gdb_server: support gdb target description
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2010 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   Copyright (C) 2011 by Broadcom Corporation                            *
18  *   Evan Hunter - ehunter@broadcom.com                                    *
19  *                                                                         *
20  *   Copyright (C) ST-Ericsson SA 2011                                     *
21  *   michel.jaouen@stericsson.com : smp minimum support                    *
22  *                                                                         *
23  *   Copyright (C) 2011 Andreas Fritiofson                                 *
24  *   andreas.fritiofson@gmail.com                                          *
25  *                                                                         *
26  *   This program is free software; you can redistribute it and/or modify  *
27  *   it under the terms of the GNU General Public License as published by  *
28  *   the Free Software Foundation; either version 2 of the License, or     *
29  *   (at your option) any later version.                                   *
30  *                                                                         *
31  *   This program is distributed in the hope that it will be useful,       *
32  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
33  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
34  *   GNU General Public License for more details.                          *
35  *                                                                         *
36  *   You should have received a copy of the GNU General Public License     *
37  *   along with this program; if not, write to the                         *
38  *   Free Software Foundation, Inc.,                                       *
39  *   51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.           *
40  ***************************************************************************/
41
42 #ifdef HAVE_CONFIG_H
43 #include "config.h"
44 #endif
45
46 #include <helper/time_support.h>
47 #include <jtag/jtag.h>
48 #include <flash/nor/core.h>
49
50 #include "target.h"
51 #include "target_type.h"
52 #include "target_request.h"
53 #include "breakpoints.h"
54 #include "register.h"
55 #include "trace.h"
56 #include "image.h"
57 #include "rtos/rtos.h"
58
59 /* default halt wait timeout (ms) */
60 #define DEFAULT_HALT_TIMEOUT 5000
61
62 static int target_read_buffer_default(struct target *target, uint32_t address,
63                 uint32_t size, uint8_t *buffer);
64 static int target_write_buffer_default(struct target *target, uint32_t address,
65                 uint32_t size, const uint8_t *buffer);
66 static int target_array2mem(Jim_Interp *interp, struct target *target,
67                 int argc, Jim_Obj * const *argv);
68 static int target_mem2array(Jim_Interp *interp, struct target *target,
69                 int argc, Jim_Obj * const *argv);
70 static int target_register_user_commands(struct command_context *cmd_ctx);
71
72 /* targets */
73 extern struct target_type arm7tdmi_target;
74 extern struct target_type arm720t_target;
75 extern struct target_type arm9tdmi_target;
76 extern struct target_type arm920t_target;
77 extern struct target_type arm966e_target;
78 extern struct target_type arm946e_target;
79 extern struct target_type arm926ejs_target;
80 extern struct target_type fa526_target;
81 extern struct target_type feroceon_target;
82 extern struct target_type dragonite_target;
83 extern struct target_type xscale_target;
84 extern struct target_type cortexm3_target;
85 extern struct target_type cortexa8_target;
86 extern struct target_type cortexr4_target;
87 extern struct target_type arm11_target;
88 extern struct target_type mips_m4k_target;
89 extern struct target_type avr_target;
90 extern struct target_type dsp563xx_target;
91 extern struct target_type dsp5680xx_target;
92 extern struct target_type testee_target;
93 extern struct target_type avr32_ap7k_target;
94 extern struct target_type hla_target;
95 extern struct target_type nds32_v2_target;
96 extern struct target_type nds32_v3_target;
97 extern struct target_type nds32_v3m_target;
98
99 static struct target_type *target_types[] = {
100         &arm7tdmi_target,
101         &arm9tdmi_target,
102         &arm920t_target,
103         &arm720t_target,
104         &arm966e_target,
105         &arm946e_target,
106         &arm926ejs_target,
107         &fa526_target,
108         &feroceon_target,
109         &dragonite_target,
110         &xscale_target,
111         &cortexm3_target,
112         &cortexa8_target,
113         &cortexr4_target,
114         &arm11_target,
115         &mips_m4k_target,
116         &avr_target,
117         &dsp563xx_target,
118         &dsp5680xx_target,
119         &testee_target,
120         &avr32_ap7k_target,
121         &hla_target,
122         &nds32_v2_target,
123         &nds32_v3_target,
124         &nds32_v3m_target,
125         NULL,
126 };
127
128 struct target *all_targets;
129 static struct target_event_callback *target_event_callbacks;
130 static struct target_timer_callback *target_timer_callbacks;
131 static const int polling_interval = 100;
132
133 static const Jim_Nvp nvp_assert[] = {
134         { .name = "assert", NVP_ASSERT },
135         { .name = "deassert", NVP_DEASSERT },
136         { .name = "T", NVP_ASSERT },
137         { .name = "F", NVP_DEASSERT },
138         { .name = "t", NVP_ASSERT },
139         { .name = "f", NVP_DEASSERT },
140         { .name = NULL, .value = -1 }
141 };
142
143 static const Jim_Nvp nvp_error_target[] = {
144         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
145         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
146         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
147         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
148         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
149         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
150         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
151         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
152         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
153         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
154         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
155         { .value = -1, .name = NULL }
156 };
157
158 static const char *target_strerror_safe(int err)
159 {
160         const Jim_Nvp *n;
161
162         n = Jim_Nvp_value2name_simple(nvp_error_target, err);
163         if (n->name == NULL)
164                 return "unknown";
165         else
166                 return n->name;
167 }
168
169 static const Jim_Nvp nvp_target_event[] = {
170
171         { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
172         { .value = TARGET_EVENT_HALTED, .name = "halted" },
173         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
174         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
175         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
176
177         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
178         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
179
180         { .value = TARGET_EVENT_RESET_START,         .name = "reset-start" },
181         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
182         { .value = TARGET_EVENT_RESET_ASSERT,        .name = "reset-assert" },
183         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
184         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
185         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
186         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
187         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
188         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
189         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
190         { .value = TARGET_EVENT_RESET_INIT,          .name = "reset-init" },
191         { .value = TARGET_EVENT_RESET_END,           .name = "reset-end" },
192
193         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
194         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
195
196         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
197         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
198
199         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
200         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
201
202         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
203         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
204
205         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
206         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
207
208         { .name = NULL, .value = -1 }
209 };
210
211 static const Jim_Nvp nvp_target_state[] = {
212         { .name = "unknown", .value = TARGET_UNKNOWN },
213         { .name = "running", .value = TARGET_RUNNING },
214         { .name = "halted",  .value = TARGET_HALTED },
215         { .name = "reset",   .value = TARGET_RESET },
216         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
217         { .name = NULL, .value = -1 },
218 };
219
220 static const Jim_Nvp nvp_target_debug_reason[] = {
221         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
222         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
223         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
224         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
225         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
226         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
227         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
228         { .name = NULL, .value = -1 },
229 };
230
231 static const Jim_Nvp nvp_target_endian[] = {
232         { .name = "big",    .value = TARGET_BIG_ENDIAN },
233         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
234         { .name = "be",     .value = TARGET_BIG_ENDIAN },
235         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
236         { .name = NULL,     .value = -1 },
237 };
238
239 static const Jim_Nvp nvp_reset_modes[] = {
240         { .name = "unknown", .value = RESET_UNKNOWN },
241         { .name = "run"    , .value = RESET_RUN },
242         { .name = "halt"   , .value = RESET_HALT },
243         { .name = "init"   , .value = RESET_INIT },
244         { .name = NULL     , .value = -1 },
245 };
246
247 const char *debug_reason_name(struct target *t)
248 {
249         const char *cp;
250
251         cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
252                         t->debug_reason)->name;
253         if (!cp) {
254                 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
255                 cp = "(*BUG*unknown*BUG*)";
256         }
257         return cp;
258 }
259
260 const char *target_state_name(struct target *t)
261 {
262         const char *cp;
263         cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
264         if (!cp) {
265                 LOG_ERROR("Invalid target state: %d", (int)(t->state));
266                 cp = "(*BUG*unknown*BUG*)";
267         }
268         return cp;
269 }
270
271 /* determine the number of the new target */
272 static int new_target_number(void)
273 {
274         struct target *t;
275         int x;
276
277         /* number is 0 based */
278         x = -1;
279         t = all_targets;
280         while (t) {
281                 if (x < t->target_number)
282                         x = t->target_number;
283                 t = t->next;
284         }
285         return x + 1;
286 }
287
288 /* read a uint32_t from a buffer in target memory endianness */
289 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
290 {
291         if (target->endianness == TARGET_LITTLE_ENDIAN)
292                 return le_to_h_u32(buffer);
293         else
294                 return be_to_h_u32(buffer);
295 }
296
297 /* read a uint24_t from a buffer in target memory endianness */
298 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
299 {
300         if (target->endianness == TARGET_LITTLE_ENDIAN)
301                 return le_to_h_u24(buffer);
302         else
303                 return be_to_h_u24(buffer);
304 }
305
306 /* read a uint16_t from a buffer in target memory endianness */
307 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
308 {
309         if (target->endianness == TARGET_LITTLE_ENDIAN)
310                 return le_to_h_u16(buffer);
311         else
312                 return be_to_h_u16(buffer);
313 }
314
315 /* read a uint8_t from a buffer in target memory endianness */
316 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
317 {
318         return *buffer & 0x0ff;
319 }
320
321 /* write a uint32_t to a buffer in target memory endianness */
322 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
323 {
324         if (target->endianness == TARGET_LITTLE_ENDIAN)
325                 h_u32_to_le(buffer, value);
326         else
327                 h_u32_to_be(buffer, value);
328 }
329
330 /* write a uint24_t to a buffer in target memory endianness */
331 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
332 {
333         if (target->endianness == TARGET_LITTLE_ENDIAN)
334                 h_u24_to_le(buffer, value);
335         else
336                 h_u24_to_be(buffer, value);
337 }
338
339 /* write a uint16_t to a buffer in target memory endianness */
340 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
341 {
342         if (target->endianness == TARGET_LITTLE_ENDIAN)
343                 h_u16_to_le(buffer, value);
344         else
345                 h_u16_to_be(buffer, value);
346 }
347
348 /* write a uint8_t to a buffer in target memory endianness */
349 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
350 {
351         *buffer = value;
352 }
353
354 /* write a uint32_t array to a buffer in target memory endianness */
355 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
356 {
357         uint32_t i;
358         for (i = 0; i < count; i++)
359                 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
360 }
361
362 /* write a uint16_t array to a buffer in target memory endianness */
363 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
364 {
365         uint32_t i;
366         for (i = 0; i < count; i++)
367                 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
368 }
369
370 /* write a uint32_t array to a buffer in target memory endianness */
371 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, uint32_t *srcbuf)
372 {
373         uint32_t i;
374         for (i = 0; i < count; i++)
375                 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
376 }
377
378 /* write a uint16_t array to a buffer in target memory endianness */
379 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, uint16_t *srcbuf)
380 {
381         uint32_t i;
382         for (i = 0; i < count; i++)
383                 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
384 }
385
386 /* return a pointer to a configured target; id is name or number */
387 struct target *get_target(const char *id)
388 {
389         struct target *target;
390
391         /* try as tcltarget name */
392         for (target = all_targets; target; target = target->next) {
393                 if (target_name(target) == NULL)
394                         continue;
395                 if (strcmp(id, target_name(target)) == 0)
396                         return target;
397         }
398
399         /* It's OK to remove this fallback sometime after August 2010 or so */
400
401         /* no match, try as number */
402         unsigned num;
403         if (parse_uint(id, &num) != ERROR_OK)
404                 return NULL;
405
406         for (target = all_targets; target; target = target->next) {
407                 if (target->target_number == (int)num) {
408                         LOG_WARNING("use '%s' as target identifier, not '%u'",
409                                         target_name(target), num);
410                         return target;
411                 }
412         }
413
414         return NULL;
415 }
416
417 /* returns a pointer to the n-th configured target */
418 static struct target *get_target_by_num(int num)
419 {
420         struct target *target = all_targets;
421
422         while (target) {
423                 if (target->target_number == num)
424                         return target;
425                 target = target->next;
426         }
427
428         return NULL;
429 }
430
431 struct target *get_current_target(struct command_context *cmd_ctx)
432 {
433         struct target *target = get_target_by_num(cmd_ctx->current_target);
434
435         if (target == NULL) {
436                 LOG_ERROR("BUG: current_target out of bounds");
437                 exit(-1);
438         }
439
440         return target;
441 }
442
443 int target_poll(struct target *target)
444 {
445         int retval;
446
447         /* We can't poll until after examine */
448         if (!target_was_examined(target)) {
449                 /* Fail silently lest we pollute the log */
450                 return ERROR_FAIL;
451         }
452
453         retval = target->type->poll(target);
454         if (retval != ERROR_OK)
455                 return retval;
456
457         if (target->halt_issued) {
458                 if (target->state == TARGET_HALTED)
459                         target->halt_issued = false;
460                 else {
461                         long long t = timeval_ms() - target->halt_issued_time;
462                         if (t > DEFAULT_HALT_TIMEOUT) {
463                                 target->halt_issued = false;
464                                 LOG_INFO("Halt timed out, wake up GDB.");
465                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
466                         }
467                 }
468         }
469
470         return ERROR_OK;
471 }
472
473 int target_halt(struct target *target)
474 {
475         int retval;
476         /* We can't poll until after examine */
477         if (!target_was_examined(target)) {
478                 LOG_ERROR("Target not examined yet");
479                 return ERROR_FAIL;
480         }
481
482         retval = target->type->halt(target);
483         if (retval != ERROR_OK)
484                 return retval;
485
486         target->halt_issued = true;
487         target->halt_issued_time = timeval_ms();
488
489         return ERROR_OK;
490 }
491
492 /**
493  * Make the target (re)start executing using its saved execution
494  * context (possibly with some modifications).
495  *
496  * @param target Which target should start executing.
497  * @param current True to use the target's saved program counter instead
498  *      of the address parameter
499  * @param address Optionally used as the program counter.
500  * @param handle_breakpoints True iff breakpoints at the resumption PC
501  *      should be skipped.  (For example, maybe execution was stopped by
502  *      such a breakpoint, in which case it would be counterprodutive to
503  *      let it re-trigger.
504  * @param debug_execution False if all working areas allocated by OpenOCD
505  *      should be released and/or restored to their original contents.
506  *      (This would for example be true to run some downloaded "helper"
507  *      algorithm code, which resides in one such working buffer and uses
508  *      another for data storage.)
509  *
510  * @todo Resolve the ambiguity about what the "debug_execution" flag
511  * signifies.  For example, Target implementations don't agree on how
512  * it relates to invalidation of the register cache, or to whether
513  * breakpoints and watchpoints should be enabled.  (It would seem wrong
514  * to enable breakpoints when running downloaded "helper" algorithms
515  * (debug_execution true), since the breakpoints would be set to match
516  * target firmware being debugged, not the helper algorithm.... and
517  * enabling them could cause such helpers to malfunction (for example,
518  * by overwriting data with a breakpoint instruction.  On the other
519  * hand the infrastructure for running such helpers might use this
520  * procedure but rely on hardware breakpoint to detect termination.)
521  */
522 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
523 {
524         int retval;
525
526         /* We can't poll until after examine */
527         if (!target_was_examined(target)) {
528                 LOG_ERROR("Target not examined yet");
529                 return ERROR_FAIL;
530         }
531
532         target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
533
534         /* note that resume *must* be asynchronous. The CPU can halt before
535          * we poll. The CPU can even halt at the current PC as a result of
536          * a software breakpoint being inserted by (a bug?) the application.
537          */
538         retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
539         if (retval != ERROR_OK)
540                 return retval;
541
542         target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
543
544         return retval;
545 }
546
547 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
548 {
549         char buf[100];
550         int retval;
551         Jim_Nvp *n;
552         n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
553         if (n->name == NULL) {
554                 LOG_ERROR("invalid reset mode");
555                 return ERROR_FAIL;
556         }
557
558         /* disable polling during reset to make reset event scripts
559          * more predictable, i.e. dr/irscan & pathmove in events will
560          * not have JTAG operations injected into the middle of a sequence.
561          */
562         bool save_poll = jtag_poll_get_enabled();
563
564         jtag_poll_set_enabled(false);
565
566         sprintf(buf, "ocd_process_reset %s", n->name);
567         retval = Jim_Eval(cmd_ctx->interp, buf);
568
569         jtag_poll_set_enabled(save_poll);
570
571         if (retval != JIM_OK) {
572                 Jim_MakeErrorMessage(cmd_ctx->interp);
573                 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
574                 return ERROR_FAIL;
575         }
576
577         /* We want any events to be processed before the prompt */
578         retval = target_call_timer_callbacks_now();
579
580         struct target *target;
581         for (target = all_targets; target; target = target->next)
582                 target->type->check_reset(target);
583
584         return retval;
585 }
586
587 static int identity_virt2phys(struct target *target,
588                 uint32_t virtual, uint32_t *physical)
589 {
590         *physical = virtual;
591         return ERROR_OK;
592 }
593
594 static int no_mmu(struct target *target, int *enabled)
595 {
596         *enabled = 0;
597         return ERROR_OK;
598 }
599
600 static int default_examine(struct target *target)
601 {
602         target_set_examined(target);
603         return ERROR_OK;
604 }
605
606 /* no check by default */
607 static int default_check_reset(struct target *target)
608 {
609         return ERROR_OK;
610 }
611
612 int target_examine_one(struct target *target)
613 {
614         return target->type->examine(target);
615 }
616
617 static int jtag_enable_callback(enum jtag_event event, void *priv)
618 {
619         struct target *target = priv;
620
621         if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
622                 return ERROR_OK;
623
624         jtag_unregister_event_callback(jtag_enable_callback, target);
625
626         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
627
628         int retval = target_examine_one(target);
629         if (retval != ERROR_OK)
630                 return retval;
631
632         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
633
634         return retval;
635 }
636
637 /* Targets that correctly implement init + examine, i.e.
638  * no communication with target during init:
639  *
640  * XScale
641  */
642 int target_examine(void)
643 {
644         int retval = ERROR_OK;
645         struct target *target;
646
647         for (target = all_targets; target; target = target->next) {
648                 /* defer examination, but don't skip it */
649                 if (!target->tap->enabled) {
650                         jtag_register_event_callback(jtag_enable_callback,
651                                         target);
652                         continue;
653                 }
654
655                 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
656
657                 retval = target_examine_one(target);
658                 if (retval != ERROR_OK)
659                         return retval;
660
661                 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
662         }
663         return retval;
664 }
665
666 const char *target_type_name(struct target *target)
667 {
668         return target->type->name;
669 }
670
671 static int target_soft_reset_halt(struct target *target)
672 {
673         if (!target_was_examined(target)) {
674                 LOG_ERROR("Target not examined yet");
675                 return ERROR_FAIL;
676         }
677         if (!target->type->soft_reset_halt) {
678                 LOG_ERROR("Target %s does not support soft_reset_halt",
679                                 target_name(target));
680                 return ERROR_FAIL;
681         }
682         return target->type->soft_reset_halt(target);
683 }
684
685 /**
686  * Downloads a target-specific native code algorithm to the target,
687  * and executes it.  * Note that some targets may need to set up, enable,
688  * and tear down a breakpoint (hard or * soft) to detect algorithm
689  * termination, while others may support  lower overhead schemes where
690  * soft breakpoints embedded in the algorithm automatically terminate the
691  * algorithm.
692  *
693  * @param target used to run the algorithm
694  * @param arch_info target-specific description of the algorithm.
695  */
696 int target_run_algorithm(struct target *target,
697                 int num_mem_params, struct mem_param *mem_params,
698                 int num_reg_params, struct reg_param *reg_param,
699                 uint32_t entry_point, uint32_t exit_point,
700                 int timeout_ms, void *arch_info)
701 {
702         int retval = ERROR_FAIL;
703
704         if (!target_was_examined(target)) {
705                 LOG_ERROR("Target not examined yet");
706                 goto done;
707         }
708         if (!target->type->run_algorithm) {
709                 LOG_ERROR("Target type '%s' does not support %s",
710                                 target_type_name(target), __func__);
711                 goto done;
712         }
713
714         target->running_alg = true;
715         retval = target->type->run_algorithm(target,
716                         num_mem_params, mem_params,
717                         num_reg_params, reg_param,
718                         entry_point, exit_point, timeout_ms, arch_info);
719         target->running_alg = false;
720
721 done:
722         return retval;
723 }
724
725 /**
726  * Downloads a target-specific native code algorithm to the target,
727  * executes and leaves it running.
728  *
729  * @param target used to run the algorithm
730  * @param arch_info target-specific description of the algorithm.
731  */
732 int target_start_algorithm(struct target *target,
733                 int num_mem_params, struct mem_param *mem_params,
734                 int num_reg_params, struct reg_param *reg_params,
735                 uint32_t entry_point, uint32_t exit_point,
736                 void *arch_info)
737 {
738         int retval = ERROR_FAIL;
739
740         if (!target_was_examined(target)) {
741                 LOG_ERROR("Target not examined yet");
742                 goto done;
743         }
744         if (!target->type->start_algorithm) {
745                 LOG_ERROR("Target type '%s' does not support %s",
746                                 target_type_name(target), __func__);
747                 goto done;
748         }
749         if (target->running_alg) {
750                 LOG_ERROR("Target is already running an algorithm");
751                 goto done;
752         }
753
754         target->running_alg = true;
755         retval = target->type->start_algorithm(target,
756                         num_mem_params, mem_params,
757                         num_reg_params, reg_params,
758                         entry_point, exit_point, arch_info);
759
760 done:
761         return retval;
762 }
763
764 /**
765  * Waits for an algorithm started with target_start_algorithm() to complete.
766  *
767  * @param target used to run the algorithm
768  * @param arch_info target-specific description of the algorithm.
769  */
770 int target_wait_algorithm(struct target *target,
771                 int num_mem_params, struct mem_param *mem_params,
772                 int num_reg_params, struct reg_param *reg_params,
773                 uint32_t exit_point, int timeout_ms,
774                 void *arch_info)
775 {
776         int retval = ERROR_FAIL;
777
778         if (!target->type->wait_algorithm) {
779                 LOG_ERROR("Target type '%s' does not support %s",
780                                 target_type_name(target), __func__);
781                 goto done;
782         }
783         if (!target->running_alg) {
784                 LOG_ERROR("Target is not running an algorithm");
785                 goto done;
786         }
787
788         retval = target->type->wait_algorithm(target,
789                         num_mem_params, mem_params,
790                         num_reg_params, reg_params,
791                         exit_point, timeout_ms, arch_info);
792         if (retval != ERROR_TARGET_TIMEOUT)
793                 target->running_alg = false;
794
795 done:
796         return retval;
797 }
798
799 /**
800  * Executes a target-specific native code algorithm in the target.
801  * It differs from target_run_algorithm in that the algorithm is asynchronous.
802  * Because of this it requires an compliant algorithm:
803  * see contrib/loaders/flash/stm32f1x.S for example.
804  *
805  * @param target used to run the algorithm
806  */
807
808 int target_run_flash_async_algorithm(struct target *target,
809                 uint8_t *buffer, uint32_t count, int block_size,
810                 int num_mem_params, struct mem_param *mem_params,
811                 int num_reg_params, struct reg_param *reg_params,
812                 uint32_t buffer_start, uint32_t buffer_size,
813                 uint32_t entry_point, uint32_t exit_point, void *arch_info)
814 {
815         int retval;
816         int timeout = 0;
817
818         /* Set up working area. First word is write pointer, second word is read pointer,
819          * rest is fifo data area. */
820         uint32_t wp_addr = buffer_start;
821         uint32_t rp_addr = buffer_start + 4;
822         uint32_t fifo_start_addr = buffer_start + 8;
823         uint32_t fifo_end_addr = buffer_start + buffer_size;
824
825         uint32_t wp = fifo_start_addr;
826         uint32_t rp = fifo_start_addr;
827
828         /* validate block_size is 2^n */
829         assert(!block_size || !(block_size & (block_size - 1)));
830
831         retval = target_write_u32(target, wp_addr, wp);
832         if (retval != ERROR_OK)
833                 return retval;
834         retval = target_write_u32(target, rp_addr, rp);
835         if (retval != ERROR_OK)
836                 return retval;
837
838         /* Start up algorithm on target and let it idle while writing the first chunk */
839         retval = target_start_algorithm(target, num_mem_params, mem_params,
840                         num_reg_params, reg_params,
841                         entry_point,
842                         exit_point,
843                         arch_info);
844
845         if (retval != ERROR_OK) {
846                 LOG_ERROR("error starting target flash write algorithm");
847                 return retval;
848         }
849
850         while (count > 0) {
851
852                 retval = target_read_u32(target, rp_addr, &rp);
853                 if (retval != ERROR_OK) {
854                         LOG_ERROR("failed to get read pointer");
855                         break;
856                 }
857
858                 LOG_DEBUG("count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32, count, wp, rp);
859
860                 if (rp == 0) {
861                         LOG_ERROR("flash write algorithm aborted by target");
862                         retval = ERROR_FLASH_OPERATION_FAILED;
863                         break;
864                 }
865
866                 if ((rp & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
867                         LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
868                         break;
869                 }
870
871                 /* Count the number of bytes available in the fifo without
872                  * crossing the wrap around. Make sure to not fill it completely,
873                  * because that would make wp == rp and that's the empty condition. */
874                 uint32_t thisrun_bytes;
875                 if (rp > wp)
876                         thisrun_bytes = rp - wp - block_size;
877                 else if (rp > fifo_start_addr)
878                         thisrun_bytes = fifo_end_addr - wp;
879                 else
880                         thisrun_bytes = fifo_end_addr - wp - block_size;
881
882                 if (thisrun_bytes == 0) {
883                         /* Throttle polling a bit if transfer is (much) faster than flash
884                          * programming. The exact delay shouldn't matter as long as it's
885                          * less than buffer size / flash speed. This is very unlikely to
886                          * run when using high latency connections such as USB. */
887                         alive_sleep(10);
888
889                         /* to stop an infinite loop on some targets check and increment a timeout
890                          * this issue was observed on a stellaris using the new ICDI interface */
891                         if (timeout++ >= 500) {
892                                 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
893                                 return ERROR_FLASH_OPERATION_FAILED;
894                         }
895                         continue;
896                 }
897
898                 /* reset our timeout */
899                 timeout = 0;
900
901                 /* Limit to the amount of data we actually want to write */
902                 if (thisrun_bytes > count * block_size)
903                         thisrun_bytes = count * block_size;
904
905                 /* Write data to fifo */
906                 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
907                 if (retval != ERROR_OK)
908                         break;
909
910                 /* Update counters and wrap write pointer */
911                 buffer += thisrun_bytes;
912                 count -= thisrun_bytes / block_size;
913                 wp += thisrun_bytes;
914                 if (wp >= fifo_end_addr)
915                         wp = fifo_start_addr;
916
917                 /* Store updated write pointer to target */
918                 retval = target_write_u32(target, wp_addr, wp);
919                 if (retval != ERROR_OK)
920                         break;
921         }
922
923         if (retval != ERROR_OK) {
924                 /* abort flash write algorithm on target */
925                 target_write_u32(target, wp_addr, 0);
926         }
927
928         int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
929                         num_reg_params, reg_params,
930                         exit_point,
931                         10000,
932                         arch_info);
933
934         if (retval2 != ERROR_OK) {
935                 LOG_ERROR("error waiting for target flash write algorithm");
936                 retval = retval2;
937         }
938
939         return retval;
940 }
941
942 int target_read_memory(struct target *target,
943                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
944 {
945         if (!target_was_examined(target)) {
946                 LOG_ERROR("Target not examined yet");
947                 return ERROR_FAIL;
948         }
949         return target->type->read_memory(target, address, size, count, buffer);
950 }
951
952 int target_read_phys_memory(struct target *target,
953                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
954 {
955         if (!target_was_examined(target)) {
956                 LOG_ERROR("Target not examined yet");
957                 return ERROR_FAIL;
958         }
959         return target->type->read_phys_memory(target, address, size, count, buffer);
960 }
961
962 int target_write_memory(struct target *target,
963                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
964 {
965         if (!target_was_examined(target)) {
966                 LOG_ERROR("Target not examined yet");
967                 return ERROR_FAIL;
968         }
969         return target->type->write_memory(target, address, size, count, buffer);
970 }
971
972 int target_write_phys_memory(struct target *target,
973                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
974 {
975         if (!target_was_examined(target)) {
976                 LOG_ERROR("Target not examined yet");
977                 return ERROR_FAIL;
978         }
979         return target->type->write_phys_memory(target, address, size, count, buffer);
980 }
981
982 static int target_bulk_write_memory_default(struct target *target,
983                 uint32_t address, uint32_t count, const uint8_t *buffer)
984 {
985         return target_write_memory(target, address, 4, count, buffer);
986 }
987
988 int target_add_breakpoint(struct target *target,
989                 struct breakpoint *breakpoint)
990 {
991         if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
992                 LOG_WARNING("target %s is not halted", target_name(target));
993                 return ERROR_TARGET_NOT_HALTED;
994         }
995         return target->type->add_breakpoint(target, breakpoint);
996 }
997
998 int target_add_context_breakpoint(struct target *target,
999                 struct breakpoint *breakpoint)
1000 {
1001         if (target->state != TARGET_HALTED) {
1002                 LOG_WARNING("target %s is not halted", target_name(target));
1003                 return ERROR_TARGET_NOT_HALTED;
1004         }
1005         return target->type->add_context_breakpoint(target, breakpoint);
1006 }
1007
1008 int target_add_hybrid_breakpoint(struct target *target,
1009                 struct breakpoint *breakpoint)
1010 {
1011         if (target->state != TARGET_HALTED) {
1012                 LOG_WARNING("target %s is not halted", target_name(target));
1013                 return ERROR_TARGET_NOT_HALTED;
1014         }
1015         return target->type->add_hybrid_breakpoint(target, breakpoint);
1016 }
1017
1018 int target_remove_breakpoint(struct target *target,
1019                 struct breakpoint *breakpoint)
1020 {
1021         return target->type->remove_breakpoint(target, breakpoint);
1022 }
1023
1024 int target_add_watchpoint(struct target *target,
1025                 struct watchpoint *watchpoint)
1026 {
1027         if (target->state != TARGET_HALTED) {
1028                 LOG_WARNING("target %s is not halted", target_name(target));
1029                 return ERROR_TARGET_NOT_HALTED;
1030         }
1031         return target->type->add_watchpoint(target, watchpoint);
1032 }
1033 int target_remove_watchpoint(struct target *target,
1034                 struct watchpoint *watchpoint)
1035 {
1036         return target->type->remove_watchpoint(target, watchpoint);
1037 }
1038
1039 int target_get_gdb_reg_list(struct target *target,
1040                 struct reg **reg_list[], int *reg_list_size,
1041                 enum target_register_class reg_class)
1042 {
1043         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1044 }
1045 int target_step(struct target *target,
1046                 int current, uint32_t address, int handle_breakpoints)
1047 {
1048         return target->type->step(target, current, address, handle_breakpoints);
1049 }
1050
1051 /**
1052  * Reset the @c examined flag for the given target.
1053  * Pure paranoia -- targets are zeroed on allocation.
1054  */
1055 static void target_reset_examined(struct target *target)
1056 {
1057         target->examined = false;
1058 }
1059
1060 static int err_read_phys_memory(struct target *target, uint32_t address,
1061                 uint32_t size, uint32_t count, uint8_t *buffer)
1062 {
1063         LOG_ERROR("Not implemented: %s", __func__);
1064         return ERROR_FAIL;
1065 }
1066
1067 static int err_write_phys_memory(struct target *target, uint32_t address,
1068                 uint32_t size, uint32_t count, const uint8_t *buffer)
1069 {
1070         LOG_ERROR("Not implemented: %s", __func__);
1071         return ERROR_FAIL;
1072 }
1073
1074 static int handle_target(void *priv);
1075
1076 static int target_init_one(struct command_context *cmd_ctx,
1077                 struct target *target)
1078 {
1079         target_reset_examined(target);
1080
1081         struct target_type *type = target->type;
1082         if (type->examine == NULL)
1083                 type->examine = default_examine;
1084
1085         if (type->check_reset == NULL)
1086                 type->check_reset = default_check_reset;
1087
1088         assert(type->init_target != NULL);
1089
1090         int retval = type->init_target(cmd_ctx, target);
1091         if (ERROR_OK != retval) {
1092                 LOG_ERROR("target '%s' init failed", target_name(target));
1093                 return retval;
1094         }
1095
1096         /* Sanity-check MMU support ... stub in what we must, to help
1097          * implement it in stages, but warn if we need to do so.
1098          */
1099         if (type->mmu) {
1100                 if (type->write_phys_memory == NULL) {
1101                         LOG_ERROR("type '%s' is missing write_phys_memory",
1102                                         type->name);
1103                         type->write_phys_memory = err_write_phys_memory;
1104                 }
1105                 if (type->read_phys_memory == NULL) {
1106                         LOG_ERROR("type '%s' is missing read_phys_memory",
1107                                         type->name);
1108                         type->read_phys_memory = err_read_phys_memory;
1109                 }
1110                 if (type->virt2phys == NULL) {
1111                         LOG_ERROR("type '%s' is missing virt2phys", type->name);
1112                         type->virt2phys = identity_virt2phys;
1113                 }
1114         } else {
1115                 /* Make sure no-MMU targets all behave the same:  make no
1116                  * distinction between physical and virtual addresses, and
1117                  * ensure that virt2phys() is always an identity mapping.
1118                  */
1119                 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1120                         LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1121
1122                 type->mmu = no_mmu;
1123                 type->write_phys_memory = type->write_memory;
1124                 type->read_phys_memory = type->read_memory;
1125                 type->virt2phys = identity_virt2phys;
1126         }
1127
1128         if (target->type->read_buffer == NULL)
1129                 target->type->read_buffer = target_read_buffer_default;
1130
1131         if (target->type->write_buffer == NULL)
1132                 target->type->write_buffer = target_write_buffer_default;
1133
1134         if (target->type->bulk_write_memory == NULL)
1135                 target->type->bulk_write_memory = target_bulk_write_memory_default;
1136
1137         return ERROR_OK;
1138 }
1139
1140 static int target_init(struct command_context *cmd_ctx)
1141 {
1142         struct target *target;
1143         int retval;
1144
1145         for (target = all_targets; target; target = target->next) {
1146                 retval = target_init_one(cmd_ctx, target);
1147                 if (ERROR_OK != retval)
1148                         return retval;
1149         }
1150
1151         if (!all_targets)
1152                 return ERROR_OK;
1153
1154         retval = target_register_user_commands(cmd_ctx);
1155         if (ERROR_OK != retval)
1156                 return retval;
1157
1158         retval = target_register_timer_callback(&handle_target,
1159                         polling_interval, 1, cmd_ctx->interp);
1160         if (ERROR_OK != retval)
1161                 return retval;
1162
1163         return ERROR_OK;
1164 }
1165
1166 COMMAND_HANDLER(handle_target_init_command)
1167 {
1168         int retval;
1169
1170         if (CMD_ARGC != 0)
1171                 return ERROR_COMMAND_SYNTAX_ERROR;
1172
1173         static bool target_initialized;
1174         if (target_initialized) {
1175                 LOG_INFO("'target init' has already been called");
1176                 return ERROR_OK;
1177         }
1178         target_initialized = true;
1179
1180         retval = command_run_line(CMD_CTX, "init_targets");
1181         if (ERROR_OK != retval)
1182                 return retval;
1183
1184         retval = command_run_line(CMD_CTX, "init_board");
1185         if (ERROR_OK != retval)
1186                 return retval;
1187
1188         LOG_DEBUG("Initializing targets...");
1189         return target_init(CMD_CTX);
1190 }
1191
1192 int target_register_event_callback(int (*callback)(struct target *target,
1193                 enum target_event event, void *priv), void *priv)
1194 {
1195         struct target_event_callback **callbacks_p = &target_event_callbacks;
1196
1197         if (callback == NULL)
1198                 return ERROR_COMMAND_SYNTAX_ERROR;
1199
1200         if (*callbacks_p) {
1201                 while ((*callbacks_p)->next)
1202                         callbacks_p = &((*callbacks_p)->next);
1203                 callbacks_p = &((*callbacks_p)->next);
1204         }
1205
1206         (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1207         (*callbacks_p)->callback = callback;
1208         (*callbacks_p)->priv = priv;
1209         (*callbacks_p)->next = NULL;
1210
1211         return ERROR_OK;
1212 }
1213
1214 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1215 {
1216         struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1217         struct timeval now;
1218
1219         if (callback == NULL)
1220                 return ERROR_COMMAND_SYNTAX_ERROR;
1221
1222         if (*callbacks_p) {
1223                 while ((*callbacks_p)->next)
1224                         callbacks_p = &((*callbacks_p)->next);
1225                 callbacks_p = &((*callbacks_p)->next);
1226         }
1227
1228         (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1229         (*callbacks_p)->callback = callback;
1230         (*callbacks_p)->periodic = periodic;
1231         (*callbacks_p)->time_ms = time_ms;
1232
1233         gettimeofday(&now, NULL);
1234         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
1235         time_ms -= (time_ms % 1000);
1236         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
1237         if ((*callbacks_p)->when.tv_usec > 1000000) {
1238                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
1239                 (*callbacks_p)->when.tv_sec += 1;
1240         }
1241
1242         (*callbacks_p)->priv = priv;
1243         (*callbacks_p)->next = NULL;
1244
1245         return ERROR_OK;
1246 }
1247
1248 int target_unregister_event_callback(int (*callback)(struct target *target,
1249                 enum target_event event, void *priv), void *priv)
1250 {
1251         struct target_event_callback **p = &target_event_callbacks;
1252         struct target_event_callback *c = target_event_callbacks;
1253
1254         if (callback == NULL)
1255                 return ERROR_COMMAND_SYNTAX_ERROR;
1256
1257         while (c) {
1258                 struct target_event_callback *next = c->next;
1259                 if ((c->callback == callback) && (c->priv == priv)) {
1260                         *p = next;
1261                         free(c);
1262                         return ERROR_OK;
1263                 } else
1264                         p = &(c->next);
1265                 c = next;
1266         }
1267
1268         return ERROR_OK;
1269 }
1270
1271 static int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1272 {
1273         struct target_timer_callback **p = &target_timer_callbacks;
1274         struct target_timer_callback *c = target_timer_callbacks;
1275
1276         if (callback == NULL)
1277                 return ERROR_COMMAND_SYNTAX_ERROR;
1278
1279         while (c) {
1280                 struct target_timer_callback *next = c->next;
1281                 if ((c->callback == callback) && (c->priv == priv)) {
1282                         *p = next;
1283                         free(c);
1284                         return ERROR_OK;
1285                 } else
1286                         p = &(c->next);
1287                 c = next;
1288         }
1289
1290         return ERROR_OK;
1291 }
1292
1293 int target_call_event_callbacks(struct target *target, enum target_event event)
1294 {
1295         struct target_event_callback *callback = target_event_callbacks;
1296         struct target_event_callback *next_callback;
1297
1298         if (event == TARGET_EVENT_HALTED) {
1299                 /* execute early halted first */
1300                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1301         }
1302
1303         LOG_DEBUG("target event %i (%s)", event,
1304                         Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1305
1306         target_handle_event(target, event);
1307
1308         while (callback) {
1309                 next_callback = callback->next;
1310                 callback->callback(target, event, callback->priv);
1311                 callback = next_callback;
1312         }
1313
1314         return ERROR_OK;
1315 }
1316
1317 static int target_timer_callback_periodic_restart(
1318                 struct target_timer_callback *cb, struct timeval *now)
1319 {
1320         int time_ms = cb->time_ms;
1321         cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1322         time_ms -= (time_ms % 1000);
1323         cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1324         if (cb->when.tv_usec > 1000000) {
1325                 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1326                 cb->when.tv_sec += 1;
1327         }
1328         return ERROR_OK;
1329 }
1330
1331 static int target_call_timer_callback(struct target_timer_callback *cb,
1332                 struct timeval *now)
1333 {
1334         cb->callback(cb->priv);
1335
1336         if (cb->periodic)
1337                 return target_timer_callback_periodic_restart(cb, now);
1338
1339         return target_unregister_timer_callback(cb->callback, cb->priv);
1340 }
1341
1342 static int target_call_timer_callbacks_check_time(int checktime)
1343 {
1344         keep_alive();
1345
1346         struct timeval now;
1347         gettimeofday(&now, NULL);
1348
1349         struct target_timer_callback *callback = target_timer_callbacks;
1350         while (callback) {
1351                 /* cleaning up may unregister and free this callback */
1352                 struct target_timer_callback *next_callback = callback->next;
1353
1354                 bool call_it = callback->callback &&
1355                         ((!checktime && callback->periodic) ||
1356                           now.tv_sec > callback->when.tv_sec ||
1357                          (now.tv_sec == callback->when.tv_sec &&
1358                           now.tv_usec >= callback->when.tv_usec));
1359
1360                 if (call_it) {
1361                         int retval = target_call_timer_callback(callback, &now);
1362                         if (retval != ERROR_OK)
1363                                 return retval;
1364                 }
1365
1366                 callback = next_callback;
1367         }
1368
1369         return ERROR_OK;
1370 }
1371
1372 int target_call_timer_callbacks(void)
1373 {
1374         return target_call_timer_callbacks_check_time(1);
1375 }
1376
1377 /* invoke periodic callbacks immediately */
1378 int target_call_timer_callbacks_now(void)
1379 {
1380         return target_call_timer_callbacks_check_time(0);
1381 }
1382
1383 /* Prints the working area layout for debug purposes */
1384 static void print_wa_layout(struct target *target)
1385 {
1386         struct working_area *c = target->working_areas;
1387
1388         while (c) {
1389                 LOG_DEBUG("%c%c 0x%08"PRIx32"-0x%08"PRIx32" (%"PRIu32" bytes)",
1390                         c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1391                         c->address, c->address + c->size - 1, c->size);
1392                 c = c->next;
1393         }
1394 }
1395
1396 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1397 static void target_split_working_area(struct working_area *area, uint32_t size)
1398 {
1399         assert(area->free); /* Shouldn't split an allocated area */
1400         assert(size <= area->size); /* Caller should guarantee this */
1401
1402         /* Split only if not already the right size */
1403         if (size < area->size) {
1404                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1405
1406                 if (new_wa == NULL)
1407                         return;
1408
1409                 new_wa->next = area->next;
1410                 new_wa->size = area->size - size;
1411                 new_wa->address = area->address + size;
1412                 new_wa->backup = NULL;
1413                 new_wa->user = NULL;
1414                 new_wa->free = true;
1415
1416                 area->next = new_wa;
1417                 area->size = size;
1418
1419                 /* If backup memory was allocated to this area, it has the wrong size
1420                  * now so free it and it will be reallocated if/when needed */
1421                 if (area->backup) {
1422                         free(area->backup);
1423                         area->backup = NULL;
1424                 }
1425         }
1426 }
1427
1428 /* Merge all adjacent free areas into one */
1429 static void target_merge_working_areas(struct target *target)
1430 {
1431         struct working_area *c = target->working_areas;
1432
1433         while (c && c->next) {
1434                 assert(c->next->address == c->address + c->size); /* This is an invariant */
1435
1436                 /* Find two adjacent free areas */
1437                 if (c->free && c->next->free) {
1438                         /* Merge the last into the first */
1439                         c->size += c->next->size;
1440
1441                         /* Remove the last */
1442                         struct working_area *to_be_freed = c->next;
1443                         c->next = c->next->next;
1444                         if (to_be_freed->backup)
1445                                 free(to_be_freed->backup);
1446                         free(to_be_freed);
1447
1448                         /* If backup memory was allocated to the remaining area, it's has
1449                          * the wrong size now */
1450                         if (c->backup) {
1451                                 free(c->backup);
1452                                 c->backup = NULL;
1453                         }
1454                 } else {
1455                         c = c->next;
1456                 }
1457         }
1458 }
1459
1460 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1461 {
1462         /* Reevaluate working area address based on MMU state*/
1463         if (target->working_areas == NULL) {
1464                 int retval;
1465                 int enabled;
1466
1467                 retval = target->type->mmu(target, &enabled);
1468                 if (retval != ERROR_OK)
1469                         return retval;
1470
1471                 if (!enabled) {
1472                         if (target->working_area_phys_spec) {
1473                                 LOG_DEBUG("MMU disabled, using physical "
1474                                         "address for working memory 0x%08"PRIx32,
1475                                         target->working_area_phys);
1476                                 target->working_area = target->working_area_phys;
1477                         } else {
1478                                 LOG_ERROR("No working memory available. "
1479                                         "Specify -work-area-phys to target.");
1480                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1481                         }
1482                 } else {
1483                         if (target->working_area_virt_spec) {
1484                                 LOG_DEBUG("MMU enabled, using virtual "
1485                                         "address for working memory 0x%08"PRIx32,
1486                                         target->working_area_virt);
1487                                 target->working_area = target->working_area_virt;
1488                         } else {
1489                                 LOG_ERROR("No working memory available. "
1490                                         "Specify -work-area-virt to target.");
1491                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1492                         }
1493                 }
1494
1495                 /* Set up initial working area on first call */
1496                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1497                 if (new_wa) {
1498                         new_wa->next = NULL;
1499                         new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1500                         new_wa->address = target->working_area;
1501                         new_wa->backup = NULL;
1502                         new_wa->user = NULL;
1503                         new_wa->free = true;
1504                 }
1505
1506                 target->working_areas = new_wa;
1507         }
1508
1509         /* only allocate multiples of 4 byte */
1510         if (size % 4)
1511                 size = (size + 3) & (~3UL);
1512
1513         struct working_area *c = target->working_areas;
1514
1515         /* Find the first large enough working area */
1516         while (c) {
1517                 if (c->free && c->size >= size)
1518                         break;
1519                 c = c->next;
1520         }
1521
1522         if (c == NULL)
1523                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1524
1525         /* Split the working area into the requested size */
1526         target_split_working_area(c, size);
1527
1528         LOG_DEBUG("allocated new working area of %"PRIu32" bytes at address 0x%08"PRIx32, size, c->address);
1529
1530         if (target->backup_working_area) {
1531                 if (c->backup == NULL) {
1532                         c->backup = malloc(c->size);
1533                         if (c->backup == NULL)
1534                                 return ERROR_FAIL;
1535                 }
1536
1537                 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1538                 if (retval != ERROR_OK)
1539                         return retval;
1540         }
1541
1542         /* mark as used, and return the new (reused) area */
1543         c->free = false;
1544         *area = c;
1545
1546         /* user pointer */
1547         c->user = area;
1548
1549         print_wa_layout(target);
1550
1551         return ERROR_OK;
1552 }
1553
1554 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1555 {
1556         int retval;
1557
1558         retval = target_alloc_working_area_try(target, size, area);
1559         if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1560                 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1561         return retval;
1562
1563 }
1564
1565 static int target_restore_working_area(struct target *target, struct working_area *area)
1566 {
1567         int retval = ERROR_OK;
1568
1569         if (target->backup_working_area && area->backup != NULL) {
1570                 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1571                 if (retval != ERROR_OK)
1572                         LOG_ERROR("failed to restore %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1573                                         area->size, area->address);
1574         }
1575
1576         return retval;
1577 }
1578
1579 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1580 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1581 {
1582         int retval = ERROR_OK;
1583
1584         if (area->free)
1585                 return retval;
1586
1587         if (restore) {
1588                 retval = target_restore_working_area(target, area);
1589                 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1590                 if (retval != ERROR_OK)
1591                         return retval;
1592         }
1593
1594         area->free = true;
1595
1596         LOG_DEBUG("freed %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1597                         area->size, area->address);
1598
1599         /* mark user pointer invalid */
1600         /* TODO: Is this really safe? It points to some previous caller's memory.
1601          * How could we know that the area pointer is still in that place and not
1602          * some other vital data? What's the purpose of this, anyway? */
1603         *area->user = NULL;
1604         area->user = NULL;
1605
1606         target_merge_working_areas(target);
1607
1608         print_wa_layout(target);
1609
1610         return retval;
1611 }
1612
1613 int target_free_working_area(struct target *target, struct working_area *area)
1614 {
1615         return target_free_working_area_restore(target, area, 1);
1616 }
1617
1618 /* free resources and restore memory, if restoring memory fails,
1619  * free up resources anyway
1620  */
1621 static void target_free_all_working_areas_restore(struct target *target, int restore)
1622 {
1623         struct working_area *c = target->working_areas;
1624
1625         LOG_DEBUG("freeing all working areas");
1626
1627         /* Loop through all areas, restoring the allocated ones and marking them as free */
1628         while (c) {
1629                 if (!c->free) {
1630                         if (restore)
1631                                 target_restore_working_area(target, c);
1632                         c->free = true;
1633                         *c->user = NULL; /* Same as above */
1634                         c->user = NULL;
1635                 }
1636                 c = c->next;
1637         }
1638
1639         /* Run a merge pass to combine all areas into one */
1640         target_merge_working_areas(target);
1641
1642         print_wa_layout(target);
1643 }
1644
1645 void target_free_all_working_areas(struct target *target)
1646 {
1647         target_free_all_working_areas_restore(target, 1);
1648 }
1649
1650 /* Find the largest number of bytes that can be allocated */
1651 uint32_t target_get_working_area_avail(struct target *target)
1652 {
1653         struct working_area *c = target->working_areas;
1654         uint32_t max_size = 0;
1655
1656         if (c == NULL)
1657                 return target->working_area_size;
1658
1659         while (c) {
1660                 if (c->free && max_size < c->size)
1661                         max_size = c->size;
1662
1663                 c = c->next;
1664         }
1665
1666         return max_size;
1667 }
1668
1669 int target_arch_state(struct target *target)
1670 {
1671         int retval;
1672         if (target == NULL) {
1673                 LOG_USER("No target has been configured");
1674                 return ERROR_OK;
1675         }
1676
1677         LOG_USER("target state: %s", target_state_name(target));
1678
1679         if (target->state != TARGET_HALTED)
1680                 return ERROR_OK;
1681
1682         retval = target->type->arch_state(target);
1683         return retval;
1684 }
1685
1686 /* Single aligned words are guaranteed to use 16 or 32 bit access
1687  * mode respectively, otherwise data is handled as quickly as
1688  * possible
1689  */
1690 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1691 {
1692         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1693                         (int)size, (unsigned)address);
1694
1695         if (!target_was_examined(target)) {
1696                 LOG_ERROR("Target not examined yet");
1697                 return ERROR_FAIL;
1698         }
1699
1700         if (size == 0)
1701                 return ERROR_OK;
1702
1703         if ((address + size - 1) < address) {
1704                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1705                 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1706                                   (unsigned)address,
1707                                   (unsigned)size);
1708                 return ERROR_FAIL;
1709         }
1710
1711         return target->type->write_buffer(target, address, size, buffer);
1712 }
1713
1714 static int target_write_buffer_default(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1715 {
1716         int retval = ERROR_OK;
1717
1718         if (((address % 2) == 0) && (size == 2))
1719                 return target_write_memory(target, address, 2, 1, buffer);
1720
1721         /* handle unaligned head bytes */
1722         if (address % 4) {
1723                 uint32_t unaligned = 4 - (address % 4);
1724
1725                 if (unaligned > size)
1726                         unaligned = size;
1727
1728                 retval = target_write_memory(target, address, 1, unaligned, buffer);
1729                 if (retval != ERROR_OK)
1730                         return retval;
1731
1732                 buffer += unaligned;
1733                 address += unaligned;
1734                 size -= unaligned;
1735         }
1736
1737         /* handle aligned words */
1738         if (size >= 4) {
1739                 int aligned = size - (size % 4);
1740
1741                 /* use bulk writes above a certain limit. This may have to be changed */
1742                 if (aligned > 128) {
1743                         retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer);
1744                         if (retval != ERROR_OK)
1745                                 return retval;
1746                 } else {
1747                         retval = target_write_memory(target, address, 4, aligned / 4, buffer);
1748                         if (retval != ERROR_OK)
1749                                 return retval;
1750                 }
1751
1752                 buffer += aligned;
1753                 address += aligned;
1754                 size -= aligned;
1755         }
1756
1757         /* handle tail writes of less than 4 bytes */
1758         if (size > 0) {
1759                 retval = target_write_memory(target, address, 1, size, buffer);
1760                 if (retval != ERROR_OK)
1761                         return retval;
1762         }
1763
1764         return retval;
1765 }
1766
1767 /* Single aligned words are guaranteed to use 16 or 32 bit access
1768  * mode respectively, otherwise data is handled as quickly as
1769  * possible
1770  */
1771 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1772 {
1773         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1774                           (int)size, (unsigned)address);
1775
1776         if (!target_was_examined(target)) {
1777                 LOG_ERROR("Target not examined yet");
1778                 return ERROR_FAIL;
1779         }
1780
1781         if (size == 0)
1782                 return ERROR_OK;
1783
1784         if ((address + size - 1) < address) {
1785                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1786                 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1787                                   address,
1788                                   size);
1789                 return ERROR_FAIL;
1790         }
1791
1792         return target->type->read_buffer(target, address, size, buffer);
1793 }
1794
1795 static int target_read_buffer_default(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1796 {
1797         int retval = ERROR_OK;
1798
1799         if (((address % 2) == 0) && (size == 2))
1800                 return target_read_memory(target, address, 2, 1, buffer);
1801
1802         /* handle unaligned head bytes */
1803         if (address % 4) {
1804                 uint32_t unaligned = 4 - (address % 4);
1805
1806                 if (unaligned > size)
1807                         unaligned = size;
1808
1809                 retval = target_read_memory(target, address, 1, unaligned, buffer);
1810                 if (retval != ERROR_OK)
1811                         return retval;
1812
1813                 buffer += unaligned;
1814                 address += unaligned;
1815                 size -= unaligned;
1816         }
1817
1818         /* handle aligned words */
1819         if (size >= 4) {
1820                 int aligned = size - (size % 4);
1821
1822                 retval = target_read_memory(target, address, 4, aligned / 4, buffer);
1823                 if (retval != ERROR_OK)
1824                         return retval;
1825
1826                 buffer += aligned;
1827                 address += aligned;
1828                 size -= aligned;
1829         }
1830
1831         /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1832         if (size        >= 2) {
1833                 int aligned = size - (size % 2);
1834                 retval = target_read_memory(target, address, 2, aligned / 2, buffer);
1835                 if (retval != ERROR_OK)
1836                         return retval;
1837
1838                 buffer += aligned;
1839                 address += aligned;
1840                 size -= aligned;
1841         }
1842         /* handle tail writes of less than 4 bytes */
1843         if (size > 0) {
1844                 retval = target_read_memory(target, address, 1, size, buffer);
1845                 if (retval != ERROR_OK)
1846                         return retval;
1847         }
1848
1849         return ERROR_OK;
1850 }
1851
1852 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1853 {
1854         uint8_t *buffer;
1855         int retval;
1856         uint32_t i;
1857         uint32_t checksum = 0;
1858         if (!target_was_examined(target)) {
1859                 LOG_ERROR("Target not examined yet");
1860                 return ERROR_FAIL;
1861         }
1862
1863         retval = target->type->checksum_memory(target, address, size, &checksum);
1864         if (retval != ERROR_OK) {
1865                 buffer = malloc(size);
1866                 if (buffer == NULL) {
1867                         LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1868                         return ERROR_COMMAND_SYNTAX_ERROR;
1869                 }
1870                 retval = target_read_buffer(target, address, size, buffer);
1871                 if (retval != ERROR_OK) {
1872                         free(buffer);
1873                         return retval;
1874                 }
1875
1876                 /* convert to target endianness */
1877                 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
1878                         uint32_t target_data;
1879                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1880                         target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1881                 }
1882
1883                 retval = image_calculate_checksum(buffer, size, &checksum);
1884                 free(buffer);
1885         }
1886
1887         *crc = checksum;
1888
1889         return retval;
1890 }
1891
1892 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
1893 {
1894         int retval;
1895         if (!target_was_examined(target)) {
1896                 LOG_ERROR("Target not examined yet");
1897                 return ERROR_FAIL;
1898         }
1899
1900         if (target->type->blank_check_memory == 0)
1901                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1902
1903         retval = target->type->blank_check_memory(target, address, size, blank);
1904
1905         return retval;
1906 }
1907
1908 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
1909 {
1910         uint8_t value_buf[4];
1911         if (!target_was_examined(target)) {
1912                 LOG_ERROR("Target not examined yet");
1913                 return ERROR_FAIL;
1914         }
1915
1916         int retval = target_read_memory(target, address, 4, 1, value_buf);
1917
1918         if (retval == ERROR_OK) {
1919                 *value = target_buffer_get_u32(target, value_buf);
1920                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1921                                   address,
1922                                   *value);
1923         } else {
1924                 *value = 0x0;
1925                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1926                                   address);
1927         }
1928
1929         return retval;
1930 }
1931
1932 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
1933 {
1934         uint8_t value_buf[2];
1935         if (!target_was_examined(target)) {
1936                 LOG_ERROR("Target not examined yet");
1937                 return ERROR_FAIL;
1938         }
1939
1940         int retval = target_read_memory(target, address, 2, 1, value_buf);
1941
1942         if (retval == ERROR_OK) {
1943                 *value = target_buffer_get_u16(target, value_buf);
1944                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
1945                                   address,
1946                                   *value);
1947         } else {
1948                 *value = 0x0;
1949                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1950                                   address);
1951         }
1952
1953         return retval;
1954 }
1955
1956 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
1957 {
1958         int retval = target_read_memory(target, address, 1, 1, value);
1959         if (!target_was_examined(target)) {
1960                 LOG_ERROR("Target not examined yet");
1961                 return ERROR_FAIL;
1962         }
1963
1964         if (retval == ERROR_OK) {
1965                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1966                                   address,
1967                                   *value);
1968         } else {
1969                 *value = 0x0;
1970                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1971                                   address);
1972         }
1973
1974         return retval;
1975 }
1976
1977 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
1978 {
1979         int retval;
1980         uint8_t value_buf[4];
1981         if (!target_was_examined(target)) {
1982                 LOG_ERROR("Target not examined yet");
1983                 return ERROR_FAIL;
1984         }
1985
1986         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1987                           address,
1988                           value);
1989
1990         target_buffer_set_u32(target, value_buf, value);
1991         retval = target_write_memory(target, address, 4, 1, value_buf);
1992         if (retval != ERROR_OK)
1993                 LOG_DEBUG("failed: %i", retval);
1994
1995         return retval;
1996 }
1997
1998 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
1999 {
2000         int retval;
2001         uint8_t value_buf[2];
2002         if (!target_was_examined(target)) {
2003                 LOG_ERROR("Target not examined yet");
2004                 return ERROR_FAIL;
2005         }
2006
2007         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
2008                           address,
2009                           value);
2010
2011         target_buffer_set_u16(target, value_buf, value);
2012         retval = target_write_memory(target, address, 2, 1, value_buf);
2013         if (retval != ERROR_OK)
2014                 LOG_DEBUG("failed: %i", retval);
2015
2016         return retval;
2017 }
2018
2019 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
2020 {
2021         int retval;
2022         if (!target_was_examined(target)) {
2023                 LOG_ERROR("Target not examined yet");
2024                 return ERROR_FAIL;
2025         }
2026
2027         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
2028                           address, value);
2029
2030         retval = target_write_memory(target, address, 1, 1, &value);
2031         if (retval != ERROR_OK)
2032                 LOG_DEBUG("failed: %i", retval);
2033
2034         return retval;
2035 }
2036
2037 static int find_target(struct command_context *cmd_ctx, const char *name)
2038 {
2039         struct target *target = get_target(name);
2040         if (target == NULL) {
2041                 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2042                 return ERROR_FAIL;
2043         }
2044         if (!target->tap->enabled) {
2045                 LOG_USER("Target: TAP %s is disabled, "
2046                          "can't be the current target\n",
2047                          target->tap->dotted_name);
2048                 return ERROR_FAIL;
2049         }
2050
2051         cmd_ctx->current_target = target->target_number;
2052         return ERROR_OK;
2053 }
2054
2055
2056 COMMAND_HANDLER(handle_targets_command)
2057 {
2058         int retval = ERROR_OK;
2059         if (CMD_ARGC == 1) {
2060                 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2061                 if (retval == ERROR_OK) {
2062                         /* we're done! */
2063                         return retval;
2064                 }
2065         }
2066
2067         struct target *target = all_targets;
2068         command_print(CMD_CTX, "    TargetName         Type       Endian TapName            State       ");
2069         command_print(CMD_CTX, "--  ------------------ ---------- ------ ------------------ ------------");
2070         while (target) {
2071                 const char *state;
2072                 char marker = ' ';
2073
2074                 if (target->tap->enabled)
2075                         state = target_state_name(target);
2076                 else
2077                         state = "tap-disabled";
2078
2079                 if (CMD_CTX->current_target == target->target_number)
2080                         marker = '*';
2081
2082                 /* keep columns lined up to match the headers above */
2083                 command_print(CMD_CTX,
2084                                 "%2d%c %-18s %-10s %-6s %-18s %s",
2085                                 target->target_number,
2086                                 marker,
2087                                 target_name(target),
2088                                 target_type_name(target),
2089                                 Jim_Nvp_value2name_simple(nvp_target_endian,
2090                                         target->endianness)->name,
2091                                 target->tap->dotted_name,
2092                                 state);
2093                 target = target->next;
2094         }
2095
2096         return retval;
2097 }
2098
2099 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2100
2101 static int powerDropout;
2102 static int srstAsserted;
2103
2104 static int runPowerRestore;
2105 static int runPowerDropout;
2106 static int runSrstAsserted;
2107 static int runSrstDeasserted;
2108
2109 static int sense_handler(void)
2110 {
2111         static int prevSrstAsserted;
2112         static int prevPowerdropout;
2113
2114         int retval = jtag_power_dropout(&powerDropout);
2115         if (retval != ERROR_OK)
2116                 return retval;
2117
2118         int powerRestored;
2119         powerRestored = prevPowerdropout && !powerDropout;
2120         if (powerRestored)
2121                 runPowerRestore = 1;
2122
2123         long long current = timeval_ms();
2124         static long long lastPower;
2125         int waitMore = lastPower + 2000 > current;
2126         if (powerDropout && !waitMore) {
2127                 runPowerDropout = 1;
2128                 lastPower = current;
2129         }
2130
2131         retval = jtag_srst_asserted(&srstAsserted);
2132         if (retval != ERROR_OK)
2133                 return retval;
2134
2135         int srstDeasserted;
2136         srstDeasserted = prevSrstAsserted && !srstAsserted;
2137
2138         static long long lastSrst;
2139         waitMore = lastSrst + 2000 > current;
2140         if (srstDeasserted && !waitMore) {
2141                 runSrstDeasserted = 1;
2142                 lastSrst = current;
2143         }
2144
2145         if (!prevSrstAsserted && srstAsserted)
2146                 runSrstAsserted = 1;
2147
2148         prevSrstAsserted = srstAsserted;
2149         prevPowerdropout = powerDropout;
2150
2151         if (srstDeasserted || powerRestored) {
2152                 /* Other than logging the event we can't do anything here.
2153                  * Issuing a reset is a particularly bad idea as we might
2154                  * be inside a reset already.
2155                  */
2156         }
2157
2158         return ERROR_OK;
2159 }
2160
2161 /* process target state changes */
2162 static int handle_target(void *priv)
2163 {
2164         Jim_Interp *interp = (Jim_Interp *)priv;
2165         int retval = ERROR_OK;
2166
2167         if (!is_jtag_poll_safe()) {
2168                 /* polling is disabled currently */
2169                 return ERROR_OK;
2170         }
2171
2172         /* we do not want to recurse here... */
2173         static int recursive;
2174         if (!recursive) {
2175                 recursive = 1;
2176                 sense_handler();
2177                 /* danger! running these procedures can trigger srst assertions and power dropouts.
2178                  * We need to avoid an infinite loop/recursion here and we do that by
2179                  * clearing the flags after running these events.
2180                  */
2181                 int did_something = 0;
2182                 if (runSrstAsserted) {
2183                         LOG_INFO("srst asserted detected, running srst_asserted proc.");
2184                         Jim_Eval(interp, "srst_asserted");
2185                         did_something = 1;
2186                 }
2187                 if (runSrstDeasserted) {
2188                         Jim_Eval(interp, "srst_deasserted");
2189                         did_something = 1;
2190                 }
2191                 if (runPowerDropout) {
2192                         LOG_INFO("Power dropout detected, running power_dropout proc.");
2193                         Jim_Eval(interp, "power_dropout");
2194                         did_something = 1;
2195                 }
2196                 if (runPowerRestore) {
2197                         Jim_Eval(interp, "power_restore");
2198                         did_something = 1;
2199                 }
2200
2201                 if (did_something) {
2202                         /* clear detect flags */
2203                         sense_handler();
2204                 }
2205
2206                 /* clear action flags */
2207
2208                 runSrstAsserted = 0;
2209                 runSrstDeasserted = 0;
2210                 runPowerRestore = 0;
2211                 runPowerDropout = 0;
2212
2213                 recursive = 0;
2214         }
2215
2216         /* Poll targets for state changes unless that's globally disabled.
2217          * Skip targets that are currently disabled.
2218          */
2219         for (struct target *target = all_targets;
2220                         is_jtag_poll_safe() && target;
2221                         target = target->next) {
2222                 if (!target->tap->enabled)
2223                         continue;
2224
2225                 if (target->backoff.times > target->backoff.count) {
2226                         /* do not poll this time as we failed previously */
2227                         target->backoff.count++;
2228                         continue;
2229                 }
2230                 target->backoff.count = 0;
2231
2232                 /* only poll target if we've got power and srst isn't asserted */
2233                 if (!powerDropout && !srstAsserted) {
2234                         /* polling may fail silently until the target has been examined */
2235                         retval = target_poll(target);
2236                         if (retval != ERROR_OK) {
2237                                 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2238                                 if (target->backoff.times * polling_interval < 5000) {
2239                                         target->backoff.times *= 2;
2240                                         target->backoff.times++;
2241                                 }
2242                                 LOG_USER("Polling target %s failed, GDB will be halted. Polling again in %dms",
2243                                                 target_name(target),
2244                                                 target->backoff.times * polling_interval);
2245
2246                                 /* Tell GDB to halt the debugger. This allows the user to
2247                                  * run monitor commands to handle the situation.
2248                                  */
2249                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2250                                 return retval;
2251                         }
2252                         /* Since we succeeded, we reset backoff count */
2253                         if (target->backoff.times > 0)
2254                                 LOG_USER("Polling target %s succeeded again", target_name(target));
2255                         target->backoff.times = 0;
2256                 }
2257         }
2258
2259         return retval;
2260 }
2261
2262 COMMAND_HANDLER(handle_reg_command)
2263 {
2264         struct target *target;
2265         struct reg *reg = NULL;
2266         unsigned count = 0;
2267         char *value;
2268
2269         LOG_DEBUG("-");
2270
2271         target = get_current_target(CMD_CTX);
2272
2273         /* list all available registers for the current target */
2274         if (CMD_ARGC == 0) {
2275                 struct reg_cache *cache = target->reg_cache;
2276
2277                 count = 0;
2278                 while (cache) {
2279                         unsigned i;
2280
2281                         command_print(CMD_CTX, "===== %s", cache->name);
2282
2283                         for (i = 0, reg = cache->reg_list;
2284                                         i < cache->num_regs;
2285                                         i++, reg++, count++) {
2286                                 /* only print cached values if they are valid */
2287                                 if (reg->valid) {
2288                                         value = buf_to_str(reg->value,
2289                                                         reg->size, 16);
2290                                         command_print(CMD_CTX,
2291                                                         "(%i) %s (/%" PRIu32 "): 0x%s%s",
2292                                                         count, reg->name,
2293                                                         reg->size, value,
2294                                                         reg->dirty
2295                                                                 ? " (dirty)"
2296                                                                 : "");
2297                                         free(value);
2298                                 } else {
2299                                         command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2300                                                           count, reg->name,
2301                                                           reg->size) ;
2302                                 }
2303                         }
2304                         cache = cache->next;
2305                 }
2306
2307                 return ERROR_OK;
2308         }
2309
2310         /* access a single register by its ordinal number */
2311         if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2312                 unsigned num;
2313                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2314
2315                 struct reg_cache *cache = target->reg_cache;
2316                 count = 0;
2317                 while (cache) {
2318                         unsigned i;
2319                         for (i = 0; i < cache->num_regs; i++) {
2320                                 if (count++ == num) {
2321                                         reg = &cache->reg_list[i];
2322                                         break;
2323                                 }
2324                         }
2325                         if (reg)
2326                                 break;
2327                         cache = cache->next;
2328                 }
2329
2330                 if (!reg) {
2331                         command_print(CMD_CTX, "%i is out of bounds, the current target "
2332                                         "has only %i registers (0 - %i)", num, count, count - 1);
2333                         return ERROR_OK;
2334                 }
2335         } else {
2336                 /* access a single register by its name */
2337                 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2338
2339                 if (!reg) {
2340                         command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2341                         return ERROR_OK;
2342                 }
2343         }
2344
2345         assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2346
2347         /* display a register */
2348         if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2349                         && (CMD_ARGV[1][0] <= '9')))) {
2350                 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2351                         reg->valid = 0;
2352
2353                 if (reg->valid == 0)
2354                         reg->type->get(reg);
2355                 value = buf_to_str(reg->value, reg->size, 16);
2356                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2357                 free(value);
2358                 return ERROR_OK;
2359         }
2360
2361         /* set register value */
2362         if (CMD_ARGC == 2) {
2363                 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2364                 if (buf == NULL)
2365                         return ERROR_FAIL;
2366                 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2367
2368                 reg->type->set(reg, buf);
2369
2370                 value = buf_to_str(reg->value, reg->size, 16);
2371                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2372                 free(value);
2373
2374                 free(buf);
2375
2376                 return ERROR_OK;
2377         }
2378
2379         return ERROR_COMMAND_SYNTAX_ERROR;
2380 }
2381
2382 COMMAND_HANDLER(handle_poll_command)
2383 {
2384         int retval = ERROR_OK;
2385         struct target *target = get_current_target(CMD_CTX);
2386
2387         if (CMD_ARGC == 0) {
2388                 command_print(CMD_CTX, "background polling: %s",
2389                                 jtag_poll_get_enabled() ? "on" : "off");
2390                 command_print(CMD_CTX, "TAP: %s (%s)",
2391                                 target->tap->dotted_name,
2392                                 target->tap->enabled ? "enabled" : "disabled");
2393                 if (!target->tap->enabled)
2394                         return ERROR_OK;
2395                 retval = target_poll(target);
2396                 if (retval != ERROR_OK)
2397                         return retval;
2398                 retval = target_arch_state(target);
2399                 if (retval != ERROR_OK)
2400                         return retval;
2401         } else if (CMD_ARGC == 1) {
2402                 bool enable;
2403                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2404                 jtag_poll_set_enabled(enable);
2405         } else
2406                 return ERROR_COMMAND_SYNTAX_ERROR;
2407
2408         return retval;
2409 }
2410
2411 COMMAND_HANDLER(handle_wait_halt_command)
2412 {
2413         if (CMD_ARGC > 1)
2414                 return ERROR_COMMAND_SYNTAX_ERROR;
2415
2416         unsigned ms = DEFAULT_HALT_TIMEOUT;
2417         if (1 == CMD_ARGC) {
2418                 int retval = parse_uint(CMD_ARGV[0], &ms);
2419                 if (ERROR_OK != retval)
2420                         return ERROR_COMMAND_SYNTAX_ERROR;
2421         }
2422
2423         struct target *target = get_current_target(CMD_CTX);
2424         return target_wait_state(target, TARGET_HALTED, ms);
2425 }
2426
2427 /* wait for target state to change. The trick here is to have a low
2428  * latency for short waits and not to suck up all the CPU time
2429  * on longer waits.
2430  *
2431  * After 500ms, keep_alive() is invoked
2432  */
2433 int target_wait_state(struct target *target, enum target_state state, int ms)
2434 {
2435         int retval;
2436         long long then = 0, cur;
2437         int once = 1;
2438
2439         for (;;) {
2440                 retval = target_poll(target);
2441                 if (retval != ERROR_OK)
2442                         return retval;
2443                 if (target->state == state)
2444                         break;
2445                 cur = timeval_ms();
2446                 if (once) {
2447                         once = 0;
2448                         then = timeval_ms();
2449                         LOG_DEBUG("waiting for target %s...",
2450                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2451                 }
2452
2453                 if (cur-then > 500)
2454                         keep_alive();
2455
2456                 if ((cur-then) > ms) {
2457                         LOG_ERROR("timed out while waiting for target %s",
2458                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2459                         return ERROR_FAIL;
2460                 }
2461         }
2462
2463         return ERROR_OK;
2464 }
2465
2466 COMMAND_HANDLER(handle_halt_command)
2467 {
2468         LOG_DEBUG("-");
2469
2470         struct target *target = get_current_target(CMD_CTX);
2471         int retval = target_halt(target);
2472         if (ERROR_OK != retval)
2473                 return retval;
2474
2475         if (CMD_ARGC == 1) {
2476                 unsigned wait_local;
2477                 retval = parse_uint(CMD_ARGV[0], &wait_local);
2478                 if (ERROR_OK != retval)
2479                         return ERROR_COMMAND_SYNTAX_ERROR;
2480                 if (!wait_local)
2481                         return ERROR_OK;
2482         }
2483
2484         return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2485 }
2486
2487 COMMAND_HANDLER(handle_soft_reset_halt_command)
2488 {
2489         struct target *target = get_current_target(CMD_CTX);
2490
2491         LOG_USER("requesting target halt and executing a soft reset");
2492
2493         target_soft_reset_halt(target);
2494
2495         return ERROR_OK;
2496 }
2497
2498 COMMAND_HANDLER(handle_reset_command)
2499 {
2500         if (CMD_ARGC > 1)
2501                 return ERROR_COMMAND_SYNTAX_ERROR;
2502
2503         enum target_reset_mode reset_mode = RESET_RUN;
2504         if (CMD_ARGC == 1) {
2505                 const Jim_Nvp *n;
2506                 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2507                 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
2508                         return ERROR_COMMAND_SYNTAX_ERROR;
2509                 reset_mode = n->value;
2510         }
2511
2512         /* reset *all* targets */
2513         return target_process_reset(CMD_CTX, reset_mode);
2514 }
2515
2516
2517 COMMAND_HANDLER(handle_resume_command)
2518 {
2519         int current = 1;
2520         if (CMD_ARGC > 1)
2521                 return ERROR_COMMAND_SYNTAX_ERROR;
2522
2523         struct target *target = get_current_target(CMD_CTX);
2524
2525         /* with no CMD_ARGV, resume from current pc, addr = 0,
2526          * with one arguments, addr = CMD_ARGV[0],
2527          * handle breakpoints, not debugging */
2528         uint32_t addr = 0;
2529         if (CMD_ARGC == 1) {
2530                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2531                 current = 0;
2532         }
2533
2534         return target_resume(target, current, addr, 1, 0);
2535 }
2536
2537 COMMAND_HANDLER(handle_step_command)
2538 {
2539         if (CMD_ARGC > 1)
2540                 return ERROR_COMMAND_SYNTAX_ERROR;
2541
2542         LOG_DEBUG("-");
2543
2544         /* with no CMD_ARGV, step from current pc, addr = 0,
2545          * with one argument addr = CMD_ARGV[0],
2546          * handle breakpoints, debugging */
2547         uint32_t addr = 0;
2548         int current_pc = 1;
2549         if (CMD_ARGC == 1) {
2550                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2551                 current_pc = 0;
2552         }
2553
2554         struct target *target = get_current_target(CMD_CTX);
2555
2556         return target->type->step(target, current_pc, addr, 1);
2557 }
2558
2559 static void handle_md_output(struct command_context *cmd_ctx,
2560                 struct target *target, uint32_t address, unsigned size,
2561                 unsigned count, const uint8_t *buffer)
2562 {
2563         const unsigned line_bytecnt = 32;
2564         unsigned line_modulo = line_bytecnt / size;
2565
2566         char output[line_bytecnt * 4 + 1];
2567         unsigned output_len = 0;
2568
2569         const char *value_fmt;
2570         switch (size) {
2571         case 4:
2572                 value_fmt = "%8.8x ";
2573                 break;
2574         case 2:
2575                 value_fmt = "%4.4x ";
2576                 break;
2577         case 1:
2578                 value_fmt = "%2.2x ";
2579                 break;
2580         default:
2581                 /* "can't happen", caller checked */
2582                 LOG_ERROR("invalid memory read size: %u", size);
2583                 return;
2584         }
2585
2586         for (unsigned i = 0; i < count; i++) {
2587                 if (i % line_modulo == 0) {
2588                         output_len += snprintf(output + output_len,
2589                                         sizeof(output) - output_len,
2590                                         "0x%8.8x: ",
2591                                         (unsigned)(address + (i*size)));
2592                 }
2593
2594                 uint32_t value = 0;
2595                 const uint8_t *value_ptr = buffer + i * size;
2596                 switch (size) {
2597                 case 4:
2598                         value = target_buffer_get_u32(target, value_ptr);
2599                         break;
2600                 case 2:
2601                         value = target_buffer_get_u16(target, value_ptr);
2602                         break;
2603                 case 1:
2604                         value = *value_ptr;
2605                 }
2606                 output_len += snprintf(output + output_len,
2607                                 sizeof(output) - output_len,
2608                                 value_fmt, value);
2609
2610                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
2611                         command_print(cmd_ctx, "%s", output);
2612                         output_len = 0;
2613                 }
2614         }
2615 }
2616
2617 COMMAND_HANDLER(handle_md_command)
2618 {
2619         if (CMD_ARGC < 1)
2620                 return ERROR_COMMAND_SYNTAX_ERROR;
2621
2622         unsigned size = 0;
2623         switch (CMD_NAME[2]) {
2624         case 'w':
2625                 size = 4;
2626                 break;
2627         case 'h':
2628                 size = 2;
2629                 break;
2630         case 'b':
2631                 size = 1;
2632                 break;
2633         default:
2634                 return ERROR_COMMAND_SYNTAX_ERROR;
2635         }
2636
2637         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2638         int (*fn)(struct target *target,
2639                         uint32_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
2640         if (physical) {
2641                 CMD_ARGC--;
2642                 CMD_ARGV++;
2643                 fn = target_read_phys_memory;
2644         } else
2645                 fn = target_read_memory;
2646         if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2647                 return ERROR_COMMAND_SYNTAX_ERROR;
2648
2649         uint32_t address;
2650         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2651
2652         unsigned count = 1;
2653         if (CMD_ARGC == 2)
2654                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2655
2656         uint8_t *buffer = calloc(count, size);
2657
2658         struct target *target = get_current_target(CMD_CTX);
2659         int retval = fn(target, address, size, count, buffer);
2660         if (ERROR_OK == retval)
2661                 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2662
2663         free(buffer);
2664
2665         return retval;
2666 }
2667
2668 typedef int (*target_write_fn)(struct target *target,
2669                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
2670
2671 static int target_write_memory_fast(struct target *target,
2672                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
2673 {
2674         return target_write_buffer(target, address, size * count, buffer);
2675 }
2676
2677 static int target_fill_mem(struct target *target,
2678                 uint32_t address,
2679                 target_write_fn fn,
2680                 unsigned data_size,
2681                 /* value */
2682                 uint32_t b,
2683                 /* count */
2684                 unsigned c)
2685 {
2686         /* We have to write in reasonably large chunks to be able
2687          * to fill large memory areas with any sane speed */
2688         const unsigned chunk_size = 16384;
2689         uint8_t *target_buf = malloc(chunk_size * data_size);
2690         if (target_buf == NULL) {
2691                 LOG_ERROR("Out of memory");
2692                 return ERROR_FAIL;
2693         }
2694
2695         for (unsigned i = 0; i < chunk_size; i++) {
2696                 switch (data_size) {
2697                 case 4:
2698                         target_buffer_set_u32(target, target_buf + i * data_size, b);
2699                         break;
2700                 case 2:
2701                         target_buffer_set_u16(target, target_buf + i * data_size, b);
2702                         break;
2703                 case 1:
2704                         target_buffer_set_u8(target, target_buf + i * data_size, b);
2705                         break;
2706                 default:
2707                         exit(-1);
2708                 }
2709         }
2710
2711         int retval = ERROR_OK;
2712
2713         for (unsigned x = 0; x < c; x += chunk_size) {
2714                 unsigned current;
2715                 current = c - x;
2716                 if (current > chunk_size)
2717                         current = chunk_size;
2718                 retval = fn(target, address + x * data_size, data_size, current, target_buf);
2719                 if (retval != ERROR_OK)
2720                         break;
2721                 /* avoid GDB timeouts */
2722                 keep_alive();
2723         }
2724         free(target_buf);
2725
2726         return retval;
2727 }
2728
2729
2730 COMMAND_HANDLER(handle_mw_command)
2731 {
2732         if (CMD_ARGC < 2)
2733                 return ERROR_COMMAND_SYNTAX_ERROR;
2734         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2735         target_write_fn fn;
2736         if (physical) {
2737                 CMD_ARGC--;
2738                 CMD_ARGV++;
2739                 fn = target_write_phys_memory;
2740         } else
2741                 fn = target_write_memory_fast;
2742         if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2743                 return ERROR_COMMAND_SYNTAX_ERROR;
2744
2745         uint32_t address;
2746         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2747
2748         uint32_t value;
2749         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2750
2751         unsigned count = 1;
2752         if (CMD_ARGC == 3)
2753                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2754
2755         struct target *target = get_current_target(CMD_CTX);
2756         unsigned wordsize;
2757         switch (CMD_NAME[2]) {
2758                 case 'w':
2759                         wordsize = 4;
2760                         break;
2761                 case 'h':
2762                         wordsize = 2;
2763                         break;
2764                 case 'b':
2765                         wordsize = 1;
2766                         break;
2767                 default:
2768                         return ERROR_COMMAND_SYNTAX_ERROR;
2769         }
2770
2771         return target_fill_mem(target, address, fn, wordsize, value, count);
2772 }
2773
2774 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2775                 uint32_t *min_address, uint32_t *max_address)
2776 {
2777         if (CMD_ARGC < 1 || CMD_ARGC > 5)
2778                 return ERROR_COMMAND_SYNTAX_ERROR;
2779
2780         /* a base address isn't always necessary,
2781          * default to 0x0 (i.e. don't relocate) */
2782         if (CMD_ARGC >= 2) {
2783                 uint32_t addr;
2784                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2785                 image->base_address = addr;
2786                 image->base_address_set = 1;
2787         } else
2788                 image->base_address_set = 0;
2789
2790         image->start_address_set = 0;
2791
2792         if (CMD_ARGC >= 4)
2793                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2794         if (CMD_ARGC == 5) {
2795                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2796                 /* use size (given) to find max (required) */
2797                 *max_address += *min_address;
2798         }
2799
2800         if (*min_address > *max_address)
2801                 return ERROR_COMMAND_SYNTAX_ERROR;
2802
2803         return ERROR_OK;
2804 }
2805
2806 COMMAND_HANDLER(handle_load_image_command)
2807 {
2808         uint8_t *buffer;
2809         size_t buf_cnt;
2810         uint32_t image_size;
2811         uint32_t min_address = 0;
2812         uint32_t max_address = 0xffffffff;
2813         int i;
2814         struct image image;
2815
2816         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2817                         &image, &min_address, &max_address);
2818         if (ERROR_OK != retval)
2819                 return retval;
2820
2821         struct target *target = get_current_target(CMD_CTX);
2822
2823         struct duration bench;
2824         duration_start(&bench);
2825
2826         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2827                 return ERROR_OK;
2828
2829         image_size = 0x0;
2830         retval = ERROR_OK;
2831         for (i = 0; i < image.num_sections; i++) {
2832                 buffer = malloc(image.sections[i].size);
2833                 if (buffer == NULL) {
2834                         command_print(CMD_CTX,
2835                                                   "error allocating buffer for section (%d bytes)",
2836                                                   (int)(image.sections[i].size));
2837                         break;
2838                 }
2839
2840                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
2841                 if (retval != ERROR_OK) {
2842                         free(buffer);
2843                         break;
2844                 }
2845
2846                 uint32_t offset = 0;
2847                 uint32_t length = buf_cnt;
2848
2849                 /* DANGER!!! beware of unsigned comparision here!!! */
2850
2851                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
2852                                 (image.sections[i].base_address < max_address)) {
2853
2854                         if (image.sections[i].base_address < min_address) {
2855                                 /* clip addresses below */
2856                                 offset += min_address-image.sections[i].base_address;
2857                                 length -= offset;
2858                         }
2859
2860                         if (image.sections[i].base_address + buf_cnt > max_address)
2861                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2862
2863                         retval = target_write_buffer(target,
2864                                         image.sections[i].base_address + offset, length, buffer + offset);
2865                         if (retval != ERROR_OK) {
2866                                 free(buffer);
2867                                 break;
2868                         }
2869                         image_size += length;
2870                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
2871                                         (unsigned int)length,
2872                                         image.sections[i].base_address + offset);
2873                 }
2874
2875                 free(buffer);
2876         }
2877
2878         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
2879                 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
2880                                 "in %fs (%0.3f KiB/s)", image_size,
2881                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2882         }
2883
2884         image_close(&image);
2885
2886         return retval;
2887
2888 }
2889
2890 COMMAND_HANDLER(handle_dump_image_command)
2891 {
2892         struct fileio fileio;
2893         uint8_t *buffer;
2894         int retval, retvaltemp;
2895         uint32_t address, size;
2896         struct duration bench;
2897         struct target *target = get_current_target(CMD_CTX);
2898
2899         if (CMD_ARGC != 3)
2900                 return ERROR_COMMAND_SYNTAX_ERROR;
2901
2902         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
2903         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
2904
2905         uint32_t buf_size = (size > 4096) ? 4096 : size;
2906         buffer = malloc(buf_size);
2907         if (!buffer)
2908                 return ERROR_FAIL;
2909
2910         retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
2911         if (retval != ERROR_OK) {
2912                 free(buffer);
2913                 return retval;
2914         }
2915
2916         duration_start(&bench);
2917
2918         while (size > 0) {
2919                 size_t size_written;
2920                 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
2921                 retval = target_read_buffer(target, address, this_run_size, buffer);
2922                 if (retval != ERROR_OK)
2923                         break;
2924
2925                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2926                 if (retval != ERROR_OK)
2927                         break;
2928
2929                 size -= this_run_size;
2930                 address += this_run_size;
2931         }
2932
2933         free(buffer);
2934
2935         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
2936                 int filesize;
2937                 retval = fileio_size(&fileio, &filesize);
2938                 if (retval != ERROR_OK)
2939                         return retval;
2940                 command_print(CMD_CTX,
2941                                 "dumped %ld bytes in %fs (%0.3f KiB/s)", (long)filesize,
2942                                 duration_elapsed(&bench), duration_kbps(&bench, filesize));
2943         }
2944
2945         retvaltemp = fileio_close(&fileio);
2946         if (retvaltemp != ERROR_OK)
2947                 return retvaltemp;
2948
2949         return retval;
2950 }
2951
2952 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
2953 {
2954         uint8_t *buffer;
2955         size_t buf_cnt;
2956         uint32_t image_size;
2957         int i;
2958         int retval;
2959         uint32_t checksum = 0;
2960         uint32_t mem_checksum = 0;
2961
2962         struct image image;
2963
2964         struct target *target = get_current_target(CMD_CTX);
2965
2966         if (CMD_ARGC < 1)
2967                 return ERROR_COMMAND_SYNTAX_ERROR;
2968
2969         if (!target) {
2970                 LOG_ERROR("no target selected");
2971                 return ERROR_FAIL;
2972         }
2973
2974         struct duration bench;
2975         duration_start(&bench);
2976
2977         if (CMD_ARGC >= 2) {
2978                 uint32_t addr;
2979                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2980                 image.base_address = addr;
2981                 image.base_address_set = 1;
2982         } else {
2983                 image.base_address_set = 0;
2984                 image.base_address = 0x0;
2985         }
2986
2987         image.start_address_set = 0;
2988
2989         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
2990         if (retval != ERROR_OK)
2991                 return retval;
2992
2993         image_size = 0x0;
2994         int diffs = 0;
2995         retval = ERROR_OK;
2996         for (i = 0; i < image.num_sections; i++) {
2997                 buffer = malloc(image.sections[i].size);
2998                 if (buffer == NULL) {
2999                         command_print(CMD_CTX,
3000                                         "error allocating buffer for section (%d bytes)",
3001                                         (int)(image.sections[i].size));
3002                         break;
3003                 }
3004                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3005                 if (retval != ERROR_OK) {
3006                         free(buffer);
3007                         break;
3008                 }
3009
3010                 if (verify) {
3011                         /* calculate checksum of image */
3012                         retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3013                         if (retval != ERROR_OK) {
3014                                 free(buffer);
3015                                 break;
3016                         }
3017
3018                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3019                         if (retval != ERROR_OK) {
3020                                 free(buffer);
3021                                 break;
3022                         }
3023
3024                         if (checksum != mem_checksum) {
3025                                 /* failed crc checksum, fall back to a binary compare */
3026                                 uint8_t *data;
3027
3028                                 if (diffs == 0)
3029                                         LOG_ERROR("checksum mismatch - attempting binary compare");
3030
3031                                 data = (uint8_t *)malloc(buf_cnt);
3032
3033                                 /* Can we use 32bit word accesses? */
3034                                 int size = 1;
3035                                 int count = buf_cnt;
3036                                 if ((count % 4) == 0) {
3037                                         size *= 4;
3038                                         count /= 4;
3039                                 }
3040                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3041                                 if (retval == ERROR_OK) {
3042                                         uint32_t t;
3043                                         for (t = 0; t < buf_cnt; t++) {
3044                                                 if (data[t] != buffer[t]) {
3045                                                         command_print(CMD_CTX,
3046                                                                                   "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3047                                                                                   diffs,
3048                                                                                   (unsigned)(t + image.sections[i].base_address),
3049                                                                                   data[t],
3050                                                                                   buffer[t]);
3051                                                         if (diffs++ >= 127) {
3052                                                                 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3053                                                                 free(data);
3054                                                                 free(buffer);
3055                                                                 goto done;
3056                                                         }
3057                                                 }
3058                                                 keep_alive();
3059                                         }
3060                                 }
3061                                 free(data);
3062                         }
3063                 } else {
3064                         command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
3065                                                   image.sections[i].base_address,
3066                                                   buf_cnt);
3067                 }
3068
3069                 free(buffer);
3070                 image_size += buf_cnt;
3071         }
3072         if (diffs > 0)
3073                 command_print(CMD_CTX, "No more differences found.");
3074 done:
3075         if (diffs > 0)
3076                 retval = ERROR_FAIL;
3077         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3078                 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3079                                 "in %fs (%0.3f KiB/s)", image_size,
3080                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3081         }
3082
3083         image_close(&image);
3084
3085         return retval;
3086 }
3087
3088 COMMAND_HANDLER(handle_verify_image_command)
3089 {
3090         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
3091 }
3092
3093 COMMAND_HANDLER(handle_test_image_command)
3094 {
3095         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
3096 }
3097
3098 static int handle_bp_command_list(struct command_context *cmd_ctx)
3099 {
3100         struct target *target = get_current_target(cmd_ctx);
3101         struct breakpoint *breakpoint = target->breakpoints;
3102         while (breakpoint) {
3103                 if (breakpoint->type == BKPT_SOFT) {
3104                         char *buf = buf_to_str(breakpoint->orig_instr,
3105                                         breakpoint->length, 16);
3106                         command_print(cmd_ctx, "IVA breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
3107                                         breakpoint->address,
3108                                         breakpoint->length,
3109                                         breakpoint->set, buf);
3110                         free(buf);
3111                 } else {
3112                         if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3113                                 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3114                                                         breakpoint->asid,
3115                                                         breakpoint->length, breakpoint->set);
3116                         else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3117                                 command_print(cmd_ctx, "Hybrid breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3118                                                         breakpoint->address,
3119                                                         breakpoint->length, breakpoint->set);
3120                                 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3121                                                         breakpoint->asid);
3122                         } else
3123                                 command_print(cmd_ctx, "Breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3124                                                         breakpoint->address,
3125                                                         breakpoint->length, breakpoint->set);
3126                 }
3127
3128                 breakpoint = breakpoint->next;
3129         }
3130         return ERROR_OK;
3131 }
3132
3133 static int handle_bp_command_set(struct command_context *cmd_ctx,
3134                 uint32_t addr, uint32_t asid, uint32_t length, int hw)
3135 {
3136         struct target *target = get_current_target(cmd_ctx);
3137
3138         if (asid == 0) {
3139                 int retval = breakpoint_add(target, addr, length, hw);
3140                 if (ERROR_OK == retval)
3141                         command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
3142                 else {
3143                         LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3144                         return retval;
3145                 }
3146         } else if (addr == 0) {
3147                 int retval = context_breakpoint_add(target, asid, length, hw);
3148                 if (ERROR_OK == retval)
3149                         command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3150                 else {
3151                         LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3152                         return retval;
3153                 }
3154         } else {
3155                 int retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3156                 if (ERROR_OK == retval)
3157                         command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3158                 else {
3159                         LOG_ERROR("Failure setting breakpoint, the same address is already used");
3160                         return retval;
3161                 }
3162         }
3163         return ERROR_OK;
3164 }
3165
3166 COMMAND_HANDLER(handle_bp_command)
3167 {
3168         uint32_t addr;
3169         uint32_t asid;
3170         uint32_t length;
3171         int hw = BKPT_SOFT;
3172
3173         switch (CMD_ARGC) {
3174                 case 0:
3175                         return handle_bp_command_list(CMD_CTX);
3176
3177                 case 2:
3178                         asid = 0;
3179                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3180                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3181                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3182
3183                 case 3:
3184                         if (strcmp(CMD_ARGV[2], "hw") == 0) {
3185                                 hw = BKPT_HARD;
3186                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3187
3188                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3189
3190                                 asid = 0;
3191                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3192                         } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
3193                                 hw = BKPT_HARD;
3194                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3195                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3196                                 addr = 0;
3197                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3198                         }
3199
3200                 case 4:
3201                         hw = BKPT_HARD;
3202                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3203                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3204                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3205                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3206
3207                 default:
3208                         return ERROR_COMMAND_SYNTAX_ERROR;
3209         }
3210 }
3211
3212 COMMAND_HANDLER(handle_rbp_command)
3213 {
3214         if (CMD_ARGC != 1)
3215                 return ERROR_COMMAND_SYNTAX_ERROR;
3216
3217         uint32_t addr;
3218         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3219
3220         struct target *target = get_current_target(CMD_CTX);
3221         breakpoint_remove(target, addr);
3222
3223         return ERROR_OK;
3224 }
3225
3226 COMMAND_HANDLER(handle_wp_command)
3227 {
3228         struct target *target = get_current_target(CMD_CTX);
3229
3230         if (CMD_ARGC == 0) {
3231                 struct watchpoint *watchpoint = target->watchpoints;
3232
3233                 while (watchpoint) {
3234                         command_print(CMD_CTX, "address: 0x%8.8" PRIx32
3235                                         ", len: 0x%8.8" PRIx32
3236                                         ", r/w/a: %i, value: 0x%8.8" PRIx32
3237                                         ", mask: 0x%8.8" PRIx32,
3238                                         watchpoint->address,
3239                                         watchpoint->length,
3240                                         (int)watchpoint->rw,
3241                                         watchpoint->value,
3242                                         watchpoint->mask);
3243                         watchpoint = watchpoint->next;
3244                 }
3245                 return ERROR_OK;
3246         }
3247
3248         enum watchpoint_rw type = WPT_ACCESS;
3249         uint32_t addr = 0;
3250         uint32_t length = 0;
3251         uint32_t data_value = 0x0;
3252         uint32_t data_mask = 0xffffffff;
3253
3254         switch (CMD_ARGC) {
3255         case 5:
3256                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3257                 /* fall through */
3258         case 4:
3259                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3260                 /* fall through */
3261         case 3:
3262                 switch (CMD_ARGV[2][0]) {
3263                 case 'r':
3264                         type = WPT_READ;
3265                         break;
3266                 case 'w':
3267                         type = WPT_WRITE;
3268                         break;
3269                 case 'a':
3270                         type = WPT_ACCESS;
3271                         break;
3272                 default:
3273                         LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3274                         return ERROR_COMMAND_SYNTAX_ERROR;
3275                 }
3276                 /* fall through */
3277         case 2:
3278                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3279                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3280                 break;
3281
3282         default:
3283                 return ERROR_COMMAND_SYNTAX_ERROR;
3284         }
3285
3286         int retval = watchpoint_add(target, addr, length, type,
3287                         data_value, data_mask);
3288         if (ERROR_OK != retval)
3289                 LOG_ERROR("Failure setting watchpoints");
3290
3291         return retval;
3292 }
3293
3294 COMMAND_HANDLER(handle_rwp_command)
3295 {
3296         if (CMD_ARGC != 1)
3297                 return ERROR_COMMAND_SYNTAX_ERROR;
3298
3299         uint32_t addr;
3300         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3301
3302         struct target *target = get_current_target(CMD_CTX);
3303         watchpoint_remove(target, addr);
3304
3305         return ERROR_OK;
3306 }
3307
3308 /**
3309  * Translate a virtual address to a physical address.
3310  *
3311  * The low-level target implementation must have logged a detailed error
3312  * which is forwarded to telnet/GDB session.
3313  */
3314 COMMAND_HANDLER(handle_virt2phys_command)
3315 {
3316         if (CMD_ARGC != 1)
3317                 return ERROR_COMMAND_SYNTAX_ERROR;
3318
3319         uint32_t va;
3320         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
3321         uint32_t pa;
3322
3323         struct target *target = get_current_target(CMD_CTX);
3324         int retval = target->type->virt2phys(target, va, &pa);
3325         if (retval == ERROR_OK)
3326                 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
3327
3328         return retval;
3329 }
3330
3331 static void writeData(FILE *f, const void *data, size_t len)
3332 {
3333         size_t written = fwrite(data, 1, len, f);
3334         if (written != len)
3335                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3336 }
3337
3338 static void writeLong(FILE *f, int l)
3339 {
3340         int i;
3341         for (i = 0; i < 4; i++) {
3342                 char c = (l >> (i*8))&0xff;
3343                 writeData(f, &c, 1);
3344         }
3345
3346 }
3347
3348 static void writeString(FILE *f, char *s)
3349 {
3350         writeData(f, s, strlen(s));
3351 }
3352
3353 /* Dump a gmon.out histogram file. */
3354 static void writeGmon(uint32_t *samples, uint32_t sampleNum, const char *filename)
3355 {
3356         uint32_t i;
3357         FILE *f = fopen(filename, "w");
3358         if (f == NULL)
3359                 return;
3360         writeString(f, "gmon");
3361         writeLong(f, 0x00000001); /* Version */
3362         writeLong(f, 0); /* padding */
3363         writeLong(f, 0); /* padding */
3364         writeLong(f, 0); /* padding */
3365
3366         uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
3367         writeData(f, &zero, 1);
3368
3369         /* figure out bucket size */
3370         uint32_t min = samples[0];
3371         uint32_t max = samples[0];
3372         for (i = 0; i < sampleNum; i++) {
3373                 if (min > samples[i])
3374                         min = samples[i];
3375                 if (max < samples[i])
3376                         max = samples[i];
3377         }
3378
3379         int addressSpace = (max - min + 1);
3380         assert(addressSpace >= 2);
3381
3382         static const uint32_t maxBuckets = 16 * 1024; /* maximum buckets. */
3383         uint32_t length = addressSpace;
3384         if (length > maxBuckets)
3385                 length = maxBuckets;
3386         int *buckets = malloc(sizeof(int)*length);
3387         if (buckets == NULL) {
3388                 fclose(f);
3389                 return;
3390         }
3391         memset(buckets, 0, sizeof(int) * length);
3392         for (i = 0; i < sampleNum; i++) {
3393                 uint32_t address = samples[i];
3394                 long long a = address - min;
3395                 long long b = length - 1;
3396                 long long c = addressSpace - 1;
3397                 int index_t = (a * b) / c; /* danger!!!! int32 overflows */
3398                 buckets[index_t]++;
3399         }
3400
3401         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3402         writeLong(f, min);                      /* low_pc */
3403         writeLong(f, max);                      /* high_pc */
3404         writeLong(f, length);           /* # of samples */
3405         writeLong(f, 100);                      /* KLUDGE! We lie, ca. 100Hz best case. */
3406         writeString(f, "seconds");
3407         for (i = 0; i < (15-strlen("seconds")); i++)
3408                 writeData(f, &zero, 1);
3409         writeString(f, "s");
3410
3411         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3412
3413         char *data = malloc(2 * length);
3414         if (data != NULL) {
3415                 for (i = 0; i < length; i++) {
3416                         int val;
3417                         val = buckets[i];
3418                         if (val > 65535)
3419                                 val = 65535;
3420                         data[i * 2] = val&0xff;
3421                         data[i * 2 + 1] = (val >> 8) & 0xff;
3422                 }
3423                 free(buckets);
3424                 writeData(f, data, length * 2);
3425                 free(data);
3426         } else
3427                 free(buckets);
3428
3429         fclose(f);
3430 }
3431
3432 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3433  * which will be used as a random sampling of PC */
3434 COMMAND_HANDLER(handle_profile_command)
3435 {
3436         struct target *target = get_current_target(CMD_CTX);
3437         struct timeval timeout, now;
3438
3439         gettimeofday(&timeout, NULL);
3440         if (CMD_ARGC != 2)
3441                 return ERROR_COMMAND_SYNTAX_ERROR;
3442         unsigned offset;
3443         COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], offset);
3444
3445         timeval_add_time(&timeout, offset, 0);
3446
3447         /**
3448          * @todo: Some cores let us sample the PC without the
3449          * annoying halt/resume step; for example, ARMv7 PCSR.
3450          * Provide a way to use that more efficient mechanism.
3451          */
3452
3453         command_print(CMD_CTX, "Starting profiling. Halting and resuming the target as often as we can...");
3454
3455         static const int maxSample = 10000;
3456         uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
3457         if (samples == NULL)
3458                 return ERROR_OK;
3459
3460         int numSamples = 0;
3461         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
3462         struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
3463
3464         int retval = ERROR_OK;
3465         for (;;) {
3466                 target_poll(target);
3467                 if (target->state == TARGET_HALTED) {
3468                         uint32_t t = *((uint32_t *)reg->value);
3469                         samples[numSamples++] = t;
3470                         /* current pc, addr = 0, do not handle breakpoints, not debugging */
3471                         retval = target_resume(target, 1, 0, 0, 0);
3472                         target_poll(target);
3473                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
3474                 } else if (target->state == TARGET_RUNNING) {
3475                         /* We want to quickly sample the PC. */
3476                         retval = target_halt(target);
3477                         if (retval != ERROR_OK) {
3478                                 free(samples);
3479                                 return retval;
3480                         }
3481                 } else {
3482                         command_print(CMD_CTX, "Target not halted or running");
3483                         retval = ERROR_OK;
3484                         break;
3485                 }
3486                 if (retval != ERROR_OK)
3487                         break;
3488
3489                 gettimeofday(&now, NULL);
3490                 if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec)
3491                                 && (now.tv_usec >= timeout.tv_usec))) {
3492                         command_print(CMD_CTX, "Profiling completed. %d samples.", numSamples);
3493                         retval = target_poll(target);
3494                         if (retval != ERROR_OK) {
3495                                 free(samples);
3496                                 return retval;
3497                         }
3498                         if (target->state == TARGET_HALTED) {
3499                                 /* current pc, addr = 0, do not handle
3500                                  * breakpoints, not debugging */
3501                                 target_resume(target, 1, 0, 0, 0);
3502                         }
3503                         retval = target_poll(target);
3504                         if (retval != ERROR_OK) {
3505                                 free(samples);
3506                                 return retval;
3507                         }
3508                         writeGmon(samples, numSamples, CMD_ARGV[1]);
3509                         command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3510                         break;
3511                 }
3512         }
3513         free(samples);
3514
3515         return retval;
3516 }
3517
3518 static int new_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t val)
3519 {
3520         char *namebuf;
3521         Jim_Obj *nameObjPtr, *valObjPtr;
3522         int result;
3523
3524         namebuf = alloc_printf("%s(%d)", varname, idx);
3525         if (!namebuf)
3526                 return JIM_ERR;
3527
3528         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3529         valObjPtr = Jim_NewIntObj(interp, val);
3530         if (!nameObjPtr || !valObjPtr) {
3531                 free(namebuf);
3532                 return JIM_ERR;
3533         }
3534
3535         Jim_IncrRefCount(nameObjPtr);
3536         Jim_IncrRefCount(valObjPtr);
3537         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3538         Jim_DecrRefCount(interp, nameObjPtr);
3539         Jim_DecrRefCount(interp, valObjPtr);
3540         free(namebuf);
3541         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3542         return result;
3543 }
3544
3545 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3546 {
3547         struct command_context *context;
3548         struct target *target;
3549
3550         context = current_command_context(interp);
3551         assert(context != NULL);
3552
3553         target = get_current_target(context);
3554         if (target == NULL) {
3555                 LOG_ERROR("mem2array: no current target");
3556                 return JIM_ERR;
3557         }
3558
3559         return target_mem2array(interp, target, argc - 1, argv + 1);
3560 }
3561
3562 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3563 {
3564         long l;
3565         uint32_t width;
3566         int len;
3567         uint32_t addr;
3568         uint32_t count;
3569         uint32_t v;
3570         const char *varname;
3571         int  n, e, retval;
3572         uint32_t i;
3573
3574         /* argv[1] = name of array to receive the data
3575          * argv[2] = desired width
3576          * argv[3] = memory address
3577          * argv[4] = count of times to read
3578          */
3579         if (argc != 4) {
3580                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3581                 return JIM_ERR;
3582         }
3583         varname = Jim_GetString(argv[0], &len);
3584         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3585
3586         e = Jim_GetLong(interp, argv[1], &l);
3587         width = l;
3588         if (e != JIM_OK)
3589                 return e;
3590
3591         e = Jim_GetLong(interp, argv[2], &l);
3592         addr = l;
3593         if (e != JIM_OK)
3594                 return e;
3595         e = Jim_GetLong(interp, argv[3], &l);
3596         len = l;
3597         if (e != JIM_OK)
3598                 return e;
3599         switch (width) {
3600                 case 8:
3601                         width = 1;
3602                         break;
3603                 case 16:
3604                         width = 2;
3605                         break;
3606                 case 32:
3607                         width = 4;
3608                         break;
3609                 default:
3610                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3611                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3612                         return JIM_ERR;
3613         }
3614         if (len == 0) {
3615                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3616                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3617                 return JIM_ERR;
3618         }
3619         if ((addr + (len * width)) < addr) {
3620                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3621                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3622                 return JIM_ERR;
3623         }
3624         /* absurd transfer size? */
3625         if (len > 65536) {
3626                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3627                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3628                 return JIM_ERR;
3629         }
3630
3631         if ((width == 1) ||
3632                 ((width == 2) && ((addr & 1) == 0)) ||
3633                 ((width == 4) && ((addr & 3) == 0))) {
3634                 /* all is well */
3635         } else {
3636                 char buf[100];
3637                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3638                 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3639                                 addr,
3640                                 width);
3641                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3642                 return JIM_ERR;
3643         }
3644
3645         /* Transfer loop */
3646
3647         /* index counter */
3648         n = 0;
3649
3650         size_t buffersize = 4096;
3651         uint8_t *buffer = malloc(buffersize);
3652         if (buffer == NULL)
3653                 return JIM_ERR;
3654
3655         /* assume ok */
3656         e = JIM_OK;
3657         while (len) {
3658                 /* Slurp... in buffer size chunks */
3659
3660                 count = len; /* in objects.. */
3661                 if (count > (buffersize / width))
3662                         count = (buffersize / width);
3663
3664                 retval = target_read_memory(target, addr, width, count, buffer);
3665                 if (retval != ERROR_OK) {
3666                         /* BOO !*/
3667                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3668                                           (unsigned int)addr,
3669                                           (int)width,
3670                                           (int)count);
3671                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3672                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3673                         e = JIM_ERR;
3674                         break;
3675                 } else {
3676                         v = 0; /* shut up gcc */
3677                         for (i = 0; i < count ; i++, n++) {
3678                                 switch (width) {
3679                                         case 4:
3680                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
3681                                                 break;
3682                                         case 2:
3683                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
3684                                                 break;
3685                                         case 1:
3686                                                 v = buffer[i] & 0x0ff;
3687                                                 break;
3688                                 }
3689                                 new_int_array_element(interp, varname, n, v);
3690                         }
3691                         len -= count;
3692                 }
3693         }
3694
3695         free(buffer);
3696
3697         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3698
3699         return e;
3700 }
3701
3702 static int get_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t *val)
3703 {
3704         char *namebuf;
3705         Jim_Obj *nameObjPtr, *valObjPtr;
3706         int result;
3707         long l;
3708
3709         namebuf = alloc_printf("%s(%d)", varname, idx);
3710         if (!namebuf)
3711                 return JIM_ERR;
3712
3713         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3714         if (!nameObjPtr) {
3715                 free(namebuf);
3716                 return JIM_ERR;
3717         }
3718
3719         Jim_IncrRefCount(nameObjPtr);
3720         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3721         Jim_DecrRefCount(interp, nameObjPtr);
3722         free(namebuf);
3723         if (valObjPtr == NULL)
3724                 return JIM_ERR;
3725
3726         result = Jim_GetLong(interp, valObjPtr, &l);
3727         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3728         *val = l;
3729         return result;
3730 }
3731
3732 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3733 {
3734         struct command_context *context;
3735         struct target *target;
3736
3737         context = current_command_context(interp);
3738         assert(context != NULL);
3739
3740         target = get_current_target(context);
3741         if (target == NULL) {
3742                 LOG_ERROR("array2mem: no current target");
3743                 return JIM_ERR;
3744         }
3745
3746         return target_array2mem(interp, target, argc-1, argv + 1);
3747 }
3748
3749 static int target_array2mem(Jim_Interp *interp, struct target *target,
3750                 int argc, Jim_Obj *const *argv)
3751 {
3752         long l;
3753         uint32_t width;
3754         int len;
3755         uint32_t addr;
3756         uint32_t count;
3757         uint32_t v;
3758         const char *varname;
3759         int  n, e, retval;
3760         uint32_t i;
3761
3762         /* argv[1] = name of array to get the data
3763          * argv[2] = desired width
3764          * argv[3] = memory address
3765          * argv[4] = count to write
3766          */
3767         if (argc != 4) {
3768                 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems");
3769                 return JIM_ERR;
3770         }
3771         varname = Jim_GetString(argv[0], &len);
3772         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3773
3774         e = Jim_GetLong(interp, argv[1], &l);
3775         width = l;
3776         if (e != JIM_OK)
3777                 return e;
3778
3779         e = Jim_GetLong(interp, argv[2], &l);
3780         addr = l;
3781         if (e != JIM_OK)
3782                 return e;
3783         e = Jim_GetLong(interp, argv[3], &l);
3784         len = l;
3785         if (e != JIM_OK)
3786                 return e;
3787         switch (width) {
3788                 case 8:
3789                         width = 1;
3790                         break;
3791                 case 16:
3792                         width = 2;
3793                         break;
3794                 case 32:
3795                         width = 4;
3796                         break;
3797                 default:
3798                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3799                         Jim_AppendStrings(interp, Jim_GetResult(interp),
3800                                         "Invalid width param, must be 8/16/32", NULL);
3801                         return JIM_ERR;
3802         }
3803         if (len == 0) {
3804                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3805                 Jim_AppendStrings(interp, Jim_GetResult(interp),
3806                                 "array2mem: zero width read?", NULL);
3807                 return JIM_ERR;
3808         }
3809         if ((addr + (len * width)) < addr) {
3810                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3811                 Jim_AppendStrings(interp, Jim_GetResult(interp),
3812                                 "array2mem: addr + len - wraps to zero?", NULL);
3813                 return JIM_ERR;
3814         }
3815         /* absurd transfer size? */
3816         if (len > 65536) {
3817                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3818                 Jim_AppendStrings(interp, Jim_GetResult(interp),
3819                                 "array2mem: absurd > 64K item request", NULL);
3820                 return JIM_ERR;
3821         }
3822
3823         if ((width == 1) ||
3824                 ((width == 2) && ((addr & 1) == 0)) ||
3825                 ((width == 4) && ((addr & 3) == 0))) {
3826                 /* all is well */
3827         } else {
3828                 char buf[100];
3829                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3830                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
3831                                 (unsigned int)addr,
3832                                 (int)width);
3833                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3834                 return JIM_ERR;
3835         }
3836
3837         /* Transfer loop */
3838
3839         /* index counter */
3840         n = 0;
3841         /* assume ok */
3842         e = JIM_OK;
3843
3844         size_t buffersize = 4096;
3845         uint8_t *buffer = malloc(buffersize);
3846         if (buffer == NULL)
3847                 return JIM_ERR;
3848
3849         while (len) {
3850                 /* Slurp... in buffer size chunks */
3851
3852                 count = len; /* in objects.. */
3853                 if (count > (buffersize / width))
3854                         count = (buffersize / width);
3855
3856                 v = 0; /* shut up gcc */
3857                 for (i = 0; i < count; i++, n++) {
3858                         get_int_array_element(interp, varname, n, &v);
3859                         switch (width) {
3860                         case 4:
3861                                 target_buffer_set_u32(target, &buffer[i * width], v);
3862                                 break;
3863                         case 2:
3864                                 target_buffer_set_u16(target, &buffer[i * width], v);
3865                                 break;
3866                         case 1:
3867                                 buffer[i] = v & 0x0ff;
3868                                 break;
3869                         }
3870                 }
3871                 len -= count;
3872
3873                 retval = target_write_memory(target, addr, width, count, buffer);
3874                 if (retval != ERROR_OK) {
3875                         /* BOO !*/
3876                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
3877                                           (unsigned int)addr,
3878                                           (int)width,
3879                                           (int)count);
3880                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3881                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3882                         e = JIM_ERR;
3883                         break;
3884                 }
3885         }
3886
3887         free(buffer);
3888
3889         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3890
3891         return e;
3892 }
3893
3894 /* FIX? should we propagate errors here rather than printing them
3895  * and continuing?
3896  */
3897 void target_handle_event(struct target *target, enum target_event e)
3898 {
3899         struct target_event_action *teap;
3900
3901         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3902                 if (teap->event == e) {
3903                         LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
3904                                            target->target_number,
3905                                            target_name(target),
3906                                            target_type_name(target),
3907                                            e,
3908                                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
3909                                            Jim_GetString(teap->body, NULL));
3910                         if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK) {
3911                                 Jim_MakeErrorMessage(teap->interp);
3912                                 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(teap->interp), NULL));
3913                         }
3914                 }
3915         }
3916 }
3917
3918 /**
3919  * Returns true only if the target has a handler for the specified event.
3920  */
3921 bool target_has_event_action(struct target *target, enum target_event event)
3922 {
3923         struct target_event_action *teap;
3924
3925         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3926                 if (teap->event == event)
3927                         return true;
3928         }
3929         return false;
3930 }
3931
3932 enum target_cfg_param {
3933         TCFG_TYPE,
3934         TCFG_EVENT,
3935         TCFG_WORK_AREA_VIRT,
3936         TCFG_WORK_AREA_PHYS,
3937         TCFG_WORK_AREA_SIZE,
3938         TCFG_WORK_AREA_BACKUP,
3939         TCFG_ENDIAN,
3940         TCFG_VARIANT,
3941         TCFG_COREID,
3942         TCFG_CHAIN_POSITION,
3943         TCFG_DBGBASE,
3944         TCFG_RTOS,
3945 };
3946
3947 static Jim_Nvp nvp_config_opts[] = {
3948         { .name = "-type",             .value = TCFG_TYPE },
3949         { .name = "-event",            .value = TCFG_EVENT },
3950         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
3951         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
3952         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
3953         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3954         { .name = "-endian" ,          .value = TCFG_ENDIAN },
3955         { .name = "-variant",          .value = TCFG_VARIANT },
3956         { .name = "-coreid",           .value = TCFG_COREID },
3957         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
3958         { .name = "-dbgbase",          .value = TCFG_DBGBASE },
3959         { .name = "-rtos",             .value = TCFG_RTOS },
3960         { .name = NULL, .value = -1 }
3961 };
3962
3963 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
3964 {
3965         Jim_Nvp *n;
3966         Jim_Obj *o;
3967         jim_wide w;
3968         char *cp;
3969         int e;
3970
3971         /* parse config or cget options ... */
3972         while (goi->argc > 0) {
3973                 Jim_SetEmptyResult(goi->interp);
3974                 /* Jim_GetOpt_Debug(goi); */
3975
3976                 if (target->type->target_jim_configure) {
3977                         /* target defines a configure function */
3978                         /* target gets first dibs on parameters */
3979                         e = (*(target->type->target_jim_configure))(target, goi);
3980                         if (e == JIM_OK) {
3981                                 /* more? */
3982                                 continue;
3983                         }
3984                         if (e == JIM_ERR) {
3985                                 /* An error */
3986                                 return e;
3987                         }
3988                         /* otherwise we 'continue' below */
3989                 }
3990                 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
3991                 if (e != JIM_OK) {
3992                         Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
3993                         return e;
3994                 }
3995                 switch (n->value) {
3996                 case TCFG_TYPE:
3997                         /* not setable */
3998                         if (goi->isconfigure) {
3999                                 Jim_SetResultFormatted(goi->interp,
4000                                                 "not settable: %s", n->name);
4001                                 return JIM_ERR;
4002                         } else {
4003 no_params:
4004                                 if (goi->argc != 0) {
4005                                         Jim_WrongNumArgs(goi->interp,
4006                                                         goi->argc, goi->argv,
4007                                                         "NO PARAMS");
4008                                         return JIM_ERR;
4009                                 }
4010                         }
4011                         Jim_SetResultString(goi->interp,
4012                                         target_type_name(target), -1);
4013                         /* loop for more */
4014                         break;
4015                 case TCFG_EVENT:
4016                         if (goi->argc == 0) {
4017                                 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
4018                                 return JIM_ERR;
4019                         }
4020
4021                         e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
4022                         if (e != JIM_OK) {
4023                                 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
4024                                 return e;
4025                         }
4026
4027                         if (goi->isconfigure) {
4028                                 if (goi->argc != 1) {
4029                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
4030                                         return JIM_ERR;
4031                                 }
4032                         } else {
4033                                 if (goi->argc != 0) {
4034                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
4035                                         return JIM_ERR;
4036                                 }
4037                         }
4038
4039                         {
4040                                 struct target_event_action *teap;
4041
4042                                 teap = target->event_action;
4043                                 /* replace existing? */
4044                                 while (teap) {
4045                                         if (teap->event == (enum target_event)n->value)
4046                                                 break;
4047                                         teap = teap->next;
4048                                 }
4049
4050                                 if (goi->isconfigure) {
4051                                         bool replace = true;
4052                                         if (teap == NULL) {
4053                                                 /* create new */
4054                                                 teap = calloc(1, sizeof(*teap));
4055                                                 replace = false;
4056                                         }
4057                                         teap->event = n->value;
4058                                         teap->interp = goi->interp;
4059                                         Jim_GetOpt_Obj(goi, &o);
4060                                         if (teap->body)
4061                                                 Jim_DecrRefCount(teap->interp, teap->body);
4062                                         teap->body  = Jim_DuplicateObj(goi->interp, o);
4063                                         /*
4064                                          * FIXME:
4065                                          *     Tcl/TK - "tk events" have a nice feature.
4066                                          *     See the "BIND" command.
4067                                          *    We should support that here.
4068                                          *     You can specify %X and %Y in the event code.
4069                                          *     The idea is: %T - target name.
4070                                          *     The idea is: %N - target number
4071                                          *     The idea is: %E - event name.
4072                                          */
4073                                         Jim_IncrRefCount(teap->body);
4074
4075                                         if (!replace) {
4076                                                 /* add to head of event list */
4077                                                 teap->next = target->event_action;
4078                                                 target->event_action = teap;
4079                                         }
4080                                         Jim_SetEmptyResult(goi->interp);
4081                                 } else {
4082                                         /* get */
4083                                         if (teap == NULL)
4084                                                 Jim_SetEmptyResult(goi->interp);
4085                                         else
4086                                                 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
4087                                 }
4088                         }
4089                         /* loop for more */
4090                         break;
4091
4092                 case TCFG_WORK_AREA_VIRT:
4093                         if (goi->isconfigure) {
4094                                 target_free_all_working_areas(target);
4095                                 e = Jim_GetOpt_Wide(goi, &w);
4096                                 if (e != JIM_OK)
4097                                         return e;
4098                                 target->working_area_virt = w;
4099                                 target->working_area_virt_spec = true;
4100                         } else {
4101                                 if (goi->argc != 0)
4102                                         goto no_params;
4103                         }
4104                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
4105                         /* loop for more */
4106                         break;
4107
4108                 case TCFG_WORK_AREA_PHYS:
4109                         if (goi->isconfigure) {
4110                                 target_free_all_working_areas(target);
4111                                 e = Jim_GetOpt_Wide(goi, &w);
4112                                 if (e != JIM_OK)
4113                                         return e;
4114                                 target->working_area_phys = w;
4115                                 target->working_area_phys_spec = true;
4116                         } else {
4117                                 if (goi->argc != 0)
4118                                         goto no_params;
4119                         }
4120                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
4121                         /* loop for more */
4122                         break;
4123
4124                 case TCFG_WORK_AREA_SIZE:
4125                         if (goi->isconfigure) {
4126                                 target_free_all_working_areas(target);
4127                                 e = Jim_GetOpt_Wide(goi, &w);
4128                                 if (e != JIM_OK)
4129                                         return e;
4130                                 target->working_area_size = w;
4131                         } else {
4132                                 if (goi->argc != 0)
4133                                         goto no_params;
4134                         }
4135                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4136                         /* loop for more */
4137                         break;
4138
4139                 case TCFG_WORK_AREA_BACKUP:
4140                         if (goi->isconfigure) {
4141                                 target_free_all_working_areas(target);
4142                                 e = Jim_GetOpt_Wide(goi, &w);
4143                                 if (e != JIM_OK)
4144                                         return e;
4145                                 /* make this exactly 1 or 0 */
4146                                 target->backup_working_area = (!!w);
4147                         } else {
4148                                 if (goi->argc != 0)
4149                                         goto no_params;
4150                         }
4151                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
4152                         /* loop for more e*/
4153                         break;
4154
4155
4156                 case TCFG_ENDIAN:
4157                         if (goi->isconfigure) {
4158                                 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
4159                                 if (e != JIM_OK) {
4160                                         Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
4161                                         return e;
4162                                 }
4163                                 target->endianness = n->value;
4164                         } else {
4165                                 if (goi->argc != 0)
4166                                         goto no_params;
4167                         }
4168                         n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4169                         if (n->name == NULL) {
4170                                 target->endianness = TARGET_LITTLE_ENDIAN;
4171                                 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4172                         }
4173                         Jim_SetResultString(goi->interp, n->name, -1);
4174                         /* loop for more */
4175                         break;
4176
4177                 case TCFG_VARIANT:
4178                         if (goi->isconfigure) {
4179                                 if (goi->argc < 1) {
4180                                         Jim_SetResultFormatted(goi->interp,
4181                                                                                    "%s ?STRING?",
4182                                                                                    n->name);
4183                                         return JIM_ERR;
4184                                 }
4185                                 if (target->variant)
4186                                         free((void *)(target->variant));
4187                                 e = Jim_GetOpt_String(goi, &cp, NULL);
4188                                 if (e != JIM_OK)
4189                                         return e;
4190                                 target->variant = strdup(cp);
4191                         } else {
4192                                 if (goi->argc != 0)
4193                                         goto no_params;
4194                         }
4195                         Jim_SetResultString(goi->interp, target->variant, -1);
4196                         /* loop for more */
4197                         break;
4198
4199                 case TCFG_COREID:
4200                         if (goi->isconfigure) {
4201                                 e = Jim_GetOpt_Wide(goi, &w);
4202                                 if (e != JIM_OK)
4203                                         return e;
4204                                 target->coreid = (int32_t)w;
4205                         } else {
4206                                 if (goi->argc != 0)
4207                                         goto no_params;
4208                         }
4209                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4210                         /* loop for more */
4211                         break;
4212
4213                 case TCFG_CHAIN_POSITION:
4214                         if (goi->isconfigure) {
4215                                 Jim_Obj *o_t;
4216                                 struct jtag_tap *tap;
4217                                 target_free_all_working_areas(target);
4218                                 e = Jim_GetOpt_Obj(goi, &o_t);
4219                                 if (e != JIM_OK)
4220                                         return e;
4221                                 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
4222                                 if (tap == NULL)
4223                                         return JIM_ERR;
4224                                 /* make this exactly 1 or 0 */
4225                                 target->tap = tap;
4226                         } else {
4227                                 if (goi->argc != 0)
4228                                         goto no_params;
4229                         }
4230                         Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
4231                         /* loop for more e*/
4232                         break;
4233                 case TCFG_DBGBASE:
4234                         if (goi->isconfigure) {
4235                                 e = Jim_GetOpt_Wide(goi, &w);
4236                                 if (e != JIM_OK)
4237                                         return e;
4238                                 target->dbgbase = (uint32_t)w;
4239                                 target->dbgbase_set = true;
4240                         } else {
4241                                 if (goi->argc != 0)
4242                                         goto no_params;
4243                         }
4244                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
4245                         /* loop for more */
4246                         break;
4247
4248                 case TCFG_RTOS:
4249                         /* RTOS */
4250                         {
4251                                 int result = rtos_create(goi, target);
4252                                 if (result != JIM_OK)
4253                                         return result;
4254                         }
4255                         /* loop for more */
4256                         break;
4257                 }
4258         } /* while (goi->argc) */
4259
4260
4261                 /* done - we return */
4262         return JIM_OK;
4263 }
4264
4265 static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
4266 {
4267         Jim_GetOptInfo goi;
4268
4269         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4270         goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
4271         int need_args = 1 + goi.isconfigure;
4272         if (goi.argc < need_args) {
4273                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4274                         goi.isconfigure
4275                                 ? "missing: -option VALUE ..."
4276                                 : "missing: -option ...");
4277                 return JIM_ERR;
4278         }
4279         struct target *target = Jim_CmdPrivData(goi.interp);
4280         return target_configure(&goi, target);
4281 }
4282
4283 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4284 {
4285         const char *cmd_name = Jim_GetString(argv[0], NULL);
4286
4287         Jim_GetOptInfo goi;
4288         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4289
4290         if (goi.argc < 2 || goi.argc > 4) {
4291                 Jim_SetResultFormatted(goi.interp,
4292                                 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
4293                 return JIM_ERR;
4294         }
4295
4296         target_write_fn fn;
4297         fn = target_write_memory_fast;
4298
4299         int e;
4300         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4301                 /* consume it */
4302                 struct Jim_Obj *obj;
4303                 e = Jim_GetOpt_Obj(&goi, &obj);
4304                 if (e != JIM_OK)
4305                         return e;
4306
4307                 fn = target_write_phys_memory;
4308         }
4309
4310         jim_wide a;
4311         e = Jim_GetOpt_Wide(&goi, &a);
4312         if (e != JIM_OK)
4313                 return e;
4314
4315         jim_wide b;
4316         e = Jim_GetOpt_Wide(&goi, &b);
4317         if (e != JIM_OK)
4318                 return e;
4319
4320         jim_wide c = 1;
4321         if (goi.argc == 1) {
4322                 e = Jim_GetOpt_Wide(&goi, &c);
4323                 if (e != JIM_OK)
4324                         return e;
4325         }
4326
4327         /* all args must be consumed */
4328         if (goi.argc != 0)
4329                 return JIM_ERR;
4330
4331         struct target *target = Jim_CmdPrivData(goi.interp);
4332         unsigned data_size;
4333         if (strcasecmp(cmd_name, "mww") == 0)
4334                 data_size = 4;
4335         else if (strcasecmp(cmd_name, "mwh") == 0)
4336                 data_size = 2;
4337         else if (strcasecmp(cmd_name, "mwb") == 0)
4338                 data_size = 1;
4339         else {
4340                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4341                 return JIM_ERR;
4342         }
4343
4344         return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4345 }
4346
4347 /**
4348 *  @brief Reads an array of words/halfwords/bytes from target memory starting at specified address.
4349 *
4350 *  Usage: mdw [phys] <address> [<count>] - for 32 bit reads
4351 *         mdh [phys] <address> [<count>] - for 16 bit reads
4352 *         mdb [phys] <address> [<count>] - for  8 bit reads
4353 *
4354 *  Count defaults to 1.
4355 *
4356 *  Calls target_read_memory or target_read_phys_memory depending on
4357 *  the presence of the "phys" argument
4358 *  Reads the target memory in blocks of max. 32 bytes, and returns an array of ints formatted
4359 *  to int representation in base16.
4360 *  Also outputs read data in a human readable form using command_print
4361 *
4362 *  @param phys if present target_read_phys_memory will be used instead of target_read_memory
4363 *  @param address address where to start the read. May be specified in decimal or hex using the standard "0x" prefix
4364 *  @param count optional count parameter to read an array of values. If not specified, defaults to 1.
4365 *  @returns:  JIM_ERR on error or JIM_OK on success and sets the result string to an array of ascii formatted numbers
4366 *  on success, with [<count>] number of elements.
4367 *
4368 *  In case of little endian target:
4369 *      Example1: "mdw 0x00000000"  returns "10123456"
4370 *      Exmaple2: "mdh 0x00000000 1" returns "3456"
4371 *      Example3: "mdb 0x00000000" returns "56"
4372 *      Example4: "mdh 0x00000000 2" returns "3456 1012"
4373 *      Example5: "mdb 0x00000000 3" returns "56 34 12"
4374 **/
4375 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4376 {
4377         const char *cmd_name = Jim_GetString(argv[0], NULL);
4378
4379         Jim_GetOptInfo goi;
4380         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4381
4382         if ((goi.argc < 1) || (goi.argc > 3)) {
4383                 Jim_SetResultFormatted(goi.interp,
4384                                 "usage: %s [phys] <address> [<count>]", cmd_name);
4385                 return JIM_ERR;
4386         }
4387
4388         int (*fn)(struct target *target,
4389                         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
4390         fn = target_read_memory;
4391
4392         int e;
4393         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4394                 /* consume it */
4395                 struct Jim_Obj *obj;
4396                 e = Jim_GetOpt_Obj(&goi, &obj);
4397                 if (e != JIM_OK)
4398                         return e;
4399
4400                 fn = target_read_phys_memory;
4401         }
4402
4403         /* Read address parameter */
4404         jim_wide addr;
4405         e = Jim_GetOpt_Wide(&goi, &addr);
4406         if (e != JIM_OK)
4407                 return JIM_ERR;
4408
4409         /* If next parameter exists, read it out as the count parameter, if not, set it to 1 (default) */
4410         jim_wide count;
4411         if (goi.argc == 1) {
4412                 e = Jim_GetOpt_Wide(&goi, &count);
4413                 if (e != JIM_OK)
4414                         return JIM_ERR;
4415         } else
4416                 count = 1;
4417
4418         /* all args must be consumed */
4419         if (goi.argc != 0)
4420                 return JIM_ERR;
4421
4422         jim_wide dwidth = 1; /* shut up gcc */
4423         if (strcasecmp(cmd_name, "mdw") == 0)
4424                 dwidth = 4;
4425         else if (strcasecmp(cmd_name, "mdh") == 0)
4426                 dwidth = 2;
4427         else if (strcasecmp(cmd_name, "mdb") == 0)
4428                 dwidth = 1;
4429         else {
4430                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4431                 return JIM_ERR;
4432         }
4433
4434         /* convert count to "bytes" */
4435         int bytes = count * dwidth;
4436
4437         struct target *target = Jim_CmdPrivData(goi.interp);
4438         uint8_t  target_buf[32];
4439         jim_wide x, y, z;
4440         while (bytes > 0) {
4441                 y = (bytes < 16) ? bytes : 16; /* y = min(bytes, 16); */
4442
4443                 /* Try to read out next block */
4444                 e = fn(target, addr, dwidth, y / dwidth, target_buf);
4445
4446                 if (e != ERROR_OK) {
4447                         Jim_SetResultFormatted(interp, "error reading target @ 0x%08lx", (long)addr);
4448                         return JIM_ERR;
4449                 }
4450
4451                 command_print_sameline(NULL, "0x%08x ", (int)(addr));
4452                 switch (dwidth) {
4453                 case 4:
4454                         for (x = 0; x < 16 && x < y; x += 4) {
4455                                 z = target_buffer_get_u32(target, &(target_buf[x]));
4456                                 command_print_sameline(NULL, "%08x ", (int)(z));
4457                         }
4458                         for (; (x < 16) ; x += 4)
4459                                 command_print_sameline(NULL, "         ");
4460                         break;
4461                 case 2:
4462                         for (x = 0; x < 16 && x < y; x += 2) {
4463                                 z = target_buffer_get_u16(target, &(target_buf[x]));
4464                                 command_print_sameline(NULL, "%04x ", (int)(z));
4465                         }
4466                         for (; (x < 16) ; x += 2)
4467                                 command_print_sameline(NULL, "     ");
4468                         break;
4469                 case 1:
4470                 default:
4471                         for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4472                                 z = target_buffer_get_u8(target, &(target_buf[x]));
4473                                 command_print_sameline(NULL, "%02x ", (int)(z));
4474                         }
4475                         for (; (x < 16) ; x += 1)
4476                                 command_print_sameline(NULL, "   ");
4477                         break;
4478                 }
4479                 /* ascii-ify the bytes */
4480                 for (x = 0 ; x < y ; x++) {
4481                         if ((target_buf[x] >= 0x20) &&
4482                                 (target_buf[x] <= 0x7e)) {
4483                                 /* good */
4484                         } else {
4485                                 /* smack it */
4486                                 target_buf[x] = '.';
4487                         }
4488                 }
4489                 /* space pad  */
4490                 while (x < 16) {
4491                         target_buf[x] = ' ';
4492                         x++;
4493                 }
4494                 /* terminate */
4495                 target_buf[16] = 0;
4496                 /* print - with a newline */
4497                 command_print_sameline(NULL, "%s\n", target_buf);
4498                 /* NEXT... */
4499                 bytes -= 16;
4500                 addr += 16;
4501         }
4502         return JIM_OK;
4503 }
4504
4505 static int jim_target_mem2array(Jim_Interp *interp,
4506                 int argc, Jim_Obj *const *argv)
4507 {
4508         struct target *target = Jim_CmdPrivData(interp);
4509         return target_mem2array(interp, target, argc - 1, argv + 1);
4510 }
4511
4512 static int jim_target_array2mem(Jim_Interp *interp,
4513                 int argc, Jim_Obj *const *argv)
4514 {
4515         struct target *target = Jim_CmdPrivData(interp);
4516         return target_array2mem(interp, target, argc - 1, argv + 1);
4517 }
4518
4519 static int jim_target_tap_disabled(Jim_Interp *interp)
4520 {
4521         Jim_SetResultFormatted(interp, "[TAP is disabled]");
4522         return JIM_ERR;
4523 }
4524
4525 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4526 {
4527         if (argc != 1) {
4528                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4529                 return JIM_ERR;
4530         }
4531         struct target *target = Jim_CmdPrivData(interp);
4532         if (!target->tap->enabled)
4533                 return jim_target_tap_disabled(interp);
4534
4535         int e = target->type->examine(target);
4536         if (e != ERROR_OK)
4537                 return JIM_ERR;
4538         return JIM_OK;
4539 }
4540
4541 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4542 {
4543         if (argc != 1) {
4544                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4545                 return JIM_ERR;
4546         }
4547         struct target *target = Jim_CmdPrivData(interp);
4548
4549         if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
4550                 return JIM_ERR;
4551
4552         return JIM_OK;
4553 }
4554
4555 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4556 {
4557         if (argc != 1) {
4558                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4559                 return JIM_ERR;
4560         }
4561         struct target *target = Jim_CmdPrivData(interp);
4562         if (!target->tap->enabled)
4563                 return jim_target_tap_disabled(interp);
4564
4565         int e;
4566         if (!(target_was_examined(target)))
4567                 e = ERROR_TARGET_NOT_EXAMINED;
4568         else
4569                 e = target->type->poll(target);
4570         if (e != ERROR_OK)
4571                 return JIM_ERR;
4572         return JIM_OK;
4573 }
4574
4575 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4576 {
4577         Jim_GetOptInfo goi;
4578         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4579
4580         if (goi.argc != 2) {
4581                 Jim_WrongNumArgs(interp, 0, argv,
4582                                 "([tT]|[fF]|assert|deassert) BOOL");
4583                 return JIM_ERR;
4584         }
4585
4586         Jim_Nvp *n;
4587         int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4588         if (e != JIM_OK) {
4589                 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4590                 return e;
4591         }
4592         /* the halt or not param */
4593         jim_wide a;
4594         e = Jim_GetOpt_Wide(&goi, &a);
4595         if (e != JIM_OK)
4596                 return e;
4597
4598         struct target *target = Jim_CmdPrivData(goi.interp);
4599         if (!target->tap->enabled)
4600                 return jim_target_tap_disabled(interp);
4601         if (!(target_was_examined(target))) {
4602                 LOG_ERROR("Target not examined yet");
4603                 return ERROR_TARGET_NOT_EXAMINED;
4604         }
4605         if (!target->type->assert_reset || !target->type->deassert_reset) {
4606                 Jim_SetResultFormatted(interp,
4607                                 "No target-specific reset for %s",
4608                                 target_name(target));
4609                 return JIM_ERR;
4610         }
4611         /* determine if we should halt or not. */
4612         target->reset_halt = !!a;
4613         /* When this happens - all workareas are invalid. */
4614         target_free_all_working_areas_restore(target, 0);
4615
4616         /* do the assert */
4617         if (n->value == NVP_ASSERT)
4618                 e = target->type->assert_reset(target);
4619         else
4620                 e = target->type->deassert_reset(target);
4621         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4622 }
4623
4624 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4625 {
4626         if (argc != 1) {
4627                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4628                 return JIM_ERR;
4629         }
4630         struct target *target = Jim_CmdPrivData(interp);
4631         if (!target->tap->enabled)
4632                 return jim_target_tap_disabled(interp);
4633         int e = target->type->halt(target);
4634         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4635 }
4636
4637 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4638 {
4639         Jim_GetOptInfo goi;
4640         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4641
4642         /* params:  <name>  statename timeoutmsecs */
4643         if (goi.argc != 2) {
4644                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4645                 Jim_SetResultFormatted(goi.interp,
4646                                 "%s <state_name> <timeout_in_msec>", cmd_name);
4647                 return JIM_ERR;
4648         }
4649
4650         Jim_Nvp *n;
4651         int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4652         if (e != JIM_OK) {
4653                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state, 1);
4654                 return e;
4655         }
4656         jim_wide a;
4657         e = Jim_GetOpt_Wide(&goi, &a);
4658         if (e != JIM_OK)
4659                 return e;
4660         struct target *target = Jim_CmdPrivData(interp);
4661         if (!target->tap->enabled)
4662                 return jim_target_tap_disabled(interp);
4663
4664         e = target_wait_state(target, n->value, a);
4665         if (e != ERROR_OK) {
4666                 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
4667                 Jim_SetResultFormatted(goi.interp,
4668                                 "target: %s wait %s fails (%#s) %s",
4669                                 target_name(target), n->name,
4670                                 eObj, target_strerror_safe(e));
4671                 Jim_FreeNewObj(interp, eObj);
4672                 return JIM_ERR;
4673         }
4674         return JIM_OK;
4675 }
4676 /* List for human, Events defined for this target.
4677  * scripts/programs should use 'name cget -event NAME'
4678  */
4679 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4680 {
4681         struct command_context *cmd_ctx = current_command_context(interp);
4682         assert(cmd_ctx != NULL);
4683
4684         struct target *target = Jim_CmdPrivData(interp);
4685         struct target_event_action *teap = target->event_action;
4686         command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4687                                    target->target_number,
4688                                    target_name(target));
4689         command_print(cmd_ctx, "%-25s | Body", "Event");
4690         command_print(cmd_ctx, "------------------------- | "
4691                         "----------------------------------------");
4692         while (teap) {
4693                 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
4694                 command_print(cmd_ctx, "%-25s | %s",
4695                                 opt->name, Jim_GetString(teap->body, NULL));
4696                 teap = teap->next;
4697         }
4698         command_print(cmd_ctx, "***END***");
4699         return JIM_OK;
4700 }
4701 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4702 {
4703         if (argc != 1) {
4704                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4705                 return JIM_ERR;
4706         }
4707         struct target *target = Jim_CmdPrivData(interp);
4708         Jim_SetResultString(interp, target_state_name(target), -1);
4709         return JIM_OK;
4710 }
4711 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4712 {
4713         Jim_GetOptInfo goi;
4714         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4715         if (goi.argc != 1) {
4716                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4717                 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
4718                 return JIM_ERR;
4719         }
4720         Jim_Nvp *n;
4721         int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4722         if (e != JIM_OK) {
4723                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4724                 return e;
4725         }
4726         struct target *target = Jim_CmdPrivData(interp);
4727         target_handle_event(target, n->value);
4728         return JIM_OK;
4729 }
4730
4731 static const struct command_registration target_instance_command_handlers[] = {
4732         {
4733                 .name = "configure",
4734                 .mode = COMMAND_CONFIG,
4735                 .jim_handler = jim_target_configure,
4736                 .help  = "configure a new target for use",
4737                 .usage = "[target_attribute ...]",
4738         },
4739         {
4740                 .name = "cget",
4741                 .mode = COMMAND_ANY,
4742                 .jim_handler = jim_target_configure,
4743                 .help  = "returns the specified target attribute",
4744                 .usage = "target_attribute",
4745         },
4746         {
4747                 .name = "mww",
4748                 .mode = COMMAND_EXEC,
4749                 .jim_handler = jim_target_mw,
4750                 .help = "Write 32-bit word(s) to target memory",
4751                 .usage = "address data [count]",
4752         },
4753         {
4754                 .name = "mwh",
4755                 .mode = COMMAND_EXEC,
4756                 .jim_handler = jim_target_mw,
4757                 .help = "Write 16-bit half-word(s) to target memory",
4758                 .usage = "address data [count]",
4759         },
4760         {
4761                 .name = "mwb",
4762                 .mode = COMMAND_EXEC,
4763                 .jim_handler = jim_target_mw,
4764                 .help = "Write byte(s) to target memory",
4765                 .usage = "address data [count]",
4766         },
4767         {
4768                 .name = "mdw",
4769                 .mode = COMMAND_EXEC,
4770                 .jim_handler = jim_target_md,
4771                 .help = "Display target memory as 32-bit words",
4772                 .usage = "address [count]",
4773         },
4774         {
4775                 .name = "mdh",
4776                 .mode = COMMAND_EXEC,
4777                 .jim_handler = jim_target_md,
4778                 .help = "Display target memory as 16-bit half-words",
4779                 .usage = "address [count]",
4780         },
4781         {
4782                 .name = "mdb",
4783                 .mode = COMMAND_EXEC,
4784                 .jim_handler = jim_target_md,
4785                 .help = "Display target memory as 8-bit bytes",
4786                 .usage = "address [count]",
4787         },
4788         {
4789                 .name = "array2mem",
4790                 .mode = COMMAND_EXEC,
4791                 .jim_handler = jim_target_array2mem,
4792                 .help = "Writes Tcl array of 8/16/32 bit numbers "
4793                         "to target memory",
4794                 .usage = "arrayname bitwidth address count",
4795         },
4796         {
4797                 .name = "mem2array",
4798                 .mode = COMMAND_EXEC,
4799                 .jim_handler = jim_target_mem2array,
4800                 .help = "Loads Tcl array of 8/16/32 bit numbers "
4801                         "from target memory",
4802                 .usage = "arrayname bitwidth address count",
4803         },
4804         {
4805                 .name = "eventlist",
4806                 .mode = COMMAND_EXEC,
4807                 .jim_handler = jim_target_event_list,
4808                 .help = "displays a table of events defined for this target",
4809         },
4810         {
4811                 .name = "curstate",
4812                 .mode = COMMAND_EXEC,
4813                 .jim_handler = jim_target_current_state,
4814                 .help = "displays the current state of this target",
4815         },
4816         {
4817                 .name = "arp_examine",
4818                 .mode = COMMAND_EXEC,
4819                 .jim_handler = jim_target_examine,
4820                 .help = "used internally for reset processing",
4821         },
4822         {
4823                 .name = "arp_halt_gdb",
4824                 .mode = COMMAND_EXEC,
4825                 .jim_handler = jim_target_halt_gdb,
4826                 .help = "used internally for reset processing to halt GDB",
4827         },
4828         {
4829                 .name = "arp_poll",
4830                 .mode = COMMAND_EXEC,
4831                 .jim_handler = jim_target_poll,
4832                 .help = "used internally for reset processing",
4833         },
4834         {
4835                 .name = "arp_reset",
4836                 .mode = COMMAND_EXEC,
4837                 .jim_handler = jim_target_reset,
4838                 .help = "used internally for reset processing",
4839         },
4840         {
4841                 .name = "arp_halt",
4842                 .mode = COMMAND_EXEC,
4843                 .jim_handler = jim_target_halt,
4844                 .help = "used internally for reset processing",
4845         },
4846         {
4847                 .name = "arp_waitstate",
4848                 .mode = COMMAND_EXEC,
4849                 .jim_handler = jim_target_wait_state,
4850                 .help = "used internally for reset processing",
4851         },
4852         {
4853                 .name = "invoke-event",
4854                 .mode = COMMAND_EXEC,
4855                 .jim_handler = jim_target_invoke_event,
4856                 .help = "invoke handler for specified event",
4857                 .usage = "event_name",
4858         },
4859         COMMAND_REGISTRATION_DONE
4860 };
4861
4862 static int target_create(Jim_GetOptInfo *goi)
4863 {
4864         Jim_Obj *new_cmd;
4865         Jim_Cmd *cmd;
4866         const char *cp;
4867         char *cp2;
4868         int e;
4869         int x;
4870         struct target *target;
4871         struct command_context *cmd_ctx;
4872
4873         cmd_ctx = current_command_context(goi->interp);
4874         assert(cmd_ctx != NULL);
4875
4876         if (goi->argc < 3) {
4877                 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
4878                 return JIM_ERR;
4879         }
4880
4881         /* COMMAND */
4882         Jim_GetOpt_Obj(goi, &new_cmd);
4883         /* does this command exist? */
4884         cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
4885         if (cmd) {
4886                 cp = Jim_GetString(new_cmd, NULL);
4887                 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
4888                 return JIM_ERR;
4889         }
4890
4891         /* TYPE */
4892         e = Jim_GetOpt_String(goi, &cp2, NULL);
4893         if (e != JIM_OK)
4894                 return e;
4895         cp = cp2;
4896         /* now does target type exist */
4897         for (x = 0 ; target_types[x] ; x++) {
4898                 if (0 == strcmp(cp, target_types[x]->name)) {
4899                         /* found */
4900                         break;
4901                 }
4902
4903                 /* check for deprecated name */
4904                 if (target_types[x]->deprecated_name) {
4905                         if (0 == strcmp(cp, target_types[x]->deprecated_name)) {
4906                                 /* found */
4907                                 LOG_WARNING("target name is deprecated use: \'%s\'", target_types[x]->name);
4908                                 break;
4909                         }
4910                 }
4911         }
4912         if (target_types[x] == NULL) {
4913                 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
4914                 for (x = 0 ; target_types[x] ; x++) {
4915                         if (target_types[x + 1]) {
4916                                 Jim_AppendStrings(goi->interp,
4917                                                                    Jim_GetResult(goi->interp),
4918                                                                    target_types[x]->name,
4919                                                                    ", ", NULL);
4920                         } else {
4921                                 Jim_AppendStrings(goi->interp,
4922                                                                    Jim_GetResult(goi->interp),
4923                                                                    " or ",
4924                                                                    target_types[x]->name, NULL);
4925                         }
4926                 }
4927                 return JIM_ERR;
4928         }
4929
4930         /* Create it */
4931         target = calloc(1, sizeof(struct target));
4932         /* set target number */
4933         target->target_number = new_target_number();
4934
4935         /* allocate memory for each unique target type */
4936         target->type = (struct target_type *)calloc(1, sizeof(struct target_type));
4937
4938         memcpy(target->type, target_types[x], sizeof(struct target_type));
4939
4940         /* will be set by "-endian" */
4941         target->endianness = TARGET_ENDIAN_UNKNOWN;
4942
4943         /* default to first core, override with -coreid */
4944         target->coreid = 0;
4945
4946         target->working_area        = 0x0;
4947         target->working_area_size   = 0x0;
4948         target->working_areas       = NULL;
4949         target->backup_working_area = 0;
4950
4951         target->state               = TARGET_UNKNOWN;
4952         target->debug_reason        = DBG_REASON_UNDEFINED;
4953         target->reg_cache           = NULL;
4954         target->breakpoints         = NULL;
4955         target->watchpoints         = NULL;
4956         target->next                = NULL;
4957         target->arch_info           = NULL;
4958
4959         target->display             = 1;
4960
4961         target->halt_issued                     = false;
4962
4963         /* initialize trace information */
4964         target->trace_info = malloc(sizeof(struct trace));
4965         target->trace_info->num_trace_points         = 0;
4966         target->trace_info->trace_points_size        = 0;
4967         target->trace_info->trace_points             = NULL;
4968         target->trace_info->trace_history_size       = 0;
4969         target->trace_info->trace_history            = NULL;
4970         target->trace_info->trace_history_pos        = 0;
4971         target->trace_info->trace_history_overflowed = 0;
4972
4973         target->dbgmsg          = NULL;
4974         target->dbg_msg_enabled = 0;
4975
4976         target->endianness = TARGET_ENDIAN_UNKNOWN;
4977
4978         target->rtos = NULL;
4979         target->rtos_auto_detect = false;
4980
4981         /* Do the rest as "configure" options */
4982         goi->isconfigure = 1;
4983         e = target_configure(goi, target);
4984
4985         if (target->tap == NULL) {
4986                 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
4987                 e = JIM_ERR;
4988         }
4989
4990         if (e != JIM_OK) {
4991                 free(target->type);
4992                 free(target);
4993                 return e;
4994         }
4995
4996         if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
4997                 /* default endian to little if not specified */
4998                 target->endianness = TARGET_LITTLE_ENDIAN;
4999         }
5000
5001         /* incase variant is not set */
5002         if (!target->variant)
5003                 target->variant = strdup("");
5004
5005         cp = Jim_GetString(new_cmd, NULL);
5006         target->cmd_name = strdup(cp);
5007
5008         /* create the target specific commands */
5009         if (target->type->commands) {
5010                 e = register_commands(cmd_ctx, NULL, target->type->commands);
5011                 if (ERROR_OK != e)
5012                         LOG_ERROR("unable to register '%s' commands", cp);
5013         }
5014         if (target->type->target_create)
5015                 (*(target->type->target_create))(target, goi->interp);
5016
5017         /* append to end of list */
5018         {
5019                 struct target **tpp;
5020                 tpp = &(all_targets);
5021                 while (*tpp)
5022                         tpp = &((*tpp)->next);
5023                 *tpp = target;
5024         }
5025
5026         /* now - create the new target name command */
5027         const struct command_registration target_subcommands[] = {
5028                 {
5029                         .chain = target_instance_command_handlers,
5030                 },
5031                 {
5032                         .chain = target->type->commands,
5033                 },
5034                 COMMAND_REGISTRATION_DONE
5035         };
5036         const struct command_registration target_commands[] = {
5037                 {
5038                         .name = cp,
5039                         .mode = COMMAND_ANY,
5040                         .help = "target command group",
5041                         .usage = "",
5042                         .chain = target_subcommands,
5043                 },
5044                 COMMAND_REGISTRATION_DONE
5045         };
5046         e = register_commands(cmd_ctx, NULL, target_commands);
5047         if (ERROR_OK != e)
5048                 return JIM_ERR;
5049
5050         struct command *c = command_find_in_context(cmd_ctx, cp);
5051         assert(c);
5052         command_set_handler_data(c, target);
5053
5054         return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
5055 }
5056
5057 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5058 {
5059         if (argc != 1) {
5060                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5061                 return JIM_ERR;
5062         }
5063         struct command_context *cmd_ctx = current_command_context(interp);
5064         assert(cmd_ctx != NULL);
5065
5066         Jim_SetResultString(interp, target_name(get_current_target(cmd_ctx)), -1);
5067         return JIM_OK;
5068 }
5069
5070 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5071 {
5072         if (argc != 1) {
5073                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5074                 return JIM_ERR;
5075         }
5076         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5077         for (unsigned x = 0; NULL != target_types[x]; x++) {
5078                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5079                         Jim_NewStringObj(interp, target_types[x]->name, -1));
5080         }
5081         return JIM_OK;
5082 }
5083
5084 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5085 {
5086         if (argc != 1) {
5087                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5088                 return JIM_ERR;
5089         }
5090         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5091         struct target *target = all_targets;
5092         while (target) {
5093                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5094                         Jim_NewStringObj(interp, target_name(target), -1));
5095                 target = target->next;
5096         }
5097         return JIM_OK;
5098 }
5099
5100 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5101 {
5102         int i;
5103         const char *targetname;
5104         int retval, len;
5105         struct target *target = (struct target *) NULL;
5106         struct target_list *head, *curr, *new;
5107         curr = (struct target_list *) NULL;
5108         head = (struct target_list *) NULL;
5109
5110         retval = 0;
5111         LOG_DEBUG("%d", argc);
5112         /* argv[1] = target to associate in smp
5113          * argv[2] = target to assoicate in smp
5114          * argv[3] ...
5115          */
5116
5117         for (i = 1; i < argc; i++) {
5118
5119                 targetname = Jim_GetString(argv[i], &len);
5120                 target = get_target(targetname);
5121                 LOG_DEBUG("%s ", targetname);
5122                 if (target) {
5123                         new = malloc(sizeof(struct target_list));
5124                         new->target = target;
5125                         new->next = (struct target_list *)NULL;
5126                         if (head == (struct target_list *)NULL) {
5127                                 head = new;
5128                                 curr = head;
5129                         } else {
5130                                 curr->next = new;
5131                                 curr = new;
5132                         }
5133                 }
5134         }
5135         /*  now parse the list of cpu and put the target in smp mode*/
5136         curr = head;
5137
5138         while (curr != (struct target_list *)NULL) {
5139                 target = curr->target;
5140                 target->smp = 1;
5141                 target->head = head;
5142                 curr = curr->next;
5143         }
5144
5145         if (target && target->rtos)
5146                 retval = rtos_smp_init(head->target);
5147
5148         return retval;
5149 }
5150
5151
5152 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5153 {
5154         Jim_GetOptInfo goi;
5155         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5156         if (goi.argc < 3) {
5157                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5158                         "<name> <target_type> [<target_options> ...]");
5159                 return JIM_ERR;
5160         }
5161         return target_create(&goi);
5162 }
5163
5164 static int jim_target_number(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5165 {
5166         Jim_GetOptInfo goi;
5167         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5168
5169         /* It's OK to remove this mechanism sometime after August 2010 or so */
5170         LOG_WARNING("don't use numbers as target identifiers; use names");
5171         if (goi.argc != 1) {
5172                 Jim_SetResultFormatted(goi.interp, "usage: target number <number>");
5173                 return JIM_ERR;
5174         }
5175         jim_wide w;
5176         int e = Jim_GetOpt_Wide(&goi, &w);
5177         if (e != JIM_OK)
5178                 return JIM_ERR;
5179
5180         struct target *target;
5181         for (target = all_targets; NULL != target; target = target->next) {
5182                 if (target->target_number != w)
5183                         continue;
5184
5185                 Jim_SetResultString(goi.interp, target_name(target), -1);
5186                 return JIM_OK;
5187         }
5188         {
5189                 Jim_Obj *wObj = Jim_NewIntObj(goi.interp, w);
5190                 Jim_SetResultFormatted(goi.interp,
5191                         "Target: number %#s does not exist", wObj);
5192                 Jim_FreeNewObj(interp, wObj);
5193         }
5194         return JIM_ERR;
5195 }
5196
5197 static int jim_target_count(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5198 {
5199         if (argc != 1) {
5200                 Jim_WrongNumArgs(interp, 1, argv, "<no parameters>");
5201                 return JIM_ERR;
5202         }
5203         unsigned count = 0;
5204         struct target *target = all_targets;
5205         while (NULL != target) {
5206                 target = target->next;
5207                 count++;
5208         }
5209         Jim_SetResult(interp, Jim_NewIntObj(interp, count));
5210         return JIM_OK;
5211 }
5212
5213 static const struct command_registration target_subcommand_handlers[] = {
5214         {
5215                 .name = "init",
5216                 .mode = COMMAND_CONFIG,
5217                 .handler = handle_target_init_command,
5218                 .help = "initialize targets",
5219         },
5220         {
5221                 .name = "create",
5222                 /* REVISIT this should be COMMAND_CONFIG ... */
5223                 .mode = COMMAND_ANY,
5224                 .jim_handler = jim_target_create,
5225                 .usage = "name type '-chain-position' name [options ...]",
5226                 .help = "Creates and selects a new target",
5227         },
5228         {
5229                 .name = "current",
5230                 .mode = COMMAND_ANY,
5231                 .jim_handler = jim_target_current,
5232                 .help = "Returns the currently selected target",
5233         },
5234         {
5235                 .name = "types",
5236                 .mode = COMMAND_ANY,
5237                 .jim_handler = jim_target_types,
5238                 .help = "Returns the available target types as "
5239                                 "a list of strings",
5240         },
5241         {
5242                 .name = "names",
5243                 .mode = COMMAND_ANY,
5244                 .jim_handler = jim_target_names,
5245                 .help = "Returns the names of all targets as a list of strings",
5246         },
5247         {
5248                 .name = "number",
5249                 .mode = COMMAND_ANY,
5250                 .jim_handler = jim_target_number,
5251                 .usage = "number",
5252                 .help = "Returns the name of the numbered target "
5253                         "(DEPRECATED)",
5254         },
5255         {
5256                 .name = "count",
5257                 .mode = COMMAND_ANY,
5258                 .jim_handler = jim_target_count,
5259                 .help = "Returns the number of targets as an integer "
5260                         "(DEPRECATED)",
5261         },
5262         {
5263                 .name = "smp",
5264                 .mode = COMMAND_ANY,
5265                 .jim_handler = jim_target_smp,
5266                 .usage = "targetname1 targetname2 ...",
5267                 .help = "gather several target in a smp list"
5268         },
5269
5270         COMMAND_REGISTRATION_DONE
5271 };
5272
5273 struct FastLoad {
5274         uint32_t address;
5275         uint8_t *data;
5276         int length;
5277
5278 };
5279
5280 static int fastload_num;
5281 static struct FastLoad *fastload;
5282
5283 static void free_fastload(void)
5284 {
5285         if (fastload != NULL) {
5286                 int i;
5287                 for (i = 0; i < fastload_num; i++) {
5288                         if (fastload[i].data)
5289                                 free(fastload[i].data);
5290                 }
5291                 free(fastload);
5292                 fastload = NULL;
5293         }
5294 }
5295
5296 COMMAND_HANDLER(handle_fast_load_image_command)
5297 {
5298         uint8_t *buffer;
5299         size_t buf_cnt;
5300         uint32_t image_size;
5301         uint32_t min_address = 0;
5302         uint32_t max_address = 0xffffffff;
5303         int i;
5304
5305         struct image image;
5306
5307         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
5308                         &image, &min_address, &max_address);
5309         if (ERROR_OK != retval)
5310                 return retval;
5311
5312         struct duration bench;
5313         duration_start(&bench);
5314
5315         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
5316         if (retval != ERROR_OK)
5317                 return retval;
5318
5319         image_size = 0x0;
5320         retval = ERROR_OK;
5321         fastload_num = image.num_sections;
5322         fastload = (struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
5323         if (fastload == NULL) {
5324                 command_print(CMD_CTX, "out of memory");
5325                 image_close(&image);
5326                 return ERROR_FAIL;
5327         }
5328         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
5329         for (i = 0; i < image.num_sections; i++) {
5330                 buffer = malloc(image.sections[i].size);
5331                 if (buffer == NULL) {
5332                         command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5333                                                   (int)(image.sections[i].size));
5334                         retval = ERROR_FAIL;
5335                         break;
5336                 }
5337
5338                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
5339                 if (retval != ERROR_OK) {
5340                         free(buffer);
5341                         break;
5342                 }
5343
5344                 uint32_t offset = 0;
5345                 uint32_t length = buf_cnt;
5346
5347                 /* DANGER!!! beware of unsigned comparision here!!! */
5348
5349                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
5350                                 (image.sections[i].base_address < max_address)) {
5351                         if (image.sections[i].base_address < min_address) {
5352                                 /* clip addresses below */
5353                                 offset += min_address-image.sections[i].base_address;
5354                                 length -= offset;
5355                         }
5356
5357                         if (image.sections[i].base_address + buf_cnt > max_address)
5358                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5359
5360                         fastload[i].address = image.sections[i].base_address + offset;
5361                         fastload[i].data = malloc(length);
5362                         if (fastload[i].data == NULL) {
5363                                 free(buffer);
5364                                 command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5365                                                           length);
5366                                 retval = ERROR_FAIL;
5367                                 break;
5368                         }
5369                         memcpy(fastload[i].data, buffer + offset, length);
5370                         fastload[i].length = length;
5371
5372                         image_size += length;
5373                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
5374                                                   (unsigned int)length,
5375                                                   ((unsigned int)(image.sections[i].base_address + offset)));
5376                 }
5377
5378                 free(buffer);
5379         }
5380
5381         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
5382                 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
5383                                 "in %fs (%0.3f KiB/s)", image_size,
5384                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5385
5386                 command_print(CMD_CTX,
5387                                 "WARNING: image has not been loaded to target!"
5388                                 "You can issue a 'fast_load' to finish loading.");
5389         }
5390
5391         image_close(&image);
5392
5393         if (retval != ERROR_OK)
5394                 free_fastload();
5395
5396         return retval;
5397 }
5398
5399 COMMAND_HANDLER(handle_fast_load_command)
5400 {
5401         if (CMD_ARGC > 0)
5402                 return ERROR_COMMAND_SYNTAX_ERROR;
5403         if (fastload == NULL) {
5404                 LOG_ERROR("No image in memory");
5405                 return ERROR_FAIL;
5406         }
5407         int i;
5408         int ms = timeval_ms();
5409         int size = 0;
5410         int retval = ERROR_OK;
5411         for (i = 0; i < fastload_num; i++) {
5412                 struct target *target = get_current_target(CMD_CTX);
5413                 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
5414                                           (unsigned int)(fastload[i].address),
5415                                           (unsigned int)(fastload[i].length));
5416                 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5417                 if (retval != ERROR_OK)
5418                         break;
5419                 size += fastload[i].length;
5420         }
5421         if (retval == ERROR_OK) {
5422                 int after = timeval_ms();
5423                 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5424         }
5425         return retval;
5426 }
5427
5428 static const struct command_registration target_command_handlers[] = {
5429         {
5430                 .name = "targets",
5431                 .handler = handle_targets_command,
5432                 .mode = COMMAND_ANY,
5433                 .help = "change current default target (one parameter) "
5434                         "or prints table of all targets (no parameters)",
5435                 .usage = "[target]",
5436         },
5437         {
5438                 .name = "target",
5439                 .mode = COMMAND_CONFIG,
5440                 .help = "configure target",
5441
5442                 .chain = target_subcommand_handlers,
5443         },
5444         COMMAND_REGISTRATION_DONE
5445 };
5446
5447 int target_register_commands(struct command_context *cmd_ctx)
5448 {
5449         return register_commands(cmd_ctx, NULL, target_command_handlers);
5450 }
5451
5452 static bool target_reset_nag = true;
5453
5454 bool get_target_reset_nag(void)
5455 {
5456         return target_reset_nag;
5457 }
5458
5459 COMMAND_HANDLER(handle_target_reset_nag)
5460 {
5461         return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5462                         &target_reset_nag, "Nag after each reset about options to improve "
5463                         "performance");
5464 }
5465
5466 COMMAND_HANDLER(handle_ps_command)
5467 {
5468         struct target *target = get_current_target(CMD_CTX);
5469         char *display;
5470         if (target->state != TARGET_HALTED) {
5471                 LOG_INFO("target not halted !!");
5472                 return ERROR_OK;
5473         }
5474
5475         if ((target->rtos) && (target->rtos->type)
5476                         && (target->rtos->type->ps_command)) {
5477                 display = target->rtos->type->ps_command(target);
5478                 command_print(CMD_CTX, "%s", display);
5479                 free(display);
5480                 return ERROR_OK;
5481         } else {
5482                 LOG_INFO("failed");
5483                 return ERROR_TARGET_FAILURE;
5484         }
5485 }
5486
5487 static const struct command_registration target_exec_command_handlers[] = {
5488         {
5489                 .name = "fast_load_image",
5490                 .handler = handle_fast_load_image_command,
5491                 .mode = COMMAND_ANY,
5492                 .help = "Load image into server memory for later use by "
5493                         "fast_load; primarily for profiling",
5494                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5495                         "[min_address [max_length]]",
5496         },
5497         {
5498                 .name = "fast_load",
5499                 .handler = handle_fast_load_command,
5500                 .mode = COMMAND_EXEC,
5501                 .help = "loads active fast load image to current target "
5502                         "- mainly for profiling purposes",
5503                 .usage = "",
5504         },
5505         {
5506                 .name = "profile",
5507                 .handler = handle_profile_command,
5508                 .mode = COMMAND_EXEC,
5509                 .usage = "seconds filename",
5510                 .help = "profiling samples the CPU PC",
5511         },
5512         /** @todo don't register virt2phys() unless target supports it */
5513         {
5514                 .name = "virt2phys",
5515                 .handler = handle_virt2phys_command,
5516                 .mode = COMMAND_ANY,
5517                 .help = "translate a virtual address into a physical address",
5518                 .usage = "virtual_address",
5519         },
5520         {
5521                 .name = "reg",
5522                 .handler = handle_reg_command,
5523                 .mode = COMMAND_EXEC,
5524                 .help = "display or set a register; with no arguments, "
5525                         "displays all registers and their values",
5526                 .usage = "[(register_name|register_number) [value]]",
5527         },
5528         {
5529                 .name = "poll",
5530                 .handler = handle_poll_command,
5531                 .mode = COMMAND_EXEC,
5532                 .help = "poll target state; or reconfigure background polling",
5533                 .usage = "['on'|'off']",
5534         },
5535         {
5536                 .name = "wait_halt",
5537                 .handler = handle_wait_halt_command,
5538                 .mode = COMMAND_EXEC,
5539                 .help = "wait up to the specified number of milliseconds "
5540                         "(default 5000) for a previously requested halt",
5541                 .usage = "[milliseconds]",
5542         },
5543         {
5544                 .name = "halt",
5545                 .handler = handle_halt_command,
5546                 .mode = COMMAND_EXEC,
5547                 .help = "request target to halt, then wait up to the specified"
5548                         "number of milliseconds (default 5000) for it to complete",
5549                 .usage = "[milliseconds]",
5550         },
5551         {
5552                 .name = "resume",
5553                 .handler = handle_resume_command,
5554                 .mode = COMMAND_EXEC,
5555                 .help = "resume target execution from current PC or address",
5556                 .usage = "[address]",
5557         },
5558         {
5559                 .name = "reset",
5560                 .handler = handle_reset_command,
5561                 .mode = COMMAND_EXEC,
5562                 .usage = "[run|halt|init]",
5563                 .help = "Reset all targets into the specified mode."
5564                         "Default reset mode is run, if not given.",
5565         },
5566         {
5567                 .name = "soft_reset_halt",
5568                 .handler = handle_soft_reset_halt_command,
5569                 .mode = COMMAND_EXEC,
5570                 .usage = "",
5571                 .help = "halt the target and do a soft reset",
5572         },
5573         {
5574                 .name = "step",
5575                 .handler = handle_step_command,
5576                 .mode = COMMAND_EXEC,
5577                 .help = "step one instruction from current PC or address",
5578                 .usage = "[address]",
5579         },
5580         {
5581                 .name = "mdw",
5582                 .handler = handle_md_command,
5583                 .mode = COMMAND_EXEC,
5584                 .help = "display memory words",
5585                 .usage = "['phys'] address [count]",
5586         },
5587         {
5588                 .name = "mdh",
5589                 .handler = handle_md_command,
5590                 .mode = COMMAND_EXEC,
5591                 .help = "display memory half-words",
5592                 .usage = "['phys'] address [count]",
5593         },
5594         {
5595                 .name = "mdb",
5596                 .handler = handle_md_command,
5597                 .mode = COMMAND_EXEC,
5598                 .help = "display memory bytes",
5599                 .usage = "['phys'] address [count]",
5600         },
5601         {
5602                 .name = "mww",
5603                 .handler = handle_mw_command,
5604                 .mode = COMMAND_EXEC,
5605                 .help = "write memory word",
5606                 .usage = "['phys'] address value [count]",
5607         },
5608         {
5609                 .name = "mwh",
5610                 .handler = handle_mw_command,
5611                 .mode = COMMAND_EXEC,
5612                 .help = "write memory half-word",
5613                 .usage = "['phys'] address value [count]",
5614         },
5615         {
5616                 .name = "mwb",
5617                 .handler = handle_mw_command,
5618                 .mode = COMMAND_EXEC,
5619                 .help = "write memory byte",
5620                 .usage = "['phys'] address value [count]",
5621         },
5622         {
5623                 .name = "bp",
5624                 .handler = handle_bp_command,
5625                 .mode = COMMAND_EXEC,
5626                 .help = "list or set hardware or software breakpoint",
5627                 .usage = "<address> [<asid>]<length> ['hw'|'hw_ctx']",
5628         },
5629         {
5630                 .name = "rbp",
5631                 .handler = handle_rbp_command,
5632                 .mode = COMMAND_EXEC,
5633                 .help = "remove breakpoint",
5634                 .usage = "address",
5635         },
5636         {
5637                 .name = "wp",
5638                 .handler = handle_wp_command,
5639                 .mode = COMMAND_EXEC,
5640                 .help = "list (no params) or create watchpoints",
5641                 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
5642         },
5643         {
5644                 .name = "rwp",
5645                 .handler = handle_rwp_command,
5646                 .mode = COMMAND_EXEC,
5647                 .help = "remove watchpoint",
5648                 .usage = "address",
5649         },
5650         {
5651                 .name = "load_image",
5652                 .handler = handle_load_image_command,
5653                 .mode = COMMAND_EXEC,
5654                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5655                         "[min_address] [max_length]",
5656         },
5657         {
5658                 .name = "dump_image",
5659                 .handler = handle_dump_image_command,
5660                 .mode = COMMAND_EXEC,
5661                 .usage = "filename address size",
5662         },
5663         {
5664                 .name = "verify_image",
5665                 .handler = handle_verify_image_command,
5666                 .mode = COMMAND_EXEC,
5667                 .usage = "filename [offset [type]]",
5668         },
5669         {
5670                 .name = "test_image",
5671                 .handler = handle_test_image_command,
5672                 .mode = COMMAND_EXEC,
5673                 .usage = "filename [offset [type]]",
5674         },
5675         {
5676                 .name = "mem2array",
5677                 .mode = COMMAND_EXEC,
5678                 .jim_handler = jim_mem2array,
5679                 .help = "read 8/16/32 bit memory and return as a TCL array "
5680                         "for script processing",
5681                 .usage = "arrayname bitwidth address count",
5682         },
5683         {
5684                 .name = "array2mem",
5685                 .mode = COMMAND_EXEC,
5686                 .jim_handler = jim_array2mem,
5687                 .help = "convert a TCL array to memory locations "
5688                         "and write the 8/16/32 bit values",
5689                 .usage = "arrayname bitwidth address count",
5690         },
5691         {
5692                 .name = "reset_nag",
5693                 .handler = handle_target_reset_nag,
5694                 .mode = COMMAND_ANY,
5695                 .help = "Nag after each reset about options that could have been "
5696                                 "enabled to improve performance. ",
5697                 .usage = "['enable'|'disable']",
5698         },
5699         {
5700                 .name = "ps",
5701                 .handler = handle_ps_command,
5702                 .mode = COMMAND_EXEC,
5703                 .help = "list all tasks ",
5704                 .usage = " ",
5705         },
5706
5707         COMMAND_REGISTRATION_DONE
5708 };
5709 static int target_register_user_commands(struct command_context *cmd_ctx)
5710 {
5711         int retval = ERROR_OK;
5712         retval = target_request_register_commands(cmd_ctx);
5713         if (retval != ERROR_OK)
5714                 return retval;
5715
5716         retval = trace_register_commands(cmd_ctx);
5717         if (retval != ERROR_OK)
5718                 return retval;
5719
5720
5721         return register_commands(cmd_ctx, NULL, target_exec_command_handlers);
5722 }