b7a4f3f80b60e231ae4e5cfbaf3799ea4b8be02b
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007,2008 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   This program is free software; you can redistribute it and/or modify  *
18  *   it under the terms of the GNU General Public License as published by  *
19  *   the Free Software Foundation; either version 2 of the License, or     *
20  *   (at your option) any later version.                                   *
21  *                                                                         *
22  *   This program is distributed in the hope that it will be useful,       *
23  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
24  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
25  *   GNU General Public License for more details.                          *
26  *                                                                         *
27  *   You should have received a copy of the GNU General Public License     *
28  *   along with this program; if not, write to the                         *
29  *   Free Software Foundation, Inc.,                                       *
30  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "target.h"
37 #include "target_type.h"
38 #include "target_request.h"
39 #include "time_support.h"
40 #include "register.h"
41 #include "trace.h"
42 #include "image.h"
43 #include "jtag.h"
44
45
46 static int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
47
48 static int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
49 static int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
50 static int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
51 static int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
52 static int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
53 static int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
54 static int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
55 static int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
56 static int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
57 static int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
58 static int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
59 static int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
60 static int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
61 static int handle_test_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
62 static int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
63 static int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
64 static int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
65 static int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
66 static int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc);
67 static int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
68 static int handle_fast_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
69 static int handle_fast_load_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
70
71 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
72 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
73 static int jim_target( Jim_Interp *interp, int argc, Jim_Obj *const *argv);
74
75 static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv);
76 static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv);
77
78 /* targets */
79 extern target_type_t arm7tdmi_target;
80 extern target_type_t arm720t_target;
81 extern target_type_t arm9tdmi_target;
82 extern target_type_t arm920t_target;
83 extern target_type_t arm966e_target;
84 extern target_type_t arm926ejs_target;
85 extern target_type_t feroceon_target;
86 extern target_type_t xscale_target;
87 extern target_type_t cortexm3_target;
88 extern target_type_t cortexa8_target;
89 extern target_type_t arm11_target;
90 extern target_type_t mips_m4k_target;
91 extern target_type_t avr_target;
92
93 target_type_t *target_types[] =
94 {
95         &arm7tdmi_target,
96         &arm9tdmi_target,
97         &arm920t_target,
98         &arm720t_target,
99         &arm966e_target,
100         &arm926ejs_target,
101         &feroceon_target,
102         &xscale_target,
103         &cortexm3_target,
104         &cortexa8_target,
105         &arm11_target,
106         &mips_m4k_target,
107         &avr_target,
108         NULL,
109 };
110
111 target_t *all_targets = NULL;
112 target_event_callback_t *target_event_callbacks = NULL;
113 target_timer_callback_t *target_timer_callbacks = NULL;
114
115 const Jim_Nvp nvp_assert[] = {
116         { .name = "assert", NVP_ASSERT },
117         { .name = "deassert", NVP_DEASSERT },
118         { .name = "T", NVP_ASSERT },
119         { .name = "F", NVP_DEASSERT },
120         { .name = "t", NVP_ASSERT },
121         { .name = "f", NVP_DEASSERT },
122         { .name = NULL, .value = -1 }
123 };
124
125 const Jim_Nvp nvp_error_target[] = {
126         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
127         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
128         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
129         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
130         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
131         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
132         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
133         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
134         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
135         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
136         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
137         { .value = -1, .name = NULL }
138 };
139
140 const char *target_strerror_safe( int err )
141 {
142         const Jim_Nvp *n;
143
144         n = Jim_Nvp_value2name_simple( nvp_error_target, err );
145         if( n->name == NULL ){
146                 return "unknown";
147         } else {
148                 return n->name;
149         }
150 }
151
152 static const Jim_Nvp nvp_target_event[] = {
153         { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
154         { .value = TARGET_EVENT_OLD_pre_resume         , .name = "old-pre_resume" },
155
156         { .value = TARGET_EVENT_EARLY_HALTED, .name = "early-halted" },
157         { .value = TARGET_EVENT_HALTED, .name = "halted" },
158         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
159         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
160         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
161
162         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
163         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
164
165         /* historical name */
166
167         { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
168
169         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
170         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
171         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
172         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
173         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
174         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
175         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
176         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
177         { .value = TARGET_EVENT_RESET_INIT , .name = "reset-init" },
178         { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
179
180         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
181         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
182
183         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
184         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
185
186         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
187         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
188
189         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
190         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
191
192         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
193         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
194
195         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
196         { .value = TARGET_EVENT_RESUMED     , .name = "resume-ok" },
197         { .value = TARGET_EVENT_RESUME_END  , .name = "resume-end" },
198
199         { .name = NULL, .value = -1 }
200 };
201
202 const Jim_Nvp nvp_target_state[] = {
203         { .name = "unknown", .value = TARGET_UNKNOWN },
204         { .name = "running", .value = TARGET_RUNNING },
205         { .name = "halted",  .value = TARGET_HALTED },
206         { .name = "reset",   .value = TARGET_RESET },
207         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
208         { .name = NULL, .value = -1 },
209 };
210
211 const Jim_Nvp nvp_target_debug_reason [] = {
212         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
213         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
214         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
215         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
216         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
217         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
218         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
219         { .name = NULL, .value = -1 },
220 };
221
222 const Jim_Nvp nvp_target_endian[] = {
223         { .name = "big",    .value = TARGET_BIG_ENDIAN },
224         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
225         { .name = "be",     .value = TARGET_BIG_ENDIAN },
226         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
227         { .name = NULL,     .value = -1 },
228 };
229
230 const Jim_Nvp nvp_reset_modes[] = {
231         { .name = "unknown", .value = RESET_UNKNOWN },
232         { .name = "run"    , .value = RESET_RUN },
233         { .name = "halt"   , .value = RESET_HALT },
234         { .name = "init"   , .value = RESET_INIT },
235         { .name = NULL     , .value = -1 },
236 };
237
238 static int max_target_number(void)
239 {
240         target_t *t;
241         int x;
242
243         x = -1;
244         t = all_targets;
245         while( t ){
246                 if( x < t->target_number ){
247                         x = (t->target_number)+1;
248                 }
249                 t = t->next;
250         }
251         return x;
252 }
253
254 /* determine the number of the new target */
255 static int new_target_number(void)
256 {
257         target_t *t;
258         int x;
259
260         /* number is 0 based */
261         x = -1;
262         t = all_targets;
263         while(t){
264                 if( x < t->target_number ){
265                         x = t->target_number;
266                 }
267                 t = t->next;
268         }
269         return x+1;
270 }
271
272 static int target_continous_poll = 1;
273
274 /* read a u32 from a buffer in target memory endianness */
275 u32 target_buffer_get_u32(target_t *target, const u8 *buffer)
276 {
277         if (target->endianness == TARGET_LITTLE_ENDIAN)
278                 return le_to_h_u32(buffer);
279         else
280                 return be_to_h_u32(buffer);
281 }
282
283 /* read a u16 from a buffer in target memory endianness */
284 u16 target_buffer_get_u16(target_t *target, const u8 *buffer)
285 {
286         if (target->endianness == TARGET_LITTLE_ENDIAN)
287                 return le_to_h_u16(buffer);
288         else
289                 return be_to_h_u16(buffer);
290 }
291
292 /* read a u8 from a buffer in target memory endianness */
293 u8 target_buffer_get_u8(target_t *target, const u8 *buffer)
294 {
295         return *buffer & 0x0ff;
296 }
297
298 /* write a u32 to a buffer in target memory endianness */
299 void target_buffer_set_u32(target_t *target, u8 *buffer, u32 value)
300 {
301         if (target->endianness == TARGET_LITTLE_ENDIAN)
302                 h_u32_to_le(buffer, value);
303         else
304                 h_u32_to_be(buffer, value);
305 }
306
307 /* write a u16 to a buffer in target memory endianness */
308 void target_buffer_set_u16(target_t *target, u8 *buffer, u16 value)
309 {
310         if (target->endianness == TARGET_LITTLE_ENDIAN)
311                 h_u16_to_le(buffer, value);
312         else
313                 h_u16_to_be(buffer, value);
314 }
315
316 /* write a u8 to a buffer in target memory endianness */
317 void target_buffer_set_u8(target_t *target, u8 *buffer, u8 value)
318 {
319         *buffer = value;
320 }
321
322 /* return a pointer to a configured target; id is name or number */
323 target_t *get_target(const char *id)
324 {
325         target_t *target;
326         char *endptr;
327         int num;
328
329         /* try as tcltarget name */
330         for (target = all_targets; target; target = target->next) {
331                 if (target->cmd_name == NULL)
332                         continue;
333                 if (strcmp(id, target->cmd_name) == 0)
334                         return target;
335         }
336
337         /* no match, try as number */
338         num = strtoul(id, &endptr, 0);
339         if (*endptr != 0)
340                 return NULL;
341
342         for (target = all_targets; target; target = target->next) {
343                 if (target->target_number == num)
344                         return target;
345         }
346
347         return NULL;
348 }
349
350 /* returns a pointer to the n-th configured target */
351 static target_t *get_target_by_num(int num)
352 {
353         target_t *target = all_targets;
354
355         while (target){
356                 if( target->target_number == num ){
357                         return target;
358                 }
359                 target = target->next;
360         }
361
362         return NULL;
363 }
364
365 int get_num_by_target(target_t *query_target)
366 {
367         return query_target->target_number;
368 }
369
370 target_t* get_current_target(command_context_t *cmd_ctx)
371 {
372         target_t *target = get_target_by_num(cmd_ctx->current_target);
373
374         if (target == NULL)
375         {
376                 LOG_ERROR("BUG: current_target out of bounds");
377                 exit(-1);
378         }
379
380         return target;
381 }
382
383 int target_poll(struct target_s *target)
384 {
385         /* We can't poll until after examine */
386         if (!target_was_examined(target))
387         {
388                 /* Fail silently lest we pollute the log */
389                 return ERROR_FAIL;
390         }
391         return target->type->poll(target);
392 }
393
394 int target_halt(struct target_s *target)
395 {
396         /* We can't poll until after examine */
397         if (!target_was_examined(target))
398         {
399                 LOG_ERROR("Target not examined yet");
400                 return ERROR_FAIL;
401         }
402         return target->type->halt(target);
403 }
404
405 int target_resume(struct target_s *target, int current, u32 address, int handle_breakpoints, int debug_execution)
406 {
407         int retval;
408
409         /* We can't poll until after examine */
410         if (!target_was_examined(target))
411         {
412                 LOG_ERROR("Target not examined yet");
413                 return ERROR_FAIL;
414         }
415
416         /* note that resume *must* be asynchronous. The CPU can halt before we poll. The CPU can
417          * even halt at the current PC as a result of a software breakpoint being inserted by (a bug?)
418          * the application.
419          */
420         if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
421                 return retval;
422
423         return retval;
424 }
425
426 int target_process_reset(struct command_context_s *cmd_ctx, enum target_reset_mode reset_mode)
427 {
428         char buf[100];
429         int retval;
430         Jim_Nvp *n;
431         n = Jim_Nvp_value2name_simple( nvp_reset_modes, reset_mode );
432         if( n->name == NULL ){
433                 LOG_ERROR("invalid reset mode");
434                 return ERROR_FAIL;
435         }
436
437         /* disable polling during reset to make reset event scripts
438          * more predictable, i.e. dr/irscan & pathmove in events will
439          * not have JTAG operations injected into the middle of a sequence.
440          */
441         int save_poll = target_continous_poll;
442         target_continous_poll = 0;
443
444         sprintf( buf, "ocd_process_reset %s", n->name );
445         retval = Jim_Eval( interp, buf );
446
447         target_continous_poll = save_poll;
448
449         if(retval != JIM_OK) {
450                 Jim_PrintErrorMessage(interp);
451                 return ERROR_FAIL;
452         }
453
454         /* We want any events to be processed before the prompt */
455         retval = target_call_timer_callbacks_now();
456
457         return retval;
458 }
459
460 static int default_virt2phys(struct target_s *target, u32 virtual, u32 *physical)
461 {
462         *physical = virtual;
463         return ERROR_OK;
464 }
465
466 static int default_mmu(struct target_s *target, int *enabled)
467 {
468         *enabled = 0;
469         return ERROR_OK;
470 }
471
472 static int default_examine(struct target_s *target)
473 {
474         target_set_examined(target);
475         return ERROR_OK;
476 }
477
478 int target_examine_one(struct target_s *target)
479 {
480         return target->type->examine(target);
481 }
482
483 /* Targets that correctly implement init+examine, i.e.
484  * no communication with target during init:
485  *
486  * XScale
487  */
488 int target_examine(void)
489 {
490         int retval = ERROR_OK;
491         target_t *target;
492
493         for (target = all_targets; target; target = target->next)
494         {
495                 if (!target->tap->enabled)
496                         continue;
497                 if ((retval = target_examine_one(target)) != ERROR_OK)
498                         return retval;
499         }
500         return retval;
501 }
502 const char *target_get_name(struct target_s *target)
503 {
504         return target->type->name;
505 }
506
507 static int target_write_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
508 {
509         if (!target_was_examined(target))
510         {
511                 LOG_ERROR("Target not examined yet");
512                 return ERROR_FAIL;
513         }
514         return target->type->write_memory_imp(target, address, size, count, buffer);
515 }
516
517 static int target_read_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
518 {
519         if (!target_was_examined(target))
520         {
521                 LOG_ERROR("Target not examined yet");
522                 return ERROR_FAIL;
523         }
524         return target->type->read_memory_imp(target, address, size, count, buffer);
525 }
526
527 static int target_soft_reset_halt_imp(struct target_s *target)
528 {
529         if (!target_was_examined(target))
530         {
531                 LOG_ERROR("Target not examined yet");
532                 return ERROR_FAIL;
533         }
534         return target->type->soft_reset_halt_imp(target);
535 }
536
537 static int target_run_algorithm_imp(struct target_s *target, int num_mem_params, mem_param_t *mem_params, int num_reg_params, reg_param_t *reg_param, u32 entry_point, u32 exit_point, int timeout_ms, void *arch_info)
538 {
539         if (!target_was_examined(target))
540         {
541                 LOG_ERROR("Target not examined yet");
542                 return ERROR_FAIL;
543         }
544         return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
545 }
546
547 int target_read_memory(struct target_s *target,
548                 u32 address, u32 size, u32 count, u8 *buffer)
549 {
550         return target->type->read_memory(target, address, size, count, buffer);
551 }
552
553 int target_write_memory(struct target_s *target,
554                 u32 address, u32 size, u32 count, u8 *buffer)
555 {
556         return target->type->write_memory(target, address, size, count, buffer);
557 }
558 int target_bulk_write_memory(struct target_s *target,
559                 u32 address, u32 count, u8 *buffer)
560 {
561         return target->type->bulk_write_memory(target, address, count, buffer);
562 }
563
564 int target_add_breakpoint(struct target_s *target,
565                 struct breakpoint_s *breakpoint)
566 {
567         return target->type->add_breakpoint(target, breakpoint);
568 }
569 int target_remove_breakpoint(struct target_s *target,
570                 struct breakpoint_s *breakpoint)
571 {
572         return target->type->remove_breakpoint(target, breakpoint);
573 }
574
575 int target_add_watchpoint(struct target_s *target,
576                 struct watchpoint_s *watchpoint)
577 {
578         return target->type->add_watchpoint(target, watchpoint);
579 }
580 int target_remove_watchpoint(struct target_s *target,
581                 struct watchpoint_s *watchpoint)
582 {
583         return target->type->remove_watchpoint(target, watchpoint);
584 }
585
586 int target_get_gdb_reg_list(struct target_s *target,
587                 struct reg_s **reg_list[], int *reg_list_size)
588 {
589         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
590 }
591 int target_step(struct target_s *target,
592                 int current, u32 address, int handle_breakpoints)
593 {
594         return target->type->step(target, current, address, handle_breakpoints);
595 }
596
597
598 int target_run_algorithm(struct target_s *target,
599                 int num_mem_params, mem_param_t *mem_params,
600                 int num_reg_params, reg_param_t *reg_param,
601                 u32 entry_point, u32 exit_point,
602                 int timeout_ms, void *arch_info)
603 {
604         return target->type->run_algorithm(target,
605                         num_mem_params, mem_params, num_reg_params, reg_param,
606                         entry_point, exit_point, timeout_ms, arch_info);
607 }
608
609 /// @returns @c true if the target has been examined.
610 bool target_was_examined(struct target_s *target)
611 {
612         return target->type->examined;
613 }
614 /// Sets the @c examined flag for the given target.
615 void target_set_examined(struct target_s *target)
616 {
617         target->type->examined = true;
618 }
619 // Reset the @c examined flag for the given target.
620 void target_reset_examined(struct target_s *target)
621 {
622         target->type->examined = false;
623 }
624
625
626 int target_init(struct command_context_s *cmd_ctx)
627 {
628         target_t *target = all_targets;
629         int retval;
630
631         while (target)
632         {
633                 target_reset_examined(target);
634                 if (target->type->examine == NULL)
635                 {
636                         target->type->examine = default_examine;
637                 }
638
639                 if ((retval = target->type->init_target(cmd_ctx, target)) != ERROR_OK)
640                 {
641                         LOG_ERROR("target '%s' init failed", target_get_name(target));
642                         return retval;
643                 }
644
645                 /* Set up default functions if none are provided by target */
646                 if (target->type->virt2phys == NULL)
647                 {
648                         target->type->virt2phys = default_virt2phys;
649                 }
650                 target->type->virt2phys = default_virt2phys;
651                 /* a non-invasive way(in terms of patches) to add some code that
652                  * runs before the type->write/read_memory implementation
653                  */
654                 target->type->write_memory_imp = target->type->write_memory;
655                 target->type->write_memory = target_write_memory_imp;
656                 target->type->read_memory_imp = target->type->read_memory;
657                 target->type->read_memory = target_read_memory_imp;
658                 target->type->soft_reset_halt_imp = target->type->soft_reset_halt;
659                 target->type->soft_reset_halt = target_soft_reset_halt_imp;
660                 target->type->run_algorithm_imp = target->type->run_algorithm;
661                 target->type->run_algorithm = target_run_algorithm_imp;
662
663                 if (target->type->mmu == NULL)
664                 {
665                         target->type->mmu = default_mmu;
666                 }
667                 target = target->next;
668         }
669
670         if (all_targets)
671         {
672                 if((retval = target_register_user_commands(cmd_ctx)) != ERROR_OK)
673                         return retval;
674                 if((retval = target_register_timer_callback(handle_target, 100, 1, NULL)) != ERROR_OK)
675                         return retval;
676         }
677
678         return ERROR_OK;
679 }
680
681 int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
682 {
683         target_event_callback_t **callbacks_p = &target_event_callbacks;
684
685         if (callback == NULL)
686         {
687                 return ERROR_INVALID_ARGUMENTS;
688         }
689
690         if (*callbacks_p)
691         {
692                 while ((*callbacks_p)->next)
693                         callbacks_p = &((*callbacks_p)->next);
694                 callbacks_p = &((*callbacks_p)->next);
695         }
696
697         (*callbacks_p) = malloc(sizeof(target_event_callback_t));
698         (*callbacks_p)->callback = callback;
699         (*callbacks_p)->priv = priv;
700         (*callbacks_p)->next = NULL;
701
702         return ERROR_OK;
703 }
704
705 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
706 {
707         target_timer_callback_t **callbacks_p = &target_timer_callbacks;
708         struct timeval now;
709
710         if (callback == NULL)
711         {
712                 return ERROR_INVALID_ARGUMENTS;
713         }
714
715         if (*callbacks_p)
716         {
717                 while ((*callbacks_p)->next)
718                         callbacks_p = &((*callbacks_p)->next);
719                 callbacks_p = &((*callbacks_p)->next);
720         }
721
722         (*callbacks_p) = malloc(sizeof(target_timer_callback_t));
723         (*callbacks_p)->callback = callback;
724         (*callbacks_p)->periodic = periodic;
725         (*callbacks_p)->time_ms = time_ms;
726
727         gettimeofday(&now, NULL);
728         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
729         time_ms -= (time_ms % 1000);
730         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
731         if ((*callbacks_p)->when.tv_usec > 1000000)
732         {
733                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
734                 (*callbacks_p)->when.tv_sec += 1;
735         }
736
737         (*callbacks_p)->priv = priv;
738         (*callbacks_p)->next = NULL;
739
740         return ERROR_OK;
741 }
742
743 int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
744 {
745         target_event_callback_t **p = &target_event_callbacks;
746         target_event_callback_t *c = target_event_callbacks;
747
748         if (callback == NULL)
749         {
750                 return ERROR_INVALID_ARGUMENTS;
751         }
752
753         while (c)
754         {
755                 target_event_callback_t *next = c->next;
756                 if ((c->callback == callback) && (c->priv == priv))
757                 {
758                         *p = next;
759                         free(c);
760                         return ERROR_OK;
761                 }
762                 else
763                         p = &(c->next);
764                 c = next;
765         }
766
767         return ERROR_OK;
768 }
769
770 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
771 {
772         target_timer_callback_t **p = &target_timer_callbacks;
773         target_timer_callback_t *c = target_timer_callbacks;
774
775         if (callback == NULL)
776         {
777                 return ERROR_INVALID_ARGUMENTS;
778         }
779
780         while (c)
781         {
782                 target_timer_callback_t *next = c->next;
783                 if ((c->callback == callback) && (c->priv == priv))
784                 {
785                         *p = next;
786                         free(c);
787                         return ERROR_OK;
788                 }
789                 else
790                         p = &(c->next);
791                 c = next;
792         }
793
794         return ERROR_OK;
795 }
796
797 int target_call_event_callbacks(target_t *target, enum target_event event)
798 {
799         target_event_callback_t *callback = target_event_callbacks;
800         target_event_callback_t *next_callback;
801
802         if (event == TARGET_EVENT_HALTED)
803         {
804                 /* execute early halted first */
805                 target_call_event_callbacks(target, TARGET_EVENT_EARLY_HALTED);
806         }
807
808         LOG_DEBUG("target event %i (%s)",
809                           event,
810                           Jim_Nvp_value2name_simple( nvp_target_event, event )->name );
811
812         target_handle_event( target, event );
813
814         while (callback)
815         {
816                 next_callback = callback->next;
817                 callback->callback(target, event, callback->priv);
818                 callback = next_callback;
819         }
820
821         return ERROR_OK;
822 }
823
824 static int target_timer_callback_periodic_restart(
825                 target_timer_callback_t *cb, struct timeval *now)
826 {
827         int time_ms = cb->time_ms;
828         cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
829         time_ms -= (time_ms % 1000);
830         cb->when.tv_sec = now->tv_sec + time_ms / 1000;
831         if (cb->when.tv_usec > 1000000)
832         {
833                 cb->when.tv_usec = cb->when.tv_usec - 1000000;
834                 cb->when.tv_sec += 1;
835         }
836         return ERROR_OK;
837 }
838
839 static int target_call_timer_callback(target_timer_callback_t *cb,
840                 struct timeval *now)
841 {
842         cb->callback(cb->priv);
843
844         if (cb->periodic)
845                 return target_timer_callback_periodic_restart(cb, now);
846
847         return target_unregister_timer_callback(cb->callback, cb->priv);
848 }
849
850 static int target_call_timer_callbacks_check_time(int checktime)
851 {
852         keep_alive();
853
854         struct timeval now;
855         gettimeofday(&now, NULL);
856
857         target_timer_callback_t *callback = target_timer_callbacks;
858         while (callback)
859         {
860                 // cleaning up may unregister and free this callback
861                 target_timer_callback_t *next_callback = callback->next;
862
863                 bool call_it = callback->callback &&
864                         ((!checktime && callback->periodic) ||
865                           now.tv_sec > callback->when.tv_sec ||
866                          (now.tv_sec == callback->when.tv_sec &&
867                           now.tv_usec >= callback->when.tv_usec));
868
869                 if (call_it)
870                 {
871                         int retval = target_call_timer_callback(callback, &now);
872                         if (retval != ERROR_OK)
873                                 return retval;
874                 }
875
876                 callback = next_callback;
877         }
878
879         return ERROR_OK;
880 }
881
882 int target_call_timer_callbacks(void)
883 {
884         return target_call_timer_callbacks_check_time(1);
885 }
886
887 /* invoke periodic callbacks immediately */
888 int target_call_timer_callbacks_now(void)
889 {
890         return target_call_timer_callbacks_check_time(0);
891 }
892
893 int target_alloc_working_area(struct target_s *target, u32 size, working_area_t **area)
894 {
895         working_area_t *c = target->working_areas;
896         working_area_t *new_wa = NULL;
897
898         /* Reevaluate working area address based on MMU state*/
899         if (target->working_areas == NULL)
900         {
901                 int retval;
902                 int enabled;
903                 retval = target->type->mmu(target, &enabled);
904                 if (retval != ERROR_OK)
905                 {
906                         return retval;
907                 }
908                 if (enabled)
909                 {
910                         target->working_area = target->working_area_virt;
911                 }
912                 else
913                 {
914                         target->working_area = target->working_area_phys;
915                 }
916         }
917
918         /* only allocate multiples of 4 byte */
919         if (size % 4)
920         {
921                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes, padding");
922                 size = CEIL(size, 4);
923         }
924
925         /* see if there's already a matching working area */
926         while (c)
927         {
928                 if ((c->free) && (c->size == size))
929                 {
930                         new_wa = c;
931                         break;
932                 }
933                 c = c->next;
934         }
935
936         /* if not, allocate a new one */
937         if (!new_wa)
938         {
939                 working_area_t **p = &target->working_areas;
940                 u32 first_free = target->working_area;
941                 u32 free_size = target->working_area_size;
942
943                 LOG_DEBUG("allocating new working area");
944
945                 c = target->working_areas;
946                 while (c)
947                 {
948                         first_free += c->size;
949                         free_size -= c->size;
950                         p = &c->next;
951                         c = c->next;
952                 }
953
954                 if (free_size < size)
955                 {
956                         LOG_WARNING("not enough working area available(requested %d, free %d)", size, free_size);
957                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
958                 }
959
960                 new_wa = malloc(sizeof(working_area_t));
961                 new_wa->next = NULL;
962                 new_wa->size = size;
963                 new_wa->address = first_free;
964
965                 if (target->backup_working_area)
966                 {
967                         int retval;
968                         new_wa->backup = malloc(new_wa->size);
969                         if((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
970                         {
971                                 free(new_wa->backup);
972                                 free(new_wa);
973                                 return retval;
974                         }
975                 }
976                 else
977                 {
978                         new_wa->backup = NULL;
979                 }
980
981                 /* put new entry in list */
982                 *p = new_wa;
983         }
984
985         /* mark as used, and return the new (reused) area */
986         new_wa->free = 0;
987         *area = new_wa;
988
989         /* user pointer */
990         new_wa->user = area;
991
992         return ERROR_OK;
993 }
994
995 int target_free_working_area_restore(struct target_s *target, working_area_t *area, int restore)
996 {
997         if (area->free)
998                 return ERROR_OK;
999
1000         if (restore&&target->backup_working_area)
1001         {
1002                 int retval;
1003                 if((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
1004                         return retval;
1005         }
1006
1007         area->free = 1;
1008
1009         /* mark user pointer invalid */
1010         *area->user = NULL;
1011         area->user = NULL;
1012
1013         return ERROR_OK;
1014 }
1015
1016 int target_free_working_area(struct target_s *target, working_area_t *area)
1017 {
1018         return target_free_working_area_restore(target, area, 1);
1019 }
1020
1021 /* free resources and restore memory, if restoring memory fails,
1022  * free up resources anyway
1023  */
1024 void target_free_all_working_areas_restore(struct target_s *target, int restore)
1025 {
1026         working_area_t *c = target->working_areas;
1027
1028         while (c)
1029         {
1030                 working_area_t *next = c->next;
1031                 target_free_working_area_restore(target, c, restore);
1032
1033                 if (c->backup)
1034                         free(c->backup);
1035
1036                 free(c);
1037
1038                 c = next;
1039         }
1040
1041         target->working_areas = NULL;
1042 }
1043
1044 void target_free_all_working_areas(struct target_s *target)
1045 {
1046         target_free_all_working_areas_restore(target, 1);
1047 }
1048
1049 int target_register_commands(struct command_context_s *cmd_ctx)
1050 {
1051
1052         register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, "change the current command line target (one parameter) or lists targets (with no parameter)");
1053
1054
1055
1056
1057         register_jim(cmd_ctx, "target", jim_target, "configure target" );
1058
1059         return ERROR_OK;
1060 }
1061
1062 int target_arch_state(struct target_s *target)
1063 {
1064         int retval;
1065         if (target==NULL)
1066         {
1067                 LOG_USER("No target has been configured");
1068                 return ERROR_OK;
1069         }
1070
1071         LOG_USER("target state: %s",
1072                  Jim_Nvp_value2name_simple(nvp_target_state,target->state)->name);
1073
1074         if (target->state!=TARGET_HALTED)
1075                 return ERROR_OK;
1076
1077         retval=target->type->arch_state(target);
1078         return retval;
1079 }
1080
1081 /* Single aligned words are guaranteed to use 16 or 32 bit access
1082  * mode respectively, otherwise data is handled as quickly as
1083  * possible
1084  */
1085 int target_write_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
1086 {
1087         int retval;
1088         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x", size, address);
1089
1090         if (!target_was_examined(target))
1091         {
1092                 LOG_ERROR("Target not examined yet");
1093                 return ERROR_FAIL;
1094         }
1095
1096         if (size == 0) {
1097                 return ERROR_OK;
1098         }
1099
1100         if ((address + size - 1) < address)
1101         {
1102                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1103                 LOG_ERROR("address+size wrapped(0x%08x, 0x%08x)", address, size);
1104                 return ERROR_FAIL;
1105         }
1106
1107         if (((address % 2) == 0) && (size == 2))
1108         {
1109                 return target_write_memory(target, address, 2, 1, buffer);
1110         }
1111
1112         /* handle unaligned head bytes */
1113         if (address % 4)
1114         {
1115                 u32 unaligned = 4 - (address % 4);
1116
1117                 if (unaligned > size)
1118                         unaligned = size;
1119
1120                 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1121                         return retval;
1122
1123                 buffer += unaligned;
1124                 address += unaligned;
1125                 size -= unaligned;
1126         }
1127
1128         /* handle aligned words */
1129         if (size >= 4)
1130         {
1131                 int aligned = size - (size % 4);
1132
1133                 /* use bulk writes above a certain limit. This may have to be changed */
1134                 if (aligned > 128)
1135                 {
1136                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1137                                 return retval;
1138                 }
1139                 else
1140                 {
1141                         if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1142                                 return retval;
1143                 }
1144
1145                 buffer += aligned;
1146                 address += aligned;
1147                 size -= aligned;
1148         }
1149
1150         /* handle tail writes of less than 4 bytes */
1151         if (size > 0)
1152         {
1153                 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1154                         return retval;
1155         }
1156
1157         return ERROR_OK;
1158 }
1159
1160 /* Single aligned words are guaranteed to use 16 or 32 bit access
1161  * mode respectively, otherwise data is handled as quickly as
1162  * possible
1163  */
1164 int target_read_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
1165 {
1166         int retval;
1167         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x", size, address);
1168
1169         if (!target_was_examined(target))
1170         {
1171                 LOG_ERROR("Target not examined yet");
1172                 return ERROR_FAIL;
1173         }
1174
1175         if (size == 0) {
1176                 return ERROR_OK;
1177         }
1178
1179         if ((address + size - 1) < address)
1180         {
1181                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1182                 LOG_ERROR("address+size wrapped(0x%08x, 0x%08x)", address, size);
1183                 return ERROR_FAIL;
1184         }
1185
1186         if (((address % 2) == 0) && (size == 2))
1187         {
1188                 return target_read_memory(target, address, 2, 1, buffer);
1189         }
1190
1191         /* handle unaligned head bytes */
1192         if (address % 4)
1193         {
1194                 u32 unaligned = 4 - (address % 4);
1195
1196                 if (unaligned > size)
1197                         unaligned = size;
1198
1199                 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1200                         return retval;
1201
1202                 buffer += unaligned;
1203                 address += unaligned;
1204                 size -= unaligned;
1205         }
1206
1207         /* handle aligned words */
1208         if (size >= 4)
1209         {
1210                 int aligned = size - (size % 4);
1211
1212                 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1213                         return retval;
1214
1215                 buffer += aligned;
1216                 address += aligned;
1217                 size -= aligned;
1218         }
1219
1220         /* handle tail writes of less than 4 bytes */
1221         if (size > 0)
1222         {
1223                 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1224                         return retval;
1225         }
1226
1227         return ERROR_OK;
1228 }
1229
1230 int target_checksum_memory(struct target_s *target, u32 address, u32 size, u32* crc)
1231 {
1232         u8 *buffer;
1233         int retval;
1234         u32 i;
1235         u32 checksum = 0;
1236         if (!target_was_examined(target))
1237         {
1238                 LOG_ERROR("Target not examined yet");
1239                 return ERROR_FAIL;
1240         }
1241
1242         if ((retval = target->type->checksum_memory(target, address,
1243                 size, &checksum)) != ERROR_OK)
1244         {
1245                 buffer = malloc(size);
1246                 if (buffer == NULL)
1247                 {
1248                         LOG_ERROR("error allocating buffer for section (%d bytes)", size);
1249                         return ERROR_INVALID_ARGUMENTS;
1250                 }
1251                 retval = target_read_buffer(target, address, size, buffer);
1252                 if (retval != ERROR_OK)
1253                 {
1254                         free(buffer);
1255                         return retval;
1256                 }
1257
1258                 /* convert to target endianess */
1259                 for (i = 0; i < (size/sizeof(u32)); i++)
1260                 {
1261                         u32 target_data;
1262                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(u32)]);
1263                         target_buffer_set_u32(target, &buffer[i*sizeof(u32)], target_data);
1264                 }
1265
1266                 retval = image_calculate_checksum( buffer, size, &checksum );
1267                 free(buffer);
1268         }
1269
1270         *crc = checksum;
1271
1272         return retval;
1273 }
1274
1275 int target_blank_check_memory(struct target_s *target, u32 address, u32 size, u32* blank)
1276 {
1277         int retval;
1278         if (!target_was_examined(target))
1279         {
1280                 LOG_ERROR("Target not examined yet");
1281                 return ERROR_FAIL;
1282         }
1283
1284         if (target->type->blank_check_memory == 0)
1285                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1286
1287         retval = target->type->blank_check_memory(target, address, size, blank);
1288
1289         return retval;
1290 }
1291
1292 int target_read_u32(struct target_s *target, u32 address, u32 *value)
1293 {
1294         u8 value_buf[4];
1295         if (!target_was_examined(target))
1296         {
1297                 LOG_ERROR("Target not examined yet");
1298                 return ERROR_FAIL;
1299         }
1300
1301         int retval = target_read_memory(target, address, 4, 1, value_buf);
1302
1303         if (retval == ERROR_OK)
1304         {
1305                 *value = target_buffer_get_u32(target, value_buf);
1306                 LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, *value);
1307         }
1308         else
1309         {
1310                 *value = 0x0;
1311                 LOG_DEBUG("address: 0x%8.8x failed", address);
1312         }
1313
1314         return retval;
1315 }
1316
1317 int target_read_u16(struct target_s *target, u32 address, u16 *value)
1318 {
1319         u8 value_buf[2];
1320         if (!target_was_examined(target))
1321         {
1322                 LOG_ERROR("Target not examined yet");
1323                 return ERROR_FAIL;
1324         }
1325
1326         int retval = target_read_memory(target, address, 2, 1, value_buf);
1327
1328         if (retval == ERROR_OK)
1329         {
1330                 *value = target_buffer_get_u16(target, value_buf);
1331                 LOG_DEBUG("address: 0x%8.8x, value: 0x%4.4x", address, *value);
1332         }
1333         else
1334         {
1335                 *value = 0x0;
1336                 LOG_DEBUG("address: 0x%8.8x failed", address);
1337         }
1338
1339         return retval;
1340 }
1341
1342 int target_read_u8(struct target_s *target, u32 address, u8 *value)
1343 {
1344         int retval = target_read_memory(target, address, 1, 1, value);
1345         if (!target_was_examined(target))
1346         {
1347                 LOG_ERROR("Target not examined yet");
1348                 return ERROR_FAIL;
1349         }
1350
1351         if (retval == ERROR_OK)
1352         {
1353                 LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, *value);
1354         }
1355         else
1356         {
1357                 *value = 0x0;
1358                 LOG_DEBUG("address: 0x%8.8x failed", address);
1359         }
1360
1361         return retval;
1362 }
1363
1364 int target_write_u32(struct target_s *target, u32 address, u32 value)
1365 {
1366         int retval;
1367         u8 value_buf[4];
1368         if (!target_was_examined(target))
1369         {
1370                 LOG_ERROR("Target not examined yet");
1371                 return ERROR_FAIL;
1372         }
1373
1374         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1375
1376         target_buffer_set_u32(target, value_buf, value);
1377         if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1378         {
1379                 LOG_DEBUG("failed: %i", retval);
1380         }
1381
1382         return retval;
1383 }
1384
1385 int target_write_u16(struct target_s *target, u32 address, u16 value)
1386 {
1387         int retval;
1388         u8 value_buf[2];
1389         if (!target_was_examined(target))
1390         {
1391                 LOG_ERROR("Target not examined yet");
1392                 return ERROR_FAIL;
1393         }
1394
1395         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1396
1397         target_buffer_set_u16(target, value_buf, value);
1398         if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1399         {
1400                 LOG_DEBUG("failed: %i", retval);
1401         }
1402
1403         return retval;
1404 }
1405
1406 int target_write_u8(struct target_s *target, u32 address, u8 value)
1407 {
1408         int retval;
1409         if (!target_was_examined(target))
1410         {
1411                 LOG_ERROR("Target not examined yet");
1412                 return ERROR_FAIL;
1413         }
1414
1415         LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, value);
1416
1417         if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1418         {
1419                 LOG_DEBUG("failed: %i", retval);
1420         }
1421
1422         return retval;
1423 }
1424
1425 int target_register_user_commands(struct command_context_s *cmd_ctx)
1426 {
1427         int retval = ERROR_OK;
1428
1429
1430         /* script procedures */
1431         register_command(cmd_ctx, NULL, "profile", handle_profile_command, COMMAND_EXEC, "profiling samples the CPU PC");
1432         register_jim(cmd_ctx, "ocd_mem2array", jim_mem2array, "read memory and return as a TCL array for script processing <ARRAYNAME> <WIDTH=32/16/8> <ADDRESS> <COUNT>");
1433         register_jim(cmd_ctx, "ocd_array2mem", jim_array2mem, "convert a TCL array to memory locations and write the values  <ARRAYNAME> <WIDTH=32/16/8> <ADDRESS> <COUNT>");
1434
1435         register_command(cmd_ctx, NULL, "fast_load_image", handle_fast_load_image_command, COMMAND_ANY,
1436                         "same args as load_image, image stored in memory - mainly for profiling purposes");
1437
1438         register_command(cmd_ctx, NULL, "fast_load", handle_fast_load_command, COMMAND_ANY,
1439                         "loads active fast load image to current target - mainly for profiling purposes");
1440
1441
1442         register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "translate a virtual address into a physical address");
1443         register_command(cmd_ctx,  NULL, "reg", handle_reg_command, COMMAND_EXEC, "display or set a register");
1444         register_command(cmd_ctx,  NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state");
1445         register_command(cmd_ctx,  NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]");
1446         register_command(cmd_ctx,  NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target");
1447         register_command(cmd_ctx,  NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]");
1448         register_command(cmd_ctx,  NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]");
1449         register_command(cmd_ctx,  NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run|halt|init] - default is run");
1450         register_command(cmd_ctx,  NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset");
1451
1452         register_command(cmd_ctx,  NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words <addr> [count]");
1453         register_command(cmd_ctx,  NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words <addr> [count]");
1454         register_command(cmd_ctx,  NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes <addr> [count]");
1455
1456         register_command(cmd_ctx,  NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word <addr> <value> [count]");
1457         register_command(cmd_ctx,  NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word <addr> <value> [count]");
1458         register_command(cmd_ctx,  NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte <addr> <value> [count]");
1459
1460         register_command(cmd_ctx,  NULL, "bp", handle_bp_command, COMMAND_EXEC, "set breakpoint <address> <length> [hw]");
1461         register_command(cmd_ctx,  NULL, "rbp", handle_rbp_command, COMMAND_EXEC, "remove breakpoint <adress>");
1462         register_command(cmd_ctx,  NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint <address> <length> <r/w/a> [value] [mask]");
1463         register_command(cmd_ctx,  NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint <adress>");
1464
1465         register_command(cmd_ctx,  NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> ['bin'|'ihex'|'elf'|'s19'] [min_address] [max_length]");
1466         register_command(cmd_ctx,  NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>");
1467         register_command(cmd_ctx,  NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image <file> [offset] [type]");
1468         register_command(cmd_ctx,  NULL, "test_image", handle_test_image_command, COMMAND_EXEC, "test_image <file> [offset] [type]");
1469
1470         if((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
1471                 return retval;
1472         if((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
1473                 return retval;
1474
1475         return retval;
1476 }
1477
1478 static int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1479 {
1480         target_t *target = all_targets;
1481
1482         if (argc == 1)
1483         {
1484                 target = get_target(args[0]);
1485                 if (target == NULL) {
1486                         command_print(cmd_ctx,"Target: %s is unknown, try one of:\n", args[0] );
1487                         goto DumpTargets;
1488                 }
1489                 if (!target->tap->enabled) {
1490                         command_print(cmd_ctx,"Target: TAP %s is disabled, "
1491                                         "can't be the current target\n",
1492                                         target->tap->dotted_name);
1493                         return ERROR_FAIL;
1494                 }
1495
1496                 cmd_ctx->current_target = target->target_number;
1497                 return ERROR_OK;
1498         }
1499 DumpTargets:
1500
1501         target = all_targets;
1502         command_print(cmd_ctx, "    TargetName         Type       Endian TapName            State       ");
1503         command_print(cmd_ctx, "--  ------------------ ---------- ------ ------------------ ------------");
1504         while (target)
1505         {
1506                 const char *state;
1507                 char marker = ' ';
1508
1509                 if (target->tap->enabled)
1510                         state = Jim_Nvp_value2name_simple(nvp_target_state,
1511                                         target->state)->name;
1512                 else
1513                         state = "tap-disabled";
1514
1515                 if (cmd_ctx->current_target == target->target_number)
1516                         marker = '*';
1517
1518                 /* keep columns lined up to match the headers above */
1519                 command_print(cmd_ctx, "%2d%c %-18s %-10s %-6s %-18s %s",
1520                                           target->target_number,
1521                                           marker,
1522                                           target->cmd_name,
1523                                           target_get_name(target),
1524                                           Jim_Nvp_value2name_simple(nvp_target_endian,
1525                                                                 target->endianness)->name,
1526                                           target->tap->dotted_name,
1527                                           state);
1528                 target = target->next;
1529         }
1530
1531         return ERROR_OK;
1532 }
1533
1534 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1535
1536 static int powerDropout;
1537 static int srstAsserted;
1538
1539 static int runPowerRestore;
1540 static int runPowerDropout;
1541 static int runSrstAsserted;
1542 static int runSrstDeasserted;
1543
1544 static int sense_handler(void)
1545 {
1546         static int prevSrstAsserted = 0;
1547         static int prevPowerdropout = 0;
1548
1549         int retval;
1550         if ((retval=jtag_power_dropout(&powerDropout))!=ERROR_OK)
1551                 return retval;
1552
1553         int powerRestored;
1554         powerRestored = prevPowerdropout && !powerDropout;
1555         if (powerRestored)
1556         {
1557                 runPowerRestore = 1;
1558         }
1559
1560         long long current = timeval_ms();
1561         static long long lastPower = 0;
1562         int waitMore = lastPower + 2000 > current;
1563         if (powerDropout && !waitMore)
1564         {
1565                 runPowerDropout = 1;
1566                 lastPower = current;
1567         }
1568
1569         if ((retval=jtag_srst_asserted(&srstAsserted))!=ERROR_OK)
1570                 return retval;
1571
1572         int srstDeasserted;
1573         srstDeasserted = prevSrstAsserted && !srstAsserted;
1574
1575         static long long lastSrst = 0;
1576         waitMore = lastSrst + 2000 > current;
1577         if (srstDeasserted && !waitMore)
1578         {
1579                 runSrstDeasserted = 1;
1580                 lastSrst = current;
1581         }
1582
1583         if (!prevSrstAsserted && srstAsserted)
1584         {
1585                 runSrstAsserted = 1;
1586         }
1587
1588         prevSrstAsserted = srstAsserted;
1589         prevPowerdropout = powerDropout;
1590
1591         if (srstDeasserted || powerRestored)
1592         {
1593                 /* Other than logging the event we can't do anything here.
1594                  * Issuing a reset is a particularly bad idea as we might
1595                  * be inside a reset already.
1596                  */
1597         }
1598
1599         return ERROR_OK;
1600 }
1601
1602 /* process target state changes */
1603 int handle_target(void *priv)
1604 {
1605         int retval = ERROR_OK;
1606
1607         /* we do not want to recurse here... */
1608         static int recursive = 0;
1609         if (! recursive)
1610         {
1611                 recursive = 1;
1612                 sense_handler();
1613                 /* danger! running these procedures can trigger srst assertions and power dropouts.
1614                  * We need to avoid an infinite loop/recursion here and we do that by
1615                  * clearing the flags after running these events.
1616                  */
1617                 int did_something = 0;
1618                 if (runSrstAsserted)
1619                 {
1620                         Jim_Eval( interp, "srst_asserted");
1621                         did_something = 1;
1622                 }
1623                 if (runSrstDeasserted)
1624                 {
1625                         Jim_Eval( interp, "srst_deasserted");
1626                         did_something = 1;
1627                 }
1628                 if (runPowerDropout)
1629                 {
1630                         Jim_Eval( interp, "power_dropout");
1631                         did_something = 1;
1632                 }
1633                 if (runPowerRestore)
1634                 {
1635                         Jim_Eval( interp, "power_restore");
1636                         did_something = 1;
1637                 }
1638
1639                 if (did_something)
1640                 {
1641                         /* clear detect flags */
1642                         sense_handler();
1643                 }
1644
1645                 /* clear action flags */
1646
1647                 runSrstAsserted=0;
1648                 runSrstDeasserted=0;
1649                 runPowerRestore=0;
1650                 runPowerDropout=0;
1651
1652                 recursive = 0;
1653         }
1654
1655         target_t *target = all_targets;
1656
1657         while (target)
1658         {
1659
1660                 /* only poll target if we've got power and srst isn't asserted */
1661                 if (target_continous_poll&&!powerDropout&&!srstAsserted)
1662                 {
1663                         /* polling may fail silently until the target has been examined */
1664                         if((retval = target_poll(target)) != ERROR_OK)
1665                                 return retval;
1666                 }
1667
1668                 target = target->next;
1669         }
1670
1671         return retval;
1672 }
1673
1674 static int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1675 {
1676         target_t *target;
1677         reg_t *reg = NULL;
1678         int count = 0;
1679         char *value;
1680
1681         LOG_DEBUG("-");
1682
1683         target = get_current_target(cmd_ctx);
1684
1685         /* list all available registers for the current target */
1686         if (argc == 0)
1687         {
1688                 reg_cache_t *cache = target->reg_cache;
1689
1690                 count = 0;
1691                 while(cache)
1692                 {
1693                         int i;
1694                         for (i = 0; i < cache->num_regs; i++)
1695                         {
1696                                 value = buf_to_str(cache->reg_list[i].value, cache->reg_list[i].size, 16);
1697                                 command_print(cmd_ctx, "(%i) %s (/%i): 0x%s (dirty: %i, valid: %i)", count++, cache->reg_list[i].name, cache->reg_list[i].size, value, cache->reg_list[i].dirty, cache->reg_list[i].valid);
1698                                 free(value);
1699                         }
1700                         cache = cache->next;
1701                 }
1702
1703                 return ERROR_OK;
1704         }
1705
1706         /* access a single register by its ordinal number */
1707         if ((args[0][0] >= '0') && (args[0][0] <= '9'))
1708         {
1709                 int num = strtoul(args[0], NULL, 0);
1710                 reg_cache_t *cache = target->reg_cache;
1711
1712                 count = 0;
1713                 while(cache)
1714                 {
1715                         int i;
1716                         for (i = 0; i < cache->num_regs; i++)
1717                         {
1718                                 if (count++ == num)
1719                                 {
1720                                         reg = &cache->reg_list[i];
1721                                         break;
1722                                 }
1723                         }
1724                         if (reg)
1725                                 break;
1726                         cache = cache->next;
1727                 }
1728
1729                 if (!reg)
1730                 {
1731                         command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1732                         return ERROR_OK;
1733                 }
1734         } else /* access a single register by its name */
1735         {
1736                 reg = register_get_by_name(target->reg_cache, args[0], 1);
1737
1738                 if (!reg)
1739                 {
1740                         command_print(cmd_ctx, "register %s not found in current target", args[0]);
1741                         return ERROR_OK;
1742                 }
1743         }
1744
1745         /* display a register */
1746         if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
1747         {
1748                 if ((argc == 2) && (strcmp(args[1], "force") == 0))
1749                         reg->valid = 0;
1750
1751                 if (reg->valid == 0)
1752                 {
1753                         reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1754                         arch_type->get(reg);
1755                 }
1756                 value = buf_to_str(reg->value, reg->size, 16);
1757                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1758                 free(value);
1759                 return ERROR_OK;
1760         }
1761
1762         /* set register value */
1763         if (argc == 2)
1764         {
1765                 u8 *buf = malloc(CEIL(reg->size, 8));
1766                 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
1767
1768                 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1769                 arch_type->set(reg, buf);
1770
1771                 value = buf_to_str(reg->value, reg->size, 16);
1772                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1773                 free(value);
1774
1775                 free(buf);
1776
1777                 return ERROR_OK;
1778         }
1779
1780         command_print(cmd_ctx, "usage: reg <#|name> [value]");
1781
1782         return ERROR_OK;
1783 }
1784
1785 static int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1786 {
1787         int retval = ERROR_OK;
1788         target_t *target = get_current_target(cmd_ctx);
1789
1790         if (argc == 0)
1791         {
1792                 command_print(cmd_ctx, "background polling: %s",
1793                                 target_continous_poll ?  "on" : "off");
1794                 if ((retval = target_poll(target)) != ERROR_OK)
1795                         return retval;
1796                 if ((retval = target_arch_state(target)) != ERROR_OK)
1797                         return retval;
1798
1799         }
1800         else if (argc==1)
1801         {
1802                 if (strcmp(args[0], "on") == 0)
1803                 {
1804                         target_continous_poll = 1;
1805                 }
1806                 else if (strcmp(args[0], "off") == 0)
1807                 {
1808                         target_continous_poll = 0;
1809                 }
1810                 else
1811                 {
1812                         command_print(cmd_ctx, "arg is \"on\" or \"off\"");
1813                 }
1814         } else
1815         {
1816                 return ERROR_COMMAND_SYNTAX_ERROR;
1817         }
1818
1819         return retval;
1820 }
1821
1822 static int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1823 {
1824         int ms = 5000;
1825
1826         if (argc > 0)
1827         {
1828                 char *end;
1829
1830                 ms = strtoul(args[0], &end, 0) * 1000;
1831                 if (*end)
1832                 {
1833                         command_print(cmd_ctx, "usage: %s [seconds]", cmd);
1834                         return ERROR_OK;
1835                 }
1836         }
1837         target_t *target = get_current_target(cmd_ctx);
1838
1839         return target_wait_state(target, TARGET_HALTED, ms);
1840 }
1841
1842 /* wait for target state to change. The trick here is to have a low
1843  * latency for short waits and not to suck up all the CPU time
1844  * on longer waits.
1845  *
1846  * After 500ms, keep_alive() is invoked
1847  */
1848 int target_wait_state(target_t *target, enum target_state state, int ms)
1849 {
1850         int retval;
1851         long long then=0, cur;
1852         int once=1;
1853
1854         for (;;)
1855         {
1856                 if ((retval=target_poll(target))!=ERROR_OK)
1857                         return retval;
1858                 if (target->state == state)
1859                 {
1860                         break;
1861                 }
1862                 cur = timeval_ms();
1863                 if (once)
1864                 {
1865                         once=0;
1866                         then = timeval_ms();
1867                         LOG_DEBUG("waiting for target %s...",
1868                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
1869                 }
1870
1871                 if (cur-then>500)
1872                 {
1873                         keep_alive();
1874                 }
1875
1876                 if ((cur-then)>ms)
1877                 {
1878                         LOG_ERROR("timed out while waiting for target %s",
1879                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
1880                         return ERROR_FAIL;
1881                 }
1882         }
1883
1884         return ERROR_OK;
1885 }
1886
1887 static int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1888 {
1889         int retval;
1890         target_t *target = get_current_target(cmd_ctx);
1891
1892         LOG_DEBUG("-");
1893
1894         if ((retval = target_halt(target)) != ERROR_OK)
1895         {
1896                 return retval;
1897         }
1898
1899         if (argc == 1)
1900         {
1901                 int wait;
1902                 char *end;
1903
1904                 wait = strtoul(args[0], &end, 0);
1905                 if (!*end && !wait)
1906                         return ERROR_OK;
1907         }
1908
1909         return handle_wait_halt_command(cmd_ctx, cmd, args, argc);
1910 }
1911
1912 static int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1913 {
1914         target_t *target = get_current_target(cmd_ctx);
1915
1916         LOG_USER("requesting target halt and executing a soft reset");
1917
1918         target->type->soft_reset_halt(target);
1919
1920         return ERROR_OK;
1921 }
1922
1923 static int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1924 {
1925         if (argc > 1)
1926                 return ERROR_COMMAND_SYNTAX_ERROR;
1927
1928         enum target_reset_mode reset_mode = RESET_RUN;
1929         if (argc == 1)
1930         {
1931                 const Jim_Nvp *n;
1932                 n = Jim_Nvp_name2value_simple( nvp_reset_modes, args[0] );
1933                 if( (n->name == NULL) || (n->value == RESET_UNKNOWN) ){
1934                         return ERROR_COMMAND_SYNTAX_ERROR;
1935                 }
1936                 reset_mode = n->value;
1937         }
1938
1939         /* reset *all* targets */
1940         return target_process_reset(cmd_ctx, reset_mode);
1941 }
1942
1943
1944 static int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1945 {
1946         if (argc > 1)
1947                 return ERROR_COMMAND_SYNTAX_ERROR;
1948
1949         target_t *target = get_current_target(cmd_ctx);
1950         target_handle_event(target, TARGET_EVENT_OLD_pre_resume);
1951
1952         /* with no args, resume from current pc, addr = 0,
1953          * with one arguments, addr = args[0],
1954          * handle breakpoints, not debugging */
1955         u32 addr = 0;
1956         if (argc == 1)
1957                 addr = strtoul(args[0], NULL, 0);
1958
1959         return target_resume(target, 0, addr, 1, 0);
1960 }
1961
1962 static int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1963 {
1964         if (argc > 1)
1965                 return ERROR_COMMAND_SYNTAX_ERROR;
1966
1967         LOG_DEBUG("-");
1968
1969         /* with no args, step from current pc, addr = 0,
1970          * with one argument addr = args[0],
1971          * handle breakpoints, debugging */
1972         u32 addr = 0;
1973         if (argc == 1)
1974                 addr = strtoul(args[0], NULL, 0);
1975
1976         target_t *target = get_current_target(cmd_ctx);
1977         return target->type->step(target, 0, addr, 1);
1978 }
1979
1980 static void handle_md_output(struct command_context_s *cmd_ctx,
1981                 struct target_s *target, u32 address, unsigned size,
1982                 unsigned count, const u8 *buffer)
1983 {
1984         const unsigned line_bytecnt = 32;
1985         unsigned line_modulo = line_bytecnt / size;
1986
1987         char output[line_bytecnt * 4 + 1];
1988         unsigned output_len = 0;
1989
1990         const char *value_fmt;
1991         switch (size) {
1992         case 4: value_fmt = "%8.8x "; break;
1993         case 2: value_fmt = "%4.2x "; break;
1994         case 1: value_fmt = "%2.2x "; break;
1995         default:
1996                 LOG_ERROR("invalid memory read size: %u", size);
1997                 exit(-1);
1998         }
1999
2000         for (unsigned i = 0; i < count; i++)
2001         {
2002                 if (i % line_modulo == 0)
2003                 {
2004                         output_len += snprintf(output + output_len,
2005                                         sizeof(output) - output_len,
2006                                         "0x%8.8x: ", address + (i*size));
2007                 }
2008
2009                 u32 value=0;
2010                 const u8 *value_ptr = buffer + i * size;
2011                 switch (size) {
2012                 case 4: value = target_buffer_get_u32(target, value_ptr); break;
2013                 case 2: value = target_buffer_get_u16(target, value_ptr); break;
2014                 case 1: value = *value_ptr;
2015                 }
2016                 output_len += snprintf(output + output_len,
2017                                 sizeof(output) - output_len,
2018                                 value_fmt, value);
2019
2020                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
2021                 {
2022                         command_print(cmd_ctx, "%s", output);
2023                         output_len = 0;
2024                 }
2025         }
2026 }
2027
2028 static int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2029 {
2030         if (argc < 1)
2031                 return ERROR_COMMAND_SYNTAX_ERROR;
2032
2033         unsigned size = 0;
2034         switch (cmd[2]) {
2035         case 'w': size = 4; break;
2036         case 'h': size = 2; break;
2037         case 'b': size = 1; break;
2038         default: return ERROR_COMMAND_SYNTAX_ERROR;
2039         }
2040
2041         u32 address = strtoul(args[0], NULL, 0);
2042
2043         unsigned count = 1;
2044         if (argc == 2)
2045                 count = strtoul(args[1], NULL, 0);
2046
2047         u8 *buffer = calloc(count, size);
2048
2049         target_t *target = get_current_target(cmd_ctx);
2050         int retval = target_read_memory(target,
2051                                 address, size, count, buffer);
2052         if (ERROR_OK == retval)
2053                 handle_md_output(cmd_ctx, target, address, size, count, buffer);
2054
2055         free(buffer);
2056
2057         return retval;
2058 }
2059
2060 static int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2061 {
2062         u32 address = 0;
2063         u32 value = 0;
2064         int count = 1;
2065         int i;
2066         int wordsize;
2067         target_t *target = get_current_target(cmd_ctx);
2068         u8 value_buf[4];
2069
2070          if ((argc < 2) || (argc > 3))
2071                 return ERROR_COMMAND_SYNTAX_ERROR;
2072
2073         address = strtoul(args[0], NULL, 0);
2074         value = strtoul(args[1], NULL, 0);
2075         if (argc == 3)
2076                 count = strtoul(args[2], NULL, 0);
2077
2078         switch (cmd[2])
2079         {
2080                 case 'w':
2081                         wordsize = 4;
2082                         target_buffer_set_u32(target, value_buf, value);
2083                         break;
2084                 case 'h':
2085                         wordsize = 2;
2086                         target_buffer_set_u16(target, value_buf, value);
2087                         break;
2088                 case 'b':
2089                         wordsize = 1;
2090                         value_buf[0] = value;
2091                         break;
2092                 default:
2093                         return ERROR_COMMAND_SYNTAX_ERROR;
2094         }
2095         for (i=0; i<count; i++)
2096         {
2097                 int retval = target_write_memory(target,
2098                                 address + i * wordsize, wordsize, 1, value_buf);
2099                 if (ERROR_OK != retval)
2100                         return retval;
2101                 keep_alive();
2102         }
2103
2104         return ERROR_OK;
2105
2106 }
2107
2108 static int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2109 {
2110         u8 *buffer;
2111         u32 buf_cnt;
2112         u32 image_size;
2113         u32 min_address=0;
2114         u32 max_address=0xffffffff;
2115         int i;
2116         int retval, retvaltemp;
2117
2118         image_t image;
2119
2120         duration_t duration;
2121         char *duration_text;
2122
2123         target_t *target = get_current_target(cmd_ctx);
2124
2125         if ((argc < 1)||(argc > 5))
2126         {
2127                 return ERROR_COMMAND_SYNTAX_ERROR;
2128         }
2129
2130         /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
2131         if (argc >= 2)
2132         {
2133                 image.base_address_set = 1;
2134                 image.base_address = strtoul(args[1], NULL, 0);
2135         }
2136         else
2137         {
2138                 image.base_address_set = 0;
2139         }
2140
2141
2142         image.start_address_set = 0;
2143
2144         if (argc>=4)
2145         {
2146                 min_address=strtoul(args[3], NULL, 0);
2147         }
2148         if (argc>=5)
2149         {
2150                 max_address=strtoul(args[4], NULL, 0)+min_address;
2151         }
2152
2153         if (min_address>max_address)
2154         {
2155                 return ERROR_COMMAND_SYNTAX_ERROR;
2156         }
2157
2158         duration_start_measure(&duration);
2159
2160         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
2161         {
2162                 return ERROR_OK;
2163         }
2164
2165         image_size = 0x0;
2166         retval = ERROR_OK;
2167         for (i = 0; i < image.num_sections; i++)
2168         {
2169                 buffer = malloc(image.sections[i].size);
2170                 if (buffer == NULL)
2171                 {
2172                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2173                         break;
2174                 }
2175
2176                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2177                 {
2178                         free(buffer);
2179                         break;
2180                 }
2181
2182                 u32 offset=0;
2183                 u32 length=buf_cnt;
2184
2185                 /* DANGER!!! beware of unsigned comparision here!!! */
2186
2187                 if ((image.sections[i].base_address+buf_cnt>=min_address)&&
2188                                 (image.sections[i].base_address<max_address))
2189                 {
2190                         if (image.sections[i].base_address<min_address)
2191                         {
2192                                 /* clip addresses below */
2193                                 offset+=min_address-image.sections[i].base_address;
2194                                 length-=offset;
2195                         }
2196
2197                         if (image.sections[i].base_address+buf_cnt>max_address)
2198                         {
2199                                 length-=(image.sections[i].base_address+buf_cnt)-max_address;
2200                         }
2201
2202                         if ((retval = target_write_buffer(target, image.sections[i].base_address+offset, length, buffer+offset)) != ERROR_OK)
2203                         {
2204                                 free(buffer);
2205                                 break;
2206                         }
2207                         image_size += length;
2208                         command_print(cmd_ctx, "%u byte written at address 0x%8.8x", length, image.sections[i].base_address+offset);
2209                 }
2210
2211                 free(buffer);
2212         }
2213
2214         if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2215         {
2216                 image_close(&image);
2217                 return retvaltemp;
2218         }
2219
2220         if (retval==ERROR_OK)
2221         {
2222                 command_print(cmd_ctx, "downloaded %u byte in %s", image_size, duration_text);
2223         }
2224         free(duration_text);
2225
2226         image_close(&image);
2227
2228         return retval;
2229
2230 }
2231
2232 static int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2233 {
2234         fileio_t fileio;
2235
2236         u32 address;
2237         u32 size;
2238         u8 buffer[560];
2239         int retval=ERROR_OK, retvaltemp;
2240
2241         duration_t duration;
2242         char *duration_text;
2243
2244         target_t *target = get_current_target(cmd_ctx);
2245
2246         if (argc != 3)
2247         {
2248                 command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
2249                 return ERROR_OK;
2250         }
2251
2252         address = strtoul(args[1], NULL, 0);
2253         size = strtoul(args[2], NULL, 0);
2254
2255         if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2256         {
2257                 return ERROR_OK;
2258         }
2259
2260         duration_start_measure(&duration);
2261
2262         while (size > 0)
2263         {
2264                 u32 size_written;
2265                 u32 this_run_size = (size > 560) ? 560 : size;
2266
2267                 retval = target_read_buffer(target, address, this_run_size, buffer);
2268                 if (retval != ERROR_OK)
2269                 {
2270                         break;
2271                 }
2272
2273                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2274                 if (retval != ERROR_OK)
2275                 {
2276                         break;
2277                 }
2278
2279                 size -= this_run_size;
2280                 address += this_run_size;
2281         }
2282
2283         if((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2284                 return retvaltemp;
2285
2286         if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2287                 return retvaltemp;
2288
2289         if (retval==ERROR_OK)
2290         {
2291                 command_print(cmd_ctx, "dumped %lld byte in %s",
2292                                 fileio.size, duration_text);
2293                 free(duration_text);
2294         }
2295
2296         return retval;
2297 }
2298
2299 static int handle_verify_image_command_internal(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc, int verify)
2300 {
2301         u8 *buffer;
2302         u32 buf_cnt;
2303         u32 image_size;
2304         int i;
2305         int retval, retvaltemp;
2306         u32 checksum = 0;
2307         u32 mem_checksum = 0;
2308
2309         image_t image;
2310
2311         duration_t duration;
2312         char *duration_text;
2313
2314         target_t *target = get_current_target(cmd_ctx);
2315
2316         if (argc < 1)
2317         {
2318                 return ERROR_COMMAND_SYNTAX_ERROR;
2319         }
2320
2321         if (!target)
2322         {
2323                 LOG_ERROR("no target selected");
2324                 return ERROR_FAIL;
2325         }
2326
2327         duration_start_measure(&duration);
2328
2329         if (argc >= 2)
2330         {
2331                 image.base_address_set = 1;
2332                 image.base_address = strtoul(args[1], NULL, 0);
2333         }
2334         else
2335         {
2336                 image.base_address_set = 0;
2337                 image.base_address = 0x0;
2338         }
2339
2340         image.start_address_set = 0;
2341
2342         if ((retval=image_open(&image, args[0], (argc == 3) ? args[2] : NULL)) != ERROR_OK)
2343         {
2344                 return retval;
2345         }
2346
2347         image_size = 0x0;
2348         retval=ERROR_OK;
2349         for (i = 0; i < image.num_sections; i++)
2350         {
2351                 buffer = malloc(image.sections[i].size);
2352                 if (buffer == NULL)
2353                 {
2354                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2355                         break;
2356                 }
2357                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2358                 {
2359                         free(buffer);
2360                         break;
2361                 }
2362
2363                 if (verify)
2364                 {
2365                         /* calculate checksum of image */
2366                         image_calculate_checksum( buffer, buf_cnt, &checksum );
2367
2368                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2369                         if( retval != ERROR_OK )
2370                         {
2371                                 free(buffer);
2372                                 break;
2373                         }
2374
2375                         if( checksum != mem_checksum )
2376                         {
2377                                 /* failed crc checksum, fall back to a binary compare */
2378                                 u8 *data;
2379
2380                                 command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
2381
2382                                 data = (u8*)malloc(buf_cnt);
2383
2384                                 /* Can we use 32bit word accesses? */
2385                                 int size = 1;
2386                                 int count = buf_cnt;
2387                                 if ((count % 4) == 0)
2388                                 {
2389                                         size *= 4;
2390                                         count /= 4;
2391                                 }
2392                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2393                                 if (retval == ERROR_OK)
2394                                 {
2395                                         u32 t;
2396                                         for (t = 0; t < buf_cnt; t++)
2397                                         {
2398                                                 if (data[t] != buffer[t])
2399                                                 {
2400                                                         command_print(cmd_ctx, "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n", t + image.sections[i].base_address, data[t], buffer[t]);
2401                                                         free(data);
2402                                                         free(buffer);
2403                                                         retval=ERROR_FAIL;
2404                                                         goto done;
2405                                                 }
2406                                                 if ((t%16384)==0)
2407                                                 {
2408                                                         keep_alive();
2409                                                 }
2410                                         }
2411                                 }
2412
2413                                 free(data);
2414                         }
2415                 } else
2416                 {
2417                         command_print(cmd_ctx, "address 0x%08x length 0x%08x", image.sections[i].base_address, buf_cnt);
2418                 }
2419
2420                 free(buffer);
2421                 image_size += buf_cnt;
2422         }
2423 done:
2424
2425         if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2426         {
2427                 image_close(&image);
2428                 return retvaltemp;
2429         }
2430
2431         if (retval==ERROR_OK)
2432         {
2433                 command_print(cmd_ctx, "verified %u bytes in %s", image_size, duration_text);
2434         }
2435         free(duration_text);
2436
2437         image_close(&image);
2438
2439         return retval;
2440 }
2441
2442 static int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2443 {
2444         return handle_verify_image_command_internal(cmd_ctx, cmd, args, argc, 1);
2445 }
2446
2447 static int handle_test_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2448 {
2449         return handle_verify_image_command_internal(cmd_ctx, cmd, args, argc, 0);
2450 }
2451
2452 static int handle_bp_command_list(struct command_context_s *cmd_ctx)
2453 {
2454         target_t *target = get_current_target(cmd_ctx);
2455         breakpoint_t *breakpoint = target->breakpoints;
2456         while (breakpoint)
2457         {
2458                 if (breakpoint->type == BKPT_SOFT)
2459                 {
2460                         char* buf = buf_to_str(breakpoint->orig_instr,
2461                                         breakpoint->length, 16);
2462                         command_print(cmd_ctx, "0x%8.8x, 0x%x, %i, 0x%s",
2463                                         breakpoint->address, breakpoint->length,
2464                                         breakpoint->set, buf);
2465                         free(buf);
2466                 }
2467                 else
2468                 {
2469                         command_print(cmd_ctx, "0x%8.8x, 0x%x, %i",
2470                                         breakpoint->address, breakpoint->length, breakpoint->set);
2471                 }
2472
2473                 breakpoint = breakpoint->next;
2474         }
2475         return ERROR_OK;
2476 }
2477
2478 static int handle_bp_command_set(struct command_context_s *cmd_ctx,
2479                 u32 addr, u32 length, int hw)
2480 {
2481         target_t *target = get_current_target(cmd_ctx);
2482         int retval = breakpoint_add(target, addr, length, hw);
2483         if (ERROR_OK == retval)
2484                 command_print(cmd_ctx, "breakpoint set at 0x%8.8x", addr);
2485         else
2486                 LOG_ERROR("Failure setting breakpoint");
2487         return retval;
2488 }
2489
2490 static int handle_bp_command(struct command_context_s *cmd_ctx,
2491                 char *cmd, char **args, int argc)
2492 {
2493         if (argc == 0)
2494                 return handle_bp_command_list(cmd_ctx);
2495
2496         if (argc < 2 || argc > 3)
2497         {
2498                 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
2499                 return ERROR_COMMAND_SYNTAX_ERROR;
2500         }
2501
2502         u32 addr = strtoul(args[0], NULL, 0);
2503         u32 length = strtoul(args[1], NULL, 0);
2504
2505         int hw = BKPT_SOFT;
2506         if (argc == 3)
2507         {
2508                 if (strcmp(args[2], "hw") == 0)
2509                         hw = BKPT_HARD;
2510                 else
2511                         return ERROR_COMMAND_SYNTAX_ERROR;
2512         }
2513
2514         return handle_bp_command_set(cmd_ctx, addr, length, hw);
2515 }
2516
2517 static int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2518 {
2519         target_t *target = get_current_target(cmd_ctx);
2520
2521         if (argc > 0)
2522                 breakpoint_remove(target, strtoul(args[0], NULL, 0));
2523
2524         return ERROR_OK;
2525 }
2526
2527 static int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2528 {
2529         target_t *target = get_current_target(cmd_ctx);
2530         int retval;
2531
2532         if (argc == 0)
2533         {
2534                 watchpoint_t *watchpoint = target->watchpoints;
2535
2536                 while (watchpoint)
2537                 {
2538                         command_print(cmd_ctx, "address: 0x%8.8x, len: 0x%8.8x, r/w/a: %i, value: 0x%8.8x, mask: 0x%8.8x", watchpoint->address, watchpoint->length, watchpoint->rw, watchpoint->value, watchpoint->mask);
2539                         watchpoint = watchpoint->next;
2540                 }
2541         }
2542         else if (argc >= 2)
2543         {
2544                 enum watchpoint_rw type = WPT_ACCESS;
2545                 u32 data_value = 0x0;
2546                 u32 data_mask = 0xffffffff;
2547
2548                 if (argc >= 3)
2549                 {
2550                         switch(args[2][0])
2551                         {
2552                                 case 'r':
2553                                         type = WPT_READ;
2554                                         break;
2555                                 case 'w':
2556                                         type = WPT_WRITE;
2557                                         break;
2558                                 case 'a':
2559                                         type = WPT_ACCESS;
2560                                         break;
2561                                 default:
2562                                         command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2563                                         return ERROR_OK;
2564                         }
2565                 }
2566                 if (argc >= 4)
2567                 {
2568                         data_value = strtoul(args[3], NULL, 0);
2569                 }
2570                 if (argc >= 5)
2571                 {
2572                         data_mask = strtoul(args[4], NULL, 0);
2573                 }
2574
2575                 if ((retval = watchpoint_add(target, strtoul(args[0], NULL, 0),
2576                                 strtoul(args[1], NULL, 0), type, data_value, data_mask)) != ERROR_OK)
2577                 {
2578                         LOG_ERROR("Failure setting breakpoints");
2579                 }
2580         }
2581         else
2582         {
2583                 command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2584         }
2585
2586         return ERROR_OK;
2587 }
2588
2589 static int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2590 {
2591         if (argc != 1)
2592                 return ERROR_COMMAND_SYNTAX_ERROR;
2593
2594         target_t *target = get_current_target(cmd_ctx);
2595         watchpoint_remove(target, strtoul(args[0], NULL, 0));
2596
2597         return ERROR_OK;
2598 }
2599
2600
2601 /**
2602  * Translate a virtual address to a physical address.
2603  *
2604  * The low-level target implementation must have logged a detailed error
2605  * which is forwarded to telnet/GDB session.
2606  */
2607 static int handle_virt2phys_command(command_context_t *cmd_ctx,
2608                 char *cmd, char **args, int argc)
2609 {
2610         if (argc != 1)
2611                 return ERROR_COMMAND_SYNTAX_ERROR;
2612
2613         target_t *target = get_current_target(cmd_ctx);
2614         u32 va = strtoul(args[0], NULL, 0);
2615         u32 pa;
2616
2617         int retval = target->type->virt2phys(target, va, &pa);
2618         if (retval == ERROR_OK)
2619                 command_print(cmd_ctx, "Physical address 0x%08x", pa);
2620
2621         return retval;
2622 }
2623
2624 static void writeData(FILE *f, const void *data, size_t len)
2625 {
2626         size_t written = fwrite(data, len, 1, f);
2627         if (written != len)
2628                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
2629 }
2630
2631 static void writeLong(FILE *f, int l)
2632 {
2633         int i;
2634         for (i=0; i<4; i++)
2635         {
2636                 char c=(l>>(i*8))&0xff;
2637                 writeData(f, &c, 1);
2638         }
2639
2640 }
2641
2642 static void writeString(FILE *f, char *s)
2643 {
2644         writeData(f, s, strlen(s));
2645 }
2646
2647 /* Dump a gmon.out histogram file. */
2648 static void writeGmon(u32 *samples, u32 sampleNum, char *filename)
2649 {
2650         u32 i;
2651         FILE *f=fopen(filename, "w");
2652         if (f==NULL)
2653                 return;
2654         writeString(f, "gmon");
2655         writeLong(f, 0x00000001); /* Version */
2656         writeLong(f, 0); /* padding */
2657         writeLong(f, 0); /* padding */
2658         writeLong(f, 0); /* padding */
2659
2660         u8 zero = 0;  /* GMON_TAG_TIME_HIST */
2661         writeData(f, &zero, 1);
2662
2663         /* figure out bucket size */
2664         u32 min=samples[0];
2665         u32 max=samples[0];
2666         for (i=0; i<sampleNum; i++)
2667         {
2668                 if (min>samples[i])
2669                 {
2670                         min=samples[i];
2671                 }
2672                 if (max<samples[i])
2673                 {
2674                         max=samples[i];
2675                 }
2676         }
2677
2678         int addressSpace=(max-min+1);
2679
2680         static const u32 maxBuckets = 256 * 1024; /* maximum buckets. */
2681         u32 length = addressSpace;
2682         if (length > maxBuckets)
2683         {
2684                 length=maxBuckets;
2685         }
2686         int *buckets=malloc(sizeof(int)*length);
2687         if (buckets==NULL)
2688         {
2689                 fclose(f);
2690                 return;
2691         }
2692         memset(buckets, 0, sizeof(int)*length);
2693         for (i=0; i<sampleNum;i++)
2694         {
2695                 u32 address=samples[i];
2696                 long long a=address-min;
2697                 long long b=length-1;
2698                 long long c=addressSpace-1;
2699                 int index=(a*b)/c; /* danger!!!! int32 overflows */
2700                 buckets[index]++;
2701         }
2702
2703         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
2704         writeLong(f, min);                      /* low_pc */
2705         writeLong(f, max);                      /* high_pc */
2706         writeLong(f, length);           /* # of samples */
2707         writeLong(f, 64000000);         /* 64MHz */
2708         writeString(f, "seconds");
2709         for (i=0; i<(15-strlen("seconds")); i++)
2710                 writeData(f, &zero, 1);
2711         writeString(f, "s");
2712
2713         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
2714
2715         char *data=malloc(2*length);
2716         if (data!=NULL)
2717         {
2718                 for (i=0; i<length;i++)
2719                 {
2720                         int val;
2721                         val=buckets[i];
2722                         if (val>65535)
2723                         {
2724                                 val=65535;
2725                         }
2726                         data[i*2]=val&0xff;
2727                         data[i*2+1]=(val>>8)&0xff;
2728                 }
2729                 free(buckets);
2730                 writeData(f, data, length * 2);
2731                 free(data);
2732         } else
2733         {
2734                 free(buckets);
2735         }
2736
2737         fclose(f);
2738 }
2739
2740 /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
2741 static int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2742 {
2743         target_t *target = get_current_target(cmd_ctx);
2744         struct timeval timeout, now;
2745
2746         gettimeofday(&timeout, NULL);
2747         if (argc!=2)
2748         {
2749                 return ERROR_COMMAND_SYNTAX_ERROR;
2750         }
2751         char *end;
2752         timeval_add_time(&timeout, strtoul(args[0], &end, 0), 0);
2753         if (*end)
2754         {
2755                 return ERROR_OK;
2756         }
2757
2758         command_print(cmd_ctx, "Starting profiling. Halting and resuming the target as often as we can...");
2759
2760         static const int maxSample=10000;
2761         u32 *samples=malloc(sizeof(u32)*maxSample);
2762         if (samples==NULL)
2763                 return ERROR_OK;
2764
2765         int numSamples=0;
2766         int retval=ERROR_OK;
2767         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2768         reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1);
2769
2770         for (;;)
2771         {
2772                 target_poll(target);
2773                 if (target->state == TARGET_HALTED)
2774                 {
2775                         u32 t=*((u32 *)reg->value);
2776                         samples[numSamples++]=t;
2777                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2778                         target_poll(target);
2779                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2780                 } else if (target->state == TARGET_RUNNING)
2781                 {
2782                         /* We want to quickly sample the PC. */
2783                         if((retval = target_halt(target)) != ERROR_OK)
2784                         {
2785                                 free(samples);
2786                                 return retval;
2787                         }
2788                 } else
2789                 {
2790                         command_print(cmd_ctx, "Target not halted or running");
2791                         retval=ERROR_OK;
2792                         break;
2793                 }
2794                 if (retval!=ERROR_OK)
2795                 {
2796                         break;
2797                 }
2798
2799                 gettimeofday(&now, NULL);
2800                 if ((numSamples>=maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
2801                 {
2802                         command_print(cmd_ctx, "Profiling completed. %d samples.", numSamples);
2803                         if((retval = target_poll(target)) != ERROR_OK)
2804                         {
2805                                 free(samples);
2806                                 return retval;
2807                         }
2808                         if (target->state == TARGET_HALTED)
2809                         {
2810                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2811                         }
2812                         if((retval = target_poll(target)) != ERROR_OK)
2813                         {
2814                                 free(samples);
2815                                 return retval;
2816                         }
2817                         writeGmon(samples, numSamples, args[1]);
2818                         command_print(cmd_ctx, "Wrote %s", args[1]);
2819                         break;
2820                 }
2821         }
2822         free(samples);
2823
2824         return ERROR_OK;
2825 }
2826
2827 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 val)
2828 {
2829         char *namebuf;
2830         Jim_Obj *nameObjPtr, *valObjPtr;
2831         int result;
2832
2833         namebuf = alloc_printf("%s(%d)", varname, idx);
2834         if (!namebuf)
2835                 return JIM_ERR;
2836
2837         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
2838         valObjPtr = Jim_NewIntObj(interp, val);
2839         if (!nameObjPtr || !valObjPtr)
2840         {
2841                 free(namebuf);
2842                 return JIM_ERR;
2843         }
2844
2845         Jim_IncrRefCount(nameObjPtr);
2846         Jim_IncrRefCount(valObjPtr);
2847         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
2848         Jim_DecrRefCount(interp, nameObjPtr);
2849         Jim_DecrRefCount(interp, valObjPtr);
2850         free(namebuf);
2851         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
2852         return result;
2853 }
2854
2855 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
2856 {
2857         command_context_t *context;
2858         target_t *target;
2859
2860         context = Jim_GetAssocData(interp, "context");
2861         if (context == NULL)
2862         {
2863                 LOG_ERROR("mem2array: no command context");
2864                 return JIM_ERR;
2865         }
2866         target = get_current_target(context);
2867         if (target == NULL)
2868         {
2869                 LOG_ERROR("mem2array: no current target");
2870                 return JIM_ERR;
2871         }
2872
2873         return  target_mem2array(interp, target, argc-1, argv+1);
2874 }
2875
2876 static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv)
2877 {
2878         long l;
2879         u32 width;
2880         int len;
2881         u32 addr;
2882         u32 count;
2883         u32 v;
2884         const char *varname;
2885         u8 buffer[4096];
2886         int  n, e, retval;
2887         u32 i;
2888
2889         /* argv[1] = name of array to receive the data
2890          * argv[2] = desired width
2891          * argv[3] = memory address
2892          * argv[4] = count of times to read
2893          */
2894         if (argc != 4) {
2895                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
2896                 return JIM_ERR;
2897         }
2898         varname = Jim_GetString(argv[0], &len);
2899         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
2900
2901         e = Jim_GetLong(interp, argv[1], &l);
2902         width = l;
2903         if (e != JIM_OK) {
2904                 return e;
2905         }
2906
2907         e = Jim_GetLong(interp, argv[2], &l);
2908         addr = l;
2909         if (e != JIM_OK) {
2910                 return e;
2911         }
2912         e = Jim_GetLong(interp, argv[3], &l);
2913         len = l;
2914         if (e != JIM_OK) {
2915                 return e;
2916         }
2917         switch (width) {
2918                 case 8:
2919                         width = 1;
2920                         break;
2921                 case 16:
2922                         width = 2;
2923                         break;
2924                 case 32:
2925                         width = 4;
2926                         break;
2927                 default:
2928                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2929                         Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
2930                         return JIM_ERR;
2931         }
2932         if (len == 0) {
2933                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2934                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
2935                 return JIM_ERR;
2936         }
2937         if ((addr + (len * width)) < addr) {
2938                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2939                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
2940                 return JIM_ERR;
2941         }
2942         /* absurd transfer size? */
2943         if (len > 65536) {
2944                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2945                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
2946                 return JIM_ERR;
2947         }
2948
2949         if ((width == 1) ||
2950                 ((width == 2) && ((addr & 1) == 0)) ||
2951                 ((width == 4) && ((addr & 3) == 0))) {
2952                 /* all is well */
2953         } else {
2954                 char buf[100];
2955                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2956                 sprintf(buf, "mem2array address: 0x%08x is not aligned for %d byte reads", addr, width);
2957                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
2958                 return JIM_ERR;
2959         }
2960
2961         /* Transfer loop */
2962
2963         /* index counter */
2964         n = 0;
2965         /* assume ok */
2966         e = JIM_OK;
2967         while (len) {
2968                 /* Slurp... in buffer size chunks */
2969
2970                 count = len; /* in objects.. */
2971                 if (count > (sizeof(buffer)/width)) {
2972                         count = (sizeof(buffer)/width);
2973                 }
2974
2975                 retval = target_read_memory( target, addr, width, count, buffer );
2976                 if (retval != ERROR_OK) {
2977                         /* BOO !*/
2978                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
2979                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2980                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
2981                         e = JIM_ERR;
2982                         len = 0;
2983                 } else {
2984                         v = 0; /* shut up gcc */
2985                         for (i = 0 ;i < count ;i++, n++) {
2986                                 switch (width) {
2987                                         case 4:
2988                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
2989                                                 break;
2990                                         case 2:
2991                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
2992                                                 break;
2993                                         case 1:
2994                                                 v = buffer[i] & 0x0ff;
2995                                                 break;
2996                                 }
2997                                 new_int_array_element(interp, varname, n, v);
2998                         }
2999                         len -= count;
3000                 }
3001         }
3002
3003         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3004
3005         return JIM_OK;
3006 }
3007
3008 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 *val)
3009 {
3010         char *namebuf;
3011         Jim_Obj *nameObjPtr, *valObjPtr;
3012         int result;
3013         long l;
3014
3015         namebuf = alloc_printf("%s(%d)", varname, idx);
3016         if (!namebuf)
3017                 return JIM_ERR;
3018
3019         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3020         if (!nameObjPtr)
3021         {
3022                 free(namebuf);
3023                 return JIM_ERR;
3024         }
3025
3026         Jim_IncrRefCount(nameObjPtr);
3027         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3028         Jim_DecrRefCount(interp, nameObjPtr);
3029         free(namebuf);
3030         if (valObjPtr == NULL)
3031                 return JIM_ERR;
3032
3033         result = Jim_GetLong(interp, valObjPtr, &l);
3034         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3035         *val = l;
3036         return result;
3037 }
3038
3039 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3040 {
3041         command_context_t *context;
3042         target_t *target;
3043
3044         context = Jim_GetAssocData(interp, "context");
3045         if (context == NULL){
3046                 LOG_ERROR("array2mem: no command context");
3047                 return JIM_ERR;
3048         }
3049         target = get_current_target(context);
3050         if (target == NULL){
3051                 LOG_ERROR("array2mem: no current target");
3052                 return JIM_ERR;
3053         }
3054
3055         return target_array2mem( interp,target, argc-1, argv+1 );
3056 }
3057
3058 static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv)
3059 {
3060         long l;
3061         u32 width;
3062         int len;
3063         u32 addr;
3064         u32 count;
3065         u32 v;
3066         const char *varname;
3067         u8 buffer[4096];
3068         int  n, e, retval;
3069         u32 i;
3070
3071         /* argv[1] = name of array to get the data
3072          * argv[2] = desired width
3073          * argv[3] = memory address
3074          * argv[4] = count to write
3075          */
3076         if (argc != 4) {
3077                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3078                 return JIM_ERR;
3079         }
3080         varname = Jim_GetString(argv[0], &len);
3081         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3082
3083         e = Jim_GetLong(interp, argv[1], &l);
3084         width = l;
3085         if (e != JIM_OK) {
3086                 return e;
3087         }
3088
3089         e = Jim_GetLong(interp, argv[2], &l);
3090         addr = l;
3091         if (e != JIM_OK) {
3092                 return e;
3093         }
3094         e = Jim_GetLong(interp, argv[3], &l);
3095         len = l;
3096         if (e != JIM_OK) {
3097                 return e;
3098         }
3099         switch (width) {
3100                 case 8:
3101                         width = 1;
3102                         break;
3103                 case 16:
3104                         width = 2;
3105                         break;
3106                 case 32:
3107                         width = 4;
3108                         break;
3109                 default:
3110                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3111                         Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
3112                         return JIM_ERR;
3113         }
3114         if (len == 0) {
3115                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3116                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
3117                 return JIM_ERR;
3118         }
3119         if ((addr + (len * width)) < addr) {
3120                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3121                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
3122                 return JIM_ERR;
3123         }
3124         /* absurd transfer size? */
3125         if (len > 65536) {
3126                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3127                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
3128                 return JIM_ERR;
3129         }
3130
3131         if ((width == 1) ||
3132                 ((width == 2) && ((addr & 1) == 0)) ||
3133                 ((width == 4) && ((addr & 3) == 0))) {
3134                 /* all is well */
3135         } else {
3136                 char buf[100];
3137                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3138                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads", addr, width);
3139                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3140                 return JIM_ERR;
3141         }
3142
3143         /* Transfer loop */
3144
3145         /* index counter */
3146         n = 0;
3147         /* assume ok */
3148         e = JIM_OK;
3149         while (len) {
3150                 /* Slurp... in buffer size chunks */
3151
3152                 count = len; /* in objects.. */
3153                 if (count > (sizeof(buffer)/width)) {
3154                         count = (sizeof(buffer)/width);
3155                 }
3156
3157                 v = 0; /* shut up gcc */
3158                 for (i = 0 ;i < count ;i++, n++) {
3159                         get_int_array_element(interp, varname, n, &v);
3160                         switch (width) {
3161                         case 4:
3162                                 target_buffer_set_u32(target, &buffer[i*width], v);
3163                                 break;
3164                         case 2:
3165                                 target_buffer_set_u16(target, &buffer[i*width], v);
3166                                 break;
3167                         case 1:
3168                                 buffer[i] = v & 0x0ff;
3169                                 break;
3170                         }
3171                 }
3172                 len -= count;
3173
3174                 retval = target_write_memory(target, addr, width, count, buffer);
3175                 if (retval != ERROR_OK) {
3176                         /* BOO !*/
3177                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
3178                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3179                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3180                         e = JIM_ERR;
3181                         len = 0;
3182                 }
3183         }
3184
3185         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3186
3187         return JIM_OK;
3188 }
3189
3190 void target_all_handle_event( enum target_event e )
3191 {
3192         target_t *target;
3193
3194         LOG_DEBUG( "**all*targets: event: %d, %s",
3195                         e,
3196                         Jim_Nvp_value2name_simple( nvp_target_event, e )->name );
3197
3198         target = all_targets;
3199         while (target){
3200                 target_handle_event( target, e );
3201                 target = target->next;
3202         }
3203 }
3204
3205 void target_handle_event( target_t *target, enum target_event e )
3206 {
3207         target_event_action_t *teap;
3208         int done;
3209
3210         teap = target->event_action;
3211
3212         done = 0;
3213         while( teap ){
3214                 if( teap->event == e ){
3215                         done = 1;
3216                         LOG_DEBUG( "target: (%d) %s (%s) event: %d (%s) action: %s\n",
3217                                            target->target_number,
3218                                            target->cmd_name,
3219                                            target_get_name(target),
3220                                            e,
3221                                            Jim_Nvp_value2name_simple( nvp_target_event, e )->name,
3222                                            Jim_GetString( teap->body, NULL ) );
3223                         if (Jim_EvalObj( interp, teap->body )!=JIM_OK)
3224                         {
3225                                 Jim_PrintErrorMessage(interp);
3226                         }
3227                 }
3228                 teap = teap->next;
3229         }
3230         if( !done ){
3231                 LOG_DEBUG( "event: %d %s - no action",
3232                                    e,
3233                                    Jim_Nvp_value2name_simple( nvp_target_event, e )->name );
3234         }
3235 }
3236
3237 enum target_cfg_param {
3238         TCFG_TYPE,
3239         TCFG_EVENT,
3240         TCFG_WORK_AREA_VIRT,
3241         TCFG_WORK_AREA_PHYS,
3242         TCFG_WORK_AREA_SIZE,
3243         TCFG_WORK_AREA_BACKUP,
3244         TCFG_ENDIAN,
3245         TCFG_VARIANT,
3246         TCFG_CHAIN_POSITION,
3247 };
3248
3249 static Jim_Nvp nvp_config_opts[] = {
3250         { .name = "-type",             .value = TCFG_TYPE },
3251         { .name = "-event",            .value = TCFG_EVENT },
3252         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
3253         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
3254         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
3255         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3256         { .name = "-endian" ,          .value = TCFG_ENDIAN },
3257         { .name = "-variant",          .value = TCFG_VARIANT },
3258         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
3259
3260         { .name = NULL, .value = -1 }
3261 };
3262
3263 static int target_configure( Jim_GetOptInfo *goi, target_t *target )
3264 {
3265         Jim_Nvp *n;
3266         Jim_Obj *o;
3267         jim_wide w;
3268         char *cp;
3269         int e;
3270
3271         /* parse config or cget options ... */
3272         while( goi->argc > 0 ){
3273                 Jim_SetEmptyResult( goi->interp );
3274                 /* Jim_GetOpt_Debug( goi ); */
3275
3276                 if( target->type->target_jim_configure ){
3277                         /* target defines a configure function */
3278                         /* target gets first dibs on parameters */
3279                         e = (*(target->type->target_jim_configure))( target, goi );
3280                         if( e == JIM_OK ){
3281                                 /* more? */
3282                                 continue;
3283                         }
3284                         if( e == JIM_ERR ){
3285                                 /* An error */
3286                                 return e;
3287                         }
3288                         /* otherwise we 'continue' below */
3289                 }
3290                 e = Jim_GetOpt_Nvp( goi, nvp_config_opts, &n );
3291                 if( e != JIM_OK ){
3292                         Jim_GetOpt_NvpUnknown( goi, nvp_config_opts, 0 );
3293                         return e;
3294                 }
3295                 switch( n->value ){
3296                 case TCFG_TYPE:
3297                         /* not setable */
3298                         if( goi->isconfigure ){
3299                                 Jim_SetResult_sprintf( goi->interp, "not setable: %s", n->name );
3300                                 return JIM_ERR;
3301                         } else {
3302                         no_params:
3303                                 if( goi->argc != 0 ){
3304                                         Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "NO PARAMS");
3305                                         return JIM_ERR;
3306                                 }
3307                         }
3308                         Jim_SetResultString( goi->interp, target_get_name(target), -1 );
3309                         /* loop for more */
3310                         break;
3311                 case TCFG_EVENT:
3312                         if( goi->argc == 0 ){
3313                                 Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
3314                                 return JIM_ERR;
3315                         }
3316
3317                         e = Jim_GetOpt_Nvp( goi, nvp_target_event, &n );
3318                         if( e != JIM_OK ){
3319                                 Jim_GetOpt_NvpUnknown( goi, nvp_target_event, 1 );
3320                                 return e;
3321                         }
3322
3323                         if( goi->isconfigure ){
3324                                 if( goi->argc != 1 ){
3325                                         Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
3326                                         return JIM_ERR;
3327                                 }
3328                         } else {
3329                                 if( goi->argc != 0 ){
3330                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
3331                                         return JIM_ERR;
3332                                 }
3333                         }
3334
3335                         {
3336                                 target_event_action_t *teap;
3337
3338                                 teap = target->event_action;
3339                                 /* replace existing? */
3340                                 while( teap ){
3341                                         if( teap->event == (enum target_event)n->value ){
3342                                                 break;
3343                                         }
3344                                         teap = teap->next;
3345                                 }
3346
3347                                 if( goi->isconfigure ){
3348                                         if( teap == NULL ){
3349                                                 /* create new */
3350                                                 teap = calloc( 1, sizeof(*teap) );
3351                                         }
3352                                         teap->event = n->value;
3353                                         Jim_GetOpt_Obj( goi, &o );
3354                                         if( teap->body ){
3355                                                 Jim_DecrRefCount( interp, teap->body );
3356                                         }
3357                                         teap->body  = Jim_DuplicateObj( goi->interp, o );
3358                                         /*
3359                                          * FIXME:
3360                                          *     Tcl/TK - "tk events" have a nice feature.
3361                                          *     See the "BIND" command.
3362                                          *    We should support that here.
3363                                          *     You can specify %X and %Y in the event code.
3364                                          *     The idea is: %T - target name.
3365                                          *     The idea is: %N - target number
3366                                          *     The idea is: %E - event name.
3367                                          */
3368                                         Jim_IncrRefCount( teap->body );
3369
3370                                         /* add to head of event list */
3371                                         teap->next = target->event_action;
3372                                         target->event_action = teap;
3373                                         Jim_SetEmptyResult(goi->interp);
3374                                 } else {
3375                                         /* get */
3376                                         if( teap == NULL ){
3377                                                 Jim_SetEmptyResult( goi->interp );
3378                                         } else {
3379                                                 Jim_SetResult( goi->interp, Jim_DuplicateObj( goi->interp, teap->body ) );
3380                                         }
3381                                 }
3382                         }
3383                         /* loop for more */
3384                         break;
3385
3386                 case TCFG_WORK_AREA_VIRT:
3387                         if( goi->isconfigure ){
3388                                 target_free_all_working_areas(target);
3389                                 e = Jim_GetOpt_Wide( goi, &w );
3390                                 if( e != JIM_OK ){
3391                                         return e;
3392                                 }
3393                                 target->working_area_virt = w;
3394                         } else {
3395                                 if( goi->argc != 0 ){
3396                                         goto no_params;
3397                                 }
3398                         }
3399                         Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_virt ) );
3400                         /* loop for more */
3401                         break;
3402
3403                 case TCFG_WORK_AREA_PHYS:
3404                         if( goi->isconfigure ){
3405                                 target_free_all_working_areas(target);
3406                                 e = Jim_GetOpt_Wide( goi, &w );
3407                                 if( e != JIM_OK ){
3408                                         return e;
3409                                 }
3410                                 target->working_area_phys = w;
3411                         } else {
3412                                 if( goi->argc != 0 ){
3413                                         goto no_params;
3414                                 }
3415                         }
3416                         Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_phys ) );
3417                         /* loop for more */
3418                         break;
3419
3420                 case TCFG_WORK_AREA_SIZE:
3421                         if( goi->isconfigure ){
3422                                 target_free_all_working_areas(target);
3423                                 e = Jim_GetOpt_Wide( goi, &w );
3424                                 if( e != JIM_OK ){
3425                                         return e;
3426                                 }
3427                                 target->working_area_size = w;
3428                         } else {
3429                                 if( goi->argc != 0 ){
3430                                         goto no_params;
3431                                 }
3432                         }
3433                         Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_size ) );
3434                         /* loop for more */
3435                         break;
3436
3437                 case TCFG_WORK_AREA_BACKUP:
3438                         if( goi->isconfigure ){
3439                                 target_free_all_working_areas(target);
3440                                 e = Jim_GetOpt_Wide( goi, &w );
3441                                 if( e != JIM_OK ){
3442                                         return e;
3443                                 }
3444                                 /* make this exactly 1 or 0 */
3445                                 target->backup_working_area = (!!w);
3446                         } else {
3447                                 if( goi->argc != 0 ){
3448                                         goto no_params;
3449                                 }
3450                         }
3451                         Jim_SetResult(interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
3452                         /* loop for more e*/
3453                         break;
3454
3455                 case TCFG_ENDIAN:
3456                         if( goi->isconfigure ){
3457                                 e = Jim_GetOpt_Nvp( goi, nvp_target_endian, &n );
3458                                 if( e != JIM_OK ){
3459                                         Jim_GetOpt_NvpUnknown( goi, nvp_target_endian, 1 );
3460                                         return e;
3461                                 }
3462                                 target->endianness = n->value;
3463                         } else {
3464                                 if( goi->argc != 0 ){
3465                                         goto no_params;
3466                                 }
3467                         }
3468                         n = Jim_Nvp_value2name_simple( nvp_target_endian, target->endianness );
3469                         if( n->name == NULL ){
3470                                 target->endianness = TARGET_LITTLE_ENDIAN;
3471                                 n = Jim_Nvp_value2name_simple( nvp_target_endian, target->endianness );
3472                         }
3473                         Jim_SetResultString( goi->interp, n->name, -1 );
3474                         /* loop for more */
3475                         break;
3476
3477                 case TCFG_VARIANT:
3478                         if( goi->isconfigure ){
3479                                 if( goi->argc < 1 ){
3480                                         Jim_SetResult_sprintf( goi->interp,
3481                                                                                    "%s ?STRING?",
3482                                                                                    n->name );
3483                                         return JIM_ERR;
3484                                 }
3485                                 if( target->variant ){
3486                                         free((void *)(target->variant));
3487                                 }
3488                                 e = Jim_GetOpt_String( goi, &cp, NULL );
3489                                 target->variant = strdup(cp);
3490                         } else {
3491                                 if( goi->argc != 0 ){
3492                                         goto no_params;
3493                                 }
3494                         }
3495                         Jim_SetResultString( goi->interp, target->variant,-1 );
3496                         /* loop for more */
3497                         break;
3498                 case TCFG_CHAIN_POSITION:
3499                         if( goi->isconfigure ){
3500                                 Jim_Obj *o;
3501                                 jtag_tap_t *tap;
3502                                 target_free_all_working_areas(target);
3503                                 e = Jim_GetOpt_Obj( goi, &o );
3504                                 if( e != JIM_OK ){
3505                                         return e;
3506                                 }
3507                                 tap = jtag_tap_by_jim_obj( goi->interp, o );
3508                                 if( tap == NULL ){
3509                                         return JIM_ERR;
3510                                 }
3511                                 /* make this exactly 1 or 0 */
3512                                 target->tap = tap;
3513                         } else {
3514                                 if( goi->argc != 0 ){
3515                                         goto no_params;
3516                                 }
3517                         }
3518                         Jim_SetResultString( interp, target->tap->dotted_name, -1 );
3519                         /* loop for more e*/
3520                         break;
3521                 }
3522         } /* while( goi->argc ) */
3523
3524
3525                 /* done - we return */
3526         return JIM_OK;
3527 }
3528
3529 /** this is the 'tcl' handler for the target specific command */
3530 static int tcl_target_func( Jim_Interp *interp, int argc, Jim_Obj *const *argv )
3531 {
3532         Jim_GetOptInfo goi;
3533         jim_wide a,b,c;
3534         int x,y,z;
3535         u8  target_buf[32];
3536         Jim_Nvp *n;
3537         target_t *target;
3538         struct command_context_s *cmd_ctx;
3539         int e;
3540
3541         enum {
3542                 TS_CMD_CONFIGURE,
3543                 TS_CMD_CGET,
3544
3545                 TS_CMD_MWW, TS_CMD_MWH, TS_CMD_MWB,
3546                 TS_CMD_MDW, TS_CMD_MDH, TS_CMD_MDB,
3547                 TS_CMD_MRW, TS_CMD_MRH, TS_CMD_MRB,
3548                 TS_CMD_MEM2ARRAY, TS_CMD_ARRAY2MEM,
3549                 TS_CMD_EXAMINE,
3550                 TS_CMD_POLL,
3551                 TS_CMD_RESET,
3552                 TS_CMD_HALT,
3553                 TS_CMD_WAITSTATE,
3554                 TS_CMD_EVENTLIST,
3555                 TS_CMD_CURSTATE,
3556                 TS_CMD_INVOKE_EVENT,
3557         };
3558
3559         static const Jim_Nvp target_options[] = {
3560                 { .name = "configure", .value = TS_CMD_CONFIGURE },
3561                 { .name = "cget", .value = TS_CMD_CGET },
3562                 { .name = "mww", .value = TS_CMD_MWW },
3563                 { .name = "mwh", .value = TS_CMD_MWH },
3564                 { .name = "mwb", .value = TS_CMD_MWB },
3565                 { .name = "mdw", .value = TS_CMD_MDW },
3566                 { .name = "mdh", .value = TS_CMD_MDH },
3567                 { .name = "mdb", .value = TS_CMD_MDB },
3568                 { .name = "mem2array", .value = TS_CMD_MEM2ARRAY },
3569                 { .name = "array2mem", .value = TS_CMD_ARRAY2MEM },
3570                 { .name = "eventlist", .value = TS_CMD_EVENTLIST },
3571                 { .name = "curstate",  .value = TS_CMD_CURSTATE },
3572
3573                 { .name = "arp_examine", .value = TS_CMD_EXAMINE },
3574                 { .name = "arp_poll", .value = TS_CMD_POLL },
3575                 { .name = "arp_reset", .value = TS_CMD_RESET },
3576                 { .name = "arp_halt", .value = TS_CMD_HALT },
3577                 { .name = "arp_waitstate", .value = TS_CMD_WAITSTATE },
3578                 { .name = "invoke-event", .value = TS_CMD_INVOKE_EVENT },
3579
3580                 { .name = NULL, .value = -1 },
3581         };
3582
3583         /* go past the "command" */
3584         Jim_GetOpt_Setup( &goi, interp, argc-1, argv+1 );
3585
3586         target = Jim_CmdPrivData( goi.interp );
3587         cmd_ctx = Jim_GetAssocData(goi.interp, "context");
3588
3589         /* commands here are in an NVP table */
3590         e = Jim_GetOpt_Nvp( &goi, target_options, &n );
3591         if( e != JIM_OK ){
3592                 Jim_GetOpt_NvpUnknown( &goi, target_options, 0 );
3593                 return e;
3594         }
3595         /* Assume blank result */
3596         Jim_SetEmptyResult( goi.interp );
3597
3598         switch( n->value ){
3599         case TS_CMD_CONFIGURE:
3600                 if( goi.argc < 2 ){
3601                         Jim_WrongNumArgs( goi.interp, goi.argc, goi.argv, "missing: -option VALUE ...");
3602                         return JIM_ERR;
3603                 }
3604                 goi.isconfigure = 1;
3605                 return target_configure( &goi, target );
3606         case TS_CMD_CGET:
3607                 // some things take params
3608                 if( goi.argc < 1 ){
3609                         Jim_WrongNumArgs( goi.interp, 0, goi.argv, "missing: ?-option?");
3610                         return JIM_ERR;
3611                 }
3612                 goi.isconfigure = 0;
3613                 return target_configure( &goi, target );
3614                 break;
3615         case TS_CMD_MWW:
3616         case TS_CMD_MWH:
3617         case TS_CMD_MWB:
3618                 /* argv[0] = cmd
3619                  * argv[1] = address
3620                  * argv[2] = data
3621                  * argv[3] = optional count.
3622                  */
3623
3624                 if( (goi.argc == 3) || (goi.argc == 4) ){
3625                         /* all is well */
3626                 } else {
3627                 mwx_error:
3628                         Jim_SetResult_sprintf( goi.interp, "expected: %s ADDR DATA [COUNT]", n->name );
3629                         return JIM_ERR;
3630                 }
3631
3632                 e = Jim_GetOpt_Wide( &goi, &a );
3633                 if( e != JIM_OK ){
3634                         goto mwx_error;
3635                 }
3636
3637                 e = Jim_GetOpt_Wide( &goi, &b );
3638                 if( e != JIM_OK ){
3639                         goto mwx_error;
3640                 }
3641                 if( goi.argc ){
3642                         e = Jim_GetOpt_Wide( &goi, &c );
3643                         if( e != JIM_OK ){
3644                                 goto mwx_error;
3645                         }
3646                 } else {
3647                         c = 1;
3648                 }
3649
3650                 switch( n->value ){
3651                 case TS_CMD_MWW:
3652                         target_buffer_set_u32( target, target_buf, b );
3653                         b = 4;
3654                         break;
3655                 case TS_CMD_MWH:
3656                         target_buffer_set_u16( target, target_buf, b );
3657                         b = 2;
3658                         break;
3659                 case TS_CMD_MWB:
3660                         target_buffer_set_u8( target, target_buf, b );
3661                         b = 1;
3662                         break;
3663                 }
3664                 for( x = 0 ; x < c ; x++ ){
3665                         e = target_write_memory( target, a, b, 1, target_buf );
3666                         if( e != ERROR_OK ){
3667                                 Jim_SetResult_sprintf( interp, "Error writing @ 0x%08x: %d\n", (int)(a), e );
3668                                 return JIM_ERR;
3669                         }
3670                         /* b = width */
3671                         a = a + b;
3672                 }
3673                 return JIM_OK;
3674                 break;
3675
3676                 /* display */
3677         case TS_CMD_MDW:
3678         case TS_CMD_MDH:
3679         case TS_CMD_MDB:
3680                 /* argv[0] = command
3681                  * argv[1] = address
3682                  * argv[2] = optional count
3683                  */
3684                 if( (goi.argc == 2) || (goi.argc == 3) ){
3685                         Jim_SetResult_sprintf( goi.interp, "expected: %s ADDR [COUNT]", n->name );
3686                         return JIM_ERR;
3687                 }
3688                 e = Jim_GetOpt_Wide( &goi, &a );
3689                 if( e != JIM_OK ){
3690                         return JIM_ERR;
3691                 }
3692                 if( goi.argc ){
3693                         e = Jim_GetOpt_Wide( &goi, &c );
3694                         if( e != JIM_OK ){
3695                                 return JIM_ERR;
3696                         }
3697                 } else {
3698                         c = 1;
3699                 }
3700                 b = 1; /* shut up gcc */
3701                 switch( n->value ){
3702                 case TS_CMD_MDW:
3703                         b =  4;
3704                         break;
3705                 case TS_CMD_MDH:
3706                         b = 2;
3707                         break;
3708                 case TS_CMD_MDB:
3709                         b = 1;
3710                         break;
3711                 }
3712
3713                 /* convert to "bytes" */
3714                 c = c * b;
3715                 /* count is now in 'BYTES' */
3716                 while( c > 0 ){
3717                         y = c;
3718                         if( y > 16 ){
3719                                 y = 16;
3720                         }
3721                         e = target_read_memory( target, a, b, y / b, target_buf );
3722                         if( e != ERROR_OK ){
3723                                 Jim_SetResult_sprintf( interp, "error reading target @ 0x%08lx", (int)(a) );
3724                                 return JIM_ERR;
3725                         }
3726
3727                         Jim_fprintf( interp, interp->cookie_stdout, "0x%08x ", (int)(a) );
3728                         switch( b ){
3729                         case 4:
3730                                 for( x = 0 ; (x < 16) && (x < y) ; x += 4 ){
3731                                         z = target_buffer_get_u32( target, &(target_buf[ x * 4 ]) );
3732                                         Jim_fprintf( interp, interp->cookie_stdout, "%08x ", (int)(z) );
3733                                 }
3734                                 for( ; (x < 16) ; x += 4 ){
3735                                         Jim_fprintf( interp, interp->cookie_stdout, "         " );
3736                                 }
3737                                 break;
3738                         case 2:
3739                                 for( x = 0 ; (x < 16) && (x < y) ; x += 2 ){
3740                                         z = target_buffer_get_u16( target, &(target_buf[ x * 2 ]) );
3741                                         Jim_fprintf( interp, interp->cookie_stdout, "%04x ", (int)(z) );
3742                                 }
3743                                 for( ; (x < 16) ; x += 2 ){
3744                                         Jim_fprintf( interp, interp->cookie_stdout, "     " );
3745                                 }
3746                                 break;
3747                         case 1:
3748                         default:
3749                                 for( x = 0 ; (x < 16) && (x < y) ; x += 1 ){
3750                                         z = target_buffer_get_u8( target, &(target_buf[ x * 4 ]) );
3751                                         Jim_fprintf( interp, interp->cookie_stdout, "%02x ", (int)(z) );
3752                                 }
3753                                 for( ; (x < 16) ; x += 1 ){
3754                                         Jim_fprintf( interp, interp->cookie_stdout, "   " );
3755                                 }
3756                                 break;
3757                         }
3758                         /* ascii-ify the bytes */
3759                         for( x = 0 ; x < y ; x++ ){
3760                                 if( (target_buf[x] >= 0x20) &&
3761                                         (target_buf[x] <= 0x7e) ){
3762                                         /* good */
3763                                 } else {
3764                                         /* smack it */
3765                                         target_buf[x] = '.';
3766                                 }
3767                         }
3768                         /* space pad  */
3769                         while( x < 16 ){
3770                                 target_buf[x] = ' ';
3771                                 x++;
3772                         }
3773                         /* terminate */
3774                         target_buf[16] = 0;
3775                         /* print - with a newline */
3776                         Jim_fprintf( interp, interp->cookie_stdout, "%s\n", target_buf );
3777                         /* NEXT... */
3778                         c -= 16;
3779                         a += 16;
3780                 }
3781                 return JIM_OK;
3782         case TS_CMD_MEM2ARRAY:
3783                 return target_mem2array( goi.interp, target, goi.argc, goi.argv );
3784                 break;
3785         case TS_CMD_ARRAY2MEM:
3786                 return target_array2mem( goi.interp, target, goi.argc, goi.argv );
3787                 break;
3788         case TS_CMD_EXAMINE:
3789                 if( goi.argc ){
3790                         Jim_WrongNumArgs( goi.interp, 2, argv, "[no parameters]");
3791                         return JIM_ERR;
3792                 }
3793                 if (!target->tap->enabled)
3794                         goto err_tap_disabled;
3795                 e = target->type->examine( target );
3796                 if( e != ERROR_OK ){
3797                         Jim_SetResult_sprintf( interp, "examine-fails: %d", e );
3798                         return JIM_ERR;
3799                 }
3800                 return JIM_OK;
3801         case TS_CMD_POLL:
3802                 if( goi.argc ){
3803                         Jim_WrongNumArgs( goi.interp, 2, argv, "[no parameters]");
3804                         return JIM_ERR;
3805                 }
3806                 if (!target->tap->enabled)
3807                         goto err_tap_disabled;
3808                 if( !(target_was_examined(target)) ){
3809                         e = ERROR_TARGET_NOT_EXAMINED;
3810                 } else {
3811                         e = target->type->poll( target );
3812                 }
3813                 if( e != ERROR_OK ){
3814                         Jim_SetResult_sprintf( interp, "poll-fails: %d", e );
3815                         return JIM_ERR;
3816                 } else {
3817                         return JIM_OK;
3818                 }
3819                 break;
3820         case TS_CMD_RESET:
3821                 if( goi.argc != 2 ){
3822                         Jim_WrongNumArgs( interp, 2, argv, "t|f|assert|deassert BOOL");
3823                         return JIM_ERR;
3824                 }
3825                 e = Jim_GetOpt_Nvp( &goi, nvp_assert, &n );
3826                 if( e != JIM_OK ){
3827                         Jim_GetOpt_NvpUnknown( &goi, nvp_assert, 1 );
3828                         return e;
3829                 }
3830                 /* the halt or not param */
3831                 e = Jim_GetOpt_Wide( &goi, &a);
3832                 if( e != JIM_OK ){
3833                         return e;
3834                 }
3835                 if (!target->tap->enabled)
3836                         goto err_tap_disabled;
3837                 /* determine if we should halt or not. */
3838                 target->reset_halt = !!a;
3839                 /* When this happens - all workareas are invalid. */
3840                 target_free_all_working_areas_restore(target, 0);
3841
3842                 /* do the assert */
3843                 if( n->value == NVP_ASSERT ){
3844                         target->type->assert_reset( target );
3845                 } else {
3846                         target->type->deassert_reset( target );
3847                 }
3848                 return JIM_OK;
3849         case TS_CMD_HALT:
3850                 if( goi.argc ){
3851                         Jim_WrongNumArgs( goi.interp, 0, argv, "halt [no parameters]");
3852                         return JIM_ERR;
3853                 }
3854                 if (!target->tap->enabled)
3855                         goto err_tap_disabled;
3856                 target->type->halt( target );
3857                 return JIM_OK;
3858         case TS_CMD_WAITSTATE:
3859                 /* params:  <name>  statename timeoutmsecs */
3860                 if( goi.argc != 2 ){
3861                         Jim_SetResult_sprintf( goi.interp, "%s STATENAME TIMEOUTMSECS", n->name );
3862                         return JIM_ERR;
3863                 }
3864                 e = Jim_GetOpt_Nvp( &goi, nvp_target_state, &n );
3865                 if( e != JIM_OK ){
3866                         Jim_GetOpt_NvpUnknown( &goi, nvp_target_state,1 );
3867                         return e;
3868                 }
3869                 e = Jim_GetOpt_Wide( &goi, &a );
3870                 if( e != JIM_OK ){
3871                         return e;
3872                 }
3873                 if (!target->tap->enabled)
3874                         goto err_tap_disabled;
3875                 e = target_wait_state( target, n->value, a );
3876                 if( e != ERROR_OK ){
3877                         Jim_SetResult_sprintf( goi.interp,
3878                                                                    "target: %s wait %s fails (%d) %s",
3879                                                                    target->cmd_name,
3880                                                                    n->name,
3881                                                                    e, target_strerror_safe(e) );
3882                         return JIM_ERR;
3883                 } else {
3884                         return JIM_OK;
3885                 }
3886         case TS_CMD_EVENTLIST:
3887                 /* List for human, Events defined for this target.
3888                  * scripts/programs should use 'name cget -event NAME'
3889                  */
3890                 {
3891                         target_event_action_t *teap;
3892                         teap = target->event_action;
3893                         command_print( cmd_ctx, "Event actions for target (%d) %s\n",
3894                                                    target->target_number,
3895                                                    target->cmd_name );
3896                         command_print( cmd_ctx, "%-25s | Body", "Event");
3897                         command_print( cmd_ctx, "------------------------- | ----------------------------------------");
3898                         while( teap ){
3899                                 command_print( cmd_ctx,
3900                                                            "%-25s | %s",
3901                                                            Jim_Nvp_value2name_simple( nvp_target_event, teap->event )->name,
3902                                                            Jim_GetString( teap->body, NULL ) );
3903                                 teap = teap->next;
3904                         }
3905                         command_print( cmd_ctx, "***END***");
3906                         return JIM_OK;
3907                 }
3908         case TS_CMD_CURSTATE:
3909                 if( goi.argc != 0 ){
3910                         Jim_WrongNumArgs( goi.interp, 0, argv, "[no parameters]");
3911                         return JIM_ERR;
3912                 }
3913                 Jim_SetResultString( goi.interp,
3914                                                          Jim_Nvp_value2name_simple(nvp_target_state,target->state)->name,-1);
3915                 return JIM_OK;
3916         case TS_CMD_INVOKE_EVENT:
3917                 if( goi.argc != 1 ){
3918                         Jim_SetResult_sprintf( goi.interp, "%s ?EVENTNAME?",n->name);
3919                         return JIM_ERR;
3920                 }
3921                 e = Jim_GetOpt_Nvp( &goi, nvp_target_event, &n );
3922                 if( e != JIM_OK ){
3923                         Jim_GetOpt_NvpUnknown( &goi, nvp_target_event, 1 );
3924                         return e;
3925                 }
3926                 target_handle_event( target, n->value );
3927                 return JIM_OK;
3928         }
3929         return JIM_ERR;
3930
3931 err_tap_disabled:
3932         Jim_SetResult_sprintf(interp, "[TAP is disabled]");
3933         return JIM_ERR;
3934 }
3935
3936 static int target_create( Jim_GetOptInfo *goi )
3937 {
3938         Jim_Obj *new_cmd;
3939         Jim_Cmd *cmd;
3940         const char *cp;
3941         char *cp2;
3942         int e;
3943         int x;
3944         target_t *target;
3945         struct command_context_s *cmd_ctx;
3946
3947         cmd_ctx = Jim_GetAssocData(goi->interp, "context");
3948         if( goi->argc < 3 ){
3949                 Jim_WrongNumArgs( goi->interp, 1, goi->argv, "?name? ?type? ..options...");
3950                 return JIM_ERR;
3951         }
3952
3953         /* COMMAND */
3954         Jim_GetOpt_Obj( goi, &new_cmd );
3955         /* does this command exist? */
3956         cmd = Jim_GetCommand( goi->interp, new_cmd, JIM_ERRMSG );
3957         if( cmd ){
3958                 cp = Jim_GetString( new_cmd, NULL );
3959                 Jim_SetResult_sprintf(goi->interp, "Command/target: %s Exists", cp);
3960                 return JIM_ERR;
3961         }
3962
3963         /* TYPE */
3964         e = Jim_GetOpt_String( goi, &cp2, NULL );
3965         cp = cp2;
3966         /* now does target type exist */
3967         for( x = 0 ; target_types[x] ; x++ ){
3968                 if( 0 == strcmp( cp, target_types[x]->name ) ){
3969                         /* found */
3970                         break;
3971                 }
3972         }
3973         if( target_types[x] == NULL ){
3974                 Jim_SetResult_sprintf( goi->interp, "Unknown target type %s, try one of ", cp );
3975                 for( x = 0 ; target_types[x] ; x++ ){
3976                         if( target_types[x+1] ){
3977                                 Jim_AppendStrings( goi->interp,
3978                                                                    Jim_GetResult(goi->interp),
3979                                                                    target_types[x]->name,
3980                                                                    ", ", NULL);
3981                         } else {
3982                                 Jim_AppendStrings( goi->interp,
3983                                                                    Jim_GetResult(goi->interp),
3984                                                                    " or ",
3985                                                                    target_types[x]->name,NULL );
3986                         }
3987                 }
3988                 return JIM_ERR;
3989         }
3990
3991         /* Create it */
3992         target = calloc(1,sizeof(target_t));
3993         /* set target number */
3994         target->target_number = new_target_number();
3995
3996         /* allocate memory for each unique target type */
3997         target->type = (target_type_t*)calloc(1,sizeof(target_type_t));
3998
3999         memcpy( target->type, target_types[x], sizeof(target_type_t));
4000
4001         /* will be set by "-endian" */
4002         target->endianness = TARGET_ENDIAN_UNKNOWN;
4003
4004         target->working_area        = 0x0;
4005         target->working_area_size   = 0x0;
4006         target->working_areas       = NULL;
4007         target->backup_working_area = 0;
4008
4009         target->state               = TARGET_UNKNOWN;
4010         target->debug_reason        = DBG_REASON_UNDEFINED;
4011         target->reg_cache           = NULL;
4012         target->breakpoints         = NULL;
4013         target->watchpoints         = NULL;
4014         target->next                = NULL;
4015         target->arch_info           = NULL;
4016
4017         target->display             = 1;
4018
4019         /* initialize trace information */
4020         target->trace_info = malloc(sizeof(trace_t));
4021         target->trace_info->num_trace_points         = 0;
4022         target->trace_info->trace_points_size        = 0;
4023         target->trace_info->trace_points             = NULL;
4024         target->trace_info->trace_history_size       = 0;
4025         target->trace_info->trace_history            = NULL;
4026         target->trace_info->trace_history_pos        = 0;
4027         target->trace_info->trace_history_overflowed = 0;
4028
4029         target->dbgmsg          = NULL;
4030         target->dbg_msg_enabled = 0;
4031
4032         target->endianness = TARGET_ENDIAN_UNKNOWN;
4033
4034         /* Do the rest as "configure" options */
4035         goi->isconfigure = 1;
4036         e = target_configure( goi, target);
4037
4038         if (target->tap == NULL)
4039         {
4040                 Jim_SetResultString( interp, "-chain-position required when creating target", -1);
4041                 e=JIM_ERR;
4042         }
4043
4044         if( e != JIM_OK ){
4045                 free( target->type );
4046                 free( target );
4047                 return e;
4048         }
4049
4050         if( target->endianness == TARGET_ENDIAN_UNKNOWN ){
4051                 /* default endian to little if not specified */
4052                 target->endianness = TARGET_LITTLE_ENDIAN;
4053         }
4054
4055         /* incase variant is not set */
4056         if (!target->variant)
4057                 target->variant = strdup("");
4058
4059         /* create the target specific commands */
4060         if( target->type->register_commands ){
4061                 (*(target->type->register_commands))( cmd_ctx );
4062         }
4063         if( target->type->target_create ){
4064                 (*(target->type->target_create))( target, goi->interp );
4065         }
4066
4067         /* append to end of list */
4068         {
4069                 target_t **tpp;
4070                 tpp = &(all_targets);
4071                 while( *tpp ){
4072                         tpp = &( (*tpp)->next );
4073                 }
4074                 *tpp = target;
4075         }
4076
4077         cp = Jim_GetString( new_cmd, NULL );
4078         target->cmd_name = strdup(cp);
4079
4080         /* now - create the new target name command */
4081         e = Jim_CreateCommand( goi->interp,
4082                                                    /* name */
4083                                                    cp,
4084                                                    tcl_target_func, /* C function */
4085                                                    target, /* private data */
4086                                                    NULL ); /* no del proc */
4087
4088         return e;
4089 }
4090
4091 static int jim_target( Jim_Interp *interp, int argc, Jim_Obj *const *argv )
4092 {
4093         int x,r,e;
4094         jim_wide w;
4095         struct command_context_s *cmd_ctx;
4096         target_t *target;
4097         Jim_GetOptInfo goi;
4098         enum tcmd {
4099                 /* TG = target generic */
4100                 TG_CMD_CREATE,
4101                 TG_CMD_TYPES,
4102                 TG_CMD_NAMES,
4103                 TG_CMD_CURRENT,
4104                 TG_CMD_NUMBER,
4105                 TG_CMD_COUNT,
4106         };
4107         const char *target_cmds[] = {
4108                 "create", "types", "names", "current", "number",
4109                 "count",
4110                 NULL /* terminate */
4111         };
4112
4113         LOG_DEBUG("Target command params:");
4114         LOG_DEBUG("%s", Jim_Debug_ArgvString(interp, argc, argv));
4115
4116         cmd_ctx = Jim_GetAssocData( interp, "context" );
4117
4118         Jim_GetOpt_Setup( &goi, interp, argc-1, argv+1 );
4119
4120         if( goi.argc == 0 ){
4121                 Jim_WrongNumArgs(interp, 1, argv, "missing: command ...");
4122                 return JIM_ERR;
4123         }
4124
4125         /* Jim_GetOpt_Debug( &goi ); */
4126         r = Jim_GetOpt_Enum( &goi, target_cmds, &x   );
4127         if( r != JIM_OK ){
4128                 return r;
4129         }
4130
4131         switch(x){
4132         default:
4133                 Jim_Panic(goi.interp,"Why am I here?");
4134                 return JIM_ERR;
4135         case TG_CMD_CURRENT:
4136                 if( goi.argc != 0 ){
4137                         Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters");
4138                         return JIM_ERR;
4139                 }
4140                 Jim_SetResultString( goi.interp, get_current_target( cmd_ctx )->cmd_name, -1 );
4141                 return JIM_OK;
4142         case TG_CMD_TYPES:
4143                 if( goi.argc != 0 ){
4144                         Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters" );
4145                         return JIM_ERR;
4146                 }
4147                 Jim_SetResult( goi.interp, Jim_NewListObj( goi.interp, NULL, 0 ) );
4148                 for( x = 0 ; target_types[x] ; x++ ){
4149                         Jim_ListAppendElement( goi.interp,
4150                                                                    Jim_GetResult(goi.interp),
4151                                                                    Jim_NewStringObj( goi.interp, target_types[x]->name, -1 ) );
4152                 }
4153                 return JIM_OK;
4154         case TG_CMD_NAMES:
4155                 if( goi.argc != 0 ){
4156                         Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters" );
4157                         return JIM_ERR;
4158                 }
4159                 Jim_SetResult( goi.interp, Jim_NewListObj( goi.interp, NULL, 0 ) );
4160                 target = all_targets;
4161                 while( target ){
4162                         Jim_ListAppendElement( goi.interp,
4163                                                                    Jim_GetResult(goi.interp),
4164                                                                    Jim_NewStringObj( goi.interp, target->cmd_name, -1 ) );
4165                         target = target->next;
4166                 }
4167                 return JIM_OK;
4168         case TG_CMD_CREATE:
4169                 if( goi.argc < 3 ){
4170                         Jim_WrongNumArgs( goi.interp, goi.argc, goi.argv, "?name  ... config options ...");
4171                         return JIM_ERR;
4172                 }
4173                 return target_create( &goi );
4174                 break;
4175         case TG_CMD_NUMBER:
4176                 if( goi.argc != 1 ){
4177                         Jim_SetResult_sprintf( goi.interp, "expected: target number ?NUMBER?");
4178                         return JIM_ERR;
4179                 }
4180                 e = Jim_GetOpt_Wide( &goi, &w );
4181                 if( e != JIM_OK ){
4182                         return JIM_ERR;
4183                 }
4184                 {
4185                         target_t *t;
4186                         t = get_target_by_num(w);
4187                         if( t == NULL ){
4188                                 Jim_SetResult_sprintf( goi.interp,"Target: number %d does not exist", (int)(w));
4189                                 return JIM_ERR;
4190                         }
4191                         Jim_SetResultString( goi.interp, t->cmd_name, -1 );
4192                         return JIM_OK;
4193                 }
4194         case TG_CMD_COUNT:
4195                 if( goi.argc != 0 ){
4196                         Jim_WrongNumArgs( goi.interp, 0, goi.argv, "<no parameters>");
4197                         return JIM_ERR;
4198                 }
4199                 Jim_SetResult( goi.interp,
4200                                            Jim_NewIntObj( goi.interp, max_target_number()));
4201                 return JIM_OK;
4202         }
4203
4204         return JIM_ERR;
4205 }
4206
4207
4208 struct FastLoad
4209 {
4210         u32 address;
4211         u8 *data;
4212         int length;
4213
4214 };
4215
4216 static int fastload_num;
4217 static struct FastLoad *fastload;
4218
4219 static void free_fastload(void)
4220 {
4221         if (fastload!=NULL)
4222         {
4223                 int i;
4224                 for (i=0; i<fastload_num; i++)
4225                 {
4226                         if (fastload[i].data)
4227                                 free(fastload[i].data);
4228                 }
4229                 free(fastload);
4230                 fastload=NULL;
4231         }
4232 }
4233
4234
4235
4236
4237 static int handle_fast_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
4238 {
4239         u8 *buffer;
4240         u32 buf_cnt;
4241         u32 image_size;
4242         u32 min_address=0;
4243         u32 max_address=0xffffffff;
4244         int i;
4245         int retval;
4246
4247         image_t image;
4248
4249         duration_t duration;
4250         char *duration_text;
4251
4252         if ((argc < 1)||(argc > 5))
4253         {
4254                 return ERROR_COMMAND_SYNTAX_ERROR;
4255         }
4256
4257         /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
4258         if (argc >= 2)
4259         {
4260                 image.base_address_set = 1;
4261                 image.base_address = strtoul(args[1], NULL, 0);
4262         }
4263         else
4264         {
4265                 image.base_address_set = 0;
4266         }
4267
4268
4269         image.start_address_set = 0;
4270
4271         if (argc>=4)
4272         {
4273                 min_address=strtoul(args[3], NULL, 0);
4274         }
4275         if (argc>=5)
4276         {
4277                 max_address=strtoul(args[4], NULL, 0)+min_address;
4278         }
4279
4280         if (min_address>max_address)
4281         {
4282                 return ERROR_COMMAND_SYNTAX_ERROR;
4283         }
4284
4285         duration_start_measure(&duration);
4286
4287         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
4288         {
4289                 return ERROR_OK;
4290         }
4291
4292         image_size = 0x0;
4293         retval = ERROR_OK;
4294         fastload_num=image.num_sections;
4295         fastload=(struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
4296         if (fastload==NULL)
4297         {
4298                 image_close(&image);
4299                 return ERROR_FAIL;
4300         }
4301         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
4302         for (i = 0; i < image.num_sections; i++)
4303         {
4304                 buffer = malloc(image.sections[i].size);
4305                 if (buffer == NULL)
4306                 {
4307                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
4308                         break;
4309                 }
4310
4311                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
4312                 {
4313                         free(buffer);
4314                         break;
4315                 }
4316
4317                 u32 offset=0;
4318                 u32 length=buf_cnt;
4319
4320
4321                 /* DANGER!!! beware of unsigned comparision here!!! */
4322
4323                 if ((image.sections[i].base_address+buf_cnt>=min_address)&&
4324                                 (image.sections[i].base_address<max_address))
4325                 {
4326                         if (image.sections[i].base_address<min_address)
4327                         {
4328                                 /* clip addresses below */
4329                                 offset+=min_address-image.sections[i].base_address;
4330                                 length-=offset;
4331                         }
4332
4333                         if (image.sections[i].base_address+buf_cnt>max_address)
4334                         {
4335                                 length-=(image.sections[i].base_address+buf_cnt)-max_address;
4336                         }
4337
4338                         fastload[i].address=image.sections[i].base_address+offset;
4339                         fastload[i].data=malloc(length);
4340                         if (fastload[i].data==NULL)
4341                         {
4342                                 free(buffer);
4343                                 break;
4344                         }
4345                         memcpy(fastload[i].data, buffer+offset, length);
4346                         fastload[i].length=length;
4347
4348                         image_size += length;
4349                         command_print(cmd_ctx, "%u byte written at address 0x%8.8x", length, image.sections[i].base_address+offset);
4350                 }
4351
4352                 free(buffer);
4353         }
4354
4355         duration_stop_measure(&duration, &duration_text);
4356         if (retval==ERROR_OK)
4357         {
4358                 command_print(cmd_ctx, "Loaded %u bytes in %s", image_size, duration_text);
4359                 command_print(cmd_ctx, "NB!!! image has not been loaded to target, issue a subsequent 'fast_load' to do so.");
4360         }
4361         free(duration_text);
4362
4363         image_close(&image);
4364
4365         if (retval!=ERROR_OK)
4366         {
4367                 free_fastload();
4368         }
4369
4370         return retval;
4371 }
4372
4373 static int handle_fast_load_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
4374 {
4375         if (argc>0)
4376                 return ERROR_COMMAND_SYNTAX_ERROR;
4377         if (fastload==NULL)
4378         {
4379                 LOG_ERROR("No image in memory");
4380                 return ERROR_FAIL;
4381         }
4382         int i;
4383         int ms=timeval_ms();
4384         int size=0;
4385         int retval=ERROR_OK;
4386         for (i=0; i<fastload_num;i++)
4387         {
4388                 target_t *target = get_current_target(cmd_ctx);
4389                 command_print(cmd_ctx, "Write to 0x%08x, length 0x%08x", fastload[i].address, fastload[i].length);
4390                 if (retval==ERROR_OK)
4391                 {
4392                         retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
4393                 }
4394                 size+=fastload[i].length;
4395         }
4396         int after=timeval_ms();
4397         command_print(cmd_ctx, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
4398         return retval;
4399 }