9cc94f3a09782f73750f5148c1f827b10b1b7ac3
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2010 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   Copyright (C) 2011 by Broadcom Corporation                            *
18  *   Evan Hunter - ehunter@broadcom.com                                    *
19  *                                                                         *
20  *   Copyright (C) ST-Ericsson SA 2011                                     *
21  *   michel.jaouen@stericsson.com : smp minimum support                    *
22  *                                                                         *
23  *   Copyright (C) 2011 Andreas Fritiofson                                 *
24  *   andreas.fritiofson@gmail.com                                          *
25  *                                                                         *
26  *   This program is free software; you can redistribute it and/or modify  *
27  *   it under the terms of the GNU General Public License as published by  *
28  *   the Free Software Foundation; either version 2 of the License, or     *
29  *   (at your option) any later version.                                   *
30  *                                                                         *
31  *   This program is distributed in the hope that it will be useful,       *
32  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
33  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
34  *   GNU General Public License for more details.                          *
35  *                                                                         *
36  *   You should have received a copy of the GNU General Public License     *
37  *   along with this program; if not, write to the                         *
38  *   Free Software Foundation, Inc.,                                       *
39  *   51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.           *
40  ***************************************************************************/
41
42 #ifdef HAVE_CONFIG_H
43 #include "config.h"
44 #endif
45
46 #include <helper/time_support.h>
47 #include <jtag/jtag.h>
48 #include <flash/nor/core.h>
49
50 #include "target.h"
51 #include "target_type.h"
52 #include "target_request.h"
53 #include "breakpoints.h"
54 #include "register.h"
55 #include "trace.h"
56 #include "image.h"
57 #include "rtos/rtos.h"
58
59 /* default halt wait timeout (ms) */
60 #define DEFAULT_HALT_TIMEOUT 5000
61
62 static int target_read_buffer_default(struct target *target, uint32_t address,
63                 uint32_t count, uint8_t *buffer);
64 static int target_write_buffer_default(struct target *target, uint32_t address,
65                 uint32_t count, const uint8_t *buffer);
66 static int target_array2mem(Jim_Interp *interp, struct target *target,
67                 int argc, Jim_Obj * const *argv);
68 static int target_mem2array(Jim_Interp *interp, struct target *target,
69                 int argc, Jim_Obj * const *argv);
70 static int target_register_user_commands(struct command_context *cmd_ctx);
71 static int target_get_gdb_fileio_info_default(struct target *target,
72                 struct gdb_fileio_info *fileio_info);
73 static int target_gdb_fileio_end_default(struct target *target, int retcode,
74                 int fileio_errno, bool ctrl_c);
75 static int target_profiling_default(struct target *target, uint32_t *samples,
76                 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds);
77
78 /* targets */
79 extern struct target_type arm7tdmi_target;
80 extern struct target_type arm720t_target;
81 extern struct target_type arm9tdmi_target;
82 extern struct target_type arm920t_target;
83 extern struct target_type arm966e_target;
84 extern struct target_type arm946e_target;
85 extern struct target_type arm926ejs_target;
86 extern struct target_type fa526_target;
87 extern struct target_type feroceon_target;
88 extern struct target_type dragonite_target;
89 extern struct target_type xscale_target;
90 extern struct target_type cortexm3_target;
91 extern struct target_type cortexa8_target;
92 extern struct target_type cortexr4_target;
93 extern struct target_type arm11_target;
94 extern struct target_type mips_m4k_target;
95 extern struct target_type avr_target;
96 extern struct target_type dsp563xx_target;
97 extern struct target_type dsp5680xx_target;
98 extern struct target_type testee_target;
99 extern struct target_type avr32_ap7k_target;
100 extern struct target_type hla_target;
101 extern struct target_type nds32_v2_target;
102 extern struct target_type nds32_v3_target;
103 extern struct target_type nds32_v3m_target;
104
105 static struct target_type *target_types[] = {
106         &arm7tdmi_target,
107         &arm9tdmi_target,
108         &arm920t_target,
109         &arm720t_target,
110         &arm966e_target,
111         &arm946e_target,
112         &arm926ejs_target,
113         &fa526_target,
114         &feroceon_target,
115         &dragonite_target,
116         &xscale_target,
117         &cortexm3_target,
118         &cortexa8_target,
119         &cortexr4_target,
120         &arm11_target,
121         &mips_m4k_target,
122         &avr_target,
123         &dsp563xx_target,
124         &dsp5680xx_target,
125         &testee_target,
126         &avr32_ap7k_target,
127         &hla_target,
128         &nds32_v2_target,
129         &nds32_v3_target,
130         &nds32_v3m_target,
131         NULL,
132 };
133
134 struct target *all_targets;
135 static struct target_event_callback *target_event_callbacks;
136 static struct target_timer_callback *target_timer_callbacks;
137 static const int polling_interval = 100;
138
139 static const Jim_Nvp nvp_assert[] = {
140         { .name = "assert", NVP_ASSERT },
141         { .name = "deassert", NVP_DEASSERT },
142         { .name = "T", NVP_ASSERT },
143         { .name = "F", NVP_DEASSERT },
144         { .name = "t", NVP_ASSERT },
145         { .name = "f", NVP_DEASSERT },
146         { .name = NULL, .value = -1 }
147 };
148
149 static const Jim_Nvp nvp_error_target[] = {
150         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
151         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
152         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
153         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
154         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
155         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
156         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
157         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
158         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
159         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
160         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
161         { .value = -1, .name = NULL }
162 };
163
164 static const char *target_strerror_safe(int err)
165 {
166         const Jim_Nvp *n;
167
168         n = Jim_Nvp_value2name_simple(nvp_error_target, err);
169         if (n->name == NULL)
170                 return "unknown";
171         else
172                 return n->name;
173 }
174
175 static const Jim_Nvp nvp_target_event[] = {
176
177         { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
178         { .value = TARGET_EVENT_HALTED, .name = "halted" },
179         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
180         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
181         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
182
183         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
184         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
185
186         { .value = TARGET_EVENT_RESET_START,         .name = "reset-start" },
187         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
188         { .value = TARGET_EVENT_RESET_ASSERT,        .name = "reset-assert" },
189         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
190         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
191         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
192         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
193         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
194         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
195         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
196         { .value = TARGET_EVENT_RESET_INIT,          .name = "reset-init" },
197         { .value = TARGET_EVENT_RESET_END,           .name = "reset-end" },
198
199         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
200         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
201
202         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
203         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
204
205         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
206         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
207
208         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
209         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
210
211         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
212         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
213
214         { .name = NULL, .value = -1 }
215 };
216
217 static const Jim_Nvp nvp_target_state[] = {
218         { .name = "unknown", .value = TARGET_UNKNOWN },
219         { .name = "running", .value = TARGET_RUNNING },
220         { .name = "halted",  .value = TARGET_HALTED },
221         { .name = "reset",   .value = TARGET_RESET },
222         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
223         { .name = NULL, .value = -1 },
224 };
225
226 static const Jim_Nvp nvp_target_debug_reason[] = {
227         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
228         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
229         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
230         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
231         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
232         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
233         { .name = "program-exit"             , .value = DBG_REASON_EXIT },
234         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
235         { .name = NULL, .value = -1 },
236 };
237
238 static const Jim_Nvp nvp_target_endian[] = {
239         { .name = "big",    .value = TARGET_BIG_ENDIAN },
240         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
241         { .name = "be",     .value = TARGET_BIG_ENDIAN },
242         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
243         { .name = NULL,     .value = -1 },
244 };
245
246 static const Jim_Nvp nvp_reset_modes[] = {
247         { .name = "unknown", .value = RESET_UNKNOWN },
248         { .name = "run"    , .value = RESET_RUN },
249         { .name = "halt"   , .value = RESET_HALT },
250         { .name = "init"   , .value = RESET_INIT },
251         { .name = NULL     , .value = -1 },
252 };
253
254 const char *debug_reason_name(struct target *t)
255 {
256         const char *cp;
257
258         cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
259                         t->debug_reason)->name;
260         if (!cp) {
261                 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
262                 cp = "(*BUG*unknown*BUG*)";
263         }
264         return cp;
265 }
266
267 const char *target_state_name(struct target *t)
268 {
269         const char *cp;
270         cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
271         if (!cp) {
272                 LOG_ERROR("Invalid target state: %d", (int)(t->state));
273                 cp = "(*BUG*unknown*BUG*)";
274         }
275         return cp;
276 }
277
278 /* determine the number of the new target */
279 static int new_target_number(void)
280 {
281         struct target *t;
282         int x;
283
284         /* number is 0 based */
285         x = -1;
286         t = all_targets;
287         while (t) {
288                 if (x < t->target_number)
289                         x = t->target_number;
290                 t = t->next;
291         }
292         return x + 1;
293 }
294
295 /* read a uint32_t from a buffer in target memory endianness */
296 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
297 {
298         if (target->endianness == TARGET_LITTLE_ENDIAN)
299                 return le_to_h_u32(buffer);
300         else
301                 return be_to_h_u32(buffer);
302 }
303
304 /* read a uint24_t from a buffer in target memory endianness */
305 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
306 {
307         if (target->endianness == TARGET_LITTLE_ENDIAN)
308                 return le_to_h_u24(buffer);
309         else
310                 return be_to_h_u24(buffer);
311 }
312
313 /* read a uint16_t from a buffer in target memory endianness */
314 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
315 {
316         if (target->endianness == TARGET_LITTLE_ENDIAN)
317                 return le_to_h_u16(buffer);
318         else
319                 return be_to_h_u16(buffer);
320 }
321
322 /* read a uint8_t from a buffer in target memory endianness */
323 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
324 {
325         return *buffer & 0x0ff;
326 }
327
328 /* write a uint32_t to a buffer in target memory endianness */
329 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
330 {
331         if (target->endianness == TARGET_LITTLE_ENDIAN)
332                 h_u32_to_le(buffer, value);
333         else
334                 h_u32_to_be(buffer, value);
335 }
336
337 /* write a uint24_t to a buffer in target memory endianness */
338 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
339 {
340         if (target->endianness == TARGET_LITTLE_ENDIAN)
341                 h_u24_to_le(buffer, value);
342         else
343                 h_u24_to_be(buffer, value);
344 }
345
346 /* write a uint16_t to a buffer in target memory endianness */
347 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
348 {
349         if (target->endianness == TARGET_LITTLE_ENDIAN)
350                 h_u16_to_le(buffer, value);
351         else
352                 h_u16_to_be(buffer, value);
353 }
354
355 /* write a uint8_t to a buffer in target memory endianness */
356 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
357 {
358         *buffer = value;
359 }
360
361 /* write a uint32_t array to a buffer in target memory endianness */
362 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
363 {
364         uint32_t i;
365         for (i = 0; i < count; i++)
366                 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
367 }
368
369 /* write a uint16_t array to a buffer in target memory endianness */
370 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
371 {
372         uint32_t i;
373         for (i = 0; i < count; i++)
374                 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
375 }
376
377 /* write a uint32_t array to a buffer in target memory endianness */
378 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, uint32_t *srcbuf)
379 {
380         uint32_t i;
381         for (i = 0; i < count; i++)
382                 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
383 }
384
385 /* write a uint16_t array to a buffer in target memory endianness */
386 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, uint16_t *srcbuf)
387 {
388         uint32_t i;
389         for (i = 0; i < count; i++)
390                 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
391 }
392
393 /* return a pointer to a configured target; id is name or number */
394 struct target *get_target(const char *id)
395 {
396         struct target *target;
397
398         /* try as tcltarget name */
399         for (target = all_targets; target; target = target->next) {
400                 if (target_name(target) == NULL)
401                         continue;
402                 if (strcmp(id, target_name(target)) == 0)
403                         return target;
404         }
405
406         /* It's OK to remove this fallback sometime after August 2010 or so */
407
408         /* no match, try as number */
409         unsigned num;
410         if (parse_uint(id, &num) != ERROR_OK)
411                 return NULL;
412
413         for (target = all_targets; target; target = target->next) {
414                 if (target->target_number == (int)num) {
415                         LOG_WARNING("use '%s' as target identifier, not '%u'",
416                                         target_name(target), num);
417                         return target;
418                 }
419         }
420
421         return NULL;
422 }
423
424 /* returns a pointer to the n-th configured target */
425 static struct target *get_target_by_num(int num)
426 {
427         struct target *target = all_targets;
428
429         while (target) {
430                 if (target->target_number == num)
431                         return target;
432                 target = target->next;
433         }
434
435         return NULL;
436 }
437
438 struct target *get_current_target(struct command_context *cmd_ctx)
439 {
440         struct target *target = get_target_by_num(cmd_ctx->current_target);
441
442         if (target == NULL) {
443                 LOG_ERROR("BUG: current_target out of bounds");
444                 exit(-1);
445         }
446
447         return target;
448 }
449
450 int target_poll(struct target *target)
451 {
452         int retval;
453
454         /* We can't poll until after examine */
455         if (!target_was_examined(target)) {
456                 /* Fail silently lest we pollute the log */
457                 return ERROR_FAIL;
458         }
459
460         retval = target->type->poll(target);
461         if (retval != ERROR_OK)
462                 return retval;
463
464         if (target->halt_issued) {
465                 if (target->state == TARGET_HALTED)
466                         target->halt_issued = false;
467                 else {
468                         long long t = timeval_ms() - target->halt_issued_time;
469                         if (t > DEFAULT_HALT_TIMEOUT) {
470                                 target->halt_issued = false;
471                                 LOG_INFO("Halt timed out, wake up GDB.");
472                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
473                         }
474                 }
475         }
476
477         return ERROR_OK;
478 }
479
480 int target_halt(struct target *target)
481 {
482         int retval;
483         /* We can't poll until after examine */
484         if (!target_was_examined(target)) {
485                 LOG_ERROR("Target not examined yet");
486                 return ERROR_FAIL;
487         }
488
489         retval = target->type->halt(target);
490         if (retval != ERROR_OK)
491                 return retval;
492
493         target->halt_issued = true;
494         target->halt_issued_time = timeval_ms();
495
496         return ERROR_OK;
497 }
498
499 /**
500  * Make the target (re)start executing using its saved execution
501  * context (possibly with some modifications).
502  *
503  * @param target Which target should start executing.
504  * @param current True to use the target's saved program counter instead
505  *      of the address parameter
506  * @param address Optionally used as the program counter.
507  * @param handle_breakpoints True iff breakpoints at the resumption PC
508  *      should be skipped.  (For example, maybe execution was stopped by
509  *      such a breakpoint, in which case it would be counterprodutive to
510  *      let it re-trigger.
511  * @param debug_execution False if all working areas allocated by OpenOCD
512  *      should be released and/or restored to their original contents.
513  *      (This would for example be true to run some downloaded "helper"
514  *      algorithm code, which resides in one such working buffer and uses
515  *      another for data storage.)
516  *
517  * @todo Resolve the ambiguity about what the "debug_execution" flag
518  * signifies.  For example, Target implementations don't agree on how
519  * it relates to invalidation of the register cache, or to whether
520  * breakpoints and watchpoints should be enabled.  (It would seem wrong
521  * to enable breakpoints when running downloaded "helper" algorithms
522  * (debug_execution true), since the breakpoints would be set to match
523  * target firmware being debugged, not the helper algorithm.... and
524  * enabling them could cause such helpers to malfunction (for example,
525  * by overwriting data with a breakpoint instruction.  On the other
526  * hand the infrastructure for running such helpers might use this
527  * procedure but rely on hardware breakpoint to detect termination.)
528  */
529 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
530 {
531         int retval;
532
533         /* We can't poll until after examine */
534         if (!target_was_examined(target)) {
535                 LOG_ERROR("Target not examined yet");
536                 return ERROR_FAIL;
537         }
538
539         target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
540
541         /* note that resume *must* be asynchronous. The CPU can halt before
542          * we poll. The CPU can even halt at the current PC as a result of
543          * a software breakpoint being inserted by (a bug?) the application.
544          */
545         retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
546         if (retval != ERROR_OK)
547                 return retval;
548
549         target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
550
551         return retval;
552 }
553
554 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
555 {
556         char buf[100];
557         int retval;
558         Jim_Nvp *n;
559         n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
560         if (n->name == NULL) {
561                 LOG_ERROR("invalid reset mode");
562                 return ERROR_FAIL;
563         }
564
565         /* disable polling during reset to make reset event scripts
566          * more predictable, i.e. dr/irscan & pathmove in events will
567          * not have JTAG operations injected into the middle of a sequence.
568          */
569         bool save_poll = jtag_poll_get_enabled();
570
571         jtag_poll_set_enabled(false);
572
573         sprintf(buf, "ocd_process_reset %s", n->name);
574         retval = Jim_Eval(cmd_ctx->interp, buf);
575
576         jtag_poll_set_enabled(save_poll);
577
578         if (retval != JIM_OK) {
579                 Jim_MakeErrorMessage(cmd_ctx->interp);
580                 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
581                 return ERROR_FAIL;
582         }
583
584         /* We want any events to be processed before the prompt */
585         retval = target_call_timer_callbacks_now();
586
587         struct target *target;
588         for (target = all_targets; target; target = target->next) {
589                 target->type->check_reset(target);
590                 target->running_alg = false;
591         }
592
593         return retval;
594 }
595
596 static int identity_virt2phys(struct target *target,
597                 uint32_t virtual, uint32_t *physical)
598 {
599         *physical = virtual;
600         return ERROR_OK;
601 }
602
603 static int no_mmu(struct target *target, int *enabled)
604 {
605         *enabled = 0;
606         return ERROR_OK;
607 }
608
609 static int default_examine(struct target *target)
610 {
611         target_set_examined(target);
612         return ERROR_OK;
613 }
614
615 /* no check by default */
616 static int default_check_reset(struct target *target)
617 {
618         return ERROR_OK;
619 }
620
621 int target_examine_one(struct target *target)
622 {
623         return target->type->examine(target);
624 }
625
626 static int jtag_enable_callback(enum jtag_event event, void *priv)
627 {
628         struct target *target = priv;
629
630         if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
631                 return ERROR_OK;
632
633         jtag_unregister_event_callback(jtag_enable_callback, target);
634
635         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
636
637         int retval = target_examine_one(target);
638         if (retval != ERROR_OK)
639                 return retval;
640
641         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
642
643         return retval;
644 }
645
646 /* Targets that correctly implement init + examine, i.e.
647  * no communication with target during init:
648  *
649  * XScale
650  */
651 int target_examine(void)
652 {
653         int retval = ERROR_OK;
654         struct target *target;
655
656         for (target = all_targets; target; target = target->next) {
657                 /* defer examination, but don't skip it */
658                 if (!target->tap->enabled) {
659                         jtag_register_event_callback(jtag_enable_callback,
660                                         target);
661                         continue;
662                 }
663
664                 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
665
666                 retval = target_examine_one(target);
667                 if (retval != ERROR_OK)
668                         return retval;
669
670                 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
671         }
672         return retval;
673 }
674
675 const char *target_type_name(struct target *target)
676 {
677         return target->type->name;
678 }
679
680 static int target_soft_reset_halt(struct target *target)
681 {
682         if (!target_was_examined(target)) {
683                 LOG_ERROR("Target not examined yet");
684                 return ERROR_FAIL;
685         }
686         if (!target->type->soft_reset_halt) {
687                 LOG_ERROR("Target %s does not support soft_reset_halt",
688                                 target_name(target));
689                 return ERROR_FAIL;
690         }
691         return target->type->soft_reset_halt(target);
692 }
693
694 /**
695  * Downloads a target-specific native code algorithm to the target,
696  * and executes it.  * Note that some targets may need to set up, enable,
697  * and tear down a breakpoint (hard or * soft) to detect algorithm
698  * termination, while others may support  lower overhead schemes where
699  * soft breakpoints embedded in the algorithm automatically terminate the
700  * algorithm.
701  *
702  * @param target used to run the algorithm
703  * @param arch_info target-specific description of the algorithm.
704  */
705 int target_run_algorithm(struct target *target,
706                 int num_mem_params, struct mem_param *mem_params,
707                 int num_reg_params, struct reg_param *reg_param,
708                 uint32_t entry_point, uint32_t exit_point,
709                 int timeout_ms, void *arch_info)
710 {
711         int retval = ERROR_FAIL;
712
713         if (!target_was_examined(target)) {
714                 LOG_ERROR("Target not examined yet");
715                 goto done;
716         }
717         if (!target->type->run_algorithm) {
718                 LOG_ERROR("Target type '%s' does not support %s",
719                                 target_type_name(target), __func__);
720                 goto done;
721         }
722
723         target->running_alg = true;
724         retval = target->type->run_algorithm(target,
725                         num_mem_params, mem_params,
726                         num_reg_params, reg_param,
727                         entry_point, exit_point, timeout_ms, arch_info);
728         target->running_alg = false;
729
730 done:
731         return retval;
732 }
733
734 /**
735  * Downloads a target-specific native code algorithm to the target,
736  * executes and leaves it running.
737  *
738  * @param target used to run the algorithm
739  * @param arch_info target-specific description of the algorithm.
740  */
741 int target_start_algorithm(struct target *target,
742                 int num_mem_params, struct mem_param *mem_params,
743                 int num_reg_params, struct reg_param *reg_params,
744                 uint32_t entry_point, uint32_t exit_point,
745                 void *arch_info)
746 {
747         int retval = ERROR_FAIL;
748
749         if (!target_was_examined(target)) {
750                 LOG_ERROR("Target not examined yet");
751                 goto done;
752         }
753         if (!target->type->start_algorithm) {
754                 LOG_ERROR("Target type '%s' does not support %s",
755                                 target_type_name(target), __func__);
756                 goto done;
757         }
758         if (target->running_alg) {
759                 LOG_ERROR("Target is already running an algorithm");
760                 goto done;
761         }
762
763         target->running_alg = true;
764         retval = target->type->start_algorithm(target,
765                         num_mem_params, mem_params,
766                         num_reg_params, reg_params,
767                         entry_point, exit_point, arch_info);
768
769 done:
770         return retval;
771 }
772
773 /**
774  * Waits for an algorithm started with target_start_algorithm() to complete.
775  *
776  * @param target used to run the algorithm
777  * @param arch_info target-specific description of the algorithm.
778  */
779 int target_wait_algorithm(struct target *target,
780                 int num_mem_params, struct mem_param *mem_params,
781                 int num_reg_params, struct reg_param *reg_params,
782                 uint32_t exit_point, int timeout_ms,
783                 void *arch_info)
784 {
785         int retval = ERROR_FAIL;
786
787         if (!target->type->wait_algorithm) {
788                 LOG_ERROR("Target type '%s' does not support %s",
789                                 target_type_name(target), __func__);
790                 goto done;
791         }
792         if (!target->running_alg) {
793                 LOG_ERROR("Target is not running an algorithm");
794                 goto done;
795         }
796
797         retval = target->type->wait_algorithm(target,
798                         num_mem_params, mem_params,
799                         num_reg_params, reg_params,
800                         exit_point, timeout_ms, arch_info);
801         if (retval != ERROR_TARGET_TIMEOUT)
802                 target->running_alg = false;
803
804 done:
805         return retval;
806 }
807
808 /**
809  * Executes a target-specific native code algorithm in the target.
810  * It differs from target_run_algorithm in that the algorithm is asynchronous.
811  * Because of this it requires an compliant algorithm:
812  * see contrib/loaders/flash/stm32f1x.S for example.
813  *
814  * @param target used to run the algorithm
815  */
816
817 int target_run_flash_async_algorithm(struct target *target,
818                 uint8_t *buffer, uint32_t count, int block_size,
819                 int num_mem_params, struct mem_param *mem_params,
820                 int num_reg_params, struct reg_param *reg_params,
821                 uint32_t buffer_start, uint32_t buffer_size,
822                 uint32_t entry_point, uint32_t exit_point, void *arch_info)
823 {
824         int retval;
825         int timeout = 0;
826
827         /* Set up working area. First word is write pointer, second word is read pointer,
828          * rest is fifo data area. */
829         uint32_t wp_addr = buffer_start;
830         uint32_t rp_addr = buffer_start + 4;
831         uint32_t fifo_start_addr = buffer_start + 8;
832         uint32_t fifo_end_addr = buffer_start + buffer_size;
833
834         uint32_t wp = fifo_start_addr;
835         uint32_t rp = fifo_start_addr;
836
837         /* validate block_size is 2^n */
838         assert(!block_size || !(block_size & (block_size - 1)));
839
840         retval = target_write_u32(target, wp_addr, wp);
841         if (retval != ERROR_OK)
842                 return retval;
843         retval = target_write_u32(target, rp_addr, rp);
844         if (retval != ERROR_OK)
845                 return retval;
846
847         /* Start up algorithm on target and let it idle while writing the first chunk */
848         retval = target_start_algorithm(target, num_mem_params, mem_params,
849                         num_reg_params, reg_params,
850                         entry_point,
851                         exit_point,
852                         arch_info);
853
854         if (retval != ERROR_OK) {
855                 LOG_ERROR("error starting target flash write algorithm");
856                 return retval;
857         }
858
859         while (count > 0) {
860
861                 retval = target_read_u32(target, rp_addr, &rp);
862                 if (retval != ERROR_OK) {
863                         LOG_ERROR("failed to get read pointer");
864                         break;
865                 }
866
867                 LOG_DEBUG("count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32, count, wp, rp);
868
869                 if (rp == 0) {
870                         LOG_ERROR("flash write algorithm aborted by target");
871                         retval = ERROR_FLASH_OPERATION_FAILED;
872                         break;
873                 }
874
875                 if ((rp & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
876                         LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
877                         break;
878                 }
879
880                 /* Count the number of bytes available in the fifo without
881                  * crossing the wrap around. Make sure to not fill it completely,
882                  * because that would make wp == rp and that's the empty condition. */
883                 uint32_t thisrun_bytes;
884                 if (rp > wp)
885                         thisrun_bytes = rp - wp - block_size;
886                 else if (rp > fifo_start_addr)
887                         thisrun_bytes = fifo_end_addr - wp;
888                 else
889                         thisrun_bytes = fifo_end_addr - wp - block_size;
890
891                 if (thisrun_bytes == 0) {
892                         /* Throttle polling a bit if transfer is (much) faster than flash
893                          * programming. The exact delay shouldn't matter as long as it's
894                          * less than buffer size / flash speed. This is very unlikely to
895                          * run when using high latency connections such as USB. */
896                         alive_sleep(10);
897
898                         /* to stop an infinite loop on some targets check and increment a timeout
899                          * this issue was observed on a stellaris using the new ICDI interface */
900                         if (timeout++ >= 500) {
901                                 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
902                                 return ERROR_FLASH_OPERATION_FAILED;
903                         }
904                         continue;
905                 }
906
907                 /* reset our timeout */
908                 timeout = 0;
909
910                 /* Limit to the amount of data we actually want to write */
911                 if (thisrun_bytes > count * block_size)
912                         thisrun_bytes = count * block_size;
913
914                 /* Write data to fifo */
915                 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
916                 if (retval != ERROR_OK)
917                         break;
918
919                 /* Update counters and wrap write pointer */
920                 buffer += thisrun_bytes;
921                 count -= thisrun_bytes / block_size;
922                 wp += thisrun_bytes;
923                 if (wp >= fifo_end_addr)
924                         wp = fifo_start_addr;
925
926                 /* Store updated write pointer to target */
927                 retval = target_write_u32(target, wp_addr, wp);
928                 if (retval != ERROR_OK)
929                         break;
930         }
931
932         if (retval != ERROR_OK) {
933                 /* abort flash write algorithm on target */
934                 target_write_u32(target, wp_addr, 0);
935         }
936
937         int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
938                         num_reg_params, reg_params,
939                         exit_point,
940                         10000,
941                         arch_info);
942
943         if (retval2 != ERROR_OK) {
944                 LOG_ERROR("error waiting for target flash write algorithm");
945                 retval = retval2;
946         }
947
948         return retval;
949 }
950
951 int target_read_memory(struct target *target,
952                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
953 {
954         if (!target_was_examined(target)) {
955                 LOG_ERROR("Target not examined yet");
956                 return ERROR_FAIL;
957         }
958         return target->type->read_memory(target, address, size, count, buffer);
959 }
960
961 int target_read_phys_memory(struct target *target,
962                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
963 {
964         if (!target_was_examined(target)) {
965                 LOG_ERROR("Target not examined yet");
966                 return ERROR_FAIL;
967         }
968         return target->type->read_phys_memory(target, address, size, count, buffer);
969 }
970
971 int target_write_memory(struct target *target,
972                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
973 {
974         if (!target_was_examined(target)) {
975                 LOG_ERROR("Target not examined yet");
976                 return ERROR_FAIL;
977         }
978         return target->type->write_memory(target, address, size, count, buffer);
979 }
980
981 int target_write_phys_memory(struct target *target,
982                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
983 {
984         if (!target_was_examined(target)) {
985                 LOG_ERROR("Target not examined yet");
986                 return ERROR_FAIL;
987         }
988         return target->type->write_phys_memory(target, address, size, count, buffer);
989 }
990
991 int target_add_breakpoint(struct target *target,
992                 struct breakpoint *breakpoint)
993 {
994         if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
995                 LOG_WARNING("target %s is not halted", target_name(target));
996                 return ERROR_TARGET_NOT_HALTED;
997         }
998         return target->type->add_breakpoint(target, breakpoint);
999 }
1000
1001 int target_add_context_breakpoint(struct target *target,
1002                 struct breakpoint *breakpoint)
1003 {
1004         if (target->state != TARGET_HALTED) {
1005                 LOG_WARNING("target %s is not halted", target_name(target));
1006                 return ERROR_TARGET_NOT_HALTED;
1007         }
1008         return target->type->add_context_breakpoint(target, breakpoint);
1009 }
1010
1011 int target_add_hybrid_breakpoint(struct target *target,
1012                 struct breakpoint *breakpoint)
1013 {
1014         if (target->state != TARGET_HALTED) {
1015                 LOG_WARNING("target %s is not halted", target_name(target));
1016                 return ERROR_TARGET_NOT_HALTED;
1017         }
1018         return target->type->add_hybrid_breakpoint(target, breakpoint);
1019 }
1020
1021 int target_remove_breakpoint(struct target *target,
1022                 struct breakpoint *breakpoint)
1023 {
1024         return target->type->remove_breakpoint(target, breakpoint);
1025 }
1026
1027 int target_add_watchpoint(struct target *target,
1028                 struct watchpoint *watchpoint)
1029 {
1030         if (target->state != TARGET_HALTED) {
1031                 LOG_WARNING("target %s is not halted", target_name(target));
1032                 return ERROR_TARGET_NOT_HALTED;
1033         }
1034         return target->type->add_watchpoint(target, watchpoint);
1035 }
1036 int target_remove_watchpoint(struct target *target,
1037                 struct watchpoint *watchpoint)
1038 {
1039         return target->type->remove_watchpoint(target, watchpoint);
1040 }
1041 int target_hit_watchpoint(struct target *target,
1042                 struct watchpoint **hit_watchpoint)
1043 {
1044         if (target->state != TARGET_HALTED) {
1045                 LOG_WARNING("target %s is not halted", target->cmd_name);
1046                 return ERROR_TARGET_NOT_HALTED;
1047         }
1048
1049         if (target->type->hit_watchpoint == NULL) {
1050                 /* For backward compatible, if hit_watchpoint is not implemented,
1051                  * return ERROR_FAIL such that gdb_server will not take the nonsense
1052                  * information. */
1053                 return ERROR_FAIL;
1054         }
1055
1056         return target->type->hit_watchpoint(target, hit_watchpoint);
1057 }
1058
1059 int target_get_gdb_reg_list(struct target *target,
1060                 struct reg **reg_list[], int *reg_list_size,
1061                 enum target_register_class reg_class)
1062 {
1063         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1064 }
1065 int target_step(struct target *target,
1066                 int current, uint32_t address, int handle_breakpoints)
1067 {
1068         return target->type->step(target, current, address, handle_breakpoints);
1069 }
1070
1071 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1072 {
1073         if (target->state != TARGET_HALTED) {
1074                 LOG_WARNING("target %s is not halted", target->cmd_name);
1075                 return ERROR_TARGET_NOT_HALTED;
1076         }
1077         return target->type->get_gdb_fileio_info(target, fileio_info);
1078 }
1079
1080 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1081 {
1082         if (target->state != TARGET_HALTED) {
1083                 LOG_WARNING("target %s is not halted", target->cmd_name);
1084                 return ERROR_TARGET_NOT_HALTED;
1085         }
1086         return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1087 }
1088
1089 int target_profiling(struct target *target, uint32_t *samples,
1090                         uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1091 {
1092         if (target->state != TARGET_HALTED) {
1093                 LOG_WARNING("target %s is not halted", target->cmd_name);
1094                 return ERROR_TARGET_NOT_HALTED;
1095         }
1096         return target->type->profiling(target, samples, max_num_samples,
1097                         num_samples, seconds);
1098 }
1099
1100 /**
1101  * Reset the @c examined flag for the given target.
1102  * Pure paranoia -- targets are zeroed on allocation.
1103  */
1104 static void target_reset_examined(struct target *target)
1105 {
1106         target->examined = false;
1107 }
1108
1109 static int err_read_phys_memory(struct target *target, uint32_t address,
1110                 uint32_t size, uint32_t count, uint8_t *buffer)
1111 {
1112         LOG_ERROR("Not implemented: %s", __func__);
1113         return ERROR_FAIL;
1114 }
1115
1116 static int err_write_phys_memory(struct target *target, uint32_t address,
1117                 uint32_t size, uint32_t count, const uint8_t *buffer)
1118 {
1119         LOG_ERROR("Not implemented: %s", __func__);
1120         return ERROR_FAIL;
1121 }
1122
1123 static int handle_target(void *priv);
1124
1125 static int target_init_one(struct command_context *cmd_ctx,
1126                 struct target *target)
1127 {
1128         target_reset_examined(target);
1129
1130         struct target_type *type = target->type;
1131         if (type->examine == NULL)
1132                 type->examine = default_examine;
1133
1134         if (type->check_reset == NULL)
1135                 type->check_reset = default_check_reset;
1136
1137         assert(type->init_target != NULL);
1138
1139         int retval = type->init_target(cmd_ctx, target);
1140         if (ERROR_OK != retval) {
1141                 LOG_ERROR("target '%s' init failed", target_name(target));
1142                 return retval;
1143         }
1144
1145         /* Sanity-check MMU support ... stub in what we must, to help
1146          * implement it in stages, but warn if we need to do so.
1147          */
1148         if (type->mmu) {
1149                 if (type->write_phys_memory == NULL) {
1150                         LOG_ERROR("type '%s' is missing write_phys_memory",
1151                                         type->name);
1152                         type->write_phys_memory = err_write_phys_memory;
1153                 }
1154                 if (type->read_phys_memory == NULL) {
1155                         LOG_ERROR("type '%s' is missing read_phys_memory",
1156                                         type->name);
1157                         type->read_phys_memory = err_read_phys_memory;
1158                 }
1159                 if (type->virt2phys == NULL) {
1160                         LOG_ERROR("type '%s' is missing virt2phys", type->name);
1161                         type->virt2phys = identity_virt2phys;
1162                 }
1163         } else {
1164                 /* Make sure no-MMU targets all behave the same:  make no
1165                  * distinction between physical and virtual addresses, and
1166                  * ensure that virt2phys() is always an identity mapping.
1167                  */
1168                 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1169                         LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1170
1171                 type->mmu = no_mmu;
1172                 type->write_phys_memory = type->write_memory;
1173                 type->read_phys_memory = type->read_memory;
1174                 type->virt2phys = identity_virt2phys;
1175         }
1176
1177         if (target->type->read_buffer == NULL)
1178                 target->type->read_buffer = target_read_buffer_default;
1179
1180         if (target->type->write_buffer == NULL)
1181                 target->type->write_buffer = target_write_buffer_default;
1182
1183         if (target->type->get_gdb_fileio_info == NULL)
1184                 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1185
1186         if (target->type->gdb_fileio_end == NULL)
1187                 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1188
1189         if (target->type->profiling == NULL)
1190                 target->type->profiling = target_profiling_default;
1191
1192         return ERROR_OK;
1193 }
1194
1195 static int target_init(struct command_context *cmd_ctx)
1196 {
1197         struct target *target;
1198         int retval;
1199
1200         for (target = all_targets; target; target = target->next) {
1201                 retval = target_init_one(cmd_ctx, target);
1202                 if (ERROR_OK != retval)
1203                         return retval;
1204         }
1205
1206         if (!all_targets)
1207                 return ERROR_OK;
1208
1209         retval = target_register_user_commands(cmd_ctx);
1210         if (ERROR_OK != retval)
1211                 return retval;
1212
1213         retval = target_register_timer_callback(&handle_target,
1214                         polling_interval, 1, cmd_ctx->interp);
1215         if (ERROR_OK != retval)
1216                 return retval;
1217
1218         return ERROR_OK;
1219 }
1220
1221 COMMAND_HANDLER(handle_target_init_command)
1222 {
1223         int retval;
1224
1225         if (CMD_ARGC != 0)
1226                 return ERROR_COMMAND_SYNTAX_ERROR;
1227
1228         static bool target_initialized;
1229         if (target_initialized) {
1230                 LOG_INFO("'target init' has already been called");
1231                 return ERROR_OK;
1232         }
1233         target_initialized = true;
1234
1235         retval = command_run_line(CMD_CTX, "init_targets");
1236         if (ERROR_OK != retval)
1237                 return retval;
1238
1239         retval = command_run_line(CMD_CTX, "init_board");
1240         if (ERROR_OK != retval)
1241                 return retval;
1242
1243         LOG_DEBUG("Initializing targets...");
1244         return target_init(CMD_CTX);
1245 }
1246
1247 int target_register_event_callback(int (*callback)(struct target *target,
1248                 enum target_event event, void *priv), void *priv)
1249 {
1250         struct target_event_callback **callbacks_p = &target_event_callbacks;
1251
1252         if (callback == NULL)
1253                 return ERROR_COMMAND_SYNTAX_ERROR;
1254
1255         if (*callbacks_p) {
1256                 while ((*callbacks_p)->next)
1257                         callbacks_p = &((*callbacks_p)->next);
1258                 callbacks_p = &((*callbacks_p)->next);
1259         }
1260
1261         (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1262         (*callbacks_p)->callback = callback;
1263         (*callbacks_p)->priv = priv;
1264         (*callbacks_p)->next = NULL;
1265
1266         return ERROR_OK;
1267 }
1268
1269 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1270 {
1271         struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1272         struct timeval now;
1273
1274         if (callback == NULL)
1275                 return ERROR_COMMAND_SYNTAX_ERROR;
1276
1277         if (*callbacks_p) {
1278                 while ((*callbacks_p)->next)
1279                         callbacks_p = &((*callbacks_p)->next);
1280                 callbacks_p = &((*callbacks_p)->next);
1281         }
1282
1283         (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1284         (*callbacks_p)->callback = callback;
1285         (*callbacks_p)->periodic = periodic;
1286         (*callbacks_p)->time_ms = time_ms;
1287
1288         gettimeofday(&now, NULL);
1289         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
1290         time_ms -= (time_ms % 1000);
1291         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
1292         if ((*callbacks_p)->when.tv_usec > 1000000) {
1293                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
1294                 (*callbacks_p)->when.tv_sec += 1;
1295         }
1296
1297         (*callbacks_p)->priv = priv;
1298         (*callbacks_p)->next = NULL;
1299
1300         return ERROR_OK;
1301 }
1302
1303 int target_unregister_event_callback(int (*callback)(struct target *target,
1304                 enum target_event event, void *priv), void *priv)
1305 {
1306         struct target_event_callback **p = &target_event_callbacks;
1307         struct target_event_callback *c = target_event_callbacks;
1308
1309         if (callback == NULL)
1310                 return ERROR_COMMAND_SYNTAX_ERROR;
1311
1312         while (c) {
1313                 struct target_event_callback *next = c->next;
1314                 if ((c->callback == callback) && (c->priv == priv)) {
1315                         *p = next;
1316                         free(c);
1317                         return ERROR_OK;
1318                 } else
1319                         p = &(c->next);
1320                 c = next;
1321         }
1322
1323         return ERROR_OK;
1324 }
1325
1326 static int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1327 {
1328         struct target_timer_callback **p = &target_timer_callbacks;
1329         struct target_timer_callback *c = target_timer_callbacks;
1330
1331         if (callback == NULL)
1332                 return ERROR_COMMAND_SYNTAX_ERROR;
1333
1334         while (c) {
1335                 struct target_timer_callback *next = c->next;
1336                 if ((c->callback == callback) && (c->priv == priv)) {
1337                         *p = next;
1338                         free(c);
1339                         return ERROR_OK;
1340                 } else
1341                         p = &(c->next);
1342                 c = next;
1343         }
1344
1345         return ERROR_OK;
1346 }
1347
1348 int target_call_event_callbacks(struct target *target, enum target_event event)
1349 {
1350         struct target_event_callback *callback = target_event_callbacks;
1351         struct target_event_callback *next_callback;
1352
1353         if (event == TARGET_EVENT_HALTED) {
1354                 /* execute early halted first */
1355                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1356         }
1357
1358         LOG_DEBUG("target event %i (%s)", event,
1359                         Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1360
1361         target_handle_event(target, event);
1362
1363         while (callback) {
1364                 next_callback = callback->next;
1365                 callback->callback(target, event, callback->priv);
1366                 callback = next_callback;
1367         }
1368
1369         return ERROR_OK;
1370 }
1371
1372 static int target_timer_callback_periodic_restart(
1373                 struct target_timer_callback *cb, struct timeval *now)
1374 {
1375         int time_ms = cb->time_ms;
1376         cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1377         time_ms -= (time_ms % 1000);
1378         cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1379         if (cb->when.tv_usec > 1000000) {
1380                 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1381                 cb->when.tv_sec += 1;
1382         }
1383         return ERROR_OK;
1384 }
1385
1386 static int target_call_timer_callback(struct target_timer_callback *cb,
1387                 struct timeval *now)
1388 {
1389         cb->callback(cb->priv);
1390
1391         if (cb->periodic)
1392                 return target_timer_callback_periodic_restart(cb, now);
1393
1394         return target_unregister_timer_callback(cb->callback, cb->priv);
1395 }
1396
1397 static int target_call_timer_callbacks_check_time(int checktime)
1398 {
1399         keep_alive();
1400
1401         struct timeval now;
1402         gettimeofday(&now, NULL);
1403
1404         struct target_timer_callback *callback = target_timer_callbacks;
1405         while (callback) {
1406                 /* cleaning up may unregister and free this callback */
1407                 struct target_timer_callback *next_callback = callback->next;
1408
1409                 bool call_it = callback->callback &&
1410                         ((!checktime && callback->periodic) ||
1411                           now.tv_sec > callback->when.tv_sec ||
1412                          (now.tv_sec == callback->when.tv_sec &&
1413                           now.tv_usec >= callback->when.tv_usec));
1414
1415                 if (call_it) {
1416                         int retval = target_call_timer_callback(callback, &now);
1417                         if (retval != ERROR_OK)
1418                                 return retval;
1419                 }
1420
1421                 callback = next_callback;
1422         }
1423
1424         return ERROR_OK;
1425 }
1426
1427 int target_call_timer_callbacks(void)
1428 {
1429         return target_call_timer_callbacks_check_time(1);
1430 }
1431
1432 /* invoke periodic callbacks immediately */
1433 int target_call_timer_callbacks_now(void)
1434 {
1435         return target_call_timer_callbacks_check_time(0);
1436 }
1437
1438 /* Prints the working area layout for debug purposes */
1439 static void print_wa_layout(struct target *target)
1440 {
1441         struct working_area *c = target->working_areas;
1442
1443         while (c) {
1444                 LOG_DEBUG("%c%c 0x%08"PRIx32"-0x%08"PRIx32" (%"PRIu32" bytes)",
1445                         c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1446                         c->address, c->address + c->size - 1, c->size);
1447                 c = c->next;
1448         }
1449 }
1450
1451 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1452 static void target_split_working_area(struct working_area *area, uint32_t size)
1453 {
1454         assert(area->free); /* Shouldn't split an allocated area */
1455         assert(size <= area->size); /* Caller should guarantee this */
1456
1457         /* Split only if not already the right size */
1458         if (size < area->size) {
1459                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1460
1461                 if (new_wa == NULL)
1462                         return;
1463
1464                 new_wa->next = area->next;
1465                 new_wa->size = area->size - size;
1466                 new_wa->address = area->address + size;
1467                 new_wa->backup = NULL;
1468                 new_wa->user = NULL;
1469                 new_wa->free = true;
1470
1471                 area->next = new_wa;
1472                 area->size = size;
1473
1474                 /* If backup memory was allocated to this area, it has the wrong size
1475                  * now so free it and it will be reallocated if/when needed */
1476                 if (area->backup) {
1477                         free(area->backup);
1478                         area->backup = NULL;
1479                 }
1480         }
1481 }
1482
1483 /* Merge all adjacent free areas into one */
1484 static void target_merge_working_areas(struct target *target)
1485 {
1486         struct working_area *c = target->working_areas;
1487
1488         while (c && c->next) {
1489                 assert(c->next->address == c->address + c->size); /* This is an invariant */
1490
1491                 /* Find two adjacent free areas */
1492                 if (c->free && c->next->free) {
1493                         /* Merge the last into the first */
1494                         c->size += c->next->size;
1495
1496                         /* Remove the last */
1497                         struct working_area *to_be_freed = c->next;
1498                         c->next = c->next->next;
1499                         if (to_be_freed->backup)
1500                                 free(to_be_freed->backup);
1501                         free(to_be_freed);
1502
1503                         /* If backup memory was allocated to the remaining area, it's has
1504                          * the wrong size now */
1505                         if (c->backup) {
1506                                 free(c->backup);
1507                                 c->backup = NULL;
1508                         }
1509                 } else {
1510                         c = c->next;
1511                 }
1512         }
1513 }
1514
1515 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1516 {
1517         /* Reevaluate working area address based on MMU state*/
1518         if (target->working_areas == NULL) {
1519                 int retval;
1520                 int enabled;
1521
1522                 retval = target->type->mmu(target, &enabled);
1523                 if (retval != ERROR_OK)
1524                         return retval;
1525
1526                 if (!enabled) {
1527                         if (target->working_area_phys_spec) {
1528                                 LOG_DEBUG("MMU disabled, using physical "
1529                                         "address for working memory 0x%08"PRIx32,
1530                                         target->working_area_phys);
1531                                 target->working_area = target->working_area_phys;
1532                         } else {
1533                                 LOG_ERROR("No working memory available. "
1534                                         "Specify -work-area-phys to target.");
1535                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1536                         }
1537                 } else {
1538                         if (target->working_area_virt_spec) {
1539                                 LOG_DEBUG("MMU enabled, using virtual "
1540                                         "address for working memory 0x%08"PRIx32,
1541                                         target->working_area_virt);
1542                                 target->working_area = target->working_area_virt;
1543                         } else {
1544                                 LOG_ERROR("No working memory available. "
1545                                         "Specify -work-area-virt to target.");
1546                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1547                         }
1548                 }
1549
1550                 /* Set up initial working area on first call */
1551                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1552                 if (new_wa) {
1553                         new_wa->next = NULL;
1554                         new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1555                         new_wa->address = target->working_area;
1556                         new_wa->backup = NULL;
1557                         new_wa->user = NULL;
1558                         new_wa->free = true;
1559                 }
1560
1561                 target->working_areas = new_wa;
1562         }
1563
1564         /* only allocate multiples of 4 byte */
1565         if (size % 4)
1566                 size = (size + 3) & (~3UL);
1567
1568         struct working_area *c = target->working_areas;
1569
1570         /* Find the first large enough working area */
1571         while (c) {
1572                 if (c->free && c->size >= size)
1573                         break;
1574                 c = c->next;
1575         }
1576
1577         if (c == NULL)
1578                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1579
1580         /* Split the working area into the requested size */
1581         target_split_working_area(c, size);
1582
1583         LOG_DEBUG("allocated new working area of %"PRIu32" bytes at address 0x%08"PRIx32, size, c->address);
1584
1585         if (target->backup_working_area) {
1586                 if (c->backup == NULL) {
1587                         c->backup = malloc(c->size);
1588                         if (c->backup == NULL)
1589                                 return ERROR_FAIL;
1590                 }
1591
1592                 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1593                 if (retval != ERROR_OK)
1594                         return retval;
1595         }
1596
1597         /* mark as used, and return the new (reused) area */
1598         c->free = false;
1599         *area = c;
1600
1601         /* user pointer */
1602         c->user = area;
1603
1604         print_wa_layout(target);
1605
1606         return ERROR_OK;
1607 }
1608
1609 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1610 {
1611         int retval;
1612
1613         retval = target_alloc_working_area_try(target, size, area);
1614         if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1615                 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1616         return retval;
1617
1618 }
1619
1620 static int target_restore_working_area(struct target *target, struct working_area *area)
1621 {
1622         int retval = ERROR_OK;
1623
1624         if (target->backup_working_area && area->backup != NULL) {
1625                 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1626                 if (retval != ERROR_OK)
1627                         LOG_ERROR("failed to restore %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1628                                         area->size, area->address);
1629         }
1630
1631         return retval;
1632 }
1633
1634 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1635 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1636 {
1637         int retval = ERROR_OK;
1638
1639         if (area->free)
1640                 return retval;
1641
1642         if (restore) {
1643                 retval = target_restore_working_area(target, area);
1644                 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1645                 if (retval != ERROR_OK)
1646                         return retval;
1647         }
1648
1649         area->free = true;
1650
1651         LOG_DEBUG("freed %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1652                         area->size, area->address);
1653
1654         /* mark user pointer invalid */
1655         /* TODO: Is this really safe? It points to some previous caller's memory.
1656          * How could we know that the area pointer is still in that place and not
1657          * some other vital data? What's the purpose of this, anyway? */
1658         *area->user = NULL;
1659         area->user = NULL;
1660
1661         target_merge_working_areas(target);
1662
1663         print_wa_layout(target);
1664
1665         return retval;
1666 }
1667
1668 int target_free_working_area(struct target *target, struct working_area *area)
1669 {
1670         return target_free_working_area_restore(target, area, 1);
1671 }
1672
1673 /* free resources and restore memory, if restoring memory fails,
1674  * free up resources anyway
1675  */
1676 static void target_free_all_working_areas_restore(struct target *target, int restore)
1677 {
1678         struct working_area *c = target->working_areas;
1679
1680         LOG_DEBUG("freeing all working areas");
1681
1682         /* Loop through all areas, restoring the allocated ones and marking them as free */
1683         while (c) {
1684                 if (!c->free) {
1685                         if (restore)
1686                                 target_restore_working_area(target, c);
1687                         c->free = true;
1688                         *c->user = NULL; /* Same as above */
1689                         c->user = NULL;
1690                 }
1691                 c = c->next;
1692         }
1693
1694         /* Run a merge pass to combine all areas into one */
1695         target_merge_working_areas(target);
1696
1697         print_wa_layout(target);
1698 }
1699
1700 void target_free_all_working_areas(struct target *target)
1701 {
1702         target_free_all_working_areas_restore(target, 1);
1703 }
1704
1705 /* Find the largest number of bytes that can be allocated */
1706 uint32_t target_get_working_area_avail(struct target *target)
1707 {
1708         struct working_area *c = target->working_areas;
1709         uint32_t max_size = 0;
1710
1711         if (c == NULL)
1712                 return target->working_area_size;
1713
1714         while (c) {
1715                 if (c->free && max_size < c->size)
1716                         max_size = c->size;
1717
1718                 c = c->next;
1719         }
1720
1721         return max_size;
1722 }
1723
1724 int target_arch_state(struct target *target)
1725 {
1726         int retval;
1727         if (target == NULL) {
1728                 LOG_USER("No target has been configured");
1729                 return ERROR_OK;
1730         }
1731
1732         LOG_USER("target state: %s", target_state_name(target));
1733
1734         if (target->state != TARGET_HALTED)
1735                 return ERROR_OK;
1736
1737         retval = target->type->arch_state(target);
1738         return retval;
1739 }
1740
1741 static int target_get_gdb_fileio_info_default(struct target *target,
1742                 struct gdb_fileio_info *fileio_info)
1743 {
1744         /* If target does not support semi-hosting function, target
1745            has no need to provide .get_gdb_fileio_info callback.
1746            It just return ERROR_FAIL and gdb_server will return "Txx"
1747            as target halted every time.  */
1748         return ERROR_FAIL;
1749 }
1750
1751 static int target_gdb_fileio_end_default(struct target *target,
1752                 int retcode, int fileio_errno, bool ctrl_c)
1753 {
1754         return ERROR_OK;
1755 }
1756
1757 static int target_profiling_default(struct target *target, uint32_t *samples,
1758                 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1759 {
1760         struct timeval timeout, now;
1761
1762         gettimeofday(&timeout, NULL);
1763         timeval_add_time(&timeout, seconds, 0);
1764
1765         LOG_INFO("Starting profiling. Halting and resuming the"
1766                         " target as often as we can...");
1767
1768         uint32_t sample_count = 0;
1769         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
1770         struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
1771
1772         int retval = ERROR_OK;
1773         for (;;) {
1774                 target_poll(target);
1775                 if (target->state == TARGET_HALTED) {
1776                         uint32_t t = *((uint32_t *)reg->value);
1777                         samples[sample_count++] = t;
1778                         /* current pc, addr = 0, do not handle breakpoints, not debugging */
1779                         retval = target_resume(target, 1, 0, 0, 0);
1780                         target_poll(target);
1781                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
1782                 } else if (target->state == TARGET_RUNNING) {
1783                         /* We want to quickly sample the PC. */
1784                         retval = target_halt(target);
1785                 } else {
1786                         LOG_INFO("Target not halted or running");
1787                         retval = ERROR_OK;
1788                         break;
1789                 }
1790
1791                 if (retval != ERROR_OK)
1792                         break;
1793
1794                 gettimeofday(&now, NULL);
1795                 if ((sample_count >= max_num_samples) ||
1796                         ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec))) {
1797                         LOG_INFO("Profiling completed. %d samples.", sample_count);
1798                         break;
1799                 }
1800         }
1801
1802         *num_samples = sample_count;
1803         return retval;
1804 }
1805
1806 /* Single aligned words are guaranteed to use 16 or 32 bit access
1807  * mode respectively, otherwise data is handled as quickly as
1808  * possible
1809  */
1810 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1811 {
1812         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1813                         (int)size, (unsigned)address);
1814
1815         if (!target_was_examined(target)) {
1816                 LOG_ERROR("Target not examined yet");
1817                 return ERROR_FAIL;
1818         }
1819
1820         if (size == 0)
1821                 return ERROR_OK;
1822
1823         if ((address + size - 1) < address) {
1824                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1825                 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1826                                   (unsigned)address,
1827                                   (unsigned)size);
1828                 return ERROR_FAIL;
1829         }
1830
1831         return target->type->write_buffer(target, address, size, buffer);
1832 }
1833
1834 static int target_write_buffer_default(struct target *target, uint32_t address, uint32_t count, const uint8_t *buffer)
1835 {
1836         uint32_t size;
1837
1838         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
1839          * will have something to do with the size we leave to it. */
1840         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
1841                 if (address & size) {
1842                         int retval = target_write_memory(target, address, size, 1, buffer);
1843                         if (retval != ERROR_OK)
1844                                 return retval;
1845                         address += size;
1846                         count -= size;
1847                         buffer += size;
1848                 }
1849         }
1850
1851         /* Write the data with as large access size as possible. */
1852         for (; size > 0; size /= 2) {
1853                 uint32_t aligned = count - count % size;
1854                 if (aligned > 0) {
1855                         int retval = target_write_memory(target, address, size, aligned / size, buffer);
1856                         if (retval != ERROR_OK)
1857                                 return retval;
1858                         address += aligned;
1859                         count -= aligned;
1860                         buffer += aligned;
1861                 }
1862         }
1863
1864         return ERROR_OK;
1865 }
1866
1867 /* Single aligned words are guaranteed to use 16 or 32 bit access
1868  * mode respectively, otherwise data is handled as quickly as
1869  * possible
1870  */
1871 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1872 {
1873         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1874                           (int)size, (unsigned)address);
1875
1876         if (!target_was_examined(target)) {
1877                 LOG_ERROR("Target not examined yet");
1878                 return ERROR_FAIL;
1879         }
1880
1881         if (size == 0)
1882                 return ERROR_OK;
1883
1884         if ((address + size - 1) < address) {
1885                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1886                 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1887                                   address,
1888                                   size);
1889                 return ERROR_FAIL;
1890         }
1891
1892         return target->type->read_buffer(target, address, size, buffer);
1893 }
1894
1895 static int target_read_buffer_default(struct target *target, uint32_t address, uint32_t count, uint8_t *buffer)
1896 {
1897         uint32_t size;
1898
1899         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
1900          * will have something to do with the size we leave to it. */
1901         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
1902                 if (address & size) {
1903                         int retval = target_read_memory(target, address, size, 1, buffer);
1904                         if (retval != ERROR_OK)
1905                                 return retval;
1906                         address += size;
1907                         count -= size;
1908                         buffer += size;
1909                 }
1910         }
1911
1912         /* Read the data with as large access size as possible. */
1913         for (; size > 0; size /= 2) {
1914                 uint32_t aligned = count - count % size;
1915                 if (aligned > 0) {
1916                         int retval = target_read_memory(target, address, size, aligned / size, buffer);
1917                         if (retval != ERROR_OK)
1918                                 return retval;
1919                         address += aligned;
1920                         count -= aligned;
1921                         buffer += aligned;
1922                 }
1923         }
1924
1925         return ERROR_OK;
1926 }
1927
1928 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1929 {
1930         uint8_t *buffer;
1931         int retval;
1932         uint32_t i;
1933         uint32_t checksum = 0;
1934         if (!target_was_examined(target)) {
1935                 LOG_ERROR("Target not examined yet");
1936                 return ERROR_FAIL;
1937         }
1938
1939         retval = target->type->checksum_memory(target, address, size, &checksum);
1940         if (retval != ERROR_OK) {
1941                 buffer = malloc(size);
1942                 if (buffer == NULL) {
1943                         LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1944                         return ERROR_COMMAND_SYNTAX_ERROR;
1945                 }
1946                 retval = target_read_buffer(target, address, size, buffer);
1947                 if (retval != ERROR_OK) {
1948                         free(buffer);
1949                         return retval;
1950                 }
1951
1952                 /* convert to target endianness */
1953                 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
1954                         uint32_t target_data;
1955                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1956                         target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1957                 }
1958
1959                 retval = image_calculate_checksum(buffer, size, &checksum);
1960                 free(buffer);
1961         }
1962
1963         *crc = checksum;
1964
1965         return retval;
1966 }
1967
1968 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
1969 {
1970         int retval;
1971         if (!target_was_examined(target)) {
1972                 LOG_ERROR("Target not examined yet");
1973                 return ERROR_FAIL;
1974         }
1975
1976         if (target->type->blank_check_memory == 0)
1977                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1978
1979         retval = target->type->blank_check_memory(target, address, size, blank);
1980
1981         return retval;
1982 }
1983
1984 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
1985 {
1986         uint8_t value_buf[4];
1987         if (!target_was_examined(target)) {
1988                 LOG_ERROR("Target not examined yet");
1989                 return ERROR_FAIL;
1990         }
1991
1992         int retval = target_read_memory(target, address, 4, 1, value_buf);
1993
1994         if (retval == ERROR_OK) {
1995                 *value = target_buffer_get_u32(target, value_buf);
1996                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1997                                   address,
1998                                   *value);
1999         } else {
2000                 *value = 0x0;
2001                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2002                                   address);
2003         }
2004
2005         return retval;
2006 }
2007
2008 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
2009 {
2010         uint8_t value_buf[2];
2011         if (!target_was_examined(target)) {
2012                 LOG_ERROR("Target not examined yet");
2013                 return ERROR_FAIL;
2014         }
2015
2016         int retval = target_read_memory(target, address, 2, 1, value_buf);
2017
2018         if (retval == ERROR_OK) {
2019                 *value = target_buffer_get_u16(target, value_buf);
2020                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
2021                                   address,
2022                                   *value);
2023         } else {
2024                 *value = 0x0;
2025                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2026                                   address);
2027         }
2028
2029         return retval;
2030 }
2031
2032 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
2033 {
2034         int retval = target_read_memory(target, address, 1, 1, value);
2035         if (!target_was_examined(target)) {
2036                 LOG_ERROR("Target not examined yet");
2037                 return ERROR_FAIL;
2038         }
2039
2040         if (retval == ERROR_OK) {
2041                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
2042                                   address,
2043                                   *value);
2044         } else {
2045                 *value = 0x0;
2046                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2047                                   address);
2048         }
2049
2050         return retval;
2051 }
2052
2053 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
2054 {
2055         int retval;
2056         uint8_t value_buf[4];
2057         if (!target_was_examined(target)) {
2058                 LOG_ERROR("Target not examined yet");
2059                 return ERROR_FAIL;
2060         }
2061
2062         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
2063                           address,
2064                           value);
2065
2066         target_buffer_set_u32(target, value_buf, value);
2067         retval = target_write_memory(target, address, 4, 1, value_buf);
2068         if (retval != ERROR_OK)
2069                 LOG_DEBUG("failed: %i", retval);
2070
2071         return retval;
2072 }
2073
2074 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
2075 {
2076         int retval;
2077         uint8_t value_buf[2];
2078         if (!target_was_examined(target)) {
2079                 LOG_ERROR("Target not examined yet");
2080                 return ERROR_FAIL;
2081         }
2082
2083         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
2084                           address,
2085                           value);
2086
2087         target_buffer_set_u16(target, value_buf, value);
2088         retval = target_write_memory(target, address, 2, 1, value_buf);
2089         if (retval != ERROR_OK)
2090                 LOG_DEBUG("failed: %i", retval);
2091
2092         return retval;
2093 }
2094
2095 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
2096 {
2097         int retval;
2098         if (!target_was_examined(target)) {
2099                 LOG_ERROR("Target not examined yet");
2100                 return ERROR_FAIL;
2101         }
2102
2103         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
2104                           address, value);
2105
2106         retval = target_write_memory(target, address, 1, 1, &value);
2107         if (retval != ERROR_OK)
2108                 LOG_DEBUG("failed: %i", retval);
2109
2110         return retval;
2111 }
2112
2113 static int find_target(struct command_context *cmd_ctx, const char *name)
2114 {
2115         struct target *target = get_target(name);
2116         if (target == NULL) {
2117                 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2118                 return ERROR_FAIL;
2119         }
2120         if (!target->tap->enabled) {
2121                 LOG_USER("Target: TAP %s is disabled, "
2122                          "can't be the current target\n",
2123                          target->tap->dotted_name);
2124                 return ERROR_FAIL;
2125         }
2126
2127         cmd_ctx->current_target = target->target_number;
2128         return ERROR_OK;
2129 }
2130
2131
2132 COMMAND_HANDLER(handle_targets_command)
2133 {
2134         int retval = ERROR_OK;
2135         if (CMD_ARGC == 1) {
2136                 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2137                 if (retval == ERROR_OK) {
2138                         /* we're done! */
2139                         return retval;
2140                 }
2141         }
2142
2143         struct target *target = all_targets;
2144         command_print(CMD_CTX, "    TargetName         Type       Endian TapName            State       ");
2145         command_print(CMD_CTX, "--  ------------------ ---------- ------ ------------------ ------------");
2146         while (target) {
2147                 const char *state;
2148                 char marker = ' ';
2149
2150                 if (target->tap->enabled)
2151                         state = target_state_name(target);
2152                 else
2153                         state = "tap-disabled";
2154
2155                 if (CMD_CTX->current_target == target->target_number)
2156                         marker = '*';
2157
2158                 /* keep columns lined up to match the headers above */
2159                 command_print(CMD_CTX,
2160                                 "%2d%c %-18s %-10s %-6s %-18s %s",
2161                                 target->target_number,
2162                                 marker,
2163                                 target_name(target),
2164                                 target_type_name(target),
2165                                 Jim_Nvp_value2name_simple(nvp_target_endian,
2166                                         target->endianness)->name,
2167                                 target->tap->dotted_name,
2168                                 state);
2169                 target = target->next;
2170         }
2171
2172         return retval;
2173 }
2174
2175 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2176
2177 static int powerDropout;
2178 static int srstAsserted;
2179
2180 static int runPowerRestore;
2181 static int runPowerDropout;
2182 static int runSrstAsserted;
2183 static int runSrstDeasserted;
2184
2185 static int sense_handler(void)
2186 {
2187         static int prevSrstAsserted;
2188         static int prevPowerdropout;
2189
2190         int retval = jtag_power_dropout(&powerDropout);
2191         if (retval != ERROR_OK)
2192                 return retval;
2193
2194         int powerRestored;
2195         powerRestored = prevPowerdropout && !powerDropout;
2196         if (powerRestored)
2197                 runPowerRestore = 1;
2198
2199         long long current = timeval_ms();
2200         static long long lastPower;
2201         int waitMore = lastPower + 2000 > current;
2202         if (powerDropout && !waitMore) {
2203                 runPowerDropout = 1;
2204                 lastPower = current;
2205         }
2206
2207         retval = jtag_srst_asserted(&srstAsserted);
2208         if (retval != ERROR_OK)
2209                 return retval;
2210
2211         int srstDeasserted;
2212         srstDeasserted = prevSrstAsserted && !srstAsserted;
2213
2214         static long long lastSrst;
2215         waitMore = lastSrst + 2000 > current;
2216         if (srstDeasserted && !waitMore) {
2217                 runSrstDeasserted = 1;
2218                 lastSrst = current;
2219         }
2220
2221         if (!prevSrstAsserted && srstAsserted)
2222                 runSrstAsserted = 1;
2223
2224         prevSrstAsserted = srstAsserted;
2225         prevPowerdropout = powerDropout;
2226
2227         if (srstDeasserted || powerRestored) {
2228                 /* Other than logging the event we can't do anything here.
2229                  * Issuing a reset is a particularly bad idea as we might
2230                  * be inside a reset already.
2231                  */
2232         }
2233
2234         return ERROR_OK;
2235 }
2236
2237 /* process target state changes */
2238 static int handle_target(void *priv)
2239 {
2240         Jim_Interp *interp = (Jim_Interp *)priv;
2241         int retval = ERROR_OK;
2242
2243         if (!is_jtag_poll_safe()) {
2244                 /* polling is disabled currently */
2245                 return ERROR_OK;
2246         }
2247
2248         /* we do not want to recurse here... */
2249         static int recursive;
2250         if (!recursive) {
2251                 recursive = 1;
2252                 sense_handler();
2253                 /* danger! running these procedures can trigger srst assertions and power dropouts.
2254                  * We need to avoid an infinite loop/recursion here and we do that by
2255                  * clearing the flags after running these events.
2256                  */
2257                 int did_something = 0;
2258                 if (runSrstAsserted) {
2259                         LOG_INFO("srst asserted detected, running srst_asserted proc.");
2260                         Jim_Eval(interp, "srst_asserted");
2261                         did_something = 1;
2262                 }
2263                 if (runSrstDeasserted) {
2264                         Jim_Eval(interp, "srst_deasserted");
2265                         did_something = 1;
2266                 }
2267                 if (runPowerDropout) {
2268                         LOG_INFO("Power dropout detected, running power_dropout proc.");
2269                         Jim_Eval(interp, "power_dropout");
2270                         did_something = 1;
2271                 }
2272                 if (runPowerRestore) {
2273                         Jim_Eval(interp, "power_restore");
2274                         did_something = 1;
2275                 }
2276
2277                 if (did_something) {
2278                         /* clear detect flags */
2279                         sense_handler();
2280                 }
2281
2282                 /* clear action flags */
2283
2284                 runSrstAsserted = 0;
2285                 runSrstDeasserted = 0;
2286                 runPowerRestore = 0;
2287                 runPowerDropout = 0;
2288
2289                 recursive = 0;
2290         }
2291
2292         /* Poll targets for state changes unless that's globally disabled.
2293          * Skip targets that are currently disabled.
2294          */
2295         for (struct target *target = all_targets;
2296                         is_jtag_poll_safe() && target;
2297                         target = target->next) {
2298                 if (!target->tap->enabled)
2299                         continue;
2300
2301                 if (target->backoff.times > target->backoff.count) {
2302                         /* do not poll this time as we failed previously */
2303                         target->backoff.count++;
2304                         continue;
2305                 }
2306                 target->backoff.count = 0;
2307
2308                 /* only poll target if we've got power and srst isn't asserted */
2309                 if (!powerDropout && !srstAsserted) {
2310                         /* polling may fail silently until the target has been examined */
2311                         retval = target_poll(target);
2312                         if (retval != ERROR_OK) {
2313                                 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2314                                 if (target->backoff.times * polling_interval < 5000) {
2315                                         target->backoff.times *= 2;
2316                                         target->backoff.times++;
2317                                 }
2318                                 LOG_USER("Polling target %s failed, GDB will be halted. Polling again in %dms",
2319                                                 target_name(target),
2320                                                 target->backoff.times * polling_interval);
2321
2322                                 /* Tell GDB to halt the debugger. This allows the user to
2323                                  * run monitor commands to handle the situation.
2324                                  */
2325                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2326                                 return retval;
2327                         }
2328                         /* Since we succeeded, we reset backoff count */
2329                         if (target->backoff.times > 0)
2330                                 LOG_USER("Polling target %s succeeded again", target_name(target));
2331                         target->backoff.times = 0;
2332                 }
2333         }
2334
2335         return retval;
2336 }
2337
2338 COMMAND_HANDLER(handle_reg_command)
2339 {
2340         struct target *target;
2341         struct reg *reg = NULL;
2342         unsigned count = 0;
2343         char *value;
2344
2345         LOG_DEBUG("-");
2346
2347         target = get_current_target(CMD_CTX);
2348
2349         /* list all available registers for the current target */
2350         if (CMD_ARGC == 0) {
2351                 struct reg_cache *cache = target->reg_cache;
2352
2353                 count = 0;
2354                 while (cache) {
2355                         unsigned i;
2356
2357                         command_print(CMD_CTX, "===== %s", cache->name);
2358
2359                         for (i = 0, reg = cache->reg_list;
2360                                         i < cache->num_regs;
2361                                         i++, reg++, count++) {
2362                                 /* only print cached values if they are valid */
2363                                 if (reg->valid) {
2364                                         value = buf_to_str(reg->value,
2365                                                         reg->size, 16);
2366                                         command_print(CMD_CTX,
2367                                                         "(%i) %s (/%" PRIu32 "): 0x%s%s",
2368                                                         count, reg->name,
2369                                                         reg->size, value,
2370                                                         reg->dirty
2371                                                                 ? " (dirty)"
2372                                                                 : "");
2373                                         free(value);
2374                                 } else {
2375                                         command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2376                                                           count, reg->name,
2377                                                           reg->size) ;
2378                                 }
2379                         }
2380                         cache = cache->next;
2381                 }
2382
2383                 return ERROR_OK;
2384         }
2385
2386         /* access a single register by its ordinal number */
2387         if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2388                 unsigned num;
2389                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2390
2391                 struct reg_cache *cache = target->reg_cache;
2392                 count = 0;
2393                 while (cache) {
2394                         unsigned i;
2395                         for (i = 0; i < cache->num_regs; i++) {
2396                                 if (count++ == num) {
2397                                         reg = &cache->reg_list[i];
2398                                         break;
2399                                 }
2400                         }
2401                         if (reg)
2402                                 break;
2403                         cache = cache->next;
2404                 }
2405
2406                 if (!reg) {
2407                         command_print(CMD_CTX, "%i is out of bounds, the current target "
2408                                         "has only %i registers (0 - %i)", num, count, count - 1);
2409                         return ERROR_OK;
2410                 }
2411         } else {
2412                 /* access a single register by its name */
2413                 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2414
2415                 if (!reg) {
2416                         command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2417                         return ERROR_OK;
2418                 }
2419         }
2420
2421         assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2422
2423         /* display a register */
2424         if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2425                         && (CMD_ARGV[1][0] <= '9')))) {
2426                 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2427                         reg->valid = 0;
2428
2429                 if (reg->valid == 0)
2430                         reg->type->get(reg);
2431                 value = buf_to_str(reg->value, reg->size, 16);
2432                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2433                 free(value);
2434                 return ERROR_OK;
2435         }
2436
2437         /* set register value */
2438         if (CMD_ARGC == 2) {
2439                 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2440                 if (buf == NULL)
2441                         return ERROR_FAIL;
2442                 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2443
2444                 reg->type->set(reg, buf);
2445
2446                 value = buf_to_str(reg->value, reg->size, 16);
2447                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2448                 free(value);
2449
2450                 free(buf);
2451
2452                 return ERROR_OK;
2453         }
2454
2455         return ERROR_COMMAND_SYNTAX_ERROR;
2456 }
2457
2458 COMMAND_HANDLER(handle_poll_command)
2459 {
2460         int retval = ERROR_OK;
2461         struct target *target = get_current_target(CMD_CTX);
2462
2463         if (CMD_ARGC == 0) {
2464                 command_print(CMD_CTX, "background polling: %s",
2465                                 jtag_poll_get_enabled() ? "on" : "off");
2466                 command_print(CMD_CTX, "TAP: %s (%s)",
2467                                 target->tap->dotted_name,
2468                                 target->tap->enabled ? "enabled" : "disabled");
2469                 if (!target->tap->enabled)
2470                         return ERROR_OK;
2471                 retval = target_poll(target);
2472                 if (retval != ERROR_OK)
2473                         return retval;
2474                 retval = target_arch_state(target);
2475                 if (retval != ERROR_OK)
2476                         return retval;
2477         } else if (CMD_ARGC == 1) {
2478                 bool enable;
2479                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2480                 jtag_poll_set_enabled(enable);
2481         } else
2482                 return ERROR_COMMAND_SYNTAX_ERROR;
2483
2484         return retval;
2485 }
2486
2487 COMMAND_HANDLER(handle_wait_halt_command)
2488 {
2489         if (CMD_ARGC > 1)
2490                 return ERROR_COMMAND_SYNTAX_ERROR;
2491
2492         unsigned ms = DEFAULT_HALT_TIMEOUT;
2493         if (1 == CMD_ARGC) {
2494                 int retval = parse_uint(CMD_ARGV[0], &ms);
2495                 if (ERROR_OK != retval)
2496                         return ERROR_COMMAND_SYNTAX_ERROR;
2497         }
2498
2499         struct target *target = get_current_target(CMD_CTX);
2500         return target_wait_state(target, TARGET_HALTED, ms);
2501 }
2502
2503 /* wait for target state to change. The trick here is to have a low
2504  * latency for short waits and not to suck up all the CPU time
2505  * on longer waits.
2506  *
2507  * After 500ms, keep_alive() is invoked
2508  */
2509 int target_wait_state(struct target *target, enum target_state state, int ms)
2510 {
2511         int retval;
2512         long long then = 0, cur;
2513         int once = 1;
2514
2515         for (;;) {
2516                 retval = target_poll(target);
2517                 if (retval != ERROR_OK)
2518                         return retval;
2519                 if (target->state == state)
2520                         break;
2521                 cur = timeval_ms();
2522                 if (once) {
2523                         once = 0;
2524                         then = timeval_ms();
2525                         LOG_DEBUG("waiting for target %s...",
2526                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2527                 }
2528
2529                 if (cur-then > 500)
2530                         keep_alive();
2531
2532                 if ((cur-then) > ms) {
2533                         LOG_ERROR("timed out while waiting for target %s",
2534                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2535                         return ERROR_FAIL;
2536                 }
2537         }
2538
2539         return ERROR_OK;
2540 }
2541
2542 COMMAND_HANDLER(handle_halt_command)
2543 {
2544         LOG_DEBUG("-");
2545
2546         struct target *target = get_current_target(CMD_CTX);
2547         int retval = target_halt(target);
2548         if (ERROR_OK != retval)
2549                 return retval;
2550
2551         if (CMD_ARGC == 1) {
2552                 unsigned wait_local;
2553                 retval = parse_uint(CMD_ARGV[0], &wait_local);
2554                 if (ERROR_OK != retval)
2555                         return ERROR_COMMAND_SYNTAX_ERROR;
2556                 if (!wait_local)
2557                         return ERROR_OK;
2558         }
2559
2560         return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2561 }
2562
2563 COMMAND_HANDLER(handle_soft_reset_halt_command)
2564 {
2565         struct target *target = get_current_target(CMD_CTX);
2566
2567         LOG_USER("requesting target halt and executing a soft reset");
2568
2569         target_soft_reset_halt(target);
2570
2571         return ERROR_OK;
2572 }
2573
2574 COMMAND_HANDLER(handle_reset_command)
2575 {
2576         if (CMD_ARGC > 1)
2577                 return ERROR_COMMAND_SYNTAX_ERROR;
2578
2579         enum target_reset_mode reset_mode = RESET_RUN;
2580         if (CMD_ARGC == 1) {
2581                 const Jim_Nvp *n;
2582                 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2583                 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
2584                         return ERROR_COMMAND_SYNTAX_ERROR;
2585                 reset_mode = n->value;
2586         }
2587
2588         /* reset *all* targets */
2589         return target_process_reset(CMD_CTX, reset_mode);
2590 }
2591
2592
2593 COMMAND_HANDLER(handle_resume_command)
2594 {
2595         int current = 1;
2596         if (CMD_ARGC > 1)
2597                 return ERROR_COMMAND_SYNTAX_ERROR;
2598
2599         struct target *target = get_current_target(CMD_CTX);
2600
2601         /* with no CMD_ARGV, resume from current pc, addr = 0,
2602          * with one arguments, addr = CMD_ARGV[0],
2603          * handle breakpoints, not debugging */
2604         uint32_t addr = 0;
2605         if (CMD_ARGC == 1) {
2606                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2607                 current = 0;
2608         }
2609
2610         return target_resume(target, current, addr, 1, 0);
2611 }
2612
2613 COMMAND_HANDLER(handle_step_command)
2614 {
2615         if (CMD_ARGC > 1)
2616                 return ERROR_COMMAND_SYNTAX_ERROR;
2617
2618         LOG_DEBUG("-");
2619
2620         /* with no CMD_ARGV, step from current pc, addr = 0,
2621          * with one argument addr = CMD_ARGV[0],
2622          * handle breakpoints, debugging */
2623         uint32_t addr = 0;
2624         int current_pc = 1;
2625         if (CMD_ARGC == 1) {
2626                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2627                 current_pc = 0;
2628         }
2629
2630         struct target *target = get_current_target(CMD_CTX);
2631
2632         return target->type->step(target, current_pc, addr, 1);
2633 }
2634
2635 static void handle_md_output(struct command_context *cmd_ctx,
2636                 struct target *target, uint32_t address, unsigned size,
2637                 unsigned count, const uint8_t *buffer)
2638 {
2639         const unsigned line_bytecnt = 32;
2640         unsigned line_modulo = line_bytecnt / size;
2641
2642         char output[line_bytecnt * 4 + 1];
2643         unsigned output_len = 0;
2644
2645         const char *value_fmt;
2646         switch (size) {
2647         case 4:
2648                 value_fmt = "%8.8x ";
2649                 break;
2650         case 2:
2651                 value_fmt = "%4.4x ";
2652                 break;
2653         case 1:
2654                 value_fmt = "%2.2x ";
2655                 break;
2656         default:
2657                 /* "can't happen", caller checked */
2658                 LOG_ERROR("invalid memory read size: %u", size);
2659                 return;
2660         }
2661
2662         for (unsigned i = 0; i < count; i++) {
2663                 if (i % line_modulo == 0) {
2664                         output_len += snprintf(output + output_len,
2665                                         sizeof(output) - output_len,
2666                                         "0x%8.8x: ",
2667                                         (unsigned)(address + (i*size)));
2668                 }
2669
2670                 uint32_t value = 0;
2671                 const uint8_t *value_ptr = buffer + i * size;
2672                 switch (size) {
2673                 case 4:
2674                         value = target_buffer_get_u32(target, value_ptr);
2675                         break;
2676                 case 2:
2677                         value = target_buffer_get_u16(target, value_ptr);
2678                         break;
2679                 case 1:
2680                         value = *value_ptr;
2681                 }
2682                 output_len += snprintf(output + output_len,
2683                                 sizeof(output) - output_len,
2684                                 value_fmt, value);
2685
2686                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
2687                         command_print(cmd_ctx, "%s", output);
2688                         output_len = 0;
2689                 }
2690         }
2691 }
2692
2693 COMMAND_HANDLER(handle_md_command)
2694 {
2695         if (CMD_ARGC < 1)
2696                 return ERROR_COMMAND_SYNTAX_ERROR;
2697
2698         unsigned size = 0;
2699         switch (CMD_NAME[2]) {
2700         case 'w':
2701                 size = 4;
2702                 break;
2703         case 'h':
2704                 size = 2;
2705                 break;
2706         case 'b':
2707                 size = 1;
2708                 break;
2709         default:
2710                 return ERROR_COMMAND_SYNTAX_ERROR;
2711         }
2712
2713         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2714         int (*fn)(struct target *target,
2715                         uint32_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
2716         if (physical) {
2717                 CMD_ARGC--;
2718                 CMD_ARGV++;
2719                 fn = target_read_phys_memory;
2720         } else
2721                 fn = target_read_memory;
2722         if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2723                 return ERROR_COMMAND_SYNTAX_ERROR;
2724
2725         uint32_t address;
2726         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2727
2728         unsigned count = 1;
2729         if (CMD_ARGC == 2)
2730                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2731
2732         uint8_t *buffer = calloc(count, size);
2733
2734         struct target *target = get_current_target(CMD_CTX);
2735         int retval = fn(target, address, size, count, buffer);
2736         if (ERROR_OK == retval)
2737                 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2738
2739         free(buffer);
2740
2741         return retval;
2742 }
2743
2744 typedef int (*target_write_fn)(struct target *target,
2745                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
2746
2747 static int target_write_memory_fast(struct target *target,
2748                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
2749 {
2750         return target_write_buffer(target, address, size * count, buffer);
2751 }
2752
2753 static int target_fill_mem(struct target *target,
2754                 uint32_t address,
2755                 target_write_fn fn,
2756                 unsigned data_size,
2757                 /* value */
2758                 uint32_t b,
2759                 /* count */
2760                 unsigned c)
2761 {
2762         /* We have to write in reasonably large chunks to be able
2763          * to fill large memory areas with any sane speed */
2764         const unsigned chunk_size = 16384;
2765         uint8_t *target_buf = malloc(chunk_size * data_size);
2766         if (target_buf == NULL) {
2767                 LOG_ERROR("Out of memory");
2768                 return ERROR_FAIL;
2769         }
2770
2771         for (unsigned i = 0; i < chunk_size; i++) {
2772                 switch (data_size) {
2773                 case 4:
2774                         target_buffer_set_u32(target, target_buf + i * data_size, b);
2775                         break;
2776                 case 2:
2777                         target_buffer_set_u16(target, target_buf + i * data_size, b);
2778                         break;
2779                 case 1:
2780                         target_buffer_set_u8(target, target_buf + i * data_size, b);
2781                         break;
2782                 default:
2783                         exit(-1);
2784                 }
2785         }
2786
2787         int retval = ERROR_OK;
2788
2789         for (unsigned x = 0; x < c; x += chunk_size) {
2790                 unsigned current;
2791                 current = c - x;
2792                 if (current > chunk_size)
2793                         current = chunk_size;
2794                 retval = fn(target, address + x * data_size, data_size, current, target_buf);
2795                 if (retval != ERROR_OK)
2796                         break;
2797                 /* avoid GDB timeouts */
2798                 keep_alive();
2799         }
2800         free(target_buf);
2801
2802         return retval;
2803 }
2804
2805
2806 COMMAND_HANDLER(handle_mw_command)
2807 {
2808         if (CMD_ARGC < 2)
2809                 return ERROR_COMMAND_SYNTAX_ERROR;
2810         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2811         target_write_fn fn;
2812         if (physical) {
2813                 CMD_ARGC--;
2814                 CMD_ARGV++;
2815                 fn = target_write_phys_memory;
2816         } else
2817                 fn = target_write_memory_fast;
2818         if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2819                 return ERROR_COMMAND_SYNTAX_ERROR;
2820
2821         uint32_t address;
2822         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2823
2824         uint32_t value;
2825         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2826
2827         unsigned count = 1;
2828         if (CMD_ARGC == 3)
2829                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2830
2831         struct target *target = get_current_target(CMD_CTX);
2832         unsigned wordsize;
2833         switch (CMD_NAME[2]) {
2834                 case 'w':
2835                         wordsize = 4;
2836                         break;
2837                 case 'h':
2838                         wordsize = 2;
2839                         break;
2840                 case 'b':
2841                         wordsize = 1;
2842                         break;
2843                 default:
2844                         return ERROR_COMMAND_SYNTAX_ERROR;
2845         }
2846
2847         return target_fill_mem(target, address, fn, wordsize, value, count);
2848 }
2849
2850 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2851                 uint32_t *min_address, uint32_t *max_address)
2852 {
2853         if (CMD_ARGC < 1 || CMD_ARGC > 5)
2854                 return ERROR_COMMAND_SYNTAX_ERROR;
2855
2856         /* a base address isn't always necessary,
2857          * default to 0x0 (i.e. don't relocate) */
2858         if (CMD_ARGC >= 2) {
2859                 uint32_t addr;
2860                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2861                 image->base_address = addr;
2862                 image->base_address_set = 1;
2863         } else
2864                 image->base_address_set = 0;
2865
2866         image->start_address_set = 0;
2867
2868         if (CMD_ARGC >= 4)
2869                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2870         if (CMD_ARGC == 5) {
2871                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2872                 /* use size (given) to find max (required) */
2873                 *max_address += *min_address;
2874         }
2875
2876         if (*min_address > *max_address)
2877                 return ERROR_COMMAND_SYNTAX_ERROR;
2878
2879         return ERROR_OK;
2880 }
2881
2882 COMMAND_HANDLER(handle_load_image_command)
2883 {
2884         uint8_t *buffer;
2885         size_t buf_cnt;
2886         uint32_t image_size;
2887         uint32_t min_address = 0;
2888         uint32_t max_address = 0xffffffff;
2889         int i;
2890         struct image image;
2891
2892         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2893                         &image, &min_address, &max_address);
2894         if (ERROR_OK != retval)
2895                 return retval;
2896
2897         struct target *target = get_current_target(CMD_CTX);
2898
2899         struct duration bench;
2900         duration_start(&bench);
2901
2902         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2903                 return ERROR_OK;
2904
2905         image_size = 0x0;
2906         retval = ERROR_OK;
2907         for (i = 0; i < image.num_sections; i++) {
2908                 buffer = malloc(image.sections[i].size);
2909                 if (buffer == NULL) {
2910                         command_print(CMD_CTX,
2911                                                   "error allocating buffer for section (%d bytes)",
2912                                                   (int)(image.sections[i].size));
2913                         break;
2914                 }
2915
2916                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
2917                 if (retval != ERROR_OK) {
2918                         free(buffer);
2919                         break;
2920                 }
2921
2922                 uint32_t offset = 0;
2923                 uint32_t length = buf_cnt;
2924
2925                 /* DANGER!!! beware of unsigned comparision here!!! */
2926
2927                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
2928                                 (image.sections[i].base_address < max_address)) {
2929
2930                         if (image.sections[i].base_address < min_address) {
2931                                 /* clip addresses below */
2932                                 offset += min_address-image.sections[i].base_address;
2933                                 length -= offset;
2934                         }
2935
2936                         if (image.sections[i].base_address + buf_cnt > max_address)
2937                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2938
2939                         retval = target_write_buffer(target,
2940                                         image.sections[i].base_address + offset, length, buffer + offset);
2941                         if (retval != ERROR_OK) {
2942                                 free(buffer);
2943                                 break;
2944                         }
2945                         image_size += length;
2946                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
2947                                         (unsigned int)length,
2948                                         image.sections[i].base_address + offset);
2949                 }
2950
2951                 free(buffer);
2952         }
2953
2954         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
2955                 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
2956                                 "in %fs (%0.3f KiB/s)", image_size,
2957                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2958         }
2959
2960         image_close(&image);
2961
2962         return retval;
2963
2964 }
2965
2966 COMMAND_HANDLER(handle_dump_image_command)
2967 {
2968         struct fileio fileio;
2969         uint8_t *buffer;
2970         int retval, retvaltemp;
2971         uint32_t address, size;
2972         struct duration bench;
2973         struct target *target = get_current_target(CMD_CTX);
2974
2975         if (CMD_ARGC != 3)
2976                 return ERROR_COMMAND_SYNTAX_ERROR;
2977
2978         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
2979         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
2980
2981         uint32_t buf_size = (size > 4096) ? 4096 : size;
2982         buffer = malloc(buf_size);
2983         if (!buffer)
2984                 return ERROR_FAIL;
2985
2986         retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
2987         if (retval != ERROR_OK) {
2988                 free(buffer);
2989                 return retval;
2990         }
2991
2992         duration_start(&bench);
2993
2994         while (size > 0) {
2995                 size_t size_written;
2996                 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
2997                 retval = target_read_buffer(target, address, this_run_size, buffer);
2998                 if (retval != ERROR_OK)
2999                         break;
3000
3001                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
3002                 if (retval != ERROR_OK)
3003                         break;
3004
3005                 size -= this_run_size;
3006                 address += this_run_size;
3007         }
3008
3009         free(buffer);
3010
3011         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3012                 int filesize;
3013                 retval = fileio_size(&fileio, &filesize);
3014                 if (retval != ERROR_OK)
3015                         return retval;
3016                 command_print(CMD_CTX,
3017                                 "dumped %ld bytes in %fs (%0.3f KiB/s)", (long)filesize,
3018                                 duration_elapsed(&bench), duration_kbps(&bench, filesize));
3019         }
3020
3021         retvaltemp = fileio_close(&fileio);
3022         if (retvaltemp != ERROR_OK)
3023                 return retvaltemp;
3024
3025         return retval;
3026 }
3027
3028 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
3029 {
3030         uint8_t *buffer;
3031         size_t buf_cnt;
3032         uint32_t image_size;
3033         int i;
3034         int retval;
3035         uint32_t checksum = 0;
3036         uint32_t mem_checksum = 0;
3037
3038         struct image image;
3039
3040         struct target *target = get_current_target(CMD_CTX);
3041
3042         if (CMD_ARGC < 1)
3043                 return ERROR_COMMAND_SYNTAX_ERROR;
3044
3045         if (!target) {
3046                 LOG_ERROR("no target selected");
3047                 return ERROR_FAIL;
3048         }
3049
3050         struct duration bench;
3051         duration_start(&bench);
3052
3053         if (CMD_ARGC >= 2) {
3054                 uint32_t addr;
3055                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
3056                 image.base_address = addr;
3057                 image.base_address_set = 1;
3058         } else {
3059                 image.base_address_set = 0;
3060                 image.base_address = 0x0;
3061         }
3062
3063         image.start_address_set = 0;
3064
3065         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
3066         if (retval != ERROR_OK)
3067                 return retval;
3068
3069         image_size = 0x0;
3070         int diffs = 0;
3071         retval = ERROR_OK;
3072         for (i = 0; i < image.num_sections; i++) {
3073                 buffer = malloc(image.sections[i].size);
3074                 if (buffer == NULL) {
3075                         command_print(CMD_CTX,
3076                                         "error allocating buffer for section (%d bytes)",
3077                                         (int)(image.sections[i].size));
3078                         break;
3079                 }
3080                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3081                 if (retval != ERROR_OK) {
3082                         free(buffer);
3083                         break;
3084                 }
3085
3086                 if (verify) {
3087                         /* calculate checksum of image */
3088                         retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3089                         if (retval != ERROR_OK) {
3090                                 free(buffer);
3091                                 break;
3092                         }
3093
3094                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3095                         if (retval != ERROR_OK) {
3096                                 free(buffer);
3097                                 break;
3098                         }
3099
3100                         if (checksum != mem_checksum) {
3101                                 /* failed crc checksum, fall back to a binary compare */
3102                                 uint8_t *data;
3103
3104                                 if (diffs == 0)
3105                                         LOG_ERROR("checksum mismatch - attempting binary compare");
3106
3107                                 data = (uint8_t *)malloc(buf_cnt);
3108
3109                                 /* Can we use 32bit word accesses? */
3110                                 int size = 1;
3111                                 int count = buf_cnt;
3112                                 if ((count % 4) == 0) {
3113                                         size *= 4;
3114                                         count /= 4;
3115                                 }
3116                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3117                                 if (retval == ERROR_OK) {
3118                                         uint32_t t;
3119                                         for (t = 0; t < buf_cnt; t++) {
3120                                                 if (data[t] != buffer[t]) {
3121                                                         command_print(CMD_CTX,
3122                                                                                   "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3123                                                                                   diffs,
3124                                                                                   (unsigned)(t + image.sections[i].base_address),
3125                                                                                   data[t],
3126                                                                                   buffer[t]);
3127                                                         if (diffs++ >= 127) {
3128                                                                 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3129                                                                 free(data);
3130                                                                 free(buffer);
3131                                                                 goto done;
3132                                                         }
3133                                                 }
3134                                                 keep_alive();
3135                                         }
3136                                 }
3137                                 free(data);
3138                         }
3139                 } else {
3140                         command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
3141                                                   image.sections[i].base_address,
3142                                                   buf_cnt);
3143                 }
3144
3145                 free(buffer);
3146                 image_size += buf_cnt;
3147         }
3148         if (diffs > 0)
3149                 command_print(CMD_CTX, "No more differences found.");
3150 done:
3151         if (diffs > 0)
3152                 retval = ERROR_FAIL;
3153         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3154                 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3155                                 "in %fs (%0.3f KiB/s)", image_size,
3156                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3157         }
3158
3159         image_close(&image);
3160
3161         return retval;
3162 }
3163
3164 COMMAND_HANDLER(handle_verify_image_command)
3165 {
3166         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
3167 }
3168
3169 COMMAND_HANDLER(handle_test_image_command)
3170 {
3171         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
3172 }
3173
3174 static int handle_bp_command_list(struct command_context *cmd_ctx)
3175 {
3176         struct target *target = get_current_target(cmd_ctx);
3177         struct breakpoint *breakpoint = target->breakpoints;
3178         while (breakpoint) {
3179                 if (breakpoint->type == BKPT_SOFT) {
3180                         char *buf = buf_to_str(breakpoint->orig_instr,
3181                                         breakpoint->length, 16);
3182                         command_print(cmd_ctx, "IVA breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
3183                                         breakpoint->address,
3184                                         breakpoint->length,
3185                                         breakpoint->set, buf);
3186                         free(buf);
3187                 } else {
3188                         if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3189                                 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3190                                                         breakpoint->asid,
3191                                                         breakpoint->length, breakpoint->set);
3192                         else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3193                                 command_print(cmd_ctx, "Hybrid breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3194                                                         breakpoint->address,
3195                                                         breakpoint->length, breakpoint->set);
3196                                 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3197                                                         breakpoint->asid);
3198                         } else
3199                                 command_print(cmd_ctx, "Breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3200                                                         breakpoint->address,
3201                                                         breakpoint->length, breakpoint->set);
3202                 }
3203
3204                 breakpoint = breakpoint->next;
3205         }
3206         return ERROR_OK;
3207 }
3208
3209 static int handle_bp_command_set(struct command_context *cmd_ctx,
3210                 uint32_t addr, uint32_t asid, uint32_t length, int hw)
3211 {
3212         struct target *target = get_current_target(cmd_ctx);
3213
3214         if (asid == 0) {
3215                 int retval = breakpoint_add(target, addr, length, hw);
3216                 if (ERROR_OK == retval)
3217                         command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
3218                 else {
3219                         LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3220                         return retval;
3221                 }
3222         } else if (addr == 0) {
3223                 int retval = context_breakpoint_add(target, asid, length, hw);
3224                 if (ERROR_OK == retval)
3225                         command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3226                 else {
3227                         LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3228                         return retval;
3229                 }
3230         } else {
3231                 int retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3232                 if (ERROR_OK == retval)
3233                         command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3234                 else {
3235                         LOG_ERROR("Failure setting breakpoint, the same address is already used");
3236                         return retval;
3237                 }
3238         }
3239         return ERROR_OK;
3240 }
3241
3242 COMMAND_HANDLER(handle_bp_command)
3243 {
3244         uint32_t addr;
3245         uint32_t asid;
3246         uint32_t length;
3247         int hw = BKPT_SOFT;
3248
3249         switch (CMD_ARGC) {
3250                 case 0:
3251                         return handle_bp_command_list(CMD_CTX);
3252
3253                 case 2:
3254                         asid = 0;
3255                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3256                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3257                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3258
3259                 case 3:
3260                         if (strcmp(CMD_ARGV[2], "hw") == 0) {
3261                                 hw = BKPT_HARD;
3262                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3263
3264                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3265
3266                                 asid = 0;
3267                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3268                         } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
3269                                 hw = BKPT_HARD;
3270                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3271                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3272                                 addr = 0;
3273                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3274                         }
3275
3276                 case 4:
3277                         hw = BKPT_HARD;
3278                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3279                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3280                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3281                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3282
3283                 default:
3284                         return ERROR_COMMAND_SYNTAX_ERROR;
3285         }
3286 }
3287
3288 COMMAND_HANDLER(handle_rbp_command)
3289 {
3290         if (CMD_ARGC != 1)
3291                 return ERROR_COMMAND_SYNTAX_ERROR;
3292
3293         uint32_t addr;
3294         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3295
3296         struct target *target = get_current_target(CMD_CTX);
3297         breakpoint_remove(target, addr);
3298
3299         return ERROR_OK;
3300 }
3301
3302 COMMAND_HANDLER(handle_wp_command)
3303 {
3304         struct target *target = get_current_target(CMD_CTX);
3305
3306         if (CMD_ARGC == 0) {
3307                 struct watchpoint *watchpoint = target->watchpoints;
3308
3309                 while (watchpoint) {
3310                         command_print(CMD_CTX, "address: 0x%8.8" PRIx32
3311                                         ", len: 0x%8.8" PRIx32
3312                                         ", r/w/a: %i, value: 0x%8.8" PRIx32
3313                                         ", mask: 0x%8.8" PRIx32,
3314                                         watchpoint->address,
3315                                         watchpoint->length,
3316                                         (int)watchpoint->rw,
3317                                         watchpoint->value,
3318                                         watchpoint->mask);
3319                         watchpoint = watchpoint->next;
3320                 }
3321                 return ERROR_OK;
3322         }
3323
3324         enum watchpoint_rw type = WPT_ACCESS;
3325         uint32_t addr = 0;
3326         uint32_t length = 0;
3327         uint32_t data_value = 0x0;
3328         uint32_t data_mask = 0xffffffff;
3329
3330         switch (CMD_ARGC) {
3331         case 5:
3332                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3333                 /* fall through */
3334         case 4:
3335                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3336                 /* fall through */
3337         case 3:
3338                 switch (CMD_ARGV[2][0]) {
3339                 case 'r':
3340                         type = WPT_READ;
3341                         break;
3342                 case 'w':
3343                         type = WPT_WRITE;
3344                         break;
3345                 case 'a':
3346                         type = WPT_ACCESS;
3347                         break;
3348                 default:
3349                         LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3350                         return ERROR_COMMAND_SYNTAX_ERROR;
3351                 }
3352                 /* fall through */
3353         case 2:
3354                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3355                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3356                 break;
3357
3358         default:
3359                 return ERROR_COMMAND_SYNTAX_ERROR;
3360         }
3361
3362         int retval = watchpoint_add(target, addr, length, type,
3363                         data_value, data_mask);
3364         if (ERROR_OK != retval)
3365                 LOG_ERROR("Failure setting watchpoints");
3366
3367         return retval;
3368 }
3369
3370 COMMAND_HANDLER(handle_rwp_command)
3371 {
3372         if (CMD_ARGC != 1)
3373                 return ERROR_COMMAND_SYNTAX_ERROR;
3374
3375         uint32_t addr;
3376         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3377
3378         struct target *target = get_current_target(CMD_CTX);
3379         watchpoint_remove(target, addr);
3380
3381         return ERROR_OK;
3382 }
3383
3384 /**
3385  * Translate a virtual address to a physical address.
3386  *
3387  * The low-level target implementation must have logged a detailed error
3388  * which is forwarded to telnet/GDB session.
3389  */
3390 COMMAND_HANDLER(handle_virt2phys_command)
3391 {
3392         if (CMD_ARGC != 1)
3393                 return ERROR_COMMAND_SYNTAX_ERROR;
3394
3395         uint32_t va;
3396         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
3397         uint32_t pa;
3398
3399         struct target *target = get_current_target(CMD_CTX);
3400         int retval = target->type->virt2phys(target, va, &pa);
3401         if (retval == ERROR_OK)
3402                 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
3403
3404         return retval;
3405 }
3406
3407 static void writeData(FILE *f, const void *data, size_t len)
3408 {
3409         size_t written = fwrite(data, 1, len, f);
3410         if (written != len)
3411                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3412 }
3413
3414 static void writeLong(FILE *f, int l)
3415 {
3416         int i;
3417         for (i = 0; i < 4; i++) {
3418                 char c = (l >> (i*8))&0xff;
3419                 writeData(f, &c, 1);
3420         }
3421
3422 }
3423
3424 static void writeString(FILE *f, char *s)
3425 {
3426         writeData(f, s, strlen(s));
3427 }
3428
3429 typedef unsigned char UNIT[2];  /* unit of profiling */
3430
3431 /* Dump a gmon.out histogram file. */
3432 static void write_gmon(uint32_t *samples, uint32_t sampleNum, const char *filename,
3433                 bool with_range, uint32_t start_address, uint32_t end_address)
3434 {
3435         uint32_t i;
3436         FILE *f = fopen(filename, "w");
3437         if (f == NULL)
3438                 return;
3439         writeString(f, "gmon");
3440         writeLong(f, 0x00000001); /* Version */
3441         writeLong(f, 0); /* padding */
3442         writeLong(f, 0); /* padding */
3443         writeLong(f, 0); /* padding */
3444
3445         uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
3446         writeData(f, &zero, 1);
3447
3448         /* figure out bucket size */
3449         uint32_t min;
3450         uint32_t max;
3451         if (with_range) {
3452                 min = start_address;
3453                 max = end_address;
3454         } else {
3455                 min = samples[0];
3456                 max = samples[0];
3457                 for (i = 0; i < sampleNum; i++) {
3458                         if (min > samples[i])
3459                                 min = samples[i];
3460                         if (max < samples[i])
3461                                 max = samples[i];
3462                 }
3463
3464                 /* max should be (largest sample + 1)
3465                  * Refer to binutils/gprof/hist.c (find_histogram_for_pc) */
3466                 max++;
3467         }
3468
3469         int addressSpace = max - min;
3470         assert(addressSpace >= 2);
3471
3472         /* FIXME: What is the reasonable number of buckets?
3473          * The profiling result will be more accurate if there are enough buckets. */
3474         static const uint32_t maxBuckets = 128 * 1024; /* maximum buckets. */
3475         uint32_t numBuckets = addressSpace / sizeof(UNIT);
3476         if (numBuckets > maxBuckets)
3477                 numBuckets = maxBuckets;
3478         int *buckets = malloc(sizeof(int) * numBuckets);
3479         if (buckets == NULL) {
3480                 fclose(f);
3481                 return;
3482         }
3483         memset(buckets, 0, sizeof(int) * numBuckets);
3484         for (i = 0; i < sampleNum; i++) {
3485                 uint32_t address = samples[i];
3486
3487                 if ((address < min) || (max <= address))
3488                         continue;
3489
3490                 long long a = address - min;
3491                 long long b = numBuckets;
3492                 long long c = addressSpace;
3493                 int index_t = (a * b) / c; /* danger!!!! int32 overflows */
3494                 buckets[index_t]++;
3495         }
3496
3497         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3498         writeLong(f, min);                      /* low_pc */
3499         writeLong(f, max);                      /* high_pc */
3500         writeLong(f, numBuckets);       /* # of buckets */
3501         writeLong(f, 100);                      /* KLUDGE! We lie, ca. 100Hz best case. */
3502         writeString(f, "seconds");
3503         for (i = 0; i < (15-strlen("seconds")); i++)
3504                 writeData(f, &zero, 1);
3505         writeString(f, "s");
3506
3507         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3508
3509         char *data = malloc(2 * numBuckets);
3510         if (data != NULL) {
3511                 for (i = 0; i < numBuckets; i++) {
3512                         int val;
3513                         val = buckets[i];
3514                         if (val > 65535)
3515                                 val = 65535;
3516                         data[i * 2] = val&0xff;
3517                         data[i * 2 + 1] = (val >> 8) & 0xff;
3518                 }
3519                 free(buckets);
3520                 writeData(f, data, numBuckets * 2);
3521                 free(data);
3522         } else
3523                 free(buckets);
3524
3525         fclose(f);
3526 }
3527
3528 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3529  * which will be used as a random sampling of PC */
3530 COMMAND_HANDLER(handle_profile_command)
3531 {
3532         struct target *target = get_current_target(CMD_CTX);
3533
3534         if ((CMD_ARGC != 2) && (CMD_ARGC != 4))
3535                 return ERROR_COMMAND_SYNTAX_ERROR;
3536
3537         const uint32_t MAX_PROFILE_SAMPLE_NUM = 10000;
3538         uint32_t offset;
3539         uint32_t num_of_sampels;
3540         int retval = ERROR_OK;
3541         uint32_t *samples = malloc(sizeof(uint32_t) * MAX_PROFILE_SAMPLE_NUM);
3542         if (samples == NULL) {
3543                 LOG_ERROR("No memory to store samples.");
3544                 return ERROR_FAIL;
3545         }
3546
3547         COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], offset);
3548
3549         /**
3550          * Some cores let us sample the PC without the
3551          * annoying halt/resume step; for example, ARMv7 PCSR.
3552          * Provide a way to use that more efficient mechanism.
3553          */
3554         retval = target_profiling(target, samples, MAX_PROFILE_SAMPLE_NUM,
3555                                 &num_of_sampels, offset);
3556         if (retval != ERROR_OK) {
3557                 free(samples);
3558                 return retval;
3559         }
3560
3561         assert(num_of_sampels <= MAX_PROFILE_SAMPLE_NUM);
3562
3563         retval = target_poll(target);
3564         if (retval != ERROR_OK) {
3565                 free(samples);
3566                 return retval;
3567         }
3568         if (target->state == TARGET_RUNNING) {
3569                 retval = target_halt(target);
3570                 if (retval != ERROR_OK) {
3571                         free(samples);
3572                         return retval;
3573                 }
3574         }
3575
3576         retval = target_poll(target);
3577         if (retval != ERROR_OK) {
3578                 free(samples);
3579                 return retval;
3580         }
3581
3582         uint32_t start_address = 0;
3583         uint32_t end_address = 0;
3584         bool with_range = false;
3585         if (CMD_ARGC == 4) {
3586                 with_range = true;
3587                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], start_address);
3588                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[3], end_address);
3589         }
3590
3591         write_gmon(samples, num_of_sampels, CMD_ARGV[1],
3592                         with_range, start_address, end_address);
3593         command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3594
3595         free(samples);
3596         return retval;
3597 }
3598
3599 static int new_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t val)
3600 {
3601         char *namebuf;
3602         Jim_Obj *nameObjPtr, *valObjPtr;
3603         int result;
3604
3605         namebuf = alloc_printf("%s(%d)", varname, idx);
3606         if (!namebuf)
3607                 return JIM_ERR;
3608
3609         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3610         valObjPtr = Jim_NewIntObj(interp, val);
3611         if (!nameObjPtr || !valObjPtr) {
3612                 free(namebuf);
3613                 return JIM_ERR;
3614         }
3615
3616         Jim_IncrRefCount(nameObjPtr);
3617         Jim_IncrRefCount(valObjPtr);
3618         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3619         Jim_DecrRefCount(interp, nameObjPtr);
3620         Jim_DecrRefCount(interp, valObjPtr);
3621         free(namebuf);
3622         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3623         return result;
3624 }
3625
3626 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3627 {
3628         struct command_context *context;
3629         struct target *target;
3630
3631         context = current_command_context(interp);
3632         assert(context != NULL);
3633
3634         target = get_current_target(context);
3635         if (target == NULL) {
3636                 LOG_ERROR("mem2array: no current target");
3637                 return JIM_ERR;
3638         }
3639
3640         return target_mem2array(interp, target, argc - 1, argv + 1);
3641 }
3642
3643 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3644 {
3645         long l;
3646         uint32_t width;
3647         int len;
3648         uint32_t addr;
3649         uint32_t count;
3650         uint32_t v;
3651         const char *varname;
3652         int  n, e, retval;
3653         uint32_t i;
3654
3655         /* argv[1] = name of array to receive the data
3656          * argv[2] = desired width
3657          * argv[3] = memory address
3658          * argv[4] = count of times to read
3659          */
3660         if (argc != 4) {
3661                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3662                 return JIM_ERR;
3663         }
3664         varname = Jim_GetString(argv[0], &len);
3665         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3666
3667         e = Jim_GetLong(interp, argv[1], &l);
3668         width = l;
3669         if (e != JIM_OK)
3670                 return e;
3671
3672         e = Jim_GetLong(interp, argv[2], &l);
3673         addr = l;
3674         if (e != JIM_OK)
3675                 return e;
3676         e = Jim_GetLong(interp, argv[3], &l);
3677         len = l;
3678         if (e != JIM_OK)
3679                 return e;
3680         switch (width) {
3681                 case 8:
3682                         width = 1;
3683                         break;
3684                 case 16:
3685                         width = 2;
3686                         break;
3687                 case 32:
3688                         width = 4;
3689                         break;
3690                 default:
3691                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3692                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3693                         return JIM_ERR;
3694         }
3695         if (len == 0) {
3696                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3697                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3698                 return JIM_ERR;
3699         }
3700         if ((addr + (len * width)) < addr) {
3701                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3702                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3703                 return JIM_ERR;
3704         }
3705         /* absurd transfer size? */
3706         if (len > 65536) {
3707                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3708                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3709                 return JIM_ERR;
3710         }
3711
3712         if ((width == 1) ||
3713                 ((width == 2) && ((addr & 1) == 0)) ||
3714                 ((width == 4) && ((addr & 3) == 0))) {
3715                 /* all is well */
3716         } else {
3717                 char buf[100];
3718                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3719                 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3720                                 addr,
3721                                 width);
3722                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3723                 return JIM_ERR;
3724         }
3725
3726         /* Transfer loop */
3727
3728         /* index counter */
3729         n = 0;
3730
3731         size_t buffersize = 4096;
3732         uint8_t *buffer = malloc(buffersize);
3733         if (buffer == NULL)
3734                 return JIM_ERR;
3735
3736         /* assume ok */
3737         e = JIM_OK;
3738         while (len) {
3739                 /* Slurp... in buffer size chunks */
3740
3741                 count = len; /* in objects.. */
3742                 if (count > (buffersize / width))
3743                         count = (buffersize / width);
3744
3745                 retval = target_read_memory(target, addr, width, count, buffer);
3746                 if (retval != ERROR_OK) {
3747                         /* BOO !*/
3748                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3749                                           (unsigned int)addr,
3750                                           (int)width,
3751                                           (int)count);
3752                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3753                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3754                         e = JIM_ERR;
3755                         break;
3756                 } else {
3757                         v = 0; /* shut up gcc */
3758                         for (i = 0; i < count ; i++, n++) {
3759                                 switch (width) {
3760                                         case 4:
3761                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
3762                                                 break;
3763                                         case 2:
3764                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
3765                                                 break;
3766                                         case 1:
3767                                                 v = buffer[i] & 0x0ff;
3768                                                 break;
3769                                 }
3770                                 new_int_array_element(interp, varname, n, v);
3771                         }
3772                         len -= count;
3773                 }
3774         }
3775
3776         free(buffer);
3777
3778         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3779
3780         return e;
3781 }
3782
3783 static int get_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t *val)
3784 {
3785         char *namebuf;
3786         Jim_Obj *nameObjPtr, *valObjPtr;
3787         int result;
3788         long l;
3789
3790         namebuf = alloc_printf("%s(%d)", varname, idx);
3791         if (!namebuf)
3792                 return JIM_ERR;
3793
3794         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3795         if (!nameObjPtr) {
3796                 free(namebuf);
3797                 return JIM_ERR;
3798         }
3799
3800         Jim_IncrRefCount(nameObjPtr);
3801         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3802         Jim_DecrRefCount(interp, nameObjPtr);
3803         free(namebuf);
3804         if (valObjPtr == NULL)
3805                 return JIM_ERR;
3806
3807         result = Jim_GetLong(interp, valObjPtr, &l);
3808         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3809         *val = l;
3810         return result;
3811 }
3812
3813 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3814 {
3815         struct command_context *context;
3816         struct target *target;
3817
3818         context = current_command_context(interp);
3819         assert(context != NULL);
3820
3821         target = get_current_target(context);
3822         if (target == NULL) {
3823                 LOG_ERROR("array2mem: no current target");
3824                 return JIM_ERR;
3825         }
3826
3827         return target_array2mem(interp, target, argc-1, argv + 1);
3828 }
3829
3830 static int target_array2mem(Jim_Interp *interp, struct target *target,
3831                 int argc, Jim_Obj *const *argv)
3832 {
3833         long l;
3834         uint32_t width;
3835         int len;
3836         uint32_t addr;
3837         uint32_t count;
3838         uint32_t v;
3839         const char *varname;
3840         int  n, e, retval;
3841         uint32_t i;
3842
3843         /* argv[1] = name of array to get the data
3844          * argv[2] = desired width
3845          * argv[3] = memory address
3846          * argv[4] = count to write
3847          */
3848         if (argc != 4) {
3849                 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems");
3850                 return JIM_ERR;
3851         }
3852         varname = Jim_GetString(argv[0], &len);
3853         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3854
3855         e = Jim_GetLong(interp, argv[1], &l);
3856         width = l;
3857         if (e != JIM_OK)
3858                 return e;
3859
3860         e = Jim_GetLong(interp, argv[2], &l);
3861         addr = l;
3862         if (e != JIM_OK)
3863                 return e;
3864         e = Jim_GetLong(interp, argv[3], &l);
3865         len = l;
3866         if (e != JIM_OK)
3867                 return e;
3868         switch (width) {
3869                 case 8:
3870                         width = 1;
3871                         break;
3872                 case 16:
3873                         width = 2;
3874                         break;
3875                 case 32:
3876                         width = 4;
3877                         break;
3878                 default:
3879                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3880                         Jim_AppendStrings(interp, Jim_GetResult(interp),
3881                                         "Invalid width param, must be 8/16/32", NULL);
3882                         return JIM_ERR;
3883         }
3884         if (len == 0) {
3885                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3886                 Jim_AppendStrings(interp, Jim_GetResult(interp),
3887                                 "array2mem: zero width read?", NULL);
3888                 return JIM_ERR;
3889         }
3890         if ((addr + (len * width)) < addr) {
3891                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3892                 Jim_AppendStrings(interp, Jim_GetResult(interp),
3893                                 "array2mem: addr + len - wraps to zero?", NULL);
3894                 return JIM_ERR;
3895         }
3896         /* absurd transfer size? */
3897         if (len > 65536) {
3898                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3899                 Jim_AppendStrings(interp, Jim_GetResult(interp),
3900                                 "array2mem: absurd > 64K item request", NULL);
3901                 return JIM_ERR;
3902         }
3903
3904         if ((width == 1) ||
3905                 ((width == 2) && ((addr & 1) == 0)) ||
3906                 ((width == 4) && ((addr & 3) == 0))) {
3907                 /* all is well */
3908         } else {
3909                 char buf[100];
3910                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3911                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
3912                                 (unsigned int)addr,
3913                                 (int)width);
3914                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3915                 return JIM_ERR;
3916         }
3917
3918         /* Transfer loop */
3919
3920         /* index counter */
3921         n = 0;
3922         /* assume ok */
3923         e = JIM_OK;
3924
3925         size_t buffersize = 4096;
3926         uint8_t *buffer = malloc(buffersize);
3927         if (buffer == NULL)
3928                 return JIM_ERR;
3929
3930         while (len) {
3931                 /* Slurp... in buffer size chunks */
3932
3933                 count = len; /* in objects.. */
3934                 if (count > (buffersize / width))
3935                         count = (buffersize / width);
3936
3937                 v = 0; /* shut up gcc */
3938                 for (i = 0; i < count; i++, n++) {
3939                         get_int_array_element(interp, varname, n, &v);
3940                         switch (width) {
3941                         case 4:
3942                                 target_buffer_set_u32(target, &buffer[i * width], v);
3943                                 break;
3944                         case 2:
3945                                 target_buffer_set_u16(target, &buffer[i * width], v);
3946                                 break;
3947                         case 1:
3948                                 buffer[i] = v & 0x0ff;
3949                                 break;
3950                         }
3951                 }
3952                 len -= count;
3953
3954                 retval = target_write_memory(target, addr, width, count, buffer);
3955                 if (retval != ERROR_OK) {
3956                         /* BOO !*/
3957                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
3958                                           (unsigned int)addr,
3959                                           (int)width,
3960                                           (int)count);
3961                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3962                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3963                         e = JIM_ERR;
3964                         break;
3965                 }
3966         }
3967
3968         free(buffer);
3969
3970         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3971
3972         return e;
3973 }
3974
3975 /* FIX? should we propagate errors here rather than printing them
3976  * and continuing?
3977  */
3978 void target_handle_event(struct target *target, enum target_event e)
3979 {
3980         struct target_event_action *teap;
3981
3982         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3983                 if (teap->event == e) {
3984                         LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
3985                                            target->target_number,
3986                                            target_name(target),
3987                                            target_type_name(target),
3988                                            e,
3989                                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
3990                                            Jim_GetString(teap->body, NULL));
3991                         if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK) {
3992                                 Jim_MakeErrorMessage(teap->interp);
3993                                 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(teap->interp), NULL));
3994                         }
3995                 }
3996         }
3997 }
3998
3999 /**
4000  * Returns true only if the target has a handler for the specified event.
4001  */
4002 bool target_has_event_action(struct target *target, enum target_event event)
4003 {
4004         struct target_event_action *teap;
4005
4006         for (teap = target->event_action; teap != NULL; teap = teap->next) {
4007                 if (teap->event == event)
4008                         return true;
4009         }
4010         return false;
4011 }
4012
4013 enum target_cfg_param {
4014         TCFG_TYPE,
4015         TCFG_EVENT,
4016         TCFG_WORK_AREA_VIRT,
4017         TCFG_WORK_AREA_PHYS,
4018         TCFG_WORK_AREA_SIZE,
4019         TCFG_WORK_AREA_BACKUP,
4020         TCFG_ENDIAN,
4021         TCFG_VARIANT,
4022         TCFG_COREID,
4023         TCFG_CHAIN_POSITION,
4024         TCFG_DBGBASE,
4025         TCFG_RTOS,
4026 };
4027
4028 static Jim_Nvp nvp_config_opts[] = {
4029         { .name = "-type",             .value = TCFG_TYPE },
4030         { .name = "-event",            .value = TCFG_EVENT },
4031         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
4032         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
4033         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
4034         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
4035         { .name = "-endian" ,          .value = TCFG_ENDIAN },
4036         { .name = "-variant",          .value = TCFG_VARIANT },
4037         { .name = "-coreid",           .value = TCFG_COREID },
4038         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
4039         { .name = "-dbgbase",          .value = TCFG_DBGBASE },
4040         { .name = "-rtos",             .value = TCFG_RTOS },
4041         { .name = NULL, .value = -1 }
4042 };
4043
4044 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
4045 {
4046         Jim_Nvp *n;
4047         Jim_Obj *o;
4048         jim_wide w;
4049         char *cp;
4050         int e;
4051
4052         /* parse config or cget options ... */
4053         while (goi->argc > 0) {
4054                 Jim_SetEmptyResult(goi->interp);
4055                 /* Jim_GetOpt_Debug(goi); */
4056
4057                 if (target->type->target_jim_configure) {
4058                         /* target defines a configure function */
4059                         /* target gets first dibs on parameters */
4060                         e = (*(target->type->target_jim_configure))(target, goi);
4061                         if (e == JIM_OK) {
4062                                 /* more? */
4063                                 continue;
4064                         }
4065                         if (e == JIM_ERR) {
4066                                 /* An error */
4067                                 return e;
4068                         }
4069                         /* otherwise we 'continue' below */
4070                 }
4071                 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
4072                 if (e != JIM_OK) {
4073                         Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
4074                         return e;
4075                 }
4076                 switch (n->value) {
4077                 case TCFG_TYPE:
4078                         /* not setable */
4079                         if (goi->isconfigure) {
4080                                 Jim_SetResultFormatted(goi->interp,
4081                                                 "not settable: %s", n->name);
4082                                 return JIM_ERR;
4083                         } else {
4084 no_params:
4085                                 if (goi->argc != 0) {
4086                                         Jim_WrongNumArgs(goi->interp,
4087                                                         goi->argc, goi->argv,
4088                                                         "NO PARAMS");
4089                                         return JIM_ERR;
4090                                 }
4091                         }
4092                         Jim_SetResultString(goi->interp,
4093                                         target_type_name(target), -1);
4094                         /* loop for more */
4095                         break;
4096                 case TCFG_EVENT:
4097                         if (goi->argc == 0) {
4098                                 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
4099                                 return JIM_ERR;
4100                         }
4101
4102                         e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
4103                         if (e != JIM_OK) {
4104                                 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
4105                                 return e;
4106                         }
4107
4108                         if (goi->isconfigure) {
4109                                 if (goi->argc != 1) {
4110                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
4111                                         return JIM_ERR;
4112                                 }
4113                         } else {
4114                                 if (goi->argc != 0) {
4115                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
4116                                         return JIM_ERR;
4117                                 }
4118                         }
4119
4120                         {
4121                                 struct target_event_action *teap;
4122
4123                                 teap = target->event_action;
4124                                 /* replace existing? */
4125                                 while (teap) {
4126                                         if (teap->event == (enum target_event)n->value)
4127                                                 break;
4128                                         teap = teap->next;
4129                                 }
4130
4131                                 if (goi->isconfigure) {
4132                                         bool replace = true;
4133                                         if (teap == NULL) {
4134                                                 /* create new */
4135                                                 teap = calloc(1, sizeof(*teap));
4136                                                 replace = false;
4137                                         }
4138                                         teap->event = n->value;
4139                                         teap->interp = goi->interp;
4140                                         Jim_GetOpt_Obj(goi, &o);
4141                                         if (teap->body)
4142                                                 Jim_DecrRefCount(teap->interp, teap->body);
4143                                         teap->body  = Jim_DuplicateObj(goi->interp, o);
4144                                         /*
4145                                          * FIXME:
4146                                          *     Tcl/TK - "tk events" have a nice feature.
4147                                          *     See the "BIND" command.
4148                                          *    We should support that here.
4149                                          *     You can specify %X and %Y in the event code.
4150                                          *     The idea is: %T - target name.
4151                                          *     The idea is: %N - target number
4152                                          *     The idea is: %E - event name.
4153                                          */
4154                                         Jim_IncrRefCount(teap->body);
4155
4156                                         if (!replace) {
4157                                                 /* add to head of event list */
4158                                                 teap->next = target->event_action;
4159                                                 target->event_action = teap;
4160                                         }
4161                                         Jim_SetEmptyResult(goi->interp);
4162                                 } else {
4163                                         /* get */
4164                                         if (teap == NULL)
4165                                                 Jim_SetEmptyResult(goi->interp);
4166                                         else
4167                                                 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
4168                                 }
4169                         }
4170                         /* loop for more */
4171                         break;
4172
4173                 case TCFG_WORK_AREA_VIRT:
4174                         if (goi->isconfigure) {
4175                                 target_free_all_working_areas(target);
4176                                 e = Jim_GetOpt_Wide(goi, &w);
4177                                 if (e != JIM_OK)
4178                                         return e;
4179                                 target->working_area_virt = w;
4180                                 target->working_area_virt_spec = true;
4181                         } else {
4182                                 if (goi->argc != 0)
4183                                         goto no_params;
4184                         }
4185                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
4186                         /* loop for more */
4187                         break;
4188
4189                 case TCFG_WORK_AREA_PHYS:
4190                         if (goi->isconfigure) {
4191                                 target_free_all_working_areas(target);
4192                                 e = Jim_GetOpt_Wide(goi, &w);
4193                                 if (e != JIM_OK)
4194                                         return e;
4195                                 target->working_area_phys = w;
4196                                 target->working_area_phys_spec = true;
4197                         } else {
4198                                 if (goi->argc != 0)
4199                                         goto no_params;
4200                         }
4201                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
4202                         /* loop for more */
4203                         break;
4204
4205                 case TCFG_WORK_AREA_SIZE:
4206                         if (goi->isconfigure) {
4207                                 target_free_all_working_areas(target);
4208                                 e = Jim_GetOpt_Wide(goi, &w);
4209                                 if (e != JIM_OK)
4210                                         return e;
4211                                 target->working_area_size = w;
4212                         } else {
4213                                 if (goi->argc != 0)
4214                                         goto no_params;
4215                         }
4216                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4217                         /* loop for more */
4218                         break;
4219
4220                 case TCFG_WORK_AREA_BACKUP:
4221                         if (goi->isconfigure) {
4222                                 target_free_all_working_areas(target);
4223                                 e = Jim_GetOpt_Wide(goi, &w);
4224                                 if (e != JIM_OK)
4225                                         return e;
4226                                 /* make this exactly 1 or 0 */
4227                                 target->backup_working_area = (!!w);
4228                         } else {
4229                                 if (goi->argc != 0)
4230                                         goto no_params;
4231                         }
4232                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
4233                         /* loop for more e*/
4234                         break;
4235
4236
4237                 case TCFG_ENDIAN:
4238                         if (goi->isconfigure) {
4239                                 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
4240                                 if (e != JIM_OK) {
4241                                         Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
4242                                         return e;
4243                                 }
4244                                 target->endianness = n->value;
4245                         } else {
4246                                 if (goi->argc != 0)
4247                                         goto no_params;
4248                         }
4249                         n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4250                         if (n->name == NULL) {
4251                                 target->endianness = TARGET_LITTLE_ENDIAN;
4252                                 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4253                         }
4254                         Jim_SetResultString(goi->interp, n->name, -1);
4255                         /* loop for more */
4256                         break;
4257
4258                 case TCFG_VARIANT:
4259                         if (goi->isconfigure) {
4260                                 if (goi->argc < 1) {
4261                                         Jim_SetResultFormatted(goi->interp,
4262                                                                                    "%s ?STRING?",
4263                                                                                    n->name);
4264                                         return JIM_ERR;
4265                                 }
4266                                 if (target->variant)
4267                                         free((void *)(target->variant));
4268                                 e = Jim_GetOpt_String(goi, &cp, NULL);
4269                                 if (e != JIM_OK)
4270                                         return e;
4271                                 target->variant = strdup(cp);
4272                         } else {
4273                                 if (goi->argc != 0)
4274                                         goto no_params;
4275                         }
4276                         Jim_SetResultString(goi->interp, target->variant, -1);
4277                         /* loop for more */
4278                         break;
4279
4280                 case TCFG_COREID:
4281                         if (goi->isconfigure) {
4282                                 e = Jim_GetOpt_Wide(goi, &w);
4283                                 if (e != JIM_OK)
4284                                         return e;
4285                                 target->coreid = (int32_t)w;
4286                         } else {
4287                                 if (goi->argc != 0)
4288                                         goto no_params;
4289                         }
4290                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4291                         /* loop for more */
4292                         break;
4293
4294                 case TCFG_CHAIN_POSITION:
4295                         if (goi->isconfigure) {
4296                                 Jim_Obj *o_t;
4297                                 struct jtag_tap *tap;
4298                                 target_free_all_working_areas(target);
4299                                 e = Jim_GetOpt_Obj(goi, &o_t);
4300                                 if (e != JIM_OK)
4301                                         return e;
4302                                 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
4303                                 if (tap == NULL)
4304                                         return JIM_ERR;
4305                                 /* make this exactly 1 or 0 */
4306                                 target->tap = tap;
4307                         } else {
4308                                 if (goi->argc != 0)
4309                                         goto no_params;
4310                         }
4311                         Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
4312                         /* loop for more e*/
4313                         break;
4314                 case TCFG_DBGBASE:
4315                         if (goi->isconfigure) {
4316                                 e = Jim_GetOpt_Wide(goi, &w);
4317                                 if (e != JIM_OK)
4318                                         return e;
4319                                 target->dbgbase = (uint32_t)w;
4320                                 target->dbgbase_set = true;
4321                         } else {
4322                                 if (goi->argc != 0)
4323                                         goto no_params;
4324                         }
4325                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
4326                         /* loop for more */
4327                         break;
4328
4329                 case TCFG_RTOS:
4330                         /* RTOS */
4331                         {
4332                                 int result = rtos_create(goi, target);
4333                                 if (result != JIM_OK)
4334                                         return result;
4335                         }
4336                         /* loop for more */
4337                         break;
4338                 }
4339         } /* while (goi->argc) */
4340
4341
4342                 /* done - we return */
4343         return JIM_OK;
4344 }
4345
4346 static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
4347 {
4348         Jim_GetOptInfo goi;
4349
4350         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4351         goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
4352         int need_args = 1 + goi.isconfigure;
4353         if (goi.argc < need_args) {
4354                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4355                         goi.isconfigure
4356                                 ? "missing: -option VALUE ..."
4357                                 : "missing: -option ...");
4358                 return JIM_ERR;
4359         }
4360         struct target *target = Jim_CmdPrivData(goi.interp);
4361         return target_configure(&goi, target);
4362 }
4363
4364 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4365 {
4366         const char *cmd_name = Jim_GetString(argv[0], NULL);
4367
4368         Jim_GetOptInfo goi;
4369         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4370
4371         if (goi.argc < 2 || goi.argc > 4) {
4372                 Jim_SetResultFormatted(goi.interp,
4373                                 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
4374                 return JIM_ERR;
4375         }
4376
4377         target_write_fn fn;
4378         fn = target_write_memory_fast;
4379
4380         int e;
4381         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4382                 /* consume it */
4383                 struct Jim_Obj *obj;
4384                 e = Jim_GetOpt_Obj(&goi, &obj);
4385                 if (e != JIM_OK)
4386                         return e;
4387
4388                 fn = target_write_phys_memory;
4389         }
4390
4391         jim_wide a;
4392         e = Jim_GetOpt_Wide(&goi, &a);
4393         if (e != JIM_OK)
4394                 return e;
4395
4396         jim_wide b;
4397         e = Jim_GetOpt_Wide(&goi, &b);
4398         if (e != JIM_OK)
4399                 return e;
4400
4401         jim_wide c = 1;
4402         if (goi.argc == 1) {
4403                 e = Jim_GetOpt_Wide(&goi, &c);
4404                 if (e != JIM_OK)
4405                         return e;
4406         }
4407
4408         /* all args must be consumed */
4409         if (goi.argc != 0)
4410                 return JIM_ERR;
4411
4412         struct target *target = Jim_CmdPrivData(goi.interp);
4413         unsigned data_size;
4414         if (strcasecmp(cmd_name, "mww") == 0)
4415                 data_size = 4;
4416         else if (strcasecmp(cmd_name, "mwh") == 0)
4417                 data_size = 2;
4418         else if (strcasecmp(cmd_name, "mwb") == 0)
4419                 data_size = 1;
4420         else {
4421                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4422                 return JIM_ERR;
4423         }
4424
4425         return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4426 }
4427
4428 /**
4429 *  @brief Reads an array of words/halfwords/bytes from target memory starting at specified address.
4430 *
4431 *  Usage: mdw [phys] <address> [<count>] - for 32 bit reads
4432 *         mdh [phys] <address> [<count>] - for 16 bit reads
4433 *         mdb [phys] <address> [<count>] - for  8 bit reads
4434 *
4435 *  Count defaults to 1.
4436 *
4437 *  Calls target_read_memory or target_read_phys_memory depending on
4438 *  the presence of the "phys" argument
4439 *  Reads the target memory in blocks of max. 32 bytes, and returns an array of ints formatted
4440 *  to int representation in base16.
4441 *  Also outputs read data in a human readable form using command_print
4442 *
4443 *  @param phys if present target_read_phys_memory will be used instead of target_read_memory
4444 *  @param address address where to start the read. May be specified in decimal or hex using the standard "0x" prefix
4445 *  @param count optional count parameter to read an array of values. If not specified, defaults to 1.
4446 *  @returns:  JIM_ERR on error or JIM_OK on success and sets the result string to an array of ascii formatted numbers
4447 *  on success, with [<count>] number of elements.
4448 *
4449 *  In case of little endian target:
4450 *      Example1: "mdw 0x00000000"  returns "10123456"
4451 *      Exmaple2: "mdh 0x00000000 1" returns "3456"
4452 *      Example3: "mdb 0x00000000" returns "56"
4453 *      Example4: "mdh 0x00000000 2" returns "3456 1012"
4454 *      Example5: "mdb 0x00000000 3" returns "56 34 12"
4455 **/
4456 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4457 {
4458         const char *cmd_name = Jim_GetString(argv[0], NULL);
4459
4460         Jim_GetOptInfo goi;
4461         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4462
4463         if ((goi.argc < 1) || (goi.argc > 3)) {
4464                 Jim_SetResultFormatted(goi.interp,
4465                                 "usage: %s [phys] <address> [<count>]", cmd_name);
4466                 return JIM_ERR;
4467         }
4468
4469         int (*fn)(struct target *target,
4470                         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
4471         fn = target_read_memory;
4472
4473         int e;
4474         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4475                 /* consume it */
4476                 struct Jim_Obj *obj;
4477                 e = Jim_GetOpt_Obj(&goi, &obj);
4478                 if (e != JIM_OK)
4479                         return e;
4480
4481                 fn = target_read_phys_memory;
4482         }
4483
4484         /* Read address parameter */
4485         jim_wide addr;
4486         e = Jim_GetOpt_Wide(&goi, &addr);
4487         if (e != JIM_OK)
4488                 return JIM_ERR;
4489
4490         /* If next parameter exists, read it out as the count parameter, if not, set it to 1 (default) */
4491         jim_wide count;
4492         if (goi.argc == 1) {
4493                 e = Jim_GetOpt_Wide(&goi, &count);
4494                 if (e != JIM_OK)
4495                         return JIM_ERR;
4496         } else
4497                 count = 1;
4498
4499         /* all args must be consumed */
4500         if (goi.argc != 0)
4501                 return JIM_ERR;
4502
4503         jim_wide dwidth = 1; /* shut up gcc */
4504         if (strcasecmp(cmd_name, "mdw") == 0)
4505                 dwidth = 4;
4506         else if (strcasecmp(cmd_name, "mdh") == 0)
4507                 dwidth = 2;
4508         else if (strcasecmp(cmd_name, "mdb") == 0)
4509                 dwidth = 1;
4510         else {
4511                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4512                 return JIM_ERR;
4513         }
4514
4515         /* convert count to "bytes" */
4516         int bytes = count * dwidth;
4517
4518         struct target *target = Jim_CmdPrivData(goi.interp);
4519         uint8_t  target_buf[32];
4520         jim_wide x, y, z;
4521         while (bytes > 0) {
4522                 y = (bytes < 16) ? bytes : 16; /* y = min(bytes, 16); */
4523
4524                 /* Try to read out next block */
4525                 e = fn(target, addr, dwidth, y / dwidth, target_buf);
4526
4527                 if (e != ERROR_OK) {
4528                         Jim_SetResultFormatted(interp, "error reading target @ 0x%08lx", (long)addr);
4529                         return JIM_ERR;
4530                 }
4531
4532                 command_print_sameline(NULL, "0x%08x ", (int)(addr));
4533                 switch (dwidth) {
4534                 case 4:
4535                         for (x = 0; x < 16 && x < y; x += 4) {
4536                                 z = target_buffer_get_u32(target, &(target_buf[x]));
4537                                 command_print_sameline(NULL, "%08x ", (int)(z));
4538                         }
4539                         for (; (x < 16) ; x += 4)
4540                                 command_print_sameline(NULL, "         ");
4541                         break;
4542                 case 2:
4543                         for (x = 0; x < 16 && x < y; x += 2) {
4544                                 z = target_buffer_get_u16(target, &(target_buf[x]));
4545                                 command_print_sameline(NULL, "%04x ", (int)(z));
4546                         }
4547                         for (; (x < 16) ; x += 2)
4548                                 command_print_sameline(NULL, "     ");
4549                         break;
4550                 case 1:
4551                 default:
4552                         for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4553                                 z = target_buffer_get_u8(target, &(target_buf[x]));
4554                                 command_print_sameline(NULL, "%02x ", (int)(z));
4555                         }
4556                         for (; (x < 16) ; x += 1)
4557                                 command_print_sameline(NULL, "   ");
4558                         break;
4559                 }
4560                 /* ascii-ify the bytes */
4561                 for (x = 0 ; x < y ; x++) {
4562                         if ((target_buf[x] >= 0x20) &&
4563                                 (target_buf[x] <= 0x7e)) {
4564                                 /* good */
4565                         } else {
4566                                 /* smack it */
4567                                 target_buf[x] = '.';
4568                         }
4569                 }
4570                 /* space pad  */
4571                 while (x < 16) {
4572                         target_buf[x] = ' ';
4573                         x++;
4574                 }
4575                 /* terminate */
4576                 target_buf[16] = 0;
4577                 /* print - with a newline */
4578                 command_print_sameline(NULL, "%s\n", target_buf);
4579                 /* NEXT... */
4580                 bytes -= 16;
4581                 addr += 16;
4582         }
4583         return JIM_OK;
4584 }
4585
4586 static int jim_target_mem2array(Jim_Interp *interp,
4587                 int argc, Jim_Obj *const *argv)
4588 {
4589         struct target *target = Jim_CmdPrivData(interp);
4590         return target_mem2array(interp, target, argc - 1, argv + 1);
4591 }
4592
4593 static int jim_target_array2mem(Jim_Interp *interp,
4594                 int argc, Jim_Obj *const *argv)
4595 {
4596         struct target *target = Jim_CmdPrivData(interp);
4597         return target_array2mem(interp, target, argc - 1, argv + 1);
4598 }
4599
4600 static int jim_target_tap_disabled(Jim_Interp *interp)
4601 {
4602         Jim_SetResultFormatted(interp, "[TAP is disabled]");
4603         return JIM_ERR;
4604 }
4605
4606 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4607 {
4608         if (argc != 1) {
4609                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4610                 return JIM_ERR;
4611         }
4612         struct target *target = Jim_CmdPrivData(interp);
4613         if (!target->tap->enabled)
4614                 return jim_target_tap_disabled(interp);
4615
4616         int e = target->type->examine(target);
4617         if (e != ERROR_OK)
4618                 return JIM_ERR;
4619         return JIM_OK;
4620 }
4621
4622 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4623 {
4624         if (argc != 1) {
4625                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4626                 return JIM_ERR;
4627         }
4628         struct target *target = Jim_CmdPrivData(interp);
4629
4630         if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
4631                 return JIM_ERR;
4632
4633         return JIM_OK;
4634 }
4635
4636 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4637 {
4638         if (argc != 1) {
4639                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4640                 return JIM_ERR;
4641         }
4642         struct target *target = Jim_CmdPrivData(interp);
4643         if (!target->tap->enabled)
4644                 return jim_target_tap_disabled(interp);
4645
4646         int e;
4647         if (!(target_was_examined(target)))
4648                 e = ERROR_TARGET_NOT_EXAMINED;
4649         else
4650                 e = target->type->poll(target);
4651         if (e != ERROR_OK)
4652                 return JIM_ERR;
4653         return JIM_OK;
4654 }
4655
4656 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4657 {
4658         Jim_GetOptInfo goi;
4659         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4660
4661         if (goi.argc != 2) {
4662                 Jim_WrongNumArgs(interp, 0, argv,
4663                                 "([tT]|[fF]|assert|deassert) BOOL");
4664                 return JIM_ERR;
4665         }
4666
4667         Jim_Nvp *n;
4668         int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4669         if (e != JIM_OK) {
4670                 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4671                 return e;
4672         }
4673         /* the halt or not param */
4674         jim_wide a;
4675         e = Jim_GetOpt_Wide(&goi, &a);
4676         if (e != JIM_OK)
4677                 return e;
4678
4679         struct target *target = Jim_CmdPrivData(goi.interp);
4680         if (!target->tap->enabled)
4681                 return jim_target_tap_disabled(interp);
4682         if (!(target_was_examined(target))) {
4683                 LOG_ERROR("Target not examined yet");
4684                 return ERROR_TARGET_NOT_EXAMINED;
4685         }
4686         if (!target->type->assert_reset || !target->type->deassert_reset) {
4687                 Jim_SetResultFormatted(interp,
4688                                 "No target-specific reset for %s",
4689                                 target_name(target));
4690                 return JIM_ERR;
4691         }
4692         /* determine if we should halt or not. */
4693         target->reset_halt = !!a;
4694         /* When this happens - all workareas are invalid. */
4695         target_free_all_working_areas_restore(target, 0);
4696
4697         /* do the assert */
4698         if (n->value == NVP_ASSERT)
4699                 e = target->type->assert_reset(target);
4700         else
4701                 e = target->type->deassert_reset(target);
4702         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4703 }
4704
4705 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4706 {
4707         if (argc != 1) {
4708                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4709                 return JIM_ERR;
4710         }
4711         struct target *target = Jim_CmdPrivData(interp);
4712         if (!target->tap->enabled)
4713                 return jim_target_tap_disabled(interp);
4714         int e = target->type->halt(target);
4715         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4716 }
4717
4718 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4719 {
4720         Jim_GetOptInfo goi;
4721         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4722
4723         /* params:  <name>  statename timeoutmsecs */
4724         if (goi.argc != 2) {
4725                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4726                 Jim_SetResultFormatted(goi.interp,
4727                                 "%s <state_name> <timeout_in_msec>", cmd_name);
4728                 return JIM_ERR;
4729         }
4730
4731         Jim_Nvp *n;
4732         int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4733         if (e != JIM_OK) {
4734                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state, 1);
4735                 return e;
4736         }
4737         jim_wide a;
4738         e = Jim_GetOpt_Wide(&goi, &a);
4739         if (e != JIM_OK)
4740                 return e;
4741         struct target *target = Jim_CmdPrivData(interp);
4742         if (!target->tap->enabled)
4743                 return jim_target_tap_disabled(interp);
4744
4745         e = target_wait_state(target, n->value, a);
4746         if (e != ERROR_OK) {
4747                 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
4748                 Jim_SetResultFormatted(goi.interp,
4749                                 "target: %s wait %s fails (%#s) %s",
4750                                 target_name(target), n->name,
4751                                 eObj, target_strerror_safe(e));
4752                 Jim_FreeNewObj(interp, eObj);
4753                 return JIM_ERR;
4754         }
4755         return JIM_OK;
4756 }
4757 /* List for human, Events defined for this target.
4758  * scripts/programs should use 'name cget -event NAME'
4759  */
4760 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4761 {
4762         struct command_context *cmd_ctx = current_command_context(interp);
4763         assert(cmd_ctx != NULL);
4764
4765         struct target *target = Jim_CmdPrivData(interp);
4766         struct target_event_action *teap = target->event_action;
4767         command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4768                                    target->target_number,
4769                                    target_name(target));
4770         command_print(cmd_ctx, "%-25s | Body", "Event");
4771         command_print(cmd_ctx, "------------------------- | "
4772                         "----------------------------------------");
4773         while (teap) {
4774                 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
4775                 command_print(cmd_ctx, "%-25s | %s",
4776                                 opt->name, Jim_GetString(teap->body, NULL));
4777                 teap = teap->next;
4778         }
4779         command_print(cmd_ctx, "***END***");
4780         return JIM_OK;
4781 }
4782 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4783 {
4784         if (argc != 1) {
4785                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4786                 return JIM_ERR;
4787         }
4788         struct target *target = Jim_CmdPrivData(interp);
4789         Jim_SetResultString(interp, target_state_name(target), -1);
4790         return JIM_OK;
4791 }
4792 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4793 {
4794         Jim_GetOptInfo goi;
4795         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4796         if (goi.argc != 1) {
4797                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4798                 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
4799                 return JIM_ERR;
4800         }
4801         Jim_Nvp *n;
4802         int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4803         if (e != JIM_OK) {
4804                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4805                 return e;
4806         }
4807         struct target *target = Jim_CmdPrivData(interp);
4808         target_handle_event(target, n->value);
4809         return JIM_OK;
4810 }
4811
4812 static const struct command_registration target_instance_command_handlers[] = {
4813         {
4814                 .name = "configure",
4815                 .mode = COMMAND_CONFIG,
4816                 .jim_handler = jim_target_configure,
4817                 .help  = "configure a new target for use",
4818                 .usage = "[target_attribute ...]",
4819         },
4820         {
4821                 .name = "cget",
4822                 .mode = COMMAND_ANY,
4823                 .jim_handler = jim_target_configure,
4824                 .help  = "returns the specified target attribute",
4825                 .usage = "target_attribute",
4826         },
4827         {
4828                 .name = "mww",
4829                 .mode = COMMAND_EXEC,
4830                 .jim_handler = jim_target_mw,
4831                 .help = "Write 32-bit word(s) to target memory",
4832                 .usage = "address data [count]",
4833         },
4834         {
4835                 .name = "mwh",
4836                 .mode = COMMAND_EXEC,
4837                 .jim_handler = jim_target_mw,
4838                 .help = "Write 16-bit half-word(s) to target memory",
4839                 .usage = "address data [count]",
4840         },
4841         {
4842                 .name = "mwb",
4843                 .mode = COMMAND_EXEC,
4844                 .jim_handler = jim_target_mw,
4845                 .help = "Write byte(s) to target memory",
4846                 .usage = "address data [count]",
4847         },
4848         {
4849                 .name = "mdw",
4850                 .mode = COMMAND_EXEC,
4851                 .jim_handler = jim_target_md,
4852                 .help = "Display target memory as 32-bit words",
4853                 .usage = "address [count]",
4854         },
4855         {
4856                 .name = "mdh",
4857                 .mode = COMMAND_EXEC,
4858                 .jim_handler = jim_target_md,
4859                 .help = "Display target memory as 16-bit half-words",
4860                 .usage = "address [count]",
4861         },
4862         {
4863                 .name = "mdb",
4864                 .mode = COMMAND_EXEC,
4865                 .jim_handler = jim_target_md,
4866                 .help = "Display target memory as 8-bit bytes",
4867                 .usage = "address [count]",
4868         },
4869         {
4870                 .name = "array2mem",
4871                 .mode = COMMAND_EXEC,
4872                 .jim_handler = jim_target_array2mem,
4873                 .help = "Writes Tcl array of 8/16/32 bit numbers "
4874                         "to target memory",
4875                 .usage = "arrayname bitwidth address count",
4876         },
4877         {
4878                 .name = "mem2array",
4879                 .mode = COMMAND_EXEC,
4880                 .jim_handler = jim_target_mem2array,
4881                 .help = "Loads Tcl array of 8/16/32 bit numbers "
4882                         "from target memory",
4883                 .usage = "arrayname bitwidth address count",
4884         },
4885         {
4886                 .name = "eventlist",
4887                 .mode = COMMAND_EXEC,
4888                 .jim_handler = jim_target_event_list,
4889                 .help = "displays a table of events defined for this target",
4890         },
4891         {
4892                 .name = "curstate",
4893                 .mode = COMMAND_EXEC,
4894                 .jim_handler = jim_target_current_state,
4895                 .help = "displays the current state of this target",
4896         },
4897         {
4898                 .name = "arp_examine",
4899                 .mode = COMMAND_EXEC,
4900                 .jim_handler = jim_target_examine,
4901                 .help = "used internally for reset processing",
4902         },
4903         {
4904                 .name = "arp_halt_gdb",
4905                 .mode = COMMAND_EXEC,
4906                 .jim_handler = jim_target_halt_gdb,
4907                 .help = "used internally for reset processing to halt GDB",
4908         },
4909         {
4910                 .name = "arp_poll",
4911                 .mode = COMMAND_EXEC,
4912                 .jim_handler = jim_target_poll,
4913                 .help = "used internally for reset processing",
4914         },
4915         {
4916                 .name = "arp_reset",
4917                 .mode = COMMAND_EXEC,
4918                 .jim_handler = jim_target_reset,
4919                 .help = "used internally for reset processing",
4920         },
4921         {
4922                 .name = "arp_halt",
4923                 .mode = COMMAND_EXEC,
4924                 .jim_handler = jim_target_halt,
4925                 .help = "used internally for reset processing",
4926         },
4927         {
4928                 .name = "arp_waitstate",
4929                 .mode = COMMAND_EXEC,
4930                 .jim_handler = jim_target_wait_state,
4931                 .help = "used internally for reset processing",
4932         },
4933         {
4934                 .name = "invoke-event",
4935                 .mode = COMMAND_EXEC,
4936                 .jim_handler = jim_target_invoke_event,
4937                 .help = "invoke handler for specified event",
4938                 .usage = "event_name",
4939         },
4940         COMMAND_REGISTRATION_DONE
4941 };
4942
4943 static int target_create(Jim_GetOptInfo *goi)
4944 {
4945         Jim_Obj *new_cmd;
4946         Jim_Cmd *cmd;
4947         const char *cp;
4948         char *cp2;
4949         int e;
4950         int x;
4951         struct target *target;
4952         struct command_context *cmd_ctx;
4953
4954         cmd_ctx = current_command_context(goi->interp);
4955         assert(cmd_ctx != NULL);
4956
4957         if (goi->argc < 3) {
4958                 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
4959                 return JIM_ERR;
4960         }
4961
4962         /* COMMAND */
4963         Jim_GetOpt_Obj(goi, &new_cmd);
4964         /* does this command exist? */
4965         cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
4966         if (cmd) {
4967                 cp = Jim_GetString(new_cmd, NULL);
4968                 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
4969                 return JIM_ERR;
4970         }
4971
4972         /* TYPE */
4973         e = Jim_GetOpt_String(goi, &cp2, NULL);
4974         if (e != JIM_OK)
4975                 return e;
4976         cp = cp2;
4977         /* now does target type exist */
4978         for (x = 0 ; target_types[x] ; x++) {
4979                 if (0 == strcmp(cp, target_types[x]->name)) {
4980                         /* found */
4981                         break;
4982                 }
4983
4984                 /* check for deprecated name */
4985                 if (target_types[x]->deprecated_name) {
4986                         if (0 == strcmp(cp, target_types[x]->deprecated_name)) {
4987                                 /* found */
4988                                 LOG_WARNING("target name is deprecated use: \'%s\'", target_types[x]->name);
4989                                 break;
4990                         }
4991                 }
4992         }
4993         if (target_types[x] == NULL) {
4994                 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
4995                 for (x = 0 ; target_types[x] ; x++) {
4996                         if (target_types[x + 1]) {
4997                                 Jim_AppendStrings(goi->interp,
4998                                                                    Jim_GetResult(goi->interp),
4999                                                                    target_types[x]->name,
5000                                                                    ", ", NULL);
5001                         } else {
5002                                 Jim_AppendStrings(goi->interp,
5003                                                                    Jim_GetResult(goi->interp),
5004                                                                    " or ",
5005                                                                    target_types[x]->name, NULL);
5006                         }
5007                 }
5008                 return JIM_ERR;
5009         }
5010
5011         /* Create it */
5012         target = calloc(1, sizeof(struct target));
5013         /* set target number */
5014         target->target_number = new_target_number();
5015
5016         /* allocate memory for each unique target type */
5017         target->type = (struct target_type *)calloc(1, sizeof(struct target_type));
5018
5019         memcpy(target->type, target_types[x], sizeof(struct target_type));
5020
5021         /* will be set by "-endian" */
5022         target->endianness = TARGET_ENDIAN_UNKNOWN;
5023
5024         /* default to first core, override with -coreid */
5025         target->coreid = 0;
5026
5027         target->working_area        = 0x0;
5028         target->working_area_size   = 0x0;
5029         target->working_areas       = NULL;
5030         target->backup_working_area = 0;
5031
5032         target->state               = TARGET_UNKNOWN;
5033         target->debug_reason        = DBG_REASON_UNDEFINED;
5034         target->reg_cache           = NULL;
5035         target->breakpoints         = NULL;
5036         target->watchpoints         = NULL;
5037         target->next                = NULL;
5038         target->arch_info           = NULL;
5039
5040         target->display             = 1;
5041
5042         target->halt_issued                     = false;
5043
5044         /* initialize trace information */
5045         target->trace_info = malloc(sizeof(struct trace));
5046         target->trace_info->num_trace_points         = 0;
5047         target->trace_info->trace_points_size        = 0;
5048         target->trace_info->trace_points             = NULL;
5049         target->trace_info->trace_history_size       = 0;
5050         target->trace_info->trace_history            = NULL;
5051         target->trace_info->trace_history_pos        = 0;
5052         target->trace_info->trace_history_overflowed = 0;
5053
5054         target->dbgmsg          = NULL;
5055         target->dbg_msg_enabled = 0;
5056
5057         target->endianness = TARGET_ENDIAN_UNKNOWN;
5058
5059         target->rtos = NULL;
5060         target->rtos_auto_detect = false;
5061
5062         /* Do the rest as "configure" options */
5063         goi->isconfigure = 1;
5064         e = target_configure(goi, target);
5065
5066         if (target->tap == NULL) {
5067                 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
5068                 e = JIM_ERR;
5069         }
5070
5071         if (e != JIM_OK) {
5072                 free(target->type);
5073                 free(target);
5074                 return e;
5075         }
5076
5077         if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
5078                 /* default endian to little if not specified */
5079                 target->endianness = TARGET_LITTLE_ENDIAN;
5080         }
5081
5082         /* incase variant is not set */
5083         if (!target->variant)
5084                 target->variant = strdup("");
5085
5086         cp = Jim_GetString(new_cmd, NULL);
5087         target->cmd_name = strdup(cp);
5088
5089         /* create the target specific commands */
5090         if (target->type->commands) {
5091                 e = register_commands(cmd_ctx, NULL, target->type->commands);
5092                 if (ERROR_OK != e)
5093                         LOG_ERROR("unable to register '%s' commands", cp);
5094         }
5095         if (target->type->target_create)
5096                 (*(target->type->target_create))(target, goi->interp);
5097
5098         /* append to end of list */
5099         {
5100                 struct target **tpp;
5101                 tpp = &(all_targets);
5102                 while (*tpp)
5103                         tpp = &((*tpp)->next);
5104                 *tpp = target;
5105         }
5106
5107         /* now - create the new target name command */
5108         const struct command_registration target_subcommands[] = {
5109                 {
5110                         .chain = target_instance_command_handlers,
5111                 },
5112                 {
5113                         .chain = target->type->commands,
5114                 },
5115                 COMMAND_REGISTRATION_DONE
5116         };
5117         const struct command_registration target_commands[] = {
5118                 {
5119                         .name = cp,
5120                         .mode = COMMAND_ANY,
5121                         .help = "target command group",
5122                         .usage = "",
5123                         .chain = target_subcommands,
5124                 },
5125                 COMMAND_REGISTRATION_DONE
5126         };
5127         e = register_commands(cmd_ctx, NULL, target_commands);
5128         if (ERROR_OK != e)
5129                 return JIM_ERR;
5130
5131         struct command *c = command_find_in_context(cmd_ctx, cp);
5132         assert(c);
5133         command_set_handler_data(c, target);
5134
5135         return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
5136 }
5137
5138 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5139 {
5140         if (argc != 1) {
5141                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5142                 return JIM_ERR;
5143         }
5144         struct command_context *cmd_ctx = current_command_context(interp);
5145         assert(cmd_ctx != NULL);
5146
5147         Jim_SetResultString(interp, target_name(get_current_target(cmd_ctx)), -1);
5148         return JIM_OK;
5149 }
5150
5151 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5152 {
5153         if (argc != 1) {
5154                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5155                 return JIM_ERR;
5156         }
5157         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5158         for (unsigned x = 0; NULL != target_types[x]; x++) {
5159                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5160                         Jim_NewStringObj(interp, target_types[x]->name, -1));
5161         }
5162         return JIM_OK;
5163 }
5164
5165 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5166 {
5167         if (argc != 1) {
5168                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5169                 return JIM_ERR;
5170         }
5171         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5172         struct target *target = all_targets;
5173         while (target) {
5174                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5175                         Jim_NewStringObj(interp, target_name(target), -1));
5176                 target = target->next;
5177         }
5178         return JIM_OK;
5179 }
5180
5181 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5182 {
5183         int i;
5184         const char *targetname;
5185         int retval, len;
5186         struct target *target = (struct target *) NULL;
5187         struct target_list *head, *curr, *new;
5188         curr = (struct target_list *) NULL;
5189         head = (struct target_list *) NULL;
5190
5191         retval = 0;
5192         LOG_DEBUG("%d", argc);
5193         /* argv[1] = target to associate in smp
5194          * argv[2] = target to assoicate in smp
5195          * argv[3] ...
5196          */
5197
5198         for (i = 1; i < argc; i++) {
5199
5200                 targetname = Jim_GetString(argv[i], &len);
5201                 target = get_target(targetname);
5202                 LOG_DEBUG("%s ", targetname);
5203                 if (target) {
5204                         new = malloc(sizeof(struct target_list));
5205                         new->target = target;
5206                         new->next = (struct target_list *)NULL;
5207                         if (head == (struct target_list *)NULL) {
5208                                 head = new;
5209                                 curr = head;
5210                         } else {
5211                                 curr->next = new;
5212                                 curr = new;
5213                         }
5214                 }
5215         }
5216         /*  now parse the list of cpu and put the target in smp mode*/
5217         curr = head;
5218
5219         while (curr != (struct target_list *)NULL) {
5220                 target = curr->target;
5221                 target->smp = 1;
5222                 target->head = head;
5223                 curr = curr->next;
5224         }
5225
5226         if (target && target->rtos)
5227                 retval = rtos_smp_init(head->target);
5228
5229         return retval;
5230 }
5231
5232
5233 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5234 {
5235         Jim_GetOptInfo goi;
5236         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5237         if (goi.argc < 3) {
5238                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5239                         "<name> <target_type> [<target_options> ...]");
5240                 return JIM_ERR;
5241         }
5242         return target_create(&goi);
5243 }
5244
5245 static int jim_target_number(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5246 {
5247         Jim_GetOptInfo goi;
5248         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5249
5250         /* It's OK to remove this mechanism sometime after August 2010 or so */
5251         LOG_WARNING("don't use numbers as target identifiers; use names");
5252         if (goi.argc != 1) {
5253                 Jim_SetResultFormatted(goi.interp, "usage: target number <number>");
5254                 return JIM_ERR;
5255         }
5256         jim_wide w;
5257         int e = Jim_GetOpt_Wide(&goi, &w);
5258         if (e != JIM_OK)
5259                 return JIM_ERR;
5260
5261         struct target *target;
5262         for (target = all_targets; NULL != target; target = target->next) {
5263                 if (target->target_number != w)
5264                         continue;
5265
5266                 Jim_SetResultString(goi.interp, target_name(target), -1);
5267                 return JIM_OK;
5268         }
5269         {
5270                 Jim_Obj *wObj = Jim_NewIntObj(goi.interp, w);
5271                 Jim_SetResultFormatted(goi.interp,
5272                         "Target: number %#s does not exist", wObj);
5273                 Jim_FreeNewObj(interp, wObj);
5274         }
5275         return JIM_ERR;
5276 }
5277
5278 static int jim_target_count(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5279 {
5280         if (argc != 1) {
5281                 Jim_WrongNumArgs(interp, 1, argv, "<no parameters>");
5282                 return JIM_ERR;
5283         }
5284         unsigned count = 0;
5285         struct target *target = all_targets;
5286         while (NULL != target) {
5287                 target = target->next;
5288                 count++;
5289         }
5290         Jim_SetResult(interp, Jim_NewIntObj(interp, count));
5291         return JIM_OK;
5292 }
5293
5294 static const struct command_registration target_subcommand_handlers[] = {
5295         {
5296                 .name = "init",
5297                 .mode = COMMAND_CONFIG,
5298                 .handler = handle_target_init_command,
5299                 .help = "initialize targets",
5300         },
5301         {
5302                 .name = "create",
5303                 /* REVISIT this should be COMMAND_CONFIG ... */
5304                 .mode = COMMAND_ANY,
5305                 .jim_handler = jim_target_create,
5306                 .usage = "name type '-chain-position' name [options ...]",
5307                 .help = "Creates and selects a new target",
5308         },
5309         {
5310                 .name = "current",
5311                 .mode = COMMAND_ANY,
5312                 .jim_handler = jim_target_current,
5313                 .help = "Returns the currently selected target",
5314         },
5315         {
5316                 .name = "types",
5317                 .mode = COMMAND_ANY,
5318                 .jim_handler = jim_target_types,
5319                 .help = "Returns the available target types as "
5320                                 "a list of strings",
5321         },
5322         {
5323                 .name = "names",
5324                 .mode = COMMAND_ANY,
5325                 .jim_handler = jim_target_names,
5326                 .help = "Returns the names of all targets as a list of strings",
5327         },
5328         {
5329                 .name = "number",
5330                 .mode = COMMAND_ANY,
5331                 .jim_handler = jim_target_number,
5332                 .usage = "number",
5333                 .help = "Returns the name of the numbered target "
5334                         "(DEPRECATED)",
5335         },
5336         {
5337                 .name = "count",
5338                 .mode = COMMAND_ANY,
5339                 .jim_handler = jim_target_count,
5340                 .help = "Returns the number of targets as an integer "
5341                         "(DEPRECATED)",
5342         },
5343         {
5344                 .name = "smp",
5345                 .mode = COMMAND_ANY,
5346                 .jim_handler = jim_target_smp,
5347                 .usage = "targetname1 targetname2 ...",
5348                 .help = "gather several target in a smp list"
5349         },
5350
5351         COMMAND_REGISTRATION_DONE
5352 };
5353
5354 struct FastLoad {
5355         uint32_t address;
5356         uint8_t *data;
5357         int length;
5358
5359 };
5360
5361 static int fastload_num;
5362 static struct FastLoad *fastload;
5363
5364 static void free_fastload(void)
5365 {
5366         if (fastload != NULL) {
5367                 int i;
5368                 for (i = 0; i < fastload_num; i++) {
5369                         if (fastload[i].data)
5370                                 free(fastload[i].data);
5371                 }
5372                 free(fastload);
5373                 fastload = NULL;
5374         }
5375 }
5376
5377 COMMAND_HANDLER(handle_fast_load_image_command)
5378 {
5379         uint8_t *buffer;
5380         size_t buf_cnt;
5381         uint32_t image_size;
5382         uint32_t min_address = 0;
5383         uint32_t max_address = 0xffffffff;
5384         int i;
5385
5386         struct image image;
5387
5388         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
5389                         &image, &min_address, &max_address);
5390         if (ERROR_OK != retval)
5391                 return retval;
5392
5393         struct duration bench;
5394         duration_start(&bench);
5395
5396         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
5397         if (retval != ERROR_OK)
5398                 return retval;
5399
5400         image_size = 0x0;
5401         retval = ERROR_OK;
5402         fastload_num = image.num_sections;
5403         fastload = (struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
5404         if (fastload == NULL) {
5405                 command_print(CMD_CTX, "out of memory");
5406                 image_close(&image);
5407                 return ERROR_FAIL;
5408         }
5409         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
5410         for (i = 0; i < image.num_sections; i++) {
5411                 buffer = malloc(image.sections[i].size);
5412                 if (buffer == NULL) {
5413                         command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5414                                                   (int)(image.sections[i].size));
5415                         retval = ERROR_FAIL;
5416                         break;
5417                 }
5418
5419                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
5420                 if (retval != ERROR_OK) {
5421                         free(buffer);
5422                         break;
5423                 }
5424
5425                 uint32_t offset = 0;
5426                 uint32_t length = buf_cnt;
5427
5428                 /* DANGER!!! beware of unsigned comparision here!!! */
5429
5430                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
5431                                 (image.sections[i].base_address < max_address)) {
5432                         if (image.sections[i].base_address < min_address) {
5433                                 /* clip addresses below */
5434                                 offset += min_address-image.sections[i].base_address;
5435                                 length -= offset;
5436                         }
5437
5438                         if (image.sections[i].base_address + buf_cnt > max_address)
5439                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5440
5441                         fastload[i].address = image.sections[i].base_address + offset;
5442                         fastload[i].data = malloc(length);
5443                         if (fastload[i].data == NULL) {
5444                                 free(buffer);
5445                                 command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5446                                                           length);
5447                                 retval = ERROR_FAIL;
5448                                 break;
5449                         }
5450                         memcpy(fastload[i].data, buffer + offset, length);
5451                         fastload[i].length = length;
5452
5453                         image_size += length;
5454                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
5455                                                   (unsigned int)length,
5456                                                   ((unsigned int)(image.sections[i].base_address + offset)));
5457                 }
5458
5459                 free(buffer);
5460         }
5461
5462         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
5463                 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
5464                                 "in %fs (%0.3f KiB/s)", image_size,
5465                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5466
5467                 command_print(CMD_CTX,
5468                                 "WARNING: image has not been loaded to target!"
5469                                 "You can issue a 'fast_load' to finish loading.");
5470         }
5471
5472         image_close(&image);
5473
5474         if (retval != ERROR_OK)
5475                 free_fastload();
5476
5477         return retval;
5478 }
5479
5480 COMMAND_HANDLER(handle_fast_load_command)
5481 {
5482         if (CMD_ARGC > 0)
5483                 return ERROR_COMMAND_SYNTAX_ERROR;
5484         if (fastload == NULL) {
5485                 LOG_ERROR("No image in memory");
5486                 return ERROR_FAIL;
5487         }
5488         int i;
5489         int ms = timeval_ms();
5490         int size = 0;
5491         int retval = ERROR_OK;
5492         for (i = 0; i < fastload_num; i++) {
5493                 struct target *target = get_current_target(CMD_CTX);
5494                 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
5495                                           (unsigned int)(fastload[i].address),
5496                                           (unsigned int)(fastload[i].length));
5497                 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5498                 if (retval != ERROR_OK)
5499                         break;
5500                 size += fastload[i].length;
5501         }
5502         if (retval == ERROR_OK) {
5503                 int after = timeval_ms();
5504                 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5505         }
5506         return retval;
5507 }
5508
5509 static const struct command_registration target_command_handlers[] = {
5510         {
5511                 .name = "targets",
5512                 .handler = handle_targets_command,
5513                 .mode = COMMAND_ANY,
5514                 .help = "change current default target (one parameter) "
5515                         "or prints table of all targets (no parameters)",
5516                 .usage = "[target]",
5517         },
5518         {
5519                 .name = "target",
5520                 .mode = COMMAND_CONFIG,
5521                 .help = "configure target",
5522
5523                 .chain = target_subcommand_handlers,
5524         },
5525         COMMAND_REGISTRATION_DONE
5526 };
5527
5528 int target_register_commands(struct command_context *cmd_ctx)
5529 {
5530         return register_commands(cmd_ctx, NULL, target_command_handlers);
5531 }
5532
5533 static bool target_reset_nag = true;
5534
5535 bool get_target_reset_nag(void)
5536 {
5537         return target_reset_nag;
5538 }
5539
5540 COMMAND_HANDLER(handle_target_reset_nag)
5541 {
5542         return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5543                         &target_reset_nag, "Nag after each reset about options to improve "
5544                         "performance");
5545 }
5546
5547 COMMAND_HANDLER(handle_ps_command)
5548 {
5549         struct target *target = get_current_target(CMD_CTX);
5550         char *display;
5551         if (target->state != TARGET_HALTED) {
5552                 LOG_INFO("target not halted !!");
5553                 return ERROR_OK;
5554         }
5555
5556         if ((target->rtos) && (target->rtos->type)
5557                         && (target->rtos->type->ps_command)) {
5558                 display = target->rtos->type->ps_command(target);
5559                 command_print(CMD_CTX, "%s", display);
5560                 free(display);
5561                 return ERROR_OK;
5562         } else {
5563                 LOG_INFO("failed");
5564                 return ERROR_TARGET_FAILURE;
5565         }
5566 }
5567
5568 static const struct command_registration target_exec_command_handlers[] = {
5569         {
5570                 .name = "fast_load_image",
5571                 .handler = handle_fast_load_image_command,
5572                 .mode = COMMAND_ANY,
5573                 .help = "Load image into server memory for later use by "
5574                         "fast_load; primarily for profiling",
5575                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5576                         "[min_address [max_length]]",
5577         },
5578         {
5579                 .name = "fast_load",
5580                 .handler = handle_fast_load_command,
5581                 .mode = COMMAND_EXEC,
5582                 .help = "loads active fast load image to current target "
5583                         "- mainly for profiling purposes",
5584                 .usage = "",
5585         },
5586         {
5587                 .name = "profile",
5588                 .handler = handle_profile_command,
5589                 .mode = COMMAND_EXEC,
5590                 .usage = "seconds filename [start end]",
5591                 .help = "profiling samples the CPU PC",
5592         },
5593         /** @todo don't register virt2phys() unless target supports it */
5594         {
5595                 .name = "virt2phys",
5596                 .handler = handle_virt2phys_command,
5597                 .mode = COMMAND_ANY,
5598                 .help = "translate a virtual address into a physical address",
5599                 .usage = "virtual_address",
5600         },
5601         {
5602                 .name = "reg",
5603                 .handler = handle_reg_command,
5604                 .mode = COMMAND_EXEC,
5605                 .help = "display or set a register; with no arguments, "
5606                         "displays all registers and their values",
5607                 .usage = "[(register_name|register_number) [value]]",
5608         },
5609         {
5610                 .name = "poll",
5611                 .handler = handle_poll_command,
5612                 .mode = COMMAND_EXEC,
5613                 .help = "poll target state; or reconfigure background polling",
5614                 .usage = "['on'|'off']",
5615         },
5616         {
5617                 .name = "wait_halt",
5618                 .handler = handle_wait_halt_command,
5619                 .mode = COMMAND_EXEC,
5620                 .help = "wait up to the specified number of milliseconds "
5621                         "(default 5000) for a previously requested halt",
5622                 .usage = "[milliseconds]",
5623         },
5624         {
5625                 .name = "halt",
5626                 .handler = handle_halt_command,
5627                 .mode = COMMAND_EXEC,
5628                 .help = "request target to halt, then wait up to the specified"
5629                         "number of milliseconds (default 5000) for it to complete",
5630                 .usage = "[milliseconds]",
5631         },
5632         {
5633                 .name = "resume",
5634                 .handler = handle_resume_command,
5635                 .mode = COMMAND_EXEC,
5636                 .help = "resume target execution from current PC or address",
5637                 .usage = "[address]",
5638         },
5639         {
5640                 .name = "reset",
5641                 .handler = handle_reset_command,
5642                 .mode = COMMAND_EXEC,
5643                 .usage = "[run|halt|init]",
5644                 .help = "Reset all targets into the specified mode."
5645                         "Default reset mode is run, if not given.",
5646         },
5647         {
5648                 .name = "soft_reset_halt",
5649                 .handler = handle_soft_reset_halt_command,
5650                 .mode = COMMAND_EXEC,
5651                 .usage = "",
5652                 .help = "halt the target and do a soft reset",
5653         },
5654         {
5655                 .name = "step",
5656                 .handler = handle_step_command,
5657                 .mode = COMMAND_EXEC,
5658                 .help = "step one instruction from current PC or address",
5659                 .usage = "[address]",
5660         },
5661         {
5662                 .name = "mdw",
5663                 .handler = handle_md_command,
5664                 .mode = COMMAND_EXEC,
5665                 .help = "display memory words",
5666                 .usage = "['phys'] address [count]",
5667         },
5668         {
5669                 .name = "mdh",
5670                 .handler = handle_md_command,
5671                 .mode = COMMAND_EXEC,
5672                 .help = "display memory half-words",
5673                 .usage = "['phys'] address [count]",
5674         },
5675         {
5676                 .name = "mdb",
5677                 .handler = handle_md_command,
5678                 .mode = COMMAND_EXEC,
5679                 .help = "display memory bytes",
5680                 .usage = "['phys'] address [count]",
5681         },
5682         {
5683                 .name = "mww",
5684                 .handler = handle_mw_command,
5685                 .mode = COMMAND_EXEC,
5686                 .help = "write memory word",
5687                 .usage = "['phys'] address value [count]",
5688         },
5689         {
5690                 .name = "mwh",
5691                 .handler = handle_mw_command,
5692                 .mode = COMMAND_EXEC,
5693                 .help = "write memory half-word",
5694                 .usage = "['phys'] address value [count]",
5695         },
5696         {
5697                 .name = "mwb",
5698                 .handler = handle_mw_command,
5699                 .mode = COMMAND_EXEC,
5700                 .help = "write memory byte",
5701                 .usage = "['phys'] address value [count]",
5702         },
5703         {
5704                 .name = "bp",
5705                 .handler = handle_bp_command,
5706                 .mode = COMMAND_EXEC,
5707                 .help = "list or set hardware or software breakpoint",
5708                 .usage = "<address> [<asid>]<length> ['hw'|'hw_ctx']",
5709         },
5710         {
5711                 .name = "rbp",
5712                 .handler = handle_rbp_command,
5713                 .mode = COMMAND_EXEC,
5714                 .help = "remove breakpoint",
5715                 .usage = "address",
5716         },
5717         {
5718                 .name = "wp",
5719                 .handler = handle_wp_command,
5720                 .mode = COMMAND_EXEC,
5721                 .help = "list (no params) or create watchpoints",
5722                 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
5723         },
5724         {
5725                 .name = "rwp",
5726                 .handler = handle_rwp_command,
5727                 .mode = COMMAND_EXEC,
5728                 .help = "remove watchpoint",
5729                 .usage = "address",
5730         },
5731         {
5732                 .name = "load_image",
5733                 .handler = handle_load_image_command,
5734                 .mode = COMMAND_EXEC,
5735                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5736                         "[min_address] [max_length]",
5737         },
5738         {
5739                 .name = "dump_image",
5740                 .handler = handle_dump_image_command,
5741                 .mode = COMMAND_EXEC,
5742                 .usage = "filename address size",
5743         },
5744         {
5745                 .name = "verify_image",
5746                 .handler = handle_verify_image_command,
5747                 .mode = COMMAND_EXEC,
5748                 .usage = "filename [offset [type]]",
5749         },
5750         {
5751                 .name = "test_image",
5752                 .handler = handle_test_image_command,
5753                 .mode = COMMAND_EXEC,
5754                 .usage = "filename [offset [type]]",
5755         },
5756         {
5757                 .name = "mem2array",
5758                 .mode = COMMAND_EXEC,
5759                 .jim_handler = jim_mem2array,
5760                 .help = "read 8/16/32 bit memory and return as a TCL array "
5761                         "for script processing",
5762                 .usage = "arrayname bitwidth address count",
5763         },
5764         {
5765                 .name = "array2mem",
5766                 .mode = COMMAND_EXEC,
5767                 .jim_handler = jim_array2mem,
5768                 .help = "convert a TCL array to memory locations "
5769                         "and write the 8/16/32 bit values",
5770                 .usage = "arrayname bitwidth address count",
5771         },
5772         {
5773                 .name = "reset_nag",
5774                 .handler = handle_target_reset_nag,
5775                 .mode = COMMAND_ANY,
5776                 .help = "Nag after each reset about options that could have been "
5777                                 "enabled to improve performance. ",
5778                 .usage = "['enable'|'disable']",
5779         },
5780         {
5781                 .name = "ps",
5782                 .handler = handle_ps_command,
5783                 .mode = COMMAND_EXEC,
5784                 .help = "list all tasks ",
5785                 .usage = " ",
5786         },
5787
5788         COMMAND_REGISTRATION_DONE
5789 };
5790 static int target_register_user_commands(struct command_context *cmd_ctx)
5791 {
5792         int retval = ERROR_OK;
5793         retval = target_request_register_commands(cmd_ctx);
5794         if (retval != ERROR_OK)
5795                 return retval;
5796
5797         retval = trace_register_commands(cmd_ctx);
5798         if (retval != ERROR_OK)
5799                 return retval;
5800
5801
5802         return register_commands(cmd_ctx, NULL, target_exec_command_handlers);
5803 }