Jim_IncrRefCount(nameObjPtr);
2792         Jim_IncrRefCount(valObjPtr);
2793         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
2794         Jim_DecrRefCount(interp, nameObjPtr);
2795         Jim_DecrRefCount(interp, valObjPtr);
2796         free(namebuf);
2797         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
2798         return result;
2799 }
2800
2801 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
2802 {
2803         command_context_t *context;
2804         target_t *target;
2805
2806         context = Jim_GetAssocData(interp, "context");
2807         if (context == NULL)
2808         {
2809                 LOG_ERROR("mem2array: no command context");
2810                 return JIM_ERR;
2811         }
2812         target = get_current_target(context);
2813         if (target == NULL)
2814         {
2815                 LOG_ERROR("mem2array: no current target");
2816                 return JIM_ERR;
2817         }
2818
2819         return  target_mem2array(interp, target, argc-1, argv+1);
2820 }
2821
2822 static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv)
2823 {
2824         long l;
2825         u32 width;
2826         int len;
2827         u32 addr;
2828         u32 count;
2829         u32 v;
2830         const char *varname;
2831         u8 buffer[4096];
2832         int  n, e, retval;
2833         u32 i;
2834
2835         /* argv[1] = name of array to receive the data
2836          * argv[2] = desired width
2837          * argv[3] = memory address
2838          * argv[4] = count of times to read
2839          */
2840         if (argc != 4) {
2841                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
2842                 return JIM_ERR;
2843         }
2844         varname = Jim_GetString(argv[0], &len);
2845         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
2846
2847         e = Jim_GetLong(interp, argv[1], &l);
2848         width = l;
2849         if (e != JIM_OK) {
2850                 return e;
2851         }
2852
2853         e = Jim_GetLong(interp, argv[2], &l);
2854         addr = l;
2855         if (e != JIM_OK) {
2856                 return e;
2857         }
2858         e = Jim_GetLong(interp, argv[3], &l);
2859         len = l;
2860         if (e != JIM_OK) {
2861                 return e;
2862         }
2863         switch (width) {
2864                 case 8:
2865                         width = 1;
2866                         break;
2867                 case 16:
2868                         width = 2;
2869                         break;
2870                 case 32:
2871                         width = 4;
2872                         break;
2873                 default:
2874                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2875                         Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
2876                         return JIM_ERR;
2877         }
2878         if (len == 0) {
2879                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2880                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
2881                 return JIM_ERR;
2882         }
2883         if ((addr + (len * width)) < addr) {
2884                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2885                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
2886                 return JIM_ERR;
2887         }
2888         /* absurd transfer size? */
2889         if (len > 65536) {
2890                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2891                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
2892                 return JIM_ERR;
2893         }
2894
2895         if ((width == 1) ||
2896                 ((width == 2) && ((addr & 1) == 0)) ||
2897                 ((width == 4) && ((addr & 3) == 0))) {
2898                 /* all is well */
2899         } else {
2900                 char buf[100];
2901                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2902                 sprintf(buf, "mem2array address: 0x%08x is not aligned for %d byte reads", addr, width);
2903                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
2904                 return JIM_ERR;
2905         }
2906
2907         /* Transfer loop */
2908
2909         /* index counter */
2910         n = 0;
2911         /* assume ok */
2912         e = JIM_OK;
2913         while (len) {
2914                 /* Slurp... in buffer size chunks */
2915
2916                 count = len; /* in objects.. */
2917                 if (count > (sizeof(buffer)/width)) {
2918                         count = (sizeof(buffer)/width);
2919                 }
2920
2921                 retval = target_read_memory( target, addr, width, count, buffer );
2922                 if (retval != ERROR_OK) {
2923                         /* BOO !*/
2924                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
2925                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2926                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
2927                         e = JIM_ERR;
2928                         len = 0;
2929                 } else {
2930                         v = 0; /* shut up gcc */
2931                         for (i = 0 ;i < count ;i++, n++) {
2932                                 switch (width) {
2933                                         case 4:
2934                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
2935                                                 break;
2936                                         case 2:
2937                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
2938                                                 break;
2939                                         case 1:
2940                                                 v = buffer[i] & 0x0ff;
2941                                                 break;
2942                                 }
2943                                 new_int_array_element(interp, varname, n, v);
2944                         }
2945                         len -= count;
2946                 }
2947         }
2948
2949         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2950
2951         return JIM_OK;
2952 }
2953
2954 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 *val)
2955 {
2956         char *namebuf;
2957         Jim_Obj *nameObjPtr, *valObjPtr;
2958         int result;
2959         long l;
2960
2961         namebuf = alloc_printf("%s(%d)", varname, idx);
2962         if (!namebuf)
2963                 return JIM_ERR;
2964
2965         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
2966         if (!nameObjPtr)
2967         {
2968                 free(namebuf);
2969                 return JIM_ERR;
2970         }
2971
2972         Jim_IncrRefCount(nameObjPtr);
2973         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
2974         Jim_DecrRefCount(interp, nameObjPtr);
2975         free(namebuf);
2976         if (valObjPtr == NULL)
2977                 return JIM_ERR;
2978
2979         result = Jim_GetLong(interp, valObjPtr, &l);
2980         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
2981         *val = l;
2982         return result;
2983 }
2984
2985 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
2986 {
2987         command_context_t *context;
2988         target_t *target;
2989
2990         context = Jim_GetAssocData(interp, "context");
2991         if (context == NULL){
2992                 LOG_ERROR("array2mem: no command context");
2993                 return JIM_ERR;
2994         }
2995         target = get_current_target(context);
2996         if (target == NULL){
2997                 LOG_ERROR("array2mem: no current target");
2998                 return JIM_ERR;
2999         }
3000
3001         return target_array2mem( interp,target, argc-1, argv+1 );
3002 }
3003
3004 static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv)
3005 {
3006         long l;
3007         u32 width;
3008         int len;
3009         u32 addr;
3010         u32 count;
3011         u32 v;
3012         const char *varname;
3013         u8 buffer[4096];
3014         int  n, e, retval;
3015         u32 i;
3016
3017         /* argv[1] = name of array to get the data
3018          * argv[2] = desired width
3019          * argv[3] = memory address
3020          * argv[4] = count to write
3021          */
3022         if (argc != 4) {
3023                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3024                 return JIM_ERR;
3025         }
3026         varname = Jim_GetString(argv[0], &len);
3027         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3028
3029         e = Jim_GetLong(interp, argv[1], &l);
3030         width = l;
3031         if (e != JIM_OK) {
3032                 return e;
3033         }
3034
3035         e = Jim_GetLong(interp, argv[2], &l);
3036         addr = l;
3037         if (e != JIM_OK) {
3038                 return e;
3039         }
3040         e = Jim_GetLong(interp, argv[3], &l);
3041         len = l;
3042         if (e != JIM_OK) {
3043                 return e;
3044         }
3045         switch (width) {
3046                 case 8:
3047                         width = 1;
3048                         break;
3049                 case 16:
3050                         width = 2;
3051                         break;
3052                 case 32:
3053                         width = 4;
3054                         break;
3055                 default:
3056                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3057                         Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
3058                         return JIM_ERR;
3059         }
3060         if (len == 0) {
3061                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3062                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
3063                 return JIM_ERR;
3064         }
3065         if ((addr + (len * width)) < addr) {
3066                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3067                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
3068                 return JIM_ERR;
3069         }
3070         /* absurd transfer size? */
3071         if (len > 65536) {
3072                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3073                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
3074                 return JIM_ERR;
3075         }
3076
3077         if ((width == 1) ||
3078                 ((width == 2) && ((addr & 1) == 0)) ||
3079                 ((width == 4) && ((addr & 3) == 0))) {
3080                 /* all is well */
3081         } else {
3082                 char buf[100];
3083                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3084                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads", addr, width);
3085                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3086                 return JIM_ERR;
3087         }
3088
3089         /* Transfer loop */
3090
3091         /* index counter */
3092         n = 0;
3093         /* assume ok */
3094         e = JIM_OK;
3095         while (len) {
3096                 /* Slurp... in buffer size chunks */
3097
3098                 count = len; /* in objects.. */
3099                 if (count > (sizeof(buffer)/width)) {
3100                         count = (sizeof(buffer)/width);
3101                 }
3102
3103                 v = 0; /* shut up gcc */
3104                 for (i = 0 ;i < count ;i++, n++) {
3105                         get_int_array_element(interp, varname, n, &v);
3106                         switch (width) {
3107                         case 4:
3108                                 target_buffer_set_u32(target, &buffer[i*width], v);
3109                                 break;
3110                         case 2:
3111                                 target_buffer_set_u16(target, &buffer[i*width], v);
3112                                 break;
3113                         case 1:
3114                                 buffer[i] = v & 0x0ff;
3115                                 break;
3116                         }
3117                 }
3118                 len -= count;
3119
3120                 retval = target_write_memory(target, addr, width, count, buffer);
3121                 if (retval != ERROR_OK) {
3122                         /* BOO !*/
3123                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
3124                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3125                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3126                         e = JIM_ERR;
3127                         len = 0;
3128                 }
3129         }
3130
3131         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3132
3133         return JIM_OK;
3134 }
3135
3136 void target_all_handle_event( enum target_event e )
3137 {
3138         target_t *target;
3139
3140         LOG_DEBUG( "**all*targets: event: %d, %s",
3141                         e,
3142                         Jim_Nvp_value2name_simple( nvp_target_event, e )->name );
3143
3144         target = all_targets;
3145         while (target){
3146                 target_handle_event( target, e );
3147                 target = target->next;
3148         }
3149 }
3150
3151 void target_handle_event( target_t *target, enum target_event e )
3152 {
3153         target_event_action_t *teap;
3154         int done;
3155
3156         teap = target->event_action;
3157
3158         done = 0;
3159         while( teap ){
3160                 if( teap->event == e ){
3161                         done = 1;
3162                         LOG_DEBUG( "target: (%d) %s (%s) event: %d (%s) action: %s\n",
3163                                            target->target_number,
3164                                            target->cmd_name,
3165                                            target_get_name(target),
3166                                            e,
3167                                            Jim_Nvp_value2name_simple( nvp_target_event, e )->name,
3168                                            Jim_GetString( teap->body, NULL ) );
3169                         if (Jim_EvalObj( interp, teap->body )!=JIM_OK)
3170                         {
3171                                 Jim_PrintErrorMessage(interp);
3172                         }
3173                 }
3174                 teap = teap->next;
3175         }
3176         if( !done ){
3177                 LOG_DEBUG( "event: %d %s - no action",
3178                                    e,
3179                                    Jim_Nvp_value2name_simple( nvp_target_event, e )->name );
3180         }
3181 }
3182
3183 enum target_cfg_param {
3184         TCFG_TYPE,
3185         TCFG_EVENT,
3186         TCFG_WORK_AREA_VIRT,
3187         TCFG_WORK_AREA_PHYS,
3188         TCFG_WORK_AREA_SIZE,
3189         TCFG_WORK_AREA_BACKUP,
3190         TCFG_ENDIAN,
3191         TCFG_VARIANT,
3192         TCFG_CHAIN_POSITION,
3193 };
3194
3195 static Jim_Nvp nvp_config_opts[] = {
3196         { .name = "-type",             .value = TCFG_TYPE },
3197         { .name = "-event",            .value = TCFG_EVENT },
3198         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
3199         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
3200         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
3201         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3202         { .name = "-endian" ,          .value = TCFG_ENDIAN },
3203         { .name = "-variant",          .value = TCFG_VARIANT },
3204         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
3205
3206         { .name = NULL, .value = -1 }
3207 };
3208
3209 static int target_configure( Jim_GetOptInfo *goi, target_t *target )
3210 {
3211         Jim_Nvp *n;
3212         Jim_Obj *o;
3213         jim_wide w;
3214         char *cp;
3215         int e;
3216
3217         /* parse config or cget options ... */
3218         while( goi->argc > 0 ){
3219                 Jim_SetEmptyResult( goi->interp );
3220                 /* Jim_GetOpt_Debug( goi ); */
3221
3222                 if( target->type->target_jim_configure ){
3223                         /* target defines a configure function */
3224                         /* target gets first dibs on parameters */
3225                         e = (*(target->type->target_jim_configure))( target, goi );
3226                         if( e == JIM_OK ){
3227                                 /* more? */
3228                                 continue;
3229                         }
3230                         if( e == JIM_ERR ){
3231                                 /* An error */
3232                                 return e;
3233                         }
3234                         /* otherwise we 'continue' below */
3235                 }
3236                 e = Jim_GetOpt_Nvp( goi, nvp_config_opts, &n );
3237                 if( e != JIM_OK ){
3238                         Jim_GetOpt_NvpUnknown( goi, nvp_config_opts, 0 );
3239                         return e;
3240                 }
3241                 switch( n->value ){
3242                 case TCFG_TYPE:
3243                         /* not setable */
3244                         if( goi->isconfigure ){
3245                                 Jim_SetResult_sprintf( goi->interp, "not setable: %s", n->name );
3246                                 return JIM_ERR;
3247                         } else {
3248                         no_params:
3249                                 if( goi->argc != 0 ){
3250                                         Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "NO PARAMS");
3251                                         return JIM_ERR;
3252                                 }
3253                         }
3254                         Jim_SetResultString( goi->interp, target_get_name(target), -1 );
3255                         /* loop for more */
3256                         break;
3257                 case TCFG_EVENT:
3258                         if( goi->argc == 0 ){
3259                                 Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
3260                                 return JIM_ERR;
3261                         }
3262
3263                         e = Jim_GetOpt_Nvp( goi, nvp_target_event, &n );
3264                         if( e != JIM_OK ){
3265                                 Jim_GetOpt_NvpUnknown( goi, nvp_target_event, 1 );
3266                                 return e;
3267                         }
3268
3269                         if( goi->isconfigure ){
3270                                 if( goi->argc != 1 ){
3271                                         Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
3272                                         return JIM_ERR;
3273                                 }
3274                         } else {
3275                                 if( goi->argc != 0 ){
3276                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
3277                                         return JIM_ERR;
3278                                 }
3279                         }
3280
3281                         {
3282                                 target_event_action_t *teap;
3283
3284                                 teap = target->event_action;
3285                                 /* replace existing? */
3286                                 while( teap ){
3287                                         if( teap->event == (enum target_event)n->value ){
3288                                                 break;
3289                                         }
3290                                         teap = teap->next;
3291                                 }
3292
3293                                 if( goi->isconfigure ){
3294                                         if( teap == NULL ){
3295                                                 /* create new */
3296                                                 teap = calloc( 1, sizeof(*teap) );
3297                                         }
3298                                         teap->event = n->value;
3299                                         Jim_GetOpt_Obj( goi, &o );
3300                                         if( teap->body ){
3301                                                 Jim_DecrRefCount( interp, teap->body );
3302                                         }
3303                                         teap->body  = Jim_DuplicateObj( goi->interp, o );
3304                                         /*
3305                                          * FIXME:
3306                                          *     Tcl/TK - "tk events" have a nice feature.
3307                                          *     See the "BIND" command.
3308                                          *    We should support that here.
3309                                          *     You can specify %X and %Y in the event code.
3310                                          *     The idea is: %T - target name.
3311                                          *     The idea is: %N - target number
3312                                          *     The idea is: %E - event name.
3313                                          */
3314                                         Jim_IncrRefCount( teap->body );
3315
3316                                         /* add to head of event list */
3317                                         teap->next = target->event_action;
3318                                         target->event_action = teap;
3319                                         Jim_SetEmptyResult(goi->interp);
3320                                 } else {
3321                                         /* get */
3322                                         if( teap == NULL ){
3323                                                 Jim_SetEmptyResult( goi->interp );
3324                                         } else {
3325                                                 Jim_SetResult( goi->interp, Jim_DuplicateObj( goi->interp, teap->body ) );
3326                                         }
3327                                 }
3328                         }
3329                         /* loop for more */
3330                         break;
3331
3332                 case TCFG_WORK_AREA_VIRT:
3333                         if( goi->isconfigure ){
3334                                 target_free_all_working_areas(target);
3335                                 e = Jim_GetOpt_Wide( goi, &w );
3336                                 if( e != JIM_OK ){
3337                                         return e;
3338                                 }
3339                                 target->working_area_virt = w;
3340                         } else {
3341                                 if( goi->argc != 0 ){
3342                                         goto no_params;
3343                                 }
3344                         }
3345                         Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_virt ) );
3346                         /* loop for more */
3347                         break;
3348
3349                 case TCFG_WORK_AREA_PHYS:
3350                         if( goi->isconfigure ){
3351                                 target_free_all_working_areas(target);
3352                                 e = Jim_GetOpt_Wide( goi, &w );
3353                                 if( e != JIM_OK ){
3354                                         return e;
3355                                 }
3356                                 target->working_area_phys = w;
3357                         } else {
3358                                 if( goi->argc != 0 ){
3359                                         goto no_params;
3360                                 }
3361                         }
3362                         Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_phys ) );
3363                         /* loop for more */
3364                         break;
3365
3366                 case TCFG_WORK_AREA_SIZE:
3367                         if( goi->isconfigure ){
3368                                 target_free_all_working_areas(target);
3369                                 e = Jim_GetOpt_Wide( goi, &w );
3370                                 if( e != JIM_OK ){
3371                                         return e;
3372                                 }
3373                                 target->working_area_size = w;
3374                         } else {
3375                                 if( goi->argc != 0 ){
3376                                         goto no_params;
3377                                 }
3378                         }
3379                         Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_size ) );
3380                         /* loop for more */
3381                         break;
3382
3383                 case TCFG_WORK_AREA_BACKUP:
3384                         if( goi->isconfigure ){
3385                                 target_free_all_working_areas(target);
3386                                 e = Jim_GetOpt_Wide( goi, &w );
3387                                 if( e != JIM_OK ){
3388                                         return e;
3389                                 }
3390                                 /* make this exactly 1 or 0 */
3391                                 target->backup_working_area = (!!w);
3392                         } else {
3393                                 if( goi->argc != 0 ){
3394                                         goto no_params;
3395                                 }
3396                         }
3397                         Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_size ) );
3398                         /* loop for more e*/
3399                         break;
3400
3401                 case TCFG_ENDIAN:
3402                         if( goi->isconfigure ){
3403                                 e = Jim_GetOpt_Nvp( goi, nvp_target_endian, &n );
3404                                 if( e != JIM_OK ){
3405                                         Jim_GetOpt_NvpUnknown( goi, nvp_target_endian, 1 );
3406                                         return e;
3407                                 }
3408                                 target->endianness = n->value;
3409                         } else {
3410                                 if( goi->argc != 0 ){
3411                                         goto no_params;
3412                                 }
3413                         }
3414                         n = Jim_Nvp_value2name_simple( nvp_target_endian, target->endianness );
3415                         if( n->name == NULL ){
3416                                 target->endianness = TARGET_LITTLE_ENDIAN;
3417                                 n = Jim_Nvp_value2name_simple( nvp_target_endian, target->endianness );
3418                         }
3419                         Jim_SetResultString( goi->interp, n->name, -1 );
3420                         /* loop for more */
3421                         break;
3422
3423                 case TCFG_VARIANT:
3424                         if( goi->isconfigure ){
3425                                 if( goi->argc < 1 ){
3426                                         Jim_SetResult_sprintf( goi->interp,
3427                                                                                    "%s ?STRING?",
3428                                                                                    n->name );
3429                                         return JIM_ERR;
3430                                 }
3431                                 if( target->variant ){
3432                                         free((void *)(target->variant));
3433                                 }
3434                                 e = Jim_GetOpt_String( goi, &cp, NULL );
3435                                 target->variant = strdup(cp);
3436                         } else {
3437                                 if( goi->argc != 0 ){
3438                                         goto no_params;
3439                                 }
3440                         }
3441                         Jim_SetResultString( goi->interp, target->variant,-1 );
3442                         /* loop for more */
3443                         break;
3444                 case TCFG_CHAIN_POSITION:
3445                         if( goi->isconfigure ){
3446                                 Jim_Obj *o;
3447                                 jtag_tap_t *tap;
3448                                 target_free_all_working_areas(target);
3449                                 e = Jim_GetOpt_Obj( goi, &o );
3450                                 if( e != JIM_OK ){
3451                                         return e;
3452                                 }
3453                                 tap = jtag_TapByJimObj( goi->interp, o );
3454                                 if( tap == NULL ){
3455                                         return JIM_ERR;
3456                                 }
3457                                 /* make this exactly 1 or 0 */
3458                                 target->tap = tap;
3459                         } else {
3460                                 if( goi->argc != 0 ){
3461                                         goto no_params;
3462                                 }
3463                         }
3464                         Jim_SetResultString( interp, target->tap->dotted_name, -1 );
3465                         /* loop for more e*/
3466                         break;
3467                 }
3468         } /* while( goi->argc ) */
3469
3470
3471                 /* done - we return */
3472         return JIM_OK;
3473 }
3474
3475 /** this is the 'tcl' handler for the target specific command */
3476 static int tcl_target_func( Jim_Interp *interp, int argc, Jim_Obj *const *argv )
3477 {
3478         Jim_GetOptInfo goi;
3479         jim_wide a,b,c;
3480         int x,y,z;
3481         u8  target_buf[32];
3482         Jim_Nvp *n;
3483         target_t *target;
3484         struct command_context_s *cmd_ctx;
3485         int e;
3486
3487         enum {
3488                 TS_CMD_CONFIGURE,
3489                 TS_CMD_CGET,
3490
3491                 TS_CMD_MWW, TS_CMD_MWH, TS_CMD_MWB,
3492                 TS_CMD_MDW, TS_CMD_MDH, TS_CMD_MDB,
3493                 TS_CMD_MRW, TS_CMD_MRH, TS_CMD_MRB,
3494                 TS_CMD_MEM2ARRAY, TS_CMD_ARRAY2MEM,
3495                 TS_CMD_EXAMINE,
3496                 TS_CMD_POLL,
3497                 TS_CMD_RESET,
3498                 TS_CMD_HALT,
3499                 TS_CMD_WAITSTATE,
3500                 TS_CMD_EVENTLIST,
3501                 TS_CMD_CURSTATE,
3502                 TS_CMD_INVOKE_EVENT,
3503         };
3504
3505         static const Jim_Nvp target_options[] = {
3506                 { .name = "configure", .value = TS_CMD_CONFIGURE },
3507                 { .name = "cget", .value = TS_CMD_CGET },
3508                 { .name = "mww", .value = TS_CMD_MWW },
3509                 { .name = "mwh", .value = TS_CMD_MWH },
3510                 { .name = "mwb", .value = TS_CMD_MWB },
3511                 { .name = "mdw", .value = TS_CMD_MDW },
3512                 { .name = "mdh", .value = TS_CMD_MDH },
3513                 { .name = "mdb", .value = TS_CMD_MDB },
3514                 { .name = "mem2array", .value = TS_CMD_MEM2ARRAY },
3515                 { .name = "array2mem", .value = TS_CMD_ARRAY2MEM },
3516                 { .name = "eventlist", .value = TS_CMD_EVENTLIST },
3517                 { .name = "curstate",  .value = TS_CMD_CURSTATE },
3518
3519                 { .name = "arp_examine", .value = TS_CMD_EXAMINE },
3520                 { .name = "arp_poll", .value = TS_CMD_POLL },
3521                 { .name = "arp_reset", .value = TS_CMD_RESET },
3522                 { .name = "arp_halt", .value = TS_CMD_HALT },
3523                 { .name = "arp_waitstate", .value = TS_CMD_WAITSTATE },
3524                 { .name = "invoke-event", .value = TS_CMD_INVOKE_EVENT },
3525
3526                 { .name = NULL, .value = -1 },
3527         };
3528
3529         /* go past the "command" */
3530         Jim_GetOpt_Setup( &goi, interp, argc-1, argv+1 );
3531
3532         target = Jim_CmdPrivData( goi.interp );
3533         cmd_ctx = Jim_GetAssocData(goi.interp, "context");
3534
3535         /* commands here are in an NVP table */
3536         e = Jim_GetOpt_Nvp( &goi, target_options, &n );
3537         if( e != JIM_OK ){
3538                 Jim_GetOpt_NvpUnknown( &goi, target_options, 0 );
3539                 return e;
3540         }
3541         /* Assume blank result */
3542         Jim_SetEmptyResult( goi.interp );
3543
3544         switch( n->value ){
3545         case TS_CMD_CONFIGURE:
3546                 if( goi.argc < 2 ){
3547                         Jim_WrongNumArgs( goi.interp, goi.argc, goi.argv, "missing: -option VALUE ...");
3548                         return JIM_ERR;
3549                 }
3550                 goi.isconfigure = 1;
3551                 return target_configure( &goi, target );
3552         case TS_CMD_CGET:
3553                 // some things take params
3554                 if( goi.argc < 1 ){
3555                         Jim_WrongNumArgs( goi.interp, 0, goi.argv, "missing: ?-option?");
3556                         return JIM_ERR;
3557                 }
3558                 goi.isconfigure = 0;
3559                 return target_configure( &goi, target );
3560                 break;
3561         case TS_CMD_MWW:
3562         case TS_CMD_MWH:
3563         case TS_CMD_MWB:
3564                 /* argv[0] = cmd
3565                  * argv[1] = address
3566                  * argv[2] = data
3567                  * argv[3] = optional count.
3568                  */
3569
3570                 if( (goi.argc == 3) || (goi.argc == 4) ){
3571                         /* all is well */
3572                 } else {
3573                 mwx_error:
3574                         Jim_SetResult_sprintf( goi.interp, "expected: %s ADDR DATA [COUNT]", n->name );
3575                         return JIM_ERR;
3576                 }
3577
3578                 e = Jim_GetOpt_Wide( &goi, &a );
3579                 if( e != JIM_OK ){
3580                         goto mwx_error;
3581                 }
3582
3583                 e = Jim_GetOpt_Wide( &goi, &b );
3584                 if( e != JIM_OK ){
3585                         goto mwx_error;
3586                 }
3587                 if( goi.argc ){
3588                         e = Jim_GetOpt_Wide( &goi, &c );
3589                         if( e != JIM_OK ){
3590                                 goto mwx_error;
3591                         }
3592                 } else {
3593                         c = 1;
3594                 }
3595
3596                 switch( n->value ){
3597                 case TS_CMD_MWW:
3598                         target_buffer_set_u32( target, target_buf, b );
3599                         b = 4;
3600                         break;
3601                 case TS_CMD_MWH:
3602                         target_buffer_set_u16( target, target_buf, b );
3603                         b = 2;
3604                         break;
3605                 case TS_CMD_MWB:
3606                         target_buffer_set_u8( target, target_buf, b );
3607                         b = 1;
3608                         break;
3609                 }
3610                 for( x = 0 ; x < c ; x++ ){
3611                         e = target_write_memory( target, a, b, 1, target_buf );
3612                         if( e != ERROR_OK ){
3613                                 Jim_SetResult_sprintf( interp, "Error writing @ 0x%08x: %d\n", (int)(a), e );
3614                                 return JIM_ERR;
3615                         }
3616                         /* b = width */
3617                         a = a + b;
3618                 }
3619                 return JIM_OK;
3620                 break;
3621
3622                 /* display */
3623         case TS_CMD_MDW:
3624         case TS_CMD_MDH:
3625         case TS_CMD_MDB:
3626                 /* argv[0] = command
3627                  * argv[1] = address
3628                  * argv[2] = optional count
3629                  */
3630                 if( (goi.argc == 2) || (goi.argc == 3) ){
3631                         Jim_SetResult_sprintf( goi.interp, "expected: %s ADDR [COUNT]", n->name );
3632                         return JIM_ERR;
3633                 }
3634                 e = Jim_GetOpt_Wide( &goi, &a );
3635                 if( e != JIM_OK ){
3636                         return JIM_ERR;
3637                 }
3638                 if( goi.argc ){
3639                         e = Jim_GetOpt_Wide( &goi, &c );
3640                         if( e != JIM_OK ){
3641                                 return JIM_ERR;
3642                         }
3643                 } else {
3644                         c = 1;
3645                 }
3646                 b = 1; /* shut up gcc */
3647                 switch( n->value ){
3648                 case TS_CMD_MDW:
3649                         b =  4;
3650                         break;
3651                 case TS_CMD_MDH:
3652                         b = 2;
3653                         break;
3654                 case TS_CMD_MDB:
3655                         b = 1;
3656                         break;
3657                 }
3658
3659                 /* convert to "bytes" */
3660                 c = c * b;
3661                 /* count is now in 'BYTES' */
3662                 while( c > 0 ){
3663                         y = c;
3664                         if( y > 16 ){
3665                                 y = 16;
3666                         }
3667                         e = target_read_memory( target, a, b, y / b, target_buf );
3668                         if( e != ERROR_OK ){
3669                                 Jim_SetResult_sprintf( interp, "error reading target @ 0x%08lx", (int)(a) );
3670                                 return JIM_ERR;
3671                         }
3672
3673                         Jim_fprintf( interp, interp->cookie_stdout, "0x%08x ", (int)(a) );
3674                         switch( b ){
3675                         case 4:
3676                                 for( x = 0 ; (x < 16) && (x < y) ; x += 4 ){
3677                                         z = target_buffer_get_u32( target, &(target_buf[ x * 4 ]) );
3678                                         Jim_fprintf( interp, interp->cookie_stdout, "%08x ", (int)(z) );
3679                                 }
3680                                 for( ; (x < 16) ; x += 4 ){
3681                                         Jim_fprintf( interp, interp->cookie_stdout, "         " );
3682                                 }
3683                                 break;
3684                         case 2:
3685                                 for( x = 0 ; (x < 16) && (x < y) ; x += 2 ){
3686                                         z = target_buffer_get_u16( target, &(target_buf[ x * 2 ]) );
3687                                         Jim_fprintf( interp, interp->cookie_stdout, "%04x ", (int)(z) );
3688                                 }
3689                                 for( ; (x < 16) ; x += 2 ){
3690                                         Jim_fprintf( interp, interp->cookie_stdout, "     " );
3691                                 }
3692                                 break;
3693                         case 1:
3694                         default:
3695                                 for( x = 0 ; (x < 16) && (x < y) ; x += 1 ){
3696                                         z = target_buffer_get_u8( target, &(target_buf[ x * 4 ]) );
3697                                         Jim_fprintf( interp, interp->cookie_stdout, "%02x ", (int)(z) );
3698                                 }
3699                                 for( ; (x < 16) ; x += 1 ){
3700                                         Jim_fprintf( interp, interp->cookie_stdout, "   " );
3701                                 }
3702                                 break;
3703                         }
3704                         /* ascii-ify the bytes */
3705                         for( x = 0 ; x < y ; x++ ){
3706                                 if( (target_buf[x] >= 0x20) &&
3707                                         (target_buf[x] <= 0x7e) ){
3708                                         /* good */
3709                                 } else {
3710                                         /* smack it */
3711                                         target_buf[x] = '.';
3712                                 }
3713                         }
3714                         /* space pad  */
3715                         while( x < 16 ){
3716                                 target_buf[x] = ' ';
3717                                 x++;
3718                         }
3719                         /* terminate */
3720                         target_buf[16] = 0;
3721                         /* print - with a newline */
3722                         Jim_fprintf( interp, interp->cookie_stdout, "%s\n", target_buf );
3723                         /* NEXT... */
3724                         c -= 16;
3725                         a += 16;
3726                 }
3727                 return JIM_OK;
3728         case TS_CMD_MEM2ARRAY:
3729                 return target_mem2array( goi.interp, target, goi.argc, goi.argv );
3730                 break;
3731         case TS_CMD_ARRAY2MEM:
3732                 return target_array2mem( goi.interp, target, goi.argc, goi.argv );
3733                 break;
3734         case TS_CMD_EXAMINE:
3735                 if( goi.argc ){
3736                         Jim_WrongNumArgs( goi.interp, 2, argv, "[no parameters]");
3737                         return JIM_ERR;
3738                 }
3739                 e = target->type->examine( target );
3740                 if( e != ERROR_OK ){
3741                         Jim_SetResult_sprintf( interp, "examine-fails: %d", e );
3742                         return JIM_ERR;
3743                 }
3744                 return JIM_OK;
3745         case TS_CMD_POLL:
3746                 if( goi.argc ){
3747                         Jim_WrongNumArgs( goi.interp, 2, argv, "[no parameters]");
3748                         return JIM_ERR;
3749                 }
3750                 if( !(target_was_examined(target)) ){
3751                         e = ERROR_TARGET_NOT_EXAMINED;
3752                 } else {
3753                         e = target->type->poll( target );
3754                 }
3755                 if( e != ERROR_OK ){
3756                         Jim_SetResult_sprintf( interp, "poll-fails: %d", e );
3757                         return JIM_ERR;
3758                 } else {
3759                         return JIM_OK;
3760                 }
3761                 break;
3762         case TS_CMD_RESET:
3763                 if( goi.argc != 2 ){
3764                         Jim_WrongNumArgs( interp, 2, argv, "t|f|assert|deassert BOOL");
3765                         return JIM_ERR;
3766                 }
3767                 e = Jim_GetOpt_Nvp( &goi, nvp_assert, &n );
3768                 if( e != JIM_OK ){
3769                         Jim_GetOpt_NvpUnknown( &goi, nvp_assert, 1 );
3770                         return e;
3771                 }
3772                 /* the halt or not param */
3773                 e = Jim_GetOpt_Wide( &goi, &a);
3774                 if( e != JIM_OK ){
3775                         return e;
3776                 }
3777                 /* determine if we should halt or not. */
3778                 target->reset_halt = !!a;
3779                 /* When this happens - all workareas are invalid. */
3780                 target_free_all_working_areas_restore(target, 0);
3781
3782                 /* do the assert */
3783                 if( n->value == NVP_ASSERT ){
3784                         target->type->assert_reset( target );
3785                 } else {
3786                         target->type->deassert_reset( target );
3787                 }
3788                 return JIM_OK;
3789         case TS_CMD_HALT:
3790                 if( goi.argc ){
3791                         Jim_WrongNumArgs( goi.interp, 0, argv, "halt [no parameters]");
3792                         return JIM_ERR;
3793                 }
3794                 target->type->halt( target );
3795                 return JIM_OK;
3796         case TS_CMD_WAITSTATE:
3797                 /* params:  <name>  statename timeoutmsecs */
3798                 if( goi.argc != 2 ){
3799                         Jim_SetResult_sprintf( goi.interp, "%s STATENAME TIMEOUTMSECS", n->name );
3800                         return JIM_ERR;
3801                 }
3802                 e = Jim_GetOpt_Nvp( &goi, nvp_target_state, &n );
3803                 if( e != JIM_OK ){
3804                         Jim_GetOpt_NvpUnknown( &goi, nvp_target_state,1 );
3805                         return e;
3806                 }
3807                 e = Jim_GetOpt_Wide( &goi, &a );
3808                 if( e != JIM_OK ){
3809                         return e;
3810                 }
3811                 e = target_wait_state( target, n->value, a );
3812                 if( e != ERROR_OK ){
3813                         Jim_SetResult_sprintf( goi.interp,
3814                                                                    "target: %s wait %s fails (%d) %s",
3815                                                                    target->cmd_name,
3816                                                                    n->name,
3817                                                                    e, target_strerror_safe(e) );
3818                         return JIM_ERR;
3819                 } else {
3820                         return JIM_OK;
3821                 }
3822         case TS_CMD_EVENTLIST:
3823                 /* List for human, Events defined for this target.
3824                  * scripts/programs should use 'name cget -event NAME'
3825                  */
3826                 {
3827                         target_event_action_t *teap;
3828                         teap = target->event_action;
3829                         command_print( cmd_ctx, "Event actions for target (%d) %s\n",
3830                                                    target->target_number,
3831                                                    target->cmd_name );
3832                         command_print( cmd_ctx, "%-25s | Body", "Event");
3833                         command_print( cmd_ctx, "------------------------- | ----------------------------------------");
3834                         while( teap ){
3835                                 command_print( cmd_ctx,
3836                                                            "%-25s | %s",
3837                                                            Jim_Nvp_value2name_simple( nvp_target_event, teap->event )->name,
3838                                                            Jim_GetString( teap->body, NULL ) );
3839                                 teap = teap->next;
3840                         }
3841                         command_print( cmd_ctx, "***END***");
3842                         return JIM_OK;
3843                 }
3844         case TS_CMD_CURSTATE:
3845                 if( goi.argc != 0 ){
3846                         Jim_WrongNumArgs( goi.interp, 0, argv, "[no parameters]");
3847                         return JIM_ERR;
3848                 }
3849                 Jim_SetResultString( goi.interp,
3850                                                          Jim_Nvp_value2name_simple(nvp_target_state,target->state)->name,-1);
3851                 return JIM_OK;
3852         case TS_CMD_INVOKE_EVENT:
3853                 if( goi.argc != 1 ){
3854                         Jim_SetResult_sprintf( goi.interp, "%s ?EVENTNAME?",n->name);
3855                         return JIM_ERR;
3856                 }
3857                 e = Jim_GetOpt_Nvp( &goi, nvp_target_event, &n );
3858                 if( e != JIM_OK ){
3859                         Jim_GetOpt_NvpUnknown( &goi, nvp_target_event, 1 );
3860                         return e;
3861                 }
3862                 target_handle_event( target, n->value );
3863                 return JIM_OK;
3864         }
3865         return JIM_ERR;
3866 }
3867
3868 static int target_create( Jim_GetOptInfo *goi )
3869 {
3870         Jim_Obj *new_cmd;
3871         Jim_Cmd *cmd;
3872         const char *cp;
3873         char *cp2;
3874         int e;
3875         int x;
3876         target_t *target;
3877         struct command_context_s *cmd_ctx;
3878
3879         cmd_ctx = Jim_GetAssocData(goi->interp, "context");
3880         if( goi->argc < 3 ){
3881                 Jim_WrongNumArgs( goi->interp, 1, goi->argv, "?name? ?type? ..options...");
3882                 return JIM_ERR;
3883         }
3884
3885         /* COMMAND */
3886         Jim_GetOpt_Obj( goi, &new_cmd );
3887         /* does this command exist? */
3888         cmd = Jim_GetCommand( goi->interp, new_cmd, JIM_ERRMSG );
3889         if( cmd ){
3890                 cp = Jim_GetString( new_cmd, NULL );
3891                 Jim_SetResult_sprintf(goi->interp, "Command/target: %s Exists", cp);
3892                 return JIM_ERR;
3893         }
3894
3895         /* TYPE */
3896         e = Jim_GetOpt_String( goi, &cp2, NULL );
3897         cp = cp2;
3898         /* now does target type exist */
3899         for( x = 0 ; target_types[x] ; x++ ){
3900                 if( 0 == strcmp( cp, target_types[x]->name ) ){
3901                         /* found */
3902                         break;
3903                 }
3904         }
3905         if( target_types[x] == NULL ){
3906                 Jim_SetResult_sprintf( goi->interp, "Unknown target type %s, try one of ", cp );
3907                 for( x = 0 ; target_types[x] ; x++ ){
3908                         if( target_types[x+1] ){
3909                                 Jim_AppendStrings( goi->interp,
3910                                                                    Jim_GetResult(goi->interp),
3911                                                                    target_types[x]->name,
3912                                                                    ", ", NULL);
3913                         } else {
3914                                 Jim_AppendStrings( goi->interp,
3915                                                                    Jim_GetResult(goi->interp),
3916                                                                    " or ",
3917                                                                    target_types[x]->name,NULL );
3918                         }
3919                 }
3920                 return JIM_ERR;
3921         }
3922
3923         /* Create it */
3924         target = calloc(1,sizeof(target_t));
3925         /* set target number */
3926         target->target_number = new_target_number();
3927
3928         /* allocate memory for each unique target type */
3929         target->type = (target_type_t*)calloc(1,sizeof(target_type_t));
3930
3931         memcpy( target->type, target_types[x], sizeof(target_type_t));
3932
3933         /* will be set by "-endian" */
3934         target->endianness = TARGET_ENDIAN_UNKNOWN;
3935
3936         target->working_area        = 0x0;
3937         target->working_area_size   = 0x0;
3938         target->working_areas       = NULL;
3939         target->backup_working_area = 0;
3940
3941         target->state               = TARGET_UNKNOWN;
3942         target->debug_reason        = DBG_REASON_UNDEFINED;
3943         target->reg_cache           = NULL;
3944         target->breakpoints         = NULL;
3945         target->watchpoints         = NULL;
3946         target->next                = NULL;
3947         target->arch_info           = NULL;
3948
3949         target->display             = 1;
3950
3951         /* initialize trace information */
3952         target->trace_info = malloc(sizeof(trace_t));
3953         target->trace_info->num_trace_points         = 0;
3954         target->trace_info->trace_points_size        = 0;
3955         target->trace_info->trace_points             = NULL;
3956         target->trace_info->trace_history_size       = 0;
3957         target->trace_info->trace_history            = NULL;
3958         target->trace_info->trace_history_pos        = 0;
3959         target->trace_info->trace_history_overflowed = 0;
3960
3961         target->dbgmsg          = NULL;
3962         target->dbg_msg_enabled = 0;
3963
3964         target->endianness = TARGET_ENDIAN_UNKNOWN;
3965
3966         /* Do the rest as "configure" options */
3967         goi->isconfigure = 1;
3968         e = target_configure( goi, target);
3969
3970         if (target->tap == NULL)
3971         {
3972                 Jim_SetResultString( interp, "-chain-position required when creating target", -1);
3973                 e=JIM_ERR;
3974         }
3975
3976         if( e != JIM_OK ){
3977                 free( target->type );
3978                 free( target );
3979                 return e;
3980         }
3981
3982         if( target->endianness == TARGET_ENDIAN_UNKNOWN ){
3983                 /* default endian to little if not specified */
3984                 target->endianness = TARGET_LITTLE_ENDIAN;
3985         }
3986
3987         /* incase variant is not set */
3988         if (!target->variant)
3989                 target->variant = strdup("");
3990
3991         /* create the target specific commands */
3992         if( target->type->register_commands ){
3993                 (*(target->type->register_commands))( cmd_ctx );
3994         }
3995         if( target->type->target_create ){
3996                 (*(target->type->target_create))( target, goi->interp );
3997         }
3998
3999         /* append to end of list */
4000         {
4001                 target_t **tpp;
4002                 tpp = &(all_targets);
4003                 while( *tpp ){
4004                         tpp = &( (*tpp)->next );
4005                 }
4006                 *tpp = target;
4007         }
4008
4009         cp = Jim_GetString( new_cmd, NULL );
4010         target->cmd_name = strdup(cp);
4011
4012         /* now - create the new target name command */
4013         e = Jim_CreateCommand( goi->interp,
4014                                                    /* name */
4015                                                    cp,
4016                                                    tcl_target_func, /* C function */
4017                                                    target, /* private data */
4018                                                    NULL ); /* no del proc */
4019
4020         return e;
4021 }
4022
4023 static int jim_target( Jim_Interp *interp, int argc, Jim_Obj *const *argv )
4024 {
4025         int x,r,e;
4026         jim_wide w;
4027         struct command_context_s *cmd_ctx;
4028         target_t *target;
4029         Jim_GetOptInfo goi;
4030         enum tcmd {
4031                 /* TG = target generic */
4032                 TG_CMD_CREATE,
4033                 TG_CMD_TYPES,
4034                 TG_CMD_NAMES,
4035                 TG_CMD_CURRENT,
4036                 TG_CMD_NUMBER,
4037                 TG_CMD_COUNT,
4038         };
4039         const char *target_cmds[] = {
4040                 "create", "types", "names", "current", "number",
4041                 "count",
4042                 NULL /* terminate */
4043         };
4044
4045         LOG_DEBUG("Target command params:");
4046         LOG_DEBUG("%s", Jim_Debug_ArgvString(interp, argc, argv));
4047
4048         cmd_ctx = Jim_GetAssocData( interp, "context" );
4049
4050         Jim_GetOpt_Setup( &goi, interp, argc-1, argv+1 );
4051
4052         if( goi.argc == 0 ){
4053                 Jim_WrongNumArgs(interp, 1, argv, "missing: command ...");
4054                 return JIM_ERR;
4055         }
4056
4057         /* Jim_GetOpt_Debug( &goi ); */
4058         r = Jim_GetOpt_Enum( &goi, target_cmds, &x   );
4059         if( r != JIM_OK ){
4060                 return r;
4061         }
4062
4063         switch(x){
4064         default:
4065                 Jim_Panic(goi.interp,"Why am I here?");
4066                 return JIM_ERR;
4067         case TG_CMD_CURRENT:
4068                 if( goi.argc != 0 ){
4069                         Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters");
4070                         return JIM_ERR;
4071                 }
4072                 Jim_SetResultString( goi.interp, get_current_target( cmd_ctx )->cmd_name, -1 );
4073                 return JIM_OK;
4074         case TG_CMD_TYPES:
4075                 if( goi.argc != 0 ){
4076                         Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters" );
4077                         return JIM_ERR;
4078                 }
4079                 Jim_SetResult( goi.interp, Jim_NewListObj( goi.interp, NULL, 0 ) );
4080                 for( x = 0 ; target_types[x] ; x++ ){
4081                         Jim_ListAppendElement( goi.interp,
4082                                                                    Jim_GetResult(goi.interp),
4083                                                                    Jim_NewStringObj( goi.interp, target_types[x]->name, -1 ) );
4084                 }
4085                 return JIM_OK;
4086         case TG_CMD_NAMES:
4087                 if( goi.argc != 0 ){
4088                         Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters" );
4089                         return JIM_ERR;
4090                 }
4091                 Jim_SetResult( goi.interp, Jim_NewListObj( goi.interp, NULL, 0 ) );
4092                 target = all_targets;
4093                 while( target ){
4094                         Jim_ListAppendElement( goi.interp,
4095                                                                    Jim_GetResult(goi.interp),
4096                                                                    Jim_NewStringObj( goi.interp, target->cmd_name, -1 ) );
4097                         target = target->next;
4098                 }
4099                 return JIM_OK;
4100         case TG_CMD_CREATE:
4101                 if( goi.argc < 3 ){
4102                         Jim_WrongNumArgs( goi.interp, goi.argc, goi.argv, "?name  ... config options ...");
4103                         return JIM_ERR;
4104                 }
4105                 return target_create( &goi );
4106                 break;
4107         case TG_CMD_NUMBER:
4108                 if( goi.argc != 1 ){
4109                         Jim_SetResult_sprintf( goi.interp, "expected: target number ?NUMBER?");
4110                         return JIM_ERR;
4111                 }
4112                 e = Jim_GetOpt_Wide( &goi, &w );
4113                 if( e != JIM_OK ){
4114                         return JIM_ERR;
4115                 }
4116                 {
4117                         target_t *t;
4118                         t = get_target_by_num(w);
4119                         if( t == NULL ){
4120                                 Jim_SetResult_sprintf( goi.interp,"Target: number %d does not exist", (int)(w));
4121                                 return JIM_ERR;
4122                         }
4123                         Jim_SetResultString( goi.interp, t->cmd_name, -1 );
4124                         return JIM_OK;
4125                 }
4126         case TG_CMD_COUNT:
4127                 if( goi.argc != 0 ){
4128                         Jim_WrongNumArgs( goi.interp, 0, goi.argv, "<no parameters>");
4129                         return JIM_ERR;
4130                 }
4131                 Jim_SetResult( goi.interp,
4132                                            Jim_NewIntObj( goi.interp, max_target_number()));
4133                 return JIM_OK;
4134         }
4135
4136         return JIM_ERR;
4137 }
4138
4139
4140 struct FastLoad
4141 {
4142         u32 address;
4143         u8 *data;
4144         int length;
4145
4146 };
4147
4148 static int fastload_num;
4149 static struct FastLoad *fastload;
4150
4151 static void free_fastload(void)
4152 {
4153         if (fastload!=NULL)
4154         {
4155                 int i;
4156                 for (i=0; i<fastload_num; i++)
4157                 {
4158                         if (fastload[i].data)
4159                                 free(fastload[i].data);
4160                 }
4161                 free(fastload);
4162                 fastload=NULL;
4163         }
4164 }
4165
4166
4167
4168
4169 static int handle_fast_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
4170 {
4171         u8 *buffer;
4172         u32 buf_cnt;
4173         u32 image_size;
4174         u32 min_address=0;
4175         u32 max_address=0xffffffff;
4176         int i;
4177         int retval;
4178
4179         image_t image;
4180
4181         duration_t duration;
4182         char *duration_text;
4183
4184         if ((argc < 1)||(argc > 5))
4185         {
4186                 return ERROR_COMMAND_SYNTAX_ERROR;
4187         }
4188
4189         /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
4190         if (argc >= 2)
4191         {
4192                 image.base_address_set = 1;
4193                 image.base_address = strtoul(args[1], NULL, 0);
4194         }
4195         else
4196         {
4197                 image.base_address_set = 0;
4198         }
4199
4200
4201         image.start_address_set = 0;
4202
4203         if (argc>=4)
4204         {
4205                 min_address=strtoul(args[3], NULL, 0);
4206         }
4207         if (argc>=5)
4208         {
4209                 max_address=strtoul(args[4], NULL, 0)+min_address;
4210         }
4211
4212         if (min_address>max_address)
4213         {
4214                 return ERROR_COMMAND_SYNTAX_ERROR;
4215         }
4216
4217         duration_start_measure(&duration);
4218
4219         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
4220         {
4221                 return ERROR_OK;
4222         }
4223
4224         image_size = 0x0;
4225         retval = ERROR_OK;
4226         fastload_num=image.num_sections;
4227         fastload=(struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
4228         if (fastload==NULL)
4229         {
4230                 image_close(&image);
4231                 return ERROR_FAIL;
4232         }
4233         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
4234         for (i = 0; i < image.num_sections; i++)
4235         {
4236                 buffer = malloc(image.sections[i].size);
4237                 if (buffer == NULL)
4238                 {
4239                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
4240                         break;
4241                 }
4242
4243                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
4244                 {
4245                         free(buffer);
4246                         break;
4247                 }
4248
4249                 u32 offset=0;
4250                 u32 length=buf_cnt;
4251
4252
4253                 /* DANGER!!! beware of unsigned comparision here!!! */
4254
4255                 if ((image.sections[i].base_address+buf_cnt>=min_address)&&
4256                                 (image.sections[i].base_address<max_address))
4257                 {
4258                         if (image.sections[i].base_address<min_address)
4259                         {
4260                                 /* clip addresses below */
4261                                 offset+=min_address-image.sections[i].base_address;
4262                                 length-=offset;
4263                         }
4264
4265                         if (image.sections[i].base_address+buf_cnt>max_address)
4266                         {
4267                                 length-=(image.sections[i].base_address+buf_cnt)-max_address;
4268                         }
4269
4270                         fastload[i].address=image.sections[i].base_address+offset;
4271                         fastload[i].data=malloc(length);
4272                         if (fastload[i].data==NULL)
4273                         {
4274                                 free(buffer);
4275                                 break;
4276                         }
4277                         memcpy(fastload[i].data, buffer+offset, length);
4278                         fastload[i].length=length;
4279
4280                         image_size += length;
4281                         command_print(cmd_ctx, "%u byte written at address 0x%8.8x", length, image.sections[i].base_address+offset);
4282                 }
4283
4284                 free(buffer);
4285         }
4286
4287         duration_stop_measure(&duration, &duration_text);
4288         if (retval==ERROR_OK)
4289         {
4290                 command_print(cmd_ctx, "Loaded %u bytes in %s", image_size, duration_text);
4291                 command_print(cmd_ctx, "NB!!! image has not been loaded to target, issue a subsequent 'fast_load' to do so.");
4292         }
4293         free(duration_text);
4294
4295         image_close(&image);
4296
4297         if (retval!=ERROR_OK)
4298         {
4299                 free_fastload();
4300         }
4301
4302         return retval;
4303 }
4304
4305 static int handle_fast_load_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
4306 {
4307         if (argc>0)
4308                 return ERROR_COMMAND_SYNTAX_ERROR;
4309         if (fastload==NULL)
4310         {
4311                 LOG_ERROR("No image in memory");
4312                 return ERROR_FAIL;
4313         }
4314         int i;
4315         int ms=timeval_ms();
4316         int size=0;
4317         int retval=ERROR_OK;
4318         for (i=0; i<fastload_num;i++)
4319         {
4320                 target_t *target = get_current_target(cmd_ctx);
4321                 command_print(cmd_ctx, "Write to 0x%08x, length 0x%08x", fastload[i].address, fastload[i].length);
4322                 if (retval==ERROR_OK)
4323                 {
4324                         retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
4325                 }
4326                 size+=fastload[i].length;
4327         }
4328         int after=timeval_ms();
4329         command_print(cmd_ctx, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
4330         return retval;
4331 }