- adds two speeds to jtag_speed. reset and post reset speed. Default
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   This program is free software; you can redistribute it and/or modify  *
6  *   it under the terms of the GNU General Public License as published by  *
7  *   the Free Software Foundation; either version 2 of the License, or     *
8  *   (at your option) any later version.                                   *
9  *                                                                         *
10  *   This program is distributed in the hope that it will be useful,       *
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
13  *   GNU General Public License for more details.                          *
14  *                                                                         *
15  *   You should have received a copy of the GNU General Public License     *
16  *   along with this program; if not, write to the                         *
17  *   Free Software Foundation, Inc.,                                       *
18  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
19  ***************************************************************************/
20 #ifdef HAVE_CONFIG_H
21 #include "config.h"
22 #endif
23
24 #include "replacements.h"
25 #include "target.h"
26 #include "target_request.h"
27
28 #include "log.h"
29 #include "configuration.h"
30 #include "binarybuffer.h"
31 #include "jtag.h"
32
33 #include <string.h>
34 #include <stdlib.h>
35 #include <inttypes.h>
36
37 #include <sys/types.h>
38 #include <sys/stat.h>
39 #include <unistd.h>
40 #include <errno.h>
41
42 #include <sys/time.h>
43 #include <time.h>
44
45 #include <time_support.h>
46
47 #include <fileio.h>
48 #include <image.h>
49
50 int cli_target_callback_event_handler(struct target_s *target, enum target_event event, void *priv);
51
52
53 int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
54 int handle_daemon_startup_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
55 int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
56
57 int handle_target_script_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
58 int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
59 int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
60
61 int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
62 int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
63 int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
64 int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
65 int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
66 int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
67 int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
68 int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
69 int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
70 int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
71 int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
72 int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
73 int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
74 int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
75 int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
76 int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
77 int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
78 int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc);
79
80 /* targets
81  */
82 extern target_type_t arm7tdmi_target;
83 extern target_type_t arm720t_target;
84 extern target_type_t arm9tdmi_target;
85 extern target_type_t arm920t_target;
86 extern target_type_t arm966e_target;
87 extern target_type_t arm926ejs_target;
88 extern target_type_t feroceon_target;
89 extern target_type_t xscale_target;
90 extern target_type_t cortexm3_target;
91 extern target_type_t arm11_target;
92
93 target_type_t *target_types[] =
94 {
95         &arm7tdmi_target,
96         &arm9tdmi_target,
97         &arm920t_target,
98         &arm720t_target,
99         &arm966e_target,
100         &arm926ejs_target,
101         &feroceon_target,
102         &xscale_target,
103         &cortexm3_target,
104         &arm11_target,
105         NULL,
106 };
107
108 target_t *targets = NULL;
109 target_event_callback_t *target_event_callbacks = NULL;
110 target_timer_callback_t *target_timer_callbacks = NULL;
111
112 char *target_state_strings[] =
113 {
114         "unknown",
115         "running",
116         "halted",
117         "reset",
118         "debug_running",
119 };
120
121 char *target_debug_reason_strings[] =
122 {
123         "debug request", "breakpoint", "watchpoint",
124         "watchpoint and breakpoint", "single step",
125         "target not halted", "undefined"
126 };
127
128 char *target_endianess_strings[] =
129 {
130         "big endian",
131         "little endian",
132 };
133
134 enum daemon_startup_mode startup_mode = DAEMON_ATTACH;
135
136 static int target_continous_poll = 1;
137
138 /* read a u32 from a buffer in target memory endianness */
139 u32 target_buffer_get_u32(target_t *target, u8 *buffer)
140 {
141         if (target->endianness == TARGET_LITTLE_ENDIAN)
142                 return le_to_h_u32(buffer);
143         else
144                 return be_to_h_u32(buffer);
145 }
146
147 /* read a u16 from a buffer in target memory endianness */
148 u16 target_buffer_get_u16(target_t *target, u8 *buffer)
149 {
150         if (target->endianness == TARGET_LITTLE_ENDIAN)
151                 return le_to_h_u16(buffer);
152         else
153                 return be_to_h_u16(buffer);
154 }
155
156 /* write a u32 to a buffer in target memory endianness */
157 void target_buffer_set_u32(target_t *target, u8 *buffer, u32 value)
158 {
159         if (target->endianness == TARGET_LITTLE_ENDIAN)
160                 h_u32_to_le(buffer, value);
161         else
162                 h_u32_to_be(buffer, value);
163 }
164
165 /* write a u16 to a buffer in target memory endianness */
166 void target_buffer_set_u16(target_t *target, u8 *buffer, u16 value)
167 {
168         if (target->endianness == TARGET_LITTLE_ENDIAN)
169                 h_u16_to_le(buffer, value);
170         else
171                 h_u16_to_be(buffer, value);
172 }
173
174 /* returns a pointer to the n-th configured target */
175 target_t* get_target_by_num(int num)
176 {
177         target_t *target = targets;
178         int i = 0;
179
180         while (target)
181         {
182                 if (num == i)
183                         return target;
184                 target = target->next;
185                 i++;
186         }
187
188         return NULL;
189 }
190
191 int get_num_by_target(target_t *query_target)
192 {
193         target_t *target = targets;
194         int i = 0;      
195         
196         while (target)
197         {
198                 if (target == query_target)
199                         return i;
200                 target = target->next;
201                 i++;
202         }
203         
204         return -1;
205 }
206
207 target_t* get_current_target(command_context_t *cmd_ctx)
208 {
209         target_t *target = get_target_by_num(cmd_ctx->current_target);
210         
211         if (target == NULL)
212         {
213                 ERROR("BUG: current_target out of bounds");
214                 exit(-1);
215         }
216         
217         return target;
218 }
219
220 /* Process target initialization, when target entered debug out of reset
221  * the handler is unregistered at the end of this function, so it's only called once
222  */
223 int target_init_handler(struct target_s *target, enum target_event event, void *priv)
224 {
225         FILE *script;
226         struct command_context_s *cmd_ctx = priv;
227         
228         if ((event == TARGET_EVENT_HALTED) && (target->reset_script))
229         {
230                 target_unregister_event_callback(target_init_handler, priv);
231
232                 script = open_file_from_path(target->reset_script, "r");
233                 if (!script)
234                 {
235                         ERROR("couldn't open script file %s", target->reset_script);
236                                 return ERROR_OK;
237                 }
238
239                 INFO("executing reset script '%s'", target->reset_script);
240                 command_run_file(cmd_ctx, script, COMMAND_EXEC);
241                 fclose(script);
242
243                 jtag_execute_queue();
244         }
245         
246         return ERROR_OK;
247 }
248
249 int target_run_and_halt_handler(void *priv)
250 {
251         target_t *target = priv;
252         
253         target->type->halt(target);
254         
255         return ERROR_OK;
256 }
257
258 int target_process_reset(struct command_context_s *cmd_ctx)
259 {
260         int retval = ERROR_OK;
261         target_t *target;
262         struct timeval timeout, now;
263
264         jtag->speed(jtag_speed);
265
266         /* prepare reset_halt where necessary */
267         target = targets;
268         while (target)
269         {
270                 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
271                 {
272                         switch (target->reset_mode)
273                         {
274                                 case RESET_HALT:
275                                         command_print(cmd_ctx, "nSRST pulls nTRST, falling back to \"reset run_and_halt\"");
276                                         target->reset_mode = RESET_RUN_AND_HALT;
277                                         break;
278                                 case RESET_INIT:
279                                         command_print(cmd_ctx, "nSRST pulls nTRST, falling back to \"reset run_and_init\"");
280                                         target->reset_mode = RESET_RUN_AND_INIT;
281                                         break;
282                                 default:
283                                         break;
284                         } 
285                 }
286                 switch (target->reset_mode)
287                 {
288                         case RESET_HALT:
289                         case RESET_INIT:
290                                 target->type->prepare_reset_halt(target);
291                                 break;
292                         default:
293                                 break;
294                 }
295                 target = target->next;
296         }
297         
298         target = targets;
299         while (target)
300         {
301                 target->type->assert_reset(target);
302                 target = target->next;
303         }
304         jtag_execute_queue();
305         
306         /* request target halt if necessary, and schedule further action */
307         target = targets;
308         while (target)
309         {
310                 switch (target->reset_mode)
311                 {
312                         case RESET_RUN:
313                                 /* nothing to do if target just wants to be run */
314                                 break;
315                         case RESET_RUN_AND_HALT:
316                                 /* schedule halt */
317                                 target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target);
318                                 break;
319                         case RESET_RUN_AND_INIT:
320                                 /* schedule halt */
321                                 target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target);
322                                 target_register_event_callback(target_init_handler, cmd_ctx);
323                                 break;
324                         case RESET_HALT:
325                                 target->type->halt(target);
326                                 break;
327                         case RESET_INIT:
328                                 target->type->halt(target);
329                                 target_register_event_callback(target_init_handler, cmd_ctx);
330                                 break;
331                         default:
332                                 ERROR("BUG: unknown target->reset_mode");
333                 }
334                 target = target->next;
335         }
336         
337         target = targets;
338         while (target)
339         {
340                 target->type->deassert_reset(target);
341                 target = target->next;
342         }
343         jtag_execute_queue();
344         
345         /* Wait for reset to complete, maximum 5 seconds. */    
346         gettimeofday(&timeout, NULL);
347         timeval_add_time(&timeout, 5, 0);
348         for(;;)
349         {
350                 gettimeofday(&now, NULL);
351                 
352                 target_call_timer_callbacks_now();
353                 
354                 target = targets;
355                 while (target)
356                 {
357                         target->type->poll(target);
358                         if ((target->reset_mode == RESET_RUN_AND_INIT) || (target->reset_mode == RESET_RUN_AND_HALT))
359                         {
360                                 if (target->state != TARGET_HALTED)
361                                 {
362                                         if ((now.tv_sec > timeout.tv_sec) || ((now.tv_sec == timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
363                                         {
364                                                 USER("Timed out waiting for reset");
365                                                 goto done;
366                                         }
367                                         /* this will send alive messages on e.g. GDB remote protocol. */
368                                         usleep(500*1000); 
369                                         USER_N("%s", ""); /* avoid warning about zero length formatting message*/ 
370                                         goto again;
371                                 }
372                         }
373                         target = target->next;
374                 }
375                 /* All targets we're waiting for are halted */
376                 break;
377                 
378                 again:;
379         }
380         done:
381         
382         
383         /* We want any events to be processed before the prompt */
384         target_call_timer_callbacks_now();
385
386         jtag->speed(jtag_speed_post_reset);
387         
388         return retval;
389 }
390
391 static int default_virt2phys(struct target_s *target, u32 virtual, u32 *physical)
392 {
393         *physical = virtual;
394         return ERROR_OK;
395 }
396
397 static int default_mmu(struct target_s *target, int *enabled)
398 {
399         *enabled = 0;
400         return ERROR_OK;
401 }
402
403 int target_init(struct command_context_s *cmd_ctx)
404 {
405         target_t *target = targets;
406         
407         while (target)
408         {
409                 if (target->type->init_target(cmd_ctx, target) != ERROR_OK)
410                 {
411                         ERROR("target '%s' init failed", target->type->name);
412                         exit(-1);
413                 }
414                 
415                 /* Set up default functions if none are provided by target */
416                 if (target->type->virt2phys == NULL)
417                 {
418                         target->type->virt2phys = default_virt2phys;
419                 }
420                 if (target->type->mmu == NULL)
421                 {
422                         target->type->mmu = default_mmu;
423                 }
424                 target = target->next;
425         }
426         
427         if (targets)
428         {
429                 target_register_user_commands(cmd_ctx);
430                 target_register_timer_callback(handle_target, 100, 1, NULL);
431         }
432                 
433         return ERROR_OK;
434 }
435
436 int target_init_reset(struct command_context_s *cmd_ctx)
437 {
438         if (startup_mode == DAEMON_RESET)
439                 target_process_reset(cmd_ctx);
440         
441         return ERROR_OK;
442 }
443
444 int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
445 {
446         target_event_callback_t **callbacks_p = &target_event_callbacks;
447         
448         if (callback == NULL)
449         {
450                 return ERROR_INVALID_ARGUMENTS;
451         }
452         
453         if (*callbacks_p)
454         {
455                 while ((*callbacks_p)->next)
456                         callbacks_p = &((*callbacks_p)->next);
457                 callbacks_p = &((*callbacks_p)->next);
458         }
459         
460         (*callbacks_p) = malloc(sizeof(target_event_callback_t));
461         (*callbacks_p)->callback = callback;
462         (*callbacks_p)->priv = priv;
463         (*callbacks_p)->next = NULL;
464         
465         return ERROR_OK;
466 }
467
468 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
469 {
470         target_timer_callback_t **callbacks_p = &target_timer_callbacks;
471         struct timeval now;
472         
473         if (callback == NULL)
474         {
475                 return ERROR_INVALID_ARGUMENTS;
476         }
477         
478         if (*callbacks_p)
479         {
480                 while ((*callbacks_p)->next)
481                         callbacks_p = &((*callbacks_p)->next);
482                 callbacks_p = &((*callbacks_p)->next);
483         }
484         
485         (*callbacks_p) = malloc(sizeof(target_timer_callback_t));
486         (*callbacks_p)->callback = callback;
487         (*callbacks_p)->periodic = periodic;
488         (*callbacks_p)->time_ms = time_ms;
489         
490         gettimeofday(&now, NULL);
491         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
492         time_ms -= (time_ms % 1000);
493         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
494         if ((*callbacks_p)->when.tv_usec > 1000000)
495         {
496                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
497                 (*callbacks_p)->when.tv_sec += 1;
498         }
499         
500         (*callbacks_p)->priv = priv;
501         (*callbacks_p)->next = NULL;
502         
503         return ERROR_OK;
504 }
505
506 int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
507 {
508         target_event_callback_t **p = &target_event_callbacks;
509         target_event_callback_t *c = target_event_callbacks;
510         
511         if (callback == NULL)
512         {
513                 return ERROR_INVALID_ARGUMENTS;
514         }
515                 
516         while (c)
517         {
518                 target_event_callback_t *next = c->next;
519                 if ((c->callback == callback) && (c->priv == priv))
520                 {
521                         *p = next;
522                         free(c);
523                         return ERROR_OK;
524                 }
525                 else
526                         p = &(c->next);
527                 c = next;
528         }
529         
530         return ERROR_OK;
531 }
532
533 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
534 {
535         target_timer_callback_t **p = &target_timer_callbacks;
536         target_timer_callback_t *c = target_timer_callbacks;
537         
538         if (callback == NULL)
539         {
540                 return ERROR_INVALID_ARGUMENTS;
541         }
542                 
543         while (c)
544         {
545                 target_timer_callback_t *next = c->next;
546                 if ((c->callback == callback) && (c->priv == priv))
547                 {
548                         *p = next;
549                         free(c);
550                         return ERROR_OK;
551                 }
552                 else
553                         p = &(c->next);
554                 c = next;
555         }
556         
557         return ERROR_OK;
558 }
559
560 int target_call_event_callbacks(target_t *target, enum target_event event)
561 {
562         target_event_callback_t *callback = target_event_callbacks;
563         target_event_callback_t *next_callback;
564         
565         DEBUG("target event %i", event);
566         
567         while (callback)
568         {
569                 next_callback = callback->next;
570                 callback->callback(target, event, callback->priv);
571                 callback = next_callback;
572         }
573         
574         return ERROR_OK;
575 }
576
577 int target_call_timer_callbacks()
578 {
579         target_timer_callback_t *callback = target_timer_callbacks;
580         target_timer_callback_t *next_callback;
581         struct timeval now;
582
583         gettimeofday(&now, NULL);
584         
585         while (callback)
586         {
587                 next_callback = callback->next;
588                 
589                 if (((now.tv_sec >= callback->when.tv_sec) && (now.tv_usec >= callback->when.tv_usec))
590                         || (now.tv_sec > callback->when.tv_sec))
591                 {
592                         callback->callback(callback->priv);
593                         if (callback->periodic)
594                         {
595                                 int time_ms = callback->time_ms;
596                                 callback->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
597                                 time_ms -= (time_ms % 1000);
598                                 callback->when.tv_sec = now.tv_sec + time_ms / 1000;
599                                 if (callback->when.tv_usec > 1000000)
600                                 {
601                                         callback->when.tv_usec = callback->when.tv_usec - 1000000;
602                                         callback->when.tv_sec += 1;
603                                 }
604                         }
605                         else
606                                 target_unregister_timer_callback(callback->callback, callback->priv);
607                 }
608                         
609                 callback = next_callback;
610         }
611         
612         return ERROR_OK;
613 }
614
615 int target_call_timer_callbacks_now()
616 {
617         /* TODO: this should invoke the timer callbacks now. This is used to ensure that
618          * any outstanding polls, etc. are in fact invoked before a synchronous command 
619          * completes. 
620          */
621         return target_call_timer_callbacks();
622 }
623
624
625 int target_alloc_working_area(struct target_s *target, u32 size, working_area_t **area)
626 {
627         working_area_t *c = target->working_areas;
628         working_area_t *new_wa = NULL;
629         
630         /* Reevaluate working area address based on MMU state*/
631         if (target->working_areas == NULL)
632         {
633                 int retval;
634                 int enabled;
635                 retval = target->type->mmu(target, &enabled);
636                 if (retval != ERROR_OK)
637                 {
638                         return retval;
639                 }
640                 if (enabled)
641                 {
642                         target->working_area = target->working_area_virt;
643                 }
644                 else
645                 {
646                         target->working_area = target->working_area_phys;
647                 }
648         }
649         
650         /* only allocate multiples of 4 byte */
651         if (size % 4)
652         {
653                 ERROR("BUG: code tried to allocate unaligned number of bytes, padding");
654                 size = CEIL(size, 4);
655         }
656         
657         /* see if there's already a matching working area */
658         while (c)
659         {
660                 if ((c->free) && (c->size == size))
661                 {
662                         new_wa = c;
663                         break;
664                 }
665                 c = c->next;
666         }
667         
668         /* if not, allocate a new one */
669         if (!new_wa)
670         {
671                 working_area_t **p = &target->working_areas;
672                 u32 first_free = target->working_area;
673                 u32 free_size = target->working_area_size;
674                 
675                 DEBUG("allocating new working area");
676                 
677                 c = target->working_areas;
678                 while (c)
679                 {
680                         first_free += c->size;
681                         free_size -= c->size;
682                         p = &c->next;
683                         c = c->next;
684                 }
685                 
686                 if (free_size < size)
687                 {
688                         WARNING("not enough working area available(requested %d, free %d)", size, free_size);
689                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
690                 }
691                 
692                 new_wa = malloc(sizeof(working_area_t));
693                 new_wa->next = NULL;
694                 new_wa->size = size;
695                 new_wa->address = first_free;
696                 
697                 if (target->backup_working_area)
698                 {
699                         new_wa->backup = malloc(new_wa->size);
700                         target->type->read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup);
701                 }
702                 else
703                 {
704                         new_wa->backup = NULL;
705                 }
706                 
707                 /* put new entry in list */
708                 *p = new_wa;
709         }
710         
711         /* mark as used, and return the new (reused) area */
712         new_wa->free = 0;
713         *area = new_wa;
714         
715         /* user pointer */
716         new_wa->user = area;
717         
718         return ERROR_OK;
719 }
720
721 int target_free_working_area(struct target_s *target, working_area_t *area)
722 {
723         if (area->free)
724                 return ERROR_OK;
725         
726         if (target->backup_working_area)
727                 target->type->write_memory(target, area->address, 4, area->size / 4, area->backup);
728         
729         area->free = 1;
730         
731         /* mark user pointer invalid */
732         *area->user = NULL;
733         area->user = NULL;
734         
735         return ERROR_OK;
736 }
737
738 int target_free_all_working_areas(struct target_s *target)
739 {
740         working_area_t *c = target->working_areas;
741
742         while (c)
743         {
744                 working_area_t *next = c->next;
745                 target_free_working_area(target, c);
746                 
747                 if (c->backup)
748                         free(c->backup);
749                 
750                 free(c);
751                 
752                 c = next;
753         }
754         
755         target->working_areas = NULL;
756         
757         return ERROR_OK;
758 }
759
760 int target_register_commands(struct command_context_s *cmd_ctx)
761 {
762         register_command(cmd_ctx, NULL, "target", handle_target_command, COMMAND_CONFIG, NULL);
763         register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, NULL);
764         register_command(cmd_ctx, NULL, "daemon_startup", handle_daemon_startup_command, COMMAND_CONFIG, NULL);
765         register_command(cmd_ctx, NULL, "target_script", handle_target_script_command, COMMAND_CONFIG, NULL);
766         register_command(cmd_ctx, NULL, "run_and_halt_time", handle_run_and_halt_time_command, COMMAND_CONFIG, "<target> <run time ms>");
767         register_command(cmd_ctx, NULL, "working_area", handle_working_area_command, COMMAND_ANY, "working_area <target#> <address> <size> <'backup'|'nobackup'> [virtual address]");
768         register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "virt2phys <virtual address>");
769
770         return ERROR_OK;
771 }
772
773 int target_arch_state(struct target_s *target)
774 {
775         int retval;
776         if (target==NULL)
777         {
778                 USER("No target has been configured");
779                 return ERROR_OK;
780         }
781         
782         USER("target state: %s", target_state_strings[target->state]);
783         
784         if (target->state!=TARGET_HALTED)
785                 return ERROR_OK;
786         
787         retval=target->type->arch_state(target);
788         return retval;
789 }
790
791 /* Single aligned words are guaranteed to use 16 or 32 bit access 
792  * mode respectively, otherwise data is handled as quickly as 
793  * possible
794  */
795 int target_write_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
796 {
797         int retval;
798         
799         DEBUG("writing buffer of %i byte at 0x%8.8x", size, address);
800         
801         if (((address % 2) == 0) && (size == 2))
802         {
803                 return target->type->write_memory(target, address, 2, 1, buffer);
804         }
805         
806         /* handle unaligned head bytes */
807         if (address % 4)
808         {
809                 int unaligned = 4 - (address % 4);
810                 
811                 if (unaligned > size)
812                         unaligned = size;
813
814                 if ((retval = target->type->write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
815                         return retval;
816                 
817                 buffer += unaligned;
818                 address += unaligned;
819                 size -= unaligned;
820         }
821                 
822         /* handle aligned words */
823         if (size >= 4)
824         {
825                 int aligned = size - (size % 4);
826         
827                 /* use bulk writes above a certain limit. This may have to be changed */
828                 if (aligned > 128)
829                 {
830                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
831                                 return retval;
832                 }
833                 else
834                 {
835                         if ((retval = target->type->write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
836                                 return retval;
837                 }
838                 
839                 buffer += aligned;
840                 address += aligned;
841                 size -= aligned;
842         }
843         
844         /* handle tail writes of less than 4 bytes */
845         if (size > 0)
846         {
847                 if ((retval = target->type->write_memory(target, address, 1, size, buffer)) != ERROR_OK)
848                         return retval;
849         }
850         
851         return ERROR_OK;
852 }
853
854
855 /* Single aligned words are guaranteed to use 16 or 32 bit access 
856  * mode respectively, otherwise data is handled as quickly as 
857  * possible
858  */
859 int target_read_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
860 {
861         int retval;
862         
863         DEBUG("reading buffer of %i byte at 0x%8.8x", size, address);
864         
865         if (((address % 2) == 0) && (size == 2))
866         {
867                 return target->type->read_memory(target, address, 2, 1, buffer);
868         }
869         
870         /* handle unaligned head bytes */
871         if (address % 4)
872         {
873                 int unaligned = 4 - (address % 4);
874                 
875                 if (unaligned > size)
876                         unaligned = size;
877
878                 if ((retval = target->type->read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
879                         return retval;
880                 
881                 buffer += unaligned;
882                 address += unaligned;
883                 size -= unaligned;
884         }
885                 
886         /* handle aligned words */
887         if (size >= 4)
888         {
889                 int aligned = size - (size % 4);
890         
891                 if ((retval = target->type->read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
892                         return retval;
893                 
894                 buffer += aligned;
895                 address += aligned;
896                 size -= aligned;
897         }
898         
899         /* handle tail writes of less than 4 bytes */
900         if (size > 0)
901         {
902                 if ((retval = target->type->read_memory(target, address, 1, size, buffer)) != ERROR_OK)
903                         return retval;
904         }
905         
906         return ERROR_OK;
907 }
908
909 int target_checksum_memory(struct target_s *target, u32 address, u32 size, u32* crc)
910 {
911         u8 *buffer;
912         int retval;
913         int i;
914         u32 checksum = 0;
915         
916         if ((retval = target->type->checksum_memory(target, address,
917                 size, &checksum)) == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
918         {
919                 buffer = malloc(size);
920                 if (buffer == NULL)
921                 {
922                         ERROR("error allocating buffer for section (%d bytes)", size);
923                         return ERROR_INVALID_ARGUMENTS;
924                 }
925                 retval = target_read_buffer(target, address, size, buffer);
926                 if (retval != ERROR_OK)
927                 {
928                         free(buffer);
929                         return retval;
930                 }
931
932                 /* convert to target endianess */
933                 for (i = 0; i < (size/sizeof(u32)); i++)
934                 {
935                         u32 target_data;
936                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(u32)]);
937                         target_buffer_set_u32(target, &buffer[i*sizeof(u32)], target_data);
938                 }
939
940                 retval = image_calculate_checksum( buffer, size, &checksum );
941                 free(buffer);
942         }
943         
944         *crc = checksum;
945         
946         return retval;
947 }
948
949 int target_read_u32(struct target_s *target, u32 address, u32 *value)
950 {
951         u8 value_buf[4];
952
953         int retval = target->type->read_memory(target, address, 4, 1, value_buf);
954         
955         if (retval == ERROR_OK)
956         {
957                 *value = target_buffer_get_u32(target, value_buf);
958                 DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, *value);
959         }
960         else
961         {
962                 *value = 0x0;
963                 DEBUG("address: 0x%8.8x failed", address);
964         }
965         
966         return retval;
967 }
968
969 int target_read_u16(struct target_s *target, u32 address, u16 *value)
970 {
971         u8 value_buf[2];
972         
973         int retval = target->type->read_memory(target, address, 2, 1, value_buf);
974         
975         if (retval == ERROR_OK)
976         {
977                 *value = target_buffer_get_u16(target, value_buf);
978                 DEBUG("address: 0x%8.8x, value: 0x%4.4x", address, *value);
979         }
980         else
981         {
982                 *value = 0x0;
983                 DEBUG("address: 0x%8.8x failed", address);
984         }
985         
986         return retval;
987 }
988
989 int target_read_u8(struct target_s *target, u32 address, u8 *value)
990 {
991         int retval = target->type->read_memory(target, address, 1, 1, value);
992
993         if (retval == ERROR_OK)
994         {
995                 DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, *value);
996         }
997         else
998         {
999                 *value = 0x0;
1000                 DEBUG("address: 0x%8.8x failed", address);
1001         }
1002         
1003         return retval;
1004 }
1005
1006 int target_write_u32(struct target_s *target, u32 address, u32 value)
1007 {
1008         int retval;
1009         u8 value_buf[4];
1010
1011         DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1012
1013         target_buffer_set_u32(target, value_buf, value);        
1014         if ((retval = target->type->write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1015         {
1016                 DEBUG("failed: %i", retval);
1017         }
1018         
1019         return retval;
1020 }
1021
1022 int target_write_u16(struct target_s *target, u32 address, u16 value)
1023 {
1024         int retval;
1025         u8 value_buf[2];
1026         
1027         DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1028
1029         target_buffer_set_u16(target, value_buf, value);        
1030         if ((retval = target->type->write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1031         {
1032                 DEBUG("failed: %i", retval);
1033         }
1034         
1035         return retval;
1036 }
1037
1038 int target_write_u8(struct target_s *target, u32 address, u8 value)
1039 {
1040         int retval;
1041         
1042         DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, value);
1043
1044         if ((retval = target->type->read_memory(target, address, 1, 1, &value)) != ERROR_OK)
1045         {
1046                 DEBUG("failed: %i", retval);
1047         }
1048         
1049         return retval;
1050 }
1051
1052 int target_register_user_commands(struct command_context_s *cmd_ctx)
1053 {
1054         register_command(cmd_ctx,  NULL, "reg", handle_reg_command, COMMAND_EXEC, NULL);
1055         register_command(cmd_ctx,  NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state");
1056         register_command(cmd_ctx,  NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]");
1057         register_command(cmd_ctx,  NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target");
1058         register_command(cmd_ctx,  NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]");
1059         register_command(cmd_ctx,  NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]");
1060         register_command(cmd_ctx,  NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run|halt|init|run_and_halt|run_and_init]");
1061         register_command(cmd_ctx,  NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset");
1062
1063         register_command(cmd_ctx,  NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words <addr> [count]");
1064         register_command(cmd_ctx,  NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words <addr> [count]");
1065         register_command(cmd_ctx,  NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes <addr> [count]");
1066         
1067         register_command(cmd_ctx,  NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word <addr> <value>");
1068         register_command(cmd_ctx,  NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word <addr> <value>");
1069         register_command(cmd_ctx,  NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte <addr> <value>");
1070         
1071         register_command(cmd_ctx,  NULL, "bp", handle_bp_command, COMMAND_EXEC, "set breakpoint <address> <length> [hw]");      
1072         register_command(cmd_ctx,  NULL, "rbp", handle_rbp_command, COMMAND_EXEC, "remove breakpoint <adress>");
1073         register_command(cmd_ctx,  NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint <address> <length> <r/w/a> [value] [mask]");    
1074         register_command(cmd_ctx,  NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint <adress>");
1075         
1076         register_command(cmd_ctx,  NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> ['bin'|'ihex'|'elf'|'s19']");
1077         register_command(cmd_ctx,  NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>");
1078         register_command(cmd_ctx,  NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image <file> [offset] [type]");
1079         register_command(cmd_ctx,  NULL, "load_binary", handle_load_image_command, COMMAND_EXEC, "[DEPRECATED] load_binary <file> <address>");
1080         register_command(cmd_ctx,  NULL, "dump_binary", handle_dump_image_command, COMMAND_EXEC, "[DEPRECATED] dump_binary <file> <address> <size>");
1081         
1082         target_request_register_commands(cmd_ctx);
1083         trace_register_commands(cmd_ctx);
1084         
1085         return ERROR_OK;
1086 }
1087
1088 int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1089 {
1090         target_t *target = targets;
1091         int count = 0;
1092         
1093         if (argc == 1)
1094         {
1095                 int num = strtoul(args[0], NULL, 0);
1096                 
1097                 while (target)
1098                 {
1099                         count++;
1100                         target = target->next;
1101                 }
1102                 
1103                 if (num < count)
1104                         cmd_ctx->current_target = num;
1105                 else
1106                         command_print(cmd_ctx, "%i is out of bounds, only %i targets are configured", num, count);
1107                         
1108                 return ERROR_OK;
1109         }
1110                 
1111         while (target)
1112         {
1113                 command_print(cmd_ctx, "%i: %s (%s), state: %s", count++, target->type->name, target_endianess_strings[target->endianness], target_state_strings[target->state]);
1114                 target = target->next;
1115         }
1116         
1117         return ERROR_OK;
1118 }
1119
1120 int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1121 {
1122         int i;
1123         int found = 0;
1124         
1125         if (argc < 3)
1126         {
1127                 return ERROR_COMMAND_SYNTAX_ERROR;
1128         }
1129         
1130         /* search for the specified target */
1131         if (args[0] && (args[0][0] != 0))
1132         {
1133                 for (i = 0; target_types[i]; i++)
1134                 {
1135                         if (strcmp(args[0], target_types[i]->name) == 0)
1136                         {
1137                                 target_t **last_target_p = &targets;
1138                                 
1139                                 /* register target specific commands */
1140                                 if (target_types[i]->register_commands(cmd_ctx) != ERROR_OK)
1141                                 {
1142                                         ERROR("couldn't register '%s' commands", args[0]);
1143                                         exit(-1);
1144                                 }
1145
1146                                 if (*last_target_p)
1147                                 {
1148                                         while ((*last_target_p)->next)
1149                                                 last_target_p = &((*last_target_p)->next);
1150                                         last_target_p = &((*last_target_p)->next);
1151                                 }
1152
1153                                 *last_target_p = malloc(sizeof(target_t));
1154                                 
1155                                 (*last_target_p)->type = target_types[i];
1156                                 
1157                                 if (strcmp(args[1], "big") == 0)
1158                                         (*last_target_p)->endianness = TARGET_BIG_ENDIAN;
1159                                 else if (strcmp(args[1], "little") == 0)
1160                                         (*last_target_p)->endianness = TARGET_LITTLE_ENDIAN;
1161                                 else
1162                                 {
1163                                         ERROR("endianness must be either 'little' or 'big', not '%s'", args[1]);
1164                                         return ERROR_COMMAND_SYNTAX_ERROR;
1165                                 }
1166                                 
1167                                 /* what to do on a target reset */
1168                                 if (strcmp(args[2], "reset_halt") == 0)
1169                                         (*last_target_p)->reset_mode = RESET_HALT;
1170                                 else if (strcmp(args[2], "reset_run") == 0)
1171                                         (*last_target_p)->reset_mode = RESET_RUN;
1172                                 else if (strcmp(args[2], "reset_init") == 0)
1173                                         (*last_target_p)->reset_mode = RESET_INIT;
1174                                 else if (strcmp(args[2], "run_and_halt") == 0)
1175                                         (*last_target_p)->reset_mode = RESET_RUN_AND_HALT;
1176                                 else if (strcmp(args[2], "run_and_init") == 0)
1177                                         (*last_target_p)->reset_mode = RESET_RUN_AND_INIT;
1178                                 else
1179                                 {
1180                                         ERROR("unknown target startup mode %s", args[2]);
1181                                         return ERROR_COMMAND_SYNTAX_ERROR;
1182                                 }
1183                                 (*last_target_p)->run_and_halt_time = 1000; /* default 1s */
1184                                 
1185                                 (*last_target_p)->reset_script = NULL;
1186                                 (*last_target_p)->post_halt_script = NULL;
1187                                 (*last_target_p)->pre_resume_script = NULL;
1188                                 (*last_target_p)->gdb_program_script = NULL;
1189                                 
1190                                 (*last_target_p)->working_area = 0x0;
1191                                 (*last_target_p)->working_area_size = 0x0;
1192                                 (*last_target_p)->working_areas = NULL;
1193                                 (*last_target_p)->backup_working_area = 0;
1194                                 
1195                                 (*last_target_p)->state = TARGET_UNKNOWN;
1196                                 (*last_target_p)->debug_reason = DBG_REASON_UNDEFINED;
1197                                 (*last_target_p)->reg_cache = NULL;
1198                                 (*last_target_p)->breakpoints = NULL;
1199                                 (*last_target_p)->watchpoints = NULL;
1200                                 (*last_target_p)->next = NULL;
1201                                 (*last_target_p)->arch_info = NULL;
1202                                 
1203                                 /* initialize trace information */
1204                                 (*last_target_p)->trace_info = malloc(sizeof(trace_t));
1205                                 (*last_target_p)->trace_info->num_trace_points = 0;
1206                                 (*last_target_p)->trace_info->trace_points_size = 0;
1207                                 (*last_target_p)->trace_info->trace_points = NULL;
1208                                 (*last_target_p)->trace_info->trace_history_size = 0;
1209                                 (*last_target_p)->trace_info->trace_history = NULL;
1210                                 (*last_target_p)->trace_info->trace_history_pos = 0;
1211                                 (*last_target_p)->trace_info->trace_history_overflowed = 0;
1212                                 
1213                                 (*last_target_p)->dbgmsg = NULL;
1214                                 (*last_target_p)->dbg_msg_enabled = 0;
1215                                                                 
1216                                 (*last_target_p)->type->target_command(cmd_ctx, cmd, args, argc, *last_target_p);
1217                                 
1218                                 found = 1;
1219                                 break;
1220                         }
1221                 }
1222         }
1223         
1224         /* no matching target found */
1225         if (!found)
1226         {
1227                 ERROR("target '%s' not found", args[0]);
1228                 return ERROR_COMMAND_SYNTAX_ERROR;
1229         }
1230
1231         return ERROR_OK;
1232 }
1233
1234 /* usage: target_script <target#> <event> <script_file> */
1235 int handle_target_script_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1236 {
1237         target_t *target = NULL;
1238         
1239         if (argc < 3)
1240         {
1241                 ERROR("incomplete target_script command");
1242                 return ERROR_COMMAND_SYNTAX_ERROR;
1243         }
1244         
1245         target = get_target_by_num(strtoul(args[0], NULL, 0));
1246         
1247         if (!target)
1248         {
1249                 return ERROR_COMMAND_SYNTAX_ERROR;
1250         }
1251         
1252         if (strcmp(args[1], "reset") == 0)
1253         {
1254                 if (target->reset_script)
1255                         free(target->reset_script);
1256                 target->reset_script = strdup(args[2]);
1257         }
1258         else if (strcmp(args[1], "post_halt") == 0)
1259         {
1260                 if (target->post_halt_script)
1261                         free(target->post_halt_script);
1262                 target->post_halt_script = strdup(args[2]);
1263         }
1264         else if (strcmp(args[1], "pre_resume") == 0)
1265         {
1266                 if (target->pre_resume_script)
1267                         free(target->pre_resume_script);
1268                 target->pre_resume_script = strdup(args[2]);
1269         }
1270         else if (strcmp(args[1], "gdb_program_config") == 0)
1271         {
1272                 if (target->gdb_program_script)
1273                         free(target->gdb_program_script);
1274                 target->gdb_program_script = strdup(args[2]);
1275         }
1276         else
1277         {
1278                 ERROR("unknown event type: '%s", args[1]);
1279                 return ERROR_COMMAND_SYNTAX_ERROR;
1280         }
1281         
1282         return ERROR_OK;
1283 }
1284
1285 int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1286 {
1287         target_t *target = NULL;
1288         
1289         if (argc < 2)
1290         {
1291                 return ERROR_COMMAND_SYNTAX_ERROR;
1292         }
1293         
1294         target = get_target_by_num(strtoul(args[0], NULL, 0));
1295         if (!target)
1296         {
1297                 return ERROR_COMMAND_SYNTAX_ERROR;
1298         }
1299         
1300         target->run_and_halt_time = strtoul(args[1], NULL, 0);
1301         
1302         return ERROR_OK;
1303 }
1304
1305 int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1306 {
1307         target_t *target = NULL;
1308         
1309         if ((argc < 4) || (argc > 5))
1310         {
1311                 return ERROR_COMMAND_SYNTAX_ERROR;
1312         }
1313         
1314         target = get_target_by_num(strtoul(args[0], NULL, 0));
1315         if (!target)
1316         {
1317                 return ERROR_COMMAND_SYNTAX_ERROR;
1318         }
1319         target_free_all_working_areas(target);
1320         
1321         target->working_area_phys = target->working_area_virt = strtoul(args[1], NULL, 0);
1322         if (argc == 5)
1323         {
1324                 target->working_area_virt = strtoul(args[4], NULL, 0);
1325         }
1326         target->working_area_size = strtoul(args[2], NULL, 0);
1327         
1328         if (strcmp(args[3], "backup") == 0)
1329         {
1330                 target->backup_working_area = 1;
1331         }
1332         else if (strcmp(args[3], "nobackup") == 0)
1333         {
1334                 target->backup_working_area = 0;
1335         }
1336         else
1337         {
1338                 ERROR("unrecognized <backup|nobackup> argument (%s)", args[3]);
1339                 return ERROR_COMMAND_SYNTAX_ERROR;
1340         }
1341         
1342         return ERROR_OK;
1343 }
1344
1345
1346 /* process target state changes */
1347 int handle_target(void *priv)
1348 {
1349         int retval;
1350         target_t *target = targets;
1351         
1352         while (target)
1353         {
1354                 /* only poll if target isn't already halted */
1355                 if (target->state != TARGET_HALTED)
1356                 {
1357                         if (target_continous_poll)
1358                                 if ((retval = target->type->poll(target)) != ERROR_OK)
1359                                 {
1360                                         ERROR("couldn't poll target(%d). It's due for a reset.", retval);
1361                                 }
1362                 }
1363         
1364                 target = target->next;
1365         }
1366         
1367         return ERROR_OK;
1368 }
1369
1370 int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1371 {
1372         target_t *target;
1373         reg_t *reg = NULL;
1374         int count = 0;
1375         char *value;
1376         
1377         DEBUG("-");
1378         
1379         target = get_current_target(cmd_ctx);
1380         
1381         /* list all available registers for the current target */
1382         if (argc == 0)
1383         {
1384                 reg_cache_t *cache = target->reg_cache;
1385                 
1386                 count = 0;
1387                 while(cache)
1388                 {
1389                         int i;
1390                         for (i = 0; i < cache->num_regs; i++)
1391                         {
1392                                 value = buf_to_str(cache->reg_list[i].value, cache->reg_list[i].size, 16);
1393                                 command_print(cmd_ctx, "(%i) %s (/%i): 0x%s (dirty: %i, valid: %i)", count++, cache->reg_list[i].name, cache->reg_list[i].size, value, cache->reg_list[i].dirty, cache->reg_list[i].valid);
1394                                 free(value);
1395                         }
1396                         cache = cache->next;
1397                 }
1398                 
1399                 return ERROR_OK;
1400         }
1401         
1402         /* access a single register by its ordinal number */
1403         if ((args[0][0] >= '0') && (args[0][0] <= '9'))
1404         {
1405                 int num = strtoul(args[0], NULL, 0);
1406                 reg_cache_t *cache = target->reg_cache;
1407                 
1408                 count = 0;
1409                 while(cache)
1410                 {
1411                         int i;
1412                         for (i = 0; i < cache->num_regs; i++)
1413                         {
1414                                 if (count++ == num)
1415                                 {
1416                                         reg = &cache->reg_list[i];
1417                                         break;
1418                                 }
1419                         }
1420                         if (reg)
1421                                 break;
1422                         cache = cache->next;
1423                 }
1424                 
1425                 if (!reg)
1426                 {
1427                         command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1428                         return ERROR_OK;
1429                 }
1430         } else /* access a single register by its name */
1431         {
1432                 reg = register_get_by_name(target->reg_cache, args[0], 1);
1433                 
1434                 if (!reg)
1435                 {
1436                         command_print(cmd_ctx, "register %s not found in current target", args[0]);
1437                         return ERROR_OK;
1438                 }
1439         }
1440
1441         /* display a register */
1442         if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
1443         {
1444                 if ((argc == 2) && (strcmp(args[1], "force") == 0))
1445                         reg->valid = 0;
1446                 
1447                 if (reg->valid == 0)
1448                 {
1449                         reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1450                         if (arch_type == NULL)
1451                         {
1452                                 ERROR("BUG: encountered unregistered arch type");
1453                                 return ERROR_OK;
1454                         }
1455                         arch_type->get(reg);
1456                 }
1457                 value = buf_to_str(reg->value, reg->size, 16);
1458                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1459                 free(value);
1460                 return ERROR_OK;
1461         }
1462         
1463         /* set register value */
1464         if (argc == 2)
1465         {
1466                 u8 *buf = malloc(CEIL(reg->size, 8));
1467                 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
1468
1469                 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1470                 if (arch_type == NULL)
1471                 {
1472                         ERROR("BUG: encountered unregistered arch type");
1473                         return ERROR_OK;
1474                 }
1475                 
1476                 arch_type->set(reg, buf);
1477                 
1478                 value = buf_to_str(reg->value, reg->size, 16);
1479                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1480                 free(value);
1481                 
1482                 free(buf);
1483                 
1484                 return ERROR_OK;
1485         }
1486         
1487         command_print(cmd_ctx, "usage: reg <#|name> [value]");
1488         
1489         return ERROR_OK;
1490 }
1491
1492 static int wait_state(struct command_context_s *cmd_ctx, char *cmd, enum target_state state, int ms);
1493
1494 int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1495 {
1496         target_t *target = get_current_target(cmd_ctx);
1497
1498         if (argc == 0)
1499         {
1500                 target->type->poll(target);
1501                         target_arch_state(target);
1502         }
1503         else
1504         {
1505                 if (strcmp(args[0], "on") == 0)
1506                 {
1507                         target_continous_poll = 1;
1508                 }
1509                 else if (strcmp(args[0], "off") == 0)
1510                 {
1511                         target_continous_poll = 0;
1512                 }
1513                 else
1514                 {
1515                         command_print(cmd_ctx, "arg is \"on\" or \"off\"");
1516                 }
1517         }
1518         
1519         
1520         return ERROR_OK;
1521 }
1522
1523 int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1524 {
1525         int ms = 5000;
1526         
1527         if (argc > 0)
1528         {
1529                 char *end;
1530
1531                 ms = strtoul(args[0], &end, 0) * 1000;
1532                 if (*end)
1533                 {
1534                         command_print(cmd_ctx, "usage: %s [seconds]", cmd);
1535                         return ERROR_OK;
1536                 }
1537         }
1538
1539         return wait_state(cmd_ctx, cmd, TARGET_HALTED, ms); 
1540 }
1541
1542 static void target_process_events(struct command_context_s *cmd_ctx)
1543 {
1544         target_t *target = get_current_target(cmd_ctx);
1545         target->type->poll(target);
1546         target_call_timer_callbacks_now();
1547 }
1548
1549 static int wait_state(struct command_context_s *cmd_ctx, char *cmd, enum target_state state, int ms)
1550 {
1551         int retval;
1552         struct timeval timeout, now;
1553         int once=1;
1554         gettimeofday(&timeout, NULL);
1555         timeval_add_time(&timeout, 0, ms * 1000);
1556         
1557         target_t *target = get_current_target(cmd_ctx);
1558         for (;;)
1559         {
1560                 if ((retval=target->type->poll(target))!=ERROR_OK)
1561                         return retval;
1562                 target_call_timer_callbacks_now();
1563                 if (target->state == state)
1564                 {
1565                         break;
1566                 }
1567                 if (once)
1568                 {
1569                         once=0;
1570                         command_print(cmd_ctx, "waiting for target %s...", target_state_strings[state]);
1571                 }
1572                 
1573                 gettimeofday(&now, NULL);
1574                 if ((now.tv_sec > timeout.tv_sec) || ((now.tv_sec == timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
1575                 {
1576                         ERROR("timed out while waiting for target %s", target_state_strings[state]);
1577                         break;
1578                 }
1579         }
1580         
1581         return ERROR_OK;
1582 }
1583
1584 int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1585 {
1586         int retval;
1587         target_t *target = get_current_target(cmd_ctx);
1588
1589         DEBUG("-");
1590
1591         if ((retval = target->type->halt(target)) != ERROR_OK)
1592         {
1593                 return retval;
1594         }
1595         
1596         return handle_wait_halt_command(cmd_ctx, cmd, args, argc);
1597 }
1598
1599 /* what to do on daemon startup */
1600 int handle_daemon_startup_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1601 {
1602         if (argc == 1)
1603         {
1604                 if (strcmp(args[0], "attach") == 0)
1605                 {
1606                         startup_mode = DAEMON_ATTACH;
1607                         return ERROR_OK;
1608                 }
1609                 else if (strcmp(args[0], "reset") == 0)
1610                 {
1611                         startup_mode = DAEMON_RESET;
1612                         return ERROR_OK;
1613                 }
1614         }
1615         
1616         WARNING("invalid daemon_startup configuration directive: %s", args[0]);
1617         return ERROR_OK;
1618
1619 }
1620                 
1621 int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1622 {
1623         target_t *target = get_current_target(cmd_ctx);
1624         
1625         USER("requesting target halt and executing a soft reset");
1626         
1627         target->type->soft_reset_halt(target);
1628         
1629         return ERROR_OK;
1630 }
1631
1632 int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1633 {
1634         target_t *target = get_current_target(cmd_ctx);
1635         enum target_reset_mode reset_mode = target->reset_mode;
1636         enum target_reset_mode save = target->reset_mode;
1637         
1638         DEBUG("-");
1639         
1640         if (argc >= 1)
1641         {
1642                 if (strcmp("run", args[0]) == 0)
1643                         reset_mode = RESET_RUN;
1644                 else if (strcmp("halt", args[0]) == 0)
1645                         reset_mode = RESET_HALT;
1646                 else if (strcmp("init", args[0]) == 0)
1647                         reset_mode = RESET_INIT;
1648                 else if (strcmp("run_and_halt", args[0]) == 0)
1649                 {
1650                         reset_mode = RESET_RUN_AND_HALT;
1651                         if (argc >= 2)
1652                         {
1653                                 target->run_and_halt_time = strtoul(args[1], NULL, 0);
1654                         }
1655                 }
1656                 else if (strcmp("run_and_init", args[0]) == 0)
1657                 {
1658                         reset_mode = RESET_RUN_AND_INIT;
1659                         if (argc >= 2)
1660                         {
1661                                 target->run_and_halt_time = strtoul(args[1], NULL, 0);
1662                         }
1663                 }
1664                 else
1665                 {
1666                         command_print(cmd_ctx, "usage: reset ['run', 'halt', 'init', 'run_and_halt', 'run_and_init]");
1667                         return ERROR_OK;
1668                 }
1669         }
1670         
1671         /* temporarily modify mode of current reset target */
1672         target->reset_mode = reset_mode;
1673
1674         /* reset *all* targets */
1675         target_process_reset(cmd_ctx);
1676         
1677         /* Restore default reset mode for this target */
1678     target->reset_mode = save;
1679         
1680         return ERROR_OK;
1681 }
1682
1683 int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1684 {
1685         int retval;
1686         target_t *target = get_current_target(cmd_ctx);
1687         
1688         if (argc == 0)
1689                 retval = target->type->resume(target, 1, 0, 1, 0); /* current pc, addr = 0, handle breakpoints, not debugging */
1690         else if (argc == 1)
1691                 retval = target->type->resume(target, 0, strtoul(args[0], NULL, 0), 1, 0); /* addr = args[0], handle breakpoints, not debugging */
1692         else
1693         {
1694                 return ERROR_COMMAND_SYNTAX_ERROR;
1695         }
1696
1697         target_process_events(cmd_ctx);
1698         
1699         return retval;
1700 }
1701
1702 int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1703 {
1704         target_t *target = get_current_target(cmd_ctx);
1705         
1706         DEBUG("-");
1707         
1708         if (argc == 0)
1709                 target->type->step(target, 1, 0, 1); /* current pc, addr = 0, handle breakpoints */
1710
1711         if (argc == 1)
1712                 target->type->step(target, 0, strtoul(args[0], NULL, 0), 1); /* addr = args[0], handle breakpoints */
1713         
1714         return ERROR_OK;
1715 }
1716
1717 int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1718 {
1719         const int line_bytecnt = 32;
1720         int count = 1;
1721         int size = 4;
1722         u32 address = 0;
1723         int line_modulo;
1724         int i;
1725
1726         char output[128];
1727         int output_len;
1728
1729         int retval;
1730
1731         u8 *buffer;
1732         target_t *target = get_current_target(cmd_ctx);
1733
1734         if (argc < 1)
1735                 return ERROR_OK;
1736
1737         if (argc == 2)
1738                 count = strtoul(args[1], NULL, 0);
1739
1740         address = strtoul(args[0], NULL, 0);
1741         
1742
1743         switch (cmd[2])
1744         {
1745                 case 'w':
1746                         size = 4; line_modulo = line_bytecnt / 4;
1747                         break;
1748                 case 'h':
1749                         size = 2; line_modulo = line_bytecnt / 2;
1750                         break;
1751                 case 'b':
1752                         size = 1; line_modulo = line_bytecnt / 1;
1753                         break;
1754                 default:
1755                         return ERROR_OK;
1756         }
1757
1758         buffer = calloc(count, size);
1759         retval  = target->type->read_memory(target, address, size, count, buffer);
1760         if (retval == ERROR_OK)
1761         {
1762                 output_len = 0;
1763         
1764                 for (i = 0; i < count; i++)
1765                 {
1766                         if (i%line_modulo == 0)
1767                                 output_len += snprintf(output + output_len, 128 - output_len, "0x%8.8x: ", address + (i*size));
1768                         
1769                         switch (size)
1770                         {
1771                                 case 4:
1772                                         output_len += snprintf(output + output_len, 128 - output_len, "%8.8x ", target_buffer_get_u32(target, &buffer[i*4]));
1773                                         break;
1774                                 case 2:
1775                                         output_len += snprintf(output + output_len, 128 - output_len, "%4.4x ", target_buffer_get_u16(target, &buffer[i*2]));
1776                                         break;
1777                                 case 1:
1778                                         output_len += snprintf(output + output_len, 128 - output_len, "%2.2x ", buffer[i*1]);
1779                                         break;
1780                         }
1781         
1782                         if ((i%line_modulo == line_modulo-1) || (i == count - 1))
1783                         {
1784                                 command_print(cmd_ctx, output);
1785                                 output_len = 0;
1786                         }
1787                 }
1788         } else
1789         {
1790                 ERROR("Failure examining memory");
1791         }
1792
1793         free(buffer);
1794         
1795         return ERROR_OK;
1796 }
1797
1798 int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1799 {
1800         u32 address = 0;
1801         u32 value = 0;
1802         int retval;
1803         target_t *target = get_current_target(cmd_ctx);
1804         u8 value_buf[4];
1805
1806         if (argc < 2)
1807                 return ERROR_OK;
1808
1809         address = strtoul(args[0], NULL, 0);
1810         value = strtoul(args[1], NULL, 0);
1811
1812         switch (cmd[2])
1813         {
1814                 case 'w':
1815                         target_buffer_set_u32(target, value_buf, value);
1816                         retval = target->type->write_memory(target, address, 4, 1, value_buf);
1817                         break;
1818                 case 'h':
1819                         target_buffer_set_u16(target, value_buf, value);
1820                         retval = target->type->write_memory(target, address, 2, 1, value_buf);
1821                         break;
1822                 case 'b':
1823                         value_buf[0] = value;
1824                         retval = target->type->write_memory(target, address, 1, 1, value_buf);
1825                         break;
1826                 default:
1827                         return ERROR_OK;
1828         }
1829         if (retval!=ERROR_OK)
1830         {
1831                 ERROR("Failure examining memory");
1832         }
1833
1834         return ERROR_OK;
1835
1836 }
1837
1838 int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1839 {
1840         u8 *buffer;
1841         u32 buf_cnt;
1842         u32 image_size;
1843         int i;
1844         int retval;
1845
1846         image_t image;  
1847         
1848         duration_t duration;
1849         char *duration_text;
1850         
1851         target_t *target = get_current_target(cmd_ctx);
1852
1853         if (argc < 1)
1854         {
1855                 command_print(cmd_ctx, "usage: load_image <filename> [address] [type]");
1856                 return ERROR_OK;
1857         }
1858         
1859         /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
1860         if (argc >= 2)
1861         {
1862                 image.base_address_set = 1;
1863                 image.base_address = strtoul(args[1], NULL, 0);
1864         }
1865         else
1866         {
1867                 image.base_address_set = 0;
1868         }
1869         
1870         image.start_address_set = 0;
1871
1872         duration_start_measure(&duration);
1873         
1874         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
1875         {
1876                 return ERROR_OK;
1877         }
1878         
1879         image_size = 0x0;
1880         retval = ERROR_OK;
1881         for (i = 0; i < image.num_sections; i++)
1882         {
1883                 buffer = malloc(image.sections[i].size);
1884                 if (buffer == NULL)
1885                 {
1886                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
1887                         break;
1888                 }
1889                 
1890                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
1891                 {
1892                         free(buffer);
1893                         break;
1894                 }
1895                 if ((retval = target_write_buffer(target, image.sections[i].base_address, buf_cnt, buffer)) != ERROR_OK)
1896                 {
1897                         free(buffer);
1898                         break;
1899                 }
1900                 image_size += buf_cnt;
1901                 command_print(cmd_ctx, "%u byte written at address 0x%8.8x", buf_cnt, image.sections[i].base_address);
1902                 
1903                 free(buffer);
1904         }
1905
1906         duration_stop_measure(&duration, &duration_text);
1907         if (retval==ERROR_OK)
1908         {
1909                 command_print(cmd_ctx, "downloaded %u byte in %s", image_size, duration_text);
1910         }
1911         free(duration_text);
1912         
1913         image_close(&image);
1914
1915         return retval;
1916
1917 }
1918
1919 int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1920 {
1921         fileio_t fileio;
1922         
1923         u32 address;
1924         u32 size;
1925         u8 buffer[560];
1926         int retval=ERROR_OK;
1927         
1928         duration_t duration;
1929         char *duration_text;
1930         
1931         target_t *target = get_current_target(cmd_ctx);
1932
1933         if (argc != 3)
1934         {
1935                 command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
1936                 return ERROR_OK;
1937         }
1938
1939         address = strtoul(args[1], NULL, 0);
1940         size = strtoul(args[2], NULL, 0);
1941
1942         if ((address & 3) || (size & 3))
1943         {
1944                 command_print(cmd_ctx, "only 32-bit aligned address and size are supported");
1945                 return ERROR_OK;
1946         }
1947         
1948         if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
1949         {
1950                 return ERROR_OK;
1951         }
1952         
1953         duration_start_measure(&duration);
1954         
1955         while (size > 0)
1956         {
1957                 u32 size_written;
1958                 u32 this_run_size = (size > 560) ? 560 : size;
1959                 
1960                 retval = target->type->read_memory(target, address, 4, this_run_size / 4, buffer);
1961                 if (retval != ERROR_OK)
1962                 {
1963                         break;
1964                 }
1965                 
1966                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
1967                 if (retval != ERROR_OK)
1968                 {
1969                         break;
1970                 }
1971                 
1972                 size -= this_run_size;
1973                 address += this_run_size;
1974         }
1975
1976         fileio_close(&fileio);
1977
1978         duration_stop_measure(&duration, &duration_text);
1979         if (retval==ERROR_OK)
1980         {
1981                 command_print(cmd_ctx, "dumped %"PRIi64" byte in %s", fileio.size, duration_text);
1982         }
1983         free(duration_text);
1984         
1985         return ERROR_OK;
1986 }
1987
1988 int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1989 {
1990         u8 *buffer;
1991         u32 buf_cnt;
1992         u32 image_size;
1993         int i;
1994         int retval;
1995         u32 checksum = 0;
1996         u32 mem_checksum = 0;
1997
1998         image_t image;  
1999         
2000         duration_t duration;
2001         char *duration_text;
2002         
2003         target_t *target = get_current_target(cmd_ctx);
2004         
2005         if (argc < 1)
2006         {
2007                 command_print(cmd_ctx, "usage: verify_image <file> [offset] [type]");
2008                 return ERROR_OK;
2009         }
2010         
2011         if (!target)
2012         {
2013                 ERROR("no target selected");
2014                 return ERROR_OK;
2015         }
2016         
2017         duration_start_measure(&duration);
2018         
2019         if (argc >= 2)
2020         {
2021                 image.base_address_set = 1;
2022                 image.base_address = strtoul(args[1], NULL, 0);
2023         }
2024         else
2025         {
2026                 image.base_address_set = 0;
2027                 image.base_address = 0x0;
2028         }
2029
2030         image.start_address_set = 0;
2031
2032         if (image_open(&image, args[0], (argc == 3) ? args[2] : NULL) != ERROR_OK)
2033         {
2034                 return ERROR_OK;
2035         }
2036         
2037         image_size = 0x0;
2038         retval=ERROR_OK;
2039         for (i = 0; i < image.num_sections; i++)
2040         {
2041                 buffer = malloc(image.sections[i].size);
2042                 if (buffer == NULL)
2043                 {
2044                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2045                         break;
2046                 }
2047                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2048                 {
2049                         free(buffer);
2050                         break;
2051                 }
2052                 
2053                 /* calculate checksum of image */
2054                 image_calculate_checksum( buffer, buf_cnt, &checksum );
2055                 
2056                 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2057                 if( retval != ERROR_OK )
2058                 {
2059                         free(buffer);
2060                         break;
2061                 }
2062                 
2063                 if( checksum != mem_checksum )
2064                 {
2065                         /* failed crc checksum, fall back to a binary compare */
2066                         u8 *data;
2067                         
2068                         command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
2069                         
2070                         data = (u8*)malloc(buf_cnt);
2071                         
2072                         /* Can we use 32bit word accesses? */
2073                         int size = 1;
2074                         int count = buf_cnt;
2075                         if ((count % 4) == 0)
2076                         {
2077                                 size *= 4;
2078                                 count /= 4;
2079                         }
2080                         retval = target->type->read_memory(target, image.sections[i].base_address, size, count, data);
2081                         if (retval == ERROR_OK)
2082                         {
2083                                 int t;
2084                                 for (t = 0; t < buf_cnt; t++)
2085                                 {
2086                                         if (data[t] != buffer[t])
2087                                         {
2088                                                 command_print(cmd_ctx, "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n", t + image.sections[i].base_address, data[t], buffer[t]);
2089                                                 free(data);
2090                                                 free(buffer);
2091                                                 retval=ERROR_FAIL;
2092                                                 goto done;
2093                                         }
2094                                 }
2095                         }
2096                         
2097                         free(data);
2098                 }
2099                 
2100                 free(buffer);
2101                 image_size += buf_cnt;
2102         }
2103 done:   
2104         duration_stop_measure(&duration, &duration_text);
2105         if (retval==ERROR_OK)
2106         {
2107                 command_print(cmd_ctx, "verified %u bytes in %s", image_size, duration_text);
2108         }
2109         free(duration_text);
2110         
2111         image_close(&image);
2112         
2113         return retval;
2114 }
2115
2116 int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2117 {
2118         int retval;
2119         target_t *target = get_current_target(cmd_ctx);
2120
2121         if (argc == 0)
2122         {
2123                 breakpoint_t *breakpoint = target->breakpoints;
2124
2125                 while (breakpoint)
2126                 {
2127                         if (breakpoint->type == BKPT_SOFT)
2128                         {
2129                                 char* buf = buf_to_str(breakpoint->orig_instr, breakpoint->length, 16);
2130                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i, 0x%s", breakpoint->address, breakpoint->length, breakpoint->set, buf);
2131                                 free(buf);
2132                         }
2133                         else
2134                         {
2135                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i", breakpoint->address, breakpoint->length, breakpoint->set);
2136                         }
2137                         breakpoint = breakpoint->next;
2138                 }
2139         }
2140         else if (argc >= 2)
2141         {
2142                 int hw = BKPT_SOFT;
2143                 u32 length = 0;
2144
2145                 length = strtoul(args[1], NULL, 0);
2146                 
2147                 if (argc >= 3)
2148                         if (strcmp(args[2], "hw") == 0)
2149                                 hw = BKPT_HARD;
2150
2151                 if ((retval = breakpoint_add(target, strtoul(args[0], NULL, 0), length, hw)) != ERROR_OK)
2152                 {
2153                         ERROR("Failure setting breakpoints");
2154                 }
2155                 else
2156                 {
2157                         command_print(cmd_ctx, "breakpoint added at address 0x%8.8x", strtoul(args[0], NULL, 0));
2158                 }
2159         }
2160         else
2161         {
2162                 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
2163         }
2164
2165         return ERROR_OK;
2166 }
2167
2168 int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2169 {
2170         target_t *target = get_current_target(cmd_ctx);
2171
2172         if (argc > 0)
2173                 breakpoint_remove(target, strtoul(args[0], NULL, 0));
2174
2175         return ERROR_OK;
2176 }
2177
2178 int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2179 {
2180         target_t *target = get_current_target(cmd_ctx);
2181         int retval;
2182
2183         if (argc == 0)
2184         {
2185                 watchpoint_t *watchpoint = target->watchpoints;
2186
2187                 while (watchpoint)
2188                 {
2189                         command_print(cmd_ctx, "address: 0x%8.8x, mask: 0x%8.8x, r/w/a: %i, value: 0x%8.8x, mask: 0x%8.8x", watchpoint->address, watchpoint->length, watchpoint->rw, watchpoint->value, watchpoint->mask);
2190                         watchpoint = watchpoint->next;
2191                 }
2192         } 
2193         else if (argc >= 2)
2194         {
2195                 enum watchpoint_rw type = WPT_ACCESS;
2196                 u32 data_value = 0x0;
2197                 u32 data_mask = 0xffffffff;
2198                 
2199                 if (argc >= 3)
2200                 {
2201                         switch(args[2][0])
2202                         {
2203                                 case 'r':
2204                                         type = WPT_READ;
2205                                         break;
2206                                 case 'w':
2207                                         type = WPT_WRITE;
2208                                         break;
2209                                 case 'a':
2210                                         type = WPT_ACCESS;
2211                                         break;
2212                                 default:
2213                                         command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2214                                         return ERROR_OK;
2215                         }
2216                 }
2217                 if (argc >= 4)
2218                 {
2219                         data_value = strtoul(args[3], NULL, 0);
2220                 }
2221                 if (argc >= 5)
2222                 {
2223                         data_mask = strtoul(args[4], NULL, 0);
2224                 }
2225                 
2226                 if ((retval = watchpoint_add(target, strtoul(args[0], NULL, 0),
2227                                 strtoul(args[1], NULL, 0), type, data_value, data_mask)) != ERROR_OK)
2228                 {
2229                         ERROR("Failure setting breakpoints");
2230                 }
2231         }
2232         else
2233         {
2234                 command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2235         }
2236                 
2237         return ERROR_OK;
2238 }
2239
2240 int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2241 {
2242         target_t *target = get_current_target(cmd_ctx);
2243
2244         if (argc > 0)
2245                 watchpoint_remove(target, strtoul(args[0], NULL, 0));
2246         
2247         return ERROR_OK;
2248 }
2249
2250 int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc)
2251 {
2252         int retval;
2253         target_t *target = get_current_target(cmd_ctx);
2254         u32 va;
2255         u32 pa;
2256
2257         if (argc != 1)
2258         {
2259                 return ERROR_COMMAND_SYNTAX_ERROR;
2260         }
2261         va = strtoul(args[0], NULL, 0);
2262
2263         retval = target->type->virt2phys(target, va, &pa);
2264         if (retval == ERROR_OK)
2265         {
2266                 command_print(cmd_ctx, "Physical address 0x%08x", pa);
2267         }
2268         else
2269         {
2270                 /* lower levels will have logged a detailed error which is 
2271                  * forwarded to telnet/GDB session.  
2272                  */
2273         }
2274         return retval;
2275 }