bugfixes: numerous bugs in error propagation found by clang
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2010 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   Copyright (C) 2011 by Broadcom Corporation                            *
18  *   Evan Hunter - ehunter@broadcom.com                                    *
19  *                                                                         *
20  *   Copyright (C) ST-Ericsson SA 2011                                     *
21  *   michel.jaouen@stericsson.com : smp minimum support                    *
22  *                                                                         *
23  *   This program is free software; you can redistribute it and/or modify  *
24  *   it under the terms of the GNU General Public License as published by  *
25  *   the Free Software Foundation; either version 2 of the License, or     *
26  *   (at your option) any later version.                                   *
27  *                                                                         *
28  *   This program is distributed in the hope that it will be useful,       *
29  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
30  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
31  *   GNU General Public License for more details.                          *
32  *                                                                         *
33  *   You should have received a copy of the GNU General Public License     *
34  *   along with this program; if not, write to the                         *
35  *   Free Software Foundation, Inc.,                                       *
36  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
37  ***************************************************************************/
38 #ifdef HAVE_CONFIG_H
39 #include "config.h"
40 #endif
41
42 #include <helper/time_support.h>
43 #include <jtag/jtag.h>
44 #include <flash/nor/core.h>
45
46 #include "target.h"
47 #include "target_type.h"
48 #include "target_request.h"
49 #include "breakpoints.h"
50 #include "register.h"
51 #include "trace.h"
52 #include "image.h"
53 #include "rtos/rtos.h"
54
55
56 static int target_read_buffer_default(struct target *target, uint32_t address,
57                 uint32_t size, uint8_t *buffer);
58 static int target_write_buffer_default(struct target *target, uint32_t address,
59                 uint32_t size, const uint8_t *buffer);
60 static int target_array2mem(Jim_Interp *interp, struct target *target,
61                 int argc, Jim_Obj *const *argv);
62 static int target_mem2array(Jim_Interp *interp, struct target *target,
63                 int argc, Jim_Obj *const *argv);
64 static int target_register_user_commands(struct command_context *cmd_ctx);
65
66 /* targets */
67 extern struct target_type arm7tdmi_target;
68 extern struct target_type arm720t_target;
69 extern struct target_type arm9tdmi_target;
70 extern struct target_type arm920t_target;
71 extern struct target_type arm966e_target;
72 extern struct target_type arm946e_target;
73 extern struct target_type arm926ejs_target;
74 extern struct target_type fa526_target;
75 extern struct target_type feroceon_target;
76 extern struct target_type dragonite_target;
77 extern struct target_type xscale_target;
78 extern struct target_type cortexm3_target;
79 extern struct target_type cortexa8_target;
80 extern struct target_type arm11_target;
81 extern struct target_type mips_m4k_target;
82 extern struct target_type avr_target;
83 extern struct target_type dsp563xx_target;
84 extern struct target_type dsp5680xx_target;
85 extern struct target_type testee_target;
86 extern struct target_type avr32_ap7k_target;
87
88 static struct target_type *target_types[] =
89 {
90         &arm7tdmi_target,
91         &arm9tdmi_target,
92         &arm920t_target,
93         &arm720t_target,
94         &arm966e_target,
95         &arm946e_target,
96         &arm926ejs_target,
97         &fa526_target,
98         &feroceon_target,
99         &dragonite_target,
100         &xscale_target,
101         &cortexm3_target,
102         &cortexa8_target,
103         &arm11_target,
104         &mips_m4k_target,
105         &avr_target,
106         &dsp563xx_target,
107         &dsp5680xx_target,
108         &testee_target,
109         &avr32_ap7k_target,
110         NULL,
111 };
112
113 struct target *all_targets = NULL;
114 static struct target_event_callback *target_event_callbacks = NULL;
115 static struct target_timer_callback *target_timer_callbacks = NULL;
116 static const int polling_interval = 100;
117
118 static const Jim_Nvp nvp_assert[] = {
119         { .name = "assert", NVP_ASSERT },
120         { .name = "deassert", NVP_DEASSERT },
121         { .name = "T", NVP_ASSERT },
122         { .name = "F", NVP_DEASSERT },
123         { .name = "t", NVP_ASSERT },
124         { .name = "f", NVP_DEASSERT },
125         { .name = NULL, .value = -1 }
126 };
127
128 static const Jim_Nvp nvp_error_target[] = {
129         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
130         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
131         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
132         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
133         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
134         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
135         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
136         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
137         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
138         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
139         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
140         { .value = -1, .name = NULL }
141 };
142
143 static const char *target_strerror_safe(int err)
144 {
145         const Jim_Nvp *n;
146
147         n = Jim_Nvp_value2name_simple(nvp_error_target, err);
148         if (n->name == NULL) {
149                 return "unknown";
150         } else {
151                 return n->name;
152         }
153 }
154
155 static const Jim_Nvp nvp_target_event[] = {
156         { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
157         { .value = TARGET_EVENT_OLD_pre_resume         , .name = "old-pre_resume" },
158
159         { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
160         { .value = TARGET_EVENT_HALTED, .name = "halted" },
161         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
162         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
163         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
164
165         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
166         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
167
168         /* historical name */
169
170         { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
171
172         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
173         { .value = TARGET_EVENT_RESET_ASSERT,        .name = "reset-assert" },
174         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
175         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
176         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
177         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
178         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
179         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
180         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
181         { .value = TARGET_EVENT_RESET_INIT,          .name = "reset-init" },
182         { .value = TARGET_EVENT_RESET_END,           .name = "reset-end" },
183
184         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
185         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
186
187         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
188         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
189
190         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
191         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
192
193         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
194         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
195
196         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
197         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
198
199         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
200         { .value = TARGET_EVENT_RESUMED     , .name = "resume-ok" },
201         { .value = TARGET_EVENT_RESUME_END  , .name = "resume-end" },
202
203         { .name = NULL, .value = -1 }
204 };
205
206 static const Jim_Nvp nvp_target_state[] = {
207         { .name = "unknown", .value = TARGET_UNKNOWN },
208         { .name = "running", .value = TARGET_RUNNING },
209         { .name = "halted",  .value = TARGET_HALTED },
210         { .name = "reset",   .value = TARGET_RESET },
211         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
212         { .name = NULL, .value = -1 },
213 };
214
215 static const Jim_Nvp nvp_target_debug_reason [] = {
216         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
217         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
218         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
219         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
220         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
221         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
222         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
223         { .name = NULL, .value = -1 },
224 };
225
226 static const Jim_Nvp nvp_target_endian[] = {
227         { .name = "big",    .value = TARGET_BIG_ENDIAN },
228         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
229         { .name = "be",     .value = TARGET_BIG_ENDIAN },
230         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
231         { .name = NULL,     .value = -1 },
232 };
233
234 static const Jim_Nvp nvp_reset_modes[] = {
235         { .name = "unknown", .value = RESET_UNKNOWN },
236         { .name = "run"    , .value = RESET_RUN },
237         { .name = "halt"   , .value = RESET_HALT },
238         { .name = "init"   , .value = RESET_INIT },
239         { .name = NULL     , .value = -1 },
240 };
241
242 const char *debug_reason_name(struct target *t)
243 {
244         const char *cp;
245
246         cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
247                         t->debug_reason)->name;
248         if (!cp) {
249                 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
250                 cp = "(*BUG*unknown*BUG*)";
251         }
252         return cp;
253 }
254
255 const char *
256 target_state_name( struct target *t )
257 {
258         const char *cp;
259         cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
260         if( !cp ){
261                 LOG_ERROR("Invalid target state: %d", (int)(t->state));
262                 cp = "(*BUG*unknown*BUG*)";
263         }
264         return cp;
265 }
266
267 /* determine the number of the new target */
268 static int new_target_number(void)
269 {
270         struct target *t;
271         int x;
272
273         /* number is 0 based */
274         x = -1;
275         t = all_targets;
276         while (t) {
277                 if (x < t->target_number) {
278                         x = t->target_number;
279                 }
280                 t = t->next;
281         }
282         return x + 1;
283 }
284
285 /* read a uint32_t from a buffer in target memory endianness */
286 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
287 {
288         if (target->endianness == TARGET_LITTLE_ENDIAN)
289                 return le_to_h_u32(buffer);
290         else
291                 return be_to_h_u32(buffer);
292 }
293
294 /* read a uint24_t from a buffer in target memory endianness */
295 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
296 {
297         if (target->endianness == TARGET_LITTLE_ENDIAN)
298                 return le_to_h_u24(buffer);
299         else
300                 return be_to_h_u24(buffer);
301 }
302
303 /* read a uint16_t from a buffer in target memory endianness */
304 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
305 {
306         if (target->endianness == TARGET_LITTLE_ENDIAN)
307                 return le_to_h_u16(buffer);
308         else
309                 return be_to_h_u16(buffer);
310 }
311
312 /* read a uint8_t from a buffer in target memory endianness */
313 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
314 {
315         return *buffer & 0x0ff;
316 }
317
318 /* write a uint32_t to a buffer in target memory endianness */
319 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
320 {
321         if (target->endianness == TARGET_LITTLE_ENDIAN)
322                 h_u32_to_le(buffer, value);
323         else
324                 h_u32_to_be(buffer, value);
325 }
326
327 /* write a uint24_t to a buffer in target memory endianness */
328 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
329 {
330         if (target->endianness == TARGET_LITTLE_ENDIAN)
331                 h_u24_to_le(buffer, value);
332         else
333                 h_u24_to_be(buffer, value);
334 }
335
336 /* write a uint16_t to a buffer in target memory endianness */
337 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
338 {
339         if (target->endianness == TARGET_LITTLE_ENDIAN)
340                 h_u16_to_le(buffer, value);
341         else
342                 h_u16_to_be(buffer, value);
343 }
344
345 /* write a uint8_t to a buffer in target memory endianness */
346 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
347 {
348         *buffer = value;
349 }
350
351 /* write a uint32_t array to a buffer in target memory endianness */
352 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
353 {
354         uint32_t i;
355         for(i = 0; i < count; i ++)
356                 dstbuf[i] = target_buffer_get_u32(target,&buffer[i*4]);
357 }
358
359 /* write a uint16_t array to a buffer in target memory endianness */
360 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
361 {
362         uint32_t i;
363         for(i = 0; i < count; i ++)
364                 dstbuf[i] = target_buffer_get_u16(target,&buffer[i*2]);
365 }
366
367 /* write a uint32_t array to a buffer in target memory endianness */
368 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, uint32_t *srcbuf)
369 {
370         uint32_t i;
371         for(i = 0; i < count; i ++)
372                 target_buffer_set_u32(target,&buffer[i*4],srcbuf[i]);
373 }
374
375 /* write a uint16_t array to a buffer in target memory endianness */
376 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, uint16_t *srcbuf)
377 {
378         uint32_t i;
379         for(i = 0; i < count; i ++)
380                 target_buffer_set_u16(target,&buffer[i*2],srcbuf[i]);
381 }
382
383 /* return a pointer to a configured target; id is name or number */
384 struct target *get_target(const char *id)
385 {
386         struct target *target;
387
388         /* try as tcltarget name */
389         for (target = all_targets; target; target = target->next) {
390                 if (target->cmd_name == NULL)
391                         continue;
392                 if (strcmp(id, target->cmd_name) == 0)
393                         return target;
394         }
395
396         /* It's OK to remove this fallback sometime after August 2010 or so */
397
398         /* no match, try as number */
399         unsigned num;
400         if (parse_uint(id, &num) != ERROR_OK)
401                 return NULL;
402
403         for (target = all_targets; target; target = target->next) {
404                 if (target->target_number == (int)num) {
405                         LOG_WARNING("use '%s' as target identifier, not '%u'",
406                                         target->cmd_name, num);
407                         return target;
408                 }
409         }
410
411         return NULL;
412 }
413
414 /* returns a pointer to the n-th configured target */
415 static struct target *get_target_by_num(int num)
416 {
417         struct target *target = all_targets;
418
419         while (target) {
420                 if (target->target_number == num) {
421                         return target;
422                 }
423                 target = target->next;
424         }
425
426         return NULL;
427 }
428
429 struct target* get_current_target(struct command_context *cmd_ctx)
430 {
431         struct target *target = get_target_by_num(cmd_ctx->current_target);
432
433         if (target == NULL)
434         {
435                 LOG_ERROR("BUG: current_target out of bounds");
436                 exit(-1);
437         }
438
439         return target;
440 }
441
442 int target_poll(struct target *target)
443 {
444         int retval;
445
446         /* We can't poll until after examine */
447         if (!target_was_examined(target))
448         {
449                 /* Fail silently lest we pollute the log */
450                 return ERROR_FAIL;
451         }
452
453         retval = target->type->poll(target);
454         if (retval != ERROR_OK)
455                 return retval;
456
457         if (target->halt_issued)
458         {
459                 if (target->state == TARGET_HALTED)
460                 {
461                         target->halt_issued = false;
462                 } else
463                 {
464                         long long t = timeval_ms() - target->halt_issued_time;
465                         if (t>1000)
466                         {
467                                 target->halt_issued = false;
468                                 LOG_INFO("Halt timed out, wake up GDB.");
469                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
470                         }
471                 }
472         }
473
474         return ERROR_OK;
475 }
476
477 int target_halt(struct target *target)
478 {
479         int retval;
480         /* We can't poll until after examine */
481         if (!target_was_examined(target))
482         {
483                 LOG_ERROR("Target not examined yet");
484                 return ERROR_FAIL;
485         }
486
487         retval = target->type->halt(target);
488         if (retval != ERROR_OK)
489                 return retval;
490
491         target->halt_issued = true;
492         target->halt_issued_time = timeval_ms();
493
494         return ERROR_OK;
495 }
496
497 /**
498  * Make the target (re)start executing using its saved execution
499  * context (possibly with some modifications).
500  *
501  * @param target Which target should start executing.
502  * @param current True to use the target's saved program counter instead
503  *      of the address parameter
504  * @param address Optionally used as the program counter.
505  * @param handle_breakpoints True iff breakpoints at the resumption PC
506  *      should be skipped.  (For example, maybe execution was stopped by
507  *      such a breakpoint, in which case it would be counterprodutive to
508  *      let it re-trigger.
509  * @param debug_execution False if all working areas allocated by OpenOCD
510  *      should be released and/or restored to their original contents.
511  *      (This would for example be true to run some downloaded "helper"
512  *      algorithm code, which resides in one such working buffer and uses
513  *      another for data storage.)
514  *
515  * @todo Resolve the ambiguity about what the "debug_execution" flag
516  * signifies.  For example, Target implementations don't agree on how
517  * it relates to invalidation of the register cache, or to whether
518  * breakpoints and watchpoints should be enabled.  (It would seem wrong
519  * to enable breakpoints when running downloaded "helper" algorithms
520  * (debug_execution true), since the breakpoints would be set to match
521  * target firmware being debugged, not the helper algorithm.... and
522  * enabling them could cause such helpers to malfunction (for example,
523  * by overwriting data with a breakpoint instruction.  On the other
524  * hand the infrastructure for running such helpers might use this
525  * procedure but rely on hardware breakpoint to detect termination.)
526  */
527 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
528 {
529         int retval;
530
531         /* We can't poll until after examine */
532         if (!target_was_examined(target))
533         {
534                 LOG_ERROR("Target not examined yet");
535                 return ERROR_FAIL;
536         }
537
538         /* note that resume *must* be asynchronous. The CPU can halt before
539          * we poll. The CPU can even halt at the current PC as a result of
540          * a software breakpoint being inserted by (a bug?) the application.
541          */
542         if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
543                 return retval;
544
545         return retval;
546 }
547
548 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
549 {
550         char buf[100];
551         int retval;
552         Jim_Nvp *n;
553         n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
554         if (n->name == NULL) {
555                 LOG_ERROR("invalid reset mode");
556                 return ERROR_FAIL;
557         }
558
559         /* disable polling during reset to make reset event scripts
560          * more predictable, i.e. dr/irscan & pathmove in events will
561          * not have JTAG operations injected into the middle of a sequence.
562          */
563         bool save_poll = jtag_poll_get_enabled();
564
565         jtag_poll_set_enabled(false);
566
567         sprintf(buf, "ocd_process_reset %s", n->name);
568         retval = Jim_Eval(cmd_ctx->interp, buf);
569
570         jtag_poll_set_enabled(save_poll);
571
572         if (retval != JIM_OK) {
573                 Jim_MakeErrorMessage(cmd_ctx->interp);
574                 command_print(NULL,"%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
575                 return ERROR_FAIL;
576         }
577
578         /* We want any events to be processed before the prompt */
579         retval = target_call_timer_callbacks_now();
580
581         struct target *target;
582         for (target = all_targets; target; target = target->next) {
583                 target->type->check_reset(target);
584         }
585
586         return retval;
587 }
588
589 static int identity_virt2phys(struct target *target,
590                 uint32_t virtual, uint32_t *physical)
591 {
592         *physical = virtual;
593         return ERROR_OK;
594 }
595
596 static int no_mmu(struct target *target, int *enabled)
597 {
598         *enabled = 0;
599         return ERROR_OK;
600 }
601
602 static int default_examine(struct target *target)
603 {
604         target_set_examined(target);
605         return ERROR_OK;
606 }
607
608 /* no check by default */
609 static int default_check_reset(struct target *target)
610 {
611         return ERROR_OK;
612 }
613
614 int target_examine_one(struct target *target)
615 {
616         return target->type->examine(target);
617 }
618
619 static int jtag_enable_callback(enum jtag_event event, void *priv)
620 {
621         struct target *target = priv;
622
623         if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
624                 return ERROR_OK;
625
626         jtag_unregister_event_callback(jtag_enable_callback, target);
627         return target_examine_one(target);
628 }
629
630
631 /* Targets that correctly implement init + examine, i.e.
632  * no communication with target during init:
633  *
634  * XScale
635  */
636 int target_examine(void)
637 {
638         int retval = ERROR_OK;
639         struct target *target;
640
641         for (target = all_targets; target; target = target->next)
642         {
643                 /* defer examination, but don't skip it */
644                 if (!target->tap->enabled) {
645                         jtag_register_event_callback(jtag_enable_callback,
646                                         target);
647                         continue;
648                 }
649                 if ((retval = target_examine_one(target)) != ERROR_OK)
650                         return retval;
651         }
652         return retval;
653 }
654 const char *target_type_name(struct target *target)
655 {
656         return target->type->name;
657 }
658
659 static int target_write_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
660 {
661         if (!target_was_examined(target))
662         {
663                 LOG_ERROR("Target not examined yet");
664                 return ERROR_FAIL;
665         }
666         return target->type->write_memory_imp(target, address, size, count, buffer);
667 }
668
669 static int target_read_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
670 {
671         if (!target_was_examined(target))
672         {
673                 LOG_ERROR("Target not examined yet");
674                 return ERROR_FAIL;
675         }
676         return target->type->read_memory_imp(target, address, size, count, buffer);
677 }
678
679 static int target_soft_reset_halt_imp(struct target *target)
680 {
681         if (!target_was_examined(target))
682         {
683                 LOG_ERROR("Target not examined yet");
684                 return ERROR_FAIL;
685         }
686         if (!target->type->soft_reset_halt_imp) {
687                 LOG_ERROR("Target %s does not support soft_reset_halt",
688                                 target_name(target));
689                 return ERROR_FAIL;
690         }
691         return target->type->soft_reset_halt_imp(target);
692 }
693
694 /**
695  * Downloads a target-specific native code algorithm to the target,
696  * and executes it.  * Note that some targets may need to set up, enable,
697  * and tear down a breakpoint (hard or * soft) to detect algorithm
698  * termination, while others may support  lower overhead schemes where
699  * soft breakpoints embedded in the algorithm automatically terminate the
700  * algorithm.
701  *
702  * @param target used to run the algorithm
703  * @param arch_info target-specific description of the algorithm.
704  */
705 int target_run_algorithm(struct target *target,
706                 int num_mem_params, struct mem_param *mem_params,
707                 int num_reg_params, struct reg_param *reg_param,
708                 uint32_t entry_point, uint32_t exit_point,
709                 int timeout_ms, void *arch_info)
710 {
711         int retval = ERROR_FAIL;
712
713         if (!target_was_examined(target))
714         {
715                 LOG_ERROR("Target not examined yet");
716                 goto done;
717         }
718         if (!target->type->run_algorithm) {
719                 LOG_ERROR("Target type '%s' does not support %s",
720                                 target_type_name(target), __func__);
721                 goto done;
722         }
723
724         target->running_alg = true;
725         retval = target->type->run_algorithm(target,
726                         num_mem_params, mem_params,
727                         num_reg_params, reg_param,
728                         entry_point, exit_point, timeout_ms, arch_info);
729         target->running_alg = false;
730
731 done:
732         return retval;
733 }
734
735 /**
736  * Downloads a target-specific native code algorithm to the target,
737  * executes and leaves it running.
738  *
739  * @param target used to run the algorithm
740  * @param arch_info target-specific description of the algorithm.
741  */
742 int target_start_algorithm(struct target *target,
743                 int num_mem_params, struct mem_param *mem_params,
744                 int num_reg_params, struct reg_param *reg_params,
745                 uint32_t entry_point, uint32_t exit_point,
746                 void *arch_info)
747 {
748         int retval = ERROR_FAIL;
749
750         if (!target_was_examined(target))
751         {
752                 LOG_ERROR("Target not examined yet");
753                 goto done;
754         }
755         if (!target->type->start_algorithm) {
756                 LOG_ERROR("Target type '%s' does not support %s",
757                                 target_type_name(target), __func__);
758                 goto done;
759         }
760         if (target->running_alg) {
761                 LOG_ERROR("Target is already running an algorithm");
762                 goto done;
763         }
764
765         target->running_alg = true;
766         retval = target->type->start_algorithm(target,
767                         num_mem_params, mem_params,
768                         num_reg_params, reg_params,
769                         entry_point, exit_point, arch_info);
770
771 done:
772         return retval;
773 }
774
775 /**
776  * Waits for an algorithm started with target_start_algorithm() to complete.
777  *
778  * @param target used to run the algorithm
779  * @param arch_info target-specific description of the algorithm.
780  */
781 int target_wait_algorithm(struct target *target,
782                 int num_mem_params, struct mem_param *mem_params,
783                 int num_reg_params, struct reg_param *reg_params,
784                 uint32_t exit_point, int timeout_ms,
785                 void *arch_info)
786 {
787         int retval = ERROR_FAIL;
788
789         if (!target->type->wait_algorithm) {
790                 LOG_ERROR("Target type '%s' does not support %s",
791                                 target_type_name(target), __func__);
792                 goto done;
793         }
794         if (!target->running_alg) {
795                 LOG_ERROR("Target is not running an algorithm");
796                 goto done;
797         }
798
799         retval = target->type->wait_algorithm(target,
800                         num_mem_params, mem_params,
801                         num_reg_params, reg_params,
802                         exit_point, timeout_ms, arch_info);
803         if (retval != ERROR_TARGET_TIMEOUT)
804                 target->running_alg = false;
805
806 done:
807         return retval;
808 }
809
810
811 int target_read_memory(struct target *target,
812                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
813 {
814         return target->type->read_memory(target, address, size, count, buffer);
815 }
816
817 static int target_read_phys_memory(struct target *target,
818                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
819 {
820         return target->type->read_phys_memory(target, address, size, count, buffer);
821 }
822
823 int target_write_memory(struct target *target,
824                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
825 {
826         return target->type->write_memory(target, address, size, count, buffer);
827 }
828
829 static int target_write_phys_memory(struct target *target,
830                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
831 {
832         return target->type->write_phys_memory(target, address, size, count, buffer);
833 }
834
835 int target_bulk_write_memory(struct target *target,
836                 uint32_t address, uint32_t count, const uint8_t *buffer)
837 {
838         return target->type->bulk_write_memory(target, address, count, buffer);
839 }
840
841 int target_add_breakpoint(struct target *target,
842                 struct breakpoint *breakpoint)
843 {
844         if ((target->state != TARGET_HALTED)&&(breakpoint->type!=BKPT_HARD)) {
845                 LOG_WARNING("target %s is not halted", target->cmd_name);
846                 return ERROR_TARGET_NOT_HALTED;
847         }
848         return target->type->add_breakpoint(target, breakpoint);
849 }
850
851 int target_add_context_breakpoint(struct target *target,
852                 struct breakpoint *breakpoint)
853 {
854         if (target->state != TARGET_HALTED) {
855                 LOG_WARNING("target %s is not halted", target->cmd_name);
856                 return ERROR_TARGET_NOT_HALTED;
857         }
858         return target->type->add_context_breakpoint(target, breakpoint);
859 }
860
861 int target_add_hybrid_breakpoint(struct target *target,
862                 struct breakpoint *breakpoint)
863 {
864         if (target->state != TARGET_HALTED) {
865                 LOG_WARNING("target %s is not halted", target->cmd_name);
866                 return ERROR_TARGET_NOT_HALTED;
867         }
868         return target->type->add_hybrid_breakpoint(target, breakpoint);
869 }
870
871 int target_remove_breakpoint(struct target *target,
872                 struct breakpoint *breakpoint)
873 {
874         return target->type->remove_breakpoint(target, breakpoint);
875 }
876
877 int target_add_watchpoint(struct target *target,
878                 struct watchpoint *watchpoint)
879 {
880         if (target->state != TARGET_HALTED) {
881                 LOG_WARNING("target %s is not halted", target->cmd_name);
882                 return ERROR_TARGET_NOT_HALTED;
883         }
884         return target->type->add_watchpoint(target, watchpoint);
885 }
886 int target_remove_watchpoint(struct target *target,
887                 struct watchpoint *watchpoint)
888 {
889         return target->type->remove_watchpoint(target, watchpoint);
890 }
891
892 int target_get_gdb_reg_list(struct target *target,
893                 struct reg **reg_list[], int *reg_list_size)
894 {
895         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
896 }
897 int target_step(struct target *target,
898                 int current, uint32_t address, int handle_breakpoints)
899 {
900         return target->type->step(target, current, address, handle_breakpoints);
901 }
902
903
904 /**
905  * Reset the @c examined flag for the given target.
906  * Pure paranoia -- targets are zeroed on allocation.
907  */
908 static void target_reset_examined(struct target *target)
909 {
910         target->examined = false;
911 }
912
913 static int
914 err_read_phys_memory(struct target *target, uint32_t address,
915                 uint32_t size, uint32_t count, uint8_t *buffer)
916 {
917         LOG_ERROR("Not implemented: %s", __func__);
918         return ERROR_FAIL;
919 }
920
921 static int
922 err_write_phys_memory(struct target *target, uint32_t address,
923                 uint32_t size, uint32_t count, const uint8_t *buffer)
924 {
925         LOG_ERROR("Not implemented: %s", __func__);
926         return ERROR_FAIL;
927 }
928
929 static int handle_target(void *priv);
930
931 static int target_init_one(struct command_context *cmd_ctx,
932                 struct target *target)
933 {
934         target_reset_examined(target);
935
936         struct target_type *type = target->type;
937         if (type->examine == NULL)
938                 type->examine = default_examine;
939
940         if (type->check_reset== NULL)
941                 type->check_reset = default_check_reset;
942
943         int retval = type->init_target(cmd_ctx, target);
944         if (ERROR_OK != retval)
945         {
946                 LOG_ERROR("target '%s' init failed", target_name(target));
947                 return retval;
948         }
949
950         /**
951          * @todo get rid of those *memory_imp() methods, now that all
952          * callers are using target_*_memory() accessors ... and make
953          * sure the "physical" paths handle the same issues.
954          */
955         /* a non-invasive way(in terms of patches) to add some code that
956          * runs before the type->write/read_memory implementation
957          */
958         type->write_memory_imp = target->type->write_memory;
959         type->write_memory = target_write_memory_imp;
960
961         type->read_memory_imp = target->type->read_memory;
962         type->read_memory = target_read_memory_imp;
963
964         type->soft_reset_halt_imp = target->type->soft_reset_halt;
965         type->soft_reset_halt = target_soft_reset_halt_imp;
966
967         /* Sanity-check MMU support ... stub in what we must, to help
968          * implement it in stages, but warn if we need to do so.
969          */
970         if (type->mmu)
971         {
972                 if (type->write_phys_memory == NULL)
973                 {
974                         LOG_ERROR("type '%s' is missing write_phys_memory",
975                                         type->name);
976                         type->write_phys_memory = err_write_phys_memory;
977                 }
978                 if (type->read_phys_memory == NULL)
979                 {
980                         LOG_ERROR("type '%s' is missing read_phys_memory",
981                                         type->name);
982                         type->read_phys_memory = err_read_phys_memory;
983                 }
984                 if (type->virt2phys == NULL)
985                 {
986                         LOG_ERROR("type '%s' is missing virt2phys", type->name);
987                         type->virt2phys = identity_virt2phys;
988                 }
989         }
990         else
991         {
992                 /* Make sure no-MMU targets all behave the same:  make no
993                  * distinction between physical and virtual addresses, and
994                  * ensure that virt2phys() is always an identity mapping.
995                  */
996                 if (type->write_phys_memory || type->read_phys_memory
997                                 || type->virt2phys)
998                 {
999                         LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1000                 }
1001
1002                 type->mmu = no_mmu;
1003                 type->write_phys_memory = type->write_memory;
1004                 type->read_phys_memory = type->read_memory;
1005                 type->virt2phys = identity_virt2phys;
1006         }
1007
1008         if (target->type->read_buffer == NULL)
1009                 target->type->read_buffer = target_read_buffer_default;
1010
1011         if (target->type->write_buffer == NULL)
1012                 target->type->write_buffer = target_write_buffer_default;
1013
1014         return ERROR_OK;
1015 }
1016
1017 static int target_init(struct command_context *cmd_ctx)
1018 {
1019         struct target *target;
1020         int retval;
1021
1022         for (target = all_targets; target; target = target->next)
1023         {
1024                 retval = target_init_one(cmd_ctx, target);
1025                 if (ERROR_OK != retval)
1026                         return retval;
1027         }
1028
1029         if (!all_targets)
1030                 return ERROR_OK;
1031
1032         retval = target_register_user_commands(cmd_ctx);
1033         if (ERROR_OK != retval)
1034                 return retval;
1035
1036         retval = target_register_timer_callback(&handle_target,
1037                         polling_interval, 1, cmd_ctx->interp);
1038         if (ERROR_OK != retval)
1039                 return retval;
1040
1041         return ERROR_OK;
1042 }
1043
1044 COMMAND_HANDLER(handle_target_init_command)
1045 {
1046         if (CMD_ARGC != 0)
1047                 return ERROR_COMMAND_SYNTAX_ERROR;
1048
1049         static bool target_initialized = false;
1050         if (target_initialized)
1051         {
1052                 LOG_INFO("'target init' has already been called");
1053                 return ERROR_OK;
1054         }
1055         target_initialized = true;
1056
1057         LOG_DEBUG("Initializing targets...");
1058         return target_init(CMD_CTX);
1059 }
1060
1061 int target_register_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
1062 {
1063         struct target_event_callback **callbacks_p = &target_event_callbacks;
1064
1065         if (callback == NULL)
1066         {
1067                 return ERROR_INVALID_ARGUMENTS;
1068         }
1069
1070         if (*callbacks_p)
1071         {
1072                 while ((*callbacks_p)->next)
1073                         callbacks_p = &((*callbacks_p)->next);
1074                 callbacks_p = &((*callbacks_p)->next);
1075         }
1076
1077         (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1078         (*callbacks_p)->callback = callback;
1079         (*callbacks_p)->priv = priv;
1080         (*callbacks_p)->next = NULL;
1081
1082         return ERROR_OK;
1083 }
1084
1085 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1086 {
1087         struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1088         struct timeval now;
1089
1090         if (callback == NULL)
1091         {
1092                 return ERROR_INVALID_ARGUMENTS;
1093         }
1094
1095         if (*callbacks_p)
1096         {
1097                 while ((*callbacks_p)->next)
1098                         callbacks_p = &((*callbacks_p)->next);
1099                 callbacks_p = &((*callbacks_p)->next);
1100         }
1101
1102         (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1103         (*callbacks_p)->callback = callback;
1104         (*callbacks_p)->periodic = periodic;
1105         (*callbacks_p)->time_ms = time_ms;
1106
1107         gettimeofday(&now, NULL);
1108         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
1109         time_ms -= (time_ms % 1000);
1110         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
1111         if ((*callbacks_p)->when.tv_usec > 1000000)
1112         {
1113                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
1114                 (*callbacks_p)->when.tv_sec += 1;
1115         }
1116
1117         (*callbacks_p)->priv = priv;
1118         (*callbacks_p)->next = NULL;
1119
1120         return ERROR_OK;
1121 }
1122
1123 int target_unregister_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
1124 {
1125         struct target_event_callback **p = &target_event_callbacks;
1126         struct target_event_callback *c = target_event_callbacks;
1127
1128         if (callback == NULL)
1129         {
1130                 return ERROR_INVALID_ARGUMENTS;
1131         }
1132
1133         while (c)
1134         {
1135                 struct target_event_callback *next = c->next;
1136                 if ((c->callback == callback) && (c->priv == priv))
1137                 {
1138                         *p = next;
1139                         free(c);
1140                         return ERROR_OK;
1141                 }
1142                 else
1143                         p = &(c->next);
1144                 c = next;
1145         }
1146
1147         return ERROR_OK;
1148 }
1149
1150 static int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1151 {
1152         struct target_timer_callback **p = &target_timer_callbacks;
1153         struct target_timer_callback *c = target_timer_callbacks;
1154
1155         if (callback == NULL)
1156         {
1157                 return ERROR_INVALID_ARGUMENTS;
1158         }
1159
1160         while (c)
1161         {
1162                 struct target_timer_callback *next = c->next;
1163                 if ((c->callback == callback) && (c->priv == priv))
1164                 {
1165                         *p = next;
1166                         free(c);
1167                         return ERROR_OK;
1168                 }
1169                 else
1170                         p = &(c->next);
1171                 c = next;
1172         }
1173
1174         return ERROR_OK;
1175 }
1176
1177 int target_call_event_callbacks(struct target *target, enum target_event event)
1178 {
1179         struct target_event_callback *callback = target_event_callbacks;
1180         struct target_event_callback *next_callback;
1181
1182         if (event == TARGET_EVENT_HALTED)
1183         {
1184                 /* execute early halted first */
1185                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1186         }
1187
1188         LOG_DEBUG("target event %i (%s)",
1189                           event,
1190                           Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1191
1192         target_handle_event(target, event);
1193
1194         while (callback)
1195         {
1196                 next_callback = callback->next;
1197                 callback->callback(target, event, callback->priv);
1198                 callback = next_callback;
1199         }
1200
1201         return ERROR_OK;
1202 }
1203
1204 static int target_timer_callback_periodic_restart(
1205                 struct target_timer_callback *cb, struct timeval *now)
1206 {
1207         int time_ms = cb->time_ms;
1208         cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1209         time_ms -= (time_ms % 1000);
1210         cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1211         if (cb->when.tv_usec > 1000000)
1212         {
1213                 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1214                 cb->when.tv_sec += 1;
1215         }
1216         return ERROR_OK;
1217 }
1218
1219 static int target_call_timer_callback(struct target_timer_callback *cb,
1220                 struct timeval *now)
1221 {
1222         cb->callback(cb->priv);
1223
1224         if (cb->periodic)
1225                 return target_timer_callback_periodic_restart(cb, now);
1226
1227         return target_unregister_timer_callback(cb->callback, cb->priv);
1228 }
1229
1230 static int target_call_timer_callbacks_check_time(int checktime)
1231 {
1232         keep_alive();
1233
1234         struct timeval now;
1235         gettimeofday(&now, NULL);
1236
1237         struct target_timer_callback *callback = target_timer_callbacks;
1238         while (callback)
1239         {
1240                 // cleaning up may unregister and free this callback
1241                 struct target_timer_callback *next_callback = callback->next;
1242
1243                 bool call_it = callback->callback &&
1244                         ((!checktime && callback->periodic) ||
1245                           now.tv_sec > callback->when.tv_sec ||
1246                          (now.tv_sec == callback->when.tv_sec &&
1247                           now.tv_usec >= callback->when.tv_usec));
1248
1249                 if (call_it)
1250                 {
1251                         int retval = target_call_timer_callback(callback, &now);
1252                         if (retval != ERROR_OK)
1253                                 return retval;
1254                 }
1255
1256                 callback = next_callback;
1257         }
1258
1259         return ERROR_OK;
1260 }
1261
1262 int target_call_timer_callbacks(void)
1263 {
1264         return target_call_timer_callbacks_check_time(1);
1265 }
1266
1267 /* invoke periodic callbacks immediately */
1268 int target_call_timer_callbacks_now(void)
1269 {
1270         return target_call_timer_callbacks_check_time(0);
1271 }
1272
1273 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1274 {
1275         struct working_area *c = target->working_areas;
1276         struct working_area *new_wa = NULL;
1277
1278         /* Reevaluate working area address based on MMU state*/
1279         if (target->working_areas == NULL)
1280         {
1281                 int retval;
1282                 int enabled;
1283
1284                 retval = target->type->mmu(target, &enabled);
1285                 if (retval != ERROR_OK)
1286                 {
1287                         return retval;
1288                 }
1289
1290                 if (!enabled) {
1291                         if (target->working_area_phys_spec) {
1292                                 LOG_DEBUG("MMU disabled, using physical "
1293                                         "address for working memory 0x%08x",
1294                                         (unsigned)target->working_area_phys);
1295                                 target->working_area = target->working_area_phys;
1296                         } else {
1297                                 LOG_ERROR("No working memory available. "
1298                                         "Specify -work-area-phys to target.");
1299                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1300                         }
1301                 } else {
1302                         if (target->working_area_virt_spec) {
1303                                 LOG_DEBUG("MMU enabled, using virtual "
1304                                         "address for working memory 0x%08x",
1305                                         (unsigned)target->working_area_virt);
1306                                 target->working_area = target->working_area_virt;
1307                         } else {
1308                                 LOG_ERROR("No working memory available. "
1309                                         "Specify -work-area-virt to target.");
1310                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1311                         }
1312                 }
1313         }
1314
1315         /* only allocate multiples of 4 byte */
1316         if (size % 4)
1317         {
1318                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes (0x%08x), padding", ((unsigned)(size)));
1319                 size = (size + 3) & (~3);
1320         }
1321
1322         /* see if there's already a matching working area */
1323         while (c)
1324         {
1325                 if ((c->free) && (c->size == size))
1326                 {
1327                         new_wa = c;
1328                         break;
1329                 }
1330                 c = c->next;
1331         }
1332
1333         /* if not, allocate a new one */
1334         if (!new_wa)
1335         {
1336                 struct working_area **p = &target->working_areas;
1337                 uint32_t first_free = target->working_area;
1338                 uint32_t free_size = target->working_area_size;
1339
1340                 c = target->working_areas;
1341                 while (c)
1342                 {
1343                         first_free += c->size;
1344                         free_size -= c->size;
1345                         p = &c->next;
1346                         c = c->next;
1347                 }
1348
1349                 if (free_size < size)
1350                 {
1351                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1352                 }
1353
1354                 LOG_DEBUG("allocated new working area at address 0x%08x", (unsigned)first_free);
1355
1356                 new_wa = malloc(sizeof(struct working_area));
1357                 new_wa->next = NULL;
1358                 new_wa->size = size;
1359                 new_wa->address = first_free;
1360
1361                 if (target->backup_working_area)
1362                 {
1363                         int retval;
1364                         new_wa->backup = malloc(new_wa->size);
1365                         if ((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
1366                         {
1367                                 free(new_wa->backup);
1368                                 free(new_wa);
1369                                 return retval;
1370                         }
1371                 }
1372                 else
1373                 {
1374                         new_wa->backup = NULL;
1375                 }
1376
1377                 /* put new entry in list */
1378                 *p = new_wa;
1379         }
1380
1381         /* mark as used, and return the new (reused) area */
1382         new_wa->free = false;
1383         *area = new_wa;
1384
1385         /* user pointer */
1386         new_wa->user = area;
1387
1388         return ERROR_OK;
1389 }
1390
1391 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1392 {
1393         int retval;
1394
1395         retval = target_alloc_working_area_try(target, size, area);
1396         if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1397         {
1398                 LOG_WARNING("not enough working area available(requested %u)", (unsigned)(size));
1399         }
1400         return retval;
1401
1402 }
1403
1404 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1405 {
1406         if (area->free)
1407                 return ERROR_OK;
1408
1409         if (restore && target->backup_working_area)
1410         {
1411                 int retval;
1412                 if ((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
1413                         return retval;
1414         }
1415
1416         area->free = true;
1417
1418         /* mark user pointer invalid */
1419         *area->user = NULL;
1420         area->user = NULL;
1421
1422         return ERROR_OK;
1423 }
1424
1425 int target_free_working_area(struct target *target, struct working_area *area)
1426 {
1427         return target_free_working_area_restore(target, area, 1);
1428 }
1429
1430 /* free resources and restore memory, if restoring memory fails,
1431  * free up resources anyway
1432  */
1433 static void target_free_all_working_areas_restore(struct target *target, int restore)
1434 {
1435         struct working_area *c = target->working_areas;
1436
1437         while (c)
1438         {
1439                 struct working_area *next = c->next;
1440                 target_free_working_area_restore(target, c, restore);
1441
1442                 if (c->backup)
1443                         free(c->backup);
1444
1445                 free(c);
1446
1447                 c = next;
1448         }
1449
1450         target->working_areas = NULL;
1451 }
1452
1453 void target_free_all_working_areas(struct target *target)
1454 {
1455         target_free_all_working_areas_restore(target, 1);
1456 }
1457
1458 int target_arch_state(struct target *target)
1459 {
1460         int retval;
1461         if (target == NULL)
1462         {
1463                 LOG_USER("No target has been configured");
1464                 return ERROR_OK;
1465         }
1466
1467         LOG_USER("target state: %s", target_state_name( target ));
1468
1469         if (target->state != TARGET_HALTED)
1470                 return ERROR_OK;
1471
1472         retval = target->type->arch_state(target);
1473         return retval;
1474 }
1475
1476 /* Single aligned words are guaranteed to use 16 or 32 bit access
1477  * mode respectively, otherwise data is handled as quickly as
1478  * possible
1479  */
1480 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1481 {
1482         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1483                   (int)size, (unsigned)address);
1484
1485         if (!target_was_examined(target))
1486         {
1487                 LOG_ERROR("Target not examined yet");
1488                 return ERROR_FAIL;
1489         }
1490
1491         if (size == 0) {
1492                 return ERROR_OK;
1493         }
1494
1495         if ((address + size - 1) < address)
1496         {
1497                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1498                 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1499                                   (unsigned)address,
1500                                   (unsigned)size);
1501                 return ERROR_FAIL;
1502         }
1503
1504         return target->type->write_buffer(target, address, size, buffer);
1505 }
1506
1507 static int target_write_buffer_default(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1508 {
1509         int retval = ERROR_OK;
1510
1511         if (((address % 2) == 0) && (size == 2))
1512         {
1513                 return target_write_memory(target, address, 2, 1, buffer);
1514         }
1515
1516         /* handle unaligned head bytes */
1517         if (address % 4)
1518         {
1519                 uint32_t unaligned = 4 - (address % 4);
1520
1521                 if (unaligned > size)
1522                         unaligned = size;
1523
1524                 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1525                         return retval;
1526
1527                 buffer += unaligned;
1528                 address += unaligned;
1529                 size -= unaligned;
1530         }
1531
1532         /* handle aligned words */
1533         if (size >= 4)
1534         {
1535                 int aligned = size - (size % 4);
1536
1537                 /* use bulk writes above a certain limit. This may have to be changed */
1538                 if (aligned > 128)
1539                 {
1540                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1541                                 return retval;
1542                 }
1543                 else
1544                 {
1545                         if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1546                                 return retval;
1547                 }
1548
1549                 buffer += aligned;
1550                 address += aligned;
1551                 size -= aligned;
1552         }
1553
1554         /* handle tail writes of less than 4 bytes */
1555         if (size > 0)
1556         {
1557                 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1558                         return retval;
1559         }
1560
1561         return retval;
1562 }
1563
1564 /* Single aligned words are guaranteed to use 16 or 32 bit access
1565  * mode respectively, otherwise data is handled as quickly as
1566  * possible
1567  */
1568 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1569 {
1570         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1571                           (int)size, (unsigned)address);
1572
1573         if (!target_was_examined(target))
1574         {
1575                 LOG_ERROR("Target not examined yet");
1576                 return ERROR_FAIL;
1577         }
1578
1579         if (size == 0) {
1580                 return ERROR_OK;
1581         }
1582
1583         if ((address + size - 1) < address)
1584         {
1585                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1586                 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1587                                   address,
1588                                   size);
1589                 return ERROR_FAIL;
1590         }
1591
1592         return target->type->read_buffer(target, address, size, buffer);
1593 }
1594
1595 static int target_read_buffer_default(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1596 {
1597         int retval = ERROR_OK;
1598
1599         if (((address % 2) == 0) && (size == 2))
1600         {
1601                 return target_read_memory(target, address, 2, 1, buffer);
1602         }
1603
1604         /* handle unaligned head bytes */
1605         if (address % 4)
1606         {
1607                 uint32_t unaligned = 4 - (address % 4);
1608
1609                 if (unaligned > size)
1610                         unaligned = size;
1611
1612                 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1613                         return retval;
1614
1615                 buffer += unaligned;
1616                 address += unaligned;
1617                 size -= unaligned;
1618         }
1619
1620         /* handle aligned words */
1621         if (size >= 4)
1622         {
1623                 int aligned = size - (size % 4);
1624
1625                 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1626                         return retval;
1627
1628                 buffer += aligned;
1629                 address += aligned;
1630                 size -= aligned;
1631         }
1632
1633         /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1634         if(size >=2)
1635         {
1636                 int aligned = size - (size%2);
1637                 retval = target_read_memory(target, address, 2, aligned / 2, buffer);
1638                 if (retval != ERROR_OK)
1639                         return retval;
1640
1641                 buffer += aligned;
1642                 address += aligned;
1643                 size -= aligned;
1644         }
1645         /* handle tail writes of less than 4 bytes */
1646         if (size > 0)
1647         {
1648                 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1649                         return retval;
1650         }
1651
1652         return ERROR_OK;
1653 }
1654
1655 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1656 {
1657         uint8_t *buffer;
1658         int retval;
1659         uint32_t i;
1660         uint32_t checksum = 0;
1661         if (!target_was_examined(target))
1662         {
1663                 LOG_ERROR("Target not examined yet");
1664                 return ERROR_FAIL;
1665         }
1666
1667         if ((retval = target->type->checksum_memory(target, address,
1668                 size, &checksum)) != ERROR_OK)
1669         {
1670                 buffer = malloc(size);
1671                 if (buffer == NULL)
1672                 {
1673                         LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1674                         return ERROR_INVALID_ARGUMENTS;
1675                 }
1676                 retval = target_read_buffer(target, address, size, buffer);
1677                 if (retval != ERROR_OK)
1678                 {
1679                         free(buffer);
1680                         return retval;
1681                 }
1682
1683                 /* convert to target endianness */
1684                 for (i = 0; i < (size/sizeof(uint32_t)); i++)
1685                 {
1686                         uint32_t target_data;
1687                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1688                         target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1689                 }
1690
1691                 retval = image_calculate_checksum(buffer, size, &checksum);
1692                 free(buffer);
1693         }
1694
1695         *crc = checksum;
1696
1697         return retval;
1698 }
1699
1700 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
1701 {
1702         int retval;
1703         if (!target_was_examined(target))
1704         {
1705                 LOG_ERROR("Target not examined yet");
1706                 return ERROR_FAIL;
1707         }
1708
1709         if (target->type->blank_check_memory == 0)
1710                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1711
1712         retval = target->type->blank_check_memory(target, address, size, blank);
1713
1714         return retval;
1715 }
1716
1717 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
1718 {
1719         uint8_t value_buf[4];
1720         if (!target_was_examined(target))
1721         {
1722                 LOG_ERROR("Target not examined yet");
1723                 return ERROR_FAIL;
1724         }
1725
1726         int retval = target_read_memory(target, address, 4, 1, value_buf);
1727
1728         if (retval == ERROR_OK)
1729         {
1730                 *value = target_buffer_get_u32(target, value_buf);
1731                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1732                                   address,
1733                                   *value);
1734         }
1735         else
1736         {
1737                 *value = 0x0;
1738                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1739                                   address);
1740         }
1741
1742         return retval;
1743 }
1744
1745 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
1746 {
1747         uint8_t value_buf[2];
1748         if (!target_was_examined(target))
1749         {
1750                 LOG_ERROR("Target not examined yet");
1751                 return ERROR_FAIL;
1752         }
1753
1754         int retval = target_read_memory(target, address, 2, 1, value_buf);
1755
1756         if (retval == ERROR_OK)
1757         {
1758                 *value = target_buffer_get_u16(target, value_buf);
1759                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
1760                                   address,
1761                                   *value);
1762         }
1763         else
1764         {
1765                 *value = 0x0;
1766                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1767                                   address);
1768         }
1769
1770         return retval;
1771 }
1772
1773 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
1774 {
1775         int retval = target_read_memory(target, address, 1, 1, value);
1776         if (!target_was_examined(target))
1777         {
1778                 LOG_ERROR("Target not examined yet");
1779                 return ERROR_FAIL;
1780         }
1781
1782         if (retval == ERROR_OK)
1783         {
1784                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1785                                   address,
1786                                   *value);
1787         }
1788         else
1789         {
1790                 *value = 0x0;
1791                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1792                                   address);
1793         }
1794
1795         return retval;
1796 }
1797
1798 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
1799 {
1800         int retval;
1801         uint8_t value_buf[4];
1802         if (!target_was_examined(target))
1803         {
1804                 LOG_ERROR("Target not examined yet");
1805                 return ERROR_FAIL;
1806         }
1807
1808         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1809                           address,
1810                           value);
1811
1812         target_buffer_set_u32(target, value_buf, value);
1813         if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1814         {
1815                 LOG_DEBUG("failed: %i", retval);
1816         }
1817
1818         return retval;
1819 }
1820
1821 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
1822 {
1823         int retval;
1824         uint8_t value_buf[2];
1825         if (!target_was_examined(target))
1826         {
1827                 LOG_ERROR("Target not examined yet");
1828                 return ERROR_FAIL;
1829         }
1830
1831         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
1832                           address,
1833                           value);
1834
1835         target_buffer_set_u16(target, value_buf, value);
1836         if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1837         {
1838                 LOG_DEBUG("failed: %i", retval);
1839         }
1840
1841         return retval;
1842 }
1843
1844 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
1845 {
1846         int retval;
1847         if (!target_was_examined(target))
1848         {
1849                 LOG_ERROR("Target not examined yet");
1850                 return ERROR_FAIL;
1851         }
1852
1853         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1854                           address, value);
1855
1856         if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1857         {
1858                 LOG_DEBUG("failed: %i", retval);
1859         }
1860
1861         return retval;
1862 }
1863
1864 COMMAND_HANDLER(handle_targets_command)
1865 {
1866         if (CMD_ARGC == 1)
1867         {
1868                 struct target *target = get_target(CMD_ARGV[0]);
1869                 if (target == NULL) {
1870                         command_print(CMD_CTX,"Target: %s is unknown, try one of:\n", CMD_ARGV[0]);
1871                         goto DumpTargets;
1872                 }
1873                 if (!target->tap->enabled) {
1874                         command_print(CMD_CTX,"Target: TAP %s is disabled, "
1875                                         "can't be the current target\n",
1876                                         target->tap->dotted_name);
1877                         return ERROR_FAIL;
1878                 }
1879
1880                 CMD_CTX->current_target = target->target_number;
1881                 return ERROR_OK;
1882         }
1883 DumpTargets:;
1884
1885         struct target *target = all_targets;
1886         command_print(CMD_CTX, "    TargetName         Type       Endian TapName            State       ");
1887         command_print(CMD_CTX, "--  ------------------ ---------- ------ ------------------ ------------");
1888         while (target)
1889         {
1890                 const char *state;
1891                 char marker = ' ';
1892
1893                 if (target->tap->enabled)
1894                         state = target_state_name( target );
1895                 else
1896                         state = "tap-disabled";
1897
1898                 if (CMD_CTX->current_target == target->target_number)
1899                         marker = '*';
1900
1901                 /* keep columns lined up to match the headers above */
1902                 command_print(CMD_CTX, "%2d%c %-18s %-10s %-6s %-18s %s",
1903                                           target->target_number,
1904                                           marker,
1905                                           target_name(target),
1906                                           target_type_name(target),
1907                                           Jim_Nvp_value2name_simple(nvp_target_endian,
1908                                                                 target->endianness)->name,
1909                                           target->tap->dotted_name,
1910                                           state);
1911                 target = target->next;
1912         }
1913
1914         return ERROR_OK;
1915 }
1916
1917 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1918
1919 static int powerDropout;
1920 static int srstAsserted;
1921
1922 static int runPowerRestore;
1923 static int runPowerDropout;
1924 static int runSrstAsserted;
1925 static int runSrstDeasserted;
1926
1927 static int sense_handler(void)
1928 {
1929         static int prevSrstAsserted = 0;
1930         static int prevPowerdropout = 0;
1931
1932         int retval;
1933         if ((retval = jtag_power_dropout(&powerDropout)) != ERROR_OK)
1934                 return retval;
1935
1936         int powerRestored;
1937         powerRestored = prevPowerdropout && !powerDropout;
1938         if (powerRestored)
1939         {
1940                 runPowerRestore = 1;
1941         }
1942
1943         long long current = timeval_ms();
1944         static long long lastPower = 0;
1945         int waitMore = lastPower + 2000 > current;
1946         if (powerDropout && !waitMore)
1947         {
1948                 runPowerDropout = 1;
1949                 lastPower = current;
1950         }
1951
1952         if ((retval = jtag_srst_asserted(&srstAsserted)) != ERROR_OK)
1953                 return retval;
1954
1955         int srstDeasserted;
1956         srstDeasserted = prevSrstAsserted && !srstAsserted;
1957
1958         static long long lastSrst = 0;
1959         waitMore = lastSrst + 2000 > current;
1960         if (srstDeasserted && !waitMore)
1961         {
1962                 runSrstDeasserted = 1;
1963                 lastSrst = current;
1964         }
1965
1966         if (!prevSrstAsserted && srstAsserted)
1967         {
1968                 runSrstAsserted = 1;
1969         }
1970
1971         prevSrstAsserted = srstAsserted;
1972         prevPowerdropout = powerDropout;
1973
1974         if (srstDeasserted || powerRestored)
1975         {
1976                 /* Other than logging the event we can't do anything here.
1977                  * Issuing a reset is a particularly bad idea as we might
1978                  * be inside a reset already.
1979                  */
1980         }
1981
1982         return ERROR_OK;
1983 }
1984
1985 static int backoff_times = 0;
1986 static int backoff_count = 0;
1987
1988 /* process target state changes */
1989 static int handle_target(void *priv)
1990 {
1991         Jim_Interp *interp = (Jim_Interp *)priv;
1992         int retval = ERROR_OK;
1993
1994         if (!is_jtag_poll_safe())
1995         {
1996                 /* polling is disabled currently */
1997                 return ERROR_OK;
1998         }
1999
2000         /* we do not want to recurse here... */
2001         static int recursive = 0;
2002         if (! recursive)
2003         {
2004                 recursive = 1;
2005                 sense_handler();
2006                 /* danger! running these procedures can trigger srst assertions and power dropouts.
2007                  * We need to avoid an infinite loop/recursion here and we do that by
2008                  * clearing the flags after running these events.
2009                  */
2010                 int did_something = 0;
2011                 if (runSrstAsserted)
2012                 {
2013                         LOG_INFO("srst asserted detected, running srst_asserted proc.");
2014                         Jim_Eval(interp, "srst_asserted");
2015                         did_something = 1;
2016                 }
2017                 if (runSrstDeasserted)
2018                 {
2019                         Jim_Eval(interp, "srst_deasserted");
2020                         did_something = 1;
2021                 }
2022                 if (runPowerDropout)
2023                 {
2024                         LOG_INFO("Power dropout detected, running power_dropout proc.");
2025                         Jim_Eval(interp, "power_dropout");
2026                         did_something = 1;
2027                 }
2028                 if (runPowerRestore)
2029                 {
2030                         Jim_Eval(interp, "power_restore");
2031                         did_something = 1;
2032                 }
2033
2034                 if (did_something)
2035                 {
2036                         /* clear detect flags */
2037                         sense_handler();
2038                 }
2039
2040                 /* clear action flags */
2041
2042                 runSrstAsserted = 0;
2043                 runSrstDeasserted = 0;
2044                 runPowerRestore = 0;
2045                 runPowerDropout = 0;
2046
2047                 recursive = 0;
2048         }
2049
2050         if (backoff_times > backoff_count)
2051         {
2052                 /* do not poll this time as we failed previously */
2053                 backoff_count++;
2054                 return ERROR_OK;
2055         }
2056         backoff_count = 0;
2057
2058         /* Poll targets for state changes unless that's globally disabled.
2059          * Skip targets that are currently disabled.
2060          */
2061         for (struct target *target = all_targets;
2062                         is_jtag_poll_safe() && target;
2063                         target = target->next)
2064         {
2065                 if (!target->tap->enabled)
2066                         continue;
2067
2068                 /* only poll target if we've got power and srst isn't asserted */
2069                 if (!powerDropout && !srstAsserted)
2070                 {
2071                         /* polling may fail silently until the target has been examined */
2072                         if ((retval = target_poll(target)) != ERROR_OK)
2073                         {
2074                                 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2075                                 if (backoff_times * polling_interval < 5000)
2076                                 {
2077                                         backoff_times *= 2;
2078                                         backoff_times++;
2079                                 }
2080                                 LOG_USER("Polling target failed, GDB will be halted. Polling again in %dms", backoff_times * polling_interval);
2081
2082                                 /* Tell GDB to halt the debugger. This allows the user to
2083                                  * run monitor commands to handle the situation.
2084                                  */
2085                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2086                                 return retval;
2087                         }
2088                         /* Since we succeeded, we reset backoff count */
2089                         if (backoff_times > 0)
2090                         {
2091                                 LOG_USER("Polling succeeded again");
2092                         }
2093                         backoff_times = 0;
2094                 }
2095         }
2096
2097         return retval;
2098 }
2099
2100 COMMAND_HANDLER(handle_reg_command)
2101 {
2102         struct target *target;
2103         struct reg *reg = NULL;
2104         unsigned count = 0;
2105         char *value;
2106
2107         LOG_DEBUG("-");
2108
2109         target = get_current_target(CMD_CTX);
2110
2111         /* list all available registers for the current target */
2112         if (CMD_ARGC == 0)
2113         {
2114                 struct reg_cache *cache = target->reg_cache;
2115
2116                 count = 0;
2117                 while (cache)
2118                 {
2119                         unsigned i;
2120
2121                         command_print(CMD_CTX, "===== %s", cache->name);
2122
2123                         for (i = 0, reg = cache->reg_list;
2124                                         i < cache->num_regs;
2125                                         i++, reg++, count++)
2126                         {
2127                                 /* only print cached values if they are valid */
2128                                 if (reg->valid) {
2129                                         value = buf_to_str(reg->value,
2130                                                         reg->size, 16);
2131                                         command_print(CMD_CTX,
2132                                                         "(%i) %s (/%" PRIu32 "): 0x%s%s",
2133                                                         count, reg->name,
2134                                                         reg->size, value,
2135                                                         reg->dirty
2136                                                                 ? " (dirty)"
2137                                                                 : "");
2138                                         free(value);
2139                                 } else {
2140                                         command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2141                                                           count, reg->name,
2142                                                           reg->size) ;
2143                                 }
2144                         }
2145                         cache = cache->next;
2146                 }
2147
2148                 return ERROR_OK;
2149         }
2150
2151         /* access a single register by its ordinal number */
2152         if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9'))
2153         {
2154                 unsigned num;
2155                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2156
2157                 struct reg_cache *cache = target->reg_cache;
2158                 count = 0;
2159                 while (cache)
2160                 {
2161                         unsigned i;
2162                         for (i = 0; i < cache->num_regs; i++)
2163                         {
2164                                 if (count++ == num)
2165                                 {
2166                                         reg = &cache->reg_list[i];
2167                                         break;
2168                                 }
2169                         }
2170                         if (reg)
2171                                 break;
2172                         cache = cache->next;
2173                 }
2174
2175                 if (!reg)
2176                 {
2177                         command_print(CMD_CTX, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
2178                         return ERROR_OK;
2179                 }
2180         } else /* access a single register by its name */
2181         {
2182                 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2183
2184                 if (!reg)
2185                 {
2186                         command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2187                         return ERROR_OK;
2188                 }
2189         }
2190
2191         assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2192
2193         /* display a register */
2194         if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0') && (CMD_ARGV[1][0] <= '9'))))
2195         {
2196                 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2197                         reg->valid = 0;
2198
2199                 if (reg->valid == 0)
2200                 {
2201                         reg->type->get(reg);
2202                 }
2203                 value = buf_to_str(reg->value, reg->size, 16);
2204                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2205                 free(value);
2206                 return ERROR_OK;
2207         }
2208
2209         /* set register value */
2210         if (CMD_ARGC == 2)
2211         {
2212                 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2213                 if (buf == NULL)
2214                         return ERROR_FAIL;
2215                 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2216
2217                 reg->type->set(reg, buf);
2218
2219                 value = buf_to_str(reg->value, reg->size, 16);
2220                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2221                 free(value);
2222
2223                 free(buf);
2224
2225                 return ERROR_OK;
2226         }
2227
2228         command_print(CMD_CTX, "usage: reg <#|name> [value]");
2229
2230         return ERROR_OK;
2231 }
2232
2233 COMMAND_HANDLER(handle_poll_command)
2234 {
2235         int retval = ERROR_OK;
2236         struct target *target = get_current_target(CMD_CTX);
2237
2238         if (CMD_ARGC == 0)
2239         {
2240                 command_print(CMD_CTX, "background polling: %s",
2241                                 jtag_poll_get_enabled() ? "on" : "off");
2242                 command_print(CMD_CTX, "TAP: %s (%s)",
2243                                 target->tap->dotted_name,
2244                                 target->tap->enabled ? "enabled" : "disabled");
2245                 if (!target->tap->enabled)
2246                         return ERROR_OK;
2247                 if ((retval = target_poll(target)) != ERROR_OK)
2248                         return retval;
2249                 if ((retval = target_arch_state(target)) != ERROR_OK)
2250                         return retval;
2251         }
2252         else if (CMD_ARGC == 1)
2253         {
2254                 bool enable;
2255                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2256                 jtag_poll_set_enabled(enable);
2257         }
2258         else
2259         {
2260                 return ERROR_COMMAND_SYNTAX_ERROR;
2261         }
2262
2263         return retval;
2264 }
2265
2266 COMMAND_HANDLER(handle_wait_halt_command)
2267 {
2268         if (CMD_ARGC > 1)
2269                 return ERROR_COMMAND_SYNTAX_ERROR;
2270
2271         unsigned ms = 5000;
2272         if (1 == CMD_ARGC)
2273         {
2274                 int retval = parse_uint(CMD_ARGV[0], &ms);
2275                 if (ERROR_OK != retval)
2276                 {
2277                         command_print(CMD_CTX, "usage: %s [seconds]", CMD_NAME);
2278                         return ERROR_COMMAND_SYNTAX_ERROR;
2279                 }
2280                 // convert seconds (given) to milliseconds (needed)
2281                 ms *= 1000;
2282         }
2283
2284         struct target *target = get_current_target(CMD_CTX);
2285         return target_wait_state(target, TARGET_HALTED, ms);
2286 }
2287
2288 /* wait for target state to change. The trick here is to have a low
2289  * latency for short waits and not to suck up all the CPU time
2290  * on longer waits.
2291  *
2292  * After 500ms, keep_alive() is invoked
2293  */
2294 int target_wait_state(struct target *target, enum target_state state, int ms)
2295 {
2296         int retval;
2297         long long then = 0, cur;
2298         int once = 1;
2299
2300         for (;;)
2301         {
2302                 if ((retval = target_poll(target)) != ERROR_OK)
2303                         return retval;
2304                 if (target->state == state)
2305                 {
2306                         break;
2307                 }
2308                 cur = timeval_ms();
2309                 if (once)
2310                 {
2311                         once = 0;
2312                         then = timeval_ms();
2313                         LOG_DEBUG("waiting for target %s...",
2314                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2315                 }
2316
2317                 if (cur-then > 500)
2318                 {
2319                         keep_alive();
2320                 }
2321
2322                 if ((cur-then) > ms)
2323                 {
2324                         LOG_ERROR("timed out while waiting for target %s",
2325                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2326                         return ERROR_FAIL;
2327                 }
2328         }
2329
2330         return ERROR_OK;
2331 }
2332
2333 COMMAND_HANDLER(handle_halt_command)
2334 {
2335         LOG_DEBUG("-");
2336
2337         struct target *target = get_current_target(CMD_CTX);
2338         int retval = target_halt(target);
2339         if (ERROR_OK != retval)
2340                 return retval;
2341
2342         if (CMD_ARGC == 1)
2343         {
2344                 unsigned wait_local;
2345                 retval = parse_uint(CMD_ARGV[0], &wait_local);
2346                 if (ERROR_OK != retval)
2347                         return ERROR_COMMAND_SYNTAX_ERROR;
2348                 if (!wait_local)
2349                         return ERROR_OK;
2350         }
2351
2352         return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2353 }
2354
2355 COMMAND_HANDLER(handle_soft_reset_halt_command)
2356 {
2357         struct target *target = get_current_target(CMD_CTX);
2358
2359         LOG_USER("requesting target halt and executing a soft reset");
2360
2361         target->type->soft_reset_halt(target);
2362
2363         return ERROR_OK;
2364 }
2365
2366 COMMAND_HANDLER(handle_reset_command)
2367 {
2368         if (CMD_ARGC > 1)
2369                 return ERROR_COMMAND_SYNTAX_ERROR;
2370
2371         enum target_reset_mode reset_mode = RESET_RUN;
2372         if (CMD_ARGC == 1)
2373         {
2374                 const Jim_Nvp *n;
2375                 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2376                 if ((n->name == NULL) || (n->value == RESET_UNKNOWN)) {
2377                         return ERROR_COMMAND_SYNTAX_ERROR;
2378                 }
2379                 reset_mode = n->value;
2380         }
2381
2382         /* reset *all* targets */
2383         return target_process_reset(CMD_CTX, reset_mode);
2384 }
2385
2386
2387 COMMAND_HANDLER(handle_resume_command)
2388 {
2389         int current = 1;
2390         if (CMD_ARGC > 1)
2391                 return ERROR_COMMAND_SYNTAX_ERROR;
2392
2393         struct target *target = get_current_target(CMD_CTX);
2394         target_handle_event(target, TARGET_EVENT_OLD_pre_resume);
2395
2396         /* with no CMD_ARGV, resume from current pc, addr = 0,
2397          * with one arguments, addr = CMD_ARGV[0],
2398          * handle breakpoints, not debugging */
2399         uint32_t addr = 0;
2400         if (CMD_ARGC == 1)
2401         {
2402                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2403                 current = 0;
2404         }
2405
2406         return target_resume(target, current, addr, 1, 0);
2407 }
2408
2409 COMMAND_HANDLER(handle_step_command)
2410 {
2411         if (CMD_ARGC > 1)
2412                 return ERROR_COMMAND_SYNTAX_ERROR;
2413
2414         LOG_DEBUG("-");
2415
2416         /* with no CMD_ARGV, step from current pc, addr = 0,
2417          * with one argument addr = CMD_ARGV[0],
2418          * handle breakpoints, debugging */
2419         uint32_t addr = 0;
2420         int current_pc = 1;
2421         if (CMD_ARGC == 1)
2422         {
2423                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2424                 current_pc = 0;
2425         }
2426
2427         struct target *target = get_current_target(CMD_CTX);
2428
2429         return target->type->step(target, current_pc, addr, 1);
2430 }
2431
2432 static void handle_md_output(struct command_context *cmd_ctx,
2433                 struct target *target, uint32_t address, unsigned size,
2434                 unsigned count, const uint8_t *buffer)
2435 {
2436         const unsigned line_bytecnt = 32;
2437         unsigned line_modulo = line_bytecnt / size;
2438
2439         char output[line_bytecnt * 4 + 1];
2440         unsigned output_len = 0;
2441
2442         const char *value_fmt;
2443         switch (size) {
2444         case 4: value_fmt = "%8.8x "; break;
2445         case 2: value_fmt = "%4.4x "; break;
2446         case 1: value_fmt = "%2.2x "; break;
2447         default:
2448                 /* "can't happen", caller checked */
2449                 LOG_ERROR("invalid memory read size: %u", size);
2450                 return;
2451         }
2452
2453         for (unsigned i = 0; i < count; i++)
2454         {
2455                 if (i % line_modulo == 0)
2456                 {
2457                         output_len += snprintf(output + output_len,
2458                                         sizeof(output) - output_len,
2459                                         "0x%8.8x: ",
2460                                         (unsigned)(address + (i*size)));
2461                 }
2462
2463                 uint32_t value = 0;
2464                 const uint8_t *value_ptr = buffer + i * size;
2465                 switch (size) {
2466                 case 4: value = target_buffer_get_u32(target, value_ptr); break;
2467                 case 2: value = target_buffer_get_u16(target, value_ptr); break;
2468                 case 1: value = *value_ptr;
2469                 }
2470                 output_len += snprintf(output + output_len,
2471                                 sizeof(output) - output_len,
2472                                 value_fmt, value);
2473
2474                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
2475                 {
2476                         command_print(cmd_ctx, "%s", output);
2477                         output_len = 0;
2478                 }
2479         }
2480 }
2481
2482 COMMAND_HANDLER(handle_md_command)
2483 {
2484         if (CMD_ARGC < 1)
2485                 return ERROR_COMMAND_SYNTAX_ERROR;
2486
2487         unsigned size = 0;
2488         switch (CMD_NAME[2]) {
2489         case 'w': size = 4; break;
2490         case 'h': size = 2; break;
2491         case 'b': size = 1; break;
2492         default: return ERROR_COMMAND_SYNTAX_ERROR;
2493         }
2494
2495         bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2496         int (*fn)(struct target *target,
2497                         uint32_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
2498         if (physical)
2499         {
2500                 CMD_ARGC--;
2501                 CMD_ARGV++;
2502                 fn=target_read_phys_memory;
2503         } else
2504         {
2505                 fn=target_read_memory;
2506         }
2507         if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2508         {
2509                 return ERROR_COMMAND_SYNTAX_ERROR;
2510         }
2511
2512         uint32_t address;
2513         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2514
2515         unsigned count = 1;
2516         if (CMD_ARGC == 2)
2517                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2518
2519         uint8_t *buffer = calloc(count, size);
2520
2521         struct target *target = get_current_target(CMD_CTX);
2522         int retval = fn(target, address, size, count, buffer);
2523         if (ERROR_OK == retval)
2524                 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2525
2526         free(buffer);
2527
2528         return retval;
2529 }
2530
2531 typedef int (*target_write_fn)(struct target *target,
2532                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
2533
2534 static int target_write_memory_fast(struct target *target,
2535                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
2536 {
2537         return target_write_buffer(target, address, size * count, buffer);
2538 }
2539
2540 static int target_fill_mem(struct target *target,
2541                 uint32_t address,
2542                 target_write_fn fn,
2543                 unsigned data_size,
2544                 /* value */
2545                 uint32_t b,
2546                 /* count */
2547                 unsigned c)
2548 {
2549         /* We have to write in reasonably large chunks to be able
2550          * to fill large memory areas with any sane speed */
2551         const unsigned chunk_size = 16384;
2552         uint8_t *target_buf = malloc(chunk_size * data_size);
2553         if (target_buf == NULL)
2554         {
2555                 LOG_ERROR("Out of memory");
2556                 return ERROR_FAIL;
2557         }
2558
2559         for (unsigned i = 0; i < chunk_size; i ++)
2560         {
2561                 switch (data_size)
2562                 {
2563                 case 4:
2564                         target_buffer_set_u32(target, target_buf + i*data_size, b);
2565                         break;
2566                 case 2:
2567                         target_buffer_set_u16(target, target_buf + i*data_size, b);
2568                         break;
2569                 case 1:
2570                         target_buffer_set_u8(target, target_buf + i*data_size, b);
2571                         break;
2572                 default:
2573                         exit(-1);
2574                 }
2575         }
2576
2577         int retval = ERROR_OK;
2578
2579         for (unsigned x = 0; x < c; x += chunk_size)
2580         {
2581                 unsigned current;
2582                 current = c - x;
2583                 if (current > chunk_size)
2584                 {
2585                         current = chunk_size;
2586                 }
2587                 retval = fn(target, address + x * data_size, data_size, current, target_buf);
2588                 if (retval != ERROR_OK)
2589                 {
2590                         break;
2591                 }
2592                 /* avoid GDB timeouts */
2593                 keep_alive();
2594         }
2595         free(target_buf);
2596
2597         return retval;
2598 }
2599
2600
2601 COMMAND_HANDLER(handle_mw_command)
2602 {
2603         if (CMD_ARGC < 2)
2604         {
2605                 return ERROR_COMMAND_SYNTAX_ERROR;
2606         }
2607         bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2608         target_write_fn fn;
2609         if (physical)
2610         {
2611                 CMD_ARGC--;
2612                 CMD_ARGV++;
2613                 fn=target_write_phys_memory;
2614         } else
2615         {
2616                 fn = target_write_memory_fast;
2617         }
2618         if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2619                 return ERROR_COMMAND_SYNTAX_ERROR;
2620
2621         uint32_t address;
2622         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2623
2624         uint32_t value;
2625         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2626
2627         unsigned count = 1;
2628         if (CMD_ARGC == 3)
2629                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2630
2631         struct target *target = get_current_target(CMD_CTX);
2632         unsigned wordsize;
2633         switch (CMD_NAME[2])
2634         {
2635                 case 'w':
2636                         wordsize = 4;
2637                         break;
2638                 case 'h':
2639                         wordsize = 2;
2640                         break;
2641                 case 'b':
2642                         wordsize = 1;
2643                         break;
2644                 default:
2645                         return ERROR_COMMAND_SYNTAX_ERROR;
2646         }
2647
2648         return target_fill_mem(target, address, fn, wordsize, value, count);
2649 }
2650
2651 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2652                 uint32_t *min_address, uint32_t *max_address)
2653 {
2654         if (CMD_ARGC < 1 || CMD_ARGC > 5)
2655                 return ERROR_COMMAND_SYNTAX_ERROR;
2656
2657         /* a base address isn't always necessary,
2658          * default to 0x0 (i.e. don't relocate) */
2659         if (CMD_ARGC >= 2)
2660         {
2661                 uint32_t addr;
2662                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2663                 image->base_address = addr;
2664                 image->base_address_set = 1;
2665         }
2666         else
2667                 image->base_address_set = 0;
2668
2669         image->start_address_set = 0;
2670
2671         if (CMD_ARGC >= 4)
2672         {
2673                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2674         }
2675         if (CMD_ARGC == 5)
2676         {
2677                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2678                 // use size (given) to find max (required)
2679                 *max_address += *min_address;
2680         }
2681
2682         if (*min_address > *max_address)
2683                 return ERROR_COMMAND_SYNTAX_ERROR;
2684
2685         return ERROR_OK;
2686 }
2687
2688 COMMAND_HANDLER(handle_load_image_command)
2689 {
2690         uint8_t *buffer;
2691         size_t buf_cnt;
2692         uint32_t image_size;
2693         uint32_t min_address = 0;
2694         uint32_t max_address = 0xffffffff;
2695         int i;
2696         struct image image;
2697
2698         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2699                         &image, &min_address, &max_address);
2700         if (ERROR_OK != retval)
2701                 return retval;
2702
2703         struct target *target = get_current_target(CMD_CTX);
2704
2705         struct duration bench;
2706         duration_start(&bench);
2707
2708         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2709         {
2710                 return ERROR_OK;
2711         }
2712
2713         image_size = 0x0;
2714         retval = ERROR_OK;
2715         for (i = 0; i < image.num_sections; i++)
2716         {
2717                 buffer = malloc(image.sections[i].size);
2718                 if (buffer == NULL)
2719                 {
2720                         command_print(CMD_CTX,
2721                                                   "error allocating buffer for section (%d bytes)",
2722                                                   (int)(image.sections[i].size));
2723                         break;
2724                 }
2725
2726                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2727                 {
2728                         free(buffer);
2729                         break;
2730                 }
2731
2732                 uint32_t offset = 0;
2733                 uint32_t length = buf_cnt;
2734
2735                 /* DANGER!!! beware of unsigned comparision here!!! */
2736
2737                 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
2738                                 (image.sections[i].base_address < max_address))
2739                 {
2740                         if (image.sections[i].base_address < min_address)
2741                         {
2742                                 /* clip addresses below */
2743                                 offset += min_address-image.sections[i].base_address;
2744                                 length -= offset;
2745                         }
2746
2747                         if (image.sections[i].base_address + buf_cnt > max_address)
2748                         {
2749                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2750                         }
2751
2752                         if ((retval = target_write_buffer(target, image.sections[i].base_address + offset, length, buffer + offset)) != ERROR_OK)
2753                         {
2754                                 free(buffer);
2755                                 break;
2756                         }
2757                         image_size += length;
2758                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
2759                                                   (unsigned int)length,
2760                                                   image.sections[i].base_address + offset);
2761                 }
2762
2763                 free(buffer);
2764         }
2765
2766         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2767         {
2768                 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
2769                                 "in %fs (%0.3f KiB/s)", image_size,
2770                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2771         }
2772
2773         image_close(&image);
2774
2775         return retval;
2776
2777 }
2778
2779 COMMAND_HANDLER(handle_dump_image_command)
2780 {
2781         struct fileio fileio;
2782         uint8_t buffer[560];
2783         int retval, retvaltemp;
2784         uint32_t address, size;
2785         struct duration bench;
2786         struct target *target = get_current_target(CMD_CTX);
2787
2788         if (CMD_ARGC != 3)
2789                 return ERROR_COMMAND_SYNTAX_ERROR;
2790
2791         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
2792         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
2793
2794         retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
2795         if (retval != ERROR_OK)
2796                 return retval;
2797
2798         duration_start(&bench);
2799
2800         retval = ERROR_OK;
2801         while (size > 0)
2802         {
2803                 size_t size_written;
2804                 uint32_t this_run_size = (size > 560) ? 560 : size;
2805                 retval = target_read_buffer(target, address, this_run_size, buffer);
2806                 if (retval != ERROR_OK)
2807                 {
2808                         break;
2809                 }
2810
2811                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2812                 if (retval != ERROR_OK)
2813                 {
2814                         break;
2815                 }
2816
2817                 size -= this_run_size;
2818                 address += this_run_size;
2819         }
2820
2821         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2822         {
2823                 int filesize;
2824                 retval = fileio_size(&fileio, &filesize);
2825                 if (retval != ERROR_OK)
2826                         return retval;
2827                 command_print(CMD_CTX,
2828                                 "dumped %ld bytes in %fs (%0.3f KiB/s)", (long)filesize,
2829                                 duration_elapsed(&bench), duration_kbps(&bench, filesize));
2830         }
2831
2832         if ((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2833                 return retvaltemp;
2834
2835         return retval;
2836 }
2837
2838 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
2839 {
2840         uint8_t *buffer;
2841         size_t buf_cnt;
2842         uint32_t image_size;
2843         int i;
2844         int retval;
2845         uint32_t checksum = 0;
2846         uint32_t mem_checksum = 0;
2847
2848         struct image image;
2849
2850         struct target *target = get_current_target(CMD_CTX);
2851
2852         if (CMD_ARGC < 1)
2853         {
2854                 return ERROR_COMMAND_SYNTAX_ERROR;
2855         }
2856
2857         if (!target)
2858         {
2859                 LOG_ERROR("no target selected");
2860                 return ERROR_FAIL;
2861         }
2862
2863         struct duration bench;
2864         duration_start(&bench);
2865
2866         if (CMD_ARGC >= 2)
2867         {
2868                 uint32_t addr;
2869                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2870                 image.base_address = addr;
2871                 image.base_address_set = 1;
2872         }
2873         else
2874         {
2875                 image.base_address_set = 0;
2876                 image.base_address = 0x0;
2877         }
2878
2879         image.start_address_set = 0;
2880
2881         if ((retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL)) != ERROR_OK)
2882         {
2883                 return retval;
2884         }
2885
2886         image_size = 0x0;
2887         int diffs = 0;
2888         retval = ERROR_OK;
2889         for (i = 0; i < image.num_sections; i++)
2890         {
2891                 buffer = malloc(image.sections[i].size);
2892                 if (buffer == NULL)
2893                 {
2894                         command_print(CMD_CTX,
2895                                                   "error allocating buffer for section (%d bytes)",
2896                                                   (int)(image.sections[i].size));
2897                         break;
2898                 }
2899                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2900                 {
2901                         free(buffer);
2902                         break;
2903                 }
2904
2905                 if (verify)
2906                 {
2907                         /* calculate checksum of image */
2908                         retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
2909                         if (retval != ERROR_OK)
2910                         {
2911                                 free(buffer);
2912                                 break;
2913                         }
2914
2915                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2916                         if (retval != ERROR_OK)
2917                         {
2918                                 free(buffer);
2919                                 break;
2920                         }
2921
2922                         if (checksum != mem_checksum)
2923                         {
2924                                 /* failed crc checksum, fall back to a binary compare */
2925                                 uint8_t *data;
2926
2927                                 if (diffs == 0)
2928                                 {
2929                                         LOG_ERROR("checksum mismatch - attempting binary compare");
2930                                 }
2931
2932                                 data = (uint8_t*)malloc(buf_cnt);
2933
2934                                 /* Can we use 32bit word accesses? */
2935                                 int size = 1;
2936                                 int count = buf_cnt;
2937                                 if ((count % 4) == 0)
2938                                 {
2939                                         size *= 4;
2940                                         count /= 4;
2941                                 }
2942                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2943                                 if (retval == ERROR_OK)
2944                                 {
2945                                         uint32_t t;
2946                                         for (t = 0; t < buf_cnt; t++)
2947                                         {
2948                                                 if (data[t] != buffer[t])
2949                                                 {
2950                                                         command_print(CMD_CTX,
2951                                                                                   "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
2952                                                                                   diffs,
2953                                                                                   (unsigned)(t + image.sections[i].base_address),
2954                                                                                   data[t],
2955                                                                                   buffer[t]);
2956                                                         if (diffs++ >= 127)
2957                                                         {
2958                                                                 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
2959                                                                 free(data);
2960                                                                 free(buffer);
2961                                                                 goto done;
2962                                                         }
2963                                                 }
2964                                                 keep_alive();
2965                                         }
2966                                 }
2967                                 free(data);
2968                         }
2969                 } else
2970                 {
2971                         command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
2972                                                   image.sections[i].base_address,
2973                                                   buf_cnt);
2974                 }
2975
2976                 free(buffer);
2977                 image_size += buf_cnt;
2978         }
2979         if (diffs > 0)
2980         {
2981                 command_print(CMD_CTX, "No more differences found.");
2982         }
2983 done:
2984         if (diffs > 0)
2985         {
2986                 retval = ERROR_FAIL;
2987         }
2988         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2989         {
2990                 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
2991                                 "in %fs (%0.3f KiB/s)", image_size,
2992                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2993         }
2994
2995         image_close(&image);
2996
2997         return retval;
2998 }
2999
3000 COMMAND_HANDLER(handle_verify_image_command)
3001 {
3002         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
3003 }
3004
3005 COMMAND_HANDLER(handle_test_image_command)
3006 {
3007         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
3008 }
3009
3010 static int handle_bp_command_list(struct command_context *cmd_ctx)
3011 {
3012         struct target *target = get_current_target(cmd_ctx);
3013         struct breakpoint *breakpoint = target->breakpoints;
3014         while (breakpoint)
3015         {
3016                 if (breakpoint->type == BKPT_SOFT)
3017                 {
3018                         char* buf = buf_to_str(breakpoint->orig_instr,
3019                                         breakpoint->length, 16);
3020                         command_print(cmd_ctx, "IVA breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
3021                                         breakpoint->address,
3022                                         breakpoint->length,
3023                                         breakpoint->set, buf);
3024                         free(buf);
3025                 }
3026                 else
3027                 {
3028                         if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3029                                 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3030                                                         breakpoint->asid,
3031                                                         breakpoint->length, breakpoint->set);
3032                         else if ((breakpoint->address != 0) && (breakpoint->asid != 0))
3033                         {
3034                                 command_print(cmd_ctx, "Hybrid breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3035                                                         breakpoint->address,
3036                                                         breakpoint->length, breakpoint->set);
3037                                 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3038                                                         breakpoint->asid);
3039                         }
3040                         else
3041                                 command_print(cmd_ctx, "Breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3042                                                         breakpoint->address,
3043                                                         breakpoint->length, breakpoint->set);
3044                 }
3045
3046                 breakpoint = breakpoint->next;
3047         }
3048         return ERROR_OK;
3049 }
3050
3051 static int handle_bp_command_set(struct command_context *cmd_ctx,
3052                 uint32_t addr, uint32_t asid, uint32_t length, int hw)
3053 {
3054         struct target *target = get_current_target(cmd_ctx);
3055
3056         if (asid == 0)
3057         {
3058                 int retval = breakpoint_add(target, addr, length, hw);
3059                 if (ERROR_OK == retval)
3060                         command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
3061                 else
3062                 {
3063                         LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3064                         return retval;
3065                 }
3066         }
3067         else if (addr == 0)
3068         {
3069                 int retval = context_breakpoint_add(target, asid, length, hw);
3070                 if (ERROR_OK == retval)
3071                         command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3072                 else
3073                 {
3074                         LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3075                         return retval;
3076                 }
3077         }
3078         else
3079         {
3080                 int retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3081                 if(ERROR_OK == retval)
3082                         command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3083                 else
3084                 {
3085                         LOG_ERROR("Failure setting breakpoint, the same address is already used");
3086                         return retval;
3087                 }
3088         }
3089         return ERROR_OK;
3090 }
3091
3092 COMMAND_HANDLER(handle_bp_command)
3093 {
3094         uint32_t addr;
3095         uint32_t asid;
3096         uint32_t length;
3097         int hw = BKPT_SOFT;
3098         switch(CMD_ARGC)
3099         {
3100                 case 0:
3101                         return handle_bp_command_list(CMD_CTX);
3102
3103                 case 2:
3104                         asid = 0;
3105                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3106                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3107                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3108
3109                 case 3:
3110                         if(strcmp(CMD_ARGV[2], "hw") == 0)
3111                         {
3112                                 hw = BKPT_HARD;
3113                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3114
3115                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3116
3117                                 asid = 0;
3118                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3119                         }
3120                         else if(strcmp(CMD_ARGV[2], "hw_ctx") == 0)
3121                         {
3122                                 hw = BKPT_HARD;
3123                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3124                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3125                                 addr = 0;
3126                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3127                         }
3128
3129                 case 4:
3130                         hw = BKPT_HARD;
3131                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3132                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3133                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3134                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3135
3136                 default:
3137                         command_print(CMD_CTX, "usage: bp <address> [<asid>]<length> ['hw'|'hw_ctx']");
3138                         return ERROR_COMMAND_SYNTAX_ERROR;
3139         }
3140 }
3141
3142 COMMAND_HANDLER(handle_rbp_command)
3143 {
3144         if (CMD_ARGC != 1)
3145                 return ERROR_COMMAND_SYNTAX_ERROR;
3146
3147         uint32_t addr;
3148         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3149
3150         struct target *target = get_current_target(CMD_CTX);
3151         breakpoint_remove(target, addr);
3152
3153         return ERROR_OK;
3154 }
3155
3156 COMMAND_HANDLER(handle_wp_command)
3157 {
3158         struct target *target = get_current_target(CMD_CTX);
3159
3160         if (CMD_ARGC == 0)
3161         {
3162                 struct watchpoint *watchpoint = target->watchpoints;
3163
3164                 while (watchpoint)
3165                 {
3166                         command_print(CMD_CTX, "address: 0x%8.8" PRIx32
3167                                         ", len: 0x%8.8" PRIx32
3168                                         ", r/w/a: %i, value: 0x%8.8" PRIx32
3169                                         ", mask: 0x%8.8" PRIx32,
3170                                         watchpoint->address,
3171                                         watchpoint->length,
3172                                         (int)watchpoint->rw,
3173                                         watchpoint->value,
3174                                         watchpoint->mask);
3175                         watchpoint = watchpoint->next;
3176                 }
3177                 return ERROR_OK;
3178         }
3179
3180         enum watchpoint_rw type = WPT_ACCESS;
3181         uint32_t addr = 0;
3182         uint32_t length = 0;
3183         uint32_t data_value = 0x0;
3184         uint32_t data_mask = 0xffffffff;
3185
3186         switch (CMD_ARGC)
3187         {
3188         case 5:
3189                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3190                 // fall through
3191         case 4:
3192                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3193                 // fall through
3194         case 3:
3195                 switch (CMD_ARGV[2][0])
3196                 {
3197                 case 'r':
3198                         type = WPT_READ;
3199                         break;
3200                 case 'w':
3201                         type = WPT_WRITE;
3202                         break;
3203                 case 'a':
3204                         type = WPT_ACCESS;
3205                         break;
3206                 default:
3207                         LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3208                         return ERROR_COMMAND_SYNTAX_ERROR;
3209                 }
3210                 // fall through
3211         case 2:
3212                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3213                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3214                 break;
3215
3216         default:
3217                 command_print(CMD_CTX, "usage: wp [address length "
3218                                 "[(r|w|a) [value [mask]]]]");
3219                 return ERROR_COMMAND_SYNTAX_ERROR;
3220         }
3221
3222         int retval = watchpoint_add(target, addr, length, type,
3223                         data_value, data_mask);
3224         if (ERROR_OK != retval)
3225                 LOG_ERROR("Failure setting watchpoints");
3226
3227         return retval;
3228 }
3229
3230 COMMAND_HANDLER(handle_rwp_command)
3231 {
3232         if (CMD_ARGC != 1)
3233                 return ERROR_COMMAND_SYNTAX_ERROR;
3234
3235         uint32_t addr;
3236         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3237
3238         struct target *target = get_current_target(CMD_CTX);
3239         watchpoint_remove(target, addr);
3240
3241         return ERROR_OK;
3242 }
3243
3244
3245 /**
3246  * Translate a virtual address to a physical address.
3247  *
3248  * The low-level target implementation must have logged a detailed error
3249  * which is forwarded to telnet/GDB session.
3250  */
3251 COMMAND_HANDLER(handle_virt2phys_command)
3252 {
3253         if (CMD_ARGC != 1)
3254                 return ERROR_COMMAND_SYNTAX_ERROR;
3255
3256         uint32_t va;
3257         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
3258         uint32_t pa;
3259
3260         struct target *target = get_current_target(CMD_CTX);
3261         int retval = target->type->virt2phys(target, va, &pa);
3262         if (retval == ERROR_OK)
3263                 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
3264
3265         return retval;
3266 }
3267
3268 static void writeData(FILE *f, const void *data, size_t len)
3269 {
3270         size_t written = fwrite(data, 1, len, f);
3271         if (written != len)
3272                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3273 }
3274
3275 static void writeLong(FILE *f, int l)
3276 {
3277         int i;
3278         for (i = 0; i < 4; i++)
3279         {
3280                 char c = (l >> (i*8))&0xff;
3281                 writeData(f, &c, 1);
3282         }
3283
3284 }
3285
3286 static void writeString(FILE *f, char *s)
3287 {
3288         writeData(f, s, strlen(s));
3289 }
3290
3291 /* Dump a gmon.out histogram file. */
3292 static void writeGmon(uint32_t *samples, uint32_t sampleNum, const char *filename)
3293 {
3294         uint32_t i;
3295         FILE *f = fopen(filename, "w");
3296         if (f == NULL)
3297                 return;
3298         writeString(f, "gmon");
3299         writeLong(f, 0x00000001); /* Version */
3300         writeLong(f, 0); /* padding */
3301         writeLong(f, 0); /* padding */
3302         writeLong(f, 0); /* padding */
3303
3304         uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
3305         writeData(f, &zero, 1);
3306
3307         /* figure out bucket size */
3308         uint32_t min = samples[0];
3309         uint32_t max = samples[0];
3310         for (i = 0; i < sampleNum; i++)
3311         {
3312                 if (min > samples[i])
3313                 {
3314                         min = samples[i];
3315                 }
3316                 if (max < samples[i])
3317                 {
3318                         max = samples[i];
3319                 }
3320         }
3321
3322         int addressSpace = (max - min + 1);
3323         assert(addressSpace >= 2);
3324
3325         static const uint32_t maxBuckets = 16 * 1024; /* maximum buckets. */
3326         uint32_t length = addressSpace;
3327         if (length > maxBuckets)
3328         {
3329                 length = maxBuckets;
3330         }
3331         int *buckets = malloc(sizeof(int)*length);
3332         if (buckets == NULL)
3333         {
3334                 fclose(f);
3335                 return;
3336         }
3337         memset(buckets, 0, sizeof(int)*length);
3338         for (i = 0; i < sampleNum;i++)
3339         {
3340                 uint32_t address = samples[i];
3341                 long long a = address-min;
3342                 long long b = length-1;
3343                 long long c = addressSpace-1;
3344                 int index_t = (a*b)/c; /* danger!!!! int32 overflows */
3345                 buckets[index_t]++;
3346         }
3347
3348         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3349         writeLong(f, min);                      /* low_pc */
3350         writeLong(f, max);                      /* high_pc */
3351         writeLong(f, length);           /* # of samples */
3352         writeLong(f, 100);                      /* KLUDGE! We lie, ca. 100Hz best case. */
3353         writeString(f, "seconds");
3354         for (i = 0; i < (15-strlen("seconds")); i++)
3355                 writeData(f, &zero, 1);
3356         writeString(f, "s");
3357
3358         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3359
3360         char *data = malloc(2*length);
3361         if (data != NULL)
3362         {
3363                 for (i = 0; i < length;i++)
3364                 {
3365                         int val;
3366                         val = buckets[i];
3367                         if (val > 65535)
3368                         {
3369                                 val = 65535;
3370                         }
3371                         data[i*2]=val&0xff;
3372                         data[i*2 + 1]=(val >> 8)&0xff;
3373                 }
3374                 free(buckets);
3375                 writeData(f, data, length * 2);
3376                 free(data);
3377         } else
3378         {
3379                 free(buckets);
3380         }
3381
3382         fclose(f);
3383 }
3384
3385 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3386  * which will be used as a random sampling of PC */
3387 COMMAND_HANDLER(handle_profile_command)
3388 {
3389         struct target *target = get_current_target(CMD_CTX);
3390         struct timeval timeout, now;
3391
3392         gettimeofday(&timeout, NULL);
3393         if (CMD_ARGC != 2)
3394         {
3395                 return ERROR_COMMAND_SYNTAX_ERROR;
3396         }
3397         unsigned offset;
3398         COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], offset);
3399
3400         timeval_add_time(&timeout, offset, 0);
3401
3402         /**
3403          * @todo: Some cores let us sample the PC without the
3404          * annoying halt/resume step; for example, ARMv7 PCSR.
3405          * Provide a way to use that more efficient mechanism.
3406          */
3407
3408         command_print(CMD_CTX, "Starting profiling. Halting and resuming the target as often as we can...");
3409
3410         static const int maxSample = 10000;
3411         uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
3412         if (samples == NULL)
3413                 return ERROR_OK;
3414
3415         int numSamples = 0;
3416         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
3417         struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
3418
3419         int retval = ERROR_OK;
3420         for (;;)
3421         {
3422                 target_poll(target);
3423                 if (target->state == TARGET_HALTED)
3424                 {
3425                         uint32_t t=*((uint32_t *)reg->value);
3426                         samples[numSamples++]=t;
3427                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3428                         target_poll(target);
3429                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
3430                 } else if (target->state == TARGET_RUNNING)
3431                 {
3432                         /* We want to quickly sample the PC. */
3433                         if ((retval = target_halt(target)) != ERROR_OK)
3434                         {
3435                                 free(samples);
3436                                 return retval;
3437                         }
3438                 } else
3439                 {
3440                         command_print(CMD_CTX, "Target not halted or running");
3441                         retval = ERROR_OK;
3442                         break;
3443                 }
3444                 if (retval != ERROR_OK)
3445                 {
3446                         break;
3447                 }
3448
3449                 gettimeofday(&now, NULL);
3450                 if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
3451                 {
3452                         command_print(CMD_CTX, "Profiling completed. %d samples.", numSamples);
3453                         if ((retval = target_poll(target)) != ERROR_OK)
3454                         {
3455                                 free(samples);
3456                                 return retval;
3457                         }
3458                         if (target->state == TARGET_HALTED)
3459                         {
3460                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3461                         }
3462                         if ((retval = target_poll(target)) != ERROR_OK)
3463                         {
3464                                 free(samples);
3465                                 return retval;
3466                         }
3467                         writeGmon(samples, numSamples, CMD_ARGV[1]);
3468                         command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3469                         break;
3470                 }
3471         }
3472         free(samples);
3473
3474         return retval;
3475 }
3476
3477 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t val)
3478 {
3479         char *namebuf;
3480         Jim_Obj *nameObjPtr, *valObjPtr;
3481         int result;
3482
3483         namebuf = alloc_printf("%s(%d)", varname, idx);
3484         if (!namebuf)
3485                 return JIM_ERR;
3486
3487         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3488         valObjPtr = Jim_NewIntObj(interp, val);
3489         if (!nameObjPtr || !valObjPtr)
3490         {
3491                 free(namebuf);
3492                 return JIM_ERR;
3493         }
3494
3495         Jim_IncrRefCount(nameObjPtr);
3496         Jim_IncrRefCount(valObjPtr);
3497         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3498         Jim_DecrRefCount(interp, nameObjPtr);
3499         Jim_DecrRefCount(interp, valObjPtr);
3500         free(namebuf);
3501         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3502         return result;
3503 }
3504
3505 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3506 {
3507         struct command_context *context;
3508         struct target *target;
3509
3510         context = current_command_context(interp);
3511         assert (context != NULL);
3512
3513         target = get_current_target(context);
3514         if (target == NULL)
3515         {
3516                 LOG_ERROR("mem2array: no current target");
3517                 return JIM_ERR;
3518         }
3519
3520         return  target_mem2array(interp, target, argc-1, argv + 1);
3521 }
3522
3523 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3524 {
3525         long l;
3526         uint32_t width;
3527         int len;
3528         uint32_t addr;
3529         uint32_t count;
3530         uint32_t v;
3531         const char *varname;
3532         int  n, e, retval;
3533         uint32_t i;
3534
3535         /* argv[1] = name of array to receive the data
3536          * argv[2] = desired width
3537          * argv[3] = memory address
3538          * argv[4] = count of times to read
3539          */
3540         if (argc != 4) {
3541                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3542                 return JIM_ERR;
3543         }
3544         varname = Jim_GetString(argv[0], &len);
3545         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3546
3547         e = Jim_GetLong(interp, argv[1], &l);
3548         width = l;
3549         if (e != JIM_OK) {
3550                 return e;
3551         }
3552
3553         e = Jim_GetLong(interp, argv[2], &l);
3554         addr = l;
3555         if (e != JIM_OK) {
3556                 return e;
3557         }
3558         e = Jim_GetLong(interp, argv[3], &l);
3559         len = l;
3560         if (e != JIM_OK) {
3561                 return e;
3562         }
3563         switch (width) {
3564                 case 8:
3565                         width = 1;
3566                         break;
3567                 case 16:
3568                         width = 2;
3569                         break;
3570                 case 32:
3571                         width = 4;
3572                         break;
3573                 default:
3574                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3575                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3576                         return JIM_ERR;
3577         }
3578         if (len == 0) {
3579                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3580                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3581                 return JIM_ERR;
3582         }
3583         if ((addr + (len * width)) < addr) {
3584                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3585                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3586                 return JIM_ERR;
3587         }
3588         /* absurd transfer size? */
3589         if (len > 65536) {
3590                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3591                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3592                 return JIM_ERR;
3593         }
3594
3595         if ((width == 1) ||
3596                 ((width == 2) && ((addr & 1) == 0)) ||
3597                 ((width == 4) && ((addr & 3) == 0))) {
3598                 /* all is well */
3599         } else {
3600                 char buf[100];
3601                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3602                 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3603                                 addr,
3604                                 width);
3605                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3606                 return JIM_ERR;
3607         }
3608
3609         /* Transfer loop */
3610
3611         /* index counter */
3612         n = 0;
3613
3614         size_t buffersize = 4096;
3615         uint8_t *buffer = malloc(buffersize);
3616         if (buffer == NULL)
3617                 return JIM_ERR;
3618
3619         /* assume ok */
3620         e = JIM_OK;
3621         while (len) {
3622                 /* Slurp... in buffer size chunks */
3623
3624                 count = len; /* in objects.. */
3625                 if (count > (buffersize/width)) {
3626                         count = (buffersize/width);
3627                 }
3628
3629                 retval = target_read_memory(target, addr, width, count, buffer);
3630                 if (retval != ERROR_OK) {
3631                         /* BOO !*/
3632                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3633                                           (unsigned int)addr,
3634                                           (int)width,
3635                                           (int)count);
3636                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3637                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3638                         e = JIM_ERR;
3639                         break;
3640                 } else {
3641                         v = 0; /* shut up gcc */
3642                         for (i = 0 ;i < count ;i++, n++) {
3643                                 switch (width) {
3644                                         case 4:
3645                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
3646                                                 break;
3647                                         case 2:
3648                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
3649                                                 break;
3650                                         case 1:
3651                                                 v = buffer[i] & 0x0ff;
3652                                                 break;
3653                                 }
3654                                 new_int_array_element(interp, varname, n, v);
3655                         }
3656                         len -= count;
3657                 }
3658         }
3659
3660         free(buffer);
3661
3662         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3663
3664         return e;
3665 }
3666
3667 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t *val)
3668 {
3669         char *namebuf;
3670         Jim_Obj *nameObjPtr, *valObjPtr;
3671         int result;
3672         long l;
3673
3674         namebuf = alloc_printf("%s(%d)", varname, idx);
3675         if (!namebuf)
3676                 return JIM_ERR;
3677
3678         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3679         if (!nameObjPtr)
3680         {
3681                 free(namebuf);
3682                 return JIM_ERR;
3683         }
3684
3685         Jim_IncrRefCount(nameObjPtr);
3686         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3687         Jim_DecrRefCount(interp, nameObjPtr);
3688         free(namebuf);
3689         if (valObjPtr == NULL)
3690                 return JIM_ERR;
3691
3692         result = Jim_GetLong(interp, valObjPtr, &l);
3693         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3694         *val = l;
3695         return result;
3696 }
3697
3698 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3699 {
3700         struct command_context *context;
3701         struct target *target;
3702
3703         context = current_command_context(interp);
3704         assert (context != NULL);
3705
3706         target = get_current_target(context);
3707         if (target == NULL) {
3708                 LOG_ERROR("array2mem: no current target");
3709                 return JIM_ERR;
3710         }
3711
3712         return target_array2mem(interp,target, argc-1, argv + 1);
3713 }
3714
3715 static int target_array2mem(Jim_Interp *interp, struct target *target,
3716                 int argc, Jim_Obj *const *argv)
3717 {
3718         long l;
3719         uint32_t width;
3720         int len;
3721         uint32_t addr;
3722         uint32_t count;
3723         uint32_t v;
3724         const char *varname;
3725         int  n, e, retval;
3726         uint32_t i;
3727
3728         /* argv[1] = name of array to get the data
3729          * argv[2] = desired width
3730          * argv[3] = memory address
3731          * argv[4] = count to write
3732          */
3733         if (argc != 4) {
3734                 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems");
3735                 return JIM_ERR;
3736         }
3737         varname = Jim_GetString(argv[0], &len);
3738         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3739
3740         e = Jim_GetLong(interp, argv[1], &l);
3741         width = l;
3742         if (e != JIM_OK) {
3743                 return e;
3744         }
3745
3746         e = Jim_GetLong(interp, argv[2], &l);
3747         addr = l;
3748         if (e != JIM_OK) {
3749                 return e;
3750         }
3751         e = Jim_GetLong(interp, argv[3], &l);
3752         len = l;
3753         if (e != JIM_OK) {
3754                 return e;
3755         }
3756         switch (width) {
3757                 case 8:
3758                         width = 1;
3759                         break;
3760                 case 16:
3761                         width = 2;
3762                         break;
3763                 case 32:
3764                         width = 4;
3765                         break;
3766                 default:
3767                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3768                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3769                         return JIM_ERR;
3770         }
3771         if (len == 0) {
3772                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3773                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
3774                 return JIM_ERR;
3775         }
3776         if ((addr + (len * width)) < addr) {
3777                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3778                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
3779                 return JIM_ERR;
3780         }
3781         /* absurd transfer size? */
3782         if (len > 65536) {
3783                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3784                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
3785                 return JIM_ERR;
3786         }
3787
3788         if ((width == 1) ||
3789                 ((width == 2) && ((addr & 1) == 0)) ||
3790                 ((width == 4) && ((addr & 3) == 0))) {
3791                 /* all is well */
3792         } else {
3793                 char buf[100];
3794                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3795                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
3796                                 (unsigned int)addr,
3797                                 (int)width);
3798                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3799                 return JIM_ERR;
3800         }
3801
3802         /* Transfer loop */
3803
3804         /* index counter */
3805         n = 0;
3806         /* assume ok */
3807         e = JIM_OK;
3808
3809         size_t buffersize = 4096;
3810         uint8_t *buffer = malloc(buffersize);
3811         if (buffer == NULL)
3812                 return JIM_ERR;
3813
3814         while (len) {
3815                 /* Slurp... in buffer size chunks */
3816
3817                 count = len; /* in objects.. */
3818                 if (count > (buffersize/width)) {
3819                         count = (buffersize/width);
3820                 }
3821
3822                 v = 0; /* shut up gcc */
3823                 for (i = 0 ;i < count ;i++, n++) {
3824                         get_int_array_element(interp, varname, n, &v);
3825                         switch (width) {
3826                         case 4:
3827                                 target_buffer_set_u32(target, &buffer[i*width], v);
3828                                 break;
3829                         case 2:
3830                                 target_buffer_set_u16(target, &buffer[i*width], v);
3831                                 break;
3832                         case 1:
3833                                 buffer[i] = v & 0x0ff;
3834                                 break;
3835                         }
3836                 }
3837                 len -= count;
3838
3839                 retval = target_write_memory(target, addr, width, count, buffer);
3840                 if (retval != ERROR_OK) {
3841                         /* BOO !*/
3842                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
3843                                           (unsigned int)addr,
3844                                           (int)width,
3845                                           (int)count);
3846                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3847                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3848                         e = JIM_ERR;
3849                         break;
3850                 }
3851         }
3852
3853         free(buffer);
3854
3855         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3856
3857         return e;
3858 }
3859
3860 /* FIX? should we propagate errors here rather than printing them
3861  * and continuing?
3862  */
3863 void target_handle_event(struct target *target, enum target_event e)
3864 {
3865         struct target_event_action *teap;
3866
3867         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3868                 if (teap->event == e) {
3869                         LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
3870                                            target->target_number,
3871                                            target_name(target),
3872                                            target_type_name(target),
3873                                            e,
3874                                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
3875                                            Jim_GetString(teap->body, NULL));
3876                         if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK)
3877                         {
3878                                 Jim_MakeErrorMessage(teap->interp);
3879                                 command_print(NULL,"%s\n", Jim_GetString(Jim_GetResult(teap->interp), NULL));
3880                         }
3881                 }
3882         }
3883 }
3884
3885 /**
3886  * Returns true only if the target has a handler for the specified event.
3887  */
3888 bool target_has_event_action(struct target *target, enum target_event event)
3889 {
3890         struct target_event_action *teap;
3891
3892         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3893                 if (teap->event == event)
3894                         return true;
3895         }
3896         return false;
3897 }
3898
3899 enum target_cfg_param {
3900         TCFG_TYPE,
3901         TCFG_EVENT,
3902         TCFG_WORK_AREA_VIRT,
3903         TCFG_WORK_AREA_PHYS,
3904         TCFG_WORK_AREA_SIZE,
3905         TCFG_WORK_AREA_BACKUP,
3906         TCFG_ENDIAN,
3907         TCFG_VARIANT,
3908         TCFG_COREID,
3909         TCFG_CHAIN_POSITION,
3910         TCFG_DBGBASE,
3911         TCFG_RTOS,
3912 };
3913
3914 static Jim_Nvp nvp_config_opts[] = {
3915         { .name = "-type",             .value = TCFG_TYPE },
3916         { .name = "-event",            .value = TCFG_EVENT },
3917         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
3918         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
3919         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
3920         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3921         { .name = "-endian" ,          .value = TCFG_ENDIAN },
3922         { .name = "-variant",          .value = TCFG_VARIANT },
3923         { .name = "-coreid",           .value = TCFG_COREID },
3924         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
3925         { .name = "-dbgbase",          .value = TCFG_DBGBASE },
3926         { .name = "-rtos",             .value = TCFG_RTOS },
3927         { .name = NULL, .value = -1 }
3928 };
3929
3930 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
3931 {
3932         Jim_Nvp *n;
3933         Jim_Obj *o;
3934         jim_wide w;
3935         char *cp;
3936         int e;
3937
3938         /* parse config or cget options ... */
3939         while (goi->argc > 0) {
3940                 Jim_SetEmptyResult(goi->interp);
3941                 /* Jim_GetOpt_Debug(goi); */
3942
3943                 if (target->type->target_jim_configure) {
3944                         /* target defines a configure function */
3945                         /* target gets first dibs on parameters */
3946                         e = (*(target->type->target_jim_configure))(target, goi);
3947                         if (e == JIM_OK) {
3948                                 /* more? */
3949                                 continue;
3950                         }
3951                         if (e == JIM_ERR) {
3952                                 /* An error */
3953                                 return e;
3954                         }
3955                         /* otherwise we 'continue' below */
3956                 }
3957                 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
3958                 if (e != JIM_OK) {
3959                         Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
3960                         return e;
3961                 }
3962                 switch (n->value) {
3963                 case TCFG_TYPE:
3964                         /* not setable */
3965                         if (goi->isconfigure) {
3966                                 Jim_SetResultFormatted(goi->interp,
3967                                                 "not settable: %s", n->name);
3968                                 return JIM_ERR;
3969                         } else {
3970                         no_params:
3971                                 if (goi->argc != 0) {
3972                                         Jim_WrongNumArgs(goi->interp,
3973                                                         goi->argc, goi->argv,
3974                                                         "NO PARAMS");
3975                                         return JIM_ERR;
3976                                 }
3977                         }
3978                         Jim_SetResultString(goi->interp,
3979                                         target_type_name(target), -1);
3980                         /* loop for more */
3981                         break;
3982                 case TCFG_EVENT:
3983                         if (goi->argc == 0) {
3984                                 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
3985                                 return JIM_ERR;
3986                         }
3987
3988                         e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
3989                         if (e != JIM_OK) {
3990                                 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
3991                                 return e;
3992                         }
3993
3994                         if (goi->isconfigure) {
3995                                 if (goi->argc != 1) {
3996                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
3997                                         return JIM_ERR;
3998                                 }
3999                         } else {
4000                                 if (goi->argc != 0) {
4001                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
4002                                         return JIM_ERR;
4003                                 }
4004                         }
4005
4006                         {
4007                                 struct target_event_action *teap;
4008
4009                                 teap = target->event_action;
4010                                 /* replace existing? */
4011                                 while (teap) {
4012                                         if (teap->event == (enum target_event)n->value) {
4013                                                 break;
4014                                         }
4015                                         teap = teap->next;
4016                                 }
4017
4018                                 if (goi->isconfigure) {
4019                                         bool replace = true;
4020                                         if (teap == NULL) {
4021                                                 /* create new */
4022                                                 teap = calloc(1, sizeof(*teap));
4023                                                 replace = false;
4024                                         }
4025                                         teap->event = n->value;
4026                                         teap->interp = goi->interp;
4027                                         Jim_GetOpt_Obj(goi, &o);
4028                                         if (teap->body) {
4029                                                 Jim_DecrRefCount(teap->interp, teap->body);
4030                                         }
4031                                         teap->body  = Jim_DuplicateObj(goi->interp, o);
4032                                         /*
4033                                          * FIXME:
4034                                          *     Tcl/TK - "tk events" have a nice feature.
4035                                          *     See the "BIND" command.
4036                                          *    We should support that here.
4037                                          *     You can specify %X and %Y in the event code.
4038                                          *     The idea is: %T - target name.
4039                                          *     The idea is: %N - target number
4040                                          *     The idea is: %E - event name.
4041                                          */
4042                                         Jim_IncrRefCount(teap->body);
4043
4044                                         if (!replace)
4045                                         {
4046                                                 /* add to head of event list */
4047                                                 teap->next = target->event_action;
4048                                                 target->event_action = teap;
4049                                         }
4050                                         Jim_SetEmptyResult(goi->interp);
4051                                 } else {
4052                                         /* get */
4053                                         if (teap == NULL) {
4054                                                 Jim_SetEmptyResult(goi->interp);
4055                                         } else {
4056                                                 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
4057                                         }
4058                                 }
4059                         }
4060                         /* loop for more */
4061                         break;
4062
4063                 case TCFG_WORK_AREA_VIRT:
4064                         if (goi->isconfigure) {
4065                                 target_free_all_working_areas(target);
4066                                 e = Jim_GetOpt_Wide(goi, &w);
4067                                 if (e != JIM_OK) {
4068                                         return e;
4069                                 }
4070                                 target->working_area_virt = w;
4071                                 target->working_area_virt_spec = true;
4072                         } else {
4073                                 if (goi->argc != 0) {
4074                                         goto no_params;
4075                                 }
4076                         }
4077                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
4078                         /* loop for more */
4079                         break;
4080
4081                 case TCFG_WORK_AREA_PHYS:
4082                         if (goi->isconfigure) {
4083                                 target_free_all_working_areas(target);
4084                                 e = Jim_GetOpt_Wide(goi, &w);
4085                                 if (e != JIM_OK) {
4086                                         return e;
4087                                 }
4088                                 target->working_area_phys = w;
4089                                 target->working_area_phys_spec = true;
4090                         } else {
4091                                 if (goi->argc != 0) {
4092                                         goto no_params;
4093                                 }
4094                         }
4095                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
4096                         /* loop for more */
4097                         break;
4098
4099                 case TCFG_WORK_AREA_SIZE:
4100                         if (goi->isconfigure) {
4101                                 target_free_all_working_areas(target);
4102                                 e = Jim_GetOpt_Wide(goi, &w);
4103                                 if (e != JIM_OK) {
4104                                         return e;
4105                                 }
4106                                 target->working_area_size = w;
4107                         } else {
4108                                 if (goi->argc != 0) {
4109                                         goto no_params;
4110                                 }
4111                         }
4112                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4113                         /* loop for more */
4114                         break;
4115
4116                 case TCFG_WORK_AREA_BACKUP:
4117                         if (goi->isconfigure) {
4118                                 target_free_all_working_areas(target);
4119                                 e = Jim_GetOpt_Wide(goi, &w);
4120                                 if (e != JIM_OK) {
4121                                         return e;
4122                                 }
4123                                 /* make this exactly 1 or 0 */
4124                                 target->backup_working_area = (!!w);
4125                         } else {
4126                                 if (goi->argc != 0) {
4127                                         goto no_params;
4128                                 }
4129                         }
4130                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
4131                         /* loop for more e*/
4132                         break;
4133
4134
4135                 case TCFG_ENDIAN:
4136                         if (goi->isconfigure) {
4137                                 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
4138                                 if (e != JIM_OK) {
4139                                         Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
4140                                         return e;
4141                                 }
4142                                 target->endianness = n->value;
4143                         } else {
4144                                 if (goi->argc != 0) {
4145                                         goto no_params;
4146                                 }
4147                         }
4148                         n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4149                         if (n->name == NULL) {
4150                                 target->endianness = TARGET_LITTLE_ENDIAN;
4151                                 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4152                         }
4153                         Jim_SetResultString(goi->interp, n->name, -1);
4154                         /* loop for more */
4155                         break;
4156
4157                 case TCFG_VARIANT:
4158                         if (goi->isconfigure) {
4159                                 if (goi->argc < 1) {
4160                                         Jim_SetResultFormatted(goi->interp,
4161                                                                                    "%s ?STRING?",
4162                                                                                    n->name);
4163                                         return JIM_ERR;
4164                                 }
4165                                 if (target->variant) {
4166                                         free((void *)(target->variant));
4167                                 }
4168                                 e = Jim_GetOpt_String(goi, &cp, NULL);
4169                                 if (e != JIM_OK)
4170                                         return e;
4171                                 target->variant = strdup(cp);
4172                         } else {
4173                                 if (goi->argc != 0) {
4174                                         goto no_params;
4175                                 }
4176                         }
4177                         Jim_SetResultString(goi->interp, target->variant,-1);
4178                         /* loop for more */
4179                         break;
4180
4181                 case TCFG_COREID:
4182                         if (goi->isconfigure) {
4183                                 e = Jim_GetOpt_Wide(goi, &w);
4184                                 if (e != JIM_OK) {
4185                                         return e;
4186                                 }
4187                                 target->coreid = (int32_t)w;
4188                         } else {
4189                                 if (goi->argc != 0) {
4190                                         goto no_params;
4191                                 }
4192                         }
4193                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4194                         /* loop for more */
4195                         break;
4196
4197                 case TCFG_CHAIN_POSITION:
4198                         if (goi->isconfigure) {
4199                                 Jim_Obj *o_t;
4200                                 struct jtag_tap *tap;
4201                                 target_free_all_working_areas(target);
4202                                 e = Jim_GetOpt_Obj(goi, &o_t);
4203                                 if (e != JIM_OK) {
4204                                         return e;
4205                                 }
4206                                 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
4207                                 if (tap == NULL) {
4208                                         return JIM_ERR;
4209                                 }
4210                                 /* make this exactly 1 or 0 */
4211                                 target->tap = tap;
4212                         } else {
4213                                 if (goi->argc != 0) {
4214                                         goto no_params;
4215                                 }
4216                         }
4217                         Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
4218                         /* loop for more e*/
4219                         break;
4220                 case TCFG_DBGBASE:
4221                         if (goi->isconfigure) {
4222                                 e = Jim_GetOpt_Wide(goi, &w);
4223                                 if (e != JIM_OK) {
4224                                         return e;
4225                                 }
4226                                 target->dbgbase = (uint32_t)w;
4227                                 target->dbgbase_set = true;
4228                         } else {
4229                                 if (goi->argc != 0) {
4230                                         goto no_params;
4231                                 }
4232                         }
4233                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
4234                         /* loop for more */
4235                         break;
4236
4237                 case TCFG_RTOS:
4238                         /* RTOS */
4239                         {
4240                                 int result = rtos_create( goi, target );
4241                                 if ( result != JIM_OK )
4242                                 {
4243                                         return result;
4244                                 }
4245                         }
4246                         /* loop for more */
4247                         break;
4248                 }
4249         } /* while (goi->argc) */
4250
4251
4252                 /* done - we return */
4253         return JIM_OK;
4254 }
4255
4256 static int
4257 jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4258 {
4259         Jim_GetOptInfo goi;
4260
4261         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4262         goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
4263         int need_args = 1 + goi.isconfigure;
4264         if (goi.argc < need_args)
4265         {
4266                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4267                         goi.isconfigure
4268                                 ? "missing: -option VALUE ..."
4269                                 : "missing: -option ...");
4270                 return JIM_ERR;
4271         }
4272         struct target *target = Jim_CmdPrivData(goi.interp);
4273         return target_configure(&goi, target);
4274 }
4275
4276 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4277 {
4278         const char *cmd_name = Jim_GetString(argv[0], NULL);
4279
4280         Jim_GetOptInfo goi;
4281         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4282
4283         if (goi.argc < 2 || goi.argc > 4)
4284         {
4285                 Jim_SetResultFormatted(goi.interp,
4286                                 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
4287                 return JIM_ERR;
4288         }
4289
4290         target_write_fn fn;
4291         fn = target_write_memory_fast;
4292
4293         int e;
4294         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0)
4295         {
4296                 /* consume it */
4297                 struct Jim_Obj *obj;
4298                 e = Jim_GetOpt_Obj(&goi, &obj);
4299                 if (e != JIM_OK)
4300                         return e;
4301
4302                 fn = target_write_phys_memory;
4303         }
4304
4305         jim_wide a;
4306         e = Jim_GetOpt_Wide(&goi, &a);
4307         if (e != JIM_OK)
4308                 return e;
4309
4310         jim_wide b;
4311         e = Jim_GetOpt_Wide(&goi, &b);
4312         if (e != JIM_OK)
4313                 return e;
4314
4315         jim_wide c = 1;
4316         if (goi.argc == 1)
4317         {
4318                 e = Jim_GetOpt_Wide(&goi, &c);
4319                 if (e != JIM_OK)
4320                         return e;
4321         }
4322
4323         /* all args must be consumed */
4324         if (goi.argc != 0)
4325         {
4326                 return JIM_ERR;
4327         }
4328
4329         struct target *target = Jim_CmdPrivData(goi.interp);
4330         unsigned data_size;
4331         if (strcasecmp(cmd_name, "mww") == 0) {
4332                 data_size = 4;
4333         }
4334         else if (strcasecmp(cmd_name, "mwh") == 0) {
4335                 data_size = 2;
4336         }
4337         else if (strcasecmp(cmd_name, "mwb") == 0) {
4338                 data_size = 1;
4339         } else {
4340                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4341                 return JIM_ERR;
4342         }
4343
4344         return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4345 }
4346
4347 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4348 {
4349         const char *cmd_name = Jim_GetString(argv[0], NULL);
4350
4351         Jim_GetOptInfo goi;
4352         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4353
4354         if ((goi.argc < 1) || (goi.argc > 3))
4355         {
4356                 Jim_SetResultFormatted(goi.interp,
4357                                 "usage: %s [phys] <address> [<count>]", cmd_name);
4358                 return JIM_ERR;
4359         }
4360
4361         int (*fn)(struct target *target,
4362                         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
4363         fn=target_read_memory;
4364
4365         int e;
4366         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0)
4367         {
4368                 /* consume it */
4369                 struct Jim_Obj *obj;
4370                 e = Jim_GetOpt_Obj(&goi, &obj);
4371                 if (e != JIM_OK)
4372                         return e;
4373
4374                 fn=target_read_phys_memory;
4375         }
4376
4377         jim_wide a;
4378         e = Jim_GetOpt_Wide(&goi, &a);
4379         if (e != JIM_OK) {
4380                 return JIM_ERR;
4381         }
4382         jim_wide c;
4383         if (goi.argc == 1) {
4384                 e = Jim_GetOpt_Wide(&goi, &c);
4385                 if (e != JIM_OK) {
4386                         return JIM_ERR;
4387                 }
4388         } else {
4389                 c = 1;
4390         }
4391
4392         /* all args must be consumed */
4393         if (goi.argc != 0)
4394         {
4395                 return JIM_ERR;
4396         }
4397
4398         jim_wide b = 1; /* shut up gcc */
4399         if (strcasecmp(cmd_name, "mdw") == 0)
4400                 b = 4;
4401         else if (strcasecmp(cmd_name, "mdh") == 0)
4402                 b = 2;
4403         else if (strcasecmp(cmd_name, "mdb") == 0)
4404                 b = 1;
4405         else {
4406                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4407                 return JIM_ERR;
4408         }
4409
4410         /* convert count to "bytes" */
4411         c = c * b;
4412
4413         struct target *target = Jim_CmdPrivData(goi.interp);
4414         uint8_t  target_buf[32];
4415         jim_wide x, y, z;
4416         while (c > 0) {
4417                 y = c;
4418                 if (y > 16) {
4419                         y = 16;
4420                 }
4421                 e = fn(target, a, b, y / b, target_buf);
4422                 if (e != ERROR_OK) {
4423                         char tmp[10];
4424                         snprintf(tmp, sizeof(tmp), "%08lx", (long)a);
4425                         Jim_SetResultFormatted(interp, "error reading target @ 0x%s", tmp);
4426                         return JIM_ERR;
4427                 }
4428
4429                 command_print(NULL, "0x%08x ", (int)(a));
4430                 switch (b) {
4431                 case 4:
4432                         for (x = 0; x < 16 && x < y; x += 4)
4433                         {
4434                                 z = target_buffer_get_u32(target, &(target_buf[ x ]));
4435                                 command_print(NULL, "%08x ", (int)(z));
4436                         }
4437                         for (; (x < 16) ; x += 4) {
4438                                 command_print(NULL, "         ");
4439                         }
4440                         break;
4441                 case 2:
4442                         for (x = 0; x < 16 && x < y; x += 2)
4443                         {
4444                                 z = target_buffer_get_u16(target, &(target_buf[ x ]));
4445                                 command_print(NULL, "%04x ", (int)(z));
4446                         }
4447                         for (; (x < 16) ; x += 2) {
4448                                 command_print(NULL, "     ");
4449                         }
4450                         break;
4451                 case 1:
4452                 default:
4453                         for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4454                                 z = target_buffer_get_u8(target, &(target_buf[ x ]));
4455                                 command_print(NULL, "%02x ", (int)(z));
4456                         }
4457                         for (; (x < 16) ; x += 1) {
4458                                 command_print(NULL, "   ");
4459                         }
4460                         break;
4461                 }
4462                 /* ascii-ify the bytes */
4463                 for (x = 0 ; x < y ; x++) {
4464                         if ((target_buf[x] >= 0x20) &&
4465                                 (target_buf[x] <= 0x7e)) {
4466                                 /* good */
4467                         } else {
4468                                 /* smack it */
4469                                 target_buf[x] = '.';
4470                         }
4471                 }
4472                 /* space pad  */
4473                 while (x < 16) {
4474                         target_buf[x] = ' ';
4475                         x++;
4476                 }
4477                 /* terminate */
4478                 target_buf[16] = 0;
4479                 /* print - with a newline */
4480                 command_print(NULL, "%s\n", target_buf);
4481                 /* NEXT... */
4482                 c -= 16;
4483                 a += 16;
4484         }
4485         return JIM_OK;
4486 }
4487
4488 static int jim_target_mem2array(Jim_Interp *interp,
4489                 int argc, Jim_Obj *const *argv)
4490 {
4491         struct target *target = Jim_CmdPrivData(interp);
4492         return target_mem2array(interp, target, argc - 1, argv + 1);
4493 }
4494
4495 static int jim_target_array2mem(Jim_Interp *interp,
4496                 int argc, Jim_Obj *const *argv)
4497 {
4498         struct target *target = Jim_CmdPrivData(interp);
4499         return target_array2mem(interp, target, argc - 1, argv + 1);
4500 }
4501
4502 static int jim_target_tap_disabled(Jim_Interp *interp)
4503 {
4504         Jim_SetResultFormatted(interp, "[TAP is disabled]");
4505         return JIM_ERR;
4506 }
4507
4508 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4509 {
4510         if (argc != 1)
4511         {
4512                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4513                 return JIM_ERR;
4514         }
4515         struct target *target = Jim_CmdPrivData(interp);
4516         if (!target->tap->enabled)
4517                 return jim_target_tap_disabled(interp);
4518
4519         int e = target->type->examine(target);
4520         if (e != ERROR_OK)
4521         {
4522                 return JIM_ERR;
4523         }
4524         return JIM_OK;
4525 }
4526
4527 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4528 {
4529         if (argc != 1)
4530         {
4531                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4532                 return JIM_ERR;
4533         }
4534         struct target *target = Jim_CmdPrivData(interp);
4535
4536         if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
4537                 return JIM_ERR;
4538
4539         return JIM_OK;
4540 }
4541
4542 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4543 {
4544         if (argc != 1)
4545         {
4546                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4547                 return JIM_ERR;
4548         }
4549         struct target *target = Jim_CmdPrivData(interp);
4550         if (!target->tap->enabled)
4551                 return jim_target_tap_disabled(interp);
4552
4553         int e;
4554         if (!(target_was_examined(target))) {
4555                 e = ERROR_TARGET_NOT_EXAMINED;
4556         } else {
4557                 e = target->type->poll(target);
4558         }
4559         if (e != ERROR_OK)
4560         {
4561                 return JIM_ERR;
4562         }
4563         return JIM_OK;
4564 }
4565
4566 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4567 {
4568         Jim_GetOptInfo goi;
4569         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4570
4571         if (goi.argc != 2)
4572         {
4573                 Jim_WrongNumArgs(interp, 0, argv,
4574                                 "([tT]|[fF]|assert|deassert) BOOL");
4575                 return JIM_ERR;
4576         }
4577
4578         Jim_Nvp *n;
4579         int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4580         if (e != JIM_OK)
4581         {
4582                 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4583                 return e;
4584         }
4585         /* the halt or not param */
4586         jim_wide a;
4587         e = Jim_GetOpt_Wide(&goi, &a);
4588         if (e != JIM_OK)
4589                 return e;
4590
4591         struct target *target = Jim_CmdPrivData(goi.interp);
4592         if (!target->tap->enabled)
4593                 return jim_target_tap_disabled(interp);
4594         if (!(target_was_examined(target)))
4595         {
4596                 LOG_ERROR("Target not examined yet");
4597                 return ERROR_TARGET_NOT_EXAMINED;
4598         }
4599         if (!target->type->assert_reset || !target->type->deassert_reset)
4600         {
4601                 Jim_SetResultFormatted(interp,
4602                                 "No target-specific reset for %s",
4603                                 target_name(target));
4604                 return JIM_ERR;
4605         }
4606         /* determine if we should halt or not. */
4607         target->reset_halt = !!a;
4608         /* When this happens - all workareas are invalid. */
4609         target_free_all_working_areas_restore(target, 0);
4610
4611         /* do the assert */
4612         if (n->value == NVP_ASSERT) {
4613                 e = target->type->assert_reset(target);
4614         } else {
4615                 e = target->type->deassert_reset(target);
4616         }
4617         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4618 }
4619
4620 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4621 {
4622         if (argc != 1) {
4623                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4624                 return JIM_ERR;
4625         }
4626         struct target *target = Jim_CmdPrivData(interp);
4627         if (!target->tap->enabled)
4628                 return jim_target_tap_disabled(interp);
4629         int e = target->type->halt(target);
4630         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4631 }
4632
4633 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4634 {
4635         Jim_GetOptInfo goi;
4636         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4637
4638         /* params:  <name>  statename timeoutmsecs */
4639         if (goi.argc != 2)
4640         {
4641                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4642                 Jim_SetResultFormatted(goi.interp,
4643                                 "%s <state_name> <timeout_in_msec>", cmd_name);
4644                 return JIM_ERR;
4645         }
4646
4647         Jim_Nvp *n;
4648         int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4649         if (e != JIM_OK) {
4650                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state,1);
4651                 return e;
4652         }
4653         jim_wide a;
4654         e = Jim_GetOpt_Wide(&goi, &a);
4655         if (e != JIM_OK) {
4656                 return e;
4657         }
4658         struct target *target = Jim_CmdPrivData(interp);
4659         if (!target->tap->enabled)
4660                 return jim_target_tap_disabled(interp);
4661
4662         e = target_wait_state(target, n->value, a);
4663         if (e != ERROR_OK)
4664         {
4665                 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
4666                 Jim_SetResultFormatted(goi.interp,
4667                                 "target: %s wait %s fails (%#s) %s",
4668                                 target_name(target), n->name,
4669                                 eObj, target_strerror_safe(e));
4670                 Jim_FreeNewObj(interp, eObj);
4671                 return JIM_ERR;
4672         }
4673         return JIM_OK;
4674 }
4675 /* List for human, Events defined for this target.
4676  * scripts/programs should use 'name cget -event NAME'
4677  */
4678 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4679 {
4680         struct command_context *cmd_ctx = current_command_context(interp);
4681         assert (cmd_ctx != NULL);
4682
4683         struct target *target = Jim_CmdPrivData(interp);
4684         struct target_event_action *teap = target->event_action;
4685         command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4686                                    target->target_number,
4687                                    target_name(target));
4688         command_print(cmd_ctx, "%-25s | Body", "Event");
4689         command_print(cmd_ctx, "------------------------- | "
4690                         "----------------------------------------");
4691         while (teap)
4692         {
4693                 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
4694                 command_print(cmd_ctx, "%-25s | %s",
4695                                 opt->name, Jim_GetString(teap->body, NULL));
4696                 teap = teap->next;
4697         }
4698         command_print(cmd_ctx, "***END***");
4699         return JIM_OK;
4700 }
4701 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4702 {
4703         if (argc != 1)
4704         {
4705                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4706                 return JIM_ERR;
4707         }
4708         struct target *target = Jim_CmdPrivData(interp);
4709         Jim_SetResultString(interp, target_state_name(target), -1);
4710         return JIM_OK;
4711 }
4712 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4713 {
4714         Jim_GetOptInfo goi;
4715         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4716         if (goi.argc != 1)
4717         {
4718                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4719                 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
4720                 return JIM_ERR;
4721         }
4722         Jim_Nvp *n;
4723         int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4724         if (e != JIM_OK)
4725         {
4726                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4727                 return e;
4728         }
4729         struct target *target = Jim_CmdPrivData(interp);
4730         target_handle_event(target, n->value);
4731         return JIM_OK;
4732 }
4733
4734 static const struct command_registration target_instance_command_handlers[] = {
4735         {
4736                 .name = "configure",
4737                 .mode = COMMAND_CONFIG,
4738                 .jim_handler = jim_target_configure,
4739                 .help  = "configure a new target for use",
4740                 .usage = "[target_attribute ...]",
4741         },
4742         {
4743                 .name = "cget",
4744                 .mode = COMMAND_ANY,
4745                 .jim_handler = jim_target_configure,
4746                 .help  = "returns the specified target attribute",
4747                 .usage = "target_attribute",
4748         },
4749         {
4750                 .name = "mww",
4751                 .mode = COMMAND_EXEC,
4752                 .jim_handler = jim_target_mw,
4753                 .help = "Write 32-bit word(s) to target memory",
4754                 .usage = "address data [count]",
4755         },
4756         {
4757                 .name = "mwh",
4758                 .mode = COMMAND_EXEC,
4759                 .jim_handler = jim_target_mw,
4760                 .help = "Write 16-bit half-word(s) to target memory",
4761                 .usage = "address data [count]",
4762         },
4763         {
4764                 .name = "mwb",
4765                 .mode = COMMAND_EXEC,
4766                 .jim_handler = jim_target_mw,
4767                 .help = "Write byte(s) to target memory",
4768                 .usage = "address data [count]",
4769         },
4770         {
4771                 .name = "mdw",
4772                 .mode = COMMAND_EXEC,
4773                 .jim_handler = jim_target_md,
4774                 .help = "Display target memory as 32-bit words",
4775                 .usage = "address [count]",
4776         },
4777         {
4778                 .name = "mdh",
4779                 .mode = COMMAND_EXEC,
4780                 .jim_handler = jim_target_md,
4781                 .help = "Display target memory as 16-bit half-words",
4782                 .usage = "address [count]",
4783         },
4784         {
4785                 .name = "mdb",
4786                 .mode = COMMAND_EXEC,
4787                 .jim_handler = jim_target_md,
4788                 .help = "Display target memory as 8-bit bytes",
4789                 .usage = "address [count]",
4790         },
4791         {
4792                 .name = "array2mem",
4793                 .mode = COMMAND_EXEC,
4794                 .jim_handler = jim_target_array2mem,
4795                 .help = "Writes Tcl array of 8/16/32 bit numbers "
4796                         "to target memory",
4797                 .usage = "arrayname bitwidth address count",
4798         },
4799         {
4800                 .name = "mem2array",
4801                 .mode = COMMAND_EXEC,
4802                 .jim_handler = jim_target_mem2array,
4803                 .help = "Loads Tcl array of 8/16/32 bit numbers "
4804                         "from target memory",
4805                 .usage = "arrayname bitwidth address count",
4806         },
4807         {
4808                 .name = "eventlist",
4809                 .mode = COMMAND_EXEC,
4810                 .jim_handler = jim_target_event_list,
4811                 .help = "displays a table of events defined for this target",
4812         },
4813         {
4814                 .name = "curstate",
4815                 .mode = COMMAND_EXEC,
4816                 .jim_handler = jim_target_current_state,
4817                 .help = "displays the current state of this target",
4818         },
4819         {
4820                 .name = "arp_examine",
4821                 .mode = COMMAND_EXEC,
4822                 .jim_handler = jim_target_examine,
4823                 .help = "used internally for reset processing",
4824         },
4825         {
4826                 .name = "arp_halt_gdb",
4827                 .mode = COMMAND_EXEC,
4828                 .jim_handler = jim_target_halt_gdb,
4829                 .help = "used internally for reset processing to halt GDB",
4830         },
4831         {
4832                 .name = "arp_poll",
4833                 .mode = COMMAND_EXEC,
4834                 .jim_handler = jim_target_poll,
4835                 .help = "used internally for reset processing",
4836         },
4837         {
4838                 .name = "arp_reset",
4839                 .mode = COMMAND_EXEC,
4840                 .jim_handler = jim_target_reset,
4841                 .help = "used internally for reset processing",
4842         },
4843         {
4844                 .name = "arp_halt",
4845                 .mode = COMMAND_EXEC,
4846                 .jim_handler = jim_target_halt,
4847                 .help = "used internally for reset processing",
4848         },
4849         {
4850                 .name = "arp_waitstate",
4851                 .mode = COMMAND_EXEC,
4852                 .jim_handler = jim_target_wait_state,
4853                 .help = "used internally for reset processing",
4854         },
4855         {
4856                 .name = "invoke-event",
4857                 .mode = COMMAND_EXEC,
4858                 .jim_handler = jim_target_invoke_event,
4859                 .help = "invoke handler for specified event",
4860                 .usage = "event_name",
4861         },
4862         COMMAND_REGISTRATION_DONE
4863 };
4864
4865 static int target_create(Jim_GetOptInfo *goi)
4866 {
4867         Jim_Obj *new_cmd;
4868         Jim_Cmd *cmd;
4869         const char *cp;
4870         char *cp2;
4871         int e;
4872         int x;
4873         struct target *target;
4874         struct command_context *cmd_ctx;
4875
4876         cmd_ctx = current_command_context(goi->interp);
4877         assert (cmd_ctx != NULL);
4878
4879         if (goi->argc < 3) {
4880                 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
4881                 return JIM_ERR;
4882         }
4883
4884         /* COMMAND */
4885         Jim_GetOpt_Obj(goi, &new_cmd);
4886         /* does this command exist? */
4887         cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
4888         if (cmd) {
4889                 cp = Jim_GetString(new_cmd, NULL);
4890                 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
4891                 return JIM_ERR;
4892         }
4893
4894         /* TYPE */
4895         e = Jim_GetOpt_String(goi, &cp2, NULL);
4896         if (e != JIM_OK)
4897                 return e;
4898         cp = cp2;
4899         /* now does target type exist */
4900         for (x = 0 ; target_types[x] ; x++) {
4901                 if (0 == strcmp(cp, target_types[x]->name)) {
4902                         /* found */
4903                         break;
4904                 }
4905         }
4906         if (target_types[x] == NULL) {
4907                 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
4908                 for (x = 0 ; target_types[x] ; x++) {
4909                         if (target_types[x + 1]) {
4910                                 Jim_AppendStrings(goi->interp,
4911                                                                    Jim_GetResult(goi->interp),
4912                                                                    target_types[x]->name,
4913                                                                    ", ", NULL);
4914                         } else {
4915                                 Jim_AppendStrings(goi->interp,
4916                                                                    Jim_GetResult(goi->interp),
4917                                                                    " or ",
4918                                                                    target_types[x]->name,NULL);
4919                         }
4920                 }
4921                 return JIM_ERR;
4922         }
4923
4924         /* Create it */
4925         target = calloc(1,sizeof(struct target));
4926         /* set target number */
4927         target->target_number = new_target_number();
4928
4929         /* allocate memory for each unique target type */
4930         target->type = (struct target_type*)calloc(1,sizeof(struct target_type));
4931
4932         memcpy(target->type, target_types[x], sizeof(struct target_type));
4933
4934         /* will be set by "-endian" */
4935         target->endianness = TARGET_ENDIAN_UNKNOWN;
4936
4937         /* default to first core, override with -coreid */
4938         target->coreid = 0;
4939
4940         target->working_area        = 0x0;
4941         target->working_area_size   = 0x0;
4942         target->working_areas       = NULL;
4943         target->backup_working_area = 0;
4944
4945         target->state               = TARGET_UNKNOWN;
4946         target->debug_reason        = DBG_REASON_UNDEFINED;
4947         target->reg_cache           = NULL;
4948         target->breakpoints         = NULL;
4949         target->watchpoints         = NULL;
4950         target->next                = NULL;
4951         target->arch_info           = NULL;
4952
4953         target->display             = 1;
4954
4955         target->halt_issued                     = false;
4956
4957         /* initialize trace information */
4958         target->trace_info = malloc(sizeof(struct trace));
4959         target->trace_info->num_trace_points         = 0;
4960         target->trace_info->trace_points_size        = 0;
4961         target->trace_info->trace_points             = NULL;
4962         target->trace_info->trace_history_size       = 0;
4963         target->trace_info->trace_history            = NULL;
4964         target->trace_info->trace_history_pos        = 0;
4965         target->trace_info->trace_history_overflowed = 0;
4966
4967         target->dbgmsg          = NULL;
4968         target->dbg_msg_enabled = 0;
4969
4970         target->endianness = TARGET_ENDIAN_UNKNOWN;
4971
4972         target->rtos = NULL;
4973         target->rtos_auto_detect = false;
4974
4975         /* Do the rest as "configure" options */
4976         goi->isconfigure = 1;
4977         e = target_configure(goi, target);
4978
4979         if (target->tap == NULL)
4980         {
4981                 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
4982                 e = JIM_ERR;
4983         }
4984
4985         if (e != JIM_OK) {
4986                 free(target->type);
4987                 free(target);
4988                 return e;
4989         }
4990
4991         if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
4992                 /* default endian to little if not specified */
4993                 target->endianness = TARGET_LITTLE_ENDIAN;
4994         }
4995
4996         /* incase variant is not set */
4997         if (!target->variant)
4998                 target->variant = strdup("");
4999
5000         cp = Jim_GetString(new_cmd, NULL);
5001         target->cmd_name = strdup(cp);
5002
5003         /* create the target specific commands */
5004         if (target->type->commands) {
5005                 e = register_commands(cmd_ctx, NULL, target->type->commands);
5006                 if (ERROR_OK != e)
5007                         LOG_ERROR("unable to register '%s' commands", cp);
5008         }
5009         if (target->type->target_create) {
5010                 (*(target->type->target_create))(target, goi->interp);
5011         }
5012
5013         /* append to end of list */
5014         {
5015                 struct target **tpp;
5016                 tpp = &(all_targets);
5017                 while (*tpp) {
5018                         tpp = &((*tpp)->next);
5019                 }
5020                 *tpp = target;
5021         }
5022
5023         /* now - create the new target name command */
5024         const const struct command_registration target_subcommands[] = {
5025                 {
5026                         .chain = target_instance_command_handlers,
5027                 },
5028                 {
5029                         .chain = target->type->commands,
5030                 },
5031                 COMMAND_REGISTRATION_DONE
5032         };
5033         const const struct command_registration target_commands[] = {
5034                 {
5035                         .name = cp,
5036                         .mode = COMMAND_ANY,
5037                         .help = "target command group",
5038                         .chain = target_subcommands,
5039                 },
5040                 COMMAND_REGISTRATION_DONE
5041         };
5042         e = register_commands(cmd_ctx, NULL, target_commands);
5043         if (ERROR_OK != e)
5044                 return JIM_ERR;
5045
5046         struct command *c = command_find_in_context(cmd_ctx, cp);
5047         assert(c);
5048         command_set_handler_data(c, target);
5049
5050         return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
5051 }
5052
5053 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5054 {
5055         if (argc != 1)
5056         {
5057                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5058                 return JIM_ERR;
5059         }
5060         struct command_context *cmd_ctx = current_command_context(interp);
5061         assert (cmd_ctx != NULL);
5062
5063         Jim_SetResultString(interp, get_current_target(cmd_ctx)->cmd_name, -1);
5064         return JIM_OK;
5065 }
5066
5067 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5068 {
5069         if (argc != 1)
5070         {
5071                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5072                 return JIM_ERR;
5073         }
5074         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5075         for (unsigned x = 0; NULL != target_types[x]; x++)
5076         {
5077                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5078                         Jim_NewStringObj(interp, target_types[x]->name, -1));
5079         }
5080         return JIM_OK;
5081 }
5082
5083 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5084 {
5085         if (argc != 1)
5086         {
5087                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5088                 return JIM_ERR;
5089         }
5090         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5091         struct target *target = all_targets;
5092         while (target)
5093         {
5094                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5095                         Jim_NewStringObj(interp, target_name(target), -1));
5096                 target = target->next;
5097         }
5098         return JIM_OK;
5099 }
5100
5101 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5102 {
5103         int i;
5104         const char *targetname;
5105         int retval,len;
5106         struct target *target;
5107         struct target_list *head, *curr;
5108     curr = (struct target_list*) NULL;
5109         head = (struct target_list*) NULL;
5110         
5111         retval = 0;
5112         LOG_DEBUG("%d",argc);
5113         /* argv[1] = target to associate in smp
5114          * argv[2] = target to assoicate in smp
5115          * argv[3] ...
5116          */
5117
5118         for(i=1;i<argc;i++)
5119         {
5120
5121                 targetname = Jim_GetString(argv[i], &len);
5122                 target = get_target(targetname);
5123                 LOG_DEBUG("%s ",targetname);
5124                 if (target)
5125                 {
5126                         struct target_list *new;
5127                         new=malloc(sizeof(struct target_list));
5128                         new->target = target;
5129                         new->next = (struct target_list*)NULL;
5130                         if (head == (struct target_list*)NULL)
5131                         {
5132                                 head = new;
5133                                 curr = head;
5134                         }
5135                         else
5136                         {
5137                                 curr->next = new;
5138                                 curr = new;
5139                         }
5140                 }
5141         }
5142     /*  now parse the list of cpu and put the target in smp mode*/
5143         curr=head;
5144
5145     while(curr!=(struct target_list *)NULL)
5146         {
5147     target=curr->target;
5148         target->smp = 1;
5149         target->head = head;
5150         curr=curr->next;
5151         }
5152         return retval;
5153 }
5154
5155
5156 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5157 {
5158         Jim_GetOptInfo goi;
5159         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5160         if (goi.argc < 3)
5161         {
5162                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5163                         "<name> <target_type> [<target_options> ...]");
5164                 return JIM_ERR;
5165         }
5166         return target_create(&goi);
5167 }
5168
5169 static int jim_target_number(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5170 {
5171         Jim_GetOptInfo goi;
5172         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5173
5174         /* It's OK to remove this mechanism sometime after August 2010 or so */
5175         LOG_WARNING("don't use numbers as target identifiers; use names");
5176         if (goi.argc != 1)
5177         {
5178                 Jim_SetResultFormatted(goi.interp, "usage: target number <number>");
5179                 return JIM_ERR;
5180         }
5181         jim_wide w;
5182         int e = Jim_GetOpt_Wide(&goi, &w);
5183         if (e != JIM_OK)
5184                 return JIM_ERR;
5185
5186         struct target *target;
5187         for (target = all_targets; NULL != target; target = target->next)
5188         {
5189                 if (target->target_number != w)
5190                         continue;
5191
5192                 Jim_SetResultString(goi.interp, target_name(target), -1);
5193                 return JIM_OK;
5194         }
5195         {
5196                 Jim_Obj *wObj = Jim_NewIntObj(goi.interp, w);
5197                 Jim_SetResultFormatted(goi.interp,
5198                         "Target: number %#s does not exist", wObj);
5199                 Jim_FreeNewObj(interp, wObj);
5200         }
5201         return JIM_ERR;
5202 }
5203
5204 static int jim_target_count(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5205 {
5206         if (argc != 1)
5207         {
5208                 Jim_WrongNumArgs(interp, 1, argv, "<no parameters>");
5209                 return JIM_ERR;
5210         }
5211         unsigned count = 0;
5212         struct target *target = all_targets;
5213         while (NULL != target)
5214         {
5215                 target = target->next;
5216                 count++;
5217         }
5218         Jim_SetResult(interp, Jim_NewIntObj(interp, count));
5219         return JIM_OK;
5220 }
5221
5222 static const struct command_registration target_subcommand_handlers[] = {
5223         {
5224                 .name = "init",
5225                 .mode = COMMAND_CONFIG,
5226                 .handler = handle_target_init_command,
5227                 .help = "initialize targets",
5228         },
5229         {
5230                 .name = "create",
5231                 /* REVISIT this should be COMMAND_CONFIG ... */
5232                 .mode = COMMAND_ANY,
5233                 .jim_handler = jim_target_create,
5234                 .usage = "name type '-chain-position' name [options ...]",
5235                 .help = "Creates and selects a new target",
5236         },
5237         {
5238                 .name = "current",
5239                 .mode = COMMAND_ANY,
5240                 .jim_handler = jim_target_current,
5241                 .help = "Returns the currently selected target",
5242         },
5243         {
5244                 .name = "types",
5245                 .mode = COMMAND_ANY,
5246                 .jim_handler = jim_target_types,
5247                 .help = "Returns the available target types as "
5248                                 "a list of strings",
5249         },
5250         {
5251                 .name = "names",
5252                 .mode = COMMAND_ANY,
5253                 .jim_handler = jim_target_names,
5254                 .help = "Returns the names of all targets as a list of strings",
5255         },
5256         {
5257                 .name = "number",
5258                 .mode = COMMAND_ANY,
5259                 .jim_handler = jim_target_number,
5260                 .usage = "number",
5261                 .help = "Returns the name of the numbered target "
5262                         "(DEPRECATED)",
5263         },
5264         {
5265                 .name = "count",
5266                 .mode = COMMAND_ANY,
5267                 .jim_handler = jim_target_count,
5268                 .help = "Returns the number of targets as an integer "
5269                         "(DEPRECATED)",
5270         },
5271         {
5272                 .name = "smp",
5273                 .mode = COMMAND_ANY,
5274                 .jim_handler = jim_target_smp,
5275                 .usage = "targetname1 targetname2 ...",
5276                 .help = "gather several target in a smp list"
5277         },
5278
5279         COMMAND_REGISTRATION_DONE
5280 };
5281
5282 struct FastLoad
5283 {
5284         uint32_t address;
5285         uint8_t *data;
5286         int length;
5287
5288 };
5289
5290 static int fastload_num;
5291 static struct FastLoad *fastload;
5292
5293 static void free_fastload(void)
5294 {
5295         if (fastload != NULL)
5296         {
5297                 int i;
5298                 for (i = 0; i < fastload_num; i++)
5299                 {
5300                         if (fastload[i].data)
5301                                 free(fastload[i].data);
5302                 }
5303                 free(fastload);
5304                 fastload = NULL;
5305         }
5306 }
5307
5308
5309
5310
5311 COMMAND_HANDLER(handle_fast_load_image_command)
5312 {
5313         uint8_t *buffer;
5314         size_t buf_cnt;
5315         uint32_t image_size;
5316         uint32_t min_address = 0;
5317         uint32_t max_address = 0xffffffff;
5318         int i;
5319
5320         struct image image;
5321
5322         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
5323                         &image, &min_address, &max_address);
5324         if (ERROR_OK != retval)
5325                 return retval;
5326
5327         struct duration bench;
5328         duration_start(&bench);
5329
5330         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
5331         if (retval != ERROR_OK)
5332         {
5333                 return retval;
5334         }
5335
5336         image_size = 0x0;
5337         retval = ERROR_OK;
5338         fastload_num = image.num_sections;
5339         fastload = (struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
5340         if (fastload == NULL)
5341         {
5342                 command_print(CMD_CTX, "out of memory");
5343                 image_close(&image);
5344                 return ERROR_FAIL;
5345         }
5346         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
5347         for (i = 0; i < image.num_sections; i++)
5348         {
5349                 buffer = malloc(image.sections[i].size);
5350                 if (buffer == NULL)
5351                 {
5352                         command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5353                                                   (int)(image.sections[i].size));
5354                         retval = ERROR_FAIL;
5355                         break;
5356                 }
5357
5358                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
5359                 {
5360                         free(buffer);
5361                         break;
5362                 }
5363
5364                 uint32_t offset = 0;
5365                 uint32_t length = buf_cnt;
5366
5367
5368                 /* DANGER!!! beware of unsigned comparision here!!! */
5369
5370                 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
5371                                 (image.sections[i].base_address < max_address))
5372                 {
5373                         if (image.sections[i].base_address < min_address)
5374                         {
5375                                 /* clip addresses below */
5376                                 offset += min_address-image.sections[i].base_address;
5377                                 length -= offset;
5378                         }
5379
5380                         if (image.sections[i].base_address + buf_cnt > max_address)
5381                         {
5382                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5383                         }
5384
5385                         fastload[i].address = image.sections[i].base_address + offset;
5386                         fastload[i].data = malloc(length);
5387                         if (fastload[i].data == NULL)
5388                         {
5389                                 free(buffer);
5390                                 command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5391                                                           length);
5392                                 retval = ERROR_FAIL;
5393                                 break;
5394                         }
5395                         memcpy(fastload[i].data, buffer + offset, length);
5396                         fastload[i].length = length;
5397
5398                         image_size += length;
5399                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
5400                                                   (unsigned int)length,
5401                                                   ((unsigned int)(image.sections[i].base_address + offset)));
5402                 }
5403
5404                 free(buffer);
5405         }
5406
5407         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
5408         {
5409                 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
5410                                 "in %fs (%0.3f KiB/s)", image_size,
5411                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5412
5413                 command_print(CMD_CTX,
5414                                 "WARNING: image has not been loaded to target!"
5415                                 "You can issue a 'fast_load' to finish loading.");
5416         }
5417
5418         image_close(&image);
5419
5420         if (retval != ERROR_OK)
5421         {
5422                 free_fastload();
5423         }
5424
5425         return retval;
5426 }
5427
5428 COMMAND_HANDLER(handle_fast_load_command)
5429 {
5430         if (CMD_ARGC > 0)
5431                 return ERROR_COMMAND_SYNTAX_ERROR;
5432         if (fastload == NULL)
5433         {
5434                 LOG_ERROR("No image in memory");
5435                 return ERROR_FAIL;
5436         }
5437         int i;
5438         int ms = timeval_ms();
5439         int size = 0;
5440         int retval = ERROR_OK;
5441         for (i = 0; i < fastload_num;i++)
5442         {
5443                 struct target *target = get_current_target(CMD_CTX);
5444                 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
5445                                           (unsigned int)(fastload[i].address),
5446                                           (unsigned int)(fastload[i].length));
5447                 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5448                 if (retval != ERROR_OK)
5449                 {
5450                         break;
5451                 }
5452                 size += fastload[i].length;
5453         }
5454         if (retval == ERROR_OK)
5455         {
5456                 int after = timeval_ms();
5457                 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5458         }
5459         return retval;
5460 }
5461
5462 static const struct command_registration target_command_handlers[] = {
5463         {
5464                 .name = "targets",
5465                 .handler = handle_targets_command,
5466                 .mode = COMMAND_ANY,
5467                 .help = "change current default target (one parameter) "
5468                         "or prints table of all targets (no parameters)",
5469                 .usage = "[target]",
5470         },
5471         {
5472                 .name = "target",
5473                 .mode = COMMAND_CONFIG,
5474                 .help = "configure target",
5475
5476                 .chain = target_subcommand_handlers,
5477         },
5478         COMMAND_REGISTRATION_DONE
5479 };
5480
5481 int target_register_commands(struct command_context *cmd_ctx)
5482 {
5483         return register_commands(cmd_ctx, NULL, target_command_handlers);
5484 }
5485
5486 static bool target_reset_nag = true;
5487
5488 bool get_target_reset_nag(void)
5489 {
5490         return target_reset_nag;
5491 }
5492
5493 COMMAND_HANDLER(handle_target_reset_nag)
5494 {
5495         return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5496                         &target_reset_nag, "Nag after each reset about options to improve "
5497                         "performance");
5498 }
5499
5500 static const struct command_registration target_exec_command_handlers[] = {
5501         {
5502                 .name = "fast_load_image",
5503                 .handler = handle_fast_load_image_command,
5504                 .mode = COMMAND_ANY,
5505                 .help = "Load image into server memory for later use by "
5506                         "fast_load; primarily for profiling",
5507                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5508                         "[min_address [max_length]]",
5509         },
5510         {
5511                 .name = "fast_load",
5512                 .handler = handle_fast_load_command,
5513                 .mode = COMMAND_EXEC,
5514                 .help = "loads active fast load image to current target "
5515                         "- mainly for profiling purposes",
5516         },
5517         {
5518                 .name = "profile",
5519                 .handler = handle_profile_command,
5520                 .mode = COMMAND_EXEC,
5521                 .help = "profiling samples the CPU PC",
5522         },
5523         /** @todo don't register virt2phys() unless target supports it */
5524         {
5525                 .name = "virt2phys",
5526                 .handler = handle_virt2phys_command,
5527                 .mode = COMMAND_ANY,
5528                 .help = "translate a virtual address into a physical address",
5529                 .usage = "virtual_address",
5530         },
5531         {
5532                 .name = "reg",
5533                 .handler = handle_reg_command,
5534                 .mode = COMMAND_EXEC,
5535                 .help = "display or set a register; with no arguments, "
5536                         "displays all registers and their values",
5537                 .usage = "[(register_name|register_number) [value]]",
5538         },
5539         {
5540                 .name = "poll",
5541                 .handler = handle_poll_command,
5542                 .mode = COMMAND_EXEC,
5543                 .help = "poll target state; or reconfigure background polling",
5544                 .usage = "['on'|'off']",
5545         },
5546         {
5547                 .name = "wait_halt",
5548                 .handler = handle_wait_halt_command,
5549                 .mode = COMMAND_EXEC,
5550                 .help = "wait up to the specified number of milliseconds "
5551                         "(default 5) for a previously requested halt",
5552                 .usage = "[milliseconds]",
5553         },
5554         {
5555                 .name = "halt",
5556                 .handler = handle_halt_command,
5557                 .mode = COMMAND_EXEC,
5558                 .help = "request target to halt, then wait up to the specified"
5559                         "number of milliseconds (default 5) for it to complete",
5560                 .usage = "[milliseconds]",
5561         },
5562         {
5563                 .name = "resume",
5564                 .handler = handle_resume_command,
5565                 .mode = COMMAND_EXEC,
5566                 .help = "resume target execution from current PC or address",
5567                 .usage = "[address]",
5568         },
5569         {
5570                 .name = "reset",
5571                 .handler = handle_reset_command,
5572                 .mode = COMMAND_EXEC,
5573                 .usage = "[run|halt|init]",
5574                 .help = "Reset all targets into the specified mode."
5575                         "Default reset mode is run, if not given.",
5576         },
5577         {
5578                 .name = "soft_reset_halt",
5579                 .handler = handle_soft_reset_halt_command,
5580                 .mode = COMMAND_EXEC,
5581                 .help = "halt the target and do a soft reset",
5582         },
5583         {
5584                 .name = "step",
5585                 .handler = handle_step_command,
5586                 .mode = COMMAND_EXEC,
5587                 .help = "step one instruction from current PC or address",
5588                 .usage = "[address]",
5589         },
5590         {
5591                 .name = "mdw",
5592                 .handler = handle_md_command,
5593                 .mode = COMMAND_EXEC,
5594                 .help = "display memory words",
5595                 .usage = "['phys'] address [count]",
5596         },
5597         {
5598                 .name = "mdh",
5599                 .handler = handle_md_command,
5600                 .mode = COMMAND_EXEC,
5601                 .help = "display memory half-words",
5602                 .usage = "['phys'] address [count]",
5603         },
5604         {
5605                 .name = "mdb",
5606                 .handler = handle_md_command,
5607                 .mode = COMMAND_EXEC,
5608                 .help = "display memory bytes",
5609                 .usage = "['phys'] address [count]",
5610         },
5611         {
5612                 .name = "mww",
5613                 .handler = handle_mw_command,
5614                 .mode = COMMAND_EXEC,
5615                 .help = "write memory word",
5616                 .usage = "['phys'] address value [count]",
5617         },
5618         {
5619                 .name = "mwh",
5620                 .handler = handle_mw_command,
5621                 .mode = COMMAND_EXEC,
5622                 .help = "write memory half-word",
5623                 .usage = "['phys'] address value [count]",
5624         },
5625         {
5626                 .name = "mwb",
5627                 .handler = handle_mw_command,
5628                 .mode = COMMAND_EXEC,
5629                 .help = "write memory byte",
5630                 .usage = "['phys'] address value [count]",
5631         },
5632         {
5633                 .name = "bp",
5634                 .handler = handle_bp_command,
5635                 .mode = COMMAND_EXEC,
5636                 .help = "list or set hardware or software breakpoint",
5637                 .usage = "usage: bp <address> [<asid>]<length> ['hw'|'hw_ctx']",
5638         },
5639         {
5640                 .name = "rbp",
5641                 .handler = handle_rbp_command,
5642                 .mode = COMMAND_EXEC,
5643                 .help = "remove breakpoint",
5644                 .usage = "address",
5645         },
5646         {
5647                 .name = "wp",
5648                 .handler = handle_wp_command,
5649                 .mode = COMMAND_EXEC,
5650                 .help = "list (no params) or create watchpoints",
5651                 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
5652         },
5653         {
5654                 .name = "rwp",
5655                 .handler = handle_rwp_command,
5656                 .mode = COMMAND_EXEC,
5657                 .help = "remove watchpoint",
5658                 .usage = "address",
5659         },
5660         {
5661                 .name = "load_image",
5662                 .handler = handle_load_image_command,
5663                 .mode = COMMAND_EXEC,
5664                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5665                         "[min_address] [max_length]",
5666         },
5667         {
5668                 .name = "dump_image",
5669                 .handler = handle_dump_image_command,
5670                 .mode = COMMAND_EXEC,
5671                 .usage = "filename address size",
5672         },
5673         {
5674                 .name = "verify_image",
5675                 .handler = handle_verify_image_command,
5676                 .mode = COMMAND_EXEC,
5677                 .usage = "filename [offset [type]]",
5678         },
5679         {
5680                 .name = "test_image",
5681                 .handler = handle_test_image_command,
5682                 .mode = COMMAND_EXEC,
5683                 .usage = "filename [offset [type]]",
5684         },
5685         {
5686                 .name = "mem2array",
5687                 .mode = COMMAND_EXEC,
5688                 .jim_handler = jim_mem2array,
5689                 .help = "read 8/16/32 bit memory and return as a TCL array "
5690                         "for script processing",
5691                 .usage = "arrayname bitwidth address count",
5692         },
5693         {
5694                 .name = "array2mem",
5695                 .mode = COMMAND_EXEC,
5696                 .jim_handler = jim_array2mem,
5697                 .help = "convert a TCL array to memory locations "
5698                         "and write the 8/16/32 bit values",
5699                 .usage = "arrayname bitwidth address count",
5700         },
5701         {
5702                 .name = "reset_nag",
5703                 .handler = handle_target_reset_nag,
5704                 .mode = COMMAND_ANY,
5705                 .help = "Nag after each reset about options that could have been "
5706                                 "enabled to improve performance. ",
5707                 .usage = "['enable'|'disable']",
5708         },
5709         COMMAND_REGISTRATION_DONE
5710 };
5711 static int target_register_user_commands(struct command_context *cmd_ctx)
5712 {
5713         int retval = ERROR_OK;
5714         if ((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
5715                 return retval;
5716
5717         if ((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
5718                 return retval;
5719
5720
5721         return register_commands(cmd_ctx, NULL, target_exec_command_handlers);
5722 }