stm8 : new target
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2010 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   Copyright (C) 2011 by Broadcom Corporation                            *
18  *   Evan Hunter - ehunter@broadcom.com                                    *
19  *                                                                         *
20  *   Copyright (C) ST-Ericsson SA 2011                                     *
21  *   michel.jaouen@stericsson.com : smp minimum support                    *
22  *                                                                         *
23  *   Copyright (C) 2011 Andreas Fritiofson                                 *
24  *   andreas.fritiofson@gmail.com                                          *
25  *                                                                         *
26  *   This program is free software; you can redistribute it and/or modify  *
27  *   it under the terms of the GNU General Public License as published by  *
28  *   the Free Software Foundation; either version 2 of the License, or     *
29  *   (at your option) any later version.                                   *
30  *                                                                         *
31  *   This program is distributed in the hope that it will be useful,       *
32  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
33  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
34  *   GNU General Public License for more details.                          *
35  *                                                                         *
36  *   You should have received a copy of the GNU General Public License     *
37  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
38  ***************************************************************************/
39
40 #ifdef HAVE_CONFIG_H
41 #include "config.h"
42 #endif
43
44 #include <helper/time_support.h>
45 #include <jtag/jtag.h>
46 #include <flash/nor/core.h>
47
48 #include "target.h"
49 #include "target_type.h"
50 #include "target_request.h"
51 #include "breakpoints.h"
52 #include "register.h"
53 #include "trace.h"
54 #include "image.h"
55 #include "rtos/rtos.h"
56 #include "transport/transport.h"
57
58 /* default halt wait timeout (ms) */
59 #define DEFAULT_HALT_TIMEOUT 5000
60
61 static int target_read_buffer_default(struct target *target, target_addr_t address,
62                 uint32_t count, uint8_t *buffer);
63 static int target_write_buffer_default(struct target *target, target_addr_t address,
64                 uint32_t count, const uint8_t *buffer);
65 static int target_array2mem(Jim_Interp *interp, struct target *target,
66                 int argc, Jim_Obj * const *argv);
67 static int target_mem2array(Jim_Interp *interp, struct target *target,
68                 int argc, Jim_Obj * const *argv);
69 static int target_register_user_commands(struct command_context *cmd_ctx);
70 static int target_get_gdb_fileio_info_default(struct target *target,
71                 struct gdb_fileio_info *fileio_info);
72 static int target_gdb_fileio_end_default(struct target *target, int retcode,
73                 int fileio_errno, bool ctrl_c);
74 static int target_profiling_default(struct target *target, uint32_t *samples,
75                 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds);
76
77 /* targets */
78 extern struct target_type arm7tdmi_target;
79 extern struct target_type arm720t_target;
80 extern struct target_type arm9tdmi_target;
81 extern struct target_type arm920t_target;
82 extern struct target_type arm966e_target;
83 extern struct target_type arm946e_target;
84 extern struct target_type arm926ejs_target;
85 extern struct target_type fa526_target;
86 extern struct target_type feroceon_target;
87 extern struct target_type dragonite_target;
88 extern struct target_type xscale_target;
89 extern struct target_type cortexm_target;
90 extern struct target_type cortexa_target;
91 extern struct target_type aarch64_target;
92 extern struct target_type cortexr4_target;
93 extern struct target_type arm11_target;
94 extern struct target_type ls1_sap_target;
95 extern struct target_type mips_m4k_target;
96 extern struct target_type avr_target;
97 extern struct target_type dsp563xx_target;
98 extern struct target_type dsp5680xx_target;
99 extern struct target_type testee_target;
100 extern struct target_type avr32_ap7k_target;
101 extern struct target_type hla_target;
102 extern struct target_type nds32_v2_target;
103 extern struct target_type nds32_v3_target;
104 extern struct target_type nds32_v3m_target;
105 extern struct target_type or1k_target;
106 extern struct target_type quark_x10xx_target;
107 extern struct target_type quark_d20xx_target;
108 extern struct target_type stm8_target;
109
110 static struct target_type *target_types[] = {
111         &arm7tdmi_target,
112         &arm9tdmi_target,
113         &arm920t_target,
114         &arm720t_target,
115         &arm966e_target,
116         &arm946e_target,
117         &arm926ejs_target,
118         &fa526_target,
119         &feroceon_target,
120         &dragonite_target,
121         &xscale_target,
122         &cortexm_target,
123         &cortexa_target,
124         &cortexr4_target,
125         &arm11_target,
126         &ls1_sap_target,
127         &mips_m4k_target,
128         &avr_target,
129         &dsp563xx_target,
130         &dsp5680xx_target,
131         &testee_target,
132         &avr32_ap7k_target,
133         &hla_target,
134         &nds32_v2_target,
135         &nds32_v3_target,
136         &nds32_v3m_target,
137         &or1k_target,
138         &quark_x10xx_target,
139         &quark_d20xx_target,
140         &stm8_target,
141 #if BUILD_TARGET64
142         &aarch64_target,
143 #endif
144         NULL,
145 };
146
147 struct target *all_targets;
148 static struct target_event_callback *target_event_callbacks;
149 static struct target_timer_callback *target_timer_callbacks;
150 LIST_HEAD(target_reset_callback_list);
151 LIST_HEAD(target_trace_callback_list);
152 static const int polling_interval = 100;
153
154 static const Jim_Nvp nvp_assert[] = {
155         { .name = "assert", NVP_ASSERT },
156         { .name = "deassert", NVP_DEASSERT },
157         { .name = "T", NVP_ASSERT },
158         { .name = "F", NVP_DEASSERT },
159         { .name = "t", NVP_ASSERT },
160         { .name = "f", NVP_DEASSERT },
161         { .name = NULL, .value = -1 }
162 };
163
164 static const Jim_Nvp nvp_error_target[] = {
165         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
166         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
167         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
168         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
169         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
170         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
171         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
172         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
173         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
174         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
175         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
176         { .value = -1, .name = NULL }
177 };
178
179 static const char *target_strerror_safe(int err)
180 {
181         const Jim_Nvp *n;
182
183         n = Jim_Nvp_value2name_simple(nvp_error_target, err);
184         if (n->name == NULL)
185                 return "unknown";
186         else
187                 return n->name;
188 }
189
190 static const Jim_Nvp nvp_target_event[] = {
191
192         { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
193         { .value = TARGET_EVENT_HALTED, .name = "halted" },
194         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
195         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
196         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
197
198         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
199         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
200
201         { .value = TARGET_EVENT_RESET_START,         .name = "reset-start" },
202         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
203         { .value = TARGET_EVENT_RESET_ASSERT,        .name = "reset-assert" },
204         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
205         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
206         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
207         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
208         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
209         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
210         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
211         { .value = TARGET_EVENT_RESET_INIT,          .name = "reset-init" },
212         { .value = TARGET_EVENT_RESET_END,           .name = "reset-end" },
213
214         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
215         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
216
217         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
218         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
219
220         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
221         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
222
223         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
224         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
225
226         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
227         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
228
229         { .value = TARGET_EVENT_TRACE_CONFIG, .name = "trace-config" },
230
231         { .name = NULL, .value = -1 }
232 };
233
234 static const Jim_Nvp nvp_target_state[] = {
235         { .name = "unknown", .value = TARGET_UNKNOWN },
236         { .name = "running", .value = TARGET_RUNNING },
237         { .name = "halted",  .value = TARGET_HALTED },
238         { .name = "reset",   .value = TARGET_RESET },
239         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
240         { .name = NULL, .value = -1 },
241 };
242
243 static const Jim_Nvp nvp_target_debug_reason[] = {
244         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
245         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
246         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
247         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
248         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
249         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
250         { .name = "program-exit"             , .value = DBG_REASON_EXIT },
251         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
252         { .name = NULL, .value = -1 },
253 };
254
255 static const Jim_Nvp nvp_target_endian[] = {
256         { .name = "big",    .value = TARGET_BIG_ENDIAN },
257         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
258         { .name = "be",     .value = TARGET_BIG_ENDIAN },
259         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
260         { .name = NULL,     .value = -1 },
261 };
262
263 static const Jim_Nvp nvp_reset_modes[] = {
264         { .name = "unknown", .value = RESET_UNKNOWN },
265         { .name = "run"    , .value = RESET_RUN },
266         { .name = "halt"   , .value = RESET_HALT },
267         { .name = "init"   , .value = RESET_INIT },
268         { .name = NULL     , .value = -1 },
269 };
270
271 const char *debug_reason_name(struct target *t)
272 {
273         const char *cp;
274
275         cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
276                         t->debug_reason)->name;
277         if (!cp) {
278                 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
279                 cp = "(*BUG*unknown*BUG*)";
280         }
281         return cp;
282 }
283
284 const char *target_state_name(struct target *t)
285 {
286         const char *cp;
287         cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
288         if (!cp) {
289                 LOG_ERROR("Invalid target state: %d", (int)(t->state));
290                 cp = "(*BUG*unknown*BUG*)";
291         }
292
293         if (!target_was_examined(t) && t->defer_examine)
294                 cp = "examine deferred";
295
296         return cp;
297 }
298
299 const char *target_event_name(enum target_event event)
300 {
301         const char *cp;
302         cp = Jim_Nvp_value2name_simple(nvp_target_event, event)->name;
303         if (!cp) {
304                 LOG_ERROR("Invalid target event: %d", (int)(event));
305                 cp = "(*BUG*unknown*BUG*)";
306         }
307         return cp;
308 }
309
310 const char *target_reset_mode_name(enum target_reset_mode reset_mode)
311 {
312         const char *cp;
313         cp = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name;
314         if (!cp) {
315                 LOG_ERROR("Invalid target reset mode: %d", (int)(reset_mode));
316                 cp = "(*BUG*unknown*BUG*)";
317         }
318         return cp;
319 }
320
321 /* determine the number of the new target */
322 static int new_target_number(void)
323 {
324         struct target *t;
325         int x;
326
327         /* number is 0 based */
328         x = -1;
329         t = all_targets;
330         while (t) {
331                 if (x < t->target_number)
332                         x = t->target_number;
333                 t = t->next;
334         }
335         return x + 1;
336 }
337
338 /* read a uint64_t from a buffer in target memory endianness */
339 uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
340 {
341         if (target->endianness == TARGET_LITTLE_ENDIAN)
342                 return le_to_h_u64(buffer);
343         else
344                 return be_to_h_u64(buffer);
345 }
346
347 /* read a uint32_t from a buffer in target memory endianness */
348 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
349 {
350         if (target->endianness == TARGET_LITTLE_ENDIAN)
351                 return le_to_h_u32(buffer);
352         else
353                 return be_to_h_u32(buffer);
354 }
355
356 /* read a uint24_t from a buffer in target memory endianness */
357 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
358 {
359         if (target->endianness == TARGET_LITTLE_ENDIAN)
360                 return le_to_h_u24(buffer);
361         else
362                 return be_to_h_u24(buffer);
363 }
364
365 /* read a uint16_t from a buffer in target memory endianness */
366 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
367 {
368         if (target->endianness == TARGET_LITTLE_ENDIAN)
369                 return le_to_h_u16(buffer);
370         else
371                 return be_to_h_u16(buffer);
372 }
373
374 /* read a uint8_t from a buffer in target memory endianness */
375 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
376 {
377         return *buffer & 0x0ff;
378 }
379
380 /* write a uint64_t to a buffer in target memory endianness */
381 void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
382 {
383         if (target->endianness == TARGET_LITTLE_ENDIAN)
384                 h_u64_to_le(buffer, value);
385         else
386                 h_u64_to_be(buffer, value);
387 }
388
389 /* write a uint32_t to a buffer in target memory endianness */
390 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
391 {
392         if (target->endianness == TARGET_LITTLE_ENDIAN)
393                 h_u32_to_le(buffer, value);
394         else
395                 h_u32_to_be(buffer, value);
396 }
397
398 /* write a uint24_t to a buffer in target memory endianness */
399 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
400 {
401         if (target->endianness == TARGET_LITTLE_ENDIAN)
402                 h_u24_to_le(buffer, value);
403         else
404                 h_u24_to_be(buffer, value);
405 }
406
407 /* write a uint16_t to a buffer in target memory endianness */
408 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
409 {
410         if (target->endianness == TARGET_LITTLE_ENDIAN)
411                 h_u16_to_le(buffer, value);
412         else
413                 h_u16_to_be(buffer, value);
414 }
415
416 /* write a uint8_t to a buffer in target memory endianness */
417 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
418 {
419         *buffer = value;
420 }
421
422 /* write a uint64_t array to a buffer in target memory endianness */
423 void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf)
424 {
425         uint32_t i;
426         for (i = 0; i < count; i++)
427                 dstbuf[i] = target_buffer_get_u64(target, &buffer[i * 8]);
428 }
429
430 /* write a uint32_t array to a buffer in target memory endianness */
431 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
432 {
433         uint32_t i;
434         for (i = 0; i < count; i++)
435                 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
436 }
437
438 /* write a uint16_t array to a buffer in target memory endianness */
439 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
440 {
441         uint32_t i;
442         for (i = 0; i < count; i++)
443                 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
444 }
445
446 /* write a uint64_t array to a buffer in target memory endianness */
447 void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf)
448 {
449         uint32_t i;
450         for (i = 0; i < count; i++)
451                 target_buffer_set_u64(target, &buffer[i * 8], srcbuf[i]);
452 }
453
454 /* write a uint32_t array to a buffer in target memory endianness */
455 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
456 {
457         uint32_t i;
458         for (i = 0; i < count; i++)
459                 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
460 }
461
462 /* write a uint16_t array to a buffer in target memory endianness */
463 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf)
464 {
465         uint32_t i;
466         for (i = 0; i < count; i++)
467                 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
468 }
469
470 /* return a pointer to a configured target; id is name or number */
471 struct target *get_target(const char *id)
472 {
473         struct target *target;
474
475         /* try as tcltarget name */
476         for (target = all_targets; target; target = target->next) {
477                 if (target_name(target) == NULL)
478                         continue;
479                 if (strcmp(id, target_name(target)) == 0)
480                         return target;
481         }
482
483         /* It's OK to remove this fallback sometime after August 2010 or so */
484
485         /* no match, try as number */
486         unsigned num;
487         if (parse_uint(id, &num) != ERROR_OK)
488                 return NULL;
489
490         for (target = all_targets; target; target = target->next) {
491                 if (target->target_number == (int)num) {
492                         LOG_WARNING("use '%s' as target identifier, not '%u'",
493                                         target_name(target), num);
494                         return target;
495                 }
496         }
497
498         return NULL;
499 }
500
501 /* returns a pointer to the n-th configured target */
502 struct target *get_target_by_num(int num)
503 {
504         struct target *target = all_targets;
505
506         while (target) {
507                 if (target->target_number == num)
508                         return target;
509                 target = target->next;
510         }
511
512         return NULL;
513 }
514
515 struct target *get_current_target(struct command_context *cmd_ctx)
516 {
517         struct target *target = get_target_by_num(cmd_ctx->current_target);
518
519         if (target == NULL) {
520                 LOG_ERROR("BUG: current_target out of bounds");
521                 exit(-1);
522         }
523
524         return target;
525 }
526
527 int target_poll(struct target *target)
528 {
529         int retval;
530
531         /* We can't poll until after examine */
532         if (!target_was_examined(target)) {
533                 /* Fail silently lest we pollute the log */
534                 return ERROR_FAIL;
535         }
536
537         retval = target->type->poll(target);
538         if (retval != ERROR_OK)
539                 return retval;
540
541         if (target->halt_issued) {
542                 if (target->state == TARGET_HALTED)
543                         target->halt_issued = false;
544                 else {
545                         int64_t t = timeval_ms() - target->halt_issued_time;
546                         if (t > DEFAULT_HALT_TIMEOUT) {
547                                 target->halt_issued = false;
548                                 LOG_INFO("Halt timed out, wake up GDB.");
549                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
550                         }
551                 }
552         }
553
554         return ERROR_OK;
555 }
556
557 int target_halt(struct target *target)
558 {
559         int retval;
560         /* We can't poll until after examine */
561         if (!target_was_examined(target)) {
562                 LOG_ERROR("Target not examined yet");
563                 return ERROR_FAIL;
564         }
565
566         retval = target->type->halt(target);
567         if (retval != ERROR_OK)
568                 return retval;
569
570         target->halt_issued = true;
571         target->halt_issued_time = timeval_ms();
572
573         return ERROR_OK;
574 }
575
576 /**
577  * Make the target (re)start executing using its saved execution
578  * context (possibly with some modifications).
579  *
580  * @param target Which target should start executing.
581  * @param current True to use the target's saved program counter instead
582  *      of the address parameter
583  * @param address Optionally used as the program counter.
584  * @param handle_breakpoints True iff breakpoints at the resumption PC
585  *      should be skipped.  (For example, maybe execution was stopped by
586  *      such a breakpoint, in which case it would be counterprodutive to
587  *      let it re-trigger.
588  * @param debug_execution False if all working areas allocated by OpenOCD
589  *      should be released and/or restored to their original contents.
590  *      (This would for example be true to run some downloaded "helper"
591  *      algorithm code, which resides in one such working buffer and uses
592  *      another for data storage.)
593  *
594  * @todo Resolve the ambiguity about what the "debug_execution" flag
595  * signifies.  For example, Target implementations don't agree on how
596  * it relates to invalidation of the register cache, or to whether
597  * breakpoints and watchpoints should be enabled.  (It would seem wrong
598  * to enable breakpoints when running downloaded "helper" algorithms
599  * (debug_execution true), since the breakpoints would be set to match
600  * target firmware being debugged, not the helper algorithm.... and
601  * enabling them could cause such helpers to malfunction (for example,
602  * by overwriting data with a breakpoint instruction.  On the other
603  * hand the infrastructure for running such helpers might use this
604  * procedure but rely on hardware breakpoint to detect termination.)
605  */
606 int target_resume(struct target *target, int current, target_addr_t address,
607                 int handle_breakpoints, int debug_execution)
608 {
609         int retval;
610
611         /* We can't poll until after examine */
612         if (!target_was_examined(target)) {
613                 LOG_ERROR("Target not examined yet");
614                 return ERROR_FAIL;
615         }
616
617         target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
618
619         /* note that resume *must* be asynchronous. The CPU can halt before
620          * we poll. The CPU can even halt at the current PC as a result of
621          * a software breakpoint being inserted by (a bug?) the application.
622          */
623         retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
624         if (retval != ERROR_OK)
625                 return retval;
626
627         target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
628
629         return retval;
630 }
631
632 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
633 {
634         char buf[100];
635         int retval;
636         Jim_Nvp *n;
637         n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
638         if (n->name == NULL) {
639                 LOG_ERROR("invalid reset mode");
640                 return ERROR_FAIL;
641         }
642
643         struct target *target;
644         for (target = all_targets; target; target = target->next)
645                 target_call_reset_callbacks(target, reset_mode);
646
647         /* disable polling during reset to make reset event scripts
648          * more predictable, i.e. dr/irscan & pathmove in events will
649          * not have JTAG operations injected into the middle of a sequence.
650          */
651         bool save_poll = jtag_poll_get_enabled();
652
653         jtag_poll_set_enabled(false);
654
655         sprintf(buf, "ocd_process_reset %s", n->name);
656         retval = Jim_Eval(cmd_ctx->interp, buf);
657
658         jtag_poll_set_enabled(save_poll);
659
660         if (retval != JIM_OK) {
661                 Jim_MakeErrorMessage(cmd_ctx->interp);
662                 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
663                 return ERROR_FAIL;
664         }
665
666         /* We want any events to be processed before the prompt */
667         retval = target_call_timer_callbacks_now();
668
669         for (target = all_targets; target; target = target->next) {
670                 target->type->check_reset(target);
671                 target->running_alg = false;
672         }
673
674         return retval;
675 }
676
677 static int identity_virt2phys(struct target *target,
678                 target_addr_t virtual, target_addr_t *physical)
679 {
680         *physical = virtual;
681         return ERROR_OK;
682 }
683
684 static int no_mmu(struct target *target, int *enabled)
685 {
686         *enabled = 0;
687         return ERROR_OK;
688 }
689
690 static int default_examine(struct target *target)
691 {
692         target_set_examined(target);
693         return ERROR_OK;
694 }
695
696 /* no check by default */
697 static int default_check_reset(struct target *target)
698 {
699         return ERROR_OK;
700 }
701
702 int target_examine_one(struct target *target)
703 {
704         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
705
706         int retval = target->type->examine(target);
707         if (retval != ERROR_OK)
708                 return retval;
709
710         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
711
712         return ERROR_OK;
713 }
714
715 static int jtag_enable_callback(enum jtag_event event, void *priv)
716 {
717         struct target *target = priv;
718
719         if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
720                 return ERROR_OK;
721
722         jtag_unregister_event_callback(jtag_enable_callback, target);
723
724         return target_examine_one(target);
725 }
726
727 /* Targets that correctly implement init + examine, i.e.
728  * no communication with target during init:
729  *
730  * XScale
731  */
732 int target_examine(void)
733 {
734         int retval = ERROR_OK;
735         struct target *target;
736
737         for (target = all_targets; target; target = target->next) {
738                 /* defer examination, but don't skip it */
739                 if (!target->tap->enabled) {
740                         jtag_register_event_callback(jtag_enable_callback,
741                                         target);
742                         continue;
743                 }
744
745                 if (target->defer_examine)
746                         continue;
747
748                 retval = target_examine_one(target);
749                 if (retval != ERROR_OK)
750                         return retval;
751         }
752         return retval;
753 }
754
755 const char *target_type_name(struct target *target)
756 {
757         return target->type->name;
758 }
759
760 static int target_soft_reset_halt(struct target *target)
761 {
762         if (!target_was_examined(target)) {
763                 LOG_ERROR("Target not examined yet");
764                 return ERROR_FAIL;
765         }
766         if (!target->type->soft_reset_halt) {
767                 LOG_ERROR("Target %s does not support soft_reset_halt",
768                                 target_name(target));
769                 return ERROR_FAIL;
770         }
771         return target->type->soft_reset_halt(target);
772 }
773
774 /**
775  * Downloads a target-specific native code algorithm to the target,
776  * and executes it.  * Note that some targets may need to set up, enable,
777  * and tear down a breakpoint (hard or * soft) to detect algorithm
778  * termination, while others may support  lower overhead schemes where
779  * soft breakpoints embedded in the algorithm automatically terminate the
780  * algorithm.
781  *
782  * @param target used to run the algorithm
783  * @param arch_info target-specific description of the algorithm.
784  */
785 int target_run_algorithm(struct target *target,
786                 int num_mem_params, struct mem_param *mem_params,
787                 int num_reg_params, struct reg_param *reg_param,
788                 uint32_t entry_point, uint32_t exit_point,
789                 int timeout_ms, void *arch_info)
790 {
791         int retval = ERROR_FAIL;
792
793         if (!target_was_examined(target)) {
794                 LOG_ERROR("Target not examined yet");
795                 goto done;
796         }
797         if (!target->type->run_algorithm) {
798                 LOG_ERROR("Target type '%s' does not support %s",
799                                 target_type_name(target), __func__);
800                 goto done;
801         }
802
803         target->running_alg = true;
804         retval = target->type->run_algorithm(target,
805                         num_mem_params, mem_params,
806                         num_reg_params, reg_param,
807                         entry_point, exit_point, timeout_ms, arch_info);
808         target->running_alg = false;
809
810 done:
811         return retval;
812 }
813
814 /**
815  * Downloads a target-specific native code algorithm to the target,
816  * executes and leaves it running.
817  *
818  * @param target used to run the algorithm
819  * @param arch_info target-specific description of the algorithm.
820  */
821 int target_start_algorithm(struct target *target,
822                 int num_mem_params, struct mem_param *mem_params,
823                 int num_reg_params, struct reg_param *reg_params,
824                 uint32_t entry_point, uint32_t exit_point,
825                 void *arch_info)
826 {
827         int retval = ERROR_FAIL;
828
829         if (!target_was_examined(target)) {
830                 LOG_ERROR("Target not examined yet");
831                 goto done;
832         }
833         if (!target->type->start_algorithm) {
834                 LOG_ERROR("Target type '%s' does not support %s",
835                                 target_type_name(target), __func__);
836                 goto done;
837         }
838         if (target->running_alg) {
839                 LOG_ERROR("Target is already running an algorithm");
840                 goto done;
841         }
842
843         target->running_alg = true;
844         retval = target->type->start_algorithm(target,
845                         num_mem_params, mem_params,
846                         num_reg_params, reg_params,
847                         entry_point, exit_point, arch_info);
848
849 done:
850         return retval;
851 }
852
853 /**
854  * Waits for an algorithm started with target_start_algorithm() to complete.
855  *
856  * @param target used to run the algorithm
857  * @param arch_info target-specific description of the algorithm.
858  */
859 int target_wait_algorithm(struct target *target,
860                 int num_mem_params, struct mem_param *mem_params,
861                 int num_reg_params, struct reg_param *reg_params,
862                 uint32_t exit_point, int timeout_ms,
863                 void *arch_info)
864 {
865         int retval = ERROR_FAIL;
866
867         if (!target->type->wait_algorithm) {
868                 LOG_ERROR("Target type '%s' does not support %s",
869                                 target_type_name(target), __func__);
870                 goto done;
871         }
872         if (!target->running_alg) {
873                 LOG_ERROR("Target is not running an algorithm");
874                 goto done;
875         }
876
877         retval = target->type->wait_algorithm(target,
878                         num_mem_params, mem_params,
879                         num_reg_params, reg_params,
880                         exit_point, timeout_ms, arch_info);
881         if (retval != ERROR_TARGET_TIMEOUT)
882                 target->running_alg = false;
883
884 done:
885         return retval;
886 }
887
888 /**
889  * Executes a target-specific native code algorithm in the target.
890  * It differs from target_run_algorithm in that the algorithm is asynchronous.
891  * Because of this it requires an compliant algorithm:
892  * see contrib/loaders/flash/stm32f1x.S for example.
893  *
894  * @param target used to run the algorithm
895  */
896
897 int target_run_flash_async_algorithm(struct target *target,
898                 const uint8_t *buffer, uint32_t count, int block_size,
899                 int num_mem_params, struct mem_param *mem_params,
900                 int num_reg_params, struct reg_param *reg_params,
901                 uint32_t buffer_start, uint32_t buffer_size,
902                 uint32_t entry_point, uint32_t exit_point, void *arch_info)
903 {
904         int retval;
905         int timeout = 0;
906
907         const uint8_t *buffer_orig = buffer;
908
909         /* Set up working area. First word is write pointer, second word is read pointer,
910          * rest is fifo data area. */
911         uint32_t wp_addr = buffer_start;
912         uint32_t rp_addr = buffer_start + 4;
913         uint32_t fifo_start_addr = buffer_start + 8;
914         uint32_t fifo_end_addr = buffer_start + buffer_size;
915
916         uint32_t wp = fifo_start_addr;
917         uint32_t rp = fifo_start_addr;
918
919         /* validate block_size is 2^n */
920         assert(!block_size || !(block_size & (block_size - 1)));
921
922         retval = target_write_u32(target, wp_addr, wp);
923         if (retval != ERROR_OK)
924                 return retval;
925         retval = target_write_u32(target, rp_addr, rp);
926         if (retval != ERROR_OK)
927                 return retval;
928
929         /* Start up algorithm on target and let it idle while writing the first chunk */
930         retval = target_start_algorithm(target, num_mem_params, mem_params,
931                         num_reg_params, reg_params,
932                         entry_point,
933                         exit_point,
934                         arch_info);
935
936         if (retval != ERROR_OK) {
937                 LOG_ERROR("error starting target flash write algorithm");
938                 return retval;
939         }
940
941         while (count > 0) {
942
943                 retval = target_read_u32(target, rp_addr, &rp);
944                 if (retval != ERROR_OK) {
945                         LOG_ERROR("failed to get read pointer");
946                         break;
947                 }
948
949                 LOG_DEBUG("offs 0x%zx count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32,
950                         (size_t) (buffer - buffer_orig), count, wp, rp);
951
952                 if (rp == 0) {
953                         LOG_ERROR("flash write algorithm aborted by target");
954                         retval = ERROR_FLASH_OPERATION_FAILED;
955                         break;
956                 }
957
958                 if (((rp - fifo_start_addr) & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
959                         LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
960                         break;
961                 }
962
963                 /* Count the number of bytes available in the fifo without
964                  * crossing the wrap around. Make sure to not fill it completely,
965                  * because that would make wp == rp and that's the empty condition. */
966                 uint32_t thisrun_bytes;
967                 if (rp > wp)
968                         thisrun_bytes = rp - wp - block_size;
969                 else if (rp > fifo_start_addr)
970                         thisrun_bytes = fifo_end_addr - wp;
971                 else
972                         thisrun_bytes = fifo_end_addr - wp - block_size;
973
974                 if (thisrun_bytes == 0) {
975                         /* Throttle polling a bit if transfer is (much) faster than flash
976                          * programming. The exact delay shouldn't matter as long as it's
977                          * less than buffer size / flash speed. This is very unlikely to
978                          * run when using high latency connections such as USB. */
979                         alive_sleep(10);
980
981                         /* to stop an infinite loop on some targets check and increment a timeout
982                          * this issue was observed on a stellaris using the new ICDI interface */
983                         if (timeout++ >= 500) {
984                                 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
985                                 return ERROR_FLASH_OPERATION_FAILED;
986                         }
987                         continue;
988                 }
989
990                 /* reset our timeout */
991                 timeout = 0;
992
993                 /* Limit to the amount of data we actually want to write */
994                 if (thisrun_bytes > count * block_size)
995                         thisrun_bytes = count * block_size;
996
997                 /* Write data to fifo */
998                 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
999                 if (retval != ERROR_OK)
1000                         break;
1001
1002                 /* Update counters and wrap write pointer */
1003                 buffer += thisrun_bytes;
1004                 count -= thisrun_bytes / block_size;
1005                 wp += thisrun_bytes;
1006                 if (wp >= fifo_end_addr)
1007                         wp = fifo_start_addr;
1008
1009                 /* Store updated write pointer to target */
1010                 retval = target_write_u32(target, wp_addr, wp);
1011                 if (retval != ERROR_OK)
1012                         break;
1013         }
1014
1015         if (retval != ERROR_OK) {
1016                 /* abort flash write algorithm on target */
1017                 target_write_u32(target, wp_addr, 0);
1018         }
1019
1020         int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
1021                         num_reg_params, reg_params,
1022                         exit_point,
1023                         10000,
1024                         arch_info);
1025
1026         if (retval2 != ERROR_OK) {
1027                 LOG_ERROR("error waiting for target flash write algorithm");
1028                 retval = retval2;
1029         }
1030
1031         if (retval == ERROR_OK) {
1032                 /* check if algorithm set rp = 0 after fifo writer loop finished */
1033                 retval = target_read_u32(target, rp_addr, &rp);
1034                 if (retval == ERROR_OK && rp == 0) {
1035                         LOG_ERROR("flash write algorithm aborted by target");
1036                         retval = ERROR_FLASH_OPERATION_FAILED;
1037                 }
1038         }
1039
1040         return retval;
1041 }
1042
1043 int target_read_memory(struct target *target,
1044                 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1045 {
1046         if (!target_was_examined(target)) {
1047                 LOG_ERROR("Target not examined yet");
1048                 return ERROR_FAIL;
1049         }
1050         if (!target->type->read_memory) {
1051                 LOG_ERROR("Target %s doesn't support read_memory", target_name(target));
1052                 return ERROR_FAIL;
1053         }
1054         return target->type->read_memory(target, address, size, count, buffer);
1055 }
1056
1057 int target_read_phys_memory(struct target *target,
1058                 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1059 {
1060         if (!target_was_examined(target)) {
1061                 LOG_ERROR("Target not examined yet");
1062                 return ERROR_FAIL;
1063         }
1064         if (!target->type->read_phys_memory) {
1065                 LOG_ERROR("Target %s doesn't support read_phys_memory", target_name(target));
1066                 return ERROR_FAIL;
1067         }
1068         return target->type->read_phys_memory(target, address, size, count, buffer);
1069 }
1070
1071 int target_write_memory(struct target *target,
1072                 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1073 {
1074         if (!target_was_examined(target)) {
1075                 LOG_ERROR("Target not examined yet");
1076                 return ERROR_FAIL;
1077         }
1078         if (!target->type->write_memory) {
1079                 LOG_ERROR("Target %s doesn't support write_memory", target_name(target));
1080                 return ERROR_FAIL;
1081         }
1082         return target->type->write_memory(target, address, size, count, buffer);
1083 }
1084
1085 int target_write_phys_memory(struct target *target,
1086                 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1087 {
1088         if (!target_was_examined(target)) {
1089                 LOG_ERROR("Target not examined yet");
1090                 return ERROR_FAIL;
1091         }
1092         if (!target->type->write_phys_memory) {
1093                 LOG_ERROR("Target %s doesn't support write_phys_memory", target_name(target));
1094                 return ERROR_FAIL;
1095         }
1096         return target->type->write_phys_memory(target, address, size, count, buffer);
1097 }
1098
1099 int target_add_breakpoint(struct target *target,
1100                 struct breakpoint *breakpoint)
1101 {
1102         if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
1103                 LOG_WARNING("target %s is not halted (add breakpoint)", target_name(target));
1104                 return ERROR_TARGET_NOT_HALTED;
1105         }
1106         return target->type->add_breakpoint(target, breakpoint);
1107 }
1108
1109 int target_add_context_breakpoint(struct target *target,
1110                 struct breakpoint *breakpoint)
1111 {
1112         if (target->state != TARGET_HALTED) {
1113                 LOG_WARNING("target %s is not halted (add context breakpoint)", target_name(target));
1114                 return ERROR_TARGET_NOT_HALTED;
1115         }
1116         return target->type->add_context_breakpoint(target, breakpoint);
1117 }
1118
1119 int target_add_hybrid_breakpoint(struct target *target,
1120                 struct breakpoint *breakpoint)
1121 {
1122         if (target->state != TARGET_HALTED) {
1123                 LOG_WARNING("target %s is not halted (add hybrid breakpoint)", target_name(target));
1124                 return ERROR_TARGET_NOT_HALTED;
1125         }
1126         return target->type->add_hybrid_breakpoint(target, breakpoint);
1127 }
1128
1129 int target_remove_breakpoint(struct target *target,
1130                 struct breakpoint *breakpoint)
1131 {
1132         return target->type->remove_breakpoint(target, breakpoint);
1133 }
1134
1135 int target_add_watchpoint(struct target *target,
1136                 struct watchpoint *watchpoint)
1137 {
1138         if (target->state != TARGET_HALTED) {
1139                 LOG_WARNING("target %s is not halted (add watchpoint)", target_name(target));
1140                 return ERROR_TARGET_NOT_HALTED;
1141         }
1142         return target->type->add_watchpoint(target, watchpoint);
1143 }
1144 int target_remove_watchpoint(struct target *target,
1145                 struct watchpoint *watchpoint)
1146 {
1147         return target->type->remove_watchpoint(target, watchpoint);
1148 }
1149 int target_hit_watchpoint(struct target *target,
1150                 struct watchpoint **hit_watchpoint)
1151 {
1152         if (target->state != TARGET_HALTED) {
1153                 LOG_WARNING("target %s is not halted (hit watchpoint)", target->cmd_name);
1154                 return ERROR_TARGET_NOT_HALTED;
1155         }
1156
1157         if (target->type->hit_watchpoint == NULL) {
1158                 /* For backward compatible, if hit_watchpoint is not implemented,
1159                  * return ERROR_FAIL such that gdb_server will not take the nonsense
1160                  * information. */
1161                 return ERROR_FAIL;
1162         }
1163
1164         return target->type->hit_watchpoint(target, hit_watchpoint);
1165 }
1166
1167 int target_get_gdb_reg_list(struct target *target,
1168                 struct reg **reg_list[], int *reg_list_size,
1169                 enum target_register_class reg_class)
1170 {
1171         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1172 }
1173 int target_step(struct target *target,
1174                 int current, target_addr_t address, int handle_breakpoints)
1175 {
1176         return target->type->step(target, current, address, handle_breakpoints);
1177 }
1178
1179 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1180 {
1181         if (target->state != TARGET_HALTED) {
1182                 LOG_WARNING("target %s is not halted (gdb fileio)", target->cmd_name);
1183                 return ERROR_TARGET_NOT_HALTED;
1184         }
1185         return target->type->get_gdb_fileio_info(target, fileio_info);
1186 }
1187
1188 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1189 {
1190         if (target->state != TARGET_HALTED) {
1191                 LOG_WARNING("target %s is not halted (gdb fileio end)", target->cmd_name);
1192                 return ERROR_TARGET_NOT_HALTED;
1193         }
1194         return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1195 }
1196
1197 int target_profiling(struct target *target, uint32_t *samples,
1198                         uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1199 {
1200         if (target->state != TARGET_HALTED) {
1201                 LOG_WARNING("target %s is not halted (profiling)", target->cmd_name);
1202                 return ERROR_TARGET_NOT_HALTED;
1203         }
1204         return target->type->profiling(target, samples, max_num_samples,
1205                         num_samples, seconds);
1206 }
1207
1208 /**
1209  * Reset the @c examined flag for the given target.
1210  * Pure paranoia -- targets are zeroed on allocation.
1211  */
1212 static void target_reset_examined(struct target *target)
1213 {
1214         target->examined = false;
1215 }
1216
1217 static int handle_target(void *priv);
1218
1219 static int target_init_one(struct command_context *cmd_ctx,
1220                 struct target *target)
1221 {
1222         target_reset_examined(target);
1223
1224         struct target_type *type = target->type;
1225         if (type->examine == NULL)
1226                 type->examine = default_examine;
1227
1228         if (type->check_reset == NULL)
1229                 type->check_reset = default_check_reset;
1230
1231         assert(type->init_target != NULL);
1232
1233         int retval = type->init_target(cmd_ctx, target);
1234         if (ERROR_OK != retval) {
1235                 LOG_ERROR("target '%s' init failed", target_name(target));
1236                 return retval;
1237         }
1238
1239         /* Sanity-check MMU support ... stub in what we must, to help
1240          * implement it in stages, but warn if we need to do so.
1241          */
1242         if (type->mmu) {
1243                 if (type->virt2phys == NULL) {
1244                         LOG_ERROR("type '%s' is missing virt2phys", type->name);
1245                         type->virt2phys = identity_virt2phys;
1246                 }
1247         } else {
1248                 /* Make sure no-MMU targets all behave the same:  make no
1249                  * distinction between physical and virtual addresses, and
1250                  * ensure that virt2phys() is always an identity mapping.
1251                  */
1252                 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1253                         LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1254
1255                 type->mmu = no_mmu;
1256                 type->write_phys_memory = type->write_memory;
1257                 type->read_phys_memory = type->read_memory;
1258                 type->virt2phys = identity_virt2phys;
1259         }
1260
1261         if (target->type->read_buffer == NULL)
1262                 target->type->read_buffer = target_read_buffer_default;
1263
1264         if (target->type->write_buffer == NULL)
1265                 target->type->write_buffer = target_write_buffer_default;
1266
1267         if (target->type->get_gdb_fileio_info == NULL)
1268                 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1269
1270         if (target->type->gdb_fileio_end == NULL)
1271                 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1272
1273         if (target->type->profiling == NULL)
1274                 target->type->profiling = target_profiling_default;
1275
1276         return ERROR_OK;
1277 }
1278
1279 static int target_init(struct command_context *cmd_ctx)
1280 {
1281         struct target *target;
1282         int retval;
1283
1284         for (target = all_targets; target; target = target->next) {
1285                 retval = target_init_one(cmd_ctx, target);
1286                 if (ERROR_OK != retval)
1287                         return retval;
1288         }
1289
1290         if (!all_targets)
1291                 return ERROR_OK;
1292
1293         retval = target_register_user_commands(cmd_ctx);
1294         if (ERROR_OK != retval)
1295                 return retval;
1296
1297         retval = target_register_timer_callback(&handle_target,
1298                         polling_interval, 1, cmd_ctx->interp);
1299         if (ERROR_OK != retval)
1300                 return retval;
1301
1302         return ERROR_OK;
1303 }
1304
1305 COMMAND_HANDLER(handle_target_init_command)
1306 {
1307         int retval;
1308
1309         if (CMD_ARGC != 0)
1310                 return ERROR_COMMAND_SYNTAX_ERROR;
1311
1312         static bool target_initialized;
1313         if (target_initialized) {
1314                 LOG_INFO("'target init' has already been called");
1315                 return ERROR_OK;
1316         }
1317         target_initialized = true;
1318
1319         retval = command_run_line(CMD_CTX, "init_targets");
1320         if (ERROR_OK != retval)
1321                 return retval;
1322
1323         retval = command_run_line(CMD_CTX, "init_target_events");
1324         if (ERROR_OK != retval)
1325                 return retval;
1326
1327         retval = command_run_line(CMD_CTX, "init_board");
1328         if (ERROR_OK != retval)
1329                 return retval;
1330
1331         LOG_DEBUG("Initializing targets...");
1332         return target_init(CMD_CTX);
1333 }
1334
1335 int target_register_event_callback(int (*callback)(struct target *target,
1336                 enum target_event event, void *priv), void *priv)
1337 {
1338         struct target_event_callback **callbacks_p = &target_event_callbacks;
1339
1340         if (callback == NULL)
1341                 return ERROR_COMMAND_SYNTAX_ERROR;
1342
1343         if (*callbacks_p) {
1344                 while ((*callbacks_p)->next)
1345                         callbacks_p = &((*callbacks_p)->next);
1346                 callbacks_p = &((*callbacks_p)->next);
1347         }
1348
1349         (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1350         (*callbacks_p)->callback = callback;
1351         (*callbacks_p)->priv = priv;
1352         (*callbacks_p)->next = NULL;
1353
1354         return ERROR_OK;
1355 }
1356
1357 int target_register_reset_callback(int (*callback)(struct target *target,
1358                 enum target_reset_mode reset_mode, void *priv), void *priv)
1359 {
1360         struct target_reset_callback *entry;
1361
1362         if (callback == NULL)
1363                 return ERROR_COMMAND_SYNTAX_ERROR;
1364
1365         entry = malloc(sizeof(struct target_reset_callback));
1366         if (entry == NULL) {
1367                 LOG_ERROR("error allocating buffer for reset callback entry");
1368                 return ERROR_COMMAND_SYNTAX_ERROR;
1369         }
1370
1371         entry->callback = callback;
1372         entry->priv = priv;
1373         list_add(&entry->list, &target_reset_callback_list);
1374
1375
1376         return ERROR_OK;
1377 }
1378
1379 int target_register_trace_callback(int (*callback)(struct target *target,
1380                 size_t len, uint8_t *data, void *priv), void *priv)
1381 {
1382         struct target_trace_callback *entry;
1383
1384         if (callback == NULL)
1385                 return ERROR_COMMAND_SYNTAX_ERROR;
1386
1387         entry = malloc(sizeof(struct target_trace_callback));
1388         if (entry == NULL) {
1389                 LOG_ERROR("error allocating buffer for trace callback entry");
1390                 return ERROR_COMMAND_SYNTAX_ERROR;
1391         }
1392
1393         entry->callback = callback;
1394         entry->priv = priv;
1395         list_add(&entry->list, &target_trace_callback_list);
1396
1397
1398         return ERROR_OK;
1399 }
1400
1401 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1402 {
1403         struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1404         struct timeval now;
1405
1406         if (callback == NULL)
1407                 return ERROR_COMMAND_SYNTAX_ERROR;
1408
1409         if (*callbacks_p) {
1410                 while ((*callbacks_p)->next)
1411                         callbacks_p = &((*callbacks_p)->next);
1412                 callbacks_p = &((*callbacks_p)->next);
1413         }
1414
1415         (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1416         (*callbacks_p)->callback = callback;
1417         (*callbacks_p)->periodic = periodic;
1418         (*callbacks_p)->time_ms = time_ms;
1419         (*callbacks_p)->removed = false;
1420
1421         gettimeofday(&now, NULL);
1422         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
1423         time_ms -= (time_ms % 1000);
1424         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
1425         if ((*callbacks_p)->when.tv_usec > 1000000) {
1426                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
1427                 (*callbacks_p)->when.tv_sec += 1;
1428         }
1429
1430         (*callbacks_p)->priv = priv;
1431         (*callbacks_p)->next = NULL;
1432
1433         return ERROR_OK;
1434 }
1435
1436 int target_unregister_event_callback(int (*callback)(struct target *target,
1437                 enum target_event event, void *priv), void *priv)
1438 {
1439         struct target_event_callback **p = &target_event_callbacks;
1440         struct target_event_callback *c = target_event_callbacks;
1441
1442         if (callback == NULL)
1443                 return ERROR_COMMAND_SYNTAX_ERROR;
1444
1445         while (c) {
1446                 struct target_event_callback *next = c->next;
1447                 if ((c->callback == callback) && (c->priv == priv)) {
1448                         *p = next;
1449                         free(c);
1450                         return ERROR_OK;
1451                 } else
1452                         p = &(c->next);
1453                 c = next;
1454         }
1455
1456         return ERROR_OK;
1457 }
1458
1459 int target_unregister_reset_callback(int (*callback)(struct target *target,
1460                 enum target_reset_mode reset_mode, void *priv), void *priv)
1461 {
1462         struct target_reset_callback *entry;
1463
1464         if (callback == NULL)
1465                 return ERROR_COMMAND_SYNTAX_ERROR;
1466
1467         list_for_each_entry(entry, &target_reset_callback_list, list) {
1468                 if (entry->callback == callback && entry->priv == priv) {
1469                         list_del(&entry->list);
1470                         free(entry);
1471                         break;
1472                 }
1473         }
1474
1475         return ERROR_OK;
1476 }
1477
1478 int target_unregister_trace_callback(int (*callback)(struct target *target,
1479                 size_t len, uint8_t *data, void *priv), void *priv)
1480 {
1481         struct target_trace_callback *entry;
1482
1483         if (callback == NULL)
1484                 return ERROR_COMMAND_SYNTAX_ERROR;
1485
1486         list_for_each_entry(entry, &target_trace_callback_list, list) {
1487                 if (entry->callback == callback && entry->priv == priv) {
1488                         list_del(&entry->list);
1489                         free(entry);
1490                         break;
1491                 }
1492         }
1493
1494         return ERROR_OK;
1495 }
1496
1497 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1498 {
1499         if (callback == NULL)
1500                 return ERROR_COMMAND_SYNTAX_ERROR;
1501
1502         for (struct target_timer_callback *c = target_timer_callbacks;
1503              c; c = c->next) {
1504                 if ((c->callback == callback) && (c->priv == priv)) {
1505                         c->removed = true;
1506                         return ERROR_OK;
1507                 }
1508         }
1509
1510         return ERROR_FAIL;
1511 }
1512
1513 int target_call_event_callbacks(struct target *target, enum target_event event)
1514 {
1515         struct target_event_callback *callback = target_event_callbacks;
1516         struct target_event_callback *next_callback;
1517
1518         if (event == TARGET_EVENT_HALTED) {
1519                 /* execute early halted first */
1520                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1521         }
1522
1523         LOG_DEBUG("target event %i (%s)", event,
1524                         Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1525
1526         target_handle_event(target, event);
1527
1528         while (callback) {
1529                 next_callback = callback->next;
1530                 callback->callback(target, event, callback->priv);
1531                 callback = next_callback;
1532         }
1533
1534         return ERROR_OK;
1535 }
1536
1537 int target_call_reset_callbacks(struct target *target, enum target_reset_mode reset_mode)
1538 {
1539         struct target_reset_callback *callback;
1540
1541         LOG_DEBUG("target reset %i (%s)", reset_mode,
1542                         Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name);
1543
1544         list_for_each_entry(callback, &target_reset_callback_list, list)
1545                 callback->callback(target, reset_mode, callback->priv);
1546
1547         return ERROR_OK;
1548 }
1549
1550 int target_call_trace_callbacks(struct target *target, size_t len, uint8_t *data)
1551 {
1552         struct target_trace_callback *callback;
1553
1554         list_for_each_entry(callback, &target_trace_callback_list, list)
1555                 callback->callback(target, len, data, callback->priv);
1556
1557         return ERROR_OK;
1558 }
1559
1560 static int target_timer_callback_periodic_restart(
1561                 struct target_timer_callback *cb, struct timeval *now)
1562 {
1563         int time_ms = cb->time_ms;
1564         cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1565         time_ms -= (time_ms % 1000);
1566         cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1567         if (cb->when.tv_usec > 1000000) {
1568                 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1569                 cb->when.tv_sec += 1;
1570         }
1571         return ERROR_OK;
1572 }
1573
1574 static int target_call_timer_callback(struct target_timer_callback *cb,
1575                 struct timeval *now)
1576 {
1577         cb->callback(cb->priv);
1578
1579         if (cb->periodic)
1580                 return target_timer_callback_periodic_restart(cb, now);
1581
1582         return target_unregister_timer_callback(cb->callback, cb->priv);
1583 }
1584
1585 static int target_call_timer_callbacks_check_time(int checktime)
1586 {
1587         static bool callback_processing;
1588
1589         /* Do not allow nesting */
1590         if (callback_processing)
1591                 return ERROR_OK;
1592
1593         callback_processing = true;
1594
1595         keep_alive();
1596
1597         struct timeval now;
1598         gettimeofday(&now, NULL);
1599
1600         /* Store an address of the place containing a pointer to the
1601          * next item; initially, that's a standalone "root of the
1602          * list" variable. */
1603         struct target_timer_callback **callback = &target_timer_callbacks;
1604         while (*callback) {
1605                 if ((*callback)->removed) {
1606                         struct target_timer_callback *p = *callback;
1607                         *callback = (*callback)->next;
1608                         free(p);
1609                         continue;
1610                 }
1611
1612                 bool call_it = (*callback)->callback &&
1613                         ((!checktime && (*callback)->periodic) ||
1614                          now.tv_sec > (*callback)->when.tv_sec ||
1615                          (now.tv_sec == (*callback)->when.tv_sec &&
1616                           now.tv_usec >= (*callback)->when.tv_usec));
1617
1618                 if (call_it)
1619                         target_call_timer_callback(*callback, &now);
1620
1621                 callback = &(*callback)->next;
1622         }
1623
1624         callback_processing = false;
1625         return ERROR_OK;
1626 }
1627
1628 int target_call_timer_callbacks(void)
1629 {
1630         return target_call_timer_callbacks_check_time(1);
1631 }
1632
1633 /* invoke periodic callbacks immediately */
1634 int target_call_timer_callbacks_now(void)
1635 {
1636         return target_call_timer_callbacks_check_time(0);
1637 }
1638
1639 /* Prints the working area layout for debug purposes */
1640 static void print_wa_layout(struct target *target)
1641 {
1642         struct working_area *c = target->working_areas;
1643
1644         while (c) {
1645                 LOG_DEBUG("%c%c " TARGET_ADDR_FMT "-" TARGET_ADDR_FMT " (%" PRIu32 " bytes)",
1646                         c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1647                         c->address, c->address + c->size - 1, c->size);
1648                 c = c->next;
1649         }
1650 }
1651
1652 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1653 static void target_split_working_area(struct working_area *area, uint32_t size)
1654 {
1655         assert(area->free); /* Shouldn't split an allocated area */
1656         assert(size <= area->size); /* Caller should guarantee this */
1657
1658         /* Split only if not already the right size */
1659         if (size < area->size) {
1660                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1661
1662                 if (new_wa == NULL)
1663                         return;
1664
1665                 new_wa->next = area->next;
1666                 new_wa->size = area->size - size;
1667                 new_wa->address = area->address + size;
1668                 new_wa->backup = NULL;
1669                 new_wa->user = NULL;
1670                 new_wa->free = true;
1671
1672                 area->next = new_wa;
1673                 area->size = size;
1674
1675                 /* If backup memory was allocated to this area, it has the wrong size
1676                  * now so free it and it will be reallocated if/when needed */
1677                 if (area->backup) {
1678                         free(area->backup);
1679                         area->backup = NULL;
1680                 }
1681         }
1682 }
1683
1684 /* Merge all adjacent free areas into one */
1685 static void target_merge_working_areas(struct target *target)
1686 {
1687         struct working_area *c = target->working_areas;
1688
1689         while (c && c->next) {
1690                 assert(c->next->address == c->address + c->size); /* This is an invariant */
1691
1692                 /* Find two adjacent free areas */
1693                 if (c->free && c->next->free) {
1694                         /* Merge the last into the first */
1695                         c->size += c->next->size;
1696
1697                         /* Remove the last */
1698                         struct working_area *to_be_freed = c->next;
1699                         c->next = c->next->next;
1700                         if (to_be_freed->backup)
1701                                 free(to_be_freed->backup);
1702                         free(to_be_freed);
1703
1704                         /* If backup memory was allocated to the remaining area, it's has
1705                          * the wrong size now */
1706                         if (c->backup) {
1707                                 free(c->backup);
1708                                 c->backup = NULL;
1709                         }
1710                 } else {
1711                         c = c->next;
1712                 }
1713         }
1714 }
1715
1716 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1717 {
1718         /* Reevaluate working area address based on MMU state*/
1719         if (target->working_areas == NULL) {
1720                 int retval;
1721                 int enabled;
1722
1723                 retval = target->type->mmu(target, &enabled);
1724                 if (retval != ERROR_OK)
1725                         return retval;
1726
1727                 if (!enabled) {
1728                         if (target->working_area_phys_spec) {
1729                                 LOG_DEBUG("MMU disabled, using physical "
1730                                         "address for working memory " TARGET_ADDR_FMT,
1731                                         target->working_area_phys);
1732                                 target->working_area = target->working_area_phys;
1733                         } else {
1734                                 LOG_ERROR("No working memory available. "
1735                                         "Specify -work-area-phys to target.");
1736                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1737                         }
1738                 } else {
1739                         if (target->working_area_virt_spec) {
1740                                 LOG_DEBUG("MMU enabled, using virtual "
1741                                         "address for working memory " TARGET_ADDR_FMT,
1742                                         target->working_area_virt);
1743                                 target->working_area = target->working_area_virt;
1744                         } else {
1745                                 LOG_ERROR("No working memory available. "
1746                                         "Specify -work-area-virt to target.");
1747                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1748                         }
1749                 }
1750
1751                 /* Set up initial working area on first call */
1752                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1753                 if (new_wa) {
1754                         new_wa->next = NULL;
1755                         new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1756                         new_wa->address = target->working_area;
1757                         new_wa->backup = NULL;
1758                         new_wa->user = NULL;
1759                         new_wa->free = true;
1760                 }
1761
1762                 target->working_areas = new_wa;
1763         }
1764
1765         /* only allocate multiples of 4 byte */
1766         if (size % 4)
1767                 size = (size + 3) & (~3UL);
1768
1769         struct working_area *c = target->working_areas;
1770
1771         /* Find the first large enough working area */
1772         while (c) {
1773                 if (c->free && c->size >= size)
1774                         break;
1775                 c = c->next;
1776         }
1777
1778         if (c == NULL)
1779                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1780
1781         /* Split the working area into the requested size */
1782         target_split_working_area(c, size);
1783
1784         LOG_DEBUG("allocated new working area of %" PRIu32 " bytes at address " TARGET_ADDR_FMT,
1785                           size, c->address);
1786
1787         if (target->backup_working_area) {
1788                 if (c->backup == NULL) {
1789                         c->backup = malloc(c->size);
1790                         if (c->backup == NULL)
1791                                 return ERROR_FAIL;
1792                 }
1793
1794                 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1795                 if (retval != ERROR_OK)
1796                         return retval;
1797         }
1798
1799         /* mark as used, and return the new (reused) area */
1800         c->free = false;
1801         *area = c;
1802
1803         /* user pointer */
1804         c->user = area;
1805
1806         print_wa_layout(target);
1807
1808         return ERROR_OK;
1809 }
1810
1811 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1812 {
1813         int retval;
1814
1815         retval = target_alloc_working_area_try(target, size, area);
1816         if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1817                 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1818         return retval;
1819
1820 }
1821
1822 static int target_restore_working_area(struct target *target, struct working_area *area)
1823 {
1824         int retval = ERROR_OK;
1825
1826         if (target->backup_working_area && area->backup != NULL) {
1827                 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1828                 if (retval != ERROR_OK)
1829                         LOG_ERROR("failed to restore %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1830                                         area->size, area->address);
1831         }
1832
1833         return retval;
1834 }
1835
1836 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1837 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1838 {
1839         int retval = ERROR_OK;
1840
1841         if (area->free)
1842                 return retval;
1843
1844         if (restore) {
1845                 retval = target_restore_working_area(target, area);
1846                 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1847                 if (retval != ERROR_OK)
1848                         return retval;
1849         }
1850
1851         area->free = true;
1852
1853         LOG_DEBUG("freed %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1854                         area->size, area->address);
1855
1856         /* mark user pointer invalid */
1857         /* TODO: Is this really safe? It points to some previous caller's memory.
1858          * How could we know that the area pointer is still in that place and not
1859          * some other vital data? What's the purpose of this, anyway? */
1860         *area->user = NULL;
1861         area->user = NULL;
1862
1863         target_merge_working_areas(target);
1864
1865         print_wa_layout(target);
1866
1867         return retval;
1868 }
1869
1870 int target_free_working_area(struct target *target, struct working_area *area)
1871 {
1872         return target_free_working_area_restore(target, area, 1);
1873 }
1874
1875 static void target_destroy(struct target *target)
1876 {
1877         if (target->type->deinit_target)
1878                 target->type->deinit_target(target);
1879
1880         free(target->type);
1881         free(target->trace_info);
1882         free(target->cmd_name);
1883         free(target);
1884 }
1885
1886 void target_quit(void)
1887 {
1888         struct target_event_callback *pe = target_event_callbacks;
1889         while (pe) {
1890                 struct target_event_callback *t = pe->next;
1891                 free(pe);
1892                 pe = t;
1893         }
1894         target_event_callbacks = NULL;
1895
1896         struct target_timer_callback *pt = target_timer_callbacks;
1897         while (pt) {
1898                 struct target_timer_callback *t = pt->next;
1899                 free(pt);
1900                 pt = t;
1901         }
1902         target_timer_callbacks = NULL;
1903
1904         for (struct target *target = all_targets; target;) {
1905                 struct target *tmp;
1906
1907                 tmp = target->next;
1908                 target_destroy(target);
1909                 target = tmp;
1910         }
1911
1912         all_targets = NULL;
1913 }
1914
1915 /* free resources and restore memory, if restoring memory fails,
1916  * free up resources anyway
1917  */
1918 static void target_free_all_working_areas_restore(struct target *target, int restore)
1919 {
1920         struct working_area *c = target->working_areas;
1921
1922         LOG_DEBUG("freeing all working areas");
1923
1924         /* Loop through all areas, restoring the allocated ones and marking them as free */
1925         while (c) {
1926                 if (!c->free) {
1927                         if (restore)
1928                                 target_restore_working_area(target, c);
1929                         c->free = true;
1930                         *c->user = NULL; /* Same as above */
1931                         c->user = NULL;
1932                 }
1933                 c = c->next;
1934         }
1935
1936         /* Run a merge pass to combine all areas into one */
1937         target_merge_working_areas(target);
1938
1939         print_wa_layout(target);
1940 }
1941
1942 void target_free_all_working_areas(struct target *target)
1943 {
1944         target_free_all_working_areas_restore(target, 1);
1945 }
1946
1947 /* Find the largest number of bytes that can be allocated */
1948 uint32_t target_get_working_area_avail(struct target *target)
1949 {
1950         struct working_area *c = target->working_areas;
1951         uint32_t max_size = 0;
1952
1953         if (c == NULL)
1954                 return target->working_area_size;
1955
1956         while (c) {
1957                 if (c->free && max_size < c->size)
1958                         max_size = c->size;
1959
1960                 c = c->next;
1961         }
1962
1963         return max_size;
1964 }
1965
1966 int target_arch_state(struct target *target)
1967 {
1968         int retval;
1969         if (target == NULL) {
1970                 LOG_WARNING("No target has been configured");
1971                 return ERROR_OK;
1972         }
1973
1974         if (target->state != TARGET_HALTED)
1975                 return ERROR_OK;
1976
1977         retval = target->type->arch_state(target);
1978         return retval;
1979 }
1980
1981 static int target_get_gdb_fileio_info_default(struct target *target,
1982                 struct gdb_fileio_info *fileio_info)
1983 {
1984         /* If target does not support semi-hosting function, target
1985            has no need to provide .get_gdb_fileio_info callback.
1986            It just return ERROR_FAIL and gdb_server will return "Txx"
1987            as target halted every time.  */
1988         return ERROR_FAIL;
1989 }
1990
1991 static int target_gdb_fileio_end_default(struct target *target,
1992                 int retcode, int fileio_errno, bool ctrl_c)
1993 {
1994         return ERROR_OK;
1995 }
1996
1997 static int target_profiling_default(struct target *target, uint32_t *samples,
1998                 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1999 {
2000         struct timeval timeout, now;
2001
2002         gettimeofday(&timeout, NULL);
2003         timeval_add_time(&timeout, seconds, 0);
2004
2005         LOG_INFO("Starting profiling. Halting and resuming the"
2006                         " target as often as we can...");
2007
2008         uint32_t sample_count = 0;
2009         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2010         struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
2011
2012         int retval = ERROR_OK;
2013         for (;;) {
2014                 target_poll(target);
2015                 if (target->state == TARGET_HALTED) {
2016                         uint32_t t = buf_get_u32(reg->value, 0, 32);
2017                         samples[sample_count++] = t;
2018                         /* current pc, addr = 0, do not handle breakpoints, not debugging */
2019                         retval = target_resume(target, 1, 0, 0, 0);
2020                         target_poll(target);
2021                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2022                 } else if (target->state == TARGET_RUNNING) {
2023                         /* We want to quickly sample the PC. */
2024                         retval = target_halt(target);
2025                 } else {
2026                         LOG_INFO("Target not halted or running");
2027                         retval = ERROR_OK;
2028                         break;
2029                 }
2030
2031                 if (retval != ERROR_OK)
2032                         break;
2033
2034                 gettimeofday(&now, NULL);
2035                 if ((sample_count >= max_num_samples) ||
2036                         ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec))) {
2037                         LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
2038                         break;
2039                 }
2040         }
2041
2042         *num_samples = sample_count;
2043         return retval;
2044 }
2045
2046 /* Single aligned words are guaranteed to use 16 or 32 bit access
2047  * mode respectively, otherwise data is handled as quickly as
2048  * possible
2049  */
2050 int target_write_buffer(struct target *target, target_addr_t address, uint32_t size, const uint8_t *buffer)
2051 {
2052         LOG_DEBUG("writing buffer of %" PRIi32 " byte at " TARGET_ADDR_FMT,
2053                           size, address);
2054
2055         if (!target_was_examined(target)) {
2056                 LOG_ERROR("Target not examined yet");
2057                 return ERROR_FAIL;
2058         }
2059
2060         if (size == 0)
2061                 return ERROR_OK;
2062
2063         if ((address + size - 1) < address) {
2064                 /* GDB can request this when e.g. PC is 0xfffffffc */
2065                 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2066                                   address,
2067                                   size);
2068                 return ERROR_FAIL;
2069         }
2070
2071         return target->type->write_buffer(target, address, size, buffer);
2072 }
2073
2074 static int target_write_buffer_default(struct target *target,
2075         target_addr_t address, uint32_t count, const uint8_t *buffer)
2076 {
2077         uint32_t size;
2078
2079         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2080          * will have something to do with the size we leave to it. */
2081         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2082                 if (address & size) {
2083                         int retval = target_write_memory(target, address, size, 1, buffer);
2084                         if (retval != ERROR_OK)
2085                                 return retval;
2086                         address += size;
2087                         count -= size;
2088                         buffer += size;
2089                 }
2090         }
2091
2092         /* Write the data with as large access size as possible. */
2093         for (; size > 0; size /= 2) {
2094                 uint32_t aligned = count - count % size;
2095                 if (aligned > 0) {
2096                         int retval = target_write_memory(target, address, size, aligned / size, buffer);
2097                         if (retval != ERROR_OK)
2098                                 return retval;
2099                         address += aligned;
2100                         count -= aligned;
2101                         buffer += aligned;
2102                 }
2103         }
2104
2105         return ERROR_OK;
2106 }
2107
2108 /* Single aligned words are guaranteed to use 16 or 32 bit access
2109  * mode respectively, otherwise data is handled as quickly as
2110  * possible
2111  */
2112 int target_read_buffer(struct target *target, target_addr_t address, uint32_t size, uint8_t *buffer)
2113 {
2114         LOG_DEBUG("reading buffer of %" PRIi32 " byte at " TARGET_ADDR_FMT,
2115                           size, address);
2116
2117         if (!target_was_examined(target)) {
2118                 LOG_ERROR("Target not examined yet");
2119                 return ERROR_FAIL;
2120         }
2121
2122         if (size == 0)
2123                 return ERROR_OK;
2124
2125         if ((address + size - 1) < address) {
2126                 /* GDB can request this when e.g. PC is 0xfffffffc */
2127                 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2128                                   address,
2129                                   size);
2130                 return ERROR_FAIL;
2131         }
2132
2133         return target->type->read_buffer(target, address, size, buffer);
2134 }
2135
2136 static int target_read_buffer_default(struct target *target, target_addr_t address, uint32_t count, uint8_t *buffer)
2137 {
2138         uint32_t size;
2139
2140         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2141          * will have something to do with the size we leave to it. */
2142         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2143                 if (address & size) {
2144                         int retval = target_read_memory(target, address, size, 1, buffer);
2145                         if (retval != ERROR_OK)
2146                                 return retval;
2147                         address += size;
2148                         count -= size;
2149                         buffer += size;
2150                 }
2151         }
2152
2153         /* Read the data with as large access size as possible. */
2154         for (; size > 0; size /= 2) {
2155                 uint32_t aligned = count - count % size;
2156                 if (aligned > 0) {
2157                         int retval = target_read_memory(target, address, size, aligned / size, buffer);
2158                         if (retval != ERROR_OK)
2159                                 return retval;
2160                         address += aligned;
2161                         count -= aligned;
2162                         buffer += aligned;
2163                 }
2164         }
2165
2166         return ERROR_OK;
2167 }
2168
2169 int target_checksum_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t* crc)
2170 {
2171         uint8_t *buffer;
2172         int retval;
2173         uint32_t i;
2174         uint32_t checksum = 0;
2175         if (!target_was_examined(target)) {
2176                 LOG_ERROR("Target not examined yet");
2177                 return ERROR_FAIL;
2178         }
2179
2180         retval = target->type->checksum_memory(target, address, size, &checksum);
2181         if (retval != ERROR_OK) {
2182                 buffer = malloc(size);
2183                 if (buffer == NULL) {
2184                         LOG_ERROR("error allocating buffer for section (%" PRId32 " bytes)", size);
2185                         return ERROR_COMMAND_SYNTAX_ERROR;
2186                 }
2187                 retval = target_read_buffer(target, address, size, buffer);
2188                 if (retval != ERROR_OK) {
2189                         free(buffer);
2190                         return retval;
2191                 }
2192
2193                 /* convert to target endianness */
2194                 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
2195                         uint32_t target_data;
2196                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
2197                         target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
2198                 }
2199
2200                 retval = image_calculate_checksum(buffer, size, &checksum);
2201                 free(buffer);
2202         }
2203
2204         *crc = checksum;
2205
2206         return retval;
2207 }
2208
2209 int target_blank_check_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t* blank,
2210         uint8_t erased_value)
2211 {
2212         int retval;
2213         if (!target_was_examined(target)) {
2214                 LOG_ERROR("Target not examined yet");
2215                 return ERROR_FAIL;
2216         }
2217
2218         if (target->type->blank_check_memory == 0)
2219                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2220
2221         retval = target->type->blank_check_memory(target, address, size, blank, erased_value);
2222
2223         return retval;
2224 }
2225
2226 int target_read_u64(struct target *target, target_addr_t address, uint64_t *value)
2227 {
2228         uint8_t value_buf[8];
2229         if (!target_was_examined(target)) {
2230                 LOG_ERROR("Target not examined yet");
2231                 return ERROR_FAIL;
2232         }
2233
2234         int retval = target_read_memory(target, address, 8, 1, value_buf);
2235
2236         if (retval == ERROR_OK) {
2237                 *value = target_buffer_get_u64(target, value_buf);
2238                 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2239                                   address,
2240                                   *value);
2241         } else {
2242                 *value = 0x0;
2243                 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2244                                   address);
2245         }
2246
2247         return retval;
2248 }
2249
2250 int target_read_u32(struct target *target, target_addr_t address, uint32_t *value)
2251 {
2252         uint8_t value_buf[4];
2253         if (!target_was_examined(target)) {
2254                 LOG_ERROR("Target not examined yet");
2255                 return ERROR_FAIL;
2256         }
2257
2258         int retval = target_read_memory(target, address, 4, 1, value_buf);
2259
2260         if (retval == ERROR_OK) {
2261                 *value = target_buffer_get_u32(target, value_buf);
2262                 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2263                                   address,
2264                                   *value);
2265         } else {
2266                 *value = 0x0;
2267                 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2268                                   address);
2269         }
2270
2271         return retval;
2272 }
2273
2274 int target_read_u16(struct target *target, target_addr_t address, uint16_t *value)
2275 {
2276         uint8_t value_buf[2];
2277         if (!target_was_examined(target)) {
2278                 LOG_ERROR("Target not examined yet");
2279                 return ERROR_FAIL;
2280         }
2281
2282         int retval = target_read_memory(target, address, 2, 1, value_buf);
2283
2284         if (retval == ERROR_OK) {
2285                 *value = target_buffer_get_u16(target, value_buf);
2286                 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%4.4" PRIx16,
2287                                   address,
2288                                   *value);
2289         } else {
2290                 *value = 0x0;
2291                 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2292                                   address);
2293         }
2294
2295         return retval;
2296 }
2297
2298 int target_read_u8(struct target *target, target_addr_t address, uint8_t *value)
2299 {
2300         if (!target_was_examined(target)) {
2301                 LOG_ERROR("Target not examined yet");
2302                 return ERROR_FAIL;
2303         }
2304
2305         int retval = target_read_memory(target, address, 1, 1, value);
2306
2307         if (retval == ERROR_OK) {
2308                 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2309                                   address,
2310                                   *value);
2311         } else {
2312                 *value = 0x0;
2313                 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2314                                   address);
2315         }
2316
2317         return retval;
2318 }
2319
2320 int target_write_u64(struct target *target, target_addr_t address, uint64_t value)
2321 {
2322         int retval;
2323         uint8_t value_buf[8];
2324         if (!target_was_examined(target)) {
2325                 LOG_ERROR("Target not examined yet");
2326                 return ERROR_FAIL;
2327         }
2328
2329         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2330                           address,
2331                           value);
2332
2333         target_buffer_set_u64(target, value_buf, value);
2334         retval = target_write_memory(target, address, 8, 1, value_buf);
2335         if (retval != ERROR_OK)
2336                 LOG_DEBUG("failed: %i", retval);
2337
2338         return retval;
2339 }
2340
2341 int target_write_u32(struct target *target, target_addr_t address, uint32_t value)
2342 {
2343         int retval;
2344         uint8_t value_buf[4];
2345         if (!target_was_examined(target)) {
2346                 LOG_ERROR("Target not examined yet");
2347                 return ERROR_FAIL;
2348         }
2349
2350         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2351                           address,
2352                           value);
2353
2354         target_buffer_set_u32(target, value_buf, value);
2355         retval = target_write_memory(target, address, 4, 1, value_buf);
2356         if (retval != ERROR_OK)
2357                 LOG_DEBUG("failed: %i", retval);
2358
2359         return retval;
2360 }
2361
2362 int target_write_u16(struct target *target, target_addr_t address, uint16_t value)
2363 {
2364         int retval;
2365         uint8_t value_buf[2];
2366         if (!target_was_examined(target)) {
2367                 LOG_ERROR("Target not examined yet");
2368                 return ERROR_FAIL;
2369         }
2370
2371         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2372                           address,
2373                           value);
2374
2375         target_buffer_set_u16(target, value_buf, value);
2376         retval = target_write_memory(target, address, 2, 1, value_buf);
2377         if (retval != ERROR_OK)
2378                 LOG_DEBUG("failed: %i", retval);
2379
2380         return retval;
2381 }
2382
2383 int target_write_u8(struct target *target, target_addr_t address, uint8_t value)
2384 {
2385         int retval;
2386         if (!target_was_examined(target)) {
2387                 LOG_ERROR("Target not examined yet");
2388                 return ERROR_FAIL;
2389         }
2390
2391         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2392                           address, value);
2393
2394         retval = target_write_memory(target, address, 1, 1, &value);
2395         if (retval != ERROR_OK)
2396                 LOG_DEBUG("failed: %i", retval);
2397
2398         return retval;
2399 }
2400
2401 int target_write_phys_u64(struct target *target, target_addr_t address, uint64_t value)
2402 {
2403         int retval;
2404         uint8_t value_buf[8];
2405         if (!target_was_examined(target)) {
2406                 LOG_ERROR("Target not examined yet");
2407                 return ERROR_FAIL;
2408         }
2409
2410         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2411                           address,
2412                           value);
2413
2414         target_buffer_set_u64(target, value_buf, value);
2415         retval = target_write_phys_memory(target, address, 8, 1, value_buf);
2416         if (retval != ERROR_OK)
2417                 LOG_DEBUG("failed: %i", retval);
2418
2419         return retval;
2420 }
2421
2422 int target_write_phys_u32(struct target *target, target_addr_t address, uint32_t value)
2423 {
2424         int retval;
2425         uint8_t value_buf[4];
2426         if (!target_was_examined(target)) {
2427                 LOG_ERROR("Target not examined yet");
2428                 return ERROR_FAIL;
2429         }
2430
2431         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2432                           address,
2433                           value);
2434
2435         target_buffer_set_u32(target, value_buf, value);
2436         retval = target_write_phys_memory(target, address, 4, 1, value_buf);
2437         if (retval != ERROR_OK)
2438                 LOG_DEBUG("failed: %i", retval);
2439
2440         return retval;
2441 }
2442
2443 int target_write_phys_u16(struct target *target, target_addr_t address, uint16_t value)
2444 {
2445         int retval;
2446         uint8_t value_buf[2];
2447         if (!target_was_examined(target)) {
2448                 LOG_ERROR("Target not examined yet");
2449                 return ERROR_FAIL;
2450         }
2451
2452         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2453                           address,
2454                           value);
2455
2456         target_buffer_set_u16(target, value_buf, value);
2457         retval = target_write_phys_memory(target, address, 2, 1, value_buf);
2458         if (retval != ERROR_OK)
2459                 LOG_DEBUG("failed: %i", retval);
2460
2461         return retval;
2462 }
2463
2464 int target_write_phys_u8(struct target *target, target_addr_t address, uint8_t value)
2465 {
2466         int retval;
2467         if (!target_was_examined(target)) {
2468                 LOG_ERROR("Target not examined yet");
2469                 return ERROR_FAIL;
2470         }
2471
2472         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2473                           address, value);
2474
2475         retval = target_write_phys_memory(target, address, 1, 1, &value);
2476         if (retval != ERROR_OK)
2477                 LOG_DEBUG("failed: %i", retval);
2478
2479         return retval;
2480 }
2481
2482 static int find_target(struct command_context *cmd_ctx, const char *name)
2483 {
2484         struct target *target = get_target(name);
2485         if (target == NULL) {
2486                 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2487                 return ERROR_FAIL;
2488         }
2489         if (!target->tap->enabled) {
2490                 LOG_USER("Target: TAP %s is disabled, "
2491                          "can't be the current target\n",
2492                          target->tap->dotted_name);
2493                 return ERROR_FAIL;
2494         }
2495
2496         cmd_ctx->current_target = target->target_number;
2497         return ERROR_OK;
2498 }
2499
2500
2501 COMMAND_HANDLER(handle_targets_command)
2502 {
2503         int retval = ERROR_OK;
2504         if (CMD_ARGC == 1) {
2505                 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2506                 if (retval == ERROR_OK) {
2507                         /* we're done! */
2508                         return retval;
2509                 }
2510         }
2511
2512         struct target *target = all_targets;
2513         command_print(CMD_CTX, "    TargetName         Type       Endian TapName            State       ");
2514         command_print(CMD_CTX, "--  ------------------ ---------- ------ ------------------ ------------");
2515         while (target) {
2516                 const char *state;
2517                 char marker = ' ';
2518
2519                 if (target->tap->enabled)
2520                         state = target_state_name(target);
2521                 else
2522                         state = "tap-disabled";
2523
2524                 if (CMD_CTX->current_target == target->target_number)
2525                         marker = '*';
2526
2527                 /* keep columns lined up to match the headers above */
2528                 command_print(CMD_CTX,
2529                                 "%2d%c %-18s %-10s %-6s %-18s %s",
2530                                 target->target_number,
2531                                 marker,
2532                                 target_name(target),
2533                                 target_type_name(target),
2534                                 Jim_Nvp_value2name_simple(nvp_target_endian,
2535                                         target->endianness)->name,
2536                                 target->tap->dotted_name,
2537                                 state);
2538                 target = target->next;
2539         }
2540
2541         return retval;
2542 }
2543
2544 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2545
2546 static int powerDropout;
2547 static int srstAsserted;
2548
2549 static int runPowerRestore;
2550 static int runPowerDropout;
2551 static int runSrstAsserted;
2552 static int runSrstDeasserted;
2553
2554 static int sense_handler(void)
2555 {
2556         static int prevSrstAsserted;
2557         static int prevPowerdropout;
2558
2559         int retval = jtag_power_dropout(&powerDropout);
2560         if (retval != ERROR_OK)
2561                 return retval;
2562
2563         int powerRestored;
2564         powerRestored = prevPowerdropout && !powerDropout;
2565         if (powerRestored)
2566                 runPowerRestore = 1;
2567
2568         int64_t current = timeval_ms();
2569         static int64_t lastPower;
2570         bool waitMore = lastPower + 2000 > current;
2571         if (powerDropout && !waitMore) {
2572                 runPowerDropout = 1;
2573                 lastPower = current;
2574         }
2575
2576         retval = jtag_srst_asserted(&srstAsserted);
2577         if (retval != ERROR_OK)
2578                 return retval;
2579
2580         int srstDeasserted;
2581         srstDeasserted = prevSrstAsserted && !srstAsserted;
2582
2583         static int64_t lastSrst;
2584         waitMore = lastSrst + 2000 > current;
2585         if (srstDeasserted && !waitMore) {
2586                 runSrstDeasserted = 1;
2587                 lastSrst = current;
2588         }
2589
2590         if (!prevSrstAsserted && srstAsserted)
2591                 runSrstAsserted = 1;
2592
2593         prevSrstAsserted = srstAsserted;
2594         prevPowerdropout = powerDropout;
2595
2596         if (srstDeasserted || powerRestored) {
2597                 /* Other than logging the event we can't do anything here.
2598                  * Issuing a reset is a particularly bad idea as we might
2599                  * be inside a reset already.
2600                  */
2601         }
2602
2603         return ERROR_OK;
2604 }
2605
2606 /* process target state changes */
2607 static int handle_target(void *priv)
2608 {
2609         Jim_Interp *interp = (Jim_Interp *)priv;
2610         int retval = ERROR_OK;
2611
2612         if (!is_jtag_poll_safe()) {
2613                 /* polling is disabled currently */
2614                 return ERROR_OK;
2615         }
2616
2617         /* we do not want to recurse here... */
2618         static int recursive;
2619         if (!recursive) {
2620                 recursive = 1;
2621                 sense_handler();
2622                 /* danger! running these procedures can trigger srst assertions and power dropouts.
2623                  * We need to avoid an infinite loop/recursion here and we do that by
2624                  * clearing the flags after running these events.
2625                  */
2626                 int did_something = 0;
2627                 if (runSrstAsserted) {
2628                         LOG_INFO("srst asserted detected, running srst_asserted proc.");
2629                         Jim_Eval(interp, "srst_asserted");
2630                         did_something = 1;
2631                 }
2632                 if (runSrstDeasserted) {
2633                         Jim_Eval(interp, "srst_deasserted");
2634                         did_something = 1;
2635                 }
2636                 if (runPowerDropout) {
2637                         LOG_INFO("Power dropout detected, running power_dropout proc.");
2638                         Jim_Eval(interp, "power_dropout");
2639                         did_something = 1;
2640                 }
2641                 if (runPowerRestore) {
2642                         Jim_Eval(interp, "power_restore");
2643                         did_something = 1;
2644                 }
2645
2646                 if (did_something) {
2647                         /* clear detect flags */
2648                         sense_handler();
2649                 }
2650
2651                 /* clear action flags */
2652
2653                 runSrstAsserted = 0;
2654                 runSrstDeasserted = 0;
2655                 runPowerRestore = 0;
2656                 runPowerDropout = 0;
2657
2658                 recursive = 0;
2659         }
2660
2661         /* Poll targets for state changes unless that's globally disabled.
2662          * Skip targets that are currently disabled.
2663          */
2664         for (struct target *target = all_targets;
2665                         is_jtag_poll_safe() && target;
2666                         target = target->next) {
2667
2668                 if (!target_was_examined(target))
2669                         continue;
2670
2671                 if (!target->tap->enabled)
2672                         continue;
2673
2674                 if (target->backoff.times > target->backoff.count) {
2675                         /* do not poll this time as we failed previously */
2676                         target->backoff.count++;
2677                         continue;
2678                 }
2679                 target->backoff.count = 0;
2680
2681                 /* only poll target if we've got power and srst isn't asserted */
2682                 if (!powerDropout && !srstAsserted) {
2683                         /* polling may fail silently until the target has been examined */
2684                         retval = target_poll(target);
2685                         if (retval != ERROR_OK) {
2686                                 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2687                                 if (target->backoff.times * polling_interval < 5000) {
2688                                         target->backoff.times *= 2;
2689                                         target->backoff.times++;
2690                                 }
2691
2692                                 /* Tell GDB to halt the debugger. This allows the user to
2693                                  * run monitor commands to handle the situation.
2694                                  */
2695                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2696                         }
2697                         if (target->backoff.times > 0) {
2698                                 LOG_USER("Polling target %s failed, trying to reexamine", target_name(target));
2699                                 target_reset_examined(target);
2700                                 retval = target_examine_one(target);
2701                                 /* Target examination could have failed due to unstable connection,
2702                                  * but we set the examined flag anyway to repoll it later */
2703                                 if (retval != ERROR_OK) {
2704                                         target->examined = true;
2705                                         LOG_USER("Examination failed, GDB will be halted. Polling again in %dms",
2706                                                  target->backoff.times * polling_interval);
2707                                         return retval;
2708                                 }
2709                         }
2710
2711                         /* Since we succeeded, we reset backoff count */
2712                         target->backoff.times = 0;
2713                 }
2714         }
2715
2716         return retval;
2717 }
2718
2719 COMMAND_HANDLER(handle_reg_command)
2720 {
2721         struct target *target;
2722         struct reg *reg = NULL;
2723         unsigned count = 0;
2724         char *value;
2725
2726         LOG_DEBUG("-");
2727
2728         target = get_current_target(CMD_CTX);
2729
2730         /* list all available registers for the current target */
2731         if (CMD_ARGC == 0) {
2732                 struct reg_cache *cache = target->reg_cache;
2733
2734                 count = 0;
2735                 while (cache) {
2736                         unsigned i;
2737
2738                         command_print(CMD_CTX, "===== %s", cache->name);
2739
2740                         for (i = 0, reg = cache->reg_list;
2741                                         i < cache->num_regs;
2742                                         i++, reg++, count++) {
2743                                 /* only print cached values if they are valid */
2744                                 if (reg->valid) {
2745                                         value = buf_to_str(reg->value,
2746                                                         reg->size, 16);
2747                                         command_print(CMD_CTX,
2748                                                         "(%i) %s (/%" PRIu32 "): 0x%s%s",
2749                                                         count, reg->name,
2750                                                         reg->size, value,
2751                                                         reg->dirty
2752                                                                 ? " (dirty)"
2753                                                                 : "");
2754                                         free(value);
2755                                 } else {
2756                                         command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2757                                                           count, reg->name,
2758                                                           reg->size) ;
2759                                 }
2760                         }
2761                         cache = cache->next;
2762                 }
2763
2764                 return ERROR_OK;
2765         }
2766
2767         /* access a single register by its ordinal number */
2768         if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2769                 unsigned num;
2770                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2771
2772                 struct reg_cache *cache = target->reg_cache;
2773                 count = 0;
2774                 while (cache) {
2775                         unsigned i;
2776                         for (i = 0; i < cache->num_regs; i++) {
2777                                 if (count++ == num) {
2778                                         reg = &cache->reg_list[i];
2779                                         break;
2780                                 }
2781                         }
2782                         if (reg)
2783                                 break;
2784                         cache = cache->next;
2785                 }
2786
2787                 if (!reg) {
2788                         command_print(CMD_CTX, "%i is out of bounds, the current target "
2789                                         "has only %i registers (0 - %i)", num, count, count - 1);
2790                         return ERROR_OK;
2791                 }
2792         } else {
2793                 /* access a single register by its name */
2794                 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2795
2796                 if (!reg) {
2797                         command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2798                         return ERROR_OK;
2799                 }
2800         }
2801
2802         assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2803
2804         /* display a register */
2805         if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2806                         && (CMD_ARGV[1][0] <= '9')))) {
2807                 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2808                         reg->valid = 0;
2809
2810                 if (reg->valid == 0)
2811                         reg->type->get(reg);
2812                 value = buf_to_str(reg->value, reg->size, 16);
2813                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2814                 free(value);
2815                 return ERROR_OK;
2816         }
2817
2818         /* set register value */
2819         if (CMD_ARGC == 2) {
2820                 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2821                 if (buf == NULL)
2822                         return ERROR_FAIL;
2823                 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2824
2825                 reg->type->set(reg, buf);
2826
2827                 value = buf_to_str(reg->value, reg->size, 16);
2828                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2829                 free(value);
2830
2831                 free(buf);
2832
2833                 return ERROR_OK;
2834         }
2835
2836         return ERROR_COMMAND_SYNTAX_ERROR;
2837 }
2838
2839 COMMAND_HANDLER(handle_poll_command)
2840 {
2841         int retval = ERROR_OK;
2842         struct target *target = get_current_target(CMD_CTX);
2843
2844         if (CMD_ARGC == 0) {
2845                 command_print(CMD_CTX, "background polling: %s",
2846                                 jtag_poll_get_enabled() ? "on" : "off");
2847                 command_print(CMD_CTX, "TAP: %s (%s)",
2848                                 target->tap->dotted_name,
2849                                 target->tap->enabled ? "enabled" : "disabled");
2850                 if (!target->tap->enabled)
2851                         return ERROR_OK;
2852                 retval = target_poll(target);
2853                 if (retval != ERROR_OK)
2854                         return retval;
2855                 retval = target_arch_state(target);
2856                 if (retval != ERROR_OK)
2857                         return retval;
2858         } else if (CMD_ARGC == 1) {
2859                 bool enable;
2860                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2861                 jtag_poll_set_enabled(enable);
2862         } else
2863                 return ERROR_COMMAND_SYNTAX_ERROR;
2864
2865         return retval;
2866 }
2867
2868 COMMAND_HANDLER(handle_wait_halt_command)
2869 {
2870         if (CMD_ARGC > 1)
2871                 return ERROR_COMMAND_SYNTAX_ERROR;
2872
2873         unsigned ms = DEFAULT_HALT_TIMEOUT;
2874         if (1 == CMD_ARGC) {
2875                 int retval = parse_uint(CMD_ARGV[0], &ms);
2876                 if (ERROR_OK != retval)
2877                         return ERROR_COMMAND_SYNTAX_ERROR;
2878         }
2879
2880         struct target *target = get_current_target(CMD_CTX);
2881         return target_wait_state(target, TARGET_HALTED, ms);
2882 }
2883
2884 /* wait for target state to change. The trick here is to have a low
2885  * latency for short waits and not to suck up all the CPU time
2886  * on longer waits.
2887  *
2888  * After 500ms, keep_alive() is invoked
2889  */
2890 int target_wait_state(struct target *target, enum target_state state, int ms)
2891 {
2892         int retval;
2893         int64_t then = 0, cur;
2894         bool once = true;
2895
2896         for (;;) {
2897                 retval = target_poll(target);
2898                 if (retval != ERROR_OK)
2899                         return retval;
2900                 if (target->state == state)
2901                         break;
2902                 cur = timeval_ms();
2903                 if (once) {
2904                         once = false;
2905                         then = timeval_ms();
2906                         LOG_DEBUG("waiting for target %s...",
2907                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2908                 }
2909
2910                 if (cur-then > 500)
2911                         keep_alive();
2912
2913                 if ((cur-then) > ms) {
2914                         LOG_ERROR("timed out while waiting for target %s",
2915                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2916                         return ERROR_FAIL;
2917                 }
2918         }
2919
2920         return ERROR_OK;
2921 }
2922
2923 COMMAND_HANDLER(handle_halt_command)
2924 {
2925         LOG_DEBUG("-");
2926
2927         struct target *target = get_current_target(CMD_CTX);
2928         int retval = target_halt(target);
2929         if (ERROR_OK != retval)
2930                 return retval;
2931
2932         if (CMD_ARGC == 1) {
2933                 unsigned wait_local;
2934                 retval = parse_uint(CMD_ARGV[0], &wait_local);
2935                 if (ERROR_OK != retval)
2936                         return ERROR_COMMAND_SYNTAX_ERROR;
2937                 if (!wait_local)
2938                         return ERROR_OK;
2939         }
2940
2941         return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2942 }
2943
2944 COMMAND_HANDLER(handle_soft_reset_halt_command)
2945 {
2946         struct target *target = get_current_target(CMD_CTX);
2947
2948         LOG_USER("requesting target halt and executing a soft reset");
2949
2950         target_soft_reset_halt(target);
2951
2952         return ERROR_OK;
2953 }
2954
2955 COMMAND_HANDLER(handle_reset_command)
2956 {
2957         if (CMD_ARGC > 1)
2958                 return ERROR_COMMAND_SYNTAX_ERROR;
2959
2960         enum target_reset_mode reset_mode = RESET_RUN;
2961         if (CMD_ARGC == 1) {
2962                 const Jim_Nvp *n;
2963                 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2964                 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
2965                         return ERROR_COMMAND_SYNTAX_ERROR;
2966                 reset_mode = n->value;
2967         }
2968
2969         /* reset *all* targets */
2970         return target_process_reset(CMD_CTX, reset_mode);
2971 }
2972
2973
2974 COMMAND_HANDLER(handle_resume_command)
2975 {
2976         int current = 1;
2977         if (CMD_ARGC > 1)
2978                 return ERROR_COMMAND_SYNTAX_ERROR;
2979
2980         struct target *target = get_current_target(CMD_CTX);
2981
2982         /* with no CMD_ARGV, resume from current pc, addr = 0,
2983          * with one arguments, addr = CMD_ARGV[0],
2984          * handle breakpoints, not debugging */
2985         target_addr_t addr = 0;
2986         if (CMD_ARGC == 1) {
2987                 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
2988                 current = 0;
2989         }
2990
2991         return target_resume(target, current, addr, 1, 0);
2992 }
2993
2994 COMMAND_HANDLER(handle_step_command)
2995 {
2996         if (CMD_ARGC > 1)
2997                 return ERROR_COMMAND_SYNTAX_ERROR;
2998
2999         LOG_DEBUG("-");
3000
3001         /* with no CMD_ARGV, step from current pc, addr = 0,
3002          * with one argument addr = CMD_ARGV[0],
3003          * handle breakpoints, debugging */
3004         target_addr_t addr = 0;
3005         int current_pc = 1;
3006         if (CMD_ARGC == 1) {
3007                 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3008                 current_pc = 0;
3009         }
3010
3011         struct target *target = get_current_target(CMD_CTX);
3012
3013         return target->type->step(target, current_pc, addr, 1);
3014 }
3015
3016 static void handle_md_output(struct command_context *cmd_ctx,
3017                 struct target *target, target_addr_t address, unsigned size,
3018                 unsigned count, const uint8_t *buffer)
3019 {
3020         const unsigned line_bytecnt = 32;
3021         unsigned line_modulo = line_bytecnt / size;
3022
3023         char output[line_bytecnt * 4 + 1];
3024         unsigned output_len = 0;
3025
3026         const char *value_fmt;
3027         switch (size) {
3028         case 8:
3029                 value_fmt = "%16.16"PRIx64" ";
3030                 break;
3031         case 4:
3032                 value_fmt = "%8.8"PRIx64" ";
3033                 break;
3034         case 2:
3035                 value_fmt = "%4.4"PRIx64" ";
3036                 break;
3037         case 1:
3038                 value_fmt = "%2.2"PRIx64" ";
3039                 break;
3040         default:
3041                 /* "can't happen", caller checked */
3042                 LOG_ERROR("invalid memory read size: %u", size);
3043                 return;
3044         }
3045
3046         for (unsigned i = 0; i < count; i++) {
3047                 if (i % line_modulo == 0) {
3048                         output_len += snprintf(output + output_len,
3049                                         sizeof(output) - output_len,
3050                                         TARGET_ADDR_FMT ": ",
3051                                         (address + (i * size)));
3052                 }
3053
3054                 uint64_t value = 0;
3055                 const uint8_t *value_ptr = buffer + i * size;
3056                 switch (size) {
3057                 case 8:
3058                         value = target_buffer_get_u64(target, value_ptr);
3059                         break;
3060                 case 4:
3061                         value = target_buffer_get_u32(target, value_ptr);
3062                         break;
3063                 case 2:
3064                         value = target_buffer_get_u16(target, value_ptr);
3065                         break;
3066                 case 1:
3067                         value = *value_ptr;
3068                 }
3069                 output_len += snprintf(output + output_len,
3070                                 sizeof(output) - output_len,
3071                                 value_fmt, value);
3072
3073                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
3074                         command_print(cmd_ctx, "%s", output);
3075                         output_len = 0;
3076                 }
3077         }
3078 }
3079
3080 COMMAND_HANDLER(handle_md_command)
3081 {
3082         if (CMD_ARGC < 1)
3083                 return ERROR_COMMAND_SYNTAX_ERROR;
3084
3085         unsigned size = 0;
3086         switch (CMD_NAME[2]) {
3087         case 'd':
3088                 size = 8;
3089                 break;
3090         case 'w':
3091                 size = 4;
3092                 break;
3093         case 'h':
3094                 size = 2;
3095                 break;
3096         case 'b':
3097                 size = 1;
3098                 break;
3099         default:
3100                 return ERROR_COMMAND_SYNTAX_ERROR;
3101         }
3102
3103         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3104         int (*fn)(struct target *target,
3105                         target_addr_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
3106         if (physical) {
3107                 CMD_ARGC--;
3108                 CMD_ARGV++;
3109                 fn = target_read_phys_memory;
3110         } else
3111                 fn = target_read_memory;
3112         if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
3113                 return ERROR_COMMAND_SYNTAX_ERROR;
3114
3115         target_addr_t address;
3116         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3117
3118         unsigned count = 1;
3119         if (CMD_ARGC == 2)
3120                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
3121
3122         uint8_t *buffer = calloc(count, size);
3123
3124         struct target *target = get_current_target(CMD_CTX);
3125         int retval = fn(target, address, size, count, buffer);
3126         if (ERROR_OK == retval)
3127                 handle_md_output(CMD_CTX, target, address, size, count, buffer);
3128
3129         free(buffer);
3130
3131         return retval;
3132 }
3133
3134 typedef int (*target_write_fn)(struct target *target,
3135                 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
3136
3137 static int target_fill_mem(struct target *target,
3138                 target_addr_t address,
3139                 target_write_fn fn,
3140                 unsigned data_size,
3141                 /* value */
3142                 uint64_t b,
3143                 /* count */
3144                 unsigned c)
3145 {
3146         /* We have to write in reasonably large chunks to be able
3147          * to fill large memory areas with any sane speed */
3148         const unsigned chunk_size = 16384;
3149         uint8_t *target_buf = malloc(chunk_size * data_size);
3150         if (target_buf == NULL) {
3151                 LOG_ERROR("Out of memory");
3152                 return ERROR_FAIL;
3153         }
3154
3155         for (unsigned i = 0; i < chunk_size; i++) {
3156                 switch (data_size) {
3157                 case 8:
3158                         target_buffer_set_u64(target, target_buf + i * data_size, b);
3159                         break;
3160                 case 4:
3161                         target_buffer_set_u32(target, target_buf + i * data_size, b);
3162                         break;
3163                 case 2:
3164                         target_buffer_set_u16(target, target_buf + i * data_size, b);
3165                         break;
3166                 case 1:
3167                         target_buffer_set_u8(target, target_buf + i * data_size, b);
3168                         break;
3169                 default:
3170                         exit(-1);
3171                 }
3172         }
3173
3174         int retval = ERROR_OK;
3175
3176         for (unsigned x = 0; x < c; x += chunk_size) {
3177                 unsigned current;
3178                 current = c - x;
3179                 if (current > chunk_size)
3180                         current = chunk_size;
3181                 retval = fn(target, address + x * data_size, data_size, current, target_buf);
3182                 if (retval != ERROR_OK)
3183                         break;
3184                 /* avoid GDB timeouts */
3185                 keep_alive();
3186         }
3187         free(target_buf);
3188
3189         return retval;
3190 }
3191
3192
3193 COMMAND_HANDLER(handle_mw_command)
3194 {
3195         if (CMD_ARGC < 2)
3196                 return ERROR_COMMAND_SYNTAX_ERROR;
3197         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3198         target_write_fn fn;
3199         if (physical) {
3200                 CMD_ARGC--;
3201                 CMD_ARGV++;
3202                 fn = target_write_phys_memory;
3203         } else
3204                 fn = target_write_memory;
3205         if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
3206                 return ERROR_COMMAND_SYNTAX_ERROR;
3207
3208         target_addr_t address;
3209         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3210
3211         target_addr_t value;
3212         COMMAND_PARSE_ADDRESS(CMD_ARGV[1], value);
3213
3214         unsigned count = 1;
3215         if (CMD_ARGC == 3)
3216                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
3217
3218         struct target *target = get_current_target(CMD_CTX);
3219         unsigned wordsize;
3220         switch (CMD_NAME[2]) {
3221                 case 'd':
3222                         wordsize = 8;
3223                         break;
3224                 case 'w':
3225                         wordsize = 4;
3226                         break;
3227                 case 'h':
3228                         wordsize = 2;
3229                         break;
3230                 case 'b':
3231                         wordsize = 1;
3232                         break;
3233                 default:
3234                         return ERROR_COMMAND_SYNTAX_ERROR;
3235         }
3236
3237         return target_fill_mem(target, address, fn, wordsize, value, count);
3238 }
3239
3240 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
3241                 target_addr_t *min_address, target_addr_t *max_address)
3242 {
3243         if (CMD_ARGC < 1 || CMD_ARGC > 5)
3244                 return ERROR_COMMAND_SYNTAX_ERROR;
3245
3246         /* a base address isn't always necessary,
3247          * default to 0x0 (i.e. don't relocate) */
3248         if (CMD_ARGC >= 2) {
3249                 target_addr_t addr;
3250                 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3251                 image->base_address = addr;
3252                 image->base_address_set = 1;
3253         } else
3254                 image->base_address_set = 0;
3255
3256         image->start_address_set = 0;
3257
3258         if (CMD_ARGC >= 4)
3259                 COMMAND_PARSE_ADDRESS(CMD_ARGV[3], *min_address);
3260         if (CMD_ARGC == 5) {
3261                 COMMAND_PARSE_ADDRESS(CMD_ARGV[4], *max_address);
3262                 /* use size (given) to find max (required) */
3263                 *max_address += *min_address;
3264         }
3265
3266         if (*min_address > *max_address)
3267                 return ERROR_COMMAND_SYNTAX_ERROR;
3268
3269         return ERROR_OK;
3270 }
3271
3272 COMMAND_HANDLER(handle_load_image_command)
3273 {
3274         uint8_t *buffer;
3275         size_t buf_cnt;
3276         uint32_t image_size;
3277         target_addr_t min_address = 0;
3278         target_addr_t max_address = -1;
3279         int i;
3280         struct image image;
3281
3282         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
3283                         &image, &min_address, &max_address);
3284         if (ERROR_OK != retval)
3285                 return retval;
3286
3287         struct target *target = get_current_target(CMD_CTX);
3288
3289         struct duration bench;
3290         duration_start(&bench);
3291
3292         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
3293                 return ERROR_FAIL;
3294
3295         image_size = 0x0;
3296         retval = ERROR_OK;
3297         for (i = 0; i < image.num_sections; i++) {
3298                 buffer = malloc(image.sections[i].size);
3299                 if (buffer == NULL) {
3300                         command_print(CMD_CTX,
3301                                                   "error allocating buffer for section (%d bytes)",
3302                                                   (int)(image.sections[i].size));
3303                         retval = ERROR_FAIL;
3304                         break;
3305                 }
3306
3307                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3308                 if (retval != ERROR_OK) {
3309                         free(buffer);
3310                         break;
3311                 }
3312
3313                 uint32_t offset = 0;
3314                 uint32_t length = buf_cnt;
3315
3316                 /* DANGER!!! beware of unsigned comparision here!!! */
3317
3318                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
3319                                 (image.sections[i].base_address < max_address)) {
3320
3321                         if (image.sections[i].base_address < min_address) {
3322                                 /* clip addresses below */
3323                                 offset += min_address-image.sections[i].base_address;
3324                                 length -= offset;
3325                         }
3326
3327                         if (image.sections[i].base_address + buf_cnt > max_address)
3328                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
3329
3330                         retval = target_write_buffer(target,
3331                                         image.sections[i].base_address + offset, length, buffer + offset);
3332                         if (retval != ERROR_OK) {
3333                                 free(buffer);
3334                                 break;
3335                         }
3336                         image_size += length;
3337                         command_print(CMD_CTX, "%u bytes written at address " TARGET_ADDR_FMT "",
3338                                         (unsigned int)length,
3339                                         image.sections[i].base_address + offset);
3340                 }
3341
3342                 free(buffer);
3343         }
3344
3345         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3346                 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
3347                                 "in %fs (%0.3f KiB/s)", image_size,
3348                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3349         }
3350
3351         image_close(&image);
3352
3353         return retval;
3354
3355 }
3356
3357 COMMAND_HANDLER(handle_dump_image_command)
3358 {
3359         struct fileio *fileio;
3360         uint8_t *buffer;
3361         int retval, retvaltemp;
3362         target_addr_t address, size;
3363         struct duration bench;
3364         struct target *target = get_current_target(CMD_CTX);
3365
3366         if (CMD_ARGC != 3)
3367                 return ERROR_COMMAND_SYNTAX_ERROR;
3368
3369         COMMAND_PARSE_ADDRESS(CMD_ARGV[1], address);
3370         COMMAND_PARSE_ADDRESS(CMD_ARGV[2], size);
3371
3372         uint32_t buf_size = (size > 4096) ? 4096 : size;
3373         buffer = malloc(buf_size);
3374         if (!buffer)
3375                 return ERROR_FAIL;
3376
3377         retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
3378         if (retval != ERROR_OK) {
3379                 free(buffer);
3380                 return retval;
3381         }
3382
3383         duration_start(&bench);
3384
3385         while (size > 0) {
3386                 size_t size_written;
3387                 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
3388                 retval = target_read_buffer(target, address, this_run_size, buffer);
3389                 if (retval != ERROR_OK)
3390                         break;
3391
3392                 retval = fileio_write(fileio, this_run_size, buffer, &size_written);
3393                 if (retval != ERROR_OK)
3394                         break;
3395
3396                 size -= this_run_size;
3397                 address += this_run_size;
3398         }
3399
3400         free(buffer);
3401
3402         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3403                 size_t filesize;
3404                 retval = fileio_size(fileio, &filesize);
3405                 if (retval != ERROR_OK)
3406                         return retval;
3407                 command_print(CMD_CTX,
3408                                 "dumped %zu bytes in %fs (%0.3f KiB/s)", filesize,
3409                                 duration_elapsed(&bench), duration_kbps(&bench, filesize));
3410         }
3411
3412         retvaltemp = fileio_close(fileio);
3413         if (retvaltemp != ERROR_OK)
3414                 return retvaltemp;
3415
3416         return retval;
3417 }
3418
3419 enum verify_mode {
3420         IMAGE_TEST = 0,
3421         IMAGE_VERIFY = 1,
3422         IMAGE_CHECKSUM_ONLY = 2
3423 };
3424
3425 static COMMAND_HELPER(handle_verify_image_command_internal, enum verify_mode verify)
3426 {
3427         uint8_t *buffer;
3428         size_t buf_cnt;
3429         uint32_t image_size;
3430         int i;
3431         int retval;
3432         uint32_t checksum = 0;
3433         uint32_t mem_checksum = 0;
3434
3435         struct image image;
3436
3437         struct target *target = get_current_target(CMD_CTX);
3438
3439         if (CMD_ARGC < 1)
3440                 return ERROR_COMMAND_SYNTAX_ERROR;
3441
3442         if (!target) {
3443                 LOG_ERROR("no target selected");
3444                 return ERROR_FAIL;
3445         }
3446
3447         struct duration bench;
3448         duration_start(&bench);
3449
3450         if (CMD_ARGC >= 2) {
3451                 target_addr_t addr;
3452                 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3453                 image.base_address = addr;
3454                 image.base_address_set = 1;
3455         } else {
3456                 image.base_address_set = 0;
3457                 image.base_address = 0x0;
3458         }
3459
3460         image.start_address_set = 0;
3461
3462         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
3463         if (retval != ERROR_OK)
3464                 return retval;
3465
3466         image_size = 0x0;
3467         int diffs = 0;
3468         retval = ERROR_OK;
3469         for (i = 0; i < image.num_sections; i++) {
3470                 buffer = malloc(image.sections[i].size);
3471                 if (buffer == NULL) {
3472                         command_print(CMD_CTX,
3473                                         "error allocating buffer for section (%d bytes)",
3474                                         (int)(image.sections[i].size));
3475                         break;
3476                 }
3477                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3478                 if (retval != ERROR_OK) {
3479                         free(buffer);
3480                         break;
3481                 }
3482
3483                 if (verify >= IMAGE_VERIFY) {
3484                         /* calculate checksum of image */
3485                         retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3486                         if (retval != ERROR_OK) {
3487                                 free(buffer);
3488                                 break;
3489                         }
3490
3491                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3492                         if (retval != ERROR_OK) {
3493                                 free(buffer);
3494                                 break;
3495                         }
3496                         if ((checksum != mem_checksum) && (verify == IMAGE_CHECKSUM_ONLY)) {
3497                                 LOG_ERROR("checksum mismatch");
3498                                 free(buffer);
3499                                 retval = ERROR_FAIL;
3500                                 goto done;
3501                         }
3502                         if (checksum != mem_checksum) {
3503                                 /* failed crc checksum, fall back to a binary compare */
3504                                 uint8_t *data;
3505
3506                                 if (diffs == 0)
3507                                         LOG_ERROR("checksum mismatch - attempting binary compare");
3508
3509                                 data = malloc(buf_cnt);
3510
3511                                 /* Can we use 32bit word accesses? */
3512                                 int size = 1;
3513                                 int count = buf_cnt;
3514                                 if ((count % 4) == 0) {
3515                                         size *= 4;
3516                                         count /= 4;
3517                                 }
3518                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3519                                 if (retval == ERROR_OK) {
3520                                         uint32_t t;
3521                                         for (t = 0; t < buf_cnt; t++) {
3522                                                 if (data[t] != buffer[t]) {
3523                                                         command_print(CMD_CTX,
3524                                                                                   "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3525                                                                                   diffs,
3526                                                                                   (unsigned)(t + image.sections[i].base_address),
3527                                                                                   data[t],
3528                                                                                   buffer[t]);
3529                                                         if (diffs++ >= 127) {
3530                                                                 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3531                                                                 free(data);
3532                                                                 free(buffer);
3533                                                                 goto done;
3534                                                         }
3535                                                 }
3536                                                 keep_alive();
3537                                         }
3538                                 }
3539                                 free(data);
3540                         }
3541                 } else {
3542                         command_print(CMD_CTX, "address " TARGET_ADDR_FMT " length 0x%08zx",
3543                                                   image.sections[i].base_address,
3544                                                   buf_cnt);
3545                 }
3546
3547                 free(buffer);
3548                 image_size += buf_cnt;
3549         }
3550         if (diffs > 0)
3551                 command_print(CMD_CTX, "No more differences found.");
3552 done:
3553         if (diffs > 0)
3554                 retval = ERROR_FAIL;
3555         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3556                 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3557                                 "in %fs (%0.3f KiB/s)", image_size,
3558                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3559         }
3560
3561         image_close(&image);
3562
3563         return retval;
3564 }
3565
3566 COMMAND_HANDLER(handle_verify_image_checksum_command)
3567 {
3568         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_CHECKSUM_ONLY);
3569 }
3570
3571 COMMAND_HANDLER(handle_verify_image_command)
3572 {
3573         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_VERIFY);
3574 }
3575
3576 COMMAND_HANDLER(handle_test_image_command)
3577 {
3578         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_TEST);
3579 }
3580
3581 static int handle_bp_command_list(struct command_context *cmd_ctx)
3582 {
3583         struct target *target = get_current_target(cmd_ctx);
3584         struct breakpoint *breakpoint = target->breakpoints;
3585         while (breakpoint) {
3586                 if (breakpoint->type == BKPT_SOFT) {
3587                         char *buf = buf_to_str(breakpoint->orig_instr,
3588                                         breakpoint->length, 16);
3589                         command_print(cmd_ctx, "IVA breakpoint: " TARGET_ADDR_FMT ", 0x%x, %i, 0x%s",
3590                                         breakpoint->address,
3591                                         breakpoint->length,
3592                                         breakpoint->set, buf);
3593                         free(buf);
3594                 } else {
3595                         if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3596                                 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3597                                                         breakpoint->asid,
3598                                                         breakpoint->length, breakpoint->set);
3599                         else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3600                                 command_print(cmd_ctx, "Hybrid breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %i",
3601                                                         breakpoint->address,
3602                                                         breakpoint->length, breakpoint->set);
3603                                 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3604                                                         breakpoint->asid);
3605                         } else
3606                                 command_print(cmd_ctx, "Breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %i",
3607                                                         breakpoint->address,
3608                                                         breakpoint->length, breakpoint->set);
3609                 }
3610
3611                 breakpoint = breakpoint->next;
3612         }
3613         return ERROR_OK;
3614 }
3615
3616 static int handle_bp_command_set(struct command_context *cmd_ctx,
3617                 target_addr_t addr, uint32_t asid, uint32_t length, int hw)
3618 {
3619         struct target *target = get_current_target(cmd_ctx);
3620         int retval;
3621
3622         if (asid == 0) {
3623                 retval = breakpoint_add(target, addr, length, hw);
3624                 if (ERROR_OK == retval)
3625                         command_print(cmd_ctx, "breakpoint set at " TARGET_ADDR_FMT "", addr);
3626                 else {
3627                         LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3628                         return retval;
3629                 }
3630         } else if (addr == 0) {
3631                 if (target->type->add_context_breakpoint == NULL) {
3632                         LOG_WARNING("Context breakpoint not available");
3633                         return ERROR_OK;
3634                 }
3635                 retval = context_breakpoint_add(target, asid, length, hw);
3636                 if (ERROR_OK == retval)
3637                         command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3638                 else {
3639                         LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3640                         return retval;
3641                 }
3642         } else {
3643                 if (target->type->add_hybrid_breakpoint == NULL) {
3644                         LOG_WARNING("Hybrid breakpoint not available");
3645                         return ERROR_OK;
3646                 }
3647                 retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3648                 if (ERROR_OK == retval)
3649                         command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3650                 else {
3651                         LOG_ERROR("Failure setting breakpoint, the same address is already used");
3652                         return retval;
3653                 }
3654         }
3655         return ERROR_OK;
3656 }
3657
3658 COMMAND_HANDLER(handle_bp_command)
3659 {
3660         target_addr_t addr;
3661         uint32_t asid;
3662         uint32_t length;
3663         int hw = BKPT_SOFT;
3664
3665         switch (CMD_ARGC) {
3666                 case 0:
3667                         return handle_bp_command_list(CMD_CTX);
3668
3669                 case 2:
3670                         asid = 0;
3671                         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3672                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3673                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3674
3675                 case 3:
3676                         if (strcmp(CMD_ARGV[2], "hw") == 0) {
3677                                 hw = BKPT_HARD;
3678                                 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3679                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3680                                 asid = 0;
3681                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3682                         } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
3683                                 hw = BKPT_HARD;
3684                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3685                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3686                                 addr = 0;
3687                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3688                         }
3689                         /* fallthrough */
3690                 case 4:
3691                         hw = BKPT_HARD;
3692                         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3693                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3694                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3695                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3696
3697                 default:
3698                         return ERROR_COMMAND_SYNTAX_ERROR;
3699         }
3700 }
3701
3702 COMMAND_HANDLER(handle_rbp_command)
3703 {
3704         if (CMD_ARGC != 1)
3705                 return ERROR_COMMAND_SYNTAX_ERROR;
3706
3707         target_addr_t addr;
3708         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3709
3710         struct target *target = get_current_target(CMD_CTX);
3711         breakpoint_remove(target, addr);
3712
3713         return ERROR_OK;
3714 }
3715
3716 COMMAND_HANDLER(handle_wp_command)
3717 {
3718         struct target *target = get_current_target(CMD_CTX);
3719
3720         if (CMD_ARGC == 0) {
3721                 struct watchpoint *watchpoint = target->watchpoints;
3722
3723                 while (watchpoint) {
3724                         command_print(CMD_CTX, "address: " TARGET_ADDR_FMT
3725                                         ", len: 0x%8.8" PRIx32
3726                                         ", r/w/a: %i, value: 0x%8.8" PRIx32
3727                                         ", mask: 0x%8.8" PRIx32,
3728                                         watchpoint->address,
3729                                         watchpoint->length,
3730                                         (int)watchpoint->rw,
3731                                         watchpoint->value,
3732                                         watchpoint->mask);
3733                         watchpoint = watchpoint->next;
3734                 }
3735                 return ERROR_OK;
3736         }
3737
3738         enum watchpoint_rw type = WPT_ACCESS;
3739         uint32_t addr = 0;
3740         uint32_t length = 0;
3741         uint32_t data_value = 0x0;
3742         uint32_t data_mask = 0xffffffff;
3743
3744         switch (CMD_ARGC) {
3745         case 5:
3746                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3747                 /* fall through */
3748         case 4:
3749                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3750                 /* fall through */
3751         case 3:
3752                 switch (CMD_ARGV[2][0]) {
3753                 case 'r':
3754                         type = WPT_READ;
3755                         break;
3756                 case 'w':
3757                         type = WPT_WRITE;
3758                         break;
3759                 case 'a':
3760                         type = WPT_ACCESS;
3761                         break;
3762                 default:
3763                         LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3764                         return ERROR_COMMAND_SYNTAX_ERROR;
3765                 }
3766                 /* fall through */
3767         case 2:
3768                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3769                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3770                 break;
3771
3772         default:
3773                 return ERROR_COMMAND_SYNTAX_ERROR;
3774         }
3775
3776         int retval = watchpoint_add(target, addr, length, type,
3777                         data_value, data_mask);
3778         if (ERROR_OK != retval)
3779                 LOG_ERROR("Failure setting watchpoints");
3780
3781         return retval;
3782 }
3783
3784 COMMAND_HANDLER(handle_rwp_command)
3785 {
3786         if (CMD_ARGC != 1)
3787                 return ERROR_COMMAND_SYNTAX_ERROR;
3788
3789         uint32_t addr;
3790         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3791
3792         struct target *target = get_current_target(CMD_CTX);
3793         watchpoint_remove(target, addr);
3794
3795         return ERROR_OK;
3796 }
3797
3798 /**
3799  * Translate a virtual address to a physical address.
3800  *
3801  * The low-level target implementation must have logged a detailed error
3802  * which is forwarded to telnet/GDB session.
3803  */
3804 COMMAND_HANDLER(handle_virt2phys_command)
3805 {
3806         if (CMD_ARGC != 1)
3807                 return ERROR_COMMAND_SYNTAX_ERROR;
3808
3809         target_addr_t va;
3810         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], va);
3811         target_addr_t pa;
3812
3813         struct target *target = get_current_target(CMD_CTX);
3814         int retval = target->type->virt2phys(target, va, &pa);
3815         if (retval == ERROR_OK)
3816                 command_print(CMD_CTX, "Physical address " TARGET_ADDR_FMT "", pa);
3817
3818         return retval;
3819 }
3820
3821 static void writeData(FILE *f, const void *data, size_t len)
3822 {
3823         size_t written = fwrite(data, 1, len, f);
3824         if (written != len)
3825                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3826 }
3827
3828 static void writeLong(FILE *f, int l, struct target *target)
3829 {
3830         uint8_t val[4];
3831
3832         target_buffer_set_u32(target, val, l);
3833         writeData(f, val, 4);
3834 }
3835
3836 static void writeString(FILE *f, char *s)
3837 {
3838         writeData(f, s, strlen(s));
3839 }
3840
3841 typedef unsigned char UNIT[2];  /* unit of profiling */
3842
3843 /* Dump a gmon.out histogram file. */
3844 static void write_gmon(uint32_t *samples, uint32_t sampleNum, const char *filename, bool with_range,
3845                         uint32_t start_address, uint32_t end_address, struct target *target)
3846 {
3847         uint32_t i;
3848         FILE *f = fopen(filename, "w");
3849         if (f == NULL)
3850                 return;
3851         writeString(f, "gmon");
3852         writeLong(f, 0x00000001, target); /* Version */
3853         writeLong(f, 0, target); /* padding */
3854         writeLong(f, 0, target); /* padding */
3855         writeLong(f, 0, target); /* padding */
3856
3857         uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
3858         writeData(f, &zero, 1);
3859
3860         /* figure out bucket size */
3861         uint32_t min;
3862         uint32_t max;
3863         if (with_range) {
3864                 min = start_address;
3865                 max = end_address;
3866         } else {
3867                 min = samples[0];
3868                 max = samples[0];
3869                 for (i = 0; i < sampleNum; i++) {
3870                         if (min > samples[i])
3871                                 min = samples[i];
3872                         if (max < samples[i])
3873                                 max = samples[i];
3874                 }
3875
3876                 /* max should be (largest sample + 1)
3877                  * Refer to binutils/gprof/hist.c (find_histogram_for_pc) */
3878                 max++;
3879         }
3880
3881         int addressSpace = max - min;
3882         assert(addressSpace >= 2);
3883
3884         /* FIXME: What is the reasonable number of buckets?
3885          * The profiling result will be more accurate if there are enough buckets. */
3886         static const uint32_t maxBuckets = 128 * 1024; /* maximum buckets. */
3887         uint32_t numBuckets = addressSpace / sizeof(UNIT);
3888         if (numBuckets > maxBuckets)
3889                 numBuckets = maxBuckets;
3890         int *buckets = malloc(sizeof(int) * numBuckets);
3891         if (buckets == NULL) {
3892                 fclose(f);
3893                 return;
3894         }
3895         memset(buckets, 0, sizeof(int) * numBuckets);
3896         for (i = 0; i < sampleNum; i++) {
3897                 uint32_t address = samples[i];
3898
3899                 if ((address < min) || (max <= address))
3900                         continue;
3901
3902                 long long a = address - min;
3903                 long long b = numBuckets;
3904                 long long c = addressSpace;
3905                 int index_t = (a * b) / c; /* danger!!!! int32 overflows */
3906                 buckets[index_t]++;
3907         }
3908
3909         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3910         writeLong(f, min, target);                      /* low_pc */
3911         writeLong(f, max, target);                      /* high_pc */
3912         writeLong(f, numBuckets, target);       /* # of buckets */
3913         writeLong(f, 100, target);                      /* KLUDGE! We lie, ca. 100Hz best case. */
3914         writeString(f, "seconds");
3915         for (i = 0; i < (15-strlen("seconds")); i++)
3916                 writeData(f, &zero, 1);
3917         writeString(f, "s");
3918
3919         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3920
3921         char *data = malloc(2 * numBuckets);
3922         if (data != NULL) {
3923                 for (i = 0; i < numBuckets; i++) {
3924                         int val;
3925                         val = buckets[i];
3926                         if (val > 65535)
3927                                 val = 65535;
3928                         data[i * 2] = val&0xff;
3929                         data[i * 2 + 1] = (val >> 8) & 0xff;
3930                 }
3931                 free(buckets);
3932                 writeData(f, data, numBuckets * 2);
3933                 free(data);
3934         } else
3935                 free(buckets);
3936
3937         fclose(f);
3938 }
3939
3940 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3941  * which will be used as a random sampling of PC */
3942 COMMAND_HANDLER(handle_profile_command)
3943 {
3944         struct target *target = get_current_target(CMD_CTX);
3945
3946         if ((CMD_ARGC != 2) && (CMD_ARGC != 4))
3947                 return ERROR_COMMAND_SYNTAX_ERROR;
3948
3949         const uint32_t MAX_PROFILE_SAMPLE_NUM = 10000;
3950         uint32_t offset;
3951         uint32_t num_of_samples;
3952         int retval = ERROR_OK;
3953
3954         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], offset);
3955
3956         uint32_t *samples = malloc(sizeof(uint32_t) * MAX_PROFILE_SAMPLE_NUM);
3957         if (samples == NULL) {
3958                 LOG_ERROR("No memory to store samples.");
3959                 return ERROR_FAIL;
3960         }
3961
3962         /**
3963          * Some cores let us sample the PC without the
3964          * annoying halt/resume step; for example, ARMv7 PCSR.
3965          * Provide a way to use that more efficient mechanism.
3966          */
3967         retval = target_profiling(target, samples, MAX_PROFILE_SAMPLE_NUM,
3968                                 &num_of_samples, offset);
3969         if (retval != ERROR_OK) {
3970                 free(samples);
3971                 return retval;
3972         }
3973
3974         assert(num_of_samples <= MAX_PROFILE_SAMPLE_NUM);
3975
3976         retval = target_poll(target);
3977         if (retval != ERROR_OK) {
3978                 free(samples);
3979                 return retval;
3980         }
3981         if (target->state == TARGET_RUNNING) {
3982                 retval = target_halt(target);
3983                 if (retval != ERROR_OK) {
3984                         free(samples);
3985                         return retval;
3986                 }
3987         }
3988
3989         retval = target_poll(target);
3990         if (retval != ERROR_OK) {
3991                 free(samples);
3992                 return retval;
3993         }
3994
3995         uint32_t start_address = 0;
3996         uint32_t end_address = 0;
3997         bool with_range = false;
3998         if (CMD_ARGC == 4) {
3999                 with_range = true;
4000                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], start_address);
4001                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], end_address);
4002         }
4003
4004         write_gmon(samples, num_of_samples, CMD_ARGV[1],
4005                    with_range, start_address, end_address, target);
4006         command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
4007
4008         free(samples);
4009         return retval;
4010 }
4011
4012 static int new_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t val)
4013 {
4014         char *namebuf;
4015         Jim_Obj *nameObjPtr, *valObjPtr;
4016         int result;
4017
4018         namebuf = alloc_printf("%s(%d)", varname, idx);
4019         if (!namebuf)
4020                 return JIM_ERR;
4021
4022         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
4023         valObjPtr = Jim_NewIntObj(interp, val);
4024         if (!nameObjPtr || !valObjPtr) {
4025                 free(namebuf);
4026                 return JIM_ERR;
4027         }
4028
4029         Jim_IncrRefCount(nameObjPtr);
4030         Jim_IncrRefCount(valObjPtr);
4031         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
4032         Jim_DecrRefCount(interp, nameObjPtr);
4033         Jim_DecrRefCount(interp, valObjPtr);
4034         free(namebuf);
4035         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
4036         return result;
4037 }
4038
4039 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4040 {
4041         struct command_context *context;
4042         struct target *target;
4043
4044         context = current_command_context(interp);
4045         assert(context != NULL);
4046
4047         target = get_current_target(context);
4048         if (target == NULL) {
4049                 LOG_ERROR("mem2array: no current target");
4050                 return JIM_ERR;
4051         }
4052
4053         return target_mem2array(interp, target, argc - 1, argv + 1);
4054 }
4055
4056 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
4057 {
4058         long l;
4059         uint32_t width;
4060         int len;
4061         uint32_t addr;
4062         uint32_t count;
4063         uint32_t v;
4064         const char *varname;
4065         const char *phys;
4066         bool is_phys;
4067         int  n, e, retval;
4068         uint32_t i;
4069
4070         /* argv[1] = name of array to receive the data
4071          * argv[2] = desired width
4072          * argv[3] = memory address
4073          * argv[4] = count of times to read
4074          */
4075         if (argc < 4 || argc > 5) {
4076                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems [phys]");
4077                 return JIM_ERR;
4078         }
4079         varname = Jim_GetString(argv[0], &len);
4080         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
4081
4082         e = Jim_GetLong(interp, argv[1], &l);
4083         width = l;
4084         if (e != JIM_OK)
4085                 return e;
4086
4087         e = Jim_GetLong(interp, argv[2], &l);
4088         addr = l;
4089         if (e != JIM_OK)
4090                 return e;
4091         e = Jim_GetLong(interp, argv[3], &l);
4092         len = l;
4093         if (e != JIM_OK)
4094                 return e;
4095         is_phys = false;
4096         if (argc > 4) {
4097                 phys = Jim_GetString(argv[4], &n);
4098                 if (!strncmp(phys, "phys", n))
4099                         is_phys = true;
4100                 else
4101                         return JIM_ERR;
4102         }
4103         switch (width) {
4104                 case 8:
4105                         width = 1;
4106                         break;
4107                 case 16:
4108                         width = 2;
4109                         break;
4110                 case 32:
4111                         width = 4;
4112                         break;
4113                 default:
4114                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4115                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
4116                         return JIM_ERR;
4117         }
4118         if (len == 0) {
4119                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4120                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
4121                 return JIM_ERR;
4122         }
4123         if ((addr + (len * width)) < addr) {
4124                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4125                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
4126                 return JIM_ERR;
4127         }
4128         /* absurd transfer size? */
4129         if (len > 65536) {
4130                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4131                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
4132                 return JIM_ERR;
4133         }
4134
4135         if ((width == 1) ||
4136                 ((width == 2) && ((addr & 1) == 0)) ||
4137                 ((width == 4) && ((addr & 3) == 0))) {
4138                 /* all is well */
4139         } else {
4140                 char buf[100];
4141                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4142                 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
4143                                 addr,
4144                                 width);
4145                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
4146                 return JIM_ERR;
4147         }
4148
4149         /* Transfer loop */
4150
4151         /* index counter */
4152         n = 0;
4153
4154         size_t buffersize = 4096;
4155         uint8_t *buffer = malloc(buffersize);
4156         if (buffer == NULL)
4157                 return JIM_ERR;
4158
4159         /* assume ok */
4160         e = JIM_OK;
4161         while (len) {
4162                 /* Slurp... in buffer size chunks */
4163
4164                 count = len; /* in objects.. */
4165                 if (count > (buffersize / width))
4166                         count = (buffersize / width);
4167
4168                 if (is_phys)
4169                         retval = target_read_phys_memory(target, addr, width, count, buffer);
4170                 else
4171                         retval = target_read_memory(target, addr, width, count, buffer);
4172                 if (retval != ERROR_OK) {
4173                         /* BOO !*/
4174                         LOG_ERROR("mem2array: Read @ 0x%08" PRIx32 ", w=%" PRId32 ", cnt=%" PRId32 ", failed",
4175                                           addr,
4176                                           width,
4177                                           count);
4178                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4179                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
4180                         e = JIM_ERR;
4181                         break;
4182                 } else {
4183                         v = 0; /* shut up gcc */
4184                         for (i = 0; i < count ; i++, n++) {
4185                                 switch (width) {
4186                                         case 4:
4187                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
4188                                                 break;
4189                                         case 2:
4190                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
4191                                                 break;
4192                                         case 1:
4193                                                 v = buffer[i] & 0x0ff;
4194                                                 break;
4195                                 }
4196                                 new_int_array_element(interp, varname, n, v);
4197                         }
4198                         len -= count;
4199                         addr += count * width;
4200                 }
4201         }
4202
4203         free(buffer);
4204
4205         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4206
4207         return e;
4208 }
4209
4210 static int get_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t *val)
4211 {
4212         char *namebuf;
4213         Jim_Obj *nameObjPtr, *valObjPtr;
4214         int result;
4215         long l;
4216
4217         namebuf = alloc_printf("%s(%d)", varname, idx);
4218         if (!namebuf)
4219                 return JIM_ERR;
4220
4221         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
4222         if (!nameObjPtr) {
4223                 free(namebuf);
4224                 return JIM_ERR;
4225         }
4226
4227         Jim_IncrRefCount(nameObjPtr);
4228         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
4229         Jim_DecrRefCount(interp, nameObjPtr);
4230         free(namebuf);
4231         if (valObjPtr == NULL)
4232                 return JIM_ERR;
4233
4234         result = Jim_GetLong(interp, valObjPtr, &l);
4235         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
4236         *val = l;
4237         return result;
4238 }
4239
4240 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4241 {
4242         struct command_context *context;
4243         struct target *target;
4244
4245         context = current_command_context(interp);
4246         assert(context != NULL);
4247
4248         target = get_current_target(context);
4249         if (target == NULL) {
4250                 LOG_ERROR("array2mem: no current target");
4251                 return JIM_ERR;
4252         }
4253
4254         return target_array2mem(interp, target, argc-1, argv + 1);
4255 }
4256
4257 static int target_array2mem(Jim_Interp *interp, struct target *target,
4258                 int argc, Jim_Obj *const *argv)
4259 {
4260         long l;
4261         uint32_t width;
4262         int len;
4263         uint32_t addr;
4264         uint32_t count;
4265         uint32_t v;
4266         const char *varname;
4267         const char *phys;
4268         bool is_phys;
4269         int  n, e, retval;
4270         uint32_t i;
4271
4272         /* argv[1] = name of array to get the data
4273          * argv[2] = desired width
4274          * argv[3] = memory address
4275          * argv[4] = count to write
4276          */
4277         if (argc < 4 || argc > 5) {
4278                 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems [phys]");
4279                 return JIM_ERR;
4280         }
4281         varname = Jim_GetString(argv[0], &len);
4282         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
4283
4284         e = Jim_GetLong(interp, argv[1], &l);
4285         width = l;
4286         if (e != JIM_OK)
4287                 return e;
4288
4289         e = Jim_GetLong(interp, argv[2], &l);
4290         addr = l;
4291         if (e != JIM_OK)
4292                 return e;
4293         e = Jim_GetLong(interp, argv[3], &l);
4294         len = l;
4295         if (e != JIM_OK)
4296                 return e;
4297         is_phys = false;
4298         if (argc > 4) {
4299                 phys = Jim_GetString(argv[4], &n);
4300                 if (!strncmp(phys, "phys", n))
4301                         is_phys = true;
4302                 else
4303                         return JIM_ERR;
4304         }
4305         switch (width) {
4306                 case 8:
4307                         width = 1;
4308                         break;
4309                 case 16:
4310                         width = 2;
4311                         break;
4312                 case 32:
4313                         width = 4;
4314                         break;
4315                 default:
4316                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4317                         Jim_AppendStrings(interp, Jim_GetResult(interp),
4318                                         "Invalid width param, must be 8/16/32", NULL);
4319                         return JIM_ERR;
4320         }
4321         if (len == 0) {
4322                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4323                 Jim_AppendStrings(interp, Jim_GetResult(interp),
4324                                 "array2mem: zero width read?", NULL);
4325                 return JIM_ERR;
4326         }
4327         if ((addr + (len * width)) < addr) {
4328                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4329                 Jim_AppendStrings(interp, Jim_GetResult(interp),
4330                                 "array2mem: addr + len - wraps to zero?", NULL);
4331                 return JIM_ERR;
4332         }
4333         /* absurd transfer size? */
4334         if (len > 65536) {
4335                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4336                 Jim_AppendStrings(interp, Jim_GetResult(interp),
4337                                 "array2mem: absurd > 64K item request", NULL);
4338                 return JIM_ERR;
4339         }
4340
4341         if ((width == 1) ||
4342                 ((width == 2) && ((addr & 1) == 0)) ||
4343                 ((width == 4) && ((addr & 3) == 0))) {
4344                 /* all is well */
4345         } else {
4346                 char buf[100];
4347                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4348                 sprintf(buf, "array2mem address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
4349                                 addr,
4350                                 width);
4351                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
4352                 return JIM_ERR;
4353         }
4354
4355         /* Transfer loop */
4356
4357         /* index counter */
4358         n = 0;
4359         /* assume ok */
4360         e = JIM_OK;
4361
4362         size_t buffersize = 4096;
4363         uint8_t *buffer = malloc(buffersize);
4364         if (buffer == NULL)
4365                 return JIM_ERR;
4366
4367         while (len) {
4368                 /* Slurp... in buffer size chunks */
4369
4370                 count = len; /* in objects.. */
4371                 if (count > (buffersize / width))
4372                         count = (buffersize / width);
4373
4374                 v = 0; /* shut up gcc */
4375                 for (i = 0; i < count; i++, n++) {
4376                         get_int_array_element(interp, varname, n, &v);
4377                         switch (width) {
4378                         case 4:
4379                                 target_buffer_set_u32(target, &buffer[i * width], v);
4380                                 break;
4381                         case 2:
4382                                 target_buffer_set_u16(target, &buffer[i * width], v);
4383                                 break;
4384                         case 1:
4385                                 buffer[i] = v & 0x0ff;
4386                                 break;
4387                         }
4388                 }
4389                 len -= count;
4390
4391                 if (is_phys)
4392                         retval = target_write_phys_memory(target, addr, width, count, buffer);
4393                 else
4394                         retval = target_write_memory(target, addr, width, count, buffer);
4395                 if (retval != ERROR_OK) {
4396                         /* BOO !*/
4397                         LOG_ERROR("array2mem: Write @ 0x%08" PRIx32 ", w=%" PRId32 ", cnt=%" PRId32 ", failed",
4398                                           addr,
4399                                           width,
4400                                           count);
4401                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4402                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
4403                         e = JIM_ERR;
4404                         break;
4405                 }
4406                 addr += count * width;
4407         }
4408
4409         free(buffer);
4410
4411         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4412
4413         return e;
4414 }
4415
4416 /* FIX? should we propagate errors here rather than printing them
4417  * and continuing?
4418  */
4419 void target_handle_event(struct target *target, enum target_event e)
4420 {
4421         struct target_event_action *teap;
4422
4423         for (teap = target->event_action; teap != NULL; teap = teap->next) {
4424                 if (teap->event == e) {
4425                         LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
4426                                            target->target_number,
4427                                            target_name(target),
4428                                            target_type_name(target),
4429                                            e,
4430                                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
4431                                            Jim_GetString(teap->body, NULL));
4432                         if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK) {
4433                                 Jim_MakeErrorMessage(teap->interp);
4434                                 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(teap->interp), NULL));
4435                         }
4436                 }
4437         }
4438 }
4439
4440 /**
4441  * Returns true only if the target has a handler for the specified event.
4442  */
4443 bool target_has_event_action(struct target *target, enum target_event event)
4444 {
4445         struct target_event_action *teap;
4446
4447         for (teap = target->event_action; teap != NULL; teap = teap->next) {
4448                 if (teap->event == event)
4449                         return true;
4450         }
4451         return false;
4452 }
4453
4454 enum target_cfg_param {
4455         TCFG_TYPE,
4456         TCFG_EVENT,
4457         TCFG_WORK_AREA_VIRT,
4458         TCFG_WORK_AREA_PHYS,
4459         TCFG_WORK_AREA_SIZE,
4460         TCFG_WORK_AREA_BACKUP,
4461         TCFG_ENDIAN,
4462         TCFG_COREID,
4463         TCFG_CHAIN_POSITION,
4464         TCFG_DBGBASE,
4465         TCFG_CTIBASE,
4466         TCFG_RTOS,
4467         TCFG_DEFER_EXAMINE,
4468 };
4469
4470 static Jim_Nvp nvp_config_opts[] = {
4471         { .name = "-type",             .value = TCFG_TYPE },
4472         { .name = "-event",            .value = TCFG_EVENT },
4473         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
4474         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
4475         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
4476         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
4477         { .name = "-endian" ,          .value = TCFG_ENDIAN },
4478         { .name = "-coreid",           .value = TCFG_COREID },
4479         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
4480         { .name = "-dbgbase",          .value = TCFG_DBGBASE },
4481         { .name = "-ctibase",          .value = TCFG_CTIBASE },
4482         { .name = "-rtos",             .value = TCFG_RTOS },
4483         { .name = "-defer-examine",    .value = TCFG_DEFER_EXAMINE },
4484         { .name = NULL, .value = -1 }
4485 };
4486
4487 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
4488 {
4489         Jim_Nvp *n;
4490         Jim_Obj *o;
4491         jim_wide w;
4492         int e;
4493
4494         /* parse config or cget options ... */
4495         while (goi->argc > 0) {
4496                 Jim_SetEmptyResult(goi->interp);
4497                 /* Jim_GetOpt_Debug(goi); */
4498
4499                 if (target->type->target_jim_configure) {
4500                         /* target defines a configure function */
4501                         /* target gets first dibs on parameters */
4502                         e = (*(target->type->target_jim_configure))(target, goi);
4503                         if (e == JIM_OK) {
4504                                 /* more? */
4505                                 continue;
4506                         }
4507                         if (e == JIM_ERR) {
4508                                 /* An error */
4509                                 return e;
4510                         }
4511                         /* otherwise we 'continue' below */
4512                 }
4513                 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
4514                 if (e != JIM_OK) {
4515                         Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
4516                         return e;
4517                 }
4518                 switch (n->value) {
4519                 case TCFG_TYPE:
4520                         /* not setable */
4521                         if (goi->isconfigure) {
4522                                 Jim_SetResultFormatted(goi->interp,
4523                                                 "not settable: %s", n->name);
4524                                 return JIM_ERR;
4525                         } else {
4526 no_params:
4527                                 if (goi->argc != 0) {
4528                                         Jim_WrongNumArgs(goi->interp,
4529                                                         goi->argc, goi->argv,
4530                                                         "NO PARAMS");
4531                                         return JIM_ERR;
4532                                 }
4533                         }
4534                         Jim_SetResultString(goi->interp,
4535                                         target_type_name(target), -1);
4536                         /* loop for more */
4537                         break;
4538                 case TCFG_EVENT:
4539                         if (goi->argc == 0) {
4540                                 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
4541                                 return JIM_ERR;
4542                         }
4543
4544                         e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
4545                         if (e != JIM_OK) {
4546                                 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
4547                                 return e;
4548                         }
4549
4550                         if (goi->isconfigure) {
4551                                 if (goi->argc != 1) {
4552                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
4553                                         return JIM_ERR;
4554                                 }
4555                         } else {
4556                                 if (goi->argc != 0) {
4557                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
4558                                         return JIM_ERR;
4559                                 }
4560                         }
4561
4562                         {
4563                                 struct target_event_action *teap;
4564
4565                                 teap = target->event_action;
4566                                 /* replace existing? */
4567                                 while (teap) {
4568                                         if (teap->event == (enum target_event)n->value)
4569                                                 break;
4570                                         teap = teap->next;
4571                                 }
4572
4573                                 if (goi->isconfigure) {
4574                                         bool replace = true;
4575                                         if (teap == NULL) {
4576                                                 /* create new */
4577                                                 teap = calloc(1, sizeof(*teap));
4578                                                 replace = false;
4579                                         }
4580                                         teap->event = n->value;
4581                                         teap->interp = goi->interp;
4582                                         Jim_GetOpt_Obj(goi, &o);
4583                                         if (teap->body)
4584                                                 Jim_DecrRefCount(teap->interp, teap->body);
4585                                         teap->body  = Jim_DuplicateObj(goi->interp, o);
4586                                         /*
4587                                          * FIXME:
4588                                          *     Tcl/TK - "tk events" have a nice feature.
4589                                          *     See the "BIND" command.
4590                                          *    We should support that here.
4591                                          *     You can specify %X and %Y in the event code.
4592                                          *     The idea is: %T - target name.
4593                                          *     The idea is: %N - target number
4594                                          *     The idea is: %E - event name.
4595                                          */
4596                                         Jim_IncrRefCount(teap->body);
4597
4598                                         if (!replace) {
4599                                                 /* add to head of event list */
4600                                                 teap->next = target->event_action;
4601                                                 target->event_action = teap;
4602                                         }
4603                                         Jim_SetEmptyResult(goi->interp);
4604                                 } else {
4605                                         /* get */
4606                                         if (teap == NULL)
4607                                                 Jim_SetEmptyResult(goi->interp);
4608                                         else
4609                                                 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
4610                                 }
4611                         }
4612                         /* loop for more */
4613                         break;
4614
4615                 case TCFG_WORK_AREA_VIRT:
4616                         if (goi->isconfigure) {
4617                                 target_free_all_working_areas(target);
4618                                 e = Jim_GetOpt_Wide(goi, &w);
4619                                 if (e != JIM_OK)
4620                                         return e;
4621                                 target->working_area_virt = w;
4622                                 target->working_area_virt_spec = true;
4623                         } else {
4624                                 if (goi->argc != 0)
4625                                         goto no_params;
4626                         }
4627                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
4628                         /* loop for more */
4629                         break;
4630
4631                 case TCFG_WORK_AREA_PHYS:
4632                         if (goi->isconfigure) {
4633                                 target_free_all_working_areas(target);
4634                                 e = Jim_GetOpt_Wide(goi, &w);
4635                                 if (e != JIM_OK)
4636                                         return e;
4637                                 target->working_area_phys = w;
4638                                 target->working_area_phys_spec = true;
4639                         } else {
4640                                 if (goi->argc != 0)
4641                                         goto no_params;
4642                         }
4643                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
4644                         /* loop for more */
4645                         break;
4646
4647                 case TCFG_WORK_AREA_SIZE:
4648                         if (goi->isconfigure) {
4649                                 target_free_all_working_areas(target);
4650                                 e = Jim_GetOpt_Wide(goi, &w);
4651                                 if (e != JIM_OK)
4652                                         return e;
4653                                 target->working_area_size = w;
4654                         } else {
4655                                 if (goi->argc != 0)
4656                                         goto no_params;
4657                         }
4658                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4659                         /* loop for more */
4660                         break;
4661
4662                 case TCFG_WORK_AREA_BACKUP:
4663                         if (goi->isconfigure) {
4664                                 target_free_all_working_areas(target);
4665                                 e = Jim_GetOpt_Wide(goi, &w);
4666                                 if (e != JIM_OK)
4667                                         return e;
4668                                 /* make this exactly 1 or 0 */
4669                                 target->backup_working_area = (!!w);
4670                         } else {
4671                                 if (goi->argc != 0)
4672                                         goto no_params;
4673                         }
4674                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
4675                         /* loop for more e*/
4676                         break;
4677
4678
4679                 case TCFG_ENDIAN:
4680                         if (goi->isconfigure) {
4681                                 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
4682                                 if (e != JIM_OK) {
4683                                         Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
4684                                         return e;
4685                                 }
4686                                 target->endianness = n->value;
4687                         } else {
4688                                 if (goi->argc != 0)
4689                                         goto no_params;
4690                         }
4691                         n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4692                         if (n->name == NULL) {
4693                                 target->endianness = TARGET_LITTLE_ENDIAN;
4694                                 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4695                         }
4696                         Jim_SetResultString(goi->interp, n->name, -1);
4697                         /* loop for more */
4698                         break;
4699
4700                 case TCFG_COREID:
4701                         if (goi->isconfigure) {
4702                                 e = Jim_GetOpt_Wide(goi, &w);
4703                                 if (e != JIM_OK)
4704                                         return e;
4705                                 target->coreid = (int32_t)w;
4706                         } else {
4707                                 if (goi->argc != 0)
4708                                         goto no_params;
4709                         }
4710                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4711                         /* loop for more */
4712                         break;
4713
4714                 case TCFG_CHAIN_POSITION:
4715                         if (goi->isconfigure) {
4716                                 Jim_Obj *o_t;
4717                                 struct jtag_tap *tap;
4718                                 target_free_all_working_areas(target);
4719                                 e = Jim_GetOpt_Obj(goi, &o_t);
4720                                 if (e != JIM_OK)
4721                                         return e;
4722                                 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
4723                                 if (tap == NULL)
4724                                         return JIM_ERR;
4725                                 /* make this exactly 1 or 0 */
4726                                 target->tap = tap;
4727                         } else {
4728                                 if (goi->argc != 0)
4729                                         goto no_params;
4730                         }
4731                         Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
4732                         /* loop for more e*/
4733                         break;
4734                 case TCFG_DBGBASE:
4735                         if (goi->isconfigure) {
4736                                 e = Jim_GetOpt_Wide(goi, &w);
4737                                 if (e != JIM_OK)
4738                                         return e;
4739                                 target->dbgbase = (uint32_t)w;
4740                                 target->dbgbase_set = true;
4741                         } else {
4742                                 if (goi->argc != 0)
4743                                         goto no_params;
4744                         }
4745                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
4746                         /* loop for more */
4747                         break;
4748                 case TCFG_CTIBASE:
4749                         if (goi->isconfigure) {
4750                                 e = Jim_GetOpt_Wide(goi, &w);
4751                                 if (e != JIM_OK)
4752                                         return e;
4753                                 target->ctibase = (uint32_t)w;
4754                                 target->ctibase_set = true;
4755                         } else {
4756                                 if (goi->argc != 0)
4757                                         goto no_params;
4758                         }
4759                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->ctibase));
4760                         /* loop for more */
4761                         break;
4762                 case TCFG_RTOS:
4763                         /* RTOS */
4764                         {
4765                                 int result = rtos_create(goi, target);
4766                                 if (result != JIM_OK)
4767                                         return result;
4768                         }
4769                         /* loop for more */
4770                         break;
4771
4772                 case TCFG_DEFER_EXAMINE:
4773                         /* DEFER_EXAMINE */
4774                         target->defer_examine = true;
4775                         /* loop for more */
4776                         break;
4777
4778                 }
4779         } /* while (goi->argc) */
4780
4781
4782                 /* done - we return */
4783         return JIM_OK;
4784 }
4785
4786 static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
4787 {
4788         Jim_GetOptInfo goi;
4789
4790         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4791         goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
4792         if (goi.argc < 1) {
4793                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4794                                  "missing: -option ...");
4795                 return JIM_ERR;
4796         }
4797         struct target *target = Jim_CmdPrivData(goi.interp);
4798         return target_configure(&goi, target);
4799 }
4800
4801 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4802 {
4803         const char *cmd_name = Jim_GetString(argv[0], NULL);
4804
4805         Jim_GetOptInfo goi;
4806         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4807
4808         if (goi.argc < 2 || goi.argc > 4) {
4809                 Jim_SetResultFormatted(goi.interp,
4810                                 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
4811                 return JIM_ERR;
4812         }
4813
4814         target_write_fn fn;
4815         fn = target_write_memory;
4816
4817         int e;
4818         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4819                 /* consume it */
4820                 struct Jim_Obj *obj;
4821                 e = Jim_GetOpt_Obj(&goi, &obj);
4822                 if (e != JIM_OK)
4823                         return e;
4824
4825                 fn = target_write_phys_memory;
4826         }
4827
4828         jim_wide a;
4829         e = Jim_GetOpt_Wide(&goi, &a);
4830         if (e != JIM_OK)
4831                 return e;
4832
4833         jim_wide b;
4834         e = Jim_GetOpt_Wide(&goi, &b);
4835         if (e != JIM_OK)
4836                 return e;
4837
4838         jim_wide c = 1;
4839         if (goi.argc == 1) {
4840                 e = Jim_GetOpt_Wide(&goi, &c);
4841                 if (e != JIM_OK)
4842                         return e;
4843         }
4844
4845         /* all args must be consumed */
4846         if (goi.argc != 0)
4847                 return JIM_ERR;
4848
4849         struct target *target = Jim_CmdPrivData(goi.interp);
4850         unsigned data_size;
4851         if (strcasecmp(cmd_name, "mww") == 0)
4852                 data_size = 4;
4853         else if (strcasecmp(cmd_name, "mwh") == 0)
4854                 data_size = 2;
4855         else if (strcasecmp(cmd_name, "mwb") == 0)
4856                 data_size = 1;
4857         else {
4858                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4859                 return JIM_ERR;
4860         }
4861
4862         return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4863 }
4864
4865 /**
4866 *  @brief Reads an array of words/halfwords/bytes from target memory starting at specified address.
4867 *
4868 *  Usage: mdw [phys] <address> [<count>] - for 32 bit reads
4869 *         mdh [phys] <address> [<count>] - for 16 bit reads
4870 *         mdb [phys] <address> [<count>] - for  8 bit reads
4871 *
4872 *  Count defaults to 1.
4873 *
4874 *  Calls target_read_memory or target_read_phys_memory depending on
4875 *  the presence of the "phys" argument
4876 *  Reads the target memory in blocks of max. 32 bytes, and returns an array of ints formatted
4877 *  to int representation in base16.
4878 *  Also outputs read data in a human readable form using command_print
4879 *
4880 *  @param phys if present target_read_phys_memory will be used instead of target_read_memory
4881 *  @param address address where to start the read. May be specified in decimal or hex using the standard "0x" prefix
4882 *  @param count optional count parameter to read an array of values. If not specified, defaults to 1.
4883 *  @returns:  JIM_ERR on error or JIM_OK on success and sets the result string to an array of ascii formatted numbers
4884 *  on success, with [<count>] number of elements.
4885 *
4886 *  In case of little endian target:
4887 *      Example1: "mdw 0x00000000"  returns "10123456"
4888 *      Exmaple2: "mdh 0x00000000 1" returns "3456"
4889 *      Example3: "mdb 0x00000000" returns "56"
4890 *      Example4: "mdh 0x00000000 2" returns "3456 1012"
4891 *      Example5: "mdb 0x00000000 3" returns "56 34 12"
4892 **/
4893 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4894 {
4895         const char *cmd_name = Jim_GetString(argv[0], NULL);
4896
4897         Jim_GetOptInfo goi;
4898         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4899
4900         if ((goi.argc < 1) || (goi.argc > 3)) {
4901                 Jim_SetResultFormatted(goi.interp,
4902                                 "usage: %s [phys] <address> [<count>]", cmd_name);
4903                 return JIM_ERR;
4904         }
4905
4906         int (*fn)(struct target *target,
4907                         target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer);
4908         fn = target_read_memory;
4909
4910         int e;
4911         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4912                 /* consume it */
4913                 struct Jim_Obj *obj;
4914                 e = Jim_GetOpt_Obj(&goi, &obj);
4915                 if (e != JIM_OK)
4916                         return e;
4917
4918                 fn = target_read_phys_memory;
4919         }
4920
4921         /* Read address parameter */
4922         jim_wide addr;
4923         e = Jim_GetOpt_Wide(&goi, &addr);
4924         if (e != JIM_OK)
4925                 return JIM_ERR;
4926
4927         /* If next parameter exists, read it out as the count parameter, if not, set it to 1 (default) */
4928         jim_wide count;
4929         if (goi.argc == 1) {
4930                 e = Jim_GetOpt_Wide(&goi, &count);
4931                 if (e != JIM_OK)
4932                         return JIM_ERR;
4933         } else
4934                 count = 1;
4935
4936         /* all args must be consumed */
4937         if (goi.argc != 0)
4938                 return JIM_ERR;
4939
4940         jim_wide dwidth = 1; /* shut up gcc */
4941         if (strcasecmp(cmd_name, "mdw") == 0)
4942                 dwidth = 4;
4943         else if (strcasecmp(cmd_name, "mdh") == 0)
4944                 dwidth = 2;
4945         else if (strcasecmp(cmd_name, "mdb") == 0)
4946                 dwidth = 1;
4947         else {
4948                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4949                 return JIM_ERR;
4950         }
4951
4952         /* convert count to "bytes" */
4953         int bytes = count * dwidth;
4954
4955         struct target *target = Jim_CmdPrivData(goi.interp);
4956         uint8_t  target_buf[32];
4957         jim_wide x, y, z;
4958         while (bytes > 0) {
4959                 y = (bytes < 16) ? bytes : 16; /* y = min(bytes, 16); */
4960
4961                 /* Try to read out next block */
4962                 e = fn(target, addr, dwidth, y / dwidth, target_buf);
4963
4964                 if (e != ERROR_OK) {
4965                         Jim_SetResultFormatted(interp, "error reading target @ 0x%08lx", (long)addr);
4966                         return JIM_ERR;
4967                 }
4968
4969                 command_print_sameline(NULL, "0x%08x ", (int)(addr));
4970                 switch (dwidth) {
4971                 case 4:
4972                         for (x = 0; x < 16 && x < y; x += 4) {
4973                                 z = target_buffer_get_u32(target, &(target_buf[x]));
4974                                 command_print_sameline(NULL, "%08x ", (int)(z));
4975                         }
4976                         for (; (x < 16) ; x += 4)
4977                                 command_print_sameline(NULL, "         ");
4978                         break;
4979                 case 2:
4980                         for (x = 0; x < 16 && x < y; x += 2) {
4981                                 z = target_buffer_get_u16(target, &(target_buf[x]));
4982                                 command_print_sameline(NULL, "%04x ", (int)(z));
4983                         }
4984                         for (; (x < 16) ; x += 2)
4985                                 command_print_sameline(NULL, "     ");
4986                         break;
4987                 case 1:
4988                 default:
4989                         for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4990                                 z = target_buffer_get_u8(target, &(target_buf[x]));
4991                                 command_print_sameline(NULL, "%02x ", (int)(z));
4992                         }
4993                         for (; (x < 16) ; x += 1)
4994                                 command_print_sameline(NULL, "   ");
4995                         break;
4996                 }
4997                 /* ascii-ify the bytes */
4998                 for (x = 0 ; x < y ; x++) {
4999                         if ((target_buf[x] >= 0x20) &&
5000                                 (target_buf[x] <= 0x7e)) {
5001                                 /* good */
5002                         } else {
5003                                 /* smack it */
5004                                 target_buf[x] = '.';
5005                         }
5006                 }
5007                 /* space pad  */
5008                 while (x < 16) {
5009                         target_buf[x] = ' ';
5010                         x++;
5011                 }
5012                 /* terminate */
5013                 target_buf[16] = 0;
5014                 /* print - with a newline */
5015                 command_print_sameline(NULL, "%s\n", target_buf);
5016                 /* NEXT... */
5017                 bytes -= 16;
5018                 addr += 16;
5019         }
5020         return JIM_OK;
5021 }
5022
5023 static int jim_target_mem2array(Jim_Interp *interp,
5024                 int argc, Jim_Obj *const *argv)
5025 {
5026         struct target *target = Jim_CmdPrivData(interp);
5027         return target_mem2array(interp, target, argc - 1, argv + 1);
5028 }
5029
5030 static int jim_target_array2mem(Jim_Interp *interp,
5031                 int argc, Jim_Obj *const *argv)
5032 {
5033         struct target *target = Jim_CmdPrivData(interp);
5034         return target_array2mem(interp, target, argc - 1, argv + 1);
5035 }
5036
5037 static int jim_target_tap_disabled(Jim_Interp *interp)
5038 {
5039         Jim_SetResultFormatted(interp, "[TAP is disabled]");
5040         return JIM_ERR;
5041 }
5042
5043 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5044 {
5045         bool allow_defer = false;
5046
5047         Jim_GetOptInfo goi;
5048         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5049         if (goi.argc > 1) {
5050                 const char *cmd_name = Jim_GetString(argv[0], NULL);
5051                 Jim_SetResultFormatted(goi.interp,
5052                                 "usage: %s ['allow-defer']", cmd_name);
5053                 return JIM_ERR;
5054         }
5055         if (goi.argc > 0 &&
5056             strcmp(Jim_GetString(argv[1], NULL), "allow-defer") == 0) {
5057                 /* consume it */
5058                 struct Jim_Obj *obj;
5059                 int e = Jim_GetOpt_Obj(&goi, &obj);
5060                 if (e != JIM_OK)
5061                         return e;
5062                 allow_defer = true;
5063         }
5064
5065         struct target *target = Jim_CmdPrivData(interp);
5066         if (!target->tap->enabled)
5067                 return jim_target_tap_disabled(interp);
5068
5069         if (allow_defer && target->defer_examine) {
5070                 LOG_INFO("Deferring arp_examine of %s", target_name(target));
5071                 LOG_INFO("Use arp_examine command to examine it manually!");
5072                 return JIM_OK;
5073         }
5074
5075         int e = target->type->examine(target);
5076         if (e != ERROR_OK)
5077                 return JIM_ERR;
5078         return JIM_OK;
5079 }
5080
5081 static int jim_target_was_examined(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
5082 {
5083         struct target *target = Jim_CmdPrivData(interp);
5084
5085         Jim_SetResultBool(interp, target_was_examined(target));
5086         return JIM_OK;
5087 }
5088
5089 static int jim_target_examine_deferred(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
5090 {
5091         struct target *target = Jim_CmdPrivData(interp);
5092
5093         Jim_SetResultBool(interp, target->defer_examine);
5094         return JIM_OK;
5095 }
5096
5097 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5098 {
5099         if (argc != 1) {
5100                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5101                 return JIM_ERR;
5102         }
5103         struct target *target = Jim_CmdPrivData(interp);
5104
5105         if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
5106                 return JIM_ERR;
5107
5108         return JIM_OK;
5109 }
5110
5111 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5112 {
5113         if (argc != 1) {
5114                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5115                 return JIM_ERR;
5116         }
5117         struct target *target = Jim_CmdPrivData(interp);
5118         if (!target->tap->enabled)
5119                 return jim_target_tap_disabled(interp);
5120
5121         int e;
5122         if (!(target_was_examined(target)))
5123                 e = ERROR_TARGET_NOT_EXAMINED;
5124         else
5125                 e = target->type->poll(target);
5126         if (e != ERROR_OK)
5127                 return JIM_ERR;
5128         return JIM_OK;
5129 }
5130
5131 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5132 {
5133         Jim_GetOptInfo goi;
5134         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5135
5136         if (goi.argc != 2) {
5137                 Jim_WrongNumArgs(interp, 0, argv,
5138                                 "([tT]|[fF]|assert|deassert) BOOL");
5139                 return JIM_ERR;
5140         }
5141
5142         Jim_Nvp *n;
5143         int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
5144         if (e != JIM_OK) {
5145                 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
5146                 return e;
5147         }
5148         /* the halt or not param */
5149         jim_wide a;
5150         e = Jim_GetOpt_Wide(&goi, &a);
5151         if (e != JIM_OK)
5152                 return e;
5153
5154         struct target *target = Jim_CmdPrivData(goi.interp);
5155         if (!target->tap->enabled)
5156                 return jim_target_tap_disabled(interp);
5157
5158         if (!target->type->assert_reset || !target->type->deassert_reset) {
5159                 Jim_SetResultFormatted(interp,
5160                                 "No target-specific reset for %s",
5161                                 target_name(target));
5162                 return JIM_ERR;
5163         }
5164
5165         if (target->defer_examine)
5166                 target_reset_examined(target);
5167
5168         /* determine if we should halt or not. */
5169         target->reset_halt = !!a;
5170         /* When this happens - all workareas are invalid. */
5171         target_free_all_working_areas_restore(target, 0);
5172
5173         /* do the assert */
5174         if (n->value == NVP_ASSERT)
5175                 e = target->type->assert_reset(target);
5176         else
5177                 e = target->type->deassert_reset(target);
5178         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
5179 }
5180
5181 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5182 {
5183         if (argc != 1) {
5184                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5185                 return JIM_ERR;
5186         }
5187         struct target *target = Jim_CmdPrivData(interp);
5188         if (!target->tap->enabled)
5189                 return jim_target_tap_disabled(interp);
5190         int e = target->type->halt(target);
5191         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
5192 }
5193
5194 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5195 {
5196         Jim_GetOptInfo goi;
5197         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5198
5199         /* params:  <name>  statename timeoutmsecs */
5200         if (goi.argc != 2) {
5201                 const char *cmd_name = Jim_GetString(argv[0], NULL);
5202                 Jim_SetResultFormatted(goi.interp,
5203                                 "%s <state_name> <timeout_in_msec>", cmd_name);
5204                 return JIM_ERR;
5205         }
5206
5207         Jim_Nvp *n;
5208         int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
5209         if (e != JIM_OK) {
5210                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state, 1);
5211                 return e;
5212         }
5213         jim_wide a;
5214         e = Jim_GetOpt_Wide(&goi, &a);
5215         if (e != JIM_OK)
5216                 return e;
5217         struct target *target = Jim_CmdPrivData(interp);
5218         if (!target->tap->enabled)
5219                 return jim_target_tap_disabled(interp);
5220
5221         e = target_wait_state(target, n->value, a);
5222         if (e != ERROR_OK) {
5223                 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
5224                 Jim_SetResultFormatted(goi.interp,
5225                                 "target: %s wait %s fails (%#s) %s",
5226                                 target_name(target), n->name,
5227                                 eObj, target_strerror_safe(e));
5228                 Jim_FreeNewObj(interp, eObj);
5229                 return JIM_ERR;
5230         }
5231         return JIM_OK;
5232 }
5233 /* List for human, Events defined for this target.
5234  * scripts/programs should use 'name cget -event NAME'
5235  */
5236 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5237 {
5238         struct command_context *cmd_ctx = current_command_context(interp);
5239         assert(cmd_ctx != NULL);
5240
5241         struct target *target = Jim_CmdPrivData(interp);
5242         struct target_event_action *teap = target->event_action;
5243         command_print(cmd_ctx, "Event actions for target (%d) %s\n",
5244                                    target->target_number,
5245                                    target_name(target));
5246         command_print(cmd_ctx, "%-25s | Body", "Event");
5247         command_print(cmd_ctx, "------------------------- | "
5248                         "----------------------------------------");
5249         while (teap) {
5250                 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
5251                 command_print(cmd_ctx, "%-25s | %s",
5252                                 opt->name, Jim_GetString(teap->body, NULL));
5253                 teap = teap->next;
5254         }
5255         command_print(cmd_ctx, "***END***");
5256         return JIM_OK;
5257 }
5258 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5259 {
5260         if (argc != 1) {
5261                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5262                 return JIM_ERR;
5263         }
5264         struct target *target = Jim_CmdPrivData(interp);
5265         Jim_SetResultString(interp, target_state_name(target), -1);
5266         return JIM_OK;
5267 }
5268 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5269 {
5270         Jim_GetOptInfo goi;
5271         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5272         if (goi.argc != 1) {
5273                 const char *cmd_name = Jim_GetString(argv[0], NULL);
5274                 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
5275                 return JIM_ERR;
5276         }
5277         Jim_Nvp *n;
5278         int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
5279         if (e != JIM_OK) {
5280                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
5281                 return e;
5282         }
5283         struct target *target = Jim_CmdPrivData(interp);
5284         target_handle_event(target, n->value);
5285         return JIM_OK;
5286 }
5287
5288 static const struct command_registration target_instance_command_handlers[] = {
5289         {
5290                 .name = "configure",
5291                 .mode = COMMAND_CONFIG,
5292                 .jim_handler = jim_target_configure,
5293                 .help  = "configure a new target for use",
5294                 .usage = "[target_attribute ...]",
5295         },
5296         {
5297                 .name = "cget",
5298                 .mode = COMMAND_ANY,
5299                 .jim_handler = jim_target_configure,
5300                 .help  = "returns the specified target attribute",
5301                 .usage = "target_attribute",
5302         },
5303         {
5304                 .name = "mww",
5305                 .mode = COMMAND_EXEC,
5306                 .jim_handler = jim_target_mw,
5307                 .help = "Write 32-bit word(s) to target memory",
5308                 .usage = "address data [count]",
5309         },
5310         {
5311                 .name = "mwh",
5312                 .mode = COMMAND_EXEC,
5313                 .jim_handler = jim_target_mw,
5314                 .help = "Write 16-bit half-word(s) to target memory",
5315                 .usage = "address data [count]",
5316         },
5317         {
5318                 .name = "mwb",
5319                 .mode = COMMAND_EXEC,
5320                 .jim_handler = jim_target_mw,
5321                 .help = "Write byte(s) to target memory",
5322                 .usage = "address data [count]",
5323         },
5324         {
5325                 .name = "mdw",
5326                 .mode = COMMAND_EXEC,
5327                 .jim_handler = jim_target_md,
5328                 .help = "Display target memory as 32-bit words",
5329                 .usage = "address [count]",
5330         },
5331         {
5332                 .name = "mdh",
5333                 .mode = COMMAND_EXEC,
5334                 .jim_handler = jim_target_md,
5335                 .help = "Display target memory as 16-bit half-words",
5336                 .usage = "address [count]",
5337         },
5338         {
5339                 .name = "mdb",
5340                 .mode = COMMAND_EXEC,
5341                 .jim_handler = jim_target_md,
5342                 .help = "Display target memory as 8-bit bytes",
5343                 .usage = "address [count]",
5344         },
5345         {
5346                 .name = "array2mem",
5347                 .mode = COMMAND_EXEC,
5348                 .jim_handler = jim_target_array2mem,
5349                 .help = "Writes Tcl array of 8/16/32 bit numbers "
5350                         "to target memory",
5351                 .usage = "arrayname bitwidth address count",
5352         },
5353         {
5354                 .name = "mem2array",
5355                 .mode = COMMAND_EXEC,
5356                 .jim_handler = jim_target_mem2array,
5357                 .help = "Loads Tcl array of 8/16/32 bit numbers "
5358                         "from target memory",
5359                 .usage = "arrayname bitwidth address count",
5360         },
5361         {
5362                 .name = "eventlist",
5363                 .mode = COMMAND_EXEC,
5364                 .jim_handler = jim_target_event_list,
5365                 .help = "displays a table of events defined for this target",
5366         },
5367         {
5368                 .name = "curstate",
5369                 .mode = COMMAND_EXEC,
5370                 .jim_handler = jim_target_current_state,
5371                 .help = "displays the current state of this target",
5372         },
5373         {
5374                 .name = "arp_examine",
5375                 .mode = COMMAND_EXEC,
5376                 .jim_handler = jim_target_examine,
5377                 .help = "used internally for reset processing",
5378                 .usage = "arp_examine ['allow-defer']",
5379         },
5380         {
5381                 .name = "was_examined",
5382                 .mode = COMMAND_EXEC,
5383                 .jim_handler = jim_target_was_examined,
5384                 .help = "used internally for reset processing",
5385                 .usage = "was_examined",
5386         },
5387         {
5388                 .name = "examine_deferred",
5389                 .mode = COMMAND_EXEC,
5390                 .jim_handler = jim_target_examine_deferred,
5391                 .help = "used internally for reset processing",
5392                 .usage = "examine_deferred",
5393         },
5394         {
5395                 .name = "arp_halt_gdb",
5396                 .mode = COMMAND_EXEC,
5397                 .jim_handler = jim_target_halt_gdb,
5398                 .help = "used internally for reset processing to halt GDB",
5399         },
5400         {
5401                 .name = "arp_poll",
5402                 .mode = COMMAND_EXEC,
5403                 .jim_handler = jim_target_poll,
5404                 .help = "used internally for reset processing",
5405         },
5406         {
5407                 .name = "arp_reset",
5408                 .mode = COMMAND_EXEC,
5409                 .jim_handler = jim_target_reset,
5410                 .help = "used internally for reset processing",
5411         },
5412         {
5413                 .name = "arp_halt",
5414                 .mode = COMMAND_EXEC,
5415                 .jim_handler = jim_target_halt,
5416                 .help = "used internally for reset processing",
5417         },
5418         {
5419                 .name = "arp_waitstate",
5420                 .mode = COMMAND_EXEC,
5421                 .jim_handler = jim_target_wait_state,
5422                 .help = "used internally for reset processing",
5423         },
5424         {
5425                 .name = "invoke-event",
5426                 .mode = COMMAND_EXEC,
5427                 .jim_handler = jim_target_invoke_event,
5428                 .help = "invoke handler for specified event",
5429                 .usage = "event_name",
5430         },
5431         COMMAND_REGISTRATION_DONE
5432 };
5433
5434 static int target_create(Jim_GetOptInfo *goi)
5435 {
5436         Jim_Obj *new_cmd;
5437         Jim_Cmd *cmd;
5438         const char *cp;
5439         int e;
5440         int x;
5441         struct target *target;
5442         struct command_context *cmd_ctx;
5443
5444         cmd_ctx = current_command_context(goi->interp);
5445         assert(cmd_ctx != NULL);
5446
5447         if (goi->argc < 3) {
5448                 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
5449                 return JIM_ERR;
5450         }
5451
5452         /* COMMAND */
5453         Jim_GetOpt_Obj(goi, &new_cmd);
5454         /* does this command exist? */
5455         cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
5456         if (cmd) {
5457                 cp = Jim_GetString(new_cmd, NULL);
5458                 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
5459                 return JIM_ERR;
5460         }
5461
5462         /* TYPE */
5463         e = Jim_GetOpt_String(goi, &cp, NULL);
5464         if (e != JIM_OK)
5465                 return e;
5466         struct transport *tr = get_current_transport();
5467         if (tr->override_target) {
5468                 e = tr->override_target(&cp);
5469                 if (e != ERROR_OK) {
5470                         LOG_ERROR("The selected transport doesn't support this target");
5471                         return JIM_ERR;
5472                 }
5473                 LOG_INFO("The selected transport took over low-level target control. The results might differ compared to plain JTAG/SWD");
5474         }
5475         /* now does target type exist */
5476         for (x = 0 ; target_types[x] ; x++) {
5477                 if (0 == strcmp(cp, target_types[x]->name)) {
5478                         /* found */
5479                         break;
5480                 }
5481
5482                 /* check for deprecated name */
5483                 if (target_types[x]->deprecated_name) {
5484                         if (0 == strcmp(cp, target_types[x]->deprecated_name)) {
5485                                 /* found */
5486                                 LOG_WARNING("target name is deprecated use: \'%s\'", target_types[x]->name);
5487                                 break;
5488                         }
5489                 }
5490         }
5491         if (target_types[x] == NULL) {
5492                 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
5493                 for (x = 0 ; target_types[x] ; x++) {
5494                         if (target_types[x + 1]) {
5495                                 Jim_AppendStrings(goi->interp,
5496                                                                    Jim_GetResult(goi->interp),
5497                                                                    target_types[x]->name,
5498                                                                    ", ", NULL);
5499                         } else {
5500                                 Jim_AppendStrings(goi->interp,
5501                                                                    Jim_GetResult(goi->interp),
5502                                                                    " or ",
5503                                                                    target_types[x]->name, NULL);
5504                         }
5505                 }
5506                 return JIM_ERR;
5507         }
5508
5509         /* Create it */
5510         target = calloc(1, sizeof(struct target));
5511         /* set target number */
5512         target->target_number = new_target_number();
5513         cmd_ctx->current_target = target->target_number;
5514
5515         /* allocate memory for each unique target type */
5516         target->type = calloc(1, sizeof(struct target_type));
5517
5518         memcpy(target->type, target_types[x], sizeof(struct target_type));
5519
5520         /* will be set by "-endian" */
5521         target->endianness = TARGET_ENDIAN_UNKNOWN;
5522
5523         /* default to first core, override with -coreid */
5524         target->coreid = 0;
5525
5526         target->working_area        = 0x0;
5527         target->working_area_size   = 0x0;
5528         target->working_areas       = NULL;
5529         target->backup_working_area = 0;
5530
5531         target->state               = TARGET_UNKNOWN;
5532         target->debug_reason        = DBG_REASON_UNDEFINED;
5533         target->reg_cache           = NULL;
5534         target->breakpoints         = NULL;
5535         target->watchpoints         = NULL;
5536         target->next                = NULL;
5537         target->arch_info           = NULL;
5538
5539         target->display             = 1;
5540
5541         target->halt_issued                     = false;
5542
5543         /* initialize trace information */
5544         target->trace_info = calloc(1, sizeof(struct trace));
5545
5546         target->dbgmsg          = NULL;
5547         target->dbg_msg_enabled = 0;
5548
5549         target->endianness = TARGET_ENDIAN_UNKNOWN;
5550
5551         target->rtos = NULL;
5552         target->rtos_auto_detect = false;
5553
5554         /* Do the rest as "configure" options */
5555         goi->isconfigure = 1;
5556         e = target_configure(goi, target);
5557
5558         if (target->tap == NULL) {
5559                 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
5560                 e = JIM_ERR;
5561         }
5562
5563         if (e != JIM_OK) {
5564                 free(target->type);
5565                 free(target);
5566                 return e;
5567         }
5568
5569         if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
5570                 /* default endian to little if not specified */
5571                 target->endianness = TARGET_LITTLE_ENDIAN;
5572         }
5573
5574         cp = Jim_GetString(new_cmd, NULL);
5575         target->cmd_name = strdup(cp);
5576
5577         /* create the target specific commands */
5578         if (target->type->commands) {
5579                 e = register_commands(cmd_ctx, NULL, target->type->commands);
5580                 if (ERROR_OK != e)
5581                         LOG_ERROR("unable to register '%s' commands", cp);
5582         }
5583         if (target->type->target_create)
5584                 (*(target->type->target_create))(target, goi->interp);
5585
5586         /* append to end of list */
5587         {
5588                 struct target **tpp;
5589                 tpp = &(all_targets);
5590                 while (*tpp)
5591                         tpp = &((*tpp)->next);
5592                 *tpp = target;
5593         }
5594
5595         /* now - create the new target name command */
5596         const struct command_registration target_subcommands[] = {
5597                 {
5598                         .chain = target_instance_command_handlers,
5599                 },
5600                 {
5601                         .chain = target->type->commands,
5602                 },
5603                 COMMAND_REGISTRATION_DONE
5604         };
5605         const struct command_registration target_commands[] = {
5606                 {
5607                         .name = cp,
5608                         .mode = COMMAND_ANY,
5609                         .help = "target command group",
5610                         .usage = "",
5611                         .chain = target_subcommands,
5612                 },
5613                 COMMAND_REGISTRATION_DONE
5614         };
5615         e = register_commands(cmd_ctx, NULL, target_commands);
5616         if (ERROR_OK != e)
5617                 return JIM_ERR;
5618
5619         struct command *c = command_find_in_context(cmd_ctx, cp);
5620         assert(c);
5621         command_set_handler_data(c, target);
5622
5623         return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
5624 }
5625
5626 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5627 {
5628         if (argc != 1) {
5629                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5630                 return JIM_ERR;
5631         }
5632         struct command_context *cmd_ctx = current_command_context(interp);
5633         assert(cmd_ctx != NULL);
5634
5635         Jim_SetResultString(interp, target_name(get_current_target(cmd_ctx)), -1);
5636         return JIM_OK;
5637 }
5638
5639 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5640 {
5641         if (argc != 1) {
5642                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5643                 return JIM_ERR;
5644         }
5645         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5646         for (unsigned x = 0; NULL != target_types[x]; x++) {
5647                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5648                         Jim_NewStringObj(interp, target_types[x]->name, -1));
5649         }
5650         return JIM_OK;
5651 }
5652
5653 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5654 {
5655         if (argc != 1) {
5656                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5657                 return JIM_ERR;
5658         }
5659         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5660         struct target *target = all_targets;
5661         while (target) {
5662                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5663                         Jim_NewStringObj(interp, target_name(target), -1));
5664                 target = target->next;
5665         }
5666         return JIM_OK;
5667 }
5668
5669 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5670 {
5671         int i;
5672         const char *targetname;
5673         int retval, len;
5674         struct target *target = (struct target *) NULL;
5675         struct target_list *head, *curr, *new;
5676         curr = (struct target_list *) NULL;
5677         head = (struct target_list *) NULL;
5678
5679         retval = 0;
5680         LOG_DEBUG("%d", argc);
5681         /* argv[1] = target to associate in smp
5682          * argv[2] = target to assoicate in smp
5683          * argv[3] ...
5684          */
5685
5686         for (i = 1; i < argc; i++) {
5687
5688                 targetname = Jim_GetString(argv[i], &len);
5689                 target = get_target(targetname);
5690                 LOG_DEBUG("%s ", targetname);
5691                 if (target) {
5692                         new = malloc(sizeof(struct target_list));
5693                         new->target = target;
5694                         new->next = (struct target_list *)NULL;
5695                         if (head == (struct target_list *)NULL) {
5696                                 head = new;
5697                                 curr = head;
5698                         } else {
5699                                 curr->next = new;
5700                                 curr = new;
5701                         }
5702                 }
5703         }
5704         /*  now parse the list of cpu and put the target in smp mode*/
5705         curr = head;
5706
5707         while (curr != (struct target_list *)NULL) {
5708                 target = curr->target;
5709                 target->smp = 1;
5710                 target->head = head;
5711                 curr = curr->next;
5712         }
5713
5714         if (target && target->rtos)
5715                 retval = rtos_smp_init(head->target);
5716
5717         return retval;
5718 }
5719
5720
5721 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5722 {
5723         Jim_GetOptInfo goi;
5724         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5725         if (goi.argc < 3) {
5726                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5727                         "<name> <target_type> [<target_options> ...]");
5728                 return JIM_ERR;
5729         }
5730         return target_create(&goi);
5731 }
5732
5733 static const struct command_registration target_subcommand_handlers[] = {
5734         {
5735                 .name = "init",
5736                 .mode = COMMAND_CONFIG,
5737                 .handler = handle_target_init_command,
5738                 .help = "initialize targets",
5739         },
5740         {
5741                 .name = "create",
5742                 /* REVISIT this should be COMMAND_CONFIG ... */
5743                 .mode = COMMAND_ANY,
5744                 .jim_handler = jim_target_create,
5745                 .usage = "name type '-chain-position' name [options ...]",
5746                 .help = "Creates and selects a new target",
5747         },
5748         {
5749                 .name = "current",
5750                 .mode = COMMAND_ANY,
5751                 .jim_handler = jim_target_current,
5752                 .help = "Returns the currently selected target",
5753         },
5754         {
5755                 .name = "types",
5756                 .mode = COMMAND_ANY,
5757                 .jim_handler = jim_target_types,
5758                 .help = "Returns the available target types as "
5759                                 "a list of strings",
5760         },
5761         {
5762                 .name = "names",
5763                 .mode = COMMAND_ANY,
5764                 .jim_handler = jim_target_names,
5765                 .help = "Returns the names of all targets as a list of strings",
5766         },
5767         {
5768                 .name = "smp",
5769                 .mode = COMMAND_ANY,
5770                 .jim_handler = jim_target_smp,
5771                 .usage = "targetname1 targetname2 ...",
5772                 .help = "gather several target in a smp list"
5773         },
5774
5775         COMMAND_REGISTRATION_DONE
5776 };
5777
5778 struct FastLoad {
5779         target_addr_t address;
5780         uint8_t *data;
5781         int length;
5782
5783 };
5784
5785 static int fastload_num;
5786 static struct FastLoad *fastload;
5787
5788 static void free_fastload(void)
5789 {
5790         if (fastload != NULL) {
5791                 int i;
5792                 for (i = 0; i < fastload_num; i++) {
5793                         if (fastload[i].data)
5794                                 free(fastload[i].data);
5795                 }
5796                 free(fastload);
5797                 fastload = NULL;
5798         }
5799 }
5800
5801 COMMAND_HANDLER(handle_fast_load_image_command)
5802 {
5803         uint8_t *buffer;
5804         size_t buf_cnt;
5805         uint32_t image_size;
5806         target_addr_t min_address = 0;
5807         target_addr_t max_address = -1;
5808         int i;
5809
5810         struct image image;
5811
5812         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
5813                         &image, &min_address, &max_address);
5814         if (ERROR_OK != retval)
5815                 return retval;
5816
5817         struct duration bench;
5818         duration_start(&bench);
5819
5820         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
5821         if (retval != ERROR_OK)
5822                 return retval;
5823
5824         image_size = 0x0;
5825         retval = ERROR_OK;
5826         fastload_num = image.num_sections;
5827         fastload = malloc(sizeof(struct FastLoad)*image.num_sections);
5828         if (fastload == NULL) {
5829                 command_print(CMD_CTX, "out of memory");
5830                 image_close(&image);
5831                 return ERROR_FAIL;
5832         }
5833         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
5834         for (i = 0; i < image.num_sections; i++) {
5835                 buffer = malloc(image.sections[i].size);
5836                 if (buffer == NULL) {
5837                         command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5838                                                   (int)(image.sections[i].size));
5839                         retval = ERROR_FAIL;
5840                         break;
5841                 }
5842
5843                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
5844                 if (retval != ERROR_OK) {
5845                         free(buffer);
5846                         break;
5847                 }
5848
5849                 uint32_t offset = 0;
5850                 uint32_t length = buf_cnt;
5851
5852                 /* DANGER!!! beware of unsigned comparision here!!! */
5853
5854                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
5855                                 (image.sections[i].base_address < max_address)) {
5856                         if (image.sections[i].base_address < min_address) {
5857                                 /* clip addresses below */
5858                                 offset += min_address-image.sections[i].base_address;
5859                                 length -= offset;
5860                         }
5861
5862                         if (image.sections[i].base_address + buf_cnt > max_address)
5863                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5864
5865                         fastload[i].address = image.sections[i].base_address + offset;
5866                         fastload[i].data = malloc(length);
5867                         if (fastload[i].data == NULL) {
5868                                 free(buffer);
5869                                 command_print(CMD_CTX, "error allocating buffer for section (%" PRIu32 " bytes)",
5870                                                           length);
5871                                 retval = ERROR_FAIL;
5872                                 break;
5873                         }
5874                         memcpy(fastload[i].data, buffer + offset, length);
5875                         fastload[i].length = length;
5876
5877                         image_size += length;
5878                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
5879                                                   (unsigned int)length,
5880                                                   ((unsigned int)(image.sections[i].base_address + offset)));
5881                 }
5882
5883                 free(buffer);
5884         }
5885
5886         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
5887                 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
5888                                 "in %fs (%0.3f KiB/s)", image_size,
5889                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5890
5891                 command_print(CMD_CTX,
5892                                 "WARNING: image has not been loaded to target!"
5893                                 "You can issue a 'fast_load' to finish loading.");
5894         }
5895
5896         image_close(&image);
5897
5898         if (retval != ERROR_OK)
5899                 free_fastload();
5900
5901         return retval;
5902 }
5903
5904 COMMAND_HANDLER(handle_fast_load_command)
5905 {
5906         if (CMD_ARGC > 0)
5907                 return ERROR_COMMAND_SYNTAX_ERROR;
5908         if (fastload == NULL) {
5909                 LOG_ERROR("No image in memory");
5910                 return ERROR_FAIL;
5911         }
5912         int i;
5913         int64_t ms = timeval_ms();
5914         int size = 0;
5915         int retval = ERROR_OK;
5916         for (i = 0; i < fastload_num; i++) {
5917                 struct target *target = get_current_target(CMD_CTX);
5918                 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
5919                                           (unsigned int)(fastload[i].address),
5920                                           (unsigned int)(fastload[i].length));
5921                 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5922                 if (retval != ERROR_OK)
5923                         break;
5924                 size += fastload[i].length;
5925         }
5926         if (retval == ERROR_OK) {
5927                 int64_t after = timeval_ms();
5928                 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5929         }
5930         return retval;
5931 }
5932
5933 static const struct command_registration target_command_handlers[] = {
5934         {
5935                 .name = "targets",
5936                 .handler = handle_targets_command,
5937                 .mode = COMMAND_ANY,
5938                 .help = "change current default target (one parameter) "
5939                         "or prints table of all targets (no parameters)",
5940                 .usage = "[target]",
5941         },
5942         {
5943                 .name = "target",
5944                 .mode = COMMAND_CONFIG,
5945                 .help = "configure target",
5946
5947                 .chain = target_subcommand_handlers,
5948         },
5949         COMMAND_REGISTRATION_DONE
5950 };
5951
5952 int target_register_commands(struct command_context *cmd_ctx)
5953 {
5954         return register_commands(cmd_ctx, NULL, target_command_handlers);
5955 }
5956
5957 static bool target_reset_nag = true;
5958
5959 bool get_target_reset_nag(void)
5960 {
5961         return target_reset_nag;
5962 }
5963
5964 COMMAND_HANDLER(handle_target_reset_nag)
5965 {
5966         return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5967                         &target_reset_nag, "Nag after each reset about options to improve "
5968                         "performance");
5969 }
5970
5971 COMMAND_HANDLER(handle_ps_command)
5972 {
5973         struct target *target = get_current_target(CMD_CTX);
5974         char *display;
5975         if (target->state != TARGET_HALTED) {
5976                 LOG_INFO("target not halted !!");
5977                 return ERROR_OK;
5978         }
5979
5980         if ((target->rtos) && (target->rtos->type)
5981                         && (target->rtos->type->ps_command)) {
5982                 display = target->rtos->type->ps_command(target);
5983                 command_print(CMD_CTX, "%s", display);
5984                 free(display);
5985                 return ERROR_OK;
5986         } else {
5987                 LOG_INFO("failed");
5988                 return ERROR_TARGET_FAILURE;
5989         }
5990 }
5991
5992 static void binprint(struct command_context *cmd_ctx, const char *text, const uint8_t *buf, int size)
5993 {
5994         if (text != NULL)
5995                 command_print_sameline(cmd_ctx, "%s", text);
5996         for (int i = 0; i < size; i++)
5997                 command_print_sameline(cmd_ctx, " %02x", buf[i]);
5998         command_print(cmd_ctx, " ");
5999 }
6000
6001 COMMAND_HANDLER(handle_test_mem_access_command)
6002 {
6003         struct target *target = get_current_target(CMD_CTX);
6004         uint32_t test_size;
6005         int retval = ERROR_OK;
6006
6007         if (target->state != TARGET_HALTED) {
6008                 LOG_INFO("target not halted !!");
6009                 return ERROR_FAIL;
6010         }
6011
6012         if (CMD_ARGC != 1)
6013                 return ERROR_COMMAND_SYNTAX_ERROR;
6014
6015         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], test_size);
6016
6017         /* Test reads */
6018         size_t num_bytes = test_size + 4;
6019
6020         struct working_area *wa = NULL;
6021         retval = target_alloc_working_area(target, num_bytes, &wa);
6022         if (retval != ERROR_OK) {
6023                 LOG_ERROR("Not enough working area");
6024                 return ERROR_FAIL;
6025         }
6026
6027         uint8_t *test_pattern = malloc(num_bytes);
6028
6029         for (size_t i = 0; i < num_bytes; i++)
6030                 test_pattern[i] = rand();
6031
6032         retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
6033         if (retval != ERROR_OK) {
6034                 LOG_ERROR("Test pattern write failed");
6035                 goto out;
6036         }
6037
6038         for (int host_offset = 0; host_offset <= 1; host_offset++) {
6039                 for (int size = 1; size <= 4; size *= 2) {
6040                         for (int offset = 0; offset < 4; offset++) {
6041                                 uint32_t count = test_size / size;
6042                                 size_t host_bufsiz = (count + 2) * size + host_offset;
6043                                 uint8_t *read_ref = malloc(host_bufsiz);
6044                                 uint8_t *read_buf = malloc(host_bufsiz);
6045
6046                                 for (size_t i = 0; i < host_bufsiz; i++) {
6047                                         read_ref[i] = rand();
6048                                         read_buf[i] = read_ref[i];
6049                                 }
6050                                 command_print_sameline(CMD_CTX,
6051                                                 "Test read %" PRIu32 " x %d @ %d to %saligned buffer: ", count,
6052                                                 size, offset, host_offset ? "un" : "");
6053
6054                                 struct duration bench;
6055                                 duration_start(&bench);
6056
6057                                 retval = target_read_memory(target, wa->address + offset, size, count,
6058                                                 read_buf + size + host_offset);
6059
6060                                 duration_measure(&bench);
6061
6062                                 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
6063                                         command_print(CMD_CTX, "Unsupported alignment");
6064                                         goto next;
6065                                 } else if (retval != ERROR_OK) {
6066                                         command_print(CMD_CTX, "Memory read failed");
6067                                         goto next;
6068                                 }
6069
6070                                 /* replay on host */
6071                                 memcpy(read_ref + size + host_offset, test_pattern + offset, count * size);
6072
6073                                 /* check result */
6074                                 int result = memcmp(read_ref, read_buf, host_bufsiz);
6075                                 if (result == 0) {
6076                                         command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
6077                                                         duration_elapsed(&bench),
6078                                                         duration_kbps(&bench, count * size));
6079                                 } else {
6080                                         command_print(CMD_CTX, "Compare failed");
6081                                         binprint(CMD_CTX, "ref:", read_ref, host_bufsiz);
6082                                         binprint(CMD_CTX, "buf:", read_buf, host_bufsiz);
6083                                 }
6084 next:
6085                                 free(read_ref);
6086                                 free(read_buf);
6087                         }
6088                 }
6089         }
6090
6091 out:
6092         free(test_pattern);
6093
6094         if (wa != NULL)
6095                 target_free_working_area(target, wa);
6096
6097         /* Test writes */
6098         num_bytes = test_size + 4 + 4 + 4;
6099
6100         retval = target_alloc_working_area(target, num_bytes, &wa);
6101         if (retval != ERROR_OK) {
6102                 LOG_ERROR("Not enough working area");
6103                 return ERROR_FAIL;
6104         }
6105
6106         test_pattern = malloc(num_bytes);
6107
6108         for (size_t i = 0; i < num_bytes; i++)
6109                 test_pattern[i] = rand();
6110
6111         for (int host_offset = 0; host_offset <= 1; host_offset++) {
6112                 for (int size = 1; size <= 4; size *= 2) {
6113                         for (int offset = 0; offset < 4; offset++) {
6114                                 uint32_t count = test_size / size;
6115                                 size_t host_bufsiz = count * size + host_offset;
6116                                 uint8_t *read_ref = malloc(num_bytes);
6117                                 uint8_t *read_buf = malloc(num_bytes);
6118                                 uint8_t *write_buf = malloc(host_bufsiz);
6119
6120                                 for (size_t i = 0; i < host_bufsiz; i++)
6121                                         write_buf[i] = rand();
6122                                 command_print_sameline(CMD_CTX,
6123                                                 "Test write %" PRIu32 " x %d @ %d from %saligned buffer: ", count,
6124                                                 size, offset, host_offset ? "un" : "");
6125
6126                                 retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
6127                                 if (retval != ERROR_OK) {
6128                                         command_print(CMD_CTX, "Test pattern write failed");
6129                                         goto nextw;
6130                                 }
6131
6132                                 /* replay on host */
6133                                 memcpy(read_ref, test_pattern, num_bytes);
6134                                 memcpy(read_ref + size + offset, write_buf + host_offset, count * size);
6135
6136                                 struct duration bench;
6137                                 duration_start(&bench);
6138
6139                                 retval = target_write_memory(target, wa->address + size + offset, size, count,
6140                                                 write_buf + host_offset);
6141
6142                                 duration_measure(&bench);
6143
6144                                 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
6145                                         command_print(CMD_CTX, "Unsupported alignment");
6146                                         goto nextw;
6147                                 } else if (retval != ERROR_OK) {
6148                                         command_print(CMD_CTX, "Memory write failed");
6149                                         goto nextw;
6150                                 }
6151
6152                                 /* read back */
6153                                 retval = target_read_memory(target, wa->address, 1, num_bytes, read_buf);
6154                                 if (retval != ERROR_OK) {
6155                                         command_print(CMD_CTX, "Test pattern write failed");
6156                                         goto nextw;
6157                                 }
6158
6159                                 /* check result */
6160                                 int result = memcmp(read_ref, read_buf, num_bytes);
6161                                 if (result == 0) {
6162                                         command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
6163                                                         duration_elapsed(&bench),
6164                                                         duration_kbps(&bench, count * size));
6165                                 } else {
6166                                         command_print(CMD_CTX, "Compare failed");
6167                                         binprint(CMD_CTX, "ref:", read_ref, num_bytes);
6168                                         binprint(CMD_CTX, "buf:", read_buf, num_bytes);
6169                                 }
6170 nextw:
6171                                 free(read_ref);
6172                                 free(read_buf);
6173                         }
6174                 }
6175         }
6176
6177         free(test_pattern);
6178
6179         if (wa != NULL)
6180                 target_free_working_area(target, wa);
6181         return retval;
6182 }
6183
6184 static const struct command_registration target_exec_command_handlers[] = {
6185         {
6186                 .name = "fast_load_image",
6187                 .handler = handle_fast_load_image_command,
6188                 .mode = COMMAND_ANY,
6189                 .help = "Load image into server memory for later use by "
6190                         "fast_load; primarily for profiling",
6191                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6192                         "[min_address [max_length]]",
6193         },
6194         {
6195                 .name = "fast_load",
6196                 .handler = handle_fast_load_command,
6197                 .mode = COMMAND_EXEC,
6198                 .help = "loads active fast load image to current target "
6199                         "- mainly for profiling purposes",
6200                 .usage = "",
6201         },
6202         {
6203                 .name = "profile",
6204                 .handler = handle_profile_command,
6205                 .mode = COMMAND_EXEC,
6206                 .usage = "seconds filename [start end]",
6207                 .help = "profiling samples the CPU PC",
6208         },
6209         /** @todo don't register virt2phys() unless target supports it */
6210         {
6211                 .name = "virt2phys",
6212                 .handler = handle_virt2phys_command,
6213                 .mode = COMMAND_ANY,
6214                 .help = "translate a virtual address into a physical address",
6215                 .usage = "virtual_address",
6216         },
6217         {
6218                 .name = "reg",
6219                 .handler = handle_reg_command,
6220                 .mode = COMMAND_EXEC,
6221                 .help = "display (reread from target with \"force\") or set a register; "
6222                         "with no arguments, displays all registers and their values",
6223                 .usage = "[(register_number|register_name) [(value|'force')]]",
6224         },
6225         {
6226                 .name = "poll",
6227                 .handler = handle_poll_command,
6228                 .mode = COMMAND_EXEC,
6229                 .help = "poll target state; or reconfigure background polling",
6230                 .usage = "['on'|'off']",
6231         },
6232         {
6233                 .name = "wait_halt",
6234                 .handler = handle_wait_halt_command,
6235                 .mode = COMMAND_EXEC,
6236                 .help = "wait up to the specified number of milliseconds "
6237                         "(default 5000) for a previously requested halt",
6238                 .usage = "[milliseconds]",
6239         },
6240         {
6241                 .name = "halt",
6242                 .handler = handle_halt_command,
6243                 .mode = COMMAND_EXEC,
6244                 .help = "request target to halt, then wait up to the specified"
6245                         "number of milliseconds (default 5000) for it to complete",
6246                 .usage = "[milliseconds]",
6247         },
6248         {
6249                 .name = "resume",
6250                 .handler = handle_resume_command,
6251                 .mode = COMMAND_EXEC,
6252                 .help = "resume target execution from current PC or address",
6253                 .usage = "[address]",
6254         },
6255         {
6256                 .name = "reset",
6257                 .handler = handle_reset_command,
6258                 .mode = COMMAND_EXEC,
6259                 .usage = "[run|halt|init]",
6260                 .help = "Reset all targets into the specified mode."
6261                         "Default reset mode is run, if not given.",
6262         },
6263         {
6264                 .name = "soft_reset_halt",
6265                 .handler = handle_soft_reset_halt_command,
6266                 .mode = COMMAND_EXEC,
6267                 .usage = "",
6268                 .help = "halt the target and do a soft reset",
6269         },
6270         {
6271                 .name = "step",
6272                 .handler = handle_step_command,
6273                 .mode = COMMAND_EXEC,
6274                 .help = "step one instruction from current PC or address",
6275                 .usage = "[address]",
6276         },
6277         {
6278                 .name = "mdd",
6279                 .handler = handle_md_command,
6280                 .mode = COMMAND_EXEC,
6281                 .help = "display memory words",
6282                 .usage = "['phys'] address [count]",
6283         },
6284         {
6285                 .name = "mdw",
6286                 .handler = handle_md_command,
6287                 .mode = COMMAND_EXEC,
6288                 .help = "display memory words",
6289                 .usage = "['phys'] address [count]",
6290         },
6291         {
6292                 .name = "mdh",
6293                 .handler = handle_md_command,
6294                 .mode = COMMAND_EXEC,
6295                 .help = "display memory half-words",
6296                 .usage = "['phys'] address [count]",
6297         },
6298         {
6299                 .name = "mdb",
6300                 .handler = handle_md_command,
6301                 .mode = COMMAND_EXEC,
6302                 .help = "display memory bytes",
6303                 .usage = "['phys'] address [count]",
6304         },
6305         {
6306                 .name = "mwd",
6307                 .handler = handle_mw_command,
6308                 .mode = COMMAND_EXEC,
6309                 .help = "write memory word",
6310                 .usage = "['phys'] address value [count]",
6311         },
6312         {
6313                 .name = "mww",
6314                 .handler = handle_mw_command,
6315                 .mode = COMMAND_EXEC,
6316                 .help = "write memory word",
6317                 .usage = "['phys'] address value [count]",
6318         },
6319         {
6320                 .name = "mwh",
6321                 .handler = handle_mw_command,
6322                 .mode = COMMAND_EXEC,
6323                 .help = "write memory half-word",
6324                 .usage = "['phys'] address value [count]",
6325         },
6326         {
6327                 .name = "mwb",
6328                 .handler = handle_mw_command,
6329                 .mode = COMMAND_EXEC,
6330                 .help = "write memory byte",
6331                 .usage = "['phys'] address value [count]",
6332         },
6333         {
6334                 .name = "bp",
6335                 .handler = handle_bp_command,
6336                 .mode = COMMAND_EXEC,
6337                 .help = "list or set hardware or software breakpoint",
6338                 .usage = "<address> [<asid>]<length> ['hw'|'hw_ctx']",
6339         },
6340         {
6341                 .name = "rbp",
6342                 .handler = handle_rbp_command,
6343                 .mode = COMMAND_EXEC,
6344                 .help = "remove breakpoint",
6345                 .usage = "address",
6346         },
6347         {
6348                 .name = "wp",
6349                 .handler = handle_wp_command,
6350                 .mode = COMMAND_EXEC,
6351                 .help = "list (no params) or create watchpoints",
6352                 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
6353         },
6354         {
6355                 .name = "rwp",
6356                 .handler = handle_rwp_command,
6357                 .mode = COMMAND_EXEC,
6358                 .help = "remove watchpoint",
6359                 .usage = "address",
6360         },
6361         {
6362                 .name = "load_image",
6363                 .handler = handle_load_image_command,
6364                 .mode = COMMAND_EXEC,
6365                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6366                         "[min_address] [max_length]",
6367         },
6368         {
6369                 .name = "dump_image",
6370                 .handler = handle_dump_image_command,
6371                 .mode = COMMAND_EXEC,
6372                 .usage = "filename address size",
6373         },
6374         {
6375                 .name = "verify_image_checksum",
6376                 .handler = handle_verify_image_checksum_command,
6377                 .mode = COMMAND_EXEC,
6378                 .usage = "filename [offset [type]]",
6379         },
6380         {
6381                 .name = "verify_image",
6382                 .handler = handle_verify_image_command,
6383                 .mode = COMMAND_EXEC,
6384                 .usage = "filename [offset [type]]",
6385         },
6386         {
6387                 .name = "test_image",
6388                 .handler = handle_test_image_command,
6389                 .mode = COMMAND_EXEC,
6390                 .usage = "filename [offset [type]]",
6391         },
6392         {
6393                 .name = "mem2array",
6394                 .mode = COMMAND_EXEC,
6395                 .jim_handler = jim_mem2array,
6396                 .help = "read 8/16/32 bit memory and return as a TCL array "
6397                         "for script processing",
6398                 .usage = "arrayname bitwidth address count",
6399         },
6400         {
6401                 .name = "array2mem",
6402                 .mode = COMMAND_EXEC,
6403                 .jim_handler = jim_array2mem,
6404                 .help = "convert a TCL array to memory locations "
6405                         "and write the 8/16/32 bit values",
6406                 .usage = "arrayname bitwidth address count",
6407         },
6408         {
6409                 .name = "reset_nag",
6410                 .handler = handle_target_reset_nag,
6411                 .mode = COMMAND_ANY,
6412                 .help = "Nag after each reset about options that could have been "
6413                                 "enabled to improve performance. ",
6414                 .usage = "['enable'|'disable']",
6415         },
6416         {
6417                 .name = "ps",
6418                 .handler = handle_ps_command,
6419                 .mode = COMMAND_EXEC,
6420                 .help = "list all tasks ",
6421                 .usage = " ",
6422         },
6423         {
6424                 .name = "test_mem_access",
6425                 .handler = handle_test_mem_access_command,
6426                 .mode = COMMAND_EXEC,
6427                 .help = "Test the target's memory access functions",
6428                 .usage = "size",
6429         },
6430
6431         COMMAND_REGISTRATION_DONE
6432 };
6433 static int target_register_user_commands(struct command_context *cmd_ctx)
6434 {
6435         int retval = ERROR_OK;
6436         retval = target_request_register_commands(cmd_ctx);
6437         if (retval != ERROR_OK)
6438                 return retval;
6439
6440         retval = trace_register_commands(cmd_ctx);
6441         if (retval != ERROR_OK)
6442                 return retval;
6443
6444
6445         return register_commands(cmd_ctx, NULL, target_exec_command_handlers);
6446 }