993b8c61353c542b050ee89ac701cf2ea814f6b8
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007,2008 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   This program is free software; you can redistribute it and/or modify  *
18  *   it under the terms of the GNU General Public License as published by  *
19  *   the Free Software Foundation; either version 2 of the License, or     *
20  *   (at your option) any later version.                                   *
21  *                                                                         *
22  *   This program is distributed in the hope that it will be useful,       *
23  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
24  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
25  *   GNU General Public License for more details.                          *
26  *                                                                         *
27  *   You should have received a copy of the GNU General Public License     *
28  *   along with this program; if not, write to the                         *
29  *   Free Software Foundation, Inc.,                                       *
30  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "target.h"
37 #include "target_request.h"
38 #include "time_support.h"
39 #include "register.h"
40 #include "trace.h"
41 #include "image.h"
42 #include "jtag.h"
43
44 #include <inttypes.h>
45
46
47 static int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
48
49 static int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
50 static int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
51 static int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
52 static int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
53 static int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
54 static int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
55 static int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
56 static int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
57 static int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
58 static int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
59 static int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
60 static int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
61 static int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
62 static int handle_test_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
63 static int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
64 static int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
65 static int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
66 static int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
67 static int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc);
68 static int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
69 static int handle_fast_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
70 static int handle_fast_load_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
71
72 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
73 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
74 static int jim_target( Jim_Interp *interp, int argc, Jim_Obj *const *argv);
75
76 static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv);
77 static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv);
78
79 /* targets */
80 extern target_type_t arm7tdmi_target;
81 extern target_type_t arm720t_target;
82 extern target_type_t arm9tdmi_target;
83 extern target_type_t arm920t_target;
84 extern target_type_t arm966e_target;
85 extern target_type_t arm926ejs_target;
86 extern target_type_t feroceon_target;
87 extern target_type_t xscale_target;
88 extern target_type_t cortexm3_target;
89 extern target_type_t cortexa8_target;
90 extern target_type_t arm11_target;
91 extern target_type_t mips_m4k_target;
92 extern target_type_t avr_target;
93
94 target_type_t *target_types[] =
95 {
96         &arm7tdmi_target,
97         &arm9tdmi_target,
98         &arm920t_target,
99         &arm720t_target,
100         &arm966e_target,
101         &arm926ejs_target,
102         &feroceon_target,
103         &xscale_target,
104         &cortexm3_target,
105         &cortexa8_target,
106         &arm11_target,
107         &mips_m4k_target,
108         &avr_target,
109         NULL,
110 };
111
112 target_t *all_targets = NULL;
113 target_event_callback_t *target_event_callbacks = NULL;
114 target_timer_callback_t *target_timer_callbacks = NULL;
115
116 const Jim_Nvp nvp_assert[] = {
117         { .name = "assert", NVP_ASSERT },
118         { .name = "deassert", NVP_DEASSERT },
119         { .name = "T", NVP_ASSERT },
120         { .name = "F", NVP_DEASSERT },
121         { .name = "t", NVP_ASSERT },
122         { .name = "f", NVP_DEASSERT },
123         { .name = NULL, .value = -1 }
124 };
125
126 const Jim_Nvp nvp_error_target[] = {
127         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
128         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
129         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
130         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
131         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
132         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
133         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
134         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
135         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
136         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
137         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
138         { .value = -1, .name = NULL }
139 };
140
141 const char *target_strerror_safe( int err )
142 {
143         const Jim_Nvp *n;
144
145         n = Jim_Nvp_value2name_simple( nvp_error_target, err );
146         if( n->name == NULL ){
147                 return "unknown";
148         } else {
149                 return n->name;
150         }
151 }
152
153 static const Jim_Nvp nvp_target_event[] = {
154         { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
155         { .value = TARGET_EVENT_OLD_pre_resume         , .name = "old-pre_resume" },
156
157         { .value = TARGET_EVENT_EARLY_HALTED, .name = "early-halted" },
158         { .value = TARGET_EVENT_HALTED, .name = "halted" },
159         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
160         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
161         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
162
163         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
164         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
165
166         /* historical name */
167
168         { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
169
170         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
171         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
172         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
173         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
174         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
175         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
176         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
177         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
178         { .value = TARGET_EVENT_RESET_INIT , .name = "reset-init" },
179         { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
180
181         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
182         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
183
184         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
185         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
186
187         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
188         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
189
190         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
191         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
192
193         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
194         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
195
196         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
197         { .value = TARGET_EVENT_RESUMED     , .name = "resume-ok" },
198         { .value = TARGET_EVENT_RESUME_END  , .name = "resume-end" },
199
200         { .name = NULL, .value = -1 }
201 };
202
203 const Jim_Nvp nvp_target_state[] = {
204         { .name = "unknown", .value = TARGET_UNKNOWN },
205         { .name = "running", .value = TARGET_RUNNING },
206         { .name = "halted",  .value = TARGET_HALTED },
207         { .name = "reset",   .value = TARGET_RESET },
208         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
209         { .name = NULL, .value = -1 },
210 };
211
212 const Jim_Nvp nvp_target_debug_reason [] = {
213         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
214         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
215         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
216         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
217         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
218         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
219         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
220         { .name = NULL, .value = -1 },
221 };
222
223 const Jim_Nvp nvp_target_endian[] = {
224         { .name = "big",    .value = TARGET_BIG_ENDIAN },
225         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
226         { .name = "be",     .value = TARGET_BIG_ENDIAN },
227         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
228         { .name = NULL,     .value = -1 },
229 };
230
231 const Jim_Nvp nvp_reset_modes[] = {
232         { .name = "unknown", .value = RESET_UNKNOWN },
233         { .name = "run"    , .value = RESET_RUN },
234         { .name = "halt"   , .value = RESET_HALT },
235         { .name = "init"   , .value = RESET_INIT },
236         { .name = NULL     , .value = -1 },
237 };
238
239 static int max_target_number(void)
240 {
241         target_t *t;
242         int x;
243
244         x = -1;
245         t = all_targets;
246         while( t ){
247                 if( x < t->target_number ){
248                         x = (t->target_number)+1;
249                 }
250                 t = t->next;
251         }
252         return x;
253 }
254
255 /* determine the number of the new target */
256 static int new_target_number(void)
257 {
258         target_t *t;
259         int x;
260
261         /* number is 0 based */
262         x = -1;
263         t = all_targets;
264         while(t){
265                 if( x < t->target_number ){
266                         x = t->target_number;
267                 }
268                 t = t->next;
269         }
270         return x+1;
271 }
272
273 static int target_continous_poll = 1;
274
275 /* read a u32 from a buffer in target memory endianness */
276 u32 target_buffer_get_u32(target_t *target, const u8 *buffer)
277 {
278         if (target->endianness == TARGET_LITTLE_ENDIAN)
279                 return le_to_h_u32(buffer);
280         else
281                 return be_to_h_u32(buffer);
282 }
283
284 /* read a u16 from a buffer in target memory endianness */
285 u16 target_buffer_get_u16(target_t *target, const u8 *buffer)
286 {
287         if (target->endianness == TARGET_LITTLE_ENDIAN)
288                 return le_to_h_u16(buffer);
289         else
290                 return be_to_h_u16(buffer);
291 }
292
293 /* read a u8 from a buffer in target memory endianness */
294 u8 target_buffer_get_u8(target_t *target, const u8 *buffer)
295 {
296         return *buffer & 0x0ff;
297 }
298
299 /* write a u32 to a buffer in target memory endianness */
300 void target_buffer_set_u32(target_t *target, u8 *buffer, u32 value)
301 {
302         if (target->endianness == TARGET_LITTLE_ENDIAN)
303                 h_u32_to_le(buffer, value);
304         else
305                 h_u32_to_be(buffer, value);
306 }
307
308 /* write a u16 to a buffer in target memory endianness */
309 void target_buffer_set_u16(target_t *target, u8 *buffer, u16 value)
310 {
311         if (target->endianness == TARGET_LITTLE_ENDIAN)
312                 h_u16_to_le(buffer, value);
313         else
314                 h_u16_to_be(buffer, value);
315 }
316
317 /* write a u8 to a buffer in target memory endianness */
318 void target_buffer_set_u8(target_t *target, u8 *buffer, u8 value)
319 {
320         *buffer = value;
321 }
322
323 /* return a pointer to a configured target; id is name or number */
324 target_t *get_target(const char *id)
325 {
326         target_t *target;
327         char *endptr;
328         int num;
329
330         /* try as tcltarget name */
331         for (target = all_targets; target; target = target->next) {
332                 if (target->cmd_name == NULL)
333                         continue;
334                 if (strcmp(id, target->cmd_name) == 0)
335                         return target;
336         }
337
338         /* no match, try as number */
339         num = strtoul(id, &endptr, 0);
340         if (*endptr != 0)
341                 return NULL;
342
343         for (target = all_targets; target; target = target->next) {
344                 if (target->target_number == num)
345                         return target;
346         }
347
348         return NULL;
349 }
350
351 /* returns a pointer to the n-th configured target */
352 static target_t *get_target_by_num(int num)
353 {
354         target_t *target = all_targets;
355
356         while (target){
357                 if( target->target_number == num ){
358                         return target;
359                 }
360                 target = target->next;
361         }
362
363         return NULL;
364 }
365
366 int get_num_by_target(target_t *query_target)
367 {
368         return query_target->target_number;
369 }
370
371 target_t* get_current_target(command_context_t *cmd_ctx)
372 {
373         target_t *target = get_target_by_num(cmd_ctx->current_target);
374
375         if (target == NULL)
376         {
377                 LOG_ERROR("BUG: current_target out of bounds");
378                 exit(-1);
379         }
380
381         return target;
382 }
383
384 int target_poll(struct target_s *target)
385 {
386         /* We can't poll until after examine */
387         if (!target_was_examined(target))
388         {
389                 /* Fail silently lest we pollute the log */
390                 return ERROR_FAIL;
391         }
392         return target->type->poll(target);
393 }
394
395 int target_halt(struct target_s *target)
396 {
397         /* We can't poll until after examine */
398         if (!target_was_examined(target))
399         {
400                 LOG_ERROR("Target not examined yet");
401                 return ERROR_FAIL;
402         }
403         return target->type->halt(target);
404 }
405
406 int target_resume(struct target_s *target, int current, u32 address, int handle_breakpoints, int debug_execution)
407 {
408         int retval;
409
410         /* We can't poll until after examine */
411         if (!target_was_examined(target))
412         {
413                 LOG_ERROR("Target not examined yet");
414                 return ERROR_FAIL;
415         }
416
417         /* note that resume *must* be asynchronous. The CPU can halt before we poll. The CPU can
418          * even halt at the current PC as a result of a software breakpoint being inserted by (a bug?)
419          * the application.
420          */
421         if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
422                 return retval;
423
424         return retval;
425 }
426
427 int target_process_reset(struct command_context_s *cmd_ctx, enum target_reset_mode reset_mode)
428 {
429         char buf[100];
430         int retval;
431         Jim_Nvp *n;
432         n = Jim_Nvp_value2name_simple( nvp_reset_modes, reset_mode );
433         if( n->name == NULL ){
434                 LOG_ERROR("invalid reset mode");
435                 return ERROR_FAIL;
436         }
437
438         sprintf( buf, "ocd_process_reset %s", n->name );
439         retval = Jim_Eval( interp, buf );
440
441         if(retval != JIM_OK) {
442                 Jim_PrintErrorMessage(interp);
443                 return ERROR_FAIL;
444         }
445
446         /* We want any events to be processed before the prompt */
447         retval = target_call_timer_callbacks_now();
448
449         return retval;
450 }
451
452 static int default_virt2phys(struct target_s *target, u32 virtual, u32 *physical)
453 {
454         *physical = virtual;
455         return ERROR_OK;
456 }
457
458 static int default_mmu(struct target_s *target, int *enabled)
459 {
460         *enabled = 0;
461         return ERROR_OK;
462 }
463
464 static int default_examine(struct target_s *target)
465 {
466         target_set_examined(target);
467         return ERROR_OK;
468 }
469
470 /* Targets that correctly implement init+examine, i.e.
471  * no communication with target during init:
472  *
473  * XScale
474  */
475 int target_examine(void)
476 {
477         int retval = ERROR_OK;
478         target_t *target = all_targets;
479         while (target)
480         {
481                 if ((retval = target->type->examine(target))!=ERROR_OK)
482                         return retval;
483                 target = target->next;
484         }
485         return retval;
486 }
487
488 static int target_write_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
489 {
490         if (!target_was_examined(target))
491         {
492                 LOG_ERROR("Target not examined yet");
493                 return ERROR_FAIL;
494         }
495         return target->type->write_memory_imp(target, address, size, count, buffer);
496 }
497
498 static int target_read_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
499 {
500         if (!target_was_examined(target))
501         {
502                 LOG_ERROR("Target not examined yet");
503                 return ERROR_FAIL;
504         }
505         return target->type->read_memory_imp(target, address, size, count, buffer);
506 }
507
508 static int target_soft_reset_halt_imp(struct target_s *target)
509 {
510         if (!target_was_examined(target))
511         {
512                 LOG_ERROR("Target not examined yet");
513                 return ERROR_FAIL;
514         }
515         return target->type->soft_reset_halt_imp(target);
516 }
517
518 static int target_run_algorithm_imp(struct target_s *target, int num_mem_params, mem_param_t *mem_params, int num_reg_params, reg_param_t *reg_param, u32 entry_point, u32 exit_point, int timeout_ms, void *arch_info)
519 {
520         if (!target_was_examined(target))
521         {
522                 LOG_ERROR("Target not examined yet");
523                 return ERROR_FAIL;
524         }
525         return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
526 }
527
528 int target_read_memory(struct target_s *target,
529                 u32 address, u32 size, u32 count, u8 *buffer)
530 {
531         return target->type->read_memory(target, address, size, count, buffer);
532 }
533
534 int target_write_memory(struct target_s *target,
535                 u32 address, u32 size, u32 count, u8 *buffer)
536 {
537         return target->type->write_memory(target, address, size, count, buffer);
538 }
539 int target_bulk_write_memory(struct target_s *target,
540                 u32 address, u32 count, u8 *buffer)
541 {
542         return target->type->bulk_write_memory(target, address, count, buffer);
543 }
544
545
546 int target_get_gdb_reg_list(struct target_s *target,
547                 struct reg_s **reg_list[], int *reg_list_size)
548 {
549         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
550 }
551 int target_step(struct target_s *target,
552                 int current, u32 address, int handle_breakpoints)
553 {
554         return target->type->step(target, current, address, handle_breakpoints);
555 }
556
557
558 int target_run_algorithm(struct target_s *target,
559                 int num_mem_params, mem_param_t *mem_params,
560                 int num_reg_params, reg_param_t *reg_param,
561                 u32 entry_point, u32 exit_point,
562                 int timeout_ms, void *arch_info)
563 {
564         return target->type->run_algorithm(target,
565                         num_mem_params, mem_params, num_reg_params, reg_param,
566                         entry_point, exit_point, timeout_ms, arch_info);
567 }
568
569 /// @returns @c true if the target has been examined.
570 bool target_was_examined(struct target_s *target)
571 {
572         return target->type->examined;
573 }
574 /// Sets the @c examined flag for the given target.
575 void target_set_examined(struct target_s *target)
576 {
577         target->type->examined = true;
578 }
579 // Reset the @c examined flag for the given target.
580 void target_reset_examined(struct target_s *target)
581 {
582         target->type->examined = false;
583 }
584
585
586 int target_init(struct command_context_s *cmd_ctx)
587 {
588         target_t *target = all_targets;
589         int retval;
590
591         while (target)
592         {
593                 target_reset_examined(target);
594                 if (target->type->examine == NULL)
595                 {
596                         target->type->examine = default_examine;
597                 }
598
599                 if ((retval = target->type->init_target(cmd_ctx, target)) != ERROR_OK)
600                 {
601                         LOG_ERROR("target '%s' init failed", target->type->name);
602                         return retval;
603                 }
604
605                 /* Set up default functions if none are provided by target */
606                 if (target->type->virt2phys == NULL)
607                 {
608                         target->type->virt2phys = default_virt2phys;
609                 }
610                 target->type->virt2phys = default_virt2phys;
611                 /* a non-invasive way(in terms of patches) to add some code that
612                  * runs before the type->write/read_memory implementation
613                  */
614                 target->type->write_memory_imp = target->type->write_memory;
615                 target->type->write_memory = target_write_memory_imp;
616                 target->type->read_memory_imp = target->type->read_memory;
617                 target->type->read_memory = target_read_memory_imp;
618                 target->type->soft_reset_halt_imp = target->type->soft_reset_halt;
619                 target->type->soft_reset_halt = target_soft_reset_halt_imp;
620                 target->type->run_algorithm_imp = target->type->run_algorithm;
621                 target->type->run_algorithm = target_run_algorithm_imp;
622
623                 if (target->type->mmu == NULL)
624                 {
625                         target->type->mmu = default_mmu;
626                 }
627                 target = target->next;
628         }
629
630         if (all_targets)
631         {
632                 if((retval = target_register_user_commands(cmd_ctx)) != ERROR_OK)
633                         return retval;
634                 if((retval = target_register_timer_callback(handle_target, 100, 1, NULL)) != ERROR_OK)
635                         return retval;
636         }
637
638         return ERROR_OK;
639 }
640
641 int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
642 {
643         target_event_callback_t **callbacks_p = &target_event_callbacks;
644
645         if (callback == NULL)
646         {
647                 return ERROR_INVALID_ARGUMENTS;
648         }
649
650         if (*callbacks_p)
651         {
652                 while ((*callbacks_p)->next)
653                         callbacks_p = &((*callbacks_p)->next);
654                 callbacks_p = &((*callbacks_p)->next);
655         }
656
657         (*callbacks_p) = malloc(sizeof(target_event_callback_t));
658         (*callbacks_p)->callback = callback;
659         (*callbacks_p)->priv = priv;
660         (*callbacks_p)->next = NULL;
661
662         return ERROR_OK;
663 }
664
665 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
666 {
667         target_timer_callback_t **callbacks_p = &target_timer_callbacks;
668         struct timeval now;
669
670         if (callback == NULL)
671         {
672                 return ERROR_INVALID_ARGUMENTS;
673         }
674
675         if (*callbacks_p)
676         {
677                 while ((*callbacks_p)->next)
678                         callbacks_p = &((*callbacks_p)->next);
679                 callbacks_p = &((*callbacks_p)->next);
680         }
681
682         (*callbacks_p) = malloc(sizeof(target_timer_callback_t));
683         (*callbacks_p)->callback = callback;
684         (*callbacks_p)->periodic = periodic;
685         (*callbacks_p)->time_ms = time_ms;
686
687         gettimeofday(&now, NULL);
688         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
689         time_ms -= (time_ms % 1000);
690         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
691         if ((*callbacks_p)->when.tv_usec > 1000000)
692         {
693                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
694                 (*callbacks_p)->when.tv_sec += 1;
695         }
696
697         (*callbacks_p)->priv = priv;
698         (*callbacks_p)->next = NULL;
699
700         return ERROR_OK;
701 }
702
703 int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
704 {
705         target_event_callback_t **p = &target_event_callbacks;
706         target_event_callback_t *c = target_event_callbacks;
707
708         if (callback == NULL)
709         {
710                 return ERROR_INVALID_ARGUMENTS;
711         }
712
713         while (c)
714         {
715                 target_event_callback_t *next = c->next;
716                 if ((c->callback == callback) && (c->priv == priv))
717                 {
718                         *p = next;
719                         free(c);
720                         return ERROR_OK;
721                 }
722                 else
723                         p = &(c->next);
724                 c = next;
725         }
726
727         return ERROR_OK;
728 }
729
730 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
731 {
732         target_timer_callback_t **p = &target_timer_callbacks;
733         target_timer_callback_t *c = target_timer_callbacks;
734
735         if (callback == NULL)
736         {
737                 return ERROR_INVALID_ARGUMENTS;
738         }
739
740         while (c)
741         {
742                 target_timer_callback_t *next = c->next;
743                 if ((c->callback == callback) && (c->priv == priv))
744                 {
745                         *p = next;
746                         free(c);
747                         return ERROR_OK;
748                 }
749                 else
750                         p = &(c->next);
751                 c = next;
752         }
753
754         return ERROR_OK;
755 }
756
757 int target_call_event_callbacks(target_t *target, enum target_event event)
758 {
759         target_event_callback_t *callback = target_event_callbacks;
760         target_event_callback_t *next_callback;
761
762         if (event == TARGET_EVENT_HALTED)
763         {
764                 /* execute early halted first */
765                 target_call_event_callbacks(target, TARGET_EVENT_EARLY_HALTED);
766         }
767
768         LOG_DEBUG("target event %i (%s)",
769                           event,
770                           Jim_Nvp_value2name_simple( nvp_target_event, event )->name );
771
772         target_handle_event( target, event );
773
774         while (callback)
775         {
776                 next_callback = callback->next;
777                 callback->callback(target, event, callback->priv);
778                 callback = next_callback;
779         }
780
781         return ERROR_OK;
782 }
783
784 static int target_call_timer_callbacks_check_time(int checktime)
785 {
786         target_timer_callback_t *callback = target_timer_callbacks;
787         target_timer_callback_t *next_callback;
788         struct timeval now;
789
790         keep_alive();
791
792         gettimeofday(&now, NULL);
793
794         while (callback)
795         {
796                 next_callback = callback->next;
797
798                 if ((!checktime&&callback->periodic)||
799                                 (((now.tv_sec >= callback->when.tv_sec) && (now.tv_usec >= callback->when.tv_usec))
800                                                 || (now.tv_sec > callback->when.tv_sec)))
801                 {
802                         if(callback->callback != NULL)
803                         {
804                                 callback->callback(callback->priv);
805                                 if (callback->periodic)
806                                 {
807                                         int time_ms = callback->time_ms;
808                                         callback->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
809                                         time_ms -= (time_ms % 1000);
810                                         callback->when.tv_sec = now.tv_sec + time_ms / 1000;
811                                         if (callback->when.tv_usec > 1000000)
812                                         {
813                                                 callback->when.tv_usec = callback->when.tv_usec - 1000000;
814                                                 callback->when.tv_sec += 1;
815                                         }
816                                 }
817                                 else
818                                 {
819                                         int retval;
820                                         if((retval = target_unregister_timer_callback(callback->callback, callback->priv)) != ERROR_OK)
821                                                 return retval;
822                                 }
823                         }
824                 }
825
826                 callback = next_callback;
827         }
828
829         return ERROR_OK;
830 }
831
832 int target_call_timer_callbacks(void)
833 {
834         return target_call_timer_callbacks_check_time(1);
835 }
836
837 /* invoke periodic callbacks immediately */
838 int target_call_timer_callbacks_now(void)
839 {
840         return target_call_timer_callbacks_check_time(0);
841 }
842
843 int target_alloc_working_area(struct target_s *target, u32 size, working_area_t **area)
844 {
845         working_area_t *c = target->working_areas;
846         working_area_t *new_wa = NULL;
847
848         /* Reevaluate working area address based on MMU state*/
849         if (target->working_areas == NULL)
850         {
851                 int retval;
852                 int enabled;
853                 retval = target->type->mmu(target, &enabled);
854                 if (retval != ERROR_OK)
855                 {
856                         return retval;
857                 }
858                 if (enabled)
859                 {
860                         target->working_area = target->working_area_virt;
861                 }
862                 else
863                 {
864                         target->working_area = target->working_area_phys;
865                 }
866         }
867
868         /* only allocate multiples of 4 byte */
869         if (size % 4)
870         {
871                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes, padding");
872                 size = CEIL(size, 4);
873         }
874
875         /* see if there's already a matching working area */
876         while (c)
877         {
878                 if ((c->free) && (c->size == size))
879                 {
880                         new_wa = c;
881                         break;
882                 }
883                 c = c->next;
884         }
885
886         /* if not, allocate a new one */
887         if (!new_wa)
888         {
889                 working_area_t **p = &target->working_areas;
890                 u32 first_free = target->working_area;
891                 u32 free_size = target->working_area_size;
892
893                 LOG_DEBUG("allocating new working area");
894
895                 c = target->working_areas;
896                 while (c)
897                 {
898                         first_free += c->size;
899                         free_size -= c->size;
900                         p = &c->next;
901                         c = c->next;
902                 }
903
904                 if (free_size < size)
905                 {
906                         LOG_WARNING("not enough working area available(requested %d, free %d)", size, free_size);
907                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
908                 }
909
910                 new_wa = malloc(sizeof(working_area_t));
911                 new_wa->next = NULL;
912                 new_wa->size = size;
913                 new_wa->address = first_free;
914
915                 if (target->backup_working_area)
916                 {
917                         int retval;
918                         new_wa->backup = malloc(new_wa->size);
919                         if((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
920                         {
921                                 free(new_wa->backup);
922                                 free(new_wa);
923                                 return retval;
924                         }
925                 }
926                 else
927                 {
928                         new_wa->backup = NULL;
929                 }
930
931                 /* put new entry in list */
932                 *p = new_wa;
933         }
934
935         /* mark as used, and return the new (reused) area */
936         new_wa->free = 0;
937         *area = new_wa;
938
939         /* user pointer */
940         new_wa->user = area;
941
942         return ERROR_OK;
943 }
944
945 int target_free_working_area_restore(struct target_s *target, working_area_t *area, int restore)
946 {
947         if (area->free)
948                 return ERROR_OK;
949
950         if (restore&&target->backup_working_area)
951         {
952                 int retval;
953                 if((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
954                         return retval;
955         }
956
957         area->free = 1;
958
959         /* mark user pointer invalid */
960         *area->user = NULL;
961         area->user = NULL;
962
963         return ERROR_OK;
964 }
965
966 int target_free_working_area(struct target_s *target, working_area_t *area)
967 {
968         return target_free_working_area_restore(target, area, 1);
969 }
970
971 /* free resources and restore memory, if restoring memory fails,
972  * free up resources anyway
973  */
974 void target_free_all_working_areas_restore(struct target_s *target, int restore)
975 {
976         working_area_t *c = target->working_areas;
977
978         while (c)
979         {
980                 working_area_t *next = c->next;
981                 target_free_working_area_restore(target, c, restore);
982
983                 if (c->backup)
984                         free(c->backup);
985
986                 free(c);
987
988                 c = next;
989         }
990
991         target->working_areas = NULL;
992 }
993
994 void target_free_all_working_areas(struct target_s *target)
995 {
996         target_free_all_working_areas_restore(target, 1);
997 }
998
999 int target_register_commands(struct command_context_s *cmd_ctx)
1000 {
1001
1002         register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, "change the current command line target (one parameter) or lists targets (with no parameter)");
1003
1004
1005
1006
1007         register_jim(cmd_ctx, "target", jim_target, "configure target" );
1008
1009         return ERROR_OK;
1010 }
1011
1012 int target_arch_state(struct target_s *target)
1013 {
1014         int retval;
1015         if (target==NULL)
1016         {
1017                 LOG_USER("No target has been configured");
1018                 return ERROR_OK;
1019         }
1020
1021         LOG_USER("target state: %s",
1022                  Jim_Nvp_value2name_simple(nvp_target_state,target->state)->name);
1023
1024         if (target->state!=TARGET_HALTED)
1025                 return ERROR_OK;
1026
1027         retval=target->type->arch_state(target);
1028         return retval;
1029 }
1030
1031 /* Single aligned words are guaranteed to use 16 or 32 bit access
1032  * mode respectively, otherwise data is handled as quickly as
1033  * possible
1034  */
1035 int target_write_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
1036 {
1037         int retval;
1038         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x", size, address);
1039
1040         if (!target_was_examined(target))
1041         {
1042                 LOG_ERROR("Target not examined yet");
1043                 return ERROR_FAIL;
1044         }
1045
1046         if (size == 0) {
1047                 return ERROR_OK;
1048         }
1049
1050         if ((address + size - 1) < address)
1051         {
1052                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1053                 LOG_ERROR("address+size wrapped(0x%08x, 0x%08x)", address, size);
1054                 return ERROR_FAIL;
1055         }
1056
1057         if (((address % 2) == 0) && (size == 2))
1058         {
1059                 return target_write_memory(target, address, 2, 1, buffer);
1060         }
1061
1062         /* handle unaligned head bytes */
1063         if (address % 4)
1064         {
1065                 u32 unaligned = 4 - (address % 4);
1066
1067                 if (unaligned > size)
1068                         unaligned = size;
1069
1070                 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1071                         return retval;
1072
1073                 buffer += unaligned;
1074                 address += unaligned;
1075                 size -= unaligned;
1076         }
1077
1078         /* handle aligned words */
1079         if (size >= 4)
1080         {
1081                 int aligned = size - (size % 4);
1082
1083                 /* use bulk writes above a certain limit. This may have to be changed */
1084                 if (aligned > 128)
1085                 {
1086                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1087                                 return retval;
1088                 }
1089                 else
1090                 {
1091                         if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1092                                 return retval;
1093                 }
1094
1095                 buffer += aligned;
1096                 address += aligned;
1097                 size -= aligned;
1098         }
1099
1100         /* handle tail writes of less than 4 bytes */
1101         if (size > 0)
1102         {
1103                 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1104                         return retval;
1105         }
1106
1107         return ERROR_OK;
1108 }
1109
1110 /* Single aligned words are guaranteed to use 16 or 32 bit access
1111  * mode respectively, otherwise data is handled as quickly as
1112  * possible
1113  */
1114 int target_read_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
1115 {
1116         int retval;
1117         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x", size, address);
1118
1119         if (!target_was_examined(target))
1120         {
1121                 LOG_ERROR("Target not examined yet");
1122                 return ERROR_FAIL;
1123         }
1124
1125         if (size == 0) {
1126                 return ERROR_OK;
1127         }
1128
1129         if ((address + size - 1) < address)
1130         {
1131                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1132                 LOG_ERROR("address+size wrapped(0x%08x, 0x%08x)", address, size);
1133                 return ERROR_FAIL;
1134         }
1135
1136         if (((address % 2) == 0) && (size == 2))
1137         {
1138                 return target_read_memory(target, address, 2, 1, buffer);
1139         }
1140
1141         /* handle unaligned head bytes */
1142         if (address % 4)
1143         {
1144                 u32 unaligned = 4 - (address % 4);
1145
1146                 if (unaligned > size)
1147                         unaligned = size;
1148
1149                 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1150                         return retval;
1151
1152                 buffer += unaligned;
1153                 address += unaligned;
1154                 size -= unaligned;
1155         }
1156
1157         /* handle aligned words */
1158         if (size >= 4)
1159         {
1160                 int aligned = size - (size % 4);
1161
1162                 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1163                         return retval;
1164
1165                 buffer += aligned;
1166                 address += aligned;
1167                 size -= aligned;
1168         }
1169
1170         /* handle tail writes of less than 4 bytes */
1171         if (size > 0)
1172         {
1173                 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1174                         return retval;
1175         }
1176
1177         return ERROR_OK;
1178 }
1179
1180 int target_checksum_memory(struct target_s *target, u32 address, u32 size, u32* crc)
1181 {
1182         u8 *buffer;
1183         int retval;
1184         u32 i;
1185         u32 checksum = 0;
1186         if (!target_was_examined(target))
1187         {
1188                 LOG_ERROR("Target not examined yet");
1189                 return ERROR_FAIL;
1190         }
1191
1192         if ((retval = target->type->checksum_memory(target, address,
1193                 size, &checksum)) != ERROR_OK)
1194         {
1195                 buffer = malloc(size);
1196                 if (buffer == NULL)
1197                 {
1198                         LOG_ERROR("error allocating buffer for section (%d bytes)", size);
1199                         return ERROR_INVALID_ARGUMENTS;
1200                 }
1201                 retval = target_read_buffer(target, address, size, buffer);
1202                 if (retval != ERROR_OK)
1203                 {
1204                         free(buffer);
1205                         return retval;
1206                 }
1207
1208                 /* convert to target endianess */
1209                 for (i = 0; i < (size/sizeof(u32)); i++)
1210                 {
1211                         u32 target_data;
1212                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(u32)]);
1213                         target_buffer_set_u32(target, &buffer[i*sizeof(u32)], target_data);
1214                 }
1215
1216                 retval = image_calculate_checksum( buffer, size, &checksum );
1217                 free(buffer);
1218         }
1219
1220         *crc = checksum;
1221
1222         return retval;
1223 }
1224
1225 int target_blank_check_memory(struct target_s *target, u32 address, u32 size, u32* blank)
1226 {
1227         int retval;
1228         if (!target_was_examined(target))
1229         {
1230                 LOG_ERROR("Target not examined yet");
1231                 return ERROR_FAIL;
1232         }
1233
1234         if (target->type->blank_check_memory == 0)
1235                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1236
1237         retval = target->type->blank_check_memory(target, address, size, blank);
1238
1239         return retval;
1240 }
1241
1242 int target_read_u32(struct target_s *target, u32 address, u32 *value)
1243 {
1244         u8 value_buf[4];
1245         if (!target_was_examined(target))
1246         {
1247                 LOG_ERROR("Target not examined yet");
1248                 return ERROR_FAIL;
1249         }
1250
1251         int retval = target_read_memory(target, address, 4, 1, value_buf);
1252
1253         if (retval == ERROR_OK)
1254         {
1255                 *value = target_buffer_get_u32(target, value_buf);
1256                 LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, *value);
1257         }
1258         else
1259         {
1260                 *value = 0x0;
1261                 LOG_DEBUG("address: 0x%8.8x failed", address);
1262         }
1263
1264         return retval;
1265 }
1266
1267 int target_read_u16(struct target_s *target, u32 address, u16 *value)
1268 {
1269         u8 value_buf[2];
1270         if (!target_was_examined(target))
1271         {
1272                 LOG_ERROR("Target not examined yet");
1273                 return ERROR_FAIL;
1274         }
1275
1276         int retval = target_read_memory(target, address, 2, 1, value_buf);
1277
1278         if (retval == ERROR_OK)
1279         {
1280                 *value = target_buffer_get_u16(target, value_buf);
1281                 LOG_DEBUG("address: 0x%8.8x, value: 0x%4.4x", address, *value);
1282         }
1283         else
1284         {
1285                 *value = 0x0;
1286                 LOG_DEBUG("address: 0x%8.8x failed", address);
1287         }
1288
1289         return retval;
1290 }
1291
1292 int target_read_u8(struct target_s *target, u32 address, u8 *value)
1293 {
1294         int retval = target_read_memory(target, address, 1, 1, value);
1295         if (!target_was_examined(target))
1296         {
1297                 LOG_ERROR("Target not examined yet");
1298                 return ERROR_FAIL;
1299         }
1300
1301         if (retval == ERROR_OK)
1302         {
1303                 LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, *value);
1304         }
1305         else
1306         {
1307                 *value = 0x0;
1308                 LOG_DEBUG("address: 0x%8.8x failed", address);
1309         }
1310
1311         return retval;
1312 }
1313
1314 int target_write_u32(struct target_s *target, u32 address, u32 value)
1315 {
1316         int retval;
1317         u8 value_buf[4];
1318         if (!target_was_examined(target))
1319         {
1320                 LOG_ERROR("Target not examined yet");
1321                 return ERROR_FAIL;
1322         }
1323
1324         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1325
1326         target_buffer_set_u32(target, value_buf, value);
1327         if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1328         {
1329                 LOG_DEBUG("failed: %i", retval);
1330         }
1331
1332         return retval;
1333 }
1334
1335 int target_write_u16(struct target_s *target, u32 address, u16 value)
1336 {
1337         int retval;
1338         u8 value_buf[2];
1339         if (!target_was_examined(target))
1340         {
1341                 LOG_ERROR("Target not examined yet");
1342                 return ERROR_FAIL;
1343         }
1344
1345         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1346
1347         target_buffer_set_u16(target, value_buf, value);
1348         if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1349         {
1350                 LOG_DEBUG("failed: %i", retval);
1351         }
1352
1353         return retval;
1354 }
1355
1356 int target_write_u8(struct target_s *target, u32 address, u8 value)
1357 {
1358         int retval;
1359         if (!target_was_examined(target))
1360         {
1361                 LOG_ERROR("Target not examined yet");
1362                 return ERROR_FAIL;
1363         }
1364
1365         LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, value);
1366
1367         if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1368         {
1369                 LOG_DEBUG("failed: %i", retval);
1370         }
1371
1372         return retval;
1373 }
1374
1375 int target_register_user_commands(struct command_context_s *cmd_ctx)
1376 {
1377         int retval = ERROR_OK;
1378
1379
1380         /* script procedures */
1381         register_command(cmd_ctx, NULL, "profile", handle_profile_command, COMMAND_EXEC, "profiling samples the CPU PC");
1382         register_jim(cmd_ctx, "ocd_mem2array", jim_mem2array, "read memory and return as a TCL array for script processing <ARRAYNAME> <WIDTH=32/16/8> <ADDRESS> <COUNT>");
1383         register_jim(cmd_ctx, "ocd_array2mem", jim_array2mem, "convert a TCL array to memory locations and write the values  <ARRAYNAME> <WIDTH=32/16/8> <ADDRESS> <COUNT>");
1384
1385         register_command(cmd_ctx, NULL, "fast_load_image", handle_fast_load_image_command, COMMAND_ANY,
1386                         "same args as load_image, image stored in memory - mainly for profiling purposes");
1387
1388         register_command(cmd_ctx, NULL, "fast_load", handle_fast_load_command, COMMAND_ANY,
1389                         "loads active fast load image to current target - mainly for profiling purposes");
1390
1391
1392         register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "translate a virtual address into a physical address");
1393         register_command(cmd_ctx,  NULL, "reg", handle_reg_command, COMMAND_EXEC, "display or set a register");
1394         register_command(cmd_ctx,  NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state");
1395         register_command(cmd_ctx,  NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]");
1396         register_command(cmd_ctx,  NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target");
1397         register_command(cmd_ctx,  NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]");
1398         register_command(cmd_ctx,  NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]");
1399         register_command(cmd_ctx,  NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run|halt|init] - default is run");
1400         register_command(cmd_ctx,  NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset");
1401
1402         register_command(cmd_ctx,  NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words <addr> [count]");
1403         register_command(cmd_ctx,  NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words <addr> [count]");
1404         register_command(cmd_ctx,  NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes <addr> [count]");
1405
1406         register_command(cmd_ctx,  NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word <addr> <value> [count]");
1407         register_command(cmd_ctx,  NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word <addr> <value> [count]");
1408         register_command(cmd_ctx,  NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte <addr> <value> [count]");
1409
1410         register_command(cmd_ctx,  NULL, "bp", handle_bp_command, COMMAND_EXEC, "set breakpoint <address> <length> [hw]");
1411         register_command(cmd_ctx,  NULL, "rbp", handle_rbp_command, COMMAND_EXEC, "remove breakpoint <adress>");
1412         register_command(cmd_ctx,  NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint <address> <length> <r/w/a> [value] [mask]");
1413         register_command(cmd_ctx,  NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint <adress>");
1414
1415         register_command(cmd_ctx,  NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> ['bin'|'ihex'|'elf'|'s19'] [min_address] [max_length]");
1416         register_command(cmd_ctx,  NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>");
1417         register_command(cmd_ctx,  NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image <file> [offset] [type]");
1418         register_command(cmd_ctx,  NULL, "test_image", handle_test_image_command, COMMAND_EXEC, "test_image <file> [offset] [type]");
1419
1420         if((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
1421                 return retval;
1422         if((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
1423                 return retval;
1424
1425         return retval;
1426 }
1427
1428 static int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1429 {
1430         target_t *target = all_targets;
1431
1432         if (argc == 1)
1433         {
1434                 target = get_target(args[0]);
1435                 if (target == NULL) {
1436                         command_print(cmd_ctx,"Target: %s is unknown, try one of:\n", args[0] );
1437                         goto DumpTargets;
1438                 }
1439
1440                 cmd_ctx->current_target = target->target_number;
1441                 return ERROR_OK;
1442         }
1443 DumpTargets:
1444
1445         target = all_targets;
1446         command_print(cmd_ctx, "    CmdName    Type       Endian     AbsChainPos Name          State     ");
1447         command_print(cmd_ctx, "--  ---------- ---------- ---------- ----------- ------------- ----------");
1448         while (target)
1449         {
1450                 /* XX: abcdefghij abcdefghij abcdefghij abcdefghij */
1451                 command_print(cmd_ctx, "%2d: %-10s %-10s %-10s %10d %14s %s",
1452                                           target->target_number,
1453                                           target->cmd_name,
1454                                           target->type->name,
1455                                           Jim_Nvp_value2name_simple( nvp_target_endian, target->endianness )->name,
1456                                           target->tap->abs_chain_position,
1457                                           target->tap->dotted_name,
1458                                           Jim_Nvp_value2name_simple( nvp_target_state, target->state )->name );
1459                 target = target->next;
1460         }
1461
1462         return ERROR_OK;
1463 }
1464
1465 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1466
1467 static int powerDropout;
1468 static int srstAsserted;
1469
1470 static int runPowerRestore;
1471 static int runPowerDropout;
1472 static int runSrstAsserted;
1473 static int runSrstDeasserted;
1474
1475 static int sense_handler(void)
1476 {
1477         static int prevSrstAsserted = 0;
1478         static int prevPowerdropout = 0;
1479
1480         int retval;
1481         if ((retval=jtag_power_dropout(&powerDropout))!=ERROR_OK)
1482                 return retval;
1483
1484         int powerRestored;
1485         powerRestored = prevPowerdropout && !powerDropout;
1486         if (powerRestored)
1487         {
1488                 runPowerRestore = 1;
1489         }
1490
1491         long long current = timeval_ms();
1492         static long long lastPower = 0;
1493         int waitMore = lastPower + 2000 > current;
1494         if (powerDropout && !waitMore)
1495         {
1496                 runPowerDropout = 1;
1497                 lastPower = current;
1498         }
1499
1500         if ((retval=jtag_srst_asserted(&srstAsserted))!=ERROR_OK)
1501                 return retval;
1502
1503         int srstDeasserted;
1504         srstDeasserted = prevSrstAsserted && !srstAsserted;
1505
1506         static long long lastSrst = 0;
1507         waitMore = lastSrst + 2000 > current;
1508         if (srstDeasserted && !waitMore)
1509         {
1510                 runSrstDeasserted = 1;
1511                 lastSrst = current;
1512         }
1513
1514         if (!prevSrstAsserted && srstAsserted)
1515         {
1516                 runSrstAsserted = 1;
1517         }
1518
1519         prevSrstAsserted = srstAsserted;
1520         prevPowerdropout = powerDropout;
1521
1522         if (srstDeasserted || powerRestored)
1523         {
1524                 /* Other than logging the event we can't do anything here.
1525                  * Issuing a reset is a particularly bad idea as we might
1526                  * be inside a reset already.
1527                  */
1528         }
1529
1530         return ERROR_OK;
1531 }
1532
1533 /* process target state changes */
1534 int handle_target(void *priv)
1535 {
1536         int retval = ERROR_OK;
1537
1538         /* we do not want to recurse here... */
1539         static int recursive = 0;
1540         if (! recursive)
1541         {
1542                 recursive = 1;
1543                 sense_handler();
1544                 /* danger! running these procedures can trigger srst assertions and power dropouts.
1545                  * We need to avoid an infinite loop/recursion here and we do that by
1546                  * clearing the flags after running these events.
1547                  */
1548                 int did_something = 0;
1549                 if (runSrstAsserted)
1550                 {
1551                         Jim_Eval( interp, "srst_asserted");
1552                         did_something = 1;
1553                 }
1554                 if (runSrstDeasserted)
1555                 {
1556                         Jim_Eval( interp, "srst_deasserted");
1557                         did_something = 1;
1558                 }
1559                 if (runPowerDropout)
1560                 {
1561                         Jim_Eval( interp, "power_dropout");
1562                         did_something = 1;
1563                 }
1564                 if (runPowerRestore)
1565                 {
1566                         Jim_Eval( interp, "power_restore");
1567                         did_something = 1;
1568                 }
1569
1570                 if (did_something)
1571                 {
1572                         /* clear detect flags */
1573                         sense_handler();
1574                 }
1575
1576                 /* clear action flags */
1577
1578                 runSrstAsserted=0;
1579                 runSrstDeasserted=0;
1580                 runPowerRestore=0;
1581                 runPowerDropout=0;
1582
1583                 recursive = 0;
1584         }
1585
1586         target_t *target = all_targets;
1587
1588         while (target)
1589         {
1590
1591                 /* only poll target if we've got power and srst isn't asserted */
1592                 if (target_continous_poll&&!powerDropout&&!srstAsserted)
1593                 {
1594                         /* polling may fail silently until the target has been examined */
1595                         if((retval = target_poll(target)) != ERROR_OK)
1596                                 return retval;
1597                 }
1598
1599                 target = target->next;
1600         }
1601
1602         return retval;
1603 }
1604
1605 static int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1606 {
1607         target_t *target;
1608         reg_t *reg = NULL;
1609         int count = 0;
1610         char *value;
1611
1612         LOG_DEBUG("-");
1613
1614         target = get_current_target(cmd_ctx);
1615
1616         /* list all available registers for the current target */
1617         if (argc == 0)
1618         {
1619                 reg_cache_t *cache = target->reg_cache;
1620
1621                 count = 0;
1622                 while(cache)
1623                 {
1624                         int i;
1625                         for (i = 0; i < cache->num_regs; i++)
1626                         {
1627                                 value = buf_to_str(cache->reg_list[i].value, cache->reg_list[i].size, 16);
1628                                 command_print(cmd_ctx, "(%i) %s (/%i): 0x%s (dirty: %i, valid: %i)", count++, cache->reg_list[i].name, cache->reg_list[i].size, value, cache->reg_list[i].dirty, cache->reg_list[i].valid);
1629                                 free(value);
1630                         }
1631                         cache = cache->next;
1632                 }
1633
1634                 return ERROR_OK;
1635         }
1636
1637         /* access a single register by its ordinal number */
1638         if ((args[0][0] >= '0') && (args[0][0] <= '9'))
1639         {
1640                 int num = strtoul(args[0], NULL, 0);
1641                 reg_cache_t *cache = target->reg_cache;
1642
1643                 count = 0;
1644                 while(cache)
1645                 {
1646                         int i;
1647                         for (i = 0; i < cache->num_regs; i++)
1648                         {
1649                                 if (count++ == num)
1650                                 {
1651                                         reg = &cache->reg_list[i];
1652                                         break;
1653                                 }
1654                         }
1655                         if (reg)
1656                                 break;
1657                         cache = cache->next;
1658                 }
1659
1660                 if (!reg)
1661                 {
1662                         command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1663                         return ERROR_OK;
1664                 }
1665         } else /* access a single register by its name */
1666         {
1667                 reg = register_get_by_name(target->reg_cache, args[0], 1);
1668
1669                 if (!reg)
1670                 {
1671                         command_print(cmd_ctx, "register %s not found in current target", args[0]);
1672                         return ERROR_OK;
1673                 }
1674         }
1675
1676         /* display a register */
1677         if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
1678         {
1679                 if ((argc == 2) && (strcmp(args[1], "force") == 0))
1680                         reg->valid = 0;
1681
1682                 if (reg->valid == 0)
1683                 {
1684                         reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1685                         arch_type->get(reg);
1686                 }
1687                 value = buf_to_str(reg->value, reg->size, 16);
1688                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1689                 free(value);
1690                 return ERROR_OK;
1691         }
1692
1693         /* set register value */
1694         if (argc == 2)
1695         {
1696                 u8 *buf = malloc(CEIL(reg->size, 8));
1697                 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
1698
1699                 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1700                 arch_type->set(reg, buf);
1701
1702                 value = buf_to_str(reg->value, reg->size, 16);
1703                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1704                 free(value);
1705
1706                 free(buf);
1707
1708                 return ERROR_OK;
1709         }
1710
1711         command_print(cmd_ctx, "usage: reg <#|name> [value]");
1712
1713         return ERROR_OK;
1714 }
1715
1716 static int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1717 {
1718         int retval = ERROR_OK;
1719         target_t *target = get_current_target(cmd_ctx);
1720
1721         if (argc == 0)
1722         {
1723                 if((retval = target_poll(target)) != ERROR_OK)
1724                         return retval;
1725                 if((retval = target_arch_state(target)) != ERROR_OK)
1726                         return retval;
1727
1728         }
1729         else if (argc==1)
1730         {
1731                 if (strcmp(args[0], "on") == 0)
1732                 {
1733                         target_continous_poll = 1;
1734                 }
1735                 else if (strcmp(args[0], "off") == 0)
1736                 {
1737                         target_continous_poll = 0;
1738                 }
1739                 else
1740                 {
1741                         command_print(cmd_ctx, "arg is \"on\" or \"off\"");
1742                 }
1743         } else
1744         {
1745                 return ERROR_COMMAND_SYNTAX_ERROR;
1746         }
1747
1748         return retval;
1749 }
1750
1751 static int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1752 {
1753         int ms = 5000;
1754
1755         if (argc > 0)
1756         {
1757                 char *end;
1758
1759                 ms = strtoul(args[0], &end, 0) * 1000;
1760                 if (*end)
1761                 {
1762                         command_print(cmd_ctx, "usage: %s [seconds]", cmd);
1763                         return ERROR_OK;
1764                 }
1765         }
1766         target_t *target = get_current_target(cmd_ctx);
1767
1768         return target_wait_state(target, TARGET_HALTED, ms);
1769 }
1770
1771 /* wait for target state to change. The trick here is to have a low
1772  * latency for short waits and not to suck up all the CPU time
1773  * on longer waits.
1774  *
1775  * After 500ms, keep_alive() is invoked
1776  */
1777 int target_wait_state(target_t *target, enum target_state state, int ms)
1778 {
1779         int retval;
1780         long long then=0, cur;
1781         int once=1;
1782
1783         for (;;)
1784         {
1785                 if ((retval=target_poll(target))!=ERROR_OK)
1786                         return retval;
1787                 if (target->state == state)
1788                 {
1789                         break;
1790                 }
1791                 cur = timeval_ms();
1792                 if (once)
1793                 {
1794                         once=0;
1795                         then = timeval_ms();
1796                         LOG_DEBUG("waiting for target %s...",
1797                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
1798                 }
1799
1800                 if (cur-then>500)
1801                 {
1802                         keep_alive();
1803                 }
1804
1805                 if ((cur-then)>ms)
1806                 {
1807                         LOG_ERROR("timed out while waiting for target %s",
1808                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
1809                         return ERROR_FAIL;
1810                 }
1811         }
1812
1813         return ERROR_OK;
1814 }
1815
1816 static int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1817 {
1818         int retval;
1819         target_t *target = get_current_target(cmd_ctx);
1820
1821         LOG_DEBUG("-");
1822
1823         if ((retval = target_halt(target)) != ERROR_OK)
1824         {
1825                 return retval;
1826         }
1827
1828         if (argc == 1)
1829         {
1830                 int wait;
1831                 char *end;
1832
1833                 wait = strtoul(args[0], &end, 0);
1834                 if (!*end && !wait)
1835                         return ERROR_OK;
1836         }
1837
1838         return handle_wait_halt_command(cmd_ctx, cmd, args, argc);
1839 }
1840
1841 static int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1842 {
1843         target_t *target = get_current_target(cmd_ctx);
1844
1845         LOG_USER("requesting target halt and executing a soft reset");
1846
1847         target->type->soft_reset_halt(target);
1848
1849         return ERROR_OK;
1850 }
1851
1852 static int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1853 {
1854         const Jim_Nvp *n;
1855         enum target_reset_mode reset_mode = RESET_RUN;
1856
1857         if (argc >= 1)
1858         {
1859                 n = Jim_Nvp_name2value_simple( nvp_reset_modes, args[0] );
1860                 if( (n->name == NULL) || (n->value == RESET_UNKNOWN) ){
1861                         return ERROR_COMMAND_SYNTAX_ERROR;
1862                 }
1863                 reset_mode = n->value;
1864         }
1865
1866         /* reset *all* targets */
1867         return target_process_reset(cmd_ctx, reset_mode);
1868 }
1869
1870
1871 static int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1872 {
1873         int retval;
1874         target_t *target = get_current_target(cmd_ctx);
1875
1876         target_handle_event( target, TARGET_EVENT_OLD_pre_resume );
1877
1878         if (argc == 0)
1879                 retval = target_resume(target, 1, 0, 1, 0); /* current pc, addr = 0, handle breakpoints, not debugging */
1880         else if (argc == 1)
1881                 retval = target_resume(target, 0, strtoul(args[0], NULL, 0), 1, 0); /* addr = args[0], handle breakpoints, not debugging */
1882         else
1883         {
1884                 retval = ERROR_COMMAND_SYNTAX_ERROR;
1885         }
1886
1887         return retval;
1888 }
1889
1890 static int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1891 {
1892         target_t *target = get_current_target(cmd_ctx);
1893
1894         LOG_DEBUG("-");
1895
1896         if (argc == 0)
1897                 return target->type->step(target, 1, 0, 1); /* current pc, addr = 0, handle breakpoints */
1898
1899         if (argc == 1)
1900                 return target->type->step(target, 0, strtoul(args[0], NULL, 0), 1); /* addr = args[0], handle breakpoints */
1901
1902         return ERROR_OK;
1903 }
1904
1905 static void handle_md_output(struct command_context_s *cmd_ctx,
1906                 struct target_s *target, u32 address, unsigned size,
1907                 unsigned count, const u8 *buffer)
1908 {
1909         const unsigned line_bytecnt = 32;
1910         unsigned line_modulo = line_bytecnt / size;
1911
1912         char output[line_bytecnt * 4 + 1];
1913         unsigned output_len = 0;
1914
1915         const char *value_fmt;
1916         switch (size) {
1917         case 4: value_fmt = "%8.8x"; break;
1918         case 2: value_fmt = "%4.2x"; break;
1919         case 1: value_fmt = "%2.2x"; break;
1920         default:
1921                 LOG_ERROR("invalid memory read size: %u", size);
1922                 exit(-1);
1923         }
1924
1925         for (unsigned i = 0; i < count; i++)
1926         {
1927                 if (i % line_modulo == 0)
1928                 {
1929                         output_len += snprintf(output + output_len,
1930                                         sizeof(output) - output_len,
1931                                         "0x%8.8x: ", address + (i*size));
1932                 }
1933
1934                 u32 value;
1935                 const u8 *value_ptr = buffer + i * size;
1936                 switch (size) {
1937                 case 4: value = target_buffer_get_u32(target, value_ptr); break;
1938                 case 2: value = target_buffer_get_u16(target, value_ptr); break;
1939                 case 1: value = *value_ptr;
1940                 }
1941                 output_len += snprintf(output + output_len,
1942                                 sizeof(output) - output_len,
1943                                 value_fmt, value);
1944
1945                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
1946                 {
1947                         command_print(cmd_ctx, "%s", output);
1948                         output_len = 0;
1949                 }
1950         }
1951 }
1952
1953 static int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1954 {
1955         if (argc < 1)
1956                 return ERROR_COMMAND_SYNTAX_ERROR;
1957
1958         unsigned size = 0;
1959         switch (cmd[2]) {
1960         case 'w': size = 4; break;
1961         case 'h': size = 2; break;
1962         case 'b': size = 1; break;
1963         default: return ERROR_COMMAND_SYNTAX_ERROR;
1964         }
1965
1966         u32 address = strtoul(args[0], NULL, 0);
1967
1968         unsigned count = 1;
1969         if (argc == 2)
1970                 count = strtoul(args[1], NULL, 0);
1971
1972         u8 *buffer = calloc(count, size);
1973
1974         target_t *target = get_current_target(cmd_ctx);
1975         int retval = target_read_memory(target,
1976                                 address, size, count, buffer);
1977         if (ERROR_OK == retval)
1978                 handle_md_output(cmd_ctx, target, address, size, count, buffer);
1979
1980         free(buffer);
1981
1982         return retval;
1983 }
1984
1985 static int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1986 {
1987         u32 address = 0;
1988         u32 value = 0;
1989         int count = 1;
1990         int i;
1991         int wordsize;
1992         target_t *target = get_current_target(cmd_ctx);
1993         u8 value_buf[4];
1994
1995          if ((argc < 2) || (argc > 3))
1996                 return ERROR_COMMAND_SYNTAX_ERROR;
1997
1998         address = strtoul(args[0], NULL, 0);
1999         value = strtoul(args[1], NULL, 0);
2000         if (argc == 3)
2001                 count = strtoul(args[2], NULL, 0);
2002
2003         switch (cmd[2])
2004         {
2005                 case 'w':
2006                         wordsize = 4;
2007                         target_buffer_set_u32(target, value_buf, value);
2008                         break;
2009                 case 'h':
2010                         wordsize = 2;
2011                         target_buffer_set_u16(target, value_buf, value);
2012                         break;
2013                 case 'b':
2014                         wordsize = 1;
2015                         value_buf[0] = value;
2016                         break;
2017                 default:
2018                         return ERROR_COMMAND_SYNTAX_ERROR;
2019         }
2020         for (i=0; i<count; i++)
2021         {
2022                 int retval = target_write_memory(target,
2023                                 address + i * wordsize, wordsize, 1, value_buf);
2024                 if (ERROR_OK != retval)
2025                         return retval;
2026                 keep_alive();
2027         }
2028
2029         return ERROR_OK;
2030
2031 }
2032
2033 static int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2034 {
2035         u8 *buffer;
2036         u32 buf_cnt;
2037         u32 image_size;
2038         u32 min_address=0;
2039         u32 max_address=0xffffffff;
2040         int i;
2041         int retval, retvaltemp;
2042
2043         image_t image;
2044
2045         duration_t duration;
2046         char *duration_text;
2047
2048         target_t *target = get_current_target(cmd_ctx);
2049
2050         if ((argc < 1)||(argc > 5))
2051         {
2052                 return ERROR_COMMAND_SYNTAX_ERROR;
2053         }
2054
2055         /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
2056         if (argc >= 2)
2057         {
2058                 image.base_address_set = 1;
2059                 image.base_address = strtoul(args[1], NULL, 0);
2060         }
2061         else
2062         {
2063                 image.base_address_set = 0;
2064         }
2065
2066
2067         image.start_address_set = 0;
2068
2069         if (argc>=4)
2070         {
2071                 min_address=strtoul(args[3], NULL, 0);
2072         }
2073         if (argc>=5)
2074         {
2075                 max_address=strtoul(args[4], NULL, 0)+min_address;
2076         }
2077
2078         if (min_address>max_address)
2079         {
2080                 return ERROR_COMMAND_SYNTAX_ERROR;
2081         }
2082
2083         duration_start_measure(&duration);
2084
2085         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
2086         {
2087                 return ERROR_OK;
2088         }
2089
2090         image_size = 0x0;
2091         retval = ERROR_OK;
2092         for (i = 0; i < image.num_sections; i++)
2093         {
2094                 buffer = malloc(image.sections[i].size);
2095                 if (buffer == NULL)
2096                 {
2097                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2098                         break;
2099                 }
2100
2101                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2102                 {
2103                         free(buffer);
2104                         break;
2105                 }
2106
2107                 u32 offset=0;
2108                 u32 length=buf_cnt;
2109
2110                 /* DANGER!!! beware of unsigned comparision here!!! */
2111
2112                 if ((image.sections[i].base_address+buf_cnt>=min_address)&&
2113                                 (image.sections[i].base_address<max_address))
2114                 {
2115                         if (image.sections[i].base_address<min_address)
2116                         {
2117                                 /* clip addresses below */
2118                                 offset+=min_address-image.sections[i].base_address;
2119                                 length-=offset;
2120                         }
2121
2122                         if (image.sections[i].base_address+buf_cnt>max_address)
2123                         {
2124                                 length-=(image.sections[i].base_address+buf_cnt)-max_address;
2125                         }
2126
2127                         if ((retval = target_write_buffer(target, image.sections[i].base_address+offset, length, buffer+offset)) != ERROR_OK)
2128                         {
2129                                 free(buffer);
2130                                 break;
2131                         }
2132                         image_size += length;
2133                         command_print(cmd_ctx, "%u byte written at address 0x%8.8x", length, image.sections[i].base_address+offset);
2134                 }
2135
2136                 free(buffer);
2137         }
2138
2139         if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2140         {
2141                 image_close(&image);
2142                 return retvaltemp;
2143         }
2144
2145         if (retval==ERROR_OK)
2146         {
2147                 command_print(cmd_ctx, "downloaded %u byte in %s", image_size, duration_text);
2148         }
2149         free(duration_text);
2150
2151         image_close(&image);
2152
2153         return retval;
2154
2155 }
2156
2157 static int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2158 {
2159         fileio_t fileio;
2160
2161         u32 address;
2162         u32 size;
2163         u8 buffer[560];
2164         int retval=ERROR_OK, retvaltemp;
2165
2166         duration_t duration;
2167         char *duration_text;
2168
2169         target_t *target = get_current_target(cmd_ctx);
2170
2171         if (argc != 3)
2172         {
2173                 command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
2174                 return ERROR_OK;
2175         }
2176
2177         address = strtoul(args[1], NULL, 0);
2178         size = strtoul(args[2], NULL, 0);
2179
2180         if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2181         {
2182                 return ERROR_OK;
2183         }
2184
2185         duration_start_measure(&duration);
2186
2187         while (size > 0)
2188         {
2189                 u32 size_written;
2190                 u32 this_run_size = (size > 560) ? 560 : size;
2191
2192                 retval = target_read_buffer(target, address, this_run_size, buffer);
2193                 if (retval != ERROR_OK)
2194                 {
2195                         break;
2196                 }
2197
2198                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2199                 if (retval != ERROR_OK)
2200                 {
2201                         break;
2202                 }
2203
2204                 size -= this_run_size;
2205                 address += this_run_size;
2206         }
2207
2208         if((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2209                 return retvaltemp;
2210
2211         if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2212                 return retvaltemp;
2213
2214         if (retval==ERROR_OK)
2215         {
2216                 command_print(cmd_ctx, "dumped %lld byte in %s",
2217                                 fileio.size, duration_text);
2218                 free(duration_text);
2219         }
2220
2221         return retval;
2222 }
2223
2224 static int handle_verify_image_command_internal(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc, int verify)
2225 {
2226         u8 *buffer;
2227         u32 buf_cnt;
2228         u32 image_size;
2229         int i;
2230         int retval, retvaltemp;
2231         u32 checksum = 0;
2232         u32 mem_checksum = 0;
2233
2234         image_t image;
2235
2236         duration_t duration;
2237         char *duration_text;
2238
2239         target_t *target = get_current_target(cmd_ctx);
2240
2241         if (argc < 1)
2242         {
2243                 return ERROR_COMMAND_SYNTAX_ERROR;
2244         }
2245
2246         if (!target)
2247         {
2248                 LOG_ERROR("no target selected");
2249                 return ERROR_FAIL;
2250         }
2251
2252         duration_start_measure(&duration);
2253
2254         if (argc >= 2)
2255         {
2256                 image.base_address_set = 1;
2257                 image.base_address = strtoul(args[1], NULL, 0);
2258         }
2259         else
2260         {
2261                 image.base_address_set = 0;
2262                 image.base_address = 0x0;
2263         }
2264
2265         image.start_address_set = 0;
2266
2267         if ((retval=image_open(&image, args[0], (argc == 3) ? args[2] : NULL)) != ERROR_OK)
2268         {
2269                 return retval;
2270         }
2271
2272         image_size = 0x0;
2273         retval=ERROR_OK;
2274         for (i = 0; i < image.num_sections; i++)
2275         {
2276                 buffer = malloc(image.sections[i].size);
2277                 if (buffer == NULL)
2278                 {
2279                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2280                         break;
2281                 }
2282                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2283                 {
2284                         free(buffer);
2285                         break;
2286                 }
2287
2288                 if (verify)
2289                 {
2290                         /* calculate checksum of image */
2291                         image_calculate_checksum( buffer, buf_cnt, &checksum );
2292
2293                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2294                         if( retval != ERROR_OK )
2295                         {
2296                                 free(buffer);
2297                                 break;
2298                         }
2299
2300                         if( checksum != mem_checksum )
2301                         {
2302                                 /* failed crc checksum, fall back to a binary compare */
2303                                 u8 *data;
2304
2305                                 command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
2306
2307                                 data = (u8*)malloc(buf_cnt);
2308
2309                                 /* Can we use 32bit word accesses? */
2310                                 int size = 1;
2311                                 int count = buf_cnt;
2312                                 if ((count % 4) == 0)
2313                                 {
2314                                         size *= 4;
2315                                         count /= 4;
2316                                 }
2317                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2318                                 if (retval == ERROR_OK)
2319                                 {
2320                                         u32 t;
2321                                         for (t = 0; t < buf_cnt; t++)
2322                                         {
2323                                                 if (data[t] != buffer[t])
2324                                                 {
2325                                                         command_print(cmd_ctx, "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n", t + image.sections[i].base_address, data[t], buffer[t]);
2326                                                         free(data);
2327                                                         free(buffer);
2328                                                         retval=ERROR_FAIL;
2329                                                         goto done;
2330                                                 }
2331                                                 if ((t%16384)==0)
2332                                                 {
2333                                                         keep_alive();
2334                                                 }
2335                                         }
2336                                 }
2337
2338                                 free(data);
2339                         }
2340                 } else
2341                 {
2342                         command_print(cmd_ctx, "address 0x%08x length 0x%08x", image.sections[i].base_address, buf_cnt);
2343                 }
2344
2345                 free(buffer);
2346                 image_size += buf_cnt;
2347         }
2348 done:
2349
2350         if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2351         {
2352                 image_close(&image);
2353                 return retvaltemp;
2354         }
2355
2356         if (retval==ERROR_OK)
2357         {
2358                 command_print(cmd_ctx, "verified %u bytes in %s", image_size, duration_text);
2359         }
2360         free(duration_text);
2361
2362         image_close(&image);
2363
2364         return retval;
2365 }
2366
2367 static int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2368 {
2369         return handle_verify_image_command_internal(cmd_ctx, cmd, args, argc, 1);
2370 }
2371
2372 static int handle_test_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2373 {
2374         return handle_verify_image_command_internal(cmd_ctx, cmd, args, argc, 0);
2375 }
2376
2377 static int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2378 {
2379         int retval;
2380         target_t *target = get_current_target(cmd_ctx);
2381
2382         if (argc == 0)
2383         {
2384                 breakpoint_t *breakpoint = target->breakpoints;
2385
2386                 while (breakpoint)
2387                 {
2388                         if (breakpoint->type == BKPT_SOFT)
2389                         {
2390                                 char* buf = buf_to_str(breakpoint->orig_instr, breakpoint->length, 16);
2391                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i, 0x%s", breakpoint->address, breakpoint->length, breakpoint->set, buf);
2392                                 free(buf);
2393                         }
2394                         else
2395                         {
2396                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i", breakpoint->address, breakpoint->length, breakpoint->set);
2397                         }
2398                         breakpoint = breakpoint->next;
2399                 }
2400         }
2401         else if (argc >= 2)
2402         {
2403                 int hw = BKPT_SOFT;
2404                 u32 length = 0;
2405
2406                 length = strtoul(args[1], NULL, 0);
2407
2408                 if (argc >= 3)
2409                         if (strcmp(args[2], "hw") == 0)
2410                                 hw = BKPT_HARD;
2411
2412                 if ((retval = breakpoint_add(target, strtoul(args[0], NULL, 0), length, hw)) != ERROR_OK)
2413                 {
2414                         LOG_ERROR("Failure setting breakpoints");
2415                 }
2416                 else
2417                 {
2418                         command_print(cmd_ctx, "breakpoint added at address 0x%8.8lx",
2419                                         strtoul(args[0], NULL, 0));
2420                 }
2421         }
2422         else
2423         {
2424                 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
2425         }
2426
2427         return ERROR_OK;
2428 }
2429
2430 static int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2431 {
2432         target_t *target = get_current_target(cmd_ctx);
2433
2434         if (argc > 0)
2435                 breakpoint_remove(target, strtoul(args[0], NULL, 0));
2436
2437         return ERROR_OK;
2438 }
2439
2440 static int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2441 {
2442         target_t *target = get_current_target(cmd_ctx);
2443         int retval;
2444
2445         if (argc == 0)
2446         {
2447                 watchpoint_t *watchpoint = target->watchpoints;
2448
2449                 while (watchpoint)
2450                 {
2451                         command_print(cmd_ctx, "address: 0x%8.8x, len: 0x%8.8x, r/w/a: %i, value: 0x%8.8x, mask: 0x%8.8x", watchpoint->address, watchpoint->length, watchpoint->rw, watchpoint->value, watchpoint->mask);
2452                         watchpoint = watchpoint->next;
2453                 }
2454         }
2455         else if (argc >= 2)
2456         {
2457                 enum watchpoint_rw type = WPT_ACCESS;
2458                 u32 data_value = 0x0;
2459                 u32 data_mask = 0xffffffff;
2460
2461                 if (argc >= 3)
2462                 {
2463                         switch(args[2][0])
2464                         {
2465                                 case 'r':
2466                                         type = WPT_READ;
2467                                         break;
2468                                 case 'w':
2469                                         type = WPT_WRITE;
2470                                         break;
2471                                 case 'a':
2472                                         type = WPT_ACCESS;
2473                                         break;
2474                                 default:
2475                                         command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2476                                         return ERROR_OK;
2477                         }
2478                 }
2479                 if (argc >= 4)
2480                 {
2481                         data_value = strtoul(args[3], NULL, 0);
2482                 }
2483                 if (argc >= 5)
2484                 {
2485                         data_mask = strtoul(args[4], NULL, 0);
2486                 }
2487
2488                 if ((retval = watchpoint_add(target, strtoul(args[0], NULL, 0),
2489                                 strtoul(args[1], NULL, 0), type, data_value, data_mask)) != ERROR_OK)
2490                 {
2491                         LOG_ERROR("Failure setting breakpoints");
2492                 }
2493         }
2494         else
2495         {
2496                 command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2497         }
2498
2499         return ERROR_OK;
2500 }
2501
2502 static int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2503 {
2504         target_t *target = get_current_target(cmd_ctx);
2505
2506         if (argc > 0)
2507                 watchpoint_remove(target, strtoul(args[0], NULL, 0));
2508
2509         return ERROR_OK;
2510 }
2511
2512 static int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc)
2513 {
2514         int retval;
2515         target_t *target = get_current_target(cmd_ctx);
2516         u32 va;
2517         u32 pa;
2518
2519         if (argc != 1)
2520         {
2521                 return ERROR_COMMAND_SYNTAX_ERROR;
2522         }
2523         va = strtoul(args[0], NULL, 0);
2524
2525         retval = target->type->virt2phys(target, va, &pa);
2526         if (retval == ERROR_OK)
2527         {
2528                 command_print(cmd_ctx, "Physical address 0x%08x", pa);
2529         }
2530         else
2531         {
2532                 /* lower levels will have logged a detailed error which is
2533                  * forwarded to telnet/GDB session.
2534                  */
2535         }
2536         return retval;
2537 }
2538
2539 static void writeData(FILE *f, const void *data, size_t len)
2540 {
2541         size_t written = fwrite(data, len, 1, f);
2542         if (written != len)
2543                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
2544 }
2545
2546 static void writeLong(FILE *f, int l)
2547 {
2548         int i;
2549         for (i=0; i<4; i++)
2550         {
2551                 char c=(l>>(i*8))&0xff;
2552                 writeData(f, &c, 1);
2553         }
2554
2555 }
2556
2557 static void writeString(FILE *f, char *s)
2558 {
2559         writeData(f, s, strlen(s));
2560 }
2561
2562 /* Dump a gmon.out histogram file. */
2563 static void writeGmon(u32 *samples, u32 sampleNum, char *filename)
2564 {
2565         u32 i;
2566         FILE *f=fopen(filename, "w");
2567         if (f==NULL)
2568                 return;
2569         writeString(f, "gmon");
2570         writeLong(f, 0x00000001); /* Version */
2571         writeLong(f, 0); /* padding */
2572         writeLong(f, 0); /* padding */
2573         writeLong(f, 0); /* padding */
2574
2575         u8 zero = 0;  /* GMON_TAG_TIME_HIST */
2576         writeData(f, &zero, 1);
2577
2578         /* figure out bucket size */
2579         u32 min=samples[0];
2580         u32 max=samples[0];
2581         for (i=0; i<sampleNum; i++)
2582         {
2583                 if (min>samples[i])
2584                 {
2585                         min=samples[i];
2586                 }
2587                 if (max<samples[i])
2588                 {
2589                         max=samples[i];
2590                 }
2591         }
2592
2593         int addressSpace=(max-min+1);
2594
2595         static const u32 maxBuckets = 256 * 1024; /* maximum buckets. */
2596         u32 length = addressSpace;
2597         if (length > maxBuckets)
2598         {
2599                 length=maxBuckets;
2600         }
2601         int *buckets=malloc(sizeof(int)*length);
2602         if (buckets==NULL)
2603         {
2604                 fclose(f);
2605                 return;
2606         }
2607         memset(buckets, 0, sizeof(int)*length);
2608         for (i=0; i<sampleNum;i++)
2609         {
2610                 u32 address=samples[i];
2611                 long long a=address-min;
2612                 long long b=length-1;
2613                 long long c=addressSpace-1;
2614                 int index=(a*b)/c; /* danger!!!! int32 overflows */
2615                 buckets[index]++;
2616         }
2617
2618         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
2619         writeLong(f, min);                      /* low_pc */
2620         writeLong(f, max);                      /* high_pc */
2621         writeLong(f, length);           /* # of samples */
2622         writeLong(f, 64000000);         /* 64MHz */
2623         writeString(f, "seconds");
2624         for (i=0; i<(15-strlen("seconds")); i++)
2625                 writeData(f, &zero, 1);
2626         writeString(f, "s");
2627
2628         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
2629
2630         char *data=malloc(2*length);
2631         if (data!=NULL)
2632         {
2633                 for (i=0; i<length;i++)
2634                 {
2635                         int val;
2636                         val=buckets[i];
2637                         if (val>65535)
2638                         {
2639                                 val=65535;
2640                         }
2641                         data[i*2]=val&0xff;
2642                         data[i*2+1]=(val>>8)&0xff;
2643                 }
2644                 free(buckets);
2645                 writeData(f, data, length * 2);
2646                 free(data);
2647         } else
2648         {
2649                 free(buckets);
2650         }
2651
2652         fclose(f);
2653 }
2654
2655 /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
2656 static int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2657 {
2658         target_t *target = get_current_target(cmd_ctx);
2659         struct timeval timeout, now;
2660
2661         gettimeofday(&timeout, NULL);
2662         if (argc!=2)
2663         {
2664                 return ERROR_COMMAND_SYNTAX_ERROR;
2665         }
2666         char *end;
2667         timeval_add_time(&timeout, strtoul(args[0], &end, 0), 0);
2668         if (*end)
2669         {
2670                 return ERROR_OK;
2671         }
2672
2673         command_print(cmd_ctx, "Starting profiling. Halting and resuming the target as often as we can...");
2674
2675         static const int maxSample=10000;
2676         u32 *samples=malloc(sizeof(u32)*maxSample);
2677         if (samples==NULL)
2678                 return ERROR_OK;
2679
2680         int numSamples=0;
2681         int retval=ERROR_OK;
2682         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2683         reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1);
2684
2685         for (;;)
2686         {
2687                 target_poll(target);
2688                 if (target->state == TARGET_HALTED)
2689                 {
2690                         u32 t=*((u32 *)reg->value);
2691                         samples[numSamples++]=t;
2692                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2693                         target_poll(target);
2694                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2695                 } else if (target->state == TARGET_RUNNING)
2696                 {
2697                         /* We want to quickly sample the PC. */
2698                         if((retval = target_halt(target)) != ERROR_OK)
2699                         {
2700                                 free(samples);
2701                                 return retval;
2702                         }
2703                 } else
2704                 {
2705                         command_print(cmd_ctx, "Target not halted or running");
2706                         retval=ERROR_OK;
2707                         break;
2708                 }
2709                 if (retval!=ERROR_OK)
2710                 {
2711                         break;
2712                 }
2713
2714                 gettimeofday(&now, NULL);
2715                 if ((numSamples>=maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
2716                 {
2717                         command_print(cmd_ctx, "Profiling completed. %d samples.", numSamples);
2718                         if((retval = target_poll(target)) != ERROR_OK)
2719                         {
2720                                 free(samples);
2721                                 return retval;
2722                         }
2723                         if (target->state == TARGET_HALTED)
2724                         {
2725                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2726                         }
2727                         if((retval = target_poll(target)) != ERROR_OK)
2728                         {
2729                                 free(samples);
2730                                 return retval;
2731                         }
2732                         writeGmon(samples, numSamples, args[1]);
2733                         command_print(cmd_ctx, "Wrote %s", args[1]);
2734                         break;
2735                 }
2736         }
2737         free(samples);
2738
2739         return ERROR_OK;
2740 }
2741
2742 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 val)
2743 {
2744         char *namebuf;
2745         Jim_Obj *nameObjPtr, *valObjPtr;
2746         int result;
2747
2748         namebuf = alloc_printf("%s(%d)", varname, idx);
2749         if (!namebuf)
2750                 return JIM_ERR;
2751
2752         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
2753         valObjPtr = Jim_NewIntObj(interp, val);
2754         if (!nameObjPtr || !valObjPtr)
2755         {
2756                 free(namebuf);
2757                 return JIM_ERR;
2758         }
2759
2760         Jim_IncrRefCount(nameObjPtr);
2761         Jim_IncrRefCount(valObjPtr);
2762         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
2763         Jim_DecrRefCount(interp, nameObjPtr);
2764         Jim_DecrRefCount(interp, valObjPtr);
2765         free(namebuf);
2766         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
2767         return result;
2768 }
2769
2770 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
2771 {
2772         command_context_t *context;
2773         target_t *target;
2774
2775         context = Jim_GetAssocData(interp, "context");
2776         if (context == NULL)
2777         {
2778                 LOG_ERROR("mem2array: no command context");
2779                 return JIM_ERR;
2780         }
2781         target = get_current_target(context);
2782         if (target == NULL)
2783         {
2784                 LOG_ERROR("mem2array: no current target");
2785                 return JIM_ERR;
2786         }
2787
2788         return  target_mem2array(interp, target, argc-1, argv+1);
2789 }
2790
2791 static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv)
2792 {
2793         long l;
2794         u32 width;
2795         int len;
2796         u32 addr;
2797         u32 count;
2798         u32 v;
2799         const char *varname;
2800         u8 buffer[4096];
2801         int  n, e, retval;
2802         u32 i;
2803
2804         /* argv[1] = name of array to receive the data
2805          * argv[2] = desired width
2806          * argv[3] = memory address
2807          * argv[4] = count of times to read
2808          */
2809         if (argc != 4) {
2810                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
2811                 return JIM_ERR;
2812         }
2813         varname = Jim_GetString(argv[0], &len);
2814         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
2815
2816         e = Jim_GetLong(interp, argv[1], &l);
2817         width = l;
2818         if (e != JIM_OK) {
2819                 return e;
2820         }
2821
2822         e = Jim_GetLong(interp, argv[2], &l);
2823         addr = l;
2824         if (e != JIM_OK) {
2825                 return e;
2826         }
2827         e = Jim_GetLong(interp, argv[3], &l);
2828         len = l;
2829         if (e != JIM_OK) {
2830                 return e;
2831         }
2832         switch (width) {
2833                 case 8:
2834                         width = 1;
2835                         break;
2836                 case 16:
2837                         width = 2;
2838                         break;
2839                 case 32:
2840                         width = 4;
2841                         break;
2842                 default:
2843                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2844                         Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
2845                         return JIM_ERR;
2846         }
2847         if (len == 0) {
2848                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2849                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
2850                 return JIM_ERR;
2851         }
2852         if ((addr + (len * width)) < addr) {
2853                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2854                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
2855                 return JIM_ERR;
2856         }
2857         /* absurd transfer size? */
2858         if (len > 65536) {
2859                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2860                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
2861                 return JIM_ERR;
2862         }
2863
2864         if ((width == 1) ||
2865                 ((width == 2) && ((addr & 1) == 0)) ||
2866                 ((width == 4) && ((addr & 3) == 0))) {
2867                 /* all is well */
2868         } else {
2869                 char buf[100];
2870                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2871                 sprintf(buf, "mem2array address: 0x%08x is not aligned for %d byte reads", addr, width);
2872                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
2873                 return JIM_ERR;
2874         }
2875
2876         /* Transfer loop */
2877
2878         /* index counter */
2879         n = 0;
2880         /* assume ok */
2881         e = JIM_OK;
2882         while (len) {
2883                 /* Slurp... in buffer size chunks */
2884
2885                 count = len; /* in objects.. */
2886                 if (count > (sizeof(buffer)/width)) {
2887                         count = (sizeof(buffer)/width);
2888                 }
2889
2890                 retval = target_read_memory( target, addr, width, count, buffer );
2891                 if (retval != ERROR_OK) {
2892                         /* BOO !*/
2893                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
2894                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2895                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
2896                         e = JIM_ERR;
2897                         len = 0;
2898                 } else {
2899                         v = 0; /* shut up gcc */
2900                         for (i = 0 ;i < count ;i++, n++) {
2901                                 switch (width) {
2902                                         case 4:
2903                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
2904                                                 break;
2905                                         case 2:
2906                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
2907                                                 break;
2908                                         case 1:
2909                                                 v = buffer[i] & 0x0ff;
2910                                                 break;
2911                                 }
2912                                 new_int_array_element(interp, varname, n, v);
2913                         }
2914                         len -= count;
2915                 }
2916         }
2917
2918         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2919
2920         return JIM_OK;
2921 }
2922
2923 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 *val)
2924 {
2925         char *namebuf;
2926         Jim_Obj *nameObjPtr, *valObjPtr;
2927         int result;
2928         long l;
2929
2930         namebuf = alloc_printf("%s(%d)", varname, idx);
2931         if (!namebuf)
2932                 return JIM_ERR;
2933
2934         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
2935         if (!nameObjPtr)
2936         {
2937                 free(namebuf);
2938                 return JIM_ERR;
2939         }
2940
2941         Jim_IncrRefCount(nameObjPtr);
2942         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
2943         Jim_DecrRefCount(interp, nameObjPtr);
2944         free(namebuf);
2945         if (valObjPtr == NULL)
2946                 return JIM_ERR;
2947
2948         result = Jim_GetLong(interp, valObjPtr, &l);
2949         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
2950         *val = l;
2951         return result;
2952 }
2953
2954 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
2955 {
2956         command_context_t *context;
2957         target_t *target;
2958
2959         context = Jim_GetAssocData(interp, "context");
2960         if (context == NULL){
2961                 LOG_ERROR("array2mem: no command context");
2962                 return JIM_ERR;
2963         }
2964         target = get_current_target(context);
2965         if (target == NULL){
2966                 LOG_ERROR("array2mem: no current target");
2967                 return JIM_ERR;
2968         }
2969
2970         return target_array2mem( interp,target, argc-1, argv+1 );
2971 }
2972
2973 static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv)
2974 {
2975         long l;
2976         u32 width;
2977         int len;
2978         u32 addr;
2979         u32 count;
2980         u32 v;
2981         const char *varname;
2982         u8 buffer[4096];
2983         int  n, e, retval;
2984         u32 i;
2985
2986         /* argv[1] = name of array to get the data
2987          * argv[2] = desired width
2988          * argv[3] = memory address
2989          * argv[4] = count to write
2990          */
2991         if (argc != 4) {
2992                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
2993                 return JIM_ERR;
2994         }
2995         varname = Jim_GetString(argv[0], &len);
2996         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
2997
2998         e = Jim_GetLong(interp, argv[1], &l);
2999         width = l;
3000         if (e != JIM_OK) {
3001                 return e;
3002         }
3003
3004         e = Jim_GetLong(interp, argv[2], &l);
3005         addr = l;
3006         if (e != JIM_OK) {
3007                 return e;
3008         }
3009         e = Jim_GetLong(interp, argv[3], &l);
3010         len = l;
3011         if (e != JIM_OK) {
3012                 return e;
3013         }
3014         switch (width) {
3015                 case 8:
3016                         width = 1;
3017                         break;
3018                 case 16:
3019                         width = 2;
3020                         break;
3021                 case 32:
3022                         width = 4;
3023                         break;
3024                 default:
3025                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3026                         Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
3027                         return JIM_ERR;
3028         }
3029         if (len == 0) {
3030                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3031                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
3032                 return JIM_ERR;
3033         }
3034         if ((addr + (len * width)) < addr) {
3035                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3036                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
3037                 return JIM_ERR;
3038         }
3039         /* absurd transfer size? */
3040         if (len > 65536) {
3041                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3042                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
3043                 return JIM_ERR;
3044         }
3045
3046         if ((width == 1) ||
3047                 ((width == 2) && ((addr & 1) == 0)) ||
3048                 ((width == 4) && ((addr & 3) == 0))) {
3049                 /* all is well */
3050         } else {
3051                 char buf[100];
3052                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3053                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads", addr, width);
3054                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3055                 return JIM_ERR;
3056         }
3057
3058         /* Transfer loop */
3059
3060         /* index counter */
3061         n = 0;
3062         /* assume ok */
3063         e = JIM_OK;
3064         while (len) {
3065                 /* Slurp... in buffer size chunks */
3066
3067                 count = len; /* in objects.. */
3068                 if (count > (sizeof(buffer)/width)) {
3069                         count = (sizeof(buffer)/width);
3070                 }
3071
3072                 v = 0; /* shut up gcc */
3073                 for (i = 0 ;i < count ;i++, n++) {
3074                         get_int_array_element(interp, varname, n, &v);
3075                         switch (width) {
3076                         case 4:
3077                                 target_buffer_set_u32(target, &buffer[i*width], v);
3078                                 break;
3079                         case 2:
3080                                 target_buffer_set_u16(target, &buffer[i*width], v);
3081                                 break;
3082                         case 1:
3083                                 buffer[i] = v & 0x0ff;
3084                                 break;
3085                         }
3086                 }
3087                 len -= count;
3088
3089                 retval = target_write_memory(target, addr, width, count, buffer);
3090                 if (retval != ERROR_OK) {
3091                         /* BOO !*/
3092                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
3093                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3094                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3095                         e = JIM_ERR;
3096                         len = 0;
3097                 }
3098         }
3099
3100         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3101
3102         return JIM_OK;
3103 }
3104
3105 void target_all_handle_event( enum target_event e )
3106 {
3107         target_t *target;
3108
3109         LOG_DEBUG( "**all*targets: event: %d, %s",
3110                         e,
3111                         Jim_Nvp_value2name_simple( nvp_target_event, e )->name );
3112
3113         target = all_targets;
3114         while (target){
3115                 target_handle_event( target, e );
3116                 target = target->next;
3117         }
3118 }
3119
3120 void target_handle_event( target_t *target, enum target_event e )
3121 {
3122         target_event_action_t *teap;
3123         int done;
3124
3125         teap = target->event_action;
3126
3127         done = 0;
3128         while( teap ){
3129                 if( teap->event == e ){
3130                         done = 1;
3131                         LOG_DEBUG( "target: (%d) %s (%s) event: %d (%s) action: %s\n",
3132                                            target->target_number,
3133                                            target->cmd_name,
3134                                            target->type->name,
3135                                            e,
3136                                            Jim_Nvp_value2name_simple( nvp_target_event, e )->name,
3137                                            Jim_GetString( teap->body, NULL ) );
3138                         if (Jim_EvalObj( interp, teap->body )!=JIM_OK)
3139                         {
3140                                 Jim_PrintErrorMessage(interp);
3141                         }
3142                 }
3143                 teap = teap->next;
3144         }
3145         if( !done ){
3146                 LOG_DEBUG( "event: %d %s - no action",
3147                                    e,
3148                                    Jim_Nvp_value2name_simple( nvp_target_event, e )->name );
3149         }
3150 }
3151
3152 enum target_cfg_param {
3153         TCFG_TYPE,
3154         TCFG_EVENT,
3155         TCFG_WORK_AREA_VIRT,
3156         TCFG_WORK_AREA_PHYS,
3157         TCFG_WORK_AREA_SIZE,
3158         TCFG_WORK_AREA_BACKUP,
3159         TCFG_ENDIAN,
3160         TCFG_VARIANT,
3161         TCFG_CHAIN_POSITION,
3162 };
3163
3164 static Jim_Nvp nvp_config_opts[] = {
3165         { .name = "-type",             .value = TCFG_TYPE },
3166         { .name = "-event",            .value = TCFG_EVENT },
3167         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
3168         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
3169         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
3170         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3171         { .name = "-endian" ,          .value = TCFG_ENDIAN },
3172         { .name = "-variant",          .value = TCFG_VARIANT },
3173         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
3174
3175         { .name = NULL, .value = -1 }
3176 };
3177
3178 static int target_configure( Jim_GetOptInfo *goi, target_t *target )
3179 {
3180         Jim_Nvp *n;
3181         Jim_Obj *o;
3182         jim_wide w;
3183         char *cp;
3184         int e;
3185
3186         /* parse config or cget options ... */
3187         while( goi->argc > 0 ){
3188                 Jim_SetEmptyResult( goi->interp );
3189                 /* Jim_GetOpt_Debug( goi ); */
3190
3191                 if( target->type->target_jim_configure ){
3192                         /* target defines a configure function */
3193                         /* target gets first dibs on parameters */
3194                         e = (*(target->type->target_jim_configure))( target, goi );
3195                         if( e == JIM_OK ){
3196                                 /* more? */
3197                                 continue;
3198                         }
3199                         if( e == JIM_ERR ){
3200                                 /* An error */
3201                                 return e;
3202                         }
3203                         /* otherwise we 'continue' below */
3204                 }
3205                 e = Jim_GetOpt_Nvp( goi, nvp_config_opts, &n );
3206                 if( e != JIM_OK ){
3207                         Jim_GetOpt_NvpUnknown( goi, nvp_config_opts, 0 );
3208                         return e;
3209                 }
3210                 switch( n->value ){
3211                 case TCFG_TYPE:
3212                         /* not setable */
3213                         if( goi->isconfigure ){
3214                                 Jim_SetResult_sprintf( goi->interp, "not setable: %s", n->name );
3215                                 return JIM_ERR;
3216                         } else {
3217                         no_params:
3218                                 if( goi->argc != 0 ){
3219                                         Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "NO PARAMS");
3220                                         return JIM_ERR;
3221                                 }
3222                         }
3223                         Jim_SetResultString( goi->interp, target->type->name, -1 );
3224                         /* loop for more */
3225                         break;
3226                 case TCFG_EVENT:
3227                         if( goi->argc == 0 ){
3228                                 Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
3229                                 return JIM_ERR;
3230                         }
3231
3232                         e = Jim_GetOpt_Nvp( goi, nvp_target_event, &n );
3233                         if( e != JIM_OK ){
3234                                 Jim_GetOpt_NvpUnknown( goi, nvp_target_event, 1 );
3235                                 return e;
3236                         }
3237
3238                         if( goi->isconfigure ){
3239                                 if( goi->argc != 1 ){
3240                                         Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
3241                                         return JIM_ERR;
3242                                 }
3243                         } else {
3244                                 if( goi->argc != 0 ){
3245                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
3246                                         return JIM_ERR;
3247                                 }
3248                         }
3249
3250                         {
3251                                 target_event_action_t *teap;
3252
3253                                 teap = target->event_action;
3254                                 /* replace existing? */
3255                                 while( teap ){
3256                                         if( teap->event == (enum target_event)n->value ){
3257                                                 break;
3258                                         }
3259                                         teap = teap->next;
3260                                 }
3261
3262                                 if( goi->isconfigure ){
3263                                         if( teap == NULL ){
3264                                                 /* create new */
3265                                                 teap = calloc( 1, sizeof(*teap) );
3266                                         }
3267                                         teap->event = n->value;
3268                                         Jim_GetOpt_Obj( goi, &o );
3269                                         if( teap->body ){
3270                                                 Jim_DecrRefCount( interp, teap->body );
3271                                         }
3272                                         teap->body  = Jim_DuplicateObj( goi->interp, o );
3273                                         /*
3274                                          * FIXME:
3275                                          *     Tcl/TK - "tk events" have a nice feature.
3276                                          *     See the "BIND" command.
3277                                          *    We should support that here.
3278                                          *     You can specify %X and %Y in the event code.
3279                                          *     The idea is: %T - target name.
3280                                          *     The idea is: %N - target number
3281                                          *     The idea is: %E - event name.
3282                                          */
3283                                         Jim_IncrRefCount( teap->body );
3284
3285                                         /* add to head of event list */
3286                                         teap->next = target->event_action;
3287                                         target->event_action = teap;
3288                                         Jim_SetEmptyResult(goi->interp);
3289                                 } else {
3290                                         /* get */
3291                                         if( teap == NULL ){
3292                                                 Jim_SetEmptyResult( goi->interp );
3293                                         } else {
3294                                                 Jim_SetResult( goi->interp, Jim_DuplicateObj( goi->interp, teap->body ) );
3295                                         }
3296                                 }
3297                         }
3298                         /* loop for more */
3299                         break;
3300
3301                 case TCFG_WORK_AREA_VIRT:
3302                         if( goi->isconfigure ){
3303                                 target_free_all_working_areas(target);
3304                                 e = Jim_GetOpt_Wide( goi, &w );
3305                                 if( e != JIM_OK ){
3306                                         return e;
3307                                 }
3308                                 target->working_area_virt = w;
3309                         } else {
3310                                 if( goi->argc != 0 ){
3311                                         goto no_params;
3312                                 }
3313                         }
3314                         Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_virt ) );
3315                         /* loop for more */
3316                         break;
3317
3318                 case TCFG_WORK_AREA_PHYS:
3319                         if( goi->isconfigure ){
3320                                 target_free_all_working_areas(target);
3321                                 e = Jim_GetOpt_Wide( goi, &w );
3322                                 if( e != JIM_OK ){
3323                                         return e;
3324                                 }
3325                                 target->working_area_phys = w;
3326                         } else {
3327                                 if( goi->argc != 0 ){
3328                                         goto no_params;
3329                                 }
3330                         }
3331                         Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_phys ) );
3332                         /* loop for more */
3333                         break;
3334
3335                 case TCFG_WORK_AREA_SIZE:
3336                         if( goi->isconfigure ){
3337                                 target_free_all_working_areas(target);
3338                                 e = Jim_GetOpt_Wide( goi, &w );
3339                                 if( e != JIM_OK ){
3340                                         return e;
3341                                 }
3342                                 target->working_area_size = w;
3343                         } else {
3344                                 if( goi->argc != 0 ){
3345                                         goto no_params;
3346                                 }
3347                         }
3348                         Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_size ) );
3349                         /* loop for more */
3350                         break;
3351
3352                 case TCFG_WORK_AREA_BACKUP:
3353                         if( goi->isconfigure ){
3354                                 target_free_all_working_areas(target);
3355                                 e = Jim_GetOpt_Wide( goi, &w );
3356                                 if( e != JIM_OK ){
3357                                         return e;
3358                                 }
3359                                 /* make this exactly 1 or 0 */
3360                                 target->backup_working_area = (!!w);
3361                         } else {
3362                                 if( goi->argc != 0 ){
3363                                         goto no_params;
3364                                 }
3365                         }
3366                         Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_size ) );
3367                         /* loop for more e*/
3368                         break;
3369
3370                 case TCFG_ENDIAN:
3371                         if( goi->isconfigure ){
3372                                 e = Jim_GetOpt_Nvp( goi, nvp_target_endian, &n );
3373                                 if( e != JIM_OK ){
3374                                         Jim_GetOpt_NvpUnknown( goi, nvp_target_endian, 1 );
3375                                         return e;
3376                                 }
3377                                 target->endianness = n->value;
3378                         } else {
3379                                 if( goi->argc != 0 ){
3380                                         goto no_params;
3381                                 }
3382                         }
3383                         n = Jim_Nvp_value2name_simple( nvp_target_endian, target->endianness );
3384                         if( n->name == NULL ){
3385                                 target->endianness = TARGET_LITTLE_ENDIAN;
3386                                 n = Jim_Nvp_value2name_simple( nvp_target_endian, target->endianness );
3387                         }
3388                         Jim_SetResultString( goi->interp, n->name, -1 );
3389                         /* loop for more */
3390                         break;
3391
3392                 case TCFG_VARIANT:
3393                         if( goi->isconfigure ){
3394                                 if( goi->argc < 1 ){
3395                                         Jim_SetResult_sprintf( goi->interp,
3396                                                                                    "%s ?STRING?",
3397                                                                                    n->name );
3398                                         return JIM_ERR;
3399                                 }
3400                                 if( target->variant ){
3401                                         free((void *)(target->variant));
3402                                 }
3403                                 e = Jim_GetOpt_String( goi, &cp, NULL );
3404                                 target->variant = strdup(cp);
3405                         } else {
3406                                 if( goi->argc != 0 ){
3407                                         goto no_params;
3408                                 }
3409                         }
3410                         Jim_SetResultString( goi->interp, target->variant,-1 );
3411                         /* loop for more */
3412                         break;
3413                 case TCFG_CHAIN_POSITION:
3414                         if( goi->isconfigure ){
3415                                 Jim_Obj *o;
3416                                 jtag_tap_t *tap;
3417                                 target_free_all_working_areas(target);
3418                                 e = Jim_GetOpt_Obj( goi, &o );
3419                                 if( e != JIM_OK ){
3420                                         return e;
3421                                 }
3422                                 tap = jtag_TapByJimObj( goi->interp, o );
3423                                 if( tap == NULL ){
3424                                         return JIM_ERR;
3425                                 }
3426                                 /* make this exactly 1 or 0 */
3427                                 target->tap = tap;
3428                         } else {
3429                                 if( goi->argc != 0 ){
3430                                         goto no_params;
3431                                 }
3432                         }
3433                         Jim_SetResultString( interp, target->tap->dotted_name, -1 );
3434                         /* loop for more e*/
3435                         break;
3436                 }
3437         } /* while( goi->argc ) */
3438
3439
3440                 /* done - we return */
3441         return JIM_OK;
3442 }
3443
3444 /** this is the 'tcl' handler for the target specific command */
3445 static int tcl_target_func( Jim_Interp *interp, int argc, Jim_Obj *const *argv )
3446 {
3447         Jim_GetOptInfo goi;
3448         jim_wide a,b,c;
3449         int x,y,z;
3450         u8  target_buf[32];
3451         Jim_Nvp *n;
3452         target_t *target;
3453         struct command_context_s *cmd_ctx;
3454         int e;
3455
3456         enum {
3457                 TS_CMD_CONFIGURE,
3458                 TS_CMD_CGET,
3459
3460                 TS_CMD_MWW, TS_CMD_MWH, TS_CMD_MWB,
3461                 TS_CMD_MDW, TS_CMD_MDH, TS_CMD_MDB,
3462                 TS_CMD_MRW, TS_CMD_MRH, TS_CMD_MRB,
3463                 TS_CMD_MEM2ARRAY, TS_CMD_ARRAY2MEM,
3464                 TS_CMD_EXAMINE,
3465                 TS_CMD_POLL,
3466                 TS_CMD_RESET,
3467                 TS_CMD_HALT,
3468                 TS_CMD_WAITSTATE,
3469                 TS_CMD_EVENTLIST,
3470                 TS_CMD_CURSTATE,
3471                 TS_CMD_INVOKE_EVENT,
3472         };
3473
3474         static const Jim_Nvp target_options[] = {
3475                 { .name = "configure", .value = TS_CMD_CONFIGURE },
3476                 { .name = "cget", .value = TS_CMD_CGET },
3477                 { .name = "mww", .value = TS_CMD_MWW },
3478                 { .name = "mwh", .value = TS_CMD_MWH },
3479                 { .name = "mwb", .value = TS_CMD_MWB },
3480                 { .name = "mdw", .value = TS_CMD_MDW },
3481                 { .name = "mdh", .value = TS_CMD_MDH },
3482                 { .name = "mdb", .value = TS_CMD_MDB },
3483                 { .name = "mem2array", .value = TS_CMD_MEM2ARRAY },
3484                 { .name = "array2mem", .value = TS_CMD_ARRAY2MEM },
3485                 { .name = "eventlist", .value = TS_CMD_EVENTLIST },
3486                 { .name = "curstate",  .value = TS_CMD_CURSTATE },
3487
3488                 { .name = "arp_examine", .value = TS_CMD_EXAMINE },
3489                 { .name = "arp_poll", .value = TS_CMD_POLL },
3490                 { .name = "arp_reset", .value = TS_CMD_RESET },
3491                 { .name = "arp_halt", .value = TS_CMD_HALT },
3492                 { .name = "arp_waitstate", .value = TS_CMD_WAITSTATE },
3493                 { .name = "invoke-event", .value = TS_CMD_INVOKE_EVENT },
3494
3495                 { .name = NULL, .value = -1 },
3496         };
3497
3498         /* go past the "command" */
3499         Jim_GetOpt_Setup( &goi, interp, argc-1, argv+1 );
3500
3501         target = Jim_CmdPrivData( goi.interp );
3502         cmd_ctx = Jim_GetAssocData(goi.interp, "context");
3503
3504         /* commands here are in an NVP table */
3505         e = Jim_GetOpt_Nvp( &goi, target_options, &n );
3506         if( e != JIM_OK ){
3507                 Jim_GetOpt_NvpUnknown( &goi, target_options, 0 );
3508                 return e;
3509         }
3510         /* Assume blank result */
3511         Jim_SetEmptyResult( goi.interp );
3512
3513         switch( n->value ){
3514         case TS_CMD_CONFIGURE:
3515                 if( goi.argc < 2 ){
3516                         Jim_WrongNumArgs( goi.interp, goi.argc, goi.argv, "missing: -option VALUE ...");
3517                         return JIM_ERR;
3518                 }
3519                 goi.isconfigure = 1;
3520                 return target_configure( &goi, target );
3521         case TS_CMD_CGET:
3522                 // some things take params
3523                 if( goi.argc < 1 ){
3524                         Jim_WrongNumArgs( goi.interp, 0, goi.argv, "missing: ?-option?");
3525                         return JIM_ERR;
3526                 }
3527                 goi.isconfigure = 0;
3528                 return target_configure( &goi, target );
3529                 break;
3530         case TS_CMD_MWW:
3531         case TS_CMD_MWH:
3532         case TS_CMD_MWB:
3533                 /* argv[0] = cmd
3534                  * argv[1] = address
3535                  * argv[2] = data
3536                  * argv[3] = optional count.
3537                  */
3538
3539                 if( (goi.argc == 3) || (goi.argc == 4) ){
3540                         /* all is well */
3541                 } else {
3542                 mwx_error:
3543                         Jim_SetResult_sprintf( goi.interp, "expected: %s ADDR DATA [COUNT]", n->name );
3544                         return JIM_ERR;
3545                 }
3546
3547                 e = Jim_GetOpt_Wide( &goi, &a );
3548                 if( e != JIM_OK ){
3549                         goto mwx_error;
3550                 }
3551
3552                 e = Jim_GetOpt_Wide( &goi, &b );
3553                 if( e != JIM_OK ){
3554                         goto mwx_error;
3555                 }
3556                 if( goi.argc ){
3557                         e = Jim_GetOpt_Wide( &goi, &c );
3558                         if( e != JIM_OK ){
3559                                 goto mwx_error;
3560                         }
3561                 } else {
3562                         c = 1;
3563                 }
3564
3565                 switch( n->value ){
3566                 case TS_CMD_MWW:
3567                         target_buffer_set_u32( target, target_buf, b );
3568                         b = 4;
3569                         break;
3570                 case TS_CMD_MWH:
3571                         target_buffer_set_u16( target, target_buf, b );
3572                         b = 2;
3573                         break;
3574                 case TS_CMD_MWB:
3575                         target_buffer_set_u8( target, target_buf, b );
3576                         b = 1;
3577                         break;
3578                 }
3579                 for( x = 0 ; x < c ; x++ ){
3580                         e = target_write_memory( target, a, b, 1, target_buf );
3581                         if( e != ERROR_OK ){
3582                                 Jim_SetResult_sprintf( interp, "Error writing @ 0x%08x: %d\n", (int)(a), e );
3583                                 return JIM_ERR;
3584                         }
3585                         /* b = width */
3586                         a = a + b;
3587                 }
3588                 return JIM_OK;
3589                 break;
3590
3591                 /* display */
3592         case TS_CMD_MDW:
3593         case TS_CMD_MDH:
3594         case TS_CMD_MDB:
3595                 /* argv[0] = command
3596                  * argv[1] = address
3597                  * argv[2] = optional count
3598                  */
3599                 if( (goi.argc == 2) || (goi.argc == 3) ){
3600                         Jim_SetResult_sprintf( goi.interp, "expected: %s ADDR [COUNT]", n->name );
3601                         return JIM_ERR;
3602                 }
3603                 e = Jim_GetOpt_Wide( &goi, &a );
3604                 if( e != JIM_OK ){
3605                         return JIM_ERR;
3606                 }
3607                 if( goi.argc ){
3608                         e = Jim_GetOpt_Wide( &goi, &c );
3609                         if( e != JIM_OK ){
3610                                 return JIM_ERR;
3611                         }
3612                 } else {
3613                         c = 1;
3614                 }
3615                 b = 1; /* shut up gcc */
3616                 switch( n->value ){
3617                 case TS_CMD_MDW:
3618                         b =  4;
3619                         break;
3620                 case TS_CMD_MDH:
3621                         b = 2;
3622                         break;
3623                 case TS_CMD_MDB:
3624                         b = 1;
3625                         break;
3626                 }
3627
3628                 /* convert to "bytes" */
3629                 c = c * b;
3630                 /* count is now in 'BYTES' */
3631                 while( c > 0 ){
3632                         y = c;
3633                         if( y > 16 ){
3634                                 y = 16;
3635                         }
3636                         e = target_read_memory( target, a, b, y / b, target_buf );
3637                         if( e != ERROR_OK ){
3638                                 Jim_SetResult_sprintf( interp, "error reading target @ 0x%08lx", (int)(a) );
3639                                 return JIM_ERR;
3640                         }
3641
3642                         Jim_fprintf( interp, interp->cookie_stdout, "0x%08x ", (int)(a) );
3643                         switch( b ){
3644                         case 4:
3645                                 for( x = 0 ; (x < 16) && (x < y) ; x += 4 ){
3646                                         z = target_buffer_get_u32( target, &(target_buf[ x * 4 ]) );
3647                                         Jim_fprintf( interp, interp->cookie_stdout, "%08x ", (int)(z) );
3648                                 }
3649                                 for( ; (x < 16) ; x += 4 ){
3650                                         Jim_fprintf( interp, interp->cookie_stdout, "         " );
3651                                 }
3652                                 break;
3653                         case 2:
3654                                 for( x = 0 ; (x < 16) && (x < y) ; x += 2 ){
3655                                         z = target_buffer_get_u16( target, &(target_buf[ x * 2 ]) );
3656                                         Jim_fprintf( interp, interp->cookie_stdout, "%04x ", (int)(z) );
3657                                 }
3658                                 for( ; (x < 16) ; x += 2 ){
3659                                         Jim_fprintf( interp, interp->cookie_stdout, "     " );
3660                                 }
3661                                 break;
3662                         case 1:
3663                         default:
3664                                 for( x = 0 ; (x < 16) && (x < y) ; x += 1 ){
3665                                         z = target_buffer_get_u8( target, &(target_buf[ x * 4 ]) );
3666                                         Jim_fprintf( interp, interp->cookie_stdout, "%02x ", (int)(z) );
3667                                 }
3668                                 for( ; (x < 16) ; x += 1 ){
3669                                         Jim_fprintf( interp, interp->cookie_stdout, "   " );
3670                                 }
3671                                 break;
3672                         }
3673                         /* ascii-ify the bytes */
3674                         for( x = 0 ; x < y ; x++ ){
3675                                 if( (target_buf[x] >= 0x20) &&
3676                                         (target_buf[x] <= 0x7e) ){
3677                                         /* good */
3678                                 } else {
3679                                         /* smack it */
3680                                         target_buf[x] = '.';
3681                                 }
3682                         }
3683                         /* space pad  */
3684                         while( x < 16 ){
3685                                 target_buf[x] = ' ';
3686                                 x++;
3687                         }
3688                         /* terminate */
3689                         target_buf[16] = 0;
3690                         /* print - with a newline */
3691                         Jim_fprintf( interp, interp->cookie_stdout, "%s\n", target_buf );
3692                         /* NEXT... */
3693                         c -= 16;
3694                         a += 16;
3695                 }
3696                 return JIM_OK;
3697         case TS_CMD_MEM2ARRAY:
3698                 return target_mem2array( goi.interp, target, goi.argc, goi.argv );
3699                 break;
3700         case TS_CMD_ARRAY2MEM:
3701                 return target_array2mem( goi.interp, target, goi.argc, goi.argv );
3702                 break;
3703         case TS_CMD_EXAMINE:
3704                 if( goi.argc ){
3705                         Jim_WrongNumArgs( goi.interp, 2, argv, "[no parameters]");
3706                         return JIM_ERR;
3707                 }
3708                 e = target->type->examine( target );
3709                 if( e != ERROR_OK ){
3710                         Jim_SetResult_sprintf( interp, "examine-fails: %d", e );
3711                         return JIM_ERR;
3712                 }
3713                 return JIM_OK;
3714         case TS_CMD_POLL:
3715                 if( goi.argc ){
3716                         Jim_WrongNumArgs( goi.interp, 2, argv, "[no parameters]");
3717                         return JIM_ERR;
3718                 }
3719                 if( !(target_was_examined(target)) ){
3720                         e = ERROR_TARGET_NOT_EXAMINED;
3721                 } else {
3722                         e = target->type->poll( target );
3723                 }
3724                 if( e != ERROR_OK ){
3725                         Jim_SetResult_sprintf( interp, "poll-fails: %d", e );
3726                         return JIM_ERR;
3727                 } else {
3728                         return JIM_OK;
3729                 }
3730                 break;
3731         case TS_CMD_RESET:
3732                 if( goi.argc != 2 ){
3733                         Jim_WrongNumArgs( interp, 2, argv, "t|f|assert|deassert BOOL");
3734                         return JIM_ERR;
3735                 }
3736                 e = Jim_GetOpt_Nvp( &goi, nvp_assert, &n );
3737                 if( e != JIM_OK ){
3738                         Jim_GetOpt_NvpUnknown( &goi, nvp_assert, 1 );
3739                         return e;
3740                 }
3741                 /* the halt or not param */
3742                 e = Jim_GetOpt_Wide( &goi, &a);
3743                 if( e != JIM_OK ){
3744                         return e;
3745                 }
3746                 /* determine if we should halt or not. */
3747                 target->reset_halt = !!a;
3748                 /* When this happens - all workareas are invalid. */
3749                 target_free_all_working_areas_restore(target, 0);
3750
3751                 /* do the assert */
3752                 if( n->value == NVP_ASSERT ){
3753                         target->type->assert_reset( target );
3754                 } else {
3755                         target->type->deassert_reset( target );
3756                 }
3757                 return JIM_OK;
3758         case TS_CMD_HALT:
3759                 if( goi.argc ){
3760                         Jim_WrongNumArgs( goi.interp, 0, argv, "halt [no parameters]");
3761                         return JIM_ERR;
3762                 }
3763                 target->type->halt( target );
3764                 return JIM_OK;
3765         case TS_CMD_WAITSTATE:
3766                 /* params:  <name>  statename timeoutmsecs */
3767                 if( goi.argc != 2 ){
3768                         Jim_SetResult_sprintf( goi.interp, "%s STATENAME TIMEOUTMSECS", n->name );
3769                         return JIM_ERR;
3770                 }
3771                 e = Jim_GetOpt_Nvp( &goi, nvp_target_state, &n );
3772                 if( e != JIM_OK ){
3773                         Jim_GetOpt_NvpUnknown( &goi, nvp_target_state,1 );
3774                         return e;
3775                 }
3776                 e = Jim_GetOpt_Wide( &goi, &a );
3777                 if( e != JIM_OK ){
3778                         return e;
3779                 }
3780                 e = target_wait_state( target, n->value, a );
3781                 if( e != ERROR_OK ){
3782                         Jim_SetResult_sprintf( goi.interp,
3783                                                                    "target: %s wait %s fails (%d) %s",
3784                                                                    target->cmd_name,
3785                                                                    n->name,
3786                                                                    e, target_strerror_safe(e) );
3787                         return JIM_ERR;
3788                 } else {
3789                         return JIM_OK;
3790                 }
3791         case TS_CMD_EVENTLIST:
3792                 /* List for human, Events defined for this target.
3793                  * scripts/programs should use 'name cget -event NAME'
3794                  */
3795                 {
3796                         target_event_action_t *teap;
3797                         teap = target->event_action;
3798                         command_print( cmd_ctx, "Event actions for target (%d) %s\n",
3799                                                    target->target_number,
3800                                                    target->cmd_name );
3801                         command_print( cmd_ctx, "%-25s | Body", "Event");
3802                         command_print( cmd_ctx, "------------------------- | ----------------------------------------");
3803                         while( teap ){
3804                                 command_print( cmd_ctx,
3805                                                            "%-25s | %s",
3806                                                            Jim_Nvp_value2name_simple( nvp_target_event, teap->event )->name,
3807                                                            Jim_GetString( teap->body, NULL ) );
3808                                 teap = teap->next;
3809                         }
3810                         command_print( cmd_ctx, "***END***");
3811                         return JIM_OK;
3812                 }
3813         case TS_CMD_CURSTATE:
3814                 if( goi.argc != 0 ){
3815                         Jim_WrongNumArgs( goi.interp, 0, argv, "[no parameters]");
3816                         return JIM_ERR;
3817                 }
3818                 Jim_SetResultString( goi.interp,
3819                                                          Jim_Nvp_value2name_simple(nvp_target_state,target->state)->name,-1);
3820                 return JIM_OK;
3821         case TS_CMD_INVOKE_EVENT:
3822                 if( goi.argc != 1 ){
3823                         Jim_SetResult_sprintf( goi.interp, "%s ?EVENTNAME?",n->name);
3824                         return JIM_ERR;
3825                 }
3826                 e = Jim_GetOpt_Nvp( &goi, nvp_target_event, &n );
3827                 if( e != JIM_OK ){
3828                         Jim_GetOpt_NvpUnknown( &goi, nvp_target_event, 1 );
3829                         return e;
3830                 }
3831                 target_handle_event( target, n->value );
3832                 return JIM_OK;
3833         }
3834         return JIM_ERR;
3835 }
3836
3837 static int target_create( Jim_GetOptInfo *goi )
3838 {
3839         Jim_Obj *new_cmd;
3840         Jim_Cmd *cmd;
3841         const char *cp;
3842         char *cp2;
3843         int e;
3844         int x;
3845         target_t *target;
3846         struct command_context_s *cmd_ctx;
3847
3848         cmd_ctx = Jim_GetAssocData(goi->interp, "context");
3849         if( goi->argc < 3 ){
3850                 Jim_WrongNumArgs( goi->interp, 1, goi->argv, "?name? ?type? ..options...");
3851                 return JIM_ERR;
3852         }
3853
3854         /* COMMAND */
3855         Jim_GetOpt_Obj( goi, &new_cmd );
3856         /* does this command exist? */
3857         cmd = Jim_GetCommand( goi->interp, new_cmd, JIM_ERRMSG );
3858         if( cmd ){
3859                 cp = Jim_GetString( new_cmd, NULL );
3860                 Jim_SetResult_sprintf(goi->interp, "Command/target: %s Exists", cp);
3861                 return JIM_ERR;
3862         }
3863
3864         /* TYPE */
3865         e = Jim_GetOpt_String( goi, &cp2, NULL );
3866         cp = cp2;
3867         /* now does target type exist */
3868         for( x = 0 ; target_types[x] ; x++ ){
3869                 if( 0 == strcmp( cp, target_types[x]->name ) ){
3870                         /* found */
3871                         break;
3872                 }
3873         }
3874         if( target_types[x] == NULL ){
3875                 Jim_SetResult_sprintf( goi->interp, "Unknown target type %s, try one of ", cp );
3876                 for( x = 0 ; target_types[x] ; x++ ){
3877                         if( target_types[x+1] ){
3878                                 Jim_AppendStrings( goi->interp,
3879                                                                    Jim_GetResult(goi->interp),
3880                                                                    target_types[x]->name,
3881                                                                    ", ", NULL);
3882                         } else {
3883                                 Jim_AppendStrings( goi->interp,
3884                                                                    Jim_GetResult(goi->interp),
3885                                                                    " or ",
3886                                                                    target_types[x]->name,NULL );
3887                         }
3888                 }
3889                 return JIM_ERR;
3890         }
3891
3892         /* Create it */
3893         target = calloc(1,sizeof(target_t));
3894         /* set target number */
3895         target->target_number = new_target_number();
3896
3897         /* allocate memory for each unique target type */
3898         target->type = (target_type_t*)calloc(1,sizeof(target_type_t));
3899
3900         memcpy( target->type, target_types[x], sizeof(target_type_t));
3901
3902         /* will be set by "-endian" */
3903         target->endianness = TARGET_ENDIAN_UNKNOWN;
3904
3905         target->working_area        = 0x0;
3906         target->working_area_size   = 0x0;
3907         target->working_areas       = NULL;
3908         target->backup_working_area = 0;
3909
3910         target->state               = TARGET_UNKNOWN;
3911         target->debug_reason        = DBG_REASON_UNDEFINED;
3912         target->reg_cache           = NULL;
3913         target->breakpoints         = NULL;
3914         target->watchpoints         = NULL;
3915         target->next                = NULL;
3916         target->arch_info           = NULL;
3917
3918         target->display             = 1;
3919
3920         /* initialize trace information */
3921         target->trace_info = malloc(sizeof(trace_t));
3922         target->trace_info->num_trace_points         = 0;
3923         target->trace_info->trace_points_size        = 0;
3924         target->trace_info->trace_points             = NULL;
3925         target->trace_info->trace_history_size       = 0;
3926         target->trace_info->trace_history            = NULL;
3927         target->trace_info->trace_history_pos        = 0;
3928         target->trace_info->trace_history_overflowed = 0;
3929
3930         target->dbgmsg          = NULL;
3931         target->dbg_msg_enabled = 0;
3932
3933         target->endianness = TARGET_ENDIAN_UNKNOWN;
3934
3935         /* Do the rest as "configure" options */
3936         goi->isconfigure = 1;
3937         e = target_configure( goi, target);
3938
3939         if (target->tap == NULL)
3940         {
3941                 Jim_SetResultString( interp, "-chain-position required when creating target", -1);
3942                 e=JIM_ERR;
3943         }
3944
3945         if( e != JIM_OK ){
3946                 free( target->type );
3947                 free( target );
3948                 return e;
3949         }
3950
3951         if( target->endianness == TARGET_ENDIAN_UNKNOWN ){
3952                 /* default endian to little if not specified */
3953                 target->endianness = TARGET_LITTLE_ENDIAN;
3954         }
3955
3956         /* incase variant is not set */
3957         if (!target->variant)
3958                 target->variant = strdup("");
3959
3960         /* create the target specific commands */
3961         if( target->type->register_commands ){
3962                 (*(target->type->register_commands))( cmd_ctx );
3963         }
3964         if( target->type->target_create ){
3965                 (*(target->type->target_create))( target, goi->interp );
3966         }
3967
3968         /* append to end of list */
3969         {
3970                 target_t **tpp;
3971                 tpp = &(all_targets);
3972                 while( *tpp ){
3973                         tpp = &( (*tpp)->next );
3974                 }
3975                 *tpp = target;
3976         }
3977
3978         cp = Jim_GetString( new_cmd, NULL );
3979         target->cmd_name = strdup(cp);
3980
3981         /* now - create the new target name command */
3982         e = Jim_CreateCommand( goi->interp,
3983                                                    /* name */
3984                                                    cp,
3985                                                    tcl_target_func, /* C function */
3986                                                    target, /* private data */
3987                                                    NULL ); /* no del proc */
3988
3989         return e;
3990 }
3991
3992 static int jim_target( Jim_Interp *interp, int argc, Jim_Obj *const *argv )
3993 {
3994         int x,r,e;
3995         jim_wide w;
3996         struct command_context_s *cmd_ctx;
3997         target_t *target;
3998         Jim_GetOptInfo goi;
3999         enum tcmd {
4000                 /* TG = target generic */
4001                 TG_CMD_CREATE,
4002                 TG_CMD_TYPES,
4003                 TG_CMD_NAMES,
4004                 TG_CMD_CURRENT,
4005                 TG_CMD_NUMBER,
4006                 TG_CMD_COUNT,
4007         };
4008         const char *target_cmds[] = {
4009                 "create", "types", "names", "current", "number",
4010                 "count",
4011                 NULL /* terminate */
4012         };
4013
4014         LOG_DEBUG("Target command params:");
4015         LOG_DEBUG("%s", Jim_Debug_ArgvString(interp, argc, argv));
4016
4017         cmd_ctx = Jim_GetAssocData( interp, "context" );
4018
4019         Jim_GetOpt_Setup( &goi, interp, argc-1, argv+1 );
4020
4021         if( goi.argc == 0 ){
4022                 Jim_WrongNumArgs(interp, 1, argv, "missing: command ...");
4023                 return JIM_ERR;
4024         }
4025
4026         /* Jim_GetOpt_Debug( &goi ); */
4027         r = Jim_GetOpt_Enum( &goi, target_cmds, &x   );
4028         if( r != JIM_OK ){
4029                 return r;
4030         }
4031
4032         switch(x){
4033         default:
4034                 Jim_Panic(goi.interp,"Why am I here?");
4035                 return JIM_ERR;
4036         case TG_CMD_CURRENT:
4037                 if( goi.argc != 0 ){
4038                         Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters");
4039                         return JIM_ERR;
4040                 }
4041                 Jim_SetResultString( goi.interp, get_current_target( cmd_ctx )->cmd_name, -1 );
4042                 return JIM_OK;
4043         case TG_CMD_TYPES:
4044                 if( goi.argc != 0 ){
4045                         Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters" );
4046                         return JIM_ERR;
4047                 }
4048                 Jim_SetResult( goi.interp, Jim_NewListObj( goi.interp, NULL, 0 ) );
4049                 for( x = 0 ; target_types[x] ; x++ ){
4050                         Jim_ListAppendElement( goi.interp,
4051                                                                    Jim_GetResult(goi.interp),
4052                                                                    Jim_NewStringObj( goi.interp, target_types[x]->name, -1 ) );
4053                 }
4054                 return JIM_OK;
4055         case TG_CMD_NAMES:
4056                 if( goi.argc != 0 ){
4057                         Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters" );
4058                         return JIM_ERR;
4059                 }
4060                 Jim_SetResult( goi.interp, Jim_NewListObj( goi.interp, NULL, 0 ) );
4061                 target = all_targets;
4062                 while( target ){
4063                         Jim_ListAppendElement( goi.interp,
4064                                                                    Jim_GetResult(goi.interp),
4065                                                                    Jim_NewStringObj( goi.interp, target->cmd_name, -1 ) );
4066                         target = target->next;
4067                 }
4068                 return JIM_OK;
4069         case TG_CMD_CREATE:
4070                 if( goi.argc < 3 ){
4071                         Jim_WrongNumArgs( goi.interp, goi.argc, goi.argv, "?name  ... config options ...");
4072                         return JIM_ERR;
4073                 }
4074                 return target_create( &goi );
4075                 break;
4076         case TG_CMD_NUMBER:
4077                 if( goi.argc != 1 ){
4078                         Jim_SetResult_sprintf( goi.interp, "expected: target number ?NUMBER?");
4079                         return JIM_ERR;
4080                 }
4081                 e = Jim_GetOpt_Wide( &goi, &w );
4082                 if( e != JIM_OK ){
4083                         return JIM_ERR;
4084                 }
4085                 {
4086                         target_t *t;
4087                         t = get_target_by_num(w);
4088                         if( t == NULL ){
4089                                 Jim_SetResult_sprintf( goi.interp,"Target: number %d does not exist", (int)(w));
4090                                 return JIM_ERR;
4091                         }
4092                         Jim_SetResultString( goi.interp, t->cmd_name, -1 );
4093                         return JIM_OK;
4094                 }
4095         case TG_CMD_COUNT:
4096                 if( goi.argc != 0 ){
4097                         Jim_WrongNumArgs( goi.interp, 0, goi.argv, "<no parameters>");
4098                         return JIM_ERR;
4099                 }
4100                 Jim_SetResult( goi.interp,
4101                                            Jim_NewIntObj( goi.interp, max_target_number()));
4102                 return JIM_OK;
4103         }
4104
4105         return JIM_ERR;
4106 }
4107
4108
4109 struct FastLoad
4110 {
4111         u32 address;
4112         u8 *data;
4113         int length;
4114
4115 };
4116
4117 static int fastload_num;
4118 static struct FastLoad *fastload;
4119
4120 static void free_fastload(void)
4121 {
4122         if (fastload!=NULL)
4123         {
4124                 int i;
4125                 for (i=0; i<fastload_num; i++)
4126                 {
4127                         if (fastload[i].data)
4128                                 free(fastload[i].data);
4129                 }
4130                 free(fastload);
4131                 fastload=NULL;
4132         }
4133 }
4134
4135
4136
4137
4138 static int handle_fast_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
4139 {
4140         u8 *buffer;
4141         u32 buf_cnt;
4142         u32 image_size;
4143         u32 min_address=0;
4144         u32 max_address=0xffffffff;
4145         int i;
4146         int retval;
4147
4148         image_t image;
4149
4150         duration_t duration;
4151         char *duration_text;
4152
4153         if ((argc < 1)||(argc > 5))
4154         {
4155                 return ERROR_COMMAND_SYNTAX_ERROR;
4156         }
4157
4158         /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
4159         if (argc >= 2)
4160         {
4161                 image.base_address_set = 1;
4162                 image.base_address = strtoul(args[1], NULL, 0);
4163         }
4164         else
4165         {
4166                 image.base_address_set = 0;
4167         }
4168
4169
4170         image.start_address_set = 0;
4171
4172         if (argc>=4)
4173         {
4174                 min_address=strtoul(args[3], NULL, 0);
4175         }
4176         if (argc>=5)
4177         {
4178                 max_address=strtoul(args[4], NULL, 0)+min_address;
4179         }
4180
4181         if (min_address>max_address)
4182         {
4183                 return ERROR_COMMAND_SYNTAX_ERROR;
4184         }
4185
4186         duration_start_measure(&duration);
4187
4188         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
4189         {
4190                 return ERROR_OK;
4191         }
4192
4193         image_size = 0x0;
4194         retval = ERROR_OK;
4195         fastload_num=image.num_sections;
4196         fastload=(struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
4197         if (fastload==NULL)
4198         {
4199                 image_close(&image);
4200                 return ERROR_FAIL;
4201         }
4202         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
4203         for (i = 0; i < image.num_sections; i++)
4204         {
4205                 buffer = malloc(image.sections[i].size);
4206                 if (buffer == NULL)
4207                 {
4208                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
4209                         break;
4210                 }
4211
4212                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
4213                 {
4214                         free(buffer);
4215                         break;
4216                 }
4217
4218                 u32 offset=0;
4219                 u32 length=buf_cnt;
4220
4221
4222                 /* DANGER!!! beware of unsigned comparision here!!! */
4223
4224                 if ((image.sections[i].base_address+buf_cnt>=min_address)&&
4225                                 (image.sections[i].base_address<max_address))
4226                 {
4227                         if (image.sections[i].base_address<min_address)
4228                         {
4229                                 /* clip addresses below */
4230                                 offset+=min_address-image.sections[i].base_address;
4231                                 length-=offset;
4232                         }
4233
4234                         if (image.sections[i].base_address+buf_cnt>max_address)
4235                         {
4236                                 length-=(image.sections[i].base_address+buf_cnt)-max_address;
4237                         }
4238
4239                         fastload[i].address=image.sections[i].base_address+offset;
4240                         fastload[i].data=malloc(length);
4241                         if (fastload[i].data==NULL)
4242                         {
4243                                 free(buffer);
4244                                 break;
4245                         }
4246                         memcpy(fastload[i].data, buffer+offset, length);
4247                         fastload[i].length=length;
4248
4249                         image_size += length;
4250                         command_print(cmd_ctx, "%u byte written at address 0x%8.8x", length, image.sections[i].base_address+offset);
4251                 }
4252
4253                 free(buffer);
4254         }
4255
4256         duration_stop_measure(&duration, &duration_text);
4257         if (retval==ERROR_OK)
4258         {
4259                 command_print(cmd_ctx, "Loaded %u bytes in %s", image_size, duration_text);
4260                 command_print(cmd_ctx, "NB!!! image has not been loaded to target, issue a subsequent 'fast_load' to do so.");
4261         }
4262         free(duration_text);
4263
4264         image_close(&image);
4265
4266         if (retval!=ERROR_OK)
4267         {
4268                 free_fastload();
4269         }
4270
4271         return retval;
4272 }
4273
4274 static int handle_fast_load_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
4275 {
4276         if (argc>0)
4277                 return ERROR_COMMAND_SYNTAX_ERROR;
4278         if (fastload==NULL)
4279         {
4280                 LOG_ERROR("No image in memory");
4281                 return ERROR_FAIL;
4282         }
4283         int i;
4284         int ms=timeval_ms();
4285         int size=0;
4286         int retval=ERROR_OK;
4287         for (i=0; i<fastload_num;i++)
4288         {
4289                 target_t *target = get_current_target(cmd_ctx);
4290                 command_print(cmd_ctx, "Write to 0x%08x, length 0x%08x", fastload[i].address, fastload[i].length);
4291                 if (retval==ERROR_OK)
4292                 {
4293                         retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
4294                 }
4295                 size+=fastload[i].length;
4296         }
4297         int after=timeval_ms();
4298         command_print(cmd_ctx, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
4299         return retval;
4300 }