dc69e994438f4e821bf85bbf80fb66d70c2ec34a
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   This program is free software; you can redistribute it and/or modify  *
6  *   it under the terms of the GNU General Public License as published by  *
7  *   the Free Software Foundation; either version 2 of the License, or     *
8  *   (at your option) any later version.                                   *
9  *                                                                         *
10  *   This program is distributed in the hope that it will be useful,       *
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
13  *   GNU General Public License for more details.                          *
14  *                                                                         *
15  *   You should have received a copy of the GNU General Public License     *
16  *   along with this program; if not, write to the                         *
17  *   Free Software Foundation, Inc.,                                       *
18  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
19  ***************************************************************************/
20 #ifdef HAVE_CONFIG_H
21 #include "config.h"
22 #endif
23
24 #include "replacements.h"
25 #include "target.h"
26 #include "target_request.h"
27
28 #include "log.h"
29 #include "configuration.h"
30 #include "binarybuffer.h"
31 #include "jtag.h"
32
33 #include <string.h>
34 #include <stdlib.h>
35 #include <inttypes.h>
36
37 #include <sys/types.h>
38 #include <sys/stat.h>
39 #include <unistd.h>
40 #include <errno.h>
41
42 #include <sys/time.h>
43 #include <time.h>
44
45 #include <time_support.h>
46
47 #include <fileio.h>
48 #include <image.h>
49
50 int cli_target_callback_event_handler(struct target_s *target, enum target_event event, void *priv);
51
52
53 int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
54 int handle_daemon_startup_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
55 int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
56
57 int handle_target_script_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
58 int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
59 int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
60
61 int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
62 int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
63 int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
64 int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
65 int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
66 int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
67 int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
68 int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
69 int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
70 int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
71 int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
72 int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
73 int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
74 int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
75 int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
76 int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
77 int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
78 int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc);
79
80 /* targets
81  */
82 extern target_type_t arm7tdmi_target;
83 extern target_type_t arm720t_target;
84 extern target_type_t arm9tdmi_target;
85 extern target_type_t arm920t_target;
86 extern target_type_t arm966e_target;
87 extern target_type_t arm926ejs_target;
88 extern target_type_t feroceon_target;
89 extern target_type_t xscale_target;
90 extern target_type_t cortexm3_target;
91 extern target_type_t arm11_target;
92
93 target_type_t *target_types[] =
94 {
95         &arm7tdmi_target,
96         &arm9tdmi_target,
97         &arm920t_target,
98         &arm720t_target,
99         &arm966e_target,
100         &arm926ejs_target,
101         &feroceon_target,
102         &xscale_target,
103         &cortexm3_target,
104         &arm11_target,
105         NULL,
106 };
107
108 target_t *targets = NULL;
109 target_event_callback_t *target_event_callbacks = NULL;
110 target_timer_callback_t *target_timer_callbacks = NULL;
111
112 char *target_state_strings[] =
113 {
114         "unknown",
115         "running",
116         "halted",
117         "reset",
118         "debug_running",
119 };
120
121 char *target_debug_reason_strings[] =
122 {
123         "debug request", "breakpoint", "watchpoint",
124         "watchpoint and breakpoint", "single step",
125         "target not halted", "undefined"
126 };
127
128 char *target_endianess_strings[] =
129 {
130         "big endian",
131         "little endian",
132 };
133
134 enum daemon_startup_mode startup_mode = DAEMON_ATTACH;
135
136 static int target_continous_poll = 1;
137
138 /* read a u32 from a buffer in target memory endianness */
139 u32 target_buffer_get_u32(target_t *target, u8 *buffer)
140 {
141         if (target->endianness == TARGET_LITTLE_ENDIAN)
142                 return le_to_h_u32(buffer);
143         else
144                 return be_to_h_u32(buffer);
145 }
146
147 /* read a u16 from a buffer in target memory endianness */
148 u16 target_buffer_get_u16(target_t *target, u8 *buffer)
149 {
150         if (target->endianness == TARGET_LITTLE_ENDIAN)
151                 return le_to_h_u16(buffer);
152         else
153                 return be_to_h_u16(buffer);
154 }
155
156 /* write a u32 to a buffer in target memory endianness */
157 void target_buffer_set_u32(target_t *target, u8 *buffer, u32 value)
158 {
159         if (target->endianness == TARGET_LITTLE_ENDIAN)
160                 h_u32_to_le(buffer, value);
161         else
162                 h_u32_to_be(buffer, value);
163 }
164
165 /* write a u16 to a buffer in target memory endianness */
166 void target_buffer_set_u16(target_t *target, u8 *buffer, u16 value)
167 {
168         if (target->endianness == TARGET_LITTLE_ENDIAN)
169                 h_u16_to_le(buffer, value);
170         else
171                 h_u16_to_be(buffer, value);
172 }
173
174 /* returns a pointer to the n-th configured target */
175 target_t* get_target_by_num(int num)
176 {
177         target_t *target = targets;
178         int i = 0;
179
180         while (target)
181         {
182                 if (num == i)
183                         return target;
184                 target = target->next;
185                 i++;
186         }
187
188         return NULL;
189 }
190
191 int get_num_by_target(target_t *query_target)
192 {
193         target_t *target = targets;
194         int i = 0;      
195         
196         while (target)
197         {
198                 if (target == query_target)
199                         return i;
200                 target = target->next;
201                 i++;
202         }
203         
204         return -1;
205 }
206
207 target_t* get_current_target(command_context_t *cmd_ctx)
208 {
209         target_t *target = get_target_by_num(cmd_ctx->current_target);
210         
211         if (target == NULL)
212         {
213                 ERROR("BUG: current_target out of bounds");
214                 exit(-1);
215         }
216         
217         return target;
218 }
219
220 /* Process target initialization, when target entered debug out of reset
221  * the handler is unregistered at the end of this function, so it's only called once
222  */
223 int target_init_handler(struct target_s *target, enum target_event event, void *priv)
224 {
225         FILE *script;
226         struct command_context_s *cmd_ctx = priv;
227         
228         if ((event == TARGET_EVENT_HALTED) && (target->reset_script))
229         {
230                 target_unregister_event_callback(target_init_handler, priv);
231
232                 script = open_file_from_path(target->reset_script, "r");
233                 if (!script)
234                 {
235                         ERROR("couldn't open script file %s", target->reset_script);
236                                 return ERROR_OK;
237                 }
238
239                 INFO("executing reset script '%s'", target->reset_script);
240                 command_run_file(cmd_ctx, script, COMMAND_EXEC);
241                 fclose(script);
242
243                 jtag_execute_queue();
244         }
245         
246         return ERROR_OK;
247 }
248
249 int target_run_and_halt_handler(void *priv)
250 {
251         target_t *target = priv;
252         
253         target->type->halt(target);
254         
255         return ERROR_OK;
256 }
257
258 int target_process_reset(struct command_context_s *cmd_ctx)
259 {
260         int retval = ERROR_OK;
261         target_t *target;
262         struct timeval timeout, now;
263         
264         /* prepare reset_halt where necessary */
265         target = targets;
266         while (target)
267         {
268                 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
269                 {
270                         switch (target->reset_mode)
271                         {
272                                 case RESET_HALT:
273                                         command_print(cmd_ctx, "nSRST pulls nTRST, falling back to \"reset run_and_halt\"");
274                                         target->reset_mode = RESET_RUN_AND_HALT;
275                                         break;
276                                 case RESET_INIT:
277                                         command_print(cmd_ctx, "nSRST pulls nTRST, falling back to \"reset run_and_init\"");
278                                         target->reset_mode = RESET_RUN_AND_INIT;
279                                         break;
280                                 default:
281                                         break;
282                         } 
283                 }
284                 switch (target->reset_mode)
285                 {
286                         case RESET_HALT:
287                         case RESET_INIT:
288                                 target->type->prepare_reset_halt(target);
289                                 break;
290                         default:
291                                 break;
292                 }
293                 target = target->next;
294         }
295         
296         target = targets;
297         while (target)
298         {
299                 target->type->assert_reset(target);
300                 target = target->next;
301         }
302         jtag_execute_queue();
303         
304         /* request target halt if necessary, and schedule further action */
305         target = targets;
306         while (target)
307         {
308                 switch (target->reset_mode)
309                 {
310                         case RESET_RUN:
311                                 /* nothing to do if target just wants to be run */
312                                 break;
313                         case RESET_RUN_AND_HALT:
314                                 /* schedule halt */
315                                 target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target);
316                                 break;
317                         case RESET_RUN_AND_INIT:
318                                 /* schedule halt */
319                                 target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target);
320                                 target_register_event_callback(target_init_handler, cmd_ctx);
321                                 break;
322                         case RESET_HALT:
323                                 target->type->halt(target);
324                                 break;
325                         case RESET_INIT:
326                                 target->type->halt(target);
327                                 target_register_event_callback(target_init_handler, cmd_ctx);
328                                 break;
329                         default:
330                                 ERROR("BUG: unknown target->reset_mode");
331                 }
332                 target = target->next;
333         }
334         
335         target = targets;
336         while (target)
337         {
338                 target->type->deassert_reset(target);
339                 target = target->next;
340         }
341         jtag_execute_queue();
342
343         /* Wait for reset to complete, maximum 5 seconds. */    
344         gettimeofday(&timeout, NULL);
345         timeval_add_time(&timeout, 5, 0);
346         for(;;)
347         {
348                 gettimeofday(&now, NULL);
349                 
350                 target_call_timer_callbacks();
351                 
352                 target = targets;
353                 while (target)
354                 {
355                         target->type->poll(target);
356                         if ((target->reset_mode == RESET_RUN_AND_INIT) || (target->reset_mode == RESET_RUN_AND_HALT))
357                         {
358                                 if (target->state != TARGET_HALTED)
359                                 {
360                                         if ((now.tv_sec > timeout.tv_sec) || ((now.tv_sec == timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
361                                         {
362                                                 USER("Timed out waiting for reset");
363                                                 goto done;
364                                         }
365                                         /* this will send alive messages on e.g. GDB remote protocol. */
366                                         usleep(500*1000); 
367                                         USER_N("%s", ""); /* avoid warning about zero length formatting message*/ 
368                                         goto again;
369                                 }
370                         }
371                         target = target->next;
372                 }
373                 /* All targets we're waiting for are halted */
374                 break;
375                 
376                 again:;
377         }
378         done:
379         
380         
381         /* We want any events to be processed before the prompt */
382         target_call_timer_callbacks();
383         
384         return retval;
385 }
386
387 static int default_virt2phys(struct target_s *target, u32 virtual, u32 *physical)
388 {
389         *physical = virtual;
390         return ERROR_OK;
391 }
392
393 static int default_mmu(struct target_s *target, int *enabled)
394 {
395         *enabled = 0;
396         return ERROR_OK;
397 }
398
399 int target_init(struct command_context_s *cmd_ctx)
400 {
401         target_t *target = targets;
402         
403         while (target)
404         {
405                 if (target->type->init_target(cmd_ctx, target) != ERROR_OK)
406                 {
407                         ERROR("target '%s' init failed", target->type->name);
408                         exit(-1);
409                 }
410                 
411                 /* Set up default functions if none are provided by target */
412                 if (target->type->virt2phys == NULL)
413                 {
414                         target->type->virt2phys = default_virt2phys;
415                 }
416                 if (target->type->mmu == NULL)
417                 {
418                         target->type->mmu = default_mmu;
419                 }
420                 target = target->next;
421         }
422         
423         if (targets)
424         {
425                 target_register_user_commands(cmd_ctx);
426                 target_register_timer_callback(handle_target, 100, 1, NULL);
427         }
428                 
429         return ERROR_OK;
430 }
431
432 int target_init_reset(struct command_context_s *cmd_ctx)
433 {
434         if (startup_mode == DAEMON_RESET)
435                 target_process_reset(cmd_ctx);
436         
437         return ERROR_OK;
438 }
439
440 int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
441 {
442         target_event_callback_t **callbacks_p = &target_event_callbacks;
443         
444         if (callback == NULL)
445         {
446                 return ERROR_INVALID_ARGUMENTS;
447         }
448         
449         if (*callbacks_p)
450         {
451                 while ((*callbacks_p)->next)
452                         callbacks_p = &((*callbacks_p)->next);
453                 callbacks_p = &((*callbacks_p)->next);
454         }
455         
456         (*callbacks_p) = malloc(sizeof(target_event_callback_t));
457         (*callbacks_p)->callback = callback;
458         (*callbacks_p)->priv = priv;
459         (*callbacks_p)->next = NULL;
460         
461         return ERROR_OK;
462 }
463
464 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
465 {
466         target_timer_callback_t **callbacks_p = &target_timer_callbacks;
467         struct timeval now;
468         
469         if (callback == NULL)
470         {
471                 return ERROR_INVALID_ARGUMENTS;
472         }
473         
474         if (*callbacks_p)
475         {
476                 while ((*callbacks_p)->next)
477                         callbacks_p = &((*callbacks_p)->next);
478                 callbacks_p = &((*callbacks_p)->next);
479         }
480         
481         (*callbacks_p) = malloc(sizeof(target_timer_callback_t));
482         (*callbacks_p)->callback = callback;
483         (*callbacks_p)->periodic = periodic;
484         (*callbacks_p)->time_ms = time_ms;
485         
486         gettimeofday(&now, NULL);
487         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
488         time_ms -= (time_ms % 1000);
489         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
490         if ((*callbacks_p)->when.tv_usec > 1000000)
491         {
492                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
493                 (*callbacks_p)->when.tv_sec += 1;
494         }
495         
496         (*callbacks_p)->priv = priv;
497         (*callbacks_p)->next = NULL;
498         
499         return ERROR_OK;
500 }
501
502 int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
503 {
504         target_event_callback_t **p = &target_event_callbacks;
505         target_event_callback_t *c = target_event_callbacks;
506         
507         if (callback == NULL)
508         {
509                 return ERROR_INVALID_ARGUMENTS;
510         }
511                 
512         while (c)
513         {
514                 target_event_callback_t *next = c->next;
515                 if ((c->callback == callback) && (c->priv == priv))
516                 {
517                         *p = next;
518                         free(c);
519                         return ERROR_OK;
520                 }
521                 else
522                         p = &(c->next);
523                 c = next;
524         }
525         
526         return ERROR_OK;
527 }
528
529 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
530 {
531         target_timer_callback_t **p = &target_timer_callbacks;
532         target_timer_callback_t *c = target_timer_callbacks;
533         
534         if (callback == NULL)
535         {
536                 return ERROR_INVALID_ARGUMENTS;
537         }
538                 
539         while (c)
540         {
541                 target_timer_callback_t *next = c->next;
542                 if ((c->callback == callback) && (c->priv == priv))
543                 {
544                         *p = next;
545                         free(c);
546                         return ERROR_OK;
547                 }
548                 else
549                         p = &(c->next);
550                 c = next;
551         }
552         
553         return ERROR_OK;
554 }
555
556 int target_call_event_callbacks(target_t *target, enum target_event event)
557 {
558         target_event_callback_t *callback = target_event_callbacks;
559         target_event_callback_t *next_callback;
560         
561         DEBUG("target event %i", event);
562         
563         while (callback)
564         {
565                 next_callback = callback->next;
566                 callback->callback(target, event, callback->priv);
567                 callback = next_callback;
568         }
569         
570         return ERROR_OK;
571 }
572
573 int target_call_timer_callbacks()
574 {
575         target_timer_callback_t *callback = target_timer_callbacks;
576         target_timer_callback_t *next_callback;
577         struct timeval now;
578
579         gettimeofday(&now, NULL);
580         
581         while (callback)
582         {
583                 next_callback = callback->next;
584                 
585                 if (((now.tv_sec >= callback->when.tv_sec) && (now.tv_usec >= callback->when.tv_usec))
586                         || (now.tv_sec > callback->when.tv_sec))
587                 {
588                         callback->callback(callback->priv);
589                         if (callback->periodic)
590                         {
591                                 int time_ms = callback->time_ms;
592                                 callback->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
593                                 time_ms -= (time_ms % 1000);
594                                 callback->when.tv_sec = now.tv_sec + time_ms / 1000;
595                                 if (callback->when.tv_usec > 1000000)
596                                 {
597                                         callback->when.tv_usec = callback->when.tv_usec - 1000000;
598                                         callback->when.tv_sec += 1;
599                                 }
600                         }
601                         else
602                                 target_unregister_timer_callback(callback->callback, callback->priv);
603                 }
604                         
605                 callback = next_callback;
606         }
607         
608         return ERROR_OK;
609 }
610
611 int target_alloc_working_area(struct target_s *target, u32 size, working_area_t **area)
612 {
613         working_area_t *c = target->working_areas;
614         working_area_t *new_wa = NULL;
615         
616         /* Reevaluate working area address based on MMU state*/
617         if (target->working_areas == NULL)
618         {
619                 int retval;
620                 int enabled;
621                 retval = target->type->mmu(target, &enabled);
622                 if (retval != ERROR_OK)
623                 {
624                         return retval;
625                 }
626                 if (enabled)
627                 {
628                         target->working_area = target->working_area_virt;
629                 }
630                 else
631                 {
632                         target->working_area = target->working_area_phys;
633                 }
634         }
635         
636         /* only allocate multiples of 4 byte */
637         if (size % 4)
638         {
639                 ERROR("BUG: code tried to allocate unaligned number of bytes, padding");
640                 size = CEIL(size, 4);
641         }
642         
643         /* see if there's already a matching working area */
644         while (c)
645         {
646                 if ((c->free) && (c->size == size))
647                 {
648                         new_wa = c;
649                         break;
650                 }
651                 c = c->next;
652         }
653         
654         /* if not, allocate a new one */
655         if (!new_wa)
656         {
657                 working_area_t **p = &target->working_areas;
658                 u32 first_free = target->working_area;
659                 u32 free_size = target->working_area_size;
660                 
661                 DEBUG("allocating new working area");
662                 
663                 c = target->working_areas;
664                 while (c)
665                 {
666                         first_free += c->size;
667                         free_size -= c->size;
668                         p = &c->next;
669                         c = c->next;
670                 }
671                 
672                 if (free_size < size)
673                 {
674                         WARNING("not enough working area available(requested %d, free %d)", size, free_size);
675                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
676                 }
677                 
678                 new_wa = malloc(sizeof(working_area_t));
679                 new_wa->next = NULL;
680                 new_wa->size = size;
681                 new_wa->address = first_free;
682                 
683                 if (target->backup_working_area)
684                 {
685                         new_wa->backup = malloc(new_wa->size);
686                         target->type->read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup);
687                 }
688                 else
689                 {
690                         new_wa->backup = NULL;
691                 }
692                 
693                 /* put new entry in list */
694                 *p = new_wa;
695         }
696         
697         /* mark as used, and return the new (reused) area */
698         new_wa->free = 0;
699         *area = new_wa;
700         
701         /* user pointer */
702         new_wa->user = area;
703         
704         return ERROR_OK;
705 }
706
707 int target_free_working_area(struct target_s *target, working_area_t *area)
708 {
709         if (area->free)
710                 return ERROR_OK;
711         
712         if (target->backup_working_area)
713                 target->type->write_memory(target, area->address, 4, area->size / 4, area->backup);
714         
715         area->free = 1;
716         
717         /* mark user pointer invalid */
718         *area->user = NULL;
719         area->user = NULL;
720         
721         return ERROR_OK;
722 }
723
724 int target_free_all_working_areas(struct target_s *target)
725 {
726         working_area_t *c = target->working_areas;
727
728         while (c)
729         {
730                 working_area_t *next = c->next;
731                 target_free_working_area(target, c);
732                 
733                 if (c->backup)
734                         free(c->backup);
735                 
736                 free(c);
737                 
738                 c = next;
739         }
740         
741         target->working_areas = NULL;
742         
743         return ERROR_OK;
744 }
745
746 int target_register_commands(struct command_context_s *cmd_ctx)
747 {
748         register_command(cmd_ctx, NULL, "target", handle_target_command, COMMAND_CONFIG, NULL);
749         register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, NULL);
750         register_command(cmd_ctx, NULL, "daemon_startup", handle_daemon_startup_command, COMMAND_CONFIG, NULL);
751         register_command(cmd_ctx, NULL, "target_script", handle_target_script_command, COMMAND_CONFIG, NULL);
752         register_command(cmd_ctx, NULL, "run_and_halt_time", handle_run_and_halt_time_command, COMMAND_CONFIG, NULL);
753         register_command(cmd_ctx, NULL, "working_area", handle_working_area_command, COMMAND_ANY, "working_area <target#> <address> <size> <'backup'|'nobackup'> [virtual address]");
754         register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "virt2phys <virtual address>");
755
756         return ERROR_OK;
757 }
758
759 int target_arch_state(struct target_s *target)
760 {
761         int retval;
762         if (target==NULL)
763         {
764                 USER("No target has been configured");
765                 return ERROR_OK;
766         }
767         
768         USER("target state: %s", target_state_strings[target->state]);
769         
770         if (target->state!=TARGET_HALTED)
771                 return ERROR_OK;
772         
773         retval=target->type->arch_state(target);
774         return retval;
775 }
776
777 /* Single aligned words are guaranteed to use 16 or 32 bit access 
778  * mode respectively, otherwise data is handled as quickly as 
779  * possible
780  */
781 int target_write_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
782 {
783         int retval;
784         
785         DEBUG("writing buffer of %i byte at 0x%8.8x", size, address);
786         
787         if (((address % 2) == 0) && (size == 2))
788         {
789                 return target->type->write_memory(target, address, 2, 1, buffer);
790         }
791         
792         /* handle unaligned head bytes */
793         if (address % 4)
794         {
795                 int unaligned = 4 - (address % 4);
796                 
797                 if (unaligned > size)
798                         unaligned = size;
799
800                 if ((retval = target->type->write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
801                         return retval;
802                 
803                 buffer += unaligned;
804                 address += unaligned;
805                 size -= unaligned;
806         }
807                 
808         /* handle aligned words */
809         if (size >= 4)
810         {
811                 int aligned = size - (size % 4);
812         
813                 /* use bulk writes above a certain limit. This may have to be changed */
814                 if (aligned > 128)
815                 {
816                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
817                                 return retval;
818                 }
819                 else
820                 {
821                         if ((retval = target->type->write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
822                                 return retval;
823                 }
824                 
825                 buffer += aligned;
826                 address += aligned;
827                 size -= aligned;
828         }
829         
830         /* handle tail writes of less than 4 bytes */
831         if (size > 0)
832         {
833                 if ((retval = target->type->write_memory(target, address, 1, size, buffer)) != ERROR_OK)
834                         return retval;
835         }
836         
837         return ERROR_OK;
838 }
839
840
841 /* Single aligned words are guaranteed to use 16 or 32 bit access 
842  * mode respectively, otherwise data is handled as quickly as 
843  * possible
844  */
845 int target_read_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
846 {
847         int retval;
848         
849         DEBUG("reading buffer of %i byte at 0x%8.8x", size, address);
850         
851         if (((address % 2) == 0) && (size == 2))
852         {
853                 return target->type->read_memory(target, address, 2, 1, buffer);
854         }
855         
856         /* handle unaligned head bytes */
857         if (address % 4)
858         {
859                 int unaligned = 4 - (address % 4);
860                 
861                 if (unaligned > size)
862                         unaligned = size;
863
864                 if ((retval = target->type->read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
865                         return retval;
866                 
867                 buffer += unaligned;
868                 address += unaligned;
869                 size -= unaligned;
870         }
871                 
872         /* handle aligned words */
873         if (size >= 4)
874         {
875                 int aligned = size - (size % 4);
876         
877                 if ((retval = target->type->read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
878                         return retval;
879                 
880                 buffer += aligned;
881                 address += aligned;
882                 size -= aligned;
883         }
884         
885         /* handle tail writes of less than 4 bytes */
886         if (size > 0)
887         {
888                 if ((retval = target->type->read_memory(target, address, 1, size, buffer)) != ERROR_OK)
889                         return retval;
890         }
891         
892         return ERROR_OK;
893 }
894
895 int target_checksum_memory(struct target_s *target, u32 address, u32 size, u32* crc)
896 {
897         u8 *buffer;
898         int retval;
899         int i;
900         u32 checksum = 0;
901         
902         if ((retval = target->type->checksum_memory(target, address,
903                 size, &checksum)) == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
904         {
905                 buffer = malloc(size);
906                 if (buffer == NULL)
907                 {
908                         ERROR("error allocating buffer for section (%d bytes)", size);
909                         return ERROR_INVALID_ARGUMENTS;
910                 }
911                 retval = target_read_buffer(target, address, size, buffer);
912                 if (retval != ERROR_OK)
913                 {
914                         free(buffer);
915                         return retval;
916                 }
917
918                 /* convert to target endianess */
919                 for (i = 0; i < (size/sizeof(u32)); i++)
920                 {
921                         u32 target_data;
922                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(u32)]);
923                         target_buffer_set_u32(target, &buffer[i*sizeof(u32)], target_data);
924                 }
925
926                 retval = image_calculate_checksum( buffer, size, &checksum );
927                 free(buffer);
928         }
929         
930         *crc = checksum;
931         
932         return retval;
933 }
934
935 int target_read_u32(struct target_s *target, u32 address, u32 *value)
936 {
937         u8 value_buf[4];
938
939         int retval = target->type->read_memory(target, address, 4, 1, value_buf);
940         
941         if (retval == ERROR_OK)
942         {
943                 *value = target_buffer_get_u32(target, value_buf);
944                 DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, *value);
945         }
946         else
947         {
948                 *value = 0x0;
949                 DEBUG("address: 0x%8.8x failed", address);
950         }
951         
952         return retval;
953 }
954
955 int target_read_u16(struct target_s *target, u32 address, u16 *value)
956 {
957         u8 value_buf[2];
958         
959         int retval = target->type->read_memory(target, address, 2, 1, value_buf);
960         
961         if (retval == ERROR_OK)
962         {
963                 *value = target_buffer_get_u16(target, value_buf);
964                 DEBUG("address: 0x%8.8x, value: 0x%4.4x", address, *value);
965         }
966         else
967         {
968                 *value = 0x0;
969                 DEBUG("address: 0x%8.8x failed", address);
970         }
971         
972         return retval;
973 }
974
975 int target_read_u8(struct target_s *target, u32 address, u8 *value)
976 {
977         int retval = target->type->read_memory(target, address, 1, 1, value);
978
979         if (retval == ERROR_OK)
980         {
981                 DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, *value);
982         }
983         else
984         {
985                 *value = 0x0;
986                 DEBUG("address: 0x%8.8x failed", address);
987         }
988         
989         return retval;
990 }
991
992 int target_write_u32(struct target_s *target, u32 address, u32 value)
993 {
994         int retval;
995         u8 value_buf[4];
996
997         DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
998
999         target_buffer_set_u32(target, value_buf, value);        
1000         if ((retval = target->type->write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1001         {
1002                 DEBUG("failed: %i", retval);
1003         }
1004         
1005         return retval;
1006 }
1007
1008 int target_write_u16(struct target_s *target, u32 address, u16 value)
1009 {
1010         int retval;
1011         u8 value_buf[2];
1012         
1013         DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1014
1015         target_buffer_set_u16(target, value_buf, value);        
1016         if ((retval = target->type->write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1017         {
1018                 DEBUG("failed: %i", retval);
1019         }
1020         
1021         return retval;
1022 }
1023
1024 int target_write_u8(struct target_s *target, u32 address, u8 value)
1025 {
1026         int retval;
1027         
1028         DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, value);
1029
1030         if ((retval = target->type->read_memory(target, address, 1, 1, &value)) != ERROR_OK)
1031         {
1032                 DEBUG("failed: %i", retval);
1033         }
1034         
1035         return retval;
1036 }
1037
1038 int target_register_user_commands(struct command_context_s *cmd_ctx)
1039 {
1040         register_command(cmd_ctx,  NULL, "reg", handle_reg_command, COMMAND_EXEC, NULL);
1041         register_command(cmd_ctx,  NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state");
1042         register_command(cmd_ctx,  NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]");
1043         register_command(cmd_ctx,  NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target");
1044         register_command(cmd_ctx,  NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]");
1045         register_command(cmd_ctx,  NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]");
1046         register_command(cmd_ctx,  NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run|halt|init|run_and_halt|run_and_init]");
1047         register_command(cmd_ctx,  NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset");
1048
1049         register_command(cmd_ctx,  NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words <addr> [count]");
1050         register_command(cmd_ctx,  NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words <addr> [count]");
1051         register_command(cmd_ctx,  NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes <addr> [count]");
1052         
1053         register_command(cmd_ctx,  NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word <addr> <value>");
1054         register_command(cmd_ctx,  NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word <addr> <value>");
1055         register_command(cmd_ctx,  NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte <addr> <value>");
1056         
1057         register_command(cmd_ctx,  NULL, "bp", handle_bp_command, COMMAND_EXEC, "set breakpoint <address> <length> [hw]");      
1058         register_command(cmd_ctx,  NULL, "rbp", handle_rbp_command, COMMAND_EXEC, "remove breakpoint <adress>");
1059         register_command(cmd_ctx,  NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint <address> <length> <r/w/a> [value] [mask]");    
1060         register_command(cmd_ctx,  NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint <adress>");
1061         
1062         register_command(cmd_ctx,  NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> ['bin'|'ihex'|'elf'|'s19']");
1063         register_command(cmd_ctx,  NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>");
1064         register_command(cmd_ctx,  NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image <file> [offset] [type]");
1065         register_command(cmd_ctx,  NULL, "load_binary", handle_load_image_command, COMMAND_EXEC, "[DEPRECATED] load_binary <file> <address>");
1066         register_command(cmd_ctx,  NULL, "dump_binary", handle_dump_image_command, COMMAND_EXEC, "[DEPRECATED] dump_binary <file> <address> <size>");
1067         
1068         target_request_register_commands(cmd_ctx);
1069         trace_register_commands(cmd_ctx);
1070         
1071         return ERROR_OK;
1072 }
1073
1074 int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1075 {
1076         target_t *target = targets;
1077         int count = 0;
1078         
1079         if (argc == 1)
1080         {
1081                 int num = strtoul(args[0], NULL, 0);
1082                 
1083                 while (target)
1084                 {
1085                         count++;
1086                         target = target->next;
1087                 }
1088                 
1089                 if (num < count)
1090                         cmd_ctx->current_target = num;
1091                 else
1092                         command_print(cmd_ctx, "%i is out of bounds, only %i targets are configured", num, count);
1093                         
1094                 return ERROR_OK;
1095         }
1096                 
1097         while (target)
1098         {
1099                 command_print(cmd_ctx, "%i: %s (%s), state: %s", count++, target->type->name, target_endianess_strings[target->endianness], target_state_strings[target->state]);
1100                 target = target->next;
1101         }
1102         
1103         return ERROR_OK;
1104 }
1105
1106 int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1107 {
1108         int i;
1109         int found = 0;
1110         
1111         if (argc < 3)
1112         {
1113                 ERROR("target command requires at least three arguments: <type> <endianess> <reset_mode>");
1114                 exit(-1);
1115         }
1116         
1117         /* search for the specified target */
1118         if (args[0] && (args[0][0] != 0))
1119         {
1120                 for (i = 0; target_types[i]; i++)
1121                 {
1122                         if (strcmp(args[0], target_types[i]->name) == 0)
1123                         {
1124                                 target_t **last_target_p = &targets;
1125                                 
1126                                 /* register target specific commands */
1127                                 if (target_types[i]->register_commands(cmd_ctx) != ERROR_OK)
1128                                 {
1129                                         ERROR("couldn't register '%s' commands", args[0]);
1130                                         exit(-1);
1131                                 }
1132
1133                                 if (*last_target_p)
1134                                 {
1135                                         while ((*last_target_p)->next)
1136                                                 last_target_p = &((*last_target_p)->next);
1137                                         last_target_p = &((*last_target_p)->next);
1138                                 }
1139
1140                                 *last_target_p = malloc(sizeof(target_t));
1141                                 
1142                                 (*last_target_p)->type = target_types[i];
1143                                 
1144                                 if (strcmp(args[1], "big") == 0)
1145                                         (*last_target_p)->endianness = TARGET_BIG_ENDIAN;
1146                                 else if (strcmp(args[1], "little") == 0)
1147                                         (*last_target_p)->endianness = TARGET_LITTLE_ENDIAN;
1148                                 else
1149                                 {
1150                                         ERROR("endianness must be either 'little' or 'big', not '%s'", args[1]);
1151                                         exit(-1);
1152                                 }
1153                                 
1154                                 /* what to do on a target reset */
1155                                 if (strcmp(args[2], "reset_halt") == 0)
1156                                         (*last_target_p)->reset_mode = RESET_HALT;
1157                                 else if (strcmp(args[2], "reset_run") == 0)
1158                                         (*last_target_p)->reset_mode = RESET_RUN;
1159                                 else if (strcmp(args[2], "reset_init") == 0)
1160                                         (*last_target_p)->reset_mode = RESET_INIT;
1161                                 else if (strcmp(args[2], "run_and_halt") == 0)
1162                                         (*last_target_p)->reset_mode = RESET_RUN_AND_HALT;
1163                                 else if (strcmp(args[2], "run_and_init") == 0)
1164                                         (*last_target_p)->reset_mode = RESET_RUN_AND_INIT;
1165                                 else
1166                                 {
1167                                         ERROR("unknown target startup mode %s", args[2]);
1168                                         exit(-1);
1169                                 }
1170                                 (*last_target_p)->run_and_halt_time = 1000; /* default 1s */
1171                                 
1172                                 (*last_target_p)->reset_script = NULL;
1173                                 (*last_target_p)->post_halt_script = NULL;
1174                                 (*last_target_p)->pre_resume_script = NULL;
1175                                 (*last_target_p)->gdb_program_script = NULL;
1176                                 
1177                                 (*last_target_p)->working_area = 0x0;
1178                                 (*last_target_p)->working_area_size = 0x0;
1179                                 (*last_target_p)->working_areas = NULL;
1180                                 (*last_target_p)->backup_working_area = 0;
1181                                 
1182                                 (*last_target_p)->state = TARGET_UNKNOWN;
1183                                 (*last_target_p)->debug_reason = DBG_REASON_UNDEFINED;
1184                                 (*last_target_p)->reg_cache = NULL;
1185                                 (*last_target_p)->breakpoints = NULL;
1186                                 (*last_target_p)->watchpoints = NULL;
1187                                 (*last_target_p)->next = NULL;
1188                                 (*last_target_p)->arch_info = NULL;
1189                                 
1190                                 /* initialize trace information */
1191                                 (*last_target_p)->trace_info = malloc(sizeof(trace_t));
1192                                 (*last_target_p)->trace_info->num_trace_points = 0;
1193                                 (*last_target_p)->trace_info->trace_points_size = 0;
1194                                 (*last_target_p)->trace_info->trace_points = NULL;
1195                                 (*last_target_p)->trace_info->trace_history_size = 0;
1196                                 (*last_target_p)->trace_info->trace_history = NULL;
1197                                 (*last_target_p)->trace_info->trace_history_pos = 0;
1198                                 (*last_target_p)->trace_info->trace_history_overflowed = 0;
1199                                 
1200                                 (*last_target_p)->dbgmsg = NULL;
1201                                 (*last_target_p)->dbg_msg_enabled = 0;
1202                                                                 
1203                                 (*last_target_p)->type->target_command(cmd_ctx, cmd, args, argc, *last_target_p);
1204                                 
1205                                 found = 1;
1206                                 break;
1207                         }
1208                 }
1209         }
1210         
1211         /* no matching target found */
1212         if (!found)
1213         {
1214                 ERROR("target '%s' not found", args[0]);
1215                 exit(-1);
1216         }
1217
1218         return ERROR_OK;
1219 }
1220
1221 /* usage: target_script <target#> <event> <script_file> */
1222 int handle_target_script_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1223 {
1224         target_t *target = NULL;
1225         
1226         if (argc < 3)
1227         {
1228                 ERROR("incomplete target_script command");
1229                 exit(-1);
1230         }
1231         
1232         target = get_target_by_num(strtoul(args[0], NULL, 0));
1233         
1234         if (!target)
1235         {
1236                 ERROR("target number '%s' not defined", args[0]);
1237                 exit(-1);
1238         }
1239         
1240         if (strcmp(args[1], "reset") == 0)
1241         {
1242                 if (target->reset_script)
1243                         free(target->reset_script);
1244                 target->reset_script = strdup(args[2]);
1245         }
1246         else if (strcmp(args[1], "post_halt") == 0)
1247         {
1248                 if (target->post_halt_script)
1249                         free(target->post_halt_script);
1250                 target->post_halt_script = strdup(args[2]);
1251         }
1252         else if (strcmp(args[1], "pre_resume") == 0)
1253         {
1254                 if (target->pre_resume_script)
1255                         free(target->pre_resume_script);
1256                 target->pre_resume_script = strdup(args[2]);
1257         }
1258         else if (strcmp(args[1], "gdb_program_config") == 0)
1259         {
1260                 if (target->gdb_program_script)
1261                         free(target->gdb_program_script);
1262                 target->gdb_program_script = strdup(args[2]);
1263         }
1264         else
1265         {
1266                 ERROR("unknown event type: '%s", args[1]);
1267                 exit(-1);       
1268         }
1269         
1270         return ERROR_OK;
1271 }
1272
1273 int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1274 {
1275         target_t *target = NULL;
1276         
1277         if (argc < 2)
1278         {
1279                 ERROR("incomplete run_and_halt_time command");
1280                 exit(-1);
1281         }
1282         
1283         target = get_target_by_num(strtoul(args[0], NULL, 0));
1284         
1285         if (!target)
1286         {
1287                 ERROR("target number '%s' not defined", args[0]);
1288                 exit(-1);
1289         }
1290         
1291         target->run_and_halt_time = strtoul(args[1], NULL, 0);
1292         
1293         return ERROR_OK;
1294 }
1295
1296 int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1297 {
1298         target_t *target = NULL;
1299         
1300         if ((argc < 4) || (argc > 5))
1301         {
1302                 return ERROR_COMMAND_SYNTAX_ERROR;
1303         }
1304         
1305         target = get_target_by_num(strtoul(args[0], NULL, 0));
1306         
1307         if (!target)
1308         {
1309                 ERROR("target number '%s' not defined", args[0]);
1310                 exit(-1);
1311         }
1312         target_free_all_working_areas(target);
1313         
1314         target->working_area_phys = target->working_area_virt = strtoul(args[1], NULL, 0);
1315         if (argc == 5)
1316         {
1317                 target->working_area_virt = strtoul(args[4], NULL, 0);
1318         }
1319         target->working_area_size = strtoul(args[2], NULL, 0);
1320         
1321         if (strcmp(args[3], "backup") == 0)
1322         {
1323                 target->backup_working_area = 1;
1324         }
1325         else if (strcmp(args[3], "nobackup") == 0)
1326         {
1327                 target->backup_working_area = 0;
1328         }
1329         else
1330         {
1331                 ERROR("unrecognized <backup|nobackup> argument (%s)", args[3]);
1332                 return ERROR_COMMAND_SYNTAX_ERROR;
1333         }
1334         
1335         return ERROR_OK;
1336 }
1337
1338
1339 /* process target state changes */
1340 int handle_target(void *priv)
1341 {
1342         int retval;
1343         target_t *target = targets;
1344         
1345         while (target)
1346         {
1347                 /* only poll if target isn't already halted */
1348                 if (target->state != TARGET_HALTED)
1349                 {
1350                         if (target_continous_poll)
1351                                 if ((retval = target->type->poll(target)) != ERROR_OK)
1352                                 {
1353                                         ERROR("couldn't poll target(%d). It's due for a reset.", retval);
1354                                 }
1355                 }
1356         
1357                 target = target->next;
1358         }
1359         
1360         return ERROR_OK;
1361 }
1362
1363 int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1364 {
1365         target_t *target;
1366         reg_t *reg = NULL;
1367         int count = 0;
1368         char *value;
1369         
1370         DEBUG("-");
1371         
1372         target = get_current_target(cmd_ctx);
1373         
1374         /* list all available registers for the current target */
1375         if (argc == 0)
1376         {
1377                 reg_cache_t *cache = target->reg_cache;
1378                 
1379                 count = 0;
1380                 while(cache)
1381                 {
1382                         int i;
1383                         for (i = 0; i < cache->num_regs; i++)
1384                         {
1385                                 value = buf_to_str(cache->reg_list[i].value, cache->reg_list[i].size, 16);
1386                                 command_print(cmd_ctx, "(%i) %s (/%i): 0x%s (dirty: %i, valid: %i)", count++, cache->reg_list[i].name, cache->reg_list[i].size, value, cache->reg_list[i].dirty, cache->reg_list[i].valid);
1387                                 free(value);
1388                         }
1389                         cache = cache->next;
1390                 }
1391                 
1392                 return ERROR_OK;
1393         }
1394         
1395         /* access a single register by its ordinal number */
1396         if ((args[0][0] >= '0') && (args[0][0] <= '9'))
1397         {
1398                 int num = strtoul(args[0], NULL, 0);
1399                 reg_cache_t *cache = target->reg_cache;
1400                 
1401                 count = 0;
1402                 while(cache)
1403                 {
1404                         int i;
1405                         for (i = 0; i < cache->num_regs; i++)
1406                         {
1407                                 if (count++ == num)
1408                                 {
1409                                         reg = &cache->reg_list[i];
1410                                         break;
1411                                 }
1412                         }
1413                         if (reg)
1414                                 break;
1415                         cache = cache->next;
1416                 }
1417                 
1418                 if (!reg)
1419                 {
1420                         command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1421                         return ERROR_OK;
1422                 }
1423         } else /* access a single register by its name */
1424         {
1425                 reg = register_get_by_name(target->reg_cache, args[0], 1);
1426                 
1427                 if (!reg)
1428                 {
1429                         command_print(cmd_ctx, "register %s not found in current target", args[0]);
1430                         return ERROR_OK;
1431                 }
1432         }
1433
1434         /* display a register */
1435         if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
1436         {
1437                 if ((argc == 2) && (strcmp(args[1], "force") == 0))
1438                         reg->valid = 0;
1439                 
1440                 if (reg->valid == 0)
1441                 {
1442                         reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1443                         if (arch_type == NULL)
1444                         {
1445                                 ERROR("BUG: encountered unregistered arch type");
1446                                 return ERROR_OK;
1447                         }
1448                         arch_type->get(reg);
1449                 }
1450                 value = buf_to_str(reg->value, reg->size, 16);
1451                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1452                 free(value);
1453                 return ERROR_OK;
1454         }
1455         
1456         /* set register value */
1457         if (argc == 2)
1458         {
1459                 u8 *buf = malloc(CEIL(reg->size, 8));
1460                 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
1461
1462                 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1463                 if (arch_type == NULL)
1464                 {
1465                         ERROR("BUG: encountered unregistered arch type");
1466                         return ERROR_OK;
1467                 }
1468                 
1469                 arch_type->set(reg, buf);
1470                 
1471                 value = buf_to_str(reg->value, reg->size, 16);
1472                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1473                 free(value);
1474                 
1475                 free(buf);
1476                 
1477                 return ERROR_OK;
1478         }
1479         
1480         command_print(cmd_ctx, "usage: reg <#|name> [value]");
1481         
1482         return ERROR_OK;
1483 }
1484
1485 static int wait_state(struct command_context_s *cmd_ctx, char *cmd, enum target_state state, int ms);
1486
1487 int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1488 {
1489         target_t *target = get_current_target(cmd_ctx);
1490
1491         if (argc == 0)
1492         {
1493                 target->type->poll(target);
1494                         target_arch_state(target);
1495         }
1496         else
1497         {
1498                 if (strcmp(args[0], "on") == 0)
1499                 {
1500                         target_continous_poll = 1;
1501                 }
1502                 else if (strcmp(args[0], "off") == 0)
1503                 {
1504                         target_continous_poll = 0;
1505                 }
1506                 else
1507                 {
1508                         command_print(cmd_ctx, "arg is \"on\" or \"off\"");
1509                 }
1510         }
1511         
1512         
1513         return ERROR_OK;
1514 }
1515
1516 int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1517 {
1518         int ms = 5000;
1519         
1520         if (argc > 0)
1521         {
1522                 char *end;
1523
1524                 ms = strtoul(args[0], &end, 0) * 1000;
1525                 if (*end)
1526                 {
1527                         command_print(cmd_ctx, "usage: %s [seconds]", cmd);
1528                         return ERROR_OK;
1529                 }
1530         }
1531
1532         return wait_state(cmd_ctx, cmd, TARGET_HALTED, ms); 
1533 }
1534
1535 static void target_process_events(struct command_context_s *cmd_ctx)
1536 {
1537         target_t *target = get_current_target(cmd_ctx);
1538         target->type->poll(target);
1539         target_call_timer_callbacks();
1540 }
1541
1542 static int wait_state(struct command_context_s *cmd_ctx, char *cmd, enum target_state state, int ms)
1543 {
1544         int retval;
1545         struct timeval timeout, now;
1546         int once=1;
1547         gettimeofday(&timeout, NULL);
1548         timeval_add_time(&timeout, 0, ms * 1000);
1549         
1550         target_t *target = get_current_target(cmd_ctx);
1551         for (;;)
1552         {
1553                 if ((retval=target->type->poll(target))!=ERROR_OK)
1554                         return retval;
1555                 target_call_timer_callbacks();
1556                 if (target->state == state)
1557                 {
1558                         break;
1559                 }
1560                 if (once)
1561                 {
1562                         once=0;
1563                         command_print(cmd_ctx, "waiting for target %s...", target_state_strings[state]);
1564                 }
1565                 
1566                 gettimeofday(&now, NULL);
1567                 if ((now.tv_sec > timeout.tv_sec) || ((now.tv_sec == timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
1568                 {
1569                         ERROR("timed out while waiting for target %s", target_state_strings[state]);
1570                         break;
1571                 }
1572         }
1573         
1574         return ERROR_OK;
1575 }
1576
1577 int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1578 {
1579         int retval;
1580         target_t *target = get_current_target(cmd_ctx);
1581
1582         DEBUG("-");
1583
1584         if ((retval = target->type->halt(target)) != ERROR_OK)
1585                 {
1586                                 return retval;
1587                 }
1588         
1589         return handle_wait_halt_command(cmd_ctx, cmd, args, argc);
1590 }
1591
1592 /* what to do on daemon startup */
1593 int handle_daemon_startup_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1594 {
1595         if (argc == 1)
1596         {
1597                 if (strcmp(args[0], "attach") == 0)
1598                 {
1599                         startup_mode = DAEMON_ATTACH;
1600                         return ERROR_OK;
1601                 }
1602                 else if (strcmp(args[0], "reset") == 0)
1603                 {
1604                         startup_mode = DAEMON_RESET;
1605                         return ERROR_OK;
1606                 }
1607         }
1608         
1609         WARNING("invalid daemon_startup configuration directive: %s", args[0]);
1610         return ERROR_OK;
1611
1612 }
1613                 
1614 int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1615 {
1616         target_t *target = get_current_target(cmd_ctx);
1617         
1618         USER("requesting target halt and executing a soft reset");
1619         
1620         target->type->soft_reset_halt(target);
1621         
1622         return ERROR_OK;
1623 }
1624
1625 int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1626 {
1627         target_t *target = get_current_target(cmd_ctx);
1628         enum target_reset_mode reset_mode = target->reset_mode;
1629         enum target_reset_mode save = target->reset_mode;
1630         
1631         DEBUG("-");
1632         
1633         if (argc >= 1)
1634         {
1635                 if (strcmp("run", args[0]) == 0)
1636                         reset_mode = RESET_RUN;
1637                 else if (strcmp("halt", args[0]) == 0)
1638                         reset_mode = RESET_HALT;
1639                 else if (strcmp("init", args[0]) == 0)
1640                         reset_mode = RESET_INIT;
1641                 else if (strcmp("run_and_halt", args[0]) == 0)
1642                 {
1643                         reset_mode = RESET_RUN_AND_HALT;
1644                         if (argc >= 2)
1645                         {
1646                                 target->run_and_halt_time = strtoul(args[1], NULL, 0);
1647                         }
1648                 }
1649                 else if (strcmp("run_and_init", args[0]) == 0)
1650                 {
1651                         reset_mode = RESET_RUN_AND_INIT;
1652                         if (argc >= 2)
1653                         {
1654                                 target->run_and_halt_time = strtoul(args[1], NULL, 0);
1655                         }
1656                 }
1657                 else
1658                 {
1659                         command_print(cmd_ctx, "usage: reset ['run', 'halt', 'init', 'run_and_halt', 'run_and_init]");
1660                         return ERROR_OK;
1661                 }
1662         }
1663         
1664         /* temporarily modify mode of current reset target */
1665         target->reset_mode = reset_mode;
1666
1667         /* reset *all* targets */
1668         target_process_reset(cmd_ctx);
1669         
1670         /* Restore default reset mode for this target */
1671     target->reset_mode = save;
1672         
1673         return ERROR_OK;
1674 }
1675
1676 int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1677 {
1678         int retval;
1679         target_t *target = get_current_target(cmd_ctx);
1680         
1681         if (argc == 0)
1682                 retval = target->type->resume(target, 1, 0, 1, 0); /* current pc, addr = 0, handle breakpoints, not debugging */
1683         else if (argc == 1)
1684                 retval = target->type->resume(target, 0, strtoul(args[0], NULL, 0), 1, 0); /* addr = args[0], handle breakpoints, not debugging */
1685         else
1686         {
1687                 return ERROR_COMMAND_SYNTAX_ERROR;
1688         }
1689
1690         target_process_events(cmd_ctx);
1691         
1692         return retval;
1693 }
1694
1695 int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1696 {
1697         target_t *target = get_current_target(cmd_ctx);
1698         
1699         DEBUG("-");
1700         
1701         if (argc == 0)
1702                 target->type->step(target, 1, 0, 1); /* current pc, addr = 0, handle breakpoints */
1703
1704         if (argc == 1)
1705                 target->type->step(target, 0, strtoul(args[0], NULL, 0), 1); /* addr = args[0], handle breakpoints */
1706         
1707         return ERROR_OK;
1708 }
1709
1710 int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1711 {
1712         const int line_bytecnt = 32;
1713         int count = 1;
1714         int size = 4;
1715         u32 address = 0;
1716         int line_modulo;
1717         int i;
1718
1719         char output[128];
1720         int output_len;
1721
1722         int retval;
1723
1724         u8 *buffer;
1725         target_t *target = get_current_target(cmd_ctx);
1726
1727         if (argc < 1)
1728                 return ERROR_OK;
1729
1730         if (argc == 2)
1731                 count = strtoul(args[1], NULL, 0);
1732
1733         address = strtoul(args[0], NULL, 0);
1734         
1735
1736         switch (cmd[2])
1737         {
1738                 case 'w':
1739                         size = 4; line_modulo = line_bytecnt / 4;
1740                         break;
1741                 case 'h':
1742                         size = 2; line_modulo = line_bytecnt / 2;
1743                         break;
1744                 case 'b':
1745                         size = 1; line_modulo = line_bytecnt / 1;
1746                         break;
1747                 default:
1748                         return ERROR_OK;
1749         }
1750
1751         buffer = calloc(count, size);
1752         retval  = target->type->read_memory(target, address, size, count, buffer);
1753         if (retval != ERROR_OK)
1754         {
1755                 switch (retval)
1756                 {
1757                         case ERROR_TARGET_UNALIGNED_ACCESS:
1758                                 command_print(cmd_ctx, "error: address not aligned");
1759                                 break;
1760                         case ERROR_TARGET_NOT_HALTED:
1761                                 command_print(cmd_ctx, "error: target must be halted for memory accesses");
1762                                 break;                  
1763                         case ERROR_TARGET_DATA_ABORT:
1764                                 command_print(cmd_ctx, "error: access caused data abort, system possibly corrupted");
1765                                 break;
1766                         default:
1767                                 command_print(cmd_ctx, "error: unknown error");
1768                                 break;
1769                 }
1770                 return ERROR_OK;
1771         }
1772
1773         output_len = 0;
1774
1775         for (i = 0; i < count; i++)
1776         {
1777                 if (i%line_modulo == 0)
1778                         output_len += snprintf(output + output_len, 128 - output_len, "0x%8.8x: ", address + (i*size));
1779                 
1780                 switch (size)
1781                 {
1782                         case 4:
1783                                 output_len += snprintf(output + output_len, 128 - output_len, "%8.8x ", target_buffer_get_u32(target, &buffer[i*4]));
1784                                 break;
1785                         case 2:
1786                                 output_len += snprintf(output + output_len, 128 - output_len, "%4.4x ", target_buffer_get_u16(target, &buffer[i*2]));
1787                                 break;
1788                         case 1:
1789                                 output_len += snprintf(output + output_len, 128 - output_len, "%2.2x ", buffer[i*1]);
1790                                 break;
1791                 }
1792
1793                 if ((i%line_modulo == line_modulo-1) || (i == count - 1))
1794                 {
1795                         command_print(cmd_ctx, output);
1796                         output_len = 0;
1797                 }
1798         }
1799
1800         free(buffer);
1801         
1802         return ERROR_OK;
1803 }
1804
1805 int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1806 {
1807         u32 address = 0;
1808         u32 value = 0;
1809         int retval;
1810         target_t *target = get_current_target(cmd_ctx);
1811         u8 value_buf[4];
1812
1813         if (argc < 2)
1814                 return ERROR_OK;
1815
1816         address = strtoul(args[0], NULL, 0);
1817         value = strtoul(args[1], NULL, 0);
1818
1819         switch (cmd[2])
1820         {
1821                 case 'w':
1822                         target_buffer_set_u32(target, value_buf, value);
1823                         retval = target->type->write_memory(target, address, 4, 1, value_buf);
1824                         break;
1825                 case 'h':
1826                         target_buffer_set_u16(target, value_buf, value);
1827                         retval = target->type->write_memory(target, address, 2, 1, value_buf);
1828                         break;
1829                 case 'b':
1830                         value_buf[0] = value;
1831                         retval = target->type->write_memory(target, address, 1, 1, value_buf);
1832                         break;
1833                 default:
1834                         return ERROR_OK;
1835         }
1836
1837         switch (retval)
1838         {
1839                 case ERROR_TARGET_UNALIGNED_ACCESS:
1840                         command_print(cmd_ctx, "error: address not aligned");
1841                         break;
1842                 case ERROR_TARGET_DATA_ABORT:
1843                         command_print(cmd_ctx, "error: access caused data abort, system possibly corrupted");
1844                         break;
1845                 case ERROR_TARGET_NOT_HALTED:
1846                         command_print(cmd_ctx, "error: target must be halted for memory accesses");
1847                         break;
1848                 case ERROR_OK:
1849                         break;
1850                 default:
1851                         command_print(cmd_ctx, "error: unknown error");
1852                         break;
1853         }
1854
1855         return ERROR_OK;
1856
1857 }
1858
1859 int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1860 {
1861         u8 *buffer;
1862         u32 buf_cnt;
1863         u32 image_size;
1864         int i;
1865         int retval;
1866
1867         image_t image;  
1868         
1869         duration_t duration;
1870         char *duration_text;
1871         
1872         target_t *target = get_current_target(cmd_ctx);
1873
1874         if (argc < 1)
1875         {
1876                 command_print(cmd_ctx, "usage: load_image <filename> [address] [type]");
1877                 return ERROR_OK;
1878         }
1879         
1880         /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
1881         if (argc >= 2)
1882         {
1883                 image.base_address_set = 1;
1884                 image.base_address = strtoul(args[1], NULL, 0);
1885         }
1886         else
1887         {
1888                 image.base_address_set = 0;
1889         }
1890         
1891         image.start_address_set = 0;
1892
1893         duration_start_measure(&duration);
1894         
1895         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
1896         {
1897                 return ERROR_OK;
1898         }
1899         
1900         image_size = 0x0;
1901         for (i = 0; i < image.num_sections; i++)
1902         {
1903                 buffer = malloc(image.sections[i].size);
1904                 if (buffer == NULL)
1905                 {
1906                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
1907                         break;
1908                 }
1909                 
1910                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
1911                 {
1912                         ERROR("image_read_section failed with error code: %i", retval);
1913                         command_print(cmd_ctx, "image reading failed, download aborted");
1914                         free(buffer);
1915                         image_close(&image);
1916                         return ERROR_OK;
1917                 }
1918                 target_write_buffer(target, image.sections[i].base_address, buf_cnt, buffer);
1919                 image_size += buf_cnt;
1920                 command_print(cmd_ctx, "%u byte written at address 0x%8.8x", buf_cnt, image.sections[i].base_address);
1921                 
1922                 free(buffer);
1923         }
1924
1925         duration_stop_measure(&duration, &duration_text);
1926         command_print(cmd_ctx, "downloaded %u byte in %s", image_size, duration_text);
1927         free(duration_text);
1928         
1929         image_close(&image);
1930
1931         return ERROR_OK;
1932
1933 }
1934
1935 int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1936 {
1937         fileio_t fileio;
1938         
1939         u32 address;
1940         u32 size;
1941         u8 buffer[560];
1942         int retval;
1943         
1944         duration_t duration;
1945         char *duration_text;
1946         
1947         target_t *target = get_current_target(cmd_ctx);
1948
1949         if (argc != 3)
1950         {
1951                 command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
1952                 return ERROR_OK;
1953         }
1954
1955         address = strtoul(args[1], NULL, 0);
1956         size = strtoul(args[2], NULL, 0);
1957
1958         if ((address & 3) || (size & 3))
1959         {
1960                 command_print(cmd_ctx, "only 32-bit aligned address and size are supported");
1961                 return ERROR_OK;
1962         }
1963         
1964         if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
1965         {
1966                 return ERROR_OK;
1967         }
1968         
1969         duration_start_measure(&duration);
1970         
1971         while (size > 0)
1972         {
1973                 u32 size_written;
1974                 u32 this_run_size = (size > 560) ? 560 : size;
1975                 
1976                 retval = target->type->read_memory(target, address, 4, this_run_size / 4, buffer);
1977                 if (retval != ERROR_OK)
1978                 {
1979                         command_print(cmd_ctx, "Reading memory failed %d", retval);
1980                         break;
1981                 }
1982                 
1983                 fileio_write(&fileio, this_run_size, buffer, &size_written);
1984                 
1985                 size -= this_run_size;
1986                 address += this_run_size;
1987         }
1988
1989         fileio_close(&fileio);
1990
1991         duration_stop_measure(&duration, &duration_text);
1992         command_print(cmd_ctx, "dumped %"PRIi64" byte in %s", fileio.size, duration_text);
1993         free(duration_text);
1994         
1995         return ERROR_OK;
1996 }
1997
1998 int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1999 {
2000         u8 *buffer;
2001         u32 buf_cnt;
2002         u32 image_size;
2003         int i;
2004         int retval;
2005         u32 checksum = 0;
2006         u32 mem_checksum = 0;
2007
2008         image_t image;  
2009         
2010         duration_t duration;
2011         char *duration_text;
2012         
2013         target_t *target = get_current_target(cmd_ctx);
2014         
2015         if (argc < 1)
2016         {
2017                 command_print(cmd_ctx, "usage: verify_image <file> [offset] [type]");
2018                 return ERROR_OK;
2019         }
2020         
2021         if (!target)
2022         {
2023                 ERROR("no target selected");
2024                 return ERROR_OK;
2025         }
2026         
2027         duration_start_measure(&duration);
2028         
2029         if (argc >= 2)
2030         {
2031                 image.base_address_set = 1;
2032                 image.base_address = strtoul(args[1], NULL, 0);
2033         }
2034         else
2035         {
2036                 image.base_address_set = 0;
2037                 image.base_address = 0x0;
2038         }
2039
2040         image.start_address_set = 0;
2041
2042         if (image_open(&image, args[0], (argc == 3) ? args[2] : NULL) != ERROR_OK)
2043         {
2044                 return ERROR_OK;
2045         }
2046         
2047         image_size = 0x0;
2048         for (i = 0; i < image.num_sections; i++)
2049         {
2050                 buffer = malloc(image.sections[i].size);
2051                 if (buffer == NULL)
2052                 {
2053                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2054                         break;
2055                 }
2056                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2057                 {
2058                         ERROR("image_read_section failed with error code: %i", retval);
2059                         command_print(cmd_ctx, "image reading failed, verify aborted");
2060                         free(buffer);
2061                         image_close(&image);
2062                         return ERROR_OK;
2063                 }
2064                 
2065                 /* calculate checksum of image */
2066                 image_calculate_checksum( buffer, buf_cnt, &checksum );
2067                 
2068                 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2069                 
2070                 if( retval != ERROR_OK )
2071                 {
2072                         command_print(cmd_ctx, "could not calculate checksum, verify aborted");
2073                         free(buffer);
2074                         image_close(&image);
2075                         return ERROR_OK;
2076                 }
2077                 
2078                 if( checksum != mem_checksum )
2079                 {
2080                         /* failed crc checksum, fall back to a binary compare */
2081                         u8 *data;
2082                         
2083                         command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
2084                         
2085                         data = (u8*)malloc(buf_cnt);
2086                         
2087                         /* Can we use 32bit word accesses? */
2088                         int size = 1;
2089                         int count = buf_cnt;
2090                         if ((count % 4) == 0)
2091                         {
2092                                 size *= 4;
2093                                 count /= 4;
2094                         }
2095                         retval = target->type->read_memory(target, image.sections[i].base_address, size, count, data);
2096         
2097                         if (retval == ERROR_OK)
2098                         {
2099                                 int t;
2100                                 for (t = 0; t < buf_cnt; t++)
2101                                 {
2102                                         if (data[t] != buffer[t])
2103                                         {
2104                                                 command_print(cmd_ctx, "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n", t + image.sections[i].base_address, data[t], buffer[t]);
2105                                                 free(data);
2106                                                 free(buffer);
2107                                                 image_close(&image);
2108                                                 return ERROR_OK;
2109                                         }
2110                                 }
2111                         }
2112                         
2113                         free(data);
2114                 }
2115                 
2116                 free(buffer);
2117                 image_size += buf_cnt;
2118         }
2119         
2120         duration_stop_measure(&duration, &duration_text);
2121         command_print(cmd_ctx, "verified %u bytes in %s", image_size, duration_text);
2122         free(duration_text);
2123         
2124         image_close(&image);
2125         
2126         return ERROR_OK;
2127 }
2128
2129 int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2130 {
2131         int retval;
2132         target_t *target = get_current_target(cmd_ctx);
2133
2134         if (argc == 0)
2135         {
2136                 breakpoint_t *breakpoint = target->breakpoints;
2137
2138                 while (breakpoint)
2139                 {
2140                         if (breakpoint->type == BKPT_SOFT)
2141                         {
2142                                 char* buf = buf_to_str(breakpoint->orig_instr, breakpoint->length, 16);
2143                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i, 0x%s", breakpoint->address, breakpoint->length, breakpoint->set, buf);
2144                                 free(buf);
2145                         }
2146                         else
2147                         {
2148                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i", breakpoint->address, breakpoint->length, breakpoint->set);
2149                         }
2150                         breakpoint = breakpoint->next;
2151                 }
2152         }
2153         else if (argc >= 2)
2154         {
2155                 int hw = BKPT_SOFT;
2156                 u32 length = 0;
2157
2158                 length = strtoul(args[1], NULL, 0);
2159                 
2160                 if (argc >= 3)
2161                         if (strcmp(args[2], "hw") == 0)
2162                                 hw = BKPT_HARD;
2163
2164                 if ((retval = breakpoint_add(target, strtoul(args[0], NULL, 0), length, hw)) != ERROR_OK)
2165                 {
2166                         switch (retval)
2167                         {
2168                                 case ERROR_TARGET_NOT_HALTED:
2169                                         command_print(cmd_ctx, "target must be halted to set breakpoints");
2170                                         break;
2171                                 case ERROR_TARGET_RESOURCE_NOT_AVAILABLE:
2172                                         command_print(cmd_ctx, "no more breakpoints available");
2173                                         break;
2174                                 default:
2175                                         command_print(cmd_ctx, "unknown error, breakpoint not set");
2176                                         break;
2177                         }
2178                 }
2179                 else
2180                 {
2181                         command_print(cmd_ctx, "breakpoint added at address 0x%8.8x", strtoul(args[0], NULL, 0));
2182                 }
2183         }
2184         else
2185         {
2186                 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
2187         }
2188
2189         return ERROR_OK;
2190 }
2191
2192 int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2193 {
2194         target_t *target = get_current_target(cmd_ctx);
2195
2196         if (argc > 0)
2197                 breakpoint_remove(target, strtoul(args[0], NULL, 0));
2198
2199         return ERROR_OK;
2200 }
2201
2202 int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2203 {
2204         target_t *target = get_current_target(cmd_ctx);
2205         int retval;
2206
2207         if (argc == 0)
2208         {
2209                 watchpoint_t *watchpoint = target->watchpoints;
2210
2211                 while (watchpoint)
2212                 {
2213                         command_print(cmd_ctx, "address: 0x%8.8x, mask: 0x%8.8x, r/w/a: %i, value: 0x%8.8x, mask: 0x%8.8x", watchpoint->address, watchpoint->length, watchpoint->rw, watchpoint->value, watchpoint->mask);
2214                         watchpoint = watchpoint->next;
2215                 }
2216         } 
2217         else if (argc >= 2)
2218         {
2219                 enum watchpoint_rw type = WPT_ACCESS;
2220                 u32 data_value = 0x0;
2221                 u32 data_mask = 0xffffffff;
2222                 
2223                 if (argc >= 3)
2224                 {
2225                         switch(args[2][0])
2226                         {
2227                                 case 'r':
2228                                         type = WPT_READ;
2229                                         break;
2230                                 case 'w':
2231                                         type = WPT_WRITE;
2232                                         break;
2233                                 case 'a':
2234                                         type = WPT_ACCESS;
2235                                         break;
2236                                 default:
2237                                         command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2238                                         return ERROR_OK;
2239                         }
2240                 }
2241                 if (argc >= 4)
2242                 {
2243                         data_value = strtoul(args[3], NULL, 0);
2244                 }
2245                 if (argc >= 5)
2246                 {
2247                         data_mask = strtoul(args[4], NULL, 0);
2248                 }
2249                 
2250                 if ((retval = watchpoint_add(target, strtoul(args[0], NULL, 0),
2251                                 strtoul(args[1], NULL, 0), type, data_value, data_mask)) != ERROR_OK)
2252                 {
2253                         switch (retval)
2254                         {
2255                                 case ERROR_TARGET_NOT_HALTED:
2256                                         command_print(cmd_ctx, "target must be halted to set watchpoints");
2257                                         break;
2258                                 case ERROR_TARGET_RESOURCE_NOT_AVAILABLE:
2259                                         command_print(cmd_ctx, "no more watchpoints available");
2260                                         break;
2261                                 default:
2262                                         command_print(cmd_ctx, "unknown error, watchpoint not set");
2263                                         break;
2264                         }       
2265                 }
2266         }
2267         else
2268         {
2269                 command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2270         }
2271                 
2272         return ERROR_OK;
2273 }
2274
2275 int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2276 {
2277         target_t *target = get_current_target(cmd_ctx);
2278
2279         if (argc > 0)
2280                 watchpoint_remove(target, strtoul(args[0], NULL, 0));
2281         
2282         return ERROR_OK;
2283 }
2284
2285 int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc)
2286 {
2287         int retval;
2288         target_t *target = get_current_target(cmd_ctx);
2289         u32 va;
2290         u32 pa;
2291
2292         if (argc != 1)
2293         {
2294                 return ERROR_COMMAND_SYNTAX_ERROR;
2295         }
2296         va = strtoul(args[0], NULL, 0);
2297
2298         retval = target->type->virt2phys(target, va, &pa);
2299         if (retval == ERROR_OK)
2300         {
2301                 command_print(cmd_ctx, "Physical address 0x%08x", pa);
2302         }
2303         else
2304         {
2305                 /* lower levels will have logged a detailed error which is 
2306                  * forwarded to telnet/GDB session.  
2307                  */
2308         }
2309         return retval;
2310 }