97a93c06121f409a6f10c14b96a7e4c821f06d7a
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2009 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   This program is free software; you can redistribute it and/or modify  *
18  *   it under the terms of the GNU General Public License as published by  *
19  *   the Free Software Foundation; either version 2 of the License, or     *
20  *   (at your option) any later version.                                   *
21  *                                                                         *
22  *   This program is distributed in the hope that it will be useful,       *
23  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
24  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
25  *   GNU General Public License for more details.                          *
26  *                                                                         *
27  *   You should have received a copy of the GNU General Public License     *
28  *   along with this program; if not, write to the                         *
29  *   Free Software Foundation, Inc.,                                       *
30  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "target.h"
37 #include "target_type.h"
38 #include "target_request.h"
39 #include "breakpoints.h"
40 #include "time_support.h"
41 #include "register.h"
42 #include "trace.h"
43 #include "image.h"
44 #include "jtag.h"
45
46
47 static int jim_mcrmrc(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
48
49 static int target_array2mem(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv);
50 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv);
51
52 /* targets */
53 extern struct target_type arm7tdmi_target;
54 extern struct target_type arm720t_target;
55 extern struct target_type arm9tdmi_target;
56 extern struct target_type arm920t_target;
57 extern struct target_type arm966e_target;
58 extern struct target_type arm926ejs_target;
59 extern struct target_type fa526_target;
60 extern struct target_type feroceon_target;
61 extern struct target_type dragonite_target;
62 extern struct target_type xscale_target;
63 extern struct target_type cortexm3_target;
64 extern struct target_type cortexa8_target;
65 extern struct target_type arm11_target;
66 extern struct target_type mips_m4k_target;
67 extern struct target_type avr_target;
68 extern struct target_type testee_target;
69
70 struct target_type *target_types[] =
71 {
72         &arm7tdmi_target,
73         &arm9tdmi_target,
74         &arm920t_target,
75         &arm720t_target,
76         &arm966e_target,
77         &arm926ejs_target,
78         &fa526_target,
79         &feroceon_target,
80         &dragonite_target,
81         &xscale_target,
82         &cortexm3_target,
83         &cortexa8_target,
84         &arm11_target,
85         &mips_m4k_target,
86         &avr_target,
87         &testee_target,
88         NULL,
89 };
90
91 struct target *all_targets = NULL;
92 struct target_event_callback *target_event_callbacks = NULL;
93 struct target_timer_callback *target_timer_callbacks = NULL;
94
95 const Jim_Nvp nvp_assert[] = {
96         { .name = "assert", NVP_ASSERT },
97         { .name = "deassert", NVP_DEASSERT },
98         { .name = "T", NVP_ASSERT },
99         { .name = "F", NVP_DEASSERT },
100         { .name = "t", NVP_ASSERT },
101         { .name = "f", NVP_DEASSERT },
102         { .name = NULL, .value = -1 }
103 };
104
105 const Jim_Nvp nvp_error_target[] = {
106         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
107         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
108         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
109         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
110         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
111         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
112         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
113         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
114         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
115         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
116         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
117         { .value = -1, .name = NULL }
118 };
119
120 const char *target_strerror_safe(int err)
121 {
122         const Jim_Nvp *n;
123
124         n = Jim_Nvp_value2name_simple(nvp_error_target, err);
125         if (n->name == NULL) {
126                 return "unknown";
127         } else {
128                 return n->name;
129         }
130 }
131
132 static const Jim_Nvp nvp_target_event[] = {
133         { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
134         { .value = TARGET_EVENT_OLD_pre_resume         , .name = "old-pre_resume" },
135
136         { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
137         { .value = TARGET_EVENT_HALTED, .name = "halted" },
138         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
139         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
140         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
141
142         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
143         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
144
145         /* historical name */
146
147         { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
148
149         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
150         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
151         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
152         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
153         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
154         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
155         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
156         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
157         { .value = TARGET_EVENT_RESET_INIT , .name = "reset-init" },
158         { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
159
160         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
161         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
162
163         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
164         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
165
166         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
167         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
168
169         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
170         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
171
172         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
173         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
174
175         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
176         { .value = TARGET_EVENT_RESUMED     , .name = "resume-ok" },
177         { .value = TARGET_EVENT_RESUME_END  , .name = "resume-end" },
178
179         { .name = NULL, .value = -1 }
180 };
181
182 const Jim_Nvp nvp_target_state[] = {
183         { .name = "unknown", .value = TARGET_UNKNOWN },
184         { .name = "running", .value = TARGET_RUNNING },
185         { .name = "halted",  .value = TARGET_HALTED },
186         { .name = "reset",   .value = TARGET_RESET },
187         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
188         { .name = NULL, .value = -1 },
189 };
190
191 const Jim_Nvp nvp_target_debug_reason [] = {
192         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
193         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
194         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
195         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
196         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
197         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
198         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
199         { .name = NULL, .value = -1 },
200 };
201
202 const Jim_Nvp nvp_target_endian[] = {
203         { .name = "big",    .value = TARGET_BIG_ENDIAN },
204         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
205         { .name = "be",     .value = TARGET_BIG_ENDIAN },
206         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
207         { .name = NULL,     .value = -1 },
208 };
209
210 const Jim_Nvp nvp_reset_modes[] = {
211         { .name = "unknown", .value = RESET_UNKNOWN },
212         { .name = "run"    , .value = RESET_RUN },
213         { .name = "halt"   , .value = RESET_HALT },
214         { .name = "init"   , .value = RESET_INIT },
215         { .name = NULL     , .value = -1 },
216 };
217
218 const char *
219 target_state_name( struct target *t )
220 {
221         const char *cp;
222         cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
223         if( !cp ){
224                 LOG_ERROR("Invalid target state: %d", (int)(t->state));
225                 cp = "(*BUG*unknown*BUG*)";
226         }
227         return cp;
228 }
229
230 /* determine the number of the new target */
231 static int new_target_number(void)
232 {
233         struct target *t;
234         int x;
235
236         /* number is 0 based */
237         x = -1;
238         t = all_targets;
239         while (t) {
240                 if (x < t->target_number) {
241                         x = t->target_number;
242                 }
243                 t = t->next;
244         }
245         return x + 1;
246 }
247
248 /* read a uint32_t from a buffer in target memory endianness */
249 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
250 {
251         if (target->endianness == TARGET_LITTLE_ENDIAN)
252                 return le_to_h_u32(buffer);
253         else
254                 return be_to_h_u32(buffer);
255 }
256
257 /* read a uint16_t from a buffer in target memory endianness */
258 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
259 {
260         if (target->endianness == TARGET_LITTLE_ENDIAN)
261                 return le_to_h_u16(buffer);
262         else
263                 return be_to_h_u16(buffer);
264 }
265
266 /* read a uint8_t from a buffer in target memory endianness */
267 uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
268 {
269         return *buffer & 0x0ff;
270 }
271
272 /* write a uint32_t to a buffer in target memory endianness */
273 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
274 {
275         if (target->endianness == TARGET_LITTLE_ENDIAN)
276                 h_u32_to_le(buffer, value);
277         else
278                 h_u32_to_be(buffer, value);
279 }
280
281 /* write a uint16_t to a buffer in target memory endianness */
282 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
283 {
284         if (target->endianness == TARGET_LITTLE_ENDIAN)
285                 h_u16_to_le(buffer, value);
286         else
287                 h_u16_to_be(buffer, value);
288 }
289
290 /* write a uint8_t to a buffer in target memory endianness */
291 void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
292 {
293         *buffer = value;
294 }
295
296 /* return a pointer to a configured target; id is name or number */
297 struct target *get_target(const char *id)
298 {
299         struct target *target;
300
301         /* try as tcltarget name */
302         for (target = all_targets; target; target = target->next) {
303                 if (target->cmd_name == NULL)
304                         continue;
305                 if (strcmp(id, target->cmd_name) == 0)
306                         return target;
307         }
308
309         /* It's OK to remove this fallback sometime after August 2010 or so */
310
311         /* no match, try as number */
312         unsigned num;
313         if (parse_uint(id, &num) != ERROR_OK)
314                 return NULL;
315
316         for (target = all_targets; target; target = target->next) {
317                 if (target->target_number == (int)num) {
318                         LOG_WARNING("use '%s' as target identifier, not '%u'",
319                                         target->cmd_name, num);
320                         return target;
321                 }
322         }
323
324         return NULL;
325 }
326
327 /* returns a pointer to the n-th configured target */
328 static struct target *get_target_by_num(int num)
329 {
330         struct target *target = all_targets;
331
332         while (target) {
333                 if (target->target_number == num) {
334                         return target;
335                 }
336                 target = target->next;
337         }
338
339         return NULL;
340 }
341
342 struct target* get_current_target(struct command_context *cmd_ctx)
343 {
344         struct target *target = get_target_by_num(cmd_ctx->current_target);
345
346         if (target == NULL)
347         {
348                 LOG_ERROR("BUG: current_target out of bounds");
349                 exit(-1);
350         }
351
352         return target;
353 }
354
355 int target_poll(struct target *target)
356 {
357         int retval;
358
359         /* We can't poll until after examine */
360         if (!target_was_examined(target))
361         {
362                 /* Fail silently lest we pollute the log */
363                 return ERROR_FAIL;
364         }
365
366         retval = target->type->poll(target);
367         if (retval != ERROR_OK)
368                 return retval;
369
370         if (target->halt_issued)
371         {
372                 if (target->state == TARGET_HALTED)
373                 {
374                         target->halt_issued = false;
375                 } else
376                 {
377                         long long t = timeval_ms() - target->halt_issued_time;
378                         if (t>1000)
379                         {
380                                 target->halt_issued = false;
381                                 LOG_INFO("Halt timed out, wake up GDB.");
382                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
383                         }
384                 }
385         }
386
387         return ERROR_OK;
388 }
389
390 int target_halt(struct target *target)
391 {
392         int retval;
393         /* We can't poll until after examine */
394         if (!target_was_examined(target))
395         {
396                 LOG_ERROR("Target not examined yet");
397                 return ERROR_FAIL;
398         }
399
400         retval = target->type->halt(target);
401         if (retval != ERROR_OK)
402                 return retval;
403
404         target->halt_issued = true;
405         target->halt_issued_time = timeval_ms();
406
407         return ERROR_OK;
408 }
409
410 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
411 {
412         int retval;
413
414         /* We can't poll until after examine */
415         if (!target_was_examined(target))
416         {
417                 LOG_ERROR("Target not examined yet");
418                 return ERROR_FAIL;
419         }
420
421         /* note that resume *must* be asynchronous. The CPU can halt before we poll. The CPU can
422          * even halt at the current PC as a result of a software breakpoint being inserted by (a bug?)
423          * the application.
424          */
425         if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
426                 return retval;
427
428         return retval;
429 }
430
431 int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
432 {
433         char buf[100];
434         int retval;
435         Jim_Nvp *n;
436         n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
437         if (n->name == NULL) {
438                 LOG_ERROR("invalid reset mode");
439                 return ERROR_FAIL;
440         }
441
442         /* disable polling during reset to make reset event scripts
443          * more predictable, i.e. dr/irscan & pathmove in events will
444          * not have JTAG operations injected into the middle of a sequence.
445          */
446         bool save_poll = jtag_poll_get_enabled();
447
448         jtag_poll_set_enabled(false);
449
450         sprintf(buf, "ocd_process_reset %s", n->name);
451         retval = Jim_Eval(interp, buf);
452
453         jtag_poll_set_enabled(save_poll);
454
455         if (retval != JIM_OK) {
456                 Jim_PrintErrorMessage(interp);
457                 return ERROR_FAIL;
458         }
459
460         /* We want any events to be processed before the prompt */
461         retval = target_call_timer_callbacks_now();
462
463         return retval;
464 }
465
466 static int identity_virt2phys(struct target *target,
467                 uint32_t virtual, uint32_t *physical)
468 {
469         *physical = virtual;
470         return ERROR_OK;
471 }
472
473 static int no_mmu(struct target *target, int *enabled)
474 {
475         *enabled = 0;
476         return ERROR_OK;
477 }
478
479 static int default_examine(struct target *target)
480 {
481         target_set_examined(target);
482         return ERROR_OK;
483 }
484
485 int target_examine_one(struct target *target)
486 {
487         return target->type->examine(target);
488 }
489
490 static int jtag_enable_callback(enum jtag_event event, void *priv)
491 {
492         struct target *target = priv;
493
494         if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
495                 return ERROR_OK;
496
497         jtag_unregister_event_callback(jtag_enable_callback, target);
498         return target_examine_one(target);
499 }
500
501
502 /* Targets that correctly implement init + examine, i.e.
503  * no communication with target during init:
504  *
505  * XScale
506  */
507 int target_examine(void)
508 {
509         int retval = ERROR_OK;
510         struct target *target;
511
512         for (target = all_targets; target; target = target->next)
513         {
514                 /* defer examination, but don't skip it */
515                 if (!target->tap->enabled) {
516                         jtag_register_event_callback(jtag_enable_callback,
517                                         target);
518                         continue;
519                 }
520                 if ((retval = target_examine_one(target)) != ERROR_OK)
521                         return retval;
522         }
523         return retval;
524 }
525 const char *target_get_name(struct target *target)
526 {
527         return target->type->name;
528 }
529
530 static int target_write_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
531 {
532         if (!target_was_examined(target))
533         {
534                 LOG_ERROR("Target not examined yet");
535                 return ERROR_FAIL;
536         }
537         return target->type->write_memory_imp(target, address, size, count, buffer);
538 }
539
540 static int target_read_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
541 {
542         if (!target_was_examined(target))
543         {
544                 LOG_ERROR("Target not examined yet");
545                 return ERROR_FAIL;
546         }
547         return target->type->read_memory_imp(target, address, size, count, buffer);
548 }
549
550 static int target_soft_reset_halt_imp(struct target *target)
551 {
552         if (!target_was_examined(target))
553         {
554                 LOG_ERROR("Target not examined yet");
555                 return ERROR_FAIL;
556         }
557         if (!target->type->soft_reset_halt_imp) {
558                 LOG_ERROR("Target %s does not support soft_reset_halt",
559                                 target->cmd_name);
560                 return ERROR_FAIL;
561         }
562         return target->type->soft_reset_halt_imp(target);
563 }
564
565 static int target_run_algorithm_imp(struct target *target, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_param, uint32_t entry_point, uint32_t exit_point, int timeout_ms, void *arch_info)
566 {
567         if (!target_was_examined(target))
568         {
569                 LOG_ERROR("Target not examined yet");
570                 return ERROR_FAIL;
571         }
572         return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
573 }
574
575 int target_read_memory(struct target *target,
576                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
577 {
578         return target->type->read_memory(target, address, size, count, buffer);
579 }
580
581 int target_read_phys_memory(struct target *target,
582                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
583 {
584         return target->type->read_phys_memory(target, address, size, count, buffer);
585 }
586
587 int target_write_memory(struct target *target,
588                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
589 {
590         return target->type->write_memory(target, address, size, count, buffer);
591 }
592
593 int target_write_phys_memory(struct target *target,
594                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
595 {
596         return target->type->write_phys_memory(target, address, size, count, buffer);
597 }
598
599 int target_bulk_write_memory(struct target *target,
600                 uint32_t address, uint32_t count, uint8_t *buffer)
601 {
602         return target->type->bulk_write_memory(target, address, count, buffer);
603 }
604
605 int target_add_breakpoint(struct target *target,
606                 struct breakpoint *breakpoint)
607 {
608         return target->type->add_breakpoint(target, breakpoint);
609 }
610 int target_remove_breakpoint(struct target *target,
611                 struct breakpoint *breakpoint)
612 {
613         return target->type->remove_breakpoint(target, breakpoint);
614 }
615
616 int target_add_watchpoint(struct target *target,
617                 struct watchpoint *watchpoint)
618 {
619         return target->type->add_watchpoint(target, watchpoint);
620 }
621 int target_remove_watchpoint(struct target *target,
622                 struct watchpoint *watchpoint)
623 {
624         return target->type->remove_watchpoint(target, watchpoint);
625 }
626
627 int target_get_gdb_reg_list(struct target *target,
628                 struct reg **reg_list[], int *reg_list_size)
629 {
630         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
631 }
632 int target_step(struct target *target,
633                 int current, uint32_t address, int handle_breakpoints)
634 {
635         return target->type->step(target, current, address, handle_breakpoints);
636 }
637
638
639 int target_run_algorithm(struct target *target,
640                 int num_mem_params, struct mem_param *mem_params,
641                 int num_reg_params, struct reg_param *reg_param,
642                 uint32_t entry_point, uint32_t exit_point,
643                 int timeout_ms, void *arch_info)
644 {
645         return target->type->run_algorithm(target,
646                         num_mem_params, mem_params, num_reg_params, reg_param,
647                         entry_point, exit_point, timeout_ms, arch_info);
648 }
649
650 /**
651  * Reset the @c examined flag for the given target.
652  * Pure paranoia -- targets are zeroed on allocation.
653  */
654 static void target_reset_examined(struct target *target)
655 {
656         target->examined = false;
657 }
658
659
660
661 static int default_mrc(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t *value)
662 {
663         LOG_ERROR("Not implemented: %s", __func__);
664         return ERROR_FAIL;
665 }
666
667 static int default_mcr(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t value)
668 {
669         LOG_ERROR("Not implemented: %s", __func__);
670         return ERROR_FAIL;
671 }
672
673 static int arm_cp_check(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm)
674 {
675         /* basic check */
676         if (!target_was_examined(target))
677         {
678                 LOG_ERROR("Target not examined yet");
679                 return ERROR_FAIL;
680         }
681
682         if ((cpnum <0) || (cpnum > 15))
683         {
684                 LOG_ERROR("Illegal co-processor %d", cpnum);
685                 return ERROR_FAIL;
686         }
687
688         if (op1 > 7)
689         {
690                 LOG_ERROR("Illegal op1");
691                 return ERROR_FAIL;
692         }
693
694         if (op2 > 7)
695         {
696                 LOG_ERROR("Illegal op2");
697                 return ERROR_FAIL;
698         }
699
700         if (CRn > 15)
701         {
702                 LOG_ERROR("Illegal CRn");
703                 return ERROR_FAIL;
704         }
705
706         if (CRm > 15)
707         {
708                 LOG_ERROR("Illegal CRm");
709                 return ERROR_FAIL;
710         }
711
712         return ERROR_OK;
713 }
714
715 int target_mrc(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t *value)
716 {
717         int retval;
718
719         retval = arm_cp_check(target, cpnum, op1, op2, CRn, CRm);
720         if (retval != ERROR_OK)
721                 return retval;
722
723         return target->type->mrc(target, cpnum, op1, op2, CRn, CRm, value);
724 }
725
726 int target_mcr(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t value)
727 {
728         int retval;
729
730         retval = arm_cp_check(target, cpnum, op1, op2, CRn, CRm);
731         if (retval != ERROR_OK)
732                 return retval;
733
734         return target->type->mcr(target, cpnum, op1, op2, CRn, CRm, value);
735 }
736
737 static int
738 err_read_phys_memory(struct target *target, uint32_t address,
739                 uint32_t size, uint32_t count, uint8_t *buffer)
740 {
741         LOG_ERROR("Not implemented: %s", __func__);
742         return ERROR_FAIL;
743 }
744
745 static int
746 err_write_phys_memory(struct target *target, uint32_t address,
747                 uint32_t size, uint32_t count, uint8_t *buffer)
748 {
749         LOG_ERROR("Not implemented: %s", __func__);
750         return ERROR_FAIL;
751 }
752
753 int target_init(struct command_context *cmd_ctx)
754 {
755         struct target *target;
756         int retval;
757
758         for (target = all_targets; target; target = target->next) {
759                 struct target_type *type = target->type;
760
761                 target_reset_examined(target);
762                 if (target->type->examine == NULL)
763                 {
764                         target->type->examine = default_examine;
765                 }
766
767                 if ((retval = target->type->init_target(cmd_ctx, target)) != ERROR_OK)
768                 {
769                         LOG_ERROR("target '%s' init failed", target_get_name(target));
770                         return retval;
771                 }
772
773                 /**
774                  * @todo MCR/MRC are ARM-specific; don't require them in
775                  * all targets, or for ARMs without coprocessors.
776                  */
777                 if (target->type->mcr == NULL)
778                 {
779                         target->type->mcr = default_mcr;
780                 } else
781                 {
782                         const struct command_registration mcr_cmd = {
783                                 .name = "mcr",
784                                 .mode = COMMAND_EXEC,
785                                 .jim_handler = &jim_mcrmrc,
786                                 .help = "write coprocessor",
787                                 .usage = "<cpnum> <op1> <op2> <CRn> <CRm> <value>",
788                         };
789                         register_command(cmd_ctx, NULL, &mcr_cmd);
790                 }
791
792                 if (target->type->mrc == NULL)
793                 {
794                         target->type->mrc = default_mrc;
795                 } else
796                 {
797                         const struct command_registration mrc_cmd = {
798                                 .name = "mrc",
799                                 .jim_handler = &jim_mcrmrc,
800                                 .help = "read coprocessor",
801                                 .usage = "<cpnum> <op1> <op2> <CRn> <CRm>",
802                         };
803                         register_command(cmd_ctx, NULL, &mrc_cmd);
804                 }
805
806
807                 /**
808                  * @todo get rid of those *memory_imp() methods, now that all
809                  * callers are using target_*_memory() accessors ... and make
810                  * sure the "physical" paths handle the same issues.
811                  */
812
813                 /* a non-invasive way(in terms of patches) to add some code that
814                  * runs before the type->write/read_memory implementation
815                  */
816                 target->type->write_memory_imp = target->type->write_memory;
817                 target->type->write_memory = target_write_memory_imp;
818                 target->type->read_memory_imp = target->type->read_memory;
819                 target->type->read_memory = target_read_memory_imp;
820                 target->type->soft_reset_halt_imp = target->type->soft_reset_halt;
821                 target->type->soft_reset_halt = target_soft_reset_halt_imp;
822                 target->type->run_algorithm_imp = target->type->run_algorithm;
823                 target->type->run_algorithm = target_run_algorithm_imp;
824
825                 /* Sanity-check MMU support ... stub in what we must, to help
826                  * implement it in stages, but warn if we need to do so.
827                  */
828                 if (type->mmu) {
829                         if (type->write_phys_memory == NULL) {
830                                 LOG_ERROR("type '%s' is missing %s",
831                                                 type->name,
832                                                 "write_phys_memory");
833                                 type->write_phys_memory = err_write_phys_memory;
834                         }
835                         if (type->read_phys_memory == NULL) {
836                                 LOG_ERROR("type '%s' is missing %s",
837                                                 type->name,
838                                                 "read_phys_memory");
839                                 type->read_phys_memory = err_read_phys_memory;
840                         }
841                         if (type->virt2phys == NULL) {
842                                 LOG_ERROR("type '%s' is missing %s",
843                                                 type->name,
844                                                 "virt2phys");
845                                 type->virt2phys = identity_virt2phys;
846                         }
847
848                 /* Make sure no-MMU targets all behave the same:  make no
849                  * distinction between physical and virtual addresses, and
850                  * ensure that virt2phys() is always an identity mapping.
851                  */
852                 } else {
853                         if (type->write_phys_memory
854                                         || type->read_phys_memory
855                                         || type->virt2phys)
856                                 LOG_WARNING("type '%s' has broken MMU hooks",
857                                                 type->name);
858
859                         type->mmu = no_mmu;
860                         type->write_phys_memory = type->write_memory;
861                         type->read_phys_memory = type->read_memory;
862                         type->virt2phys = identity_virt2phys;
863                 }
864         }
865
866         if (all_targets)
867         {
868                 if ((retval = target_register_user_commands(cmd_ctx)) != ERROR_OK)
869                         return retval;
870                 if ((retval = target_register_timer_callback(handle_target, 100, 1, NULL)) != ERROR_OK)
871                         return retval;
872         }
873
874         return ERROR_OK;
875 }
876
877 int target_register_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
878 {
879         struct target_event_callback **callbacks_p = &target_event_callbacks;
880
881         if (callback == NULL)
882         {
883                 return ERROR_INVALID_ARGUMENTS;
884         }
885
886         if (*callbacks_p)
887         {
888                 while ((*callbacks_p)->next)
889                         callbacks_p = &((*callbacks_p)->next);
890                 callbacks_p = &((*callbacks_p)->next);
891         }
892
893         (*callbacks_p) = malloc(sizeof(struct target_event_callback));
894         (*callbacks_p)->callback = callback;
895         (*callbacks_p)->priv = priv;
896         (*callbacks_p)->next = NULL;
897
898         return ERROR_OK;
899 }
900
901 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
902 {
903         struct target_timer_callback **callbacks_p = &target_timer_callbacks;
904         struct timeval now;
905
906         if (callback == NULL)
907         {
908                 return ERROR_INVALID_ARGUMENTS;
909         }
910
911         if (*callbacks_p)
912         {
913                 while ((*callbacks_p)->next)
914                         callbacks_p = &((*callbacks_p)->next);
915                 callbacks_p = &((*callbacks_p)->next);
916         }
917
918         (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
919         (*callbacks_p)->callback = callback;
920         (*callbacks_p)->periodic = periodic;
921         (*callbacks_p)->time_ms = time_ms;
922
923         gettimeofday(&now, NULL);
924         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
925         time_ms -= (time_ms % 1000);
926         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
927         if ((*callbacks_p)->when.tv_usec > 1000000)
928         {
929                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
930                 (*callbacks_p)->when.tv_sec += 1;
931         }
932
933         (*callbacks_p)->priv = priv;
934         (*callbacks_p)->next = NULL;
935
936         return ERROR_OK;
937 }
938
939 int target_unregister_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
940 {
941         struct target_event_callback **p = &target_event_callbacks;
942         struct target_event_callback *c = target_event_callbacks;
943
944         if (callback == NULL)
945         {
946                 return ERROR_INVALID_ARGUMENTS;
947         }
948
949         while (c)
950         {
951                 struct target_event_callback *next = c->next;
952                 if ((c->callback == callback) && (c->priv == priv))
953                 {
954                         *p = next;
955                         free(c);
956                         return ERROR_OK;
957                 }
958                 else
959                         p = &(c->next);
960                 c = next;
961         }
962
963         return ERROR_OK;
964 }
965
966 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
967 {
968         struct target_timer_callback **p = &target_timer_callbacks;
969         struct target_timer_callback *c = target_timer_callbacks;
970
971         if (callback == NULL)
972         {
973                 return ERROR_INVALID_ARGUMENTS;
974         }
975
976         while (c)
977         {
978                 struct target_timer_callback *next = c->next;
979                 if ((c->callback == callback) && (c->priv == priv))
980                 {
981                         *p = next;
982                         free(c);
983                         return ERROR_OK;
984                 }
985                 else
986                         p = &(c->next);
987                 c = next;
988         }
989
990         return ERROR_OK;
991 }
992
993 int target_call_event_callbacks(struct target *target, enum target_event event)
994 {
995         struct target_event_callback *callback = target_event_callbacks;
996         struct target_event_callback *next_callback;
997
998         if (event == TARGET_EVENT_HALTED)
999         {
1000                 /* execute early halted first */
1001                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1002         }
1003
1004         LOG_DEBUG("target event %i (%s)",
1005                           event,
1006                           Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1007
1008         target_handle_event(target, event);
1009
1010         while (callback)
1011         {
1012                 next_callback = callback->next;
1013                 callback->callback(target, event, callback->priv);
1014                 callback = next_callback;
1015         }
1016
1017         return ERROR_OK;
1018 }
1019
1020 static int target_timer_callback_periodic_restart(
1021                 struct target_timer_callback *cb, struct timeval *now)
1022 {
1023         int time_ms = cb->time_ms;
1024         cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1025         time_ms -= (time_ms % 1000);
1026         cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1027         if (cb->when.tv_usec > 1000000)
1028         {
1029                 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1030                 cb->when.tv_sec += 1;
1031         }
1032         return ERROR_OK;
1033 }
1034
1035 static int target_call_timer_callback(struct target_timer_callback *cb,
1036                 struct timeval *now)
1037 {
1038         cb->callback(cb->priv);
1039
1040         if (cb->periodic)
1041                 return target_timer_callback_periodic_restart(cb, now);
1042
1043         return target_unregister_timer_callback(cb->callback, cb->priv);
1044 }
1045
1046 static int target_call_timer_callbacks_check_time(int checktime)
1047 {
1048         keep_alive();
1049
1050         struct timeval now;
1051         gettimeofday(&now, NULL);
1052
1053         struct target_timer_callback *callback = target_timer_callbacks;
1054         while (callback)
1055         {
1056                 // cleaning up may unregister and free this callback
1057                 struct target_timer_callback *next_callback = callback->next;
1058
1059                 bool call_it = callback->callback &&
1060                         ((!checktime && callback->periodic) ||
1061                           now.tv_sec > callback->when.tv_sec ||
1062                          (now.tv_sec == callback->when.tv_sec &&
1063                           now.tv_usec >= callback->when.tv_usec));
1064
1065                 if (call_it)
1066                 {
1067                         int retval = target_call_timer_callback(callback, &now);
1068                         if (retval != ERROR_OK)
1069                                 return retval;
1070                 }
1071
1072                 callback = next_callback;
1073         }
1074
1075         return ERROR_OK;
1076 }
1077
1078 int target_call_timer_callbacks(void)
1079 {
1080         return target_call_timer_callbacks_check_time(1);
1081 }
1082
1083 /* invoke periodic callbacks immediately */
1084 int target_call_timer_callbacks_now(void)
1085 {
1086         return target_call_timer_callbacks_check_time(0);
1087 }
1088
1089 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1090 {
1091         struct working_area *c = target->working_areas;
1092         struct working_area *new_wa = NULL;
1093
1094         /* Reevaluate working area address based on MMU state*/
1095         if (target->working_areas == NULL)
1096         {
1097                 int retval;
1098                 int enabled;
1099
1100                 retval = target->type->mmu(target, &enabled);
1101                 if (retval != ERROR_OK)
1102                 {
1103                         return retval;
1104                 }
1105
1106                 if (!enabled) {
1107                         if (target->working_area_phys_spec) {
1108                                 LOG_DEBUG("MMU disabled, using physical "
1109                                         "address for working memory 0x%08x",
1110                                         (unsigned)target->working_area_phys);
1111                                 target->working_area = target->working_area_phys;
1112                         } else {
1113                                 LOG_ERROR("No working memory available. "
1114                                         "Specify -work-area-phys to target.");
1115                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1116                         }
1117                 } else {
1118                         if (target->working_area_virt_spec) {
1119                                 LOG_DEBUG("MMU enabled, using virtual "
1120                                         "address for working memory 0x%08x",
1121                                         (unsigned)target->working_area_virt);
1122                                 target->working_area = target->working_area_virt;
1123                         } else {
1124                                 LOG_ERROR("No working memory available. "
1125                                         "Specify -work-area-virt to target.");
1126                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1127                         }
1128                 }
1129         }
1130
1131         /* only allocate multiples of 4 byte */
1132         if (size % 4)
1133         {
1134                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes (0x%08x), padding", ((unsigned)(size)));
1135                 size = (size + 3) & (~3);
1136         }
1137
1138         /* see if there's already a matching working area */
1139         while (c)
1140         {
1141                 if ((c->free) && (c->size == size))
1142                 {
1143                         new_wa = c;
1144                         break;
1145                 }
1146                 c = c->next;
1147         }
1148
1149         /* if not, allocate a new one */
1150         if (!new_wa)
1151         {
1152                 struct working_area **p = &target->working_areas;
1153                 uint32_t first_free = target->working_area;
1154                 uint32_t free_size = target->working_area_size;
1155
1156                 c = target->working_areas;
1157                 while (c)
1158                 {
1159                         first_free += c->size;
1160                         free_size -= c->size;
1161                         p = &c->next;
1162                         c = c->next;
1163                 }
1164
1165                 if (free_size < size)
1166                 {
1167                         LOG_WARNING("not enough working area available(requested %u, free %u)",
1168                                     (unsigned)(size), (unsigned)(free_size));
1169                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1170                 }
1171
1172                 LOG_DEBUG("allocated new working area at address 0x%08x", (unsigned)first_free);
1173
1174                 new_wa = malloc(sizeof(struct working_area));
1175                 new_wa->next = NULL;
1176                 new_wa->size = size;
1177                 new_wa->address = first_free;
1178
1179                 if (target->backup_working_area)
1180                 {
1181                         int retval;
1182                         new_wa->backup = malloc(new_wa->size);
1183                         if ((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
1184                         {
1185                                 free(new_wa->backup);
1186                                 free(new_wa);
1187                                 return retval;
1188                         }
1189                 }
1190                 else
1191                 {
1192                         new_wa->backup = NULL;
1193                 }
1194
1195                 /* put new entry in list */
1196                 *p = new_wa;
1197         }
1198
1199         /* mark as used, and return the new (reused) area */
1200         new_wa->free = 0;
1201         *area = new_wa;
1202
1203         /* user pointer */
1204         new_wa->user = area;
1205
1206         return ERROR_OK;
1207 }
1208
1209 int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1210 {
1211         if (area->free)
1212                 return ERROR_OK;
1213
1214         if (restore && target->backup_working_area)
1215         {
1216                 int retval;
1217                 if ((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
1218                         return retval;
1219         }
1220
1221         area->free = 1;
1222
1223         /* mark user pointer invalid */
1224         *area->user = NULL;
1225         area->user = NULL;
1226
1227         return ERROR_OK;
1228 }
1229
1230 int target_free_working_area(struct target *target, struct working_area *area)
1231 {
1232         return target_free_working_area_restore(target, area, 1);
1233 }
1234
1235 /* free resources and restore memory, if restoring memory fails,
1236  * free up resources anyway
1237  */
1238 void target_free_all_working_areas_restore(struct target *target, int restore)
1239 {
1240         struct working_area *c = target->working_areas;
1241
1242         while (c)
1243         {
1244                 struct working_area *next = c->next;
1245                 target_free_working_area_restore(target, c, restore);
1246
1247                 if (c->backup)
1248                         free(c->backup);
1249
1250                 free(c);
1251
1252                 c = next;
1253         }
1254
1255         target->working_areas = NULL;
1256 }
1257
1258 void target_free_all_working_areas(struct target *target)
1259 {
1260         target_free_all_working_areas_restore(target, 1);
1261 }
1262
1263 int target_arch_state(struct target *target)
1264 {
1265         int retval;
1266         if (target == NULL)
1267         {
1268                 LOG_USER("No target has been configured");
1269                 return ERROR_OK;
1270         }
1271
1272         LOG_USER("target state: %s", target_state_name( target ));
1273
1274         if (target->state != TARGET_HALTED)
1275                 return ERROR_OK;
1276
1277         retval = target->type->arch_state(target);
1278         return retval;
1279 }
1280
1281 /* Single aligned words are guaranteed to use 16 or 32 bit access
1282  * mode respectively, otherwise data is handled as quickly as
1283  * possible
1284  */
1285 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1286 {
1287         int retval;
1288         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1289                   (int)size, (unsigned)address);
1290
1291         if (!target_was_examined(target))
1292         {
1293                 LOG_ERROR("Target not examined yet");
1294                 return ERROR_FAIL;
1295         }
1296
1297         if (size == 0) {
1298                 return ERROR_OK;
1299         }
1300
1301         if ((address + size - 1) < address)
1302         {
1303                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1304                 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1305                                   (unsigned)address,
1306                                   (unsigned)size);
1307                 return ERROR_FAIL;
1308         }
1309
1310         if (((address % 2) == 0) && (size == 2))
1311         {
1312                 return target_write_memory(target, address, 2, 1, buffer);
1313         }
1314
1315         /* handle unaligned head bytes */
1316         if (address % 4)
1317         {
1318                 uint32_t unaligned = 4 - (address % 4);
1319
1320                 if (unaligned > size)
1321                         unaligned = size;
1322
1323                 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1324                         return retval;
1325
1326                 buffer += unaligned;
1327                 address += unaligned;
1328                 size -= unaligned;
1329         }
1330
1331         /* handle aligned words */
1332         if (size >= 4)
1333         {
1334                 int aligned = size - (size % 4);
1335
1336                 /* use bulk writes above a certain limit. This may have to be changed */
1337                 if (aligned > 128)
1338                 {
1339                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1340                                 return retval;
1341                 }
1342                 else
1343                 {
1344                         if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1345                                 return retval;
1346                 }
1347
1348                 buffer += aligned;
1349                 address += aligned;
1350                 size -= aligned;
1351         }
1352
1353         /* handle tail writes of less than 4 bytes */
1354         if (size > 0)
1355         {
1356                 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1357                         return retval;
1358         }
1359
1360         return ERROR_OK;
1361 }
1362
1363 /* Single aligned words are guaranteed to use 16 or 32 bit access
1364  * mode respectively, otherwise data is handled as quickly as
1365  * possible
1366  */
1367 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1368 {
1369         int retval;
1370         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1371                           (int)size, (unsigned)address);
1372
1373         if (!target_was_examined(target))
1374         {
1375                 LOG_ERROR("Target not examined yet");
1376                 return ERROR_FAIL;
1377         }
1378
1379         if (size == 0) {
1380                 return ERROR_OK;
1381         }
1382
1383         if ((address + size - 1) < address)
1384         {
1385                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1386                 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1387                                   address,
1388                                   size);
1389                 return ERROR_FAIL;
1390         }
1391
1392         if (((address % 2) == 0) && (size == 2))
1393         {
1394                 return target_read_memory(target, address, 2, 1, buffer);
1395         }
1396
1397         /* handle unaligned head bytes */
1398         if (address % 4)
1399         {
1400                 uint32_t unaligned = 4 - (address % 4);
1401
1402                 if (unaligned > size)
1403                         unaligned = size;
1404
1405                 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1406                         return retval;
1407
1408                 buffer += unaligned;
1409                 address += unaligned;
1410                 size -= unaligned;
1411         }
1412
1413         /* handle aligned words */
1414         if (size >= 4)
1415         {
1416                 int aligned = size - (size % 4);
1417
1418                 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1419                         return retval;
1420
1421                 buffer += aligned;
1422                 address += aligned;
1423                 size -= aligned;
1424         }
1425
1426         /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1427         if(size >=2)
1428         {
1429                 int aligned = size - (size%2);
1430                 retval = target_read_memory(target, address, 2, aligned / 2, buffer);
1431                 if (retval != ERROR_OK)
1432                         return retval;
1433
1434                 buffer += aligned;
1435                 address += aligned;
1436                 size -= aligned;
1437         }
1438         /* handle tail writes of less than 4 bytes */
1439         if (size > 0)
1440         {
1441                 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1442                         return retval;
1443         }
1444
1445         return ERROR_OK;
1446 }
1447
1448 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1449 {
1450         uint8_t *buffer;
1451         int retval;
1452         uint32_t i;
1453         uint32_t checksum = 0;
1454         if (!target_was_examined(target))
1455         {
1456                 LOG_ERROR("Target not examined yet");
1457                 return ERROR_FAIL;
1458         }
1459
1460         if ((retval = target->type->checksum_memory(target, address,
1461                 size, &checksum)) != ERROR_OK)
1462         {
1463                 buffer = malloc(size);
1464                 if (buffer == NULL)
1465                 {
1466                         LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1467                         return ERROR_INVALID_ARGUMENTS;
1468                 }
1469                 retval = target_read_buffer(target, address, size, buffer);
1470                 if (retval != ERROR_OK)
1471                 {
1472                         free(buffer);
1473                         return retval;
1474                 }
1475
1476                 /* convert to target endianess */
1477                 for (i = 0; i < (size/sizeof(uint32_t)); i++)
1478                 {
1479                         uint32_t target_data;
1480                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1481                         target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1482                 }
1483
1484                 retval = image_calculate_checksum(buffer, size, &checksum);
1485                 free(buffer);
1486         }
1487
1488         *crc = checksum;
1489
1490         return retval;
1491 }
1492
1493 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
1494 {
1495         int retval;
1496         if (!target_was_examined(target))
1497         {
1498                 LOG_ERROR("Target not examined yet");
1499                 return ERROR_FAIL;
1500         }
1501
1502         if (target->type->blank_check_memory == 0)
1503                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1504
1505         retval = target->type->blank_check_memory(target, address, size, blank);
1506
1507         return retval;
1508 }
1509
1510 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
1511 {
1512         uint8_t value_buf[4];
1513         if (!target_was_examined(target))
1514         {
1515                 LOG_ERROR("Target not examined yet");
1516                 return ERROR_FAIL;
1517         }
1518
1519         int retval = target_read_memory(target, address, 4, 1, value_buf);
1520
1521         if (retval == ERROR_OK)
1522         {
1523                 *value = target_buffer_get_u32(target, value_buf);
1524                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1525                                   address,
1526                                   *value);
1527         }
1528         else
1529         {
1530                 *value = 0x0;
1531                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1532                                   address);
1533         }
1534
1535         return retval;
1536 }
1537
1538 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
1539 {
1540         uint8_t value_buf[2];
1541         if (!target_was_examined(target))
1542         {
1543                 LOG_ERROR("Target not examined yet");
1544                 return ERROR_FAIL;
1545         }
1546
1547         int retval = target_read_memory(target, address, 2, 1, value_buf);
1548
1549         if (retval == ERROR_OK)
1550         {
1551                 *value = target_buffer_get_u16(target, value_buf);
1552                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
1553                                   address,
1554                                   *value);
1555         }
1556         else
1557         {
1558                 *value = 0x0;
1559                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1560                                   address);
1561         }
1562
1563         return retval;
1564 }
1565
1566 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
1567 {
1568         int retval = target_read_memory(target, address, 1, 1, value);
1569         if (!target_was_examined(target))
1570         {
1571                 LOG_ERROR("Target not examined yet");
1572                 return ERROR_FAIL;
1573         }
1574
1575         if (retval == ERROR_OK)
1576         {
1577                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1578                                   address,
1579                                   *value);
1580         }
1581         else
1582         {
1583                 *value = 0x0;
1584                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1585                                   address);
1586         }
1587
1588         return retval;
1589 }
1590
1591 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
1592 {
1593         int retval;
1594         uint8_t value_buf[4];
1595         if (!target_was_examined(target))
1596         {
1597                 LOG_ERROR("Target not examined yet");
1598                 return ERROR_FAIL;
1599         }
1600
1601         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1602                           address,
1603                           value);
1604
1605         target_buffer_set_u32(target, value_buf, value);
1606         if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1607         {
1608                 LOG_DEBUG("failed: %i", retval);
1609         }
1610
1611         return retval;
1612 }
1613
1614 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
1615 {
1616         int retval;
1617         uint8_t value_buf[2];
1618         if (!target_was_examined(target))
1619         {
1620                 LOG_ERROR("Target not examined yet");
1621                 return ERROR_FAIL;
1622         }
1623
1624         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
1625                           address,
1626                           value);
1627
1628         target_buffer_set_u16(target, value_buf, value);
1629         if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1630         {
1631                 LOG_DEBUG("failed: %i", retval);
1632         }
1633
1634         return retval;
1635 }
1636
1637 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
1638 {
1639         int retval;
1640         if (!target_was_examined(target))
1641         {
1642                 LOG_ERROR("Target not examined yet");
1643                 return ERROR_FAIL;
1644         }
1645
1646         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1647                           address, value);
1648
1649         if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1650         {
1651                 LOG_DEBUG("failed: %i", retval);
1652         }
1653
1654         return retval;
1655 }
1656
1657 COMMAND_HANDLER(handle_targets_command)
1658 {
1659         struct target *target = all_targets;
1660
1661         if (CMD_ARGC == 1)
1662         {
1663                 target = get_target(CMD_ARGV[0]);
1664                 if (target == NULL) {
1665                         command_print(CMD_CTX,"Target: %s is unknown, try one of:\n", CMD_ARGV[0]);
1666                         goto DumpTargets;
1667                 }
1668                 if (!target->tap->enabled) {
1669                         command_print(CMD_CTX,"Target: TAP %s is disabled, "
1670                                         "can't be the current target\n",
1671                                         target->tap->dotted_name);
1672                         return ERROR_FAIL;
1673                 }
1674
1675                 CMD_CTX->current_target = target->target_number;
1676                 return ERROR_OK;
1677         }
1678 DumpTargets:
1679
1680         target = all_targets;
1681         command_print(CMD_CTX, "    TargetName         Type       Endian TapName            State       ");
1682         command_print(CMD_CTX, "--  ------------------ ---------- ------ ------------------ ------------");
1683         while (target)
1684         {
1685                 const char *state;
1686                 char marker = ' ';
1687
1688                 if (target->tap->enabled)
1689                         state = target_state_name( target );
1690                 else
1691                         state = "tap-disabled";
1692
1693                 if (CMD_CTX->current_target == target->target_number)
1694                         marker = '*';
1695
1696                 /* keep columns lined up to match the headers above */
1697                 command_print(CMD_CTX, "%2d%c %-18s %-10s %-6s %-18s %s",
1698                                           target->target_number,
1699                                           marker,
1700                                           target->cmd_name,
1701                                           target_get_name(target),
1702                                           Jim_Nvp_value2name_simple(nvp_target_endian,
1703                                                                 target->endianness)->name,
1704                                           target->tap->dotted_name,
1705                                           state);
1706                 target = target->next;
1707         }
1708
1709         return ERROR_OK;
1710 }
1711
1712 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1713
1714 static int powerDropout;
1715 static int srstAsserted;
1716
1717 static int runPowerRestore;
1718 static int runPowerDropout;
1719 static int runSrstAsserted;
1720 static int runSrstDeasserted;
1721
1722 static int sense_handler(void)
1723 {
1724         static int prevSrstAsserted = 0;
1725         static int prevPowerdropout = 0;
1726
1727         int retval;
1728         if ((retval = jtag_power_dropout(&powerDropout)) != ERROR_OK)
1729                 return retval;
1730
1731         int powerRestored;
1732         powerRestored = prevPowerdropout && !powerDropout;
1733         if (powerRestored)
1734         {
1735                 runPowerRestore = 1;
1736         }
1737
1738         long long current = timeval_ms();
1739         static long long lastPower = 0;
1740         int waitMore = lastPower + 2000 > current;
1741         if (powerDropout && !waitMore)
1742         {
1743                 runPowerDropout = 1;
1744                 lastPower = current;
1745         }
1746
1747         if ((retval = jtag_srst_asserted(&srstAsserted)) != ERROR_OK)
1748                 return retval;
1749
1750         int srstDeasserted;
1751         srstDeasserted = prevSrstAsserted && !srstAsserted;
1752
1753         static long long lastSrst = 0;
1754         waitMore = lastSrst + 2000 > current;
1755         if (srstDeasserted && !waitMore)
1756         {
1757                 runSrstDeasserted = 1;
1758                 lastSrst = current;
1759         }
1760
1761         if (!prevSrstAsserted && srstAsserted)
1762         {
1763                 runSrstAsserted = 1;
1764         }
1765
1766         prevSrstAsserted = srstAsserted;
1767         prevPowerdropout = powerDropout;
1768
1769         if (srstDeasserted || powerRestored)
1770         {
1771                 /* Other than logging the event we can't do anything here.
1772                  * Issuing a reset is a particularly bad idea as we might
1773                  * be inside a reset already.
1774                  */
1775         }
1776
1777         return ERROR_OK;
1778 }
1779
1780 static void target_call_event_callbacks_all(enum target_event e) {
1781         struct target *target;
1782         target = all_targets;
1783         while (target) {
1784                 target_call_event_callbacks(target, e);
1785                 target = target->next;
1786         }
1787 }
1788
1789 /* process target state changes */
1790 int handle_target(void *priv)
1791 {
1792         int retval = ERROR_OK;
1793
1794         /* we do not want to recurse here... */
1795         static int recursive = 0;
1796         if (! recursive)
1797         {
1798                 recursive = 1;
1799                 sense_handler();
1800                 /* danger! running these procedures can trigger srst assertions and power dropouts.
1801                  * We need to avoid an infinite loop/recursion here and we do that by
1802                  * clearing the flags after running these events.
1803                  */
1804                 int did_something = 0;
1805                 if (runSrstAsserted)
1806                 {
1807                         target_call_event_callbacks_all(TARGET_EVENT_GDB_HALT);
1808                         Jim_Eval(interp, "srst_asserted");
1809                         did_something = 1;
1810                 }
1811                 if (runSrstDeasserted)
1812                 {
1813                         Jim_Eval(interp, "srst_deasserted");
1814                         did_something = 1;
1815                 }
1816                 if (runPowerDropout)
1817                 {
1818                         target_call_event_callbacks_all(TARGET_EVENT_GDB_HALT);
1819                         Jim_Eval(interp, "power_dropout");
1820                         did_something = 1;
1821                 }
1822                 if (runPowerRestore)
1823                 {
1824                         Jim_Eval(interp, "power_restore");
1825                         did_something = 1;
1826                 }
1827
1828                 if (did_something)
1829                 {
1830                         /* clear detect flags */
1831                         sense_handler();
1832                 }
1833
1834                 /* clear action flags */
1835
1836                 runSrstAsserted = 0;
1837                 runSrstDeasserted = 0;
1838                 runPowerRestore = 0;
1839                 runPowerDropout = 0;
1840
1841                 recursive = 0;
1842         }
1843
1844         /* Poll targets for state changes unless that's globally disabled.
1845          * Skip targets that are currently disabled.
1846          */
1847         for (struct target *target = all_targets;
1848                         is_jtag_poll_safe() && target;
1849                         target = target->next)
1850         {
1851                 if (!target->tap->enabled)
1852                         continue;
1853
1854                 /* only poll target if we've got power and srst isn't asserted */
1855                 if (!powerDropout && !srstAsserted)
1856                 {
1857                         /* polling may fail silently until the target has been examined */
1858                         if ((retval = target_poll(target)) != ERROR_OK)
1859                         {
1860                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1861                                 return retval;
1862                         }
1863                 }
1864         }
1865
1866         return retval;
1867 }
1868
1869 COMMAND_HANDLER(handle_reg_command)
1870 {
1871         struct target *target;
1872         struct reg *reg = NULL;
1873         unsigned count = 0;
1874         char *value;
1875
1876         LOG_DEBUG("-");
1877
1878         target = get_current_target(CMD_CTX);
1879
1880         /* list all available registers for the current target */
1881         if (CMD_ARGC == 0)
1882         {
1883                 struct reg_cache *cache = target->reg_cache;
1884
1885                 count = 0;
1886                 while (cache)
1887                 {
1888                         unsigned i;
1889
1890                         command_print(CMD_CTX, "===== %s", cache->name);
1891
1892                         for (i = 0, reg = cache->reg_list;
1893                                         i < cache->num_regs;
1894                                         i++, reg++, count++)
1895                         {
1896                                 /* only print cached values if they are valid */
1897                                 if (reg->valid) {
1898                                         value = buf_to_str(reg->value,
1899                                                         reg->size, 16);
1900                                         command_print(CMD_CTX,
1901                                                         "(%i) %s (/%" PRIu32 "): 0x%s%s",
1902                                                         count, reg->name,
1903                                                         reg->size, value,
1904                                                         reg->dirty
1905                                                                 ? " (dirty)"
1906                                                                 : "");
1907                                         free(value);
1908                                 } else {
1909                                         command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
1910                                                           count, reg->name,
1911                                                           reg->size) ;
1912                                 }
1913                         }
1914                         cache = cache->next;
1915                 }
1916
1917                 return ERROR_OK;
1918         }
1919
1920         /* access a single register by its ordinal number */
1921         if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9'))
1922         {
1923                 unsigned num;
1924                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
1925
1926                 struct reg_cache *cache = target->reg_cache;
1927                 count = 0;
1928                 while (cache)
1929                 {
1930                         unsigned i;
1931                         for (i = 0; i < cache->num_regs; i++)
1932                         {
1933                                 if (count++ == num)
1934                                 {
1935                                         reg = &cache->reg_list[i];
1936                                         break;
1937                                 }
1938                         }
1939                         if (reg)
1940                                 break;
1941                         cache = cache->next;
1942                 }
1943
1944                 if (!reg)
1945                 {
1946                         command_print(CMD_CTX, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1947                         return ERROR_OK;
1948                 }
1949         } else /* access a single register by its name */
1950         {
1951                 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
1952
1953                 if (!reg)
1954                 {
1955                         command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
1956                         return ERROR_OK;
1957                 }
1958         }
1959
1960         /* display a register */
1961         if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0') && (CMD_ARGV[1][0] <= '9'))))
1962         {
1963                 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
1964                         reg->valid = 0;
1965
1966                 if (reg->valid == 0)
1967                 {
1968                         reg->type->get(reg);
1969                 }
1970                 value = buf_to_str(reg->value, reg->size, 16);
1971                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
1972                 free(value);
1973                 return ERROR_OK;
1974         }
1975
1976         /* set register value */
1977         if (CMD_ARGC == 2)
1978         {
1979                 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
1980                 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
1981
1982                 reg->type->set(reg, buf);
1983
1984                 value = buf_to_str(reg->value, reg->size, 16);
1985                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
1986                 free(value);
1987
1988                 free(buf);
1989
1990                 return ERROR_OK;
1991         }
1992
1993         command_print(CMD_CTX, "usage: reg <#|name> [value]");
1994
1995         return ERROR_OK;
1996 }
1997
1998 COMMAND_HANDLER(handle_poll_command)
1999 {
2000         int retval = ERROR_OK;
2001         struct target *target = get_current_target(CMD_CTX);
2002
2003         if (CMD_ARGC == 0)
2004         {
2005                 command_print(CMD_CTX, "background polling: %s",
2006                                 jtag_poll_get_enabled() ? "on" : "off");
2007                 command_print(CMD_CTX, "TAP: %s (%s)",
2008                                 target->tap->dotted_name,
2009                                 target->tap->enabled ? "enabled" : "disabled");
2010                 if (!target->tap->enabled)
2011                         return ERROR_OK;
2012                 if ((retval = target_poll(target)) != ERROR_OK)
2013                         return retval;
2014                 if ((retval = target_arch_state(target)) != ERROR_OK)
2015                         return retval;
2016         }
2017         else if (CMD_ARGC == 1)
2018         {
2019                 bool enable;
2020                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2021                 jtag_poll_set_enabled(enable);
2022         }
2023         else
2024         {
2025                 return ERROR_COMMAND_SYNTAX_ERROR;
2026         }
2027
2028         return retval;
2029 }
2030
2031 COMMAND_HANDLER(handle_wait_halt_command)
2032 {
2033         if (CMD_ARGC > 1)
2034                 return ERROR_COMMAND_SYNTAX_ERROR;
2035
2036         unsigned ms = 5000;
2037         if (1 == CMD_ARGC)
2038         {
2039                 int retval = parse_uint(CMD_ARGV[0], &ms);
2040                 if (ERROR_OK != retval)
2041                 {
2042                         command_print(CMD_CTX, "usage: %s [seconds]", CMD_NAME);
2043                         return ERROR_COMMAND_SYNTAX_ERROR;
2044                 }
2045                 // convert seconds (given) to milliseconds (needed)
2046                 ms *= 1000;
2047         }
2048
2049         struct target *target = get_current_target(CMD_CTX);
2050         return target_wait_state(target, TARGET_HALTED, ms);
2051 }
2052
2053 /* wait for target state to change. The trick here is to have a low
2054  * latency for short waits and not to suck up all the CPU time
2055  * on longer waits.
2056  *
2057  * After 500ms, keep_alive() is invoked
2058  */
2059 int target_wait_state(struct target *target, enum target_state state, int ms)
2060 {
2061         int retval;
2062         long long then = 0, cur;
2063         int once = 1;
2064
2065         for (;;)
2066         {
2067                 if ((retval = target_poll(target)) != ERROR_OK)
2068                         return retval;
2069                 if (target->state == state)
2070                 {
2071                         break;
2072                 }
2073                 cur = timeval_ms();
2074                 if (once)
2075                 {
2076                         once = 0;
2077                         then = timeval_ms();
2078                         LOG_DEBUG("waiting for target %s...",
2079                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2080                 }
2081
2082                 if (cur-then > 500)
2083                 {
2084                         keep_alive();
2085                 }
2086
2087                 if ((cur-then) > ms)
2088                 {
2089                         LOG_ERROR("timed out while waiting for target %s",
2090                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2091                         return ERROR_FAIL;
2092                 }
2093         }
2094
2095         return ERROR_OK;
2096 }
2097
2098 COMMAND_HANDLER(handle_halt_command)
2099 {
2100         LOG_DEBUG("-");
2101
2102         struct target *target = get_current_target(CMD_CTX);
2103         int retval = target_halt(target);
2104         if (ERROR_OK != retval)
2105                 return retval;
2106
2107         if (CMD_ARGC == 1)
2108         {
2109                 unsigned wait;
2110                 retval = parse_uint(CMD_ARGV[0], &wait);
2111                 if (ERROR_OK != retval)
2112                         return ERROR_COMMAND_SYNTAX_ERROR;
2113                 if (!wait)
2114                         return ERROR_OK;
2115         }
2116
2117         return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2118 }
2119
2120 COMMAND_HANDLER(handle_soft_reset_halt_command)
2121 {
2122         struct target *target = get_current_target(CMD_CTX);
2123
2124         LOG_USER("requesting target halt and executing a soft reset");
2125
2126         target->type->soft_reset_halt(target);
2127
2128         return ERROR_OK;
2129 }
2130
2131 COMMAND_HANDLER(handle_reset_command)
2132 {
2133         if (CMD_ARGC > 1)
2134                 return ERROR_COMMAND_SYNTAX_ERROR;
2135
2136         enum target_reset_mode reset_mode = RESET_RUN;
2137         if (CMD_ARGC == 1)
2138         {
2139                 const Jim_Nvp *n;
2140                 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2141                 if ((n->name == NULL) || (n->value == RESET_UNKNOWN)) {
2142                         return ERROR_COMMAND_SYNTAX_ERROR;
2143                 }
2144                 reset_mode = n->value;
2145         }
2146
2147         /* reset *all* targets */
2148         return target_process_reset(CMD_CTX, reset_mode);
2149 }
2150
2151
2152 COMMAND_HANDLER(handle_resume_command)
2153 {
2154         int current = 1;
2155         if (CMD_ARGC > 1)
2156                 return ERROR_COMMAND_SYNTAX_ERROR;
2157
2158         struct target *target = get_current_target(CMD_CTX);
2159         target_handle_event(target, TARGET_EVENT_OLD_pre_resume);
2160
2161         /* with no CMD_ARGV, resume from current pc, addr = 0,
2162          * with one arguments, addr = CMD_ARGV[0],
2163          * handle breakpoints, not debugging */
2164         uint32_t addr = 0;
2165         if (CMD_ARGC == 1)
2166         {
2167                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2168                 current = 0;
2169         }
2170
2171         return target_resume(target, current, addr, 1, 0);
2172 }
2173
2174 COMMAND_HANDLER(handle_step_command)
2175 {
2176         if (CMD_ARGC > 1)
2177                 return ERROR_COMMAND_SYNTAX_ERROR;
2178
2179         LOG_DEBUG("-");
2180
2181         /* with no CMD_ARGV, step from current pc, addr = 0,
2182          * with one argument addr = CMD_ARGV[0],
2183          * handle breakpoints, debugging */
2184         uint32_t addr = 0;
2185         int current_pc = 1;
2186         if (CMD_ARGC == 1)
2187         {
2188                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2189                 current_pc = 0;
2190         }
2191
2192         struct target *target = get_current_target(CMD_CTX);
2193
2194         return target->type->step(target, current_pc, addr, 1);
2195 }
2196
2197 static void handle_md_output(struct command_context *cmd_ctx,
2198                 struct target *target, uint32_t address, unsigned size,
2199                 unsigned count, const uint8_t *buffer)
2200 {
2201         const unsigned line_bytecnt = 32;
2202         unsigned line_modulo = line_bytecnt / size;
2203
2204         char output[line_bytecnt * 4 + 1];
2205         unsigned output_len = 0;
2206
2207         const char *value_fmt;
2208         switch (size) {
2209         case 4: value_fmt = "%8.8x "; break;
2210         case 2: value_fmt = "%4.2x "; break;
2211         case 1: value_fmt = "%2.2x "; break;
2212         default:
2213                 LOG_ERROR("invalid memory read size: %u", size);
2214                 exit(-1);
2215         }
2216
2217         for (unsigned i = 0; i < count; i++)
2218         {
2219                 if (i % line_modulo == 0)
2220                 {
2221                         output_len += snprintf(output + output_len,
2222                                         sizeof(output) - output_len,
2223                                         "0x%8.8x: ",
2224                                         (unsigned)(address + (i*size)));
2225                 }
2226
2227                 uint32_t value = 0;
2228                 const uint8_t *value_ptr = buffer + i * size;
2229                 switch (size) {
2230                 case 4: value = target_buffer_get_u32(target, value_ptr); break;
2231                 case 2: value = target_buffer_get_u16(target, value_ptr); break;
2232                 case 1: value = *value_ptr;
2233                 }
2234                 output_len += snprintf(output + output_len,
2235                                 sizeof(output) - output_len,
2236                                 value_fmt, value);
2237
2238                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
2239                 {
2240                         command_print(cmd_ctx, "%s", output);
2241                         output_len = 0;
2242                 }
2243         }
2244 }
2245
2246 COMMAND_HANDLER(handle_md_command)
2247 {
2248         if (CMD_ARGC < 1)
2249                 return ERROR_COMMAND_SYNTAX_ERROR;
2250
2251         unsigned size = 0;
2252         switch (CMD_NAME[2]) {
2253         case 'w': size = 4; break;
2254         case 'h': size = 2; break;
2255         case 'b': size = 1; break;
2256         default: return ERROR_COMMAND_SYNTAX_ERROR;
2257         }
2258
2259         bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2260         int (*fn)(struct target *target,
2261                         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2262         if (physical)
2263         {
2264                 CMD_ARGC--;
2265                 CMD_ARGV++;
2266                 fn=target_read_phys_memory;
2267         } else
2268         {
2269                 fn=target_read_memory;
2270         }
2271         if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2272         {
2273                 return ERROR_COMMAND_SYNTAX_ERROR;
2274         }
2275
2276         uint32_t address;
2277         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2278
2279         unsigned count = 1;
2280         if (CMD_ARGC == 2)
2281                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2282
2283         uint8_t *buffer = calloc(count, size);
2284
2285         struct target *target = get_current_target(CMD_CTX);
2286         int retval = fn(target, address, size, count, buffer);
2287         if (ERROR_OK == retval)
2288                 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2289
2290         free(buffer);
2291
2292         return retval;
2293 }
2294
2295 COMMAND_HANDLER(handle_mw_command)
2296 {
2297         if (CMD_ARGC < 2)
2298         {
2299                 return ERROR_COMMAND_SYNTAX_ERROR;
2300         }
2301         bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2302         int (*fn)(struct target *target,
2303                         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2304         if (physical)
2305         {
2306                 CMD_ARGC--;
2307                 CMD_ARGV++;
2308                 fn=target_write_phys_memory;
2309         } else
2310         {
2311                 fn=target_write_memory;
2312         }
2313         if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2314                 return ERROR_COMMAND_SYNTAX_ERROR;
2315
2316         uint32_t address;
2317         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2318
2319         uint32_t value;
2320         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2321
2322         unsigned count = 1;
2323         if (CMD_ARGC == 3)
2324                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2325
2326         struct target *target = get_current_target(CMD_CTX);
2327         unsigned wordsize;
2328         uint8_t value_buf[4];
2329         switch (CMD_NAME[2])
2330         {
2331                 case 'w':
2332                         wordsize = 4;
2333                         target_buffer_set_u32(target, value_buf, value);
2334                         break;
2335                 case 'h':
2336                         wordsize = 2;
2337                         target_buffer_set_u16(target, value_buf, value);
2338                         break;
2339                 case 'b':
2340                         wordsize = 1;
2341                         value_buf[0] = value;
2342                         break;
2343                 default:
2344                         return ERROR_COMMAND_SYNTAX_ERROR;
2345         }
2346         for (unsigned i = 0; i < count; i++)
2347         {
2348                 int retval = fn(target,
2349                                 address + i * wordsize, wordsize, 1, value_buf);
2350                 if (ERROR_OK != retval)
2351                         return retval;
2352                 keep_alive();
2353         }
2354
2355         return ERROR_OK;
2356
2357 }
2358
2359 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2360                 uint32_t *min_address, uint32_t *max_address)
2361 {
2362         if (CMD_ARGC < 1 || CMD_ARGC > 5)
2363                 return ERROR_COMMAND_SYNTAX_ERROR;
2364
2365         /* a base address isn't always necessary,
2366          * default to 0x0 (i.e. don't relocate) */
2367         if (CMD_ARGC >= 2)
2368         {
2369                 uint32_t addr;
2370                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2371                 image->base_address = addr;
2372                 image->base_address_set = 1;
2373         }
2374         else
2375                 image->base_address_set = 0;
2376
2377         image->start_address_set = 0;
2378
2379         if (CMD_ARGC >= 4)
2380         {
2381                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2382         }
2383         if (CMD_ARGC == 5)
2384         {
2385                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2386                 // use size (given) to find max (required)
2387                 *max_address += *min_address;
2388         }
2389
2390         if (*min_address > *max_address)
2391                 return ERROR_COMMAND_SYNTAX_ERROR;
2392
2393         return ERROR_OK;
2394 }
2395
2396 COMMAND_HANDLER(handle_load_image_command)
2397 {
2398         uint8_t *buffer;
2399         size_t buf_cnt;
2400         uint32_t image_size;
2401         uint32_t min_address = 0;
2402         uint32_t max_address = 0xffffffff;
2403         int i;
2404         struct image image;
2405
2406         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2407                         &image, &min_address, &max_address);
2408         if (ERROR_OK != retval)
2409                 return retval;
2410
2411         struct target *target = get_current_target(CMD_CTX);
2412
2413         struct duration bench;
2414         duration_start(&bench);
2415
2416         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2417         {
2418                 return ERROR_OK;
2419         }
2420
2421         image_size = 0x0;
2422         retval = ERROR_OK;
2423         for (i = 0; i < image.num_sections; i++)
2424         {
2425                 buffer = malloc(image.sections[i].size);
2426                 if (buffer == NULL)
2427                 {
2428                         command_print(CMD_CTX,
2429                                                   "error allocating buffer for section (%d bytes)",
2430                                                   (int)(image.sections[i].size));
2431                         break;
2432                 }
2433
2434                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2435                 {
2436                         free(buffer);
2437                         break;
2438                 }
2439
2440                 uint32_t offset = 0;
2441                 uint32_t length = buf_cnt;
2442
2443                 /* DANGER!!! beware of unsigned comparision here!!! */
2444
2445                 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
2446                                 (image.sections[i].base_address < max_address))
2447                 {
2448                         if (image.sections[i].base_address < min_address)
2449                         {
2450                                 /* clip addresses below */
2451                                 offset += min_address-image.sections[i].base_address;
2452                                 length -= offset;
2453                         }
2454
2455                         if (image.sections[i].base_address + buf_cnt > max_address)
2456                         {
2457                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2458                         }
2459
2460                         if ((retval = target_write_buffer(target, image.sections[i].base_address + offset, length, buffer + offset)) != ERROR_OK)
2461                         {
2462                                 free(buffer);
2463                                 break;
2464                         }
2465                         image_size += length;
2466                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
2467                                                   (unsigned int)length,
2468                                                   image.sections[i].base_address + offset);
2469                 }
2470
2471                 free(buffer);
2472         }
2473
2474         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2475         {
2476                 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
2477                                 "in %fs (%0.3f kb/s)", image_size,
2478                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2479         }
2480
2481         image_close(&image);
2482
2483         return retval;
2484
2485 }
2486
2487 COMMAND_HANDLER(handle_dump_image_command)
2488 {
2489         struct fileio fileio;
2490
2491         uint8_t buffer[560];
2492         int retvaltemp;
2493
2494
2495         struct target *target = get_current_target(CMD_CTX);
2496
2497         if (CMD_ARGC != 3)
2498         {
2499                 command_print(CMD_CTX, "usage: dump_image <filename> <address> <size>");
2500                 return ERROR_OK;
2501         }
2502
2503         uint32_t address;
2504         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
2505         uint32_t size;
2506         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
2507
2508         if (fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2509         {
2510                 return ERROR_OK;
2511         }
2512
2513         struct duration bench;
2514         duration_start(&bench);
2515
2516         int retval = ERROR_OK;
2517         while (size > 0)
2518         {
2519                 size_t size_written;
2520                 uint32_t this_run_size = (size > 560) ? 560 : size;
2521                 retval = target_read_buffer(target, address, this_run_size, buffer);
2522                 if (retval != ERROR_OK)
2523                 {
2524                         break;
2525                 }
2526
2527                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2528                 if (retval != ERROR_OK)
2529                 {
2530                         break;
2531                 }
2532
2533                 size -= this_run_size;
2534                 address += this_run_size;
2535         }
2536
2537         if ((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2538                 return retvaltemp;
2539
2540         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2541         {
2542                 command_print(CMD_CTX,
2543                                 "dumped %zu bytes in %fs (%0.3f kb/s)", fileio.size,
2544                                 duration_elapsed(&bench), duration_kbps(&bench, fileio.size));
2545         }
2546
2547         return retval;
2548 }
2549
2550 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
2551 {
2552         uint8_t *buffer;
2553         size_t buf_cnt;
2554         uint32_t image_size;
2555         int i;
2556         int retval;
2557         uint32_t checksum = 0;
2558         uint32_t mem_checksum = 0;
2559
2560         struct image image;
2561
2562         struct target *target = get_current_target(CMD_CTX);
2563
2564         if (CMD_ARGC < 1)
2565         {
2566                 return ERROR_COMMAND_SYNTAX_ERROR;
2567         }
2568
2569         if (!target)
2570         {
2571                 LOG_ERROR("no target selected");
2572                 return ERROR_FAIL;
2573         }
2574
2575         struct duration bench;
2576         duration_start(&bench);
2577
2578         if (CMD_ARGC >= 2)
2579         {
2580                 uint32_t addr;
2581                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2582                 image.base_address = addr;
2583                 image.base_address_set = 1;
2584         }
2585         else
2586         {
2587                 image.base_address_set = 0;
2588                 image.base_address = 0x0;
2589         }
2590
2591         image.start_address_set = 0;
2592
2593         if ((retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL)) != ERROR_OK)
2594         {
2595                 return retval;
2596         }
2597
2598         image_size = 0x0;
2599         retval = ERROR_OK;
2600         for (i = 0; i < image.num_sections; i++)
2601         {
2602                 buffer = malloc(image.sections[i].size);
2603                 if (buffer == NULL)
2604                 {
2605                         command_print(CMD_CTX,
2606                                                   "error allocating buffer for section (%d bytes)",
2607                                                   (int)(image.sections[i].size));
2608                         break;
2609                 }
2610                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2611                 {
2612                         free(buffer);
2613                         break;
2614                 }
2615
2616                 if (verify)
2617                 {
2618                         /* calculate checksum of image */
2619                         image_calculate_checksum(buffer, buf_cnt, &checksum);
2620
2621                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2622                         if (retval != ERROR_OK)
2623                         {
2624                                 free(buffer);
2625                                 break;
2626                         }
2627
2628                         if (checksum != mem_checksum)
2629                         {
2630                                 /* failed crc checksum, fall back to a binary compare */
2631                                 uint8_t *data;
2632
2633                                 command_print(CMD_CTX, "checksum mismatch - attempting binary compare");
2634
2635                                 data = (uint8_t*)malloc(buf_cnt);
2636
2637                                 /* Can we use 32bit word accesses? */
2638                                 int size = 1;
2639                                 int count = buf_cnt;
2640                                 if ((count % 4) == 0)
2641                                 {
2642                                         size *= 4;
2643                                         count /= 4;
2644                                 }
2645                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2646                                 if (retval == ERROR_OK)
2647                                 {
2648                                         uint32_t t;
2649                                         for (t = 0; t < buf_cnt; t++)
2650                                         {
2651                                                 if (data[t] != buffer[t])
2652                                                 {
2653                                                         command_print(CMD_CTX,
2654                                                                                   "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n",
2655                                                                                   (unsigned)(t + image.sections[i].base_address),
2656                                                                                   data[t],
2657                                                                                   buffer[t]);
2658                                                         free(data);
2659                                                         free(buffer);
2660                                                         retval = ERROR_FAIL;
2661                                                         goto done;
2662                                                 }
2663                                                 if ((t%16384) == 0)
2664                                                 {
2665                                                         keep_alive();
2666                                                 }
2667                                         }
2668                                 }
2669
2670                                 free(data);
2671                         }
2672                 } else
2673                 {
2674                         command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
2675                                                   image.sections[i].base_address,
2676                                                   buf_cnt);
2677                 }
2678
2679                 free(buffer);
2680                 image_size += buf_cnt;
2681         }
2682 done:
2683         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2684         {
2685                 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
2686                                 "in %fs (%0.3f kb/s)", image_size,
2687                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2688         }
2689
2690         image_close(&image);
2691
2692         return retval;
2693 }
2694
2695 COMMAND_HANDLER(handle_verify_image_command)
2696 {
2697         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
2698 }
2699
2700 COMMAND_HANDLER(handle_test_image_command)
2701 {
2702         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
2703 }
2704
2705 static int handle_bp_command_list(struct command_context *cmd_ctx)
2706 {
2707         struct target *target = get_current_target(cmd_ctx);
2708         struct breakpoint *breakpoint = target->breakpoints;
2709         while (breakpoint)
2710         {
2711                 if (breakpoint->type == BKPT_SOFT)
2712                 {
2713                         char* buf = buf_to_str(breakpoint->orig_instr,
2714                                         breakpoint->length, 16);
2715                         command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
2716                                         breakpoint->address,
2717                                         breakpoint->length,
2718                                         breakpoint->set, buf);
2719                         free(buf);
2720                 }
2721                 else
2722                 {
2723                         command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i",
2724                                                   breakpoint->address,
2725                                                   breakpoint->length, breakpoint->set);
2726                 }
2727
2728                 breakpoint = breakpoint->next;
2729         }
2730         return ERROR_OK;
2731 }
2732
2733 static int handle_bp_command_set(struct command_context *cmd_ctx,
2734                 uint32_t addr, uint32_t length, int hw)
2735 {
2736         struct target *target = get_current_target(cmd_ctx);
2737         int retval = breakpoint_add(target, addr, length, hw);
2738         if (ERROR_OK == retval)
2739                 command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
2740         else
2741                 LOG_ERROR("Failure setting breakpoint");
2742         return retval;
2743 }
2744
2745 COMMAND_HANDLER(handle_bp_command)
2746 {
2747         if (CMD_ARGC == 0)
2748                 return handle_bp_command_list(CMD_CTX);
2749
2750         if (CMD_ARGC < 2 || CMD_ARGC > 3)
2751         {
2752                 command_print(CMD_CTX, "usage: bp <address> <length> ['hw']");
2753                 return ERROR_COMMAND_SYNTAX_ERROR;
2754         }
2755
2756         uint32_t addr;
2757         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2758         uint32_t length;
2759         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
2760
2761         int hw = BKPT_SOFT;
2762         if (CMD_ARGC == 3)
2763         {
2764                 if (strcmp(CMD_ARGV[2], "hw") == 0)
2765                         hw = BKPT_HARD;
2766                 else
2767                         return ERROR_COMMAND_SYNTAX_ERROR;
2768         }
2769
2770         return handle_bp_command_set(CMD_CTX, addr, length, hw);
2771 }
2772
2773 COMMAND_HANDLER(handle_rbp_command)
2774 {
2775         if (CMD_ARGC != 1)
2776                 return ERROR_COMMAND_SYNTAX_ERROR;
2777
2778         uint32_t addr;
2779         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2780
2781         struct target *target = get_current_target(CMD_CTX);
2782         breakpoint_remove(target, addr);
2783
2784         return ERROR_OK;
2785 }
2786
2787 COMMAND_HANDLER(handle_wp_command)
2788 {
2789         struct target *target = get_current_target(CMD_CTX);
2790
2791         if (CMD_ARGC == 0)
2792         {
2793                 struct watchpoint *watchpoint = target->watchpoints;
2794
2795                 while (watchpoint)
2796                 {
2797                         command_print(CMD_CTX, "address: 0x%8.8" PRIx32
2798                                         ", len: 0x%8.8" PRIx32
2799                                         ", r/w/a: %i, value: 0x%8.8" PRIx32
2800                                         ", mask: 0x%8.8" PRIx32,
2801                                         watchpoint->address,
2802                                         watchpoint->length,
2803                                         (int)watchpoint->rw,
2804                                         watchpoint->value,
2805                                         watchpoint->mask);
2806                         watchpoint = watchpoint->next;
2807                 }
2808                 return ERROR_OK;
2809         }
2810
2811         enum watchpoint_rw type = WPT_ACCESS;
2812         uint32_t addr = 0;
2813         uint32_t length = 0;
2814         uint32_t data_value = 0x0;
2815         uint32_t data_mask = 0xffffffff;
2816
2817         switch (CMD_ARGC)
2818         {
2819         case 5:
2820                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
2821                 // fall through
2822         case 4:
2823                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
2824                 // fall through
2825         case 3:
2826                 switch (CMD_ARGV[2][0])
2827                 {
2828                 case 'r':
2829                         type = WPT_READ;
2830                         break;
2831                 case 'w':
2832                         type = WPT_WRITE;
2833                         break;
2834                 case 'a':
2835                         type = WPT_ACCESS;
2836                         break;
2837                 default:
2838                         LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
2839                         return ERROR_COMMAND_SYNTAX_ERROR;
2840                 }
2841                 // fall through
2842         case 2:
2843                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
2844                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2845                 break;
2846
2847         default:
2848                 command_print(CMD_CTX, "usage: wp [address length "
2849                                 "[(r|w|a) [value [mask]]]]");
2850                 return ERROR_COMMAND_SYNTAX_ERROR;
2851         }
2852
2853         int retval = watchpoint_add(target, addr, length, type,
2854                         data_value, data_mask);
2855         if (ERROR_OK != retval)
2856                 LOG_ERROR("Failure setting watchpoints");
2857
2858         return retval;
2859 }
2860
2861 COMMAND_HANDLER(handle_rwp_command)
2862 {
2863         if (CMD_ARGC != 1)
2864                 return ERROR_COMMAND_SYNTAX_ERROR;
2865
2866         uint32_t addr;
2867         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2868
2869         struct target *target = get_current_target(CMD_CTX);
2870         watchpoint_remove(target, addr);
2871
2872         return ERROR_OK;
2873 }
2874
2875
2876 /**
2877  * Translate a virtual address to a physical address.
2878  *
2879  * The low-level target implementation must have logged a detailed error
2880  * which is forwarded to telnet/GDB session.
2881  */
2882 COMMAND_HANDLER(handle_virt2phys_command)
2883 {
2884         if (CMD_ARGC != 1)
2885                 return ERROR_COMMAND_SYNTAX_ERROR;
2886
2887         uint32_t va;
2888         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
2889         uint32_t pa;
2890
2891         struct target *target = get_current_target(CMD_CTX);
2892         int retval = target->type->virt2phys(target, va, &pa);
2893         if (retval == ERROR_OK)
2894                 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
2895
2896         return retval;
2897 }
2898
2899 static void writeData(FILE *f, const void *data, size_t len)
2900 {
2901         size_t written = fwrite(data, 1, len, f);
2902         if (written != len)
2903                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
2904 }
2905
2906 static void writeLong(FILE *f, int l)
2907 {
2908         int i;
2909         for (i = 0; i < 4; i++)
2910         {
2911                 char c = (l >> (i*8))&0xff;
2912                 writeData(f, &c, 1);
2913         }
2914
2915 }
2916
2917 static void writeString(FILE *f, char *s)
2918 {
2919         writeData(f, s, strlen(s));
2920 }
2921
2922 /* Dump a gmon.out histogram file. */
2923 static void writeGmon(uint32_t *samples, uint32_t sampleNum, const char *filename)
2924 {
2925         uint32_t i;
2926         FILE *f = fopen(filename, "w");
2927         if (f == NULL)
2928                 return;
2929         writeString(f, "gmon");
2930         writeLong(f, 0x00000001); /* Version */
2931         writeLong(f, 0); /* padding */
2932         writeLong(f, 0); /* padding */
2933         writeLong(f, 0); /* padding */
2934
2935         uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
2936         writeData(f, &zero, 1);
2937
2938         /* figure out bucket size */
2939         uint32_t min = samples[0];
2940         uint32_t max = samples[0];
2941         for (i = 0; i < sampleNum; i++)
2942         {
2943                 if (min > samples[i])
2944                 {
2945                         min = samples[i];
2946                 }
2947                 if (max < samples[i])
2948                 {
2949                         max = samples[i];
2950                 }
2951         }
2952
2953         int addressSpace = (max-min + 1);
2954
2955         static const uint32_t maxBuckets = 256 * 1024; /* maximum buckets. */
2956         uint32_t length = addressSpace;
2957         if (length > maxBuckets)
2958         {
2959                 length = maxBuckets;
2960         }
2961         int *buckets = malloc(sizeof(int)*length);
2962         if (buckets == NULL)
2963         {
2964                 fclose(f);
2965                 return;
2966         }
2967         memset(buckets, 0, sizeof(int)*length);
2968         for (i = 0; i < sampleNum;i++)
2969         {
2970                 uint32_t address = samples[i];
2971                 long long a = address-min;
2972                 long long b = length-1;
2973                 long long c = addressSpace-1;
2974                 int index = (a*b)/c; /* danger!!!! int32 overflows */
2975                 buckets[index]++;
2976         }
2977
2978         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
2979         writeLong(f, min);                      /* low_pc */
2980         writeLong(f, max);                      /* high_pc */
2981         writeLong(f, length);           /* # of samples */
2982         writeLong(f, 64000000);         /* 64MHz */
2983         writeString(f, "seconds");
2984         for (i = 0; i < (15-strlen("seconds")); i++)
2985                 writeData(f, &zero, 1);
2986         writeString(f, "s");
2987
2988         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
2989
2990         char *data = malloc(2*length);
2991         if (data != NULL)
2992         {
2993                 for (i = 0; i < length;i++)
2994                 {
2995                         int val;
2996                         val = buckets[i];
2997                         if (val > 65535)
2998                         {
2999                                 val = 65535;
3000                         }
3001                         data[i*2]=val&0xff;
3002                         data[i*2 + 1]=(val >> 8)&0xff;
3003                 }
3004                 free(buckets);
3005                 writeData(f, data, length * 2);
3006                 free(data);
3007         } else
3008         {
3009                 free(buckets);
3010         }
3011
3012         fclose(f);
3013 }
3014
3015 /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
3016 COMMAND_HANDLER(handle_profile_command)
3017 {
3018         struct target *target = get_current_target(CMD_CTX);
3019         struct timeval timeout, now;
3020
3021         gettimeofday(&timeout, NULL);
3022         if (CMD_ARGC != 2)
3023         {
3024                 return ERROR_COMMAND_SYNTAX_ERROR;
3025         }
3026         unsigned offset;
3027         COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], offset);
3028
3029         timeval_add_time(&timeout, offset, 0);
3030
3031         command_print(CMD_CTX, "Starting profiling. Halting and resuming the target as often as we can...");
3032
3033         static const int maxSample = 10000;
3034         uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
3035         if (samples == NULL)
3036                 return ERROR_OK;
3037
3038         int numSamples = 0;
3039         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
3040         struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
3041
3042         for (;;)
3043         {
3044                 int retval;
3045                 target_poll(target);
3046                 if (target->state == TARGET_HALTED)
3047                 {
3048                         uint32_t t=*((uint32_t *)reg->value);
3049                         samples[numSamples++]=t;
3050                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3051                         target_poll(target);
3052                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
3053                 } else if (target->state == TARGET_RUNNING)
3054                 {
3055                         /* We want to quickly sample the PC. */
3056                         if ((retval = target_halt(target)) != ERROR_OK)
3057                         {
3058                                 free(samples);
3059                                 return retval;
3060                         }
3061                 } else
3062                 {
3063                         command_print(CMD_CTX, "Target not halted or running");
3064                         retval = ERROR_OK;
3065                         break;
3066                 }
3067                 if (retval != ERROR_OK)
3068                 {
3069                         break;
3070                 }
3071
3072                 gettimeofday(&now, NULL);
3073                 if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
3074                 {
3075                         command_print(CMD_CTX, "Profiling completed. %d samples.", numSamples);
3076                         if ((retval = target_poll(target)) != ERROR_OK)
3077                         {
3078                                 free(samples);
3079                                 return retval;
3080                         }
3081                         if (target->state == TARGET_HALTED)
3082                         {
3083                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3084                         }
3085                         if ((retval = target_poll(target)) != ERROR_OK)
3086                         {
3087                                 free(samples);
3088                                 return retval;
3089                         }
3090                         writeGmon(samples, numSamples, CMD_ARGV[1]);
3091                         command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3092                         break;
3093                 }
3094         }
3095         free(samples);
3096
3097         return ERROR_OK;
3098 }
3099
3100 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t val)
3101 {
3102         char *namebuf;
3103         Jim_Obj *nameObjPtr, *valObjPtr;
3104         int result;
3105
3106         namebuf = alloc_printf("%s(%d)", varname, idx);
3107         if (!namebuf)
3108                 return JIM_ERR;
3109
3110         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3111         valObjPtr = Jim_NewIntObj(interp, val);
3112         if (!nameObjPtr || !valObjPtr)
3113         {
3114                 free(namebuf);
3115                 return JIM_ERR;
3116         }
3117
3118         Jim_IncrRefCount(nameObjPtr);
3119         Jim_IncrRefCount(valObjPtr);
3120         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3121         Jim_DecrRefCount(interp, nameObjPtr);
3122         Jim_DecrRefCount(interp, valObjPtr);
3123         free(namebuf);
3124         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3125         return result;
3126 }
3127
3128 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3129 {
3130         struct command_context *context;
3131         struct target *target;
3132
3133         context = Jim_GetAssocData(interp, "context");
3134         if (context == NULL)
3135         {
3136                 LOG_ERROR("mem2array: no command context");
3137                 return JIM_ERR;
3138         }
3139         target = get_current_target(context);
3140         if (target == NULL)
3141         {
3142                 LOG_ERROR("mem2array: no current target");
3143                 return JIM_ERR;
3144         }
3145
3146         return  target_mem2array(interp, target, argc-1, argv + 1);
3147 }
3148
3149 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3150 {
3151         long l;
3152         uint32_t width;
3153         int len;
3154         uint32_t addr;
3155         uint32_t count;
3156         uint32_t v;
3157         const char *varname;
3158         int  n, e, retval;
3159         uint32_t i;
3160
3161         /* argv[1] = name of array to receive the data
3162          * argv[2] = desired width
3163          * argv[3] = memory address
3164          * argv[4] = count of times to read
3165          */
3166         if (argc != 4) {
3167                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3168                 return JIM_ERR;
3169         }
3170         varname = Jim_GetString(argv[0], &len);
3171         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3172
3173         e = Jim_GetLong(interp, argv[1], &l);
3174         width = l;
3175         if (e != JIM_OK) {
3176                 return e;
3177         }
3178
3179         e = Jim_GetLong(interp, argv[2], &l);
3180         addr = l;
3181         if (e != JIM_OK) {
3182                 return e;
3183         }
3184         e = Jim_GetLong(interp, argv[3], &l);
3185         len = l;
3186         if (e != JIM_OK) {
3187                 return e;
3188         }
3189         switch (width) {
3190                 case 8:
3191                         width = 1;
3192                         break;
3193                 case 16:
3194                         width = 2;
3195                         break;
3196                 case 32:
3197                         width = 4;
3198                         break;
3199                 default:
3200                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3201                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3202                         return JIM_ERR;
3203         }
3204         if (len == 0) {
3205                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3206                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3207                 return JIM_ERR;
3208         }
3209         if ((addr + (len * width)) < addr) {
3210                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3211                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3212                 return JIM_ERR;
3213         }
3214         /* absurd transfer size? */
3215         if (len > 65536) {
3216                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3217                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3218                 return JIM_ERR;
3219         }
3220
3221         if ((width == 1) ||
3222                 ((width == 2) && ((addr & 1) == 0)) ||
3223                 ((width == 4) && ((addr & 3) == 0))) {
3224                 /* all is well */
3225         } else {
3226                 char buf[100];
3227                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3228                 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3229                                 addr,
3230                                 width);
3231                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3232                 return JIM_ERR;
3233         }
3234
3235         /* Transfer loop */
3236
3237         /* index counter */
3238         n = 0;
3239
3240         size_t buffersize = 4096;
3241         uint8_t *buffer = malloc(buffersize);
3242         if (buffer == NULL)
3243                 return JIM_ERR;
3244
3245         /* assume ok */
3246         e = JIM_OK;
3247         while (len) {
3248                 /* Slurp... in buffer size chunks */
3249
3250                 count = len; /* in objects.. */
3251                 if (count > (buffersize/width)) {
3252                         count = (buffersize/width);
3253                 }
3254
3255                 retval = target_read_memory(target, addr, width, count, buffer);
3256                 if (retval != ERROR_OK) {
3257                         /* BOO !*/
3258                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3259                                           (unsigned int)addr,
3260                                           (int)width,
3261                                           (int)count);
3262                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3263                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3264                         e = JIM_ERR;
3265                         len = 0;
3266                 } else {
3267                         v = 0; /* shut up gcc */
3268                         for (i = 0 ;i < count ;i++, n++) {
3269                                 switch (width) {
3270                                         case 4:
3271                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
3272                                                 break;
3273                                         case 2:
3274                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
3275                                                 break;
3276                                         case 1:
3277                                                 v = buffer[i] & 0x0ff;
3278                                                 break;
3279                                 }
3280                                 new_int_array_element(interp, varname, n, v);
3281                         }
3282                         len -= count;
3283                 }
3284         }
3285
3286         free(buffer);
3287
3288         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3289
3290         return JIM_OK;
3291 }
3292
3293 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t *val)
3294 {
3295         char *namebuf;
3296         Jim_Obj *nameObjPtr, *valObjPtr;
3297         int result;
3298         long l;
3299
3300         namebuf = alloc_printf("%s(%d)", varname, idx);
3301         if (!namebuf)
3302                 return JIM_ERR;
3303
3304         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3305         if (!nameObjPtr)
3306         {
3307                 free(namebuf);
3308                 return JIM_ERR;
3309         }
3310
3311         Jim_IncrRefCount(nameObjPtr);
3312         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3313         Jim_DecrRefCount(interp, nameObjPtr);
3314         free(namebuf);
3315         if (valObjPtr == NULL)
3316                 return JIM_ERR;
3317
3318         result = Jim_GetLong(interp, valObjPtr, &l);
3319         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3320         *val = l;
3321         return result;
3322 }
3323
3324 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3325 {
3326         struct command_context *context;
3327         struct target *target;
3328
3329         context = Jim_GetAssocData(interp, "context");
3330         if (context == NULL) {
3331                 LOG_ERROR("array2mem: no command context");
3332                 return JIM_ERR;
3333         }
3334         target = get_current_target(context);
3335         if (target == NULL) {
3336                 LOG_ERROR("array2mem: no current target");
3337                 return JIM_ERR;
3338         }
3339
3340         return target_array2mem(interp,target, argc-1, argv + 1);
3341 }
3342 static int target_array2mem(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3343 {
3344         long l;
3345         uint32_t width;
3346         int len;
3347         uint32_t addr;
3348         uint32_t count;
3349         uint32_t v;
3350         const char *varname;
3351         int  n, e, retval;
3352         uint32_t i;
3353
3354         /* argv[1] = name of array to get the data
3355          * argv[2] = desired width
3356          * argv[3] = memory address
3357          * argv[4] = count to write
3358          */
3359         if (argc != 4) {
3360                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3361                 return JIM_ERR;
3362         }
3363         varname = Jim_GetString(argv[0], &len);
3364         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3365
3366         e = Jim_GetLong(interp, argv[1], &l);
3367         width = l;
3368         if (e != JIM_OK) {
3369                 return e;
3370         }
3371
3372         e = Jim_GetLong(interp, argv[2], &l);
3373         addr = l;
3374         if (e != JIM_OK) {
3375                 return e;
3376         }
3377         e = Jim_GetLong(interp, argv[3], &l);
3378         len = l;
3379         if (e != JIM_OK) {
3380                 return e;
3381         }
3382         switch (width) {
3383                 case 8:
3384                         width = 1;
3385                         break;
3386                 case 16:
3387                         width = 2;
3388                         break;
3389                 case 32:
3390                         width = 4;
3391                         break;
3392                 default:
3393                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3394                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3395                         return JIM_ERR;
3396         }
3397         if (len == 0) {
3398                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3399                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
3400                 return JIM_ERR;
3401         }
3402         if ((addr + (len * width)) < addr) {
3403                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3404                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
3405                 return JIM_ERR;
3406         }
3407         /* absurd transfer size? */
3408         if (len > 65536) {
3409                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3410                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
3411                 return JIM_ERR;
3412         }
3413
3414         if ((width == 1) ||
3415                 ((width == 2) && ((addr & 1) == 0)) ||
3416                 ((width == 4) && ((addr & 3) == 0))) {
3417                 /* all is well */
3418         } else {
3419                 char buf[100];
3420                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3421                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
3422                                 (unsigned int)addr,
3423                                 (int)width);
3424                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3425                 return JIM_ERR;
3426         }
3427
3428         /* Transfer loop */
3429
3430         /* index counter */
3431         n = 0;
3432         /* assume ok */
3433         e = JIM_OK;
3434
3435         size_t buffersize = 4096;
3436         uint8_t *buffer = malloc(buffersize);
3437         if (buffer == NULL)
3438                 return JIM_ERR;
3439
3440         while (len) {
3441                 /* Slurp... in buffer size chunks */
3442
3443                 count = len; /* in objects.. */
3444                 if (count > (buffersize/width)) {
3445                         count = (buffersize/width);
3446                 }
3447
3448                 v = 0; /* shut up gcc */
3449                 for (i = 0 ;i < count ;i++, n++) {
3450                         get_int_array_element(interp, varname, n, &v);
3451                         switch (width) {
3452                         case 4:
3453                                 target_buffer_set_u32(target, &buffer[i*width], v);
3454                                 break;
3455                         case 2:
3456                                 target_buffer_set_u16(target, &buffer[i*width], v);
3457                                 break;
3458                         case 1:
3459                                 buffer[i] = v & 0x0ff;
3460                                 break;
3461                         }
3462                 }
3463                 len -= count;
3464
3465                 retval = target_write_memory(target, addr, width, count, buffer);
3466                 if (retval != ERROR_OK) {
3467                         /* BOO !*/
3468                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
3469                                           (unsigned int)addr,
3470                                           (int)width,
3471                                           (int)count);
3472                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3473                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3474                         e = JIM_ERR;
3475                         len = 0;
3476                 }
3477         }
3478
3479         free(buffer);
3480
3481         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3482
3483         return JIM_OK;
3484 }
3485
3486 void target_all_handle_event(enum target_event e)
3487 {
3488         struct target *target;
3489
3490         LOG_DEBUG("**all*targets: event: %d, %s",
3491                            (int)e,
3492                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name);
3493
3494         target = all_targets;
3495         while (target) {
3496                 target_handle_event(target, e);
3497                 target = target->next;
3498         }
3499 }
3500
3501
3502 /* FIX? should we propagate errors here rather than printing them
3503  * and continuing?
3504  */
3505 void target_handle_event(struct target *target, enum target_event e)
3506 {
3507         struct target_event_action *teap;
3508
3509         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3510                 if (teap->event == e) {
3511                         LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
3512                                            target->target_number,
3513                                            target->cmd_name,
3514                                            target_get_name(target),
3515                                            e,
3516                                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
3517                                            Jim_GetString(teap->body, NULL));
3518                         if (Jim_EvalObj(interp, teap->body) != JIM_OK)
3519                         {
3520                                 Jim_PrintErrorMessage(interp);
3521                         }
3522                 }
3523         }
3524 }
3525
3526 enum target_cfg_param {
3527         TCFG_TYPE,
3528         TCFG_EVENT,
3529         TCFG_WORK_AREA_VIRT,
3530         TCFG_WORK_AREA_PHYS,
3531         TCFG_WORK_AREA_SIZE,
3532         TCFG_WORK_AREA_BACKUP,
3533         TCFG_ENDIAN,
3534         TCFG_VARIANT,
3535         TCFG_CHAIN_POSITION,
3536 };
3537
3538 static Jim_Nvp nvp_config_opts[] = {
3539         { .name = "-type",             .value = TCFG_TYPE },
3540         { .name = "-event",            .value = TCFG_EVENT },
3541         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
3542         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
3543         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
3544         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3545         { .name = "-endian" ,          .value = TCFG_ENDIAN },
3546         { .name = "-variant",          .value = TCFG_VARIANT },
3547         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
3548
3549         { .name = NULL, .value = -1 }
3550 };
3551
3552 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
3553 {
3554         Jim_Nvp *n;
3555         Jim_Obj *o;
3556         jim_wide w;
3557         char *cp;
3558         int e;
3559
3560         /* parse config or cget options ... */
3561         while (goi->argc > 0) {
3562                 Jim_SetEmptyResult(goi->interp);
3563                 /* Jim_GetOpt_Debug(goi); */
3564
3565                 if (target->type->target_jim_configure) {
3566                         /* target defines a configure function */
3567                         /* target gets first dibs on parameters */
3568                         e = (*(target->type->target_jim_configure))(target, goi);
3569                         if (e == JIM_OK) {
3570                                 /* more? */
3571                                 continue;
3572                         }
3573                         if (e == JIM_ERR) {
3574                                 /* An error */
3575                                 return e;
3576                         }
3577                         /* otherwise we 'continue' below */
3578                 }
3579                 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
3580                 if (e != JIM_OK) {
3581                         Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
3582                         return e;
3583                 }
3584                 switch (n->value) {
3585                 case TCFG_TYPE:
3586                         /* not setable */
3587                         if (goi->isconfigure) {
3588                                 Jim_SetResult_sprintf(goi->interp, "not setable: %s", n->name);
3589                                 return JIM_ERR;
3590                         } else {
3591                         no_params:
3592                                 if (goi->argc != 0) {
3593                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "NO PARAMS");
3594                                         return JIM_ERR;
3595                                 }
3596                         }
3597                         Jim_SetResultString(goi->interp, target_get_name(target), -1);
3598                         /* loop for more */
3599                         break;
3600                 case TCFG_EVENT:
3601                         if (goi->argc == 0) {
3602                                 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
3603                                 return JIM_ERR;
3604                         }
3605
3606                         e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
3607                         if (e != JIM_OK) {
3608                                 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
3609                                 return e;
3610                         }
3611
3612                         if (goi->isconfigure) {
3613                                 if (goi->argc != 1) {
3614                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
3615                                         return JIM_ERR;
3616                                 }
3617                         } else {
3618                                 if (goi->argc != 0) {
3619                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
3620                                         return JIM_ERR;
3621                                 }
3622                         }
3623
3624                         {
3625                                 struct target_event_action *teap;
3626
3627                                 teap = target->event_action;
3628                                 /* replace existing? */
3629                                 while (teap) {
3630                                         if (teap->event == (enum target_event)n->value) {
3631                                                 break;
3632                                         }
3633                                         teap = teap->next;
3634                                 }
3635
3636                                 if (goi->isconfigure) {
3637                                         bool replace = true;
3638                                         if (teap == NULL) {
3639                                                 /* create new */
3640                                                 teap = calloc(1, sizeof(*teap));
3641                                                 replace = false;
3642                                         }
3643                                         teap->event = n->value;
3644                                         Jim_GetOpt_Obj(goi, &o);
3645                                         if (teap->body) {
3646                                                 Jim_DecrRefCount(interp, teap->body);
3647                                         }
3648                                         teap->body  = Jim_DuplicateObj(goi->interp, o);
3649                                         /*
3650                                          * FIXME:
3651                                          *     Tcl/TK - "tk events" have a nice feature.
3652                                          *     See the "BIND" command.
3653                                          *    We should support that here.
3654                                          *     You can specify %X and %Y in the event code.
3655                                          *     The idea is: %T - target name.
3656                                          *     The idea is: %N - target number
3657                                          *     The idea is: %E - event name.
3658                                          */
3659                                         Jim_IncrRefCount(teap->body);
3660
3661                                         if (!replace)
3662                                         {
3663                                                 /* add to head of event list */
3664                                                 teap->next = target->event_action;
3665                                                 target->event_action = teap;
3666                                         }
3667                                         Jim_SetEmptyResult(goi->interp);
3668                                 } else {
3669                                         /* get */
3670                                         if (teap == NULL) {
3671                                                 Jim_SetEmptyResult(goi->interp);
3672                                         } else {
3673                                                 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
3674                                         }
3675                                 }
3676                         }
3677                         /* loop for more */
3678                         break;
3679
3680                 case TCFG_WORK_AREA_VIRT:
3681                         if (goi->isconfigure) {
3682                                 target_free_all_working_areas(target);
3683                                 e = Jim_GetOpt_Wide(goi, &w);
3684                                 if (e != JIM_OK) {
3685                                         return e;
3686                                 }
3687                                 target->working_area_virt = w;
3688                                 target->working_area_virt_spec = true;
3689                         } else {
3690                                 if (goi->argc != 0) {
3691                                         goto no_params;
3692                                 }
3693                         }
3694                         Jim_SetResult(interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
3695                         /* loop for more */
3696                         break;
3697
3698                 case TCFG_WORK_AREA_PHYS:
3699                         if (goi->isconfigure) {
3700                                 target_free_all_working_areas(target);
3701                                 e = Jim_GetOpt_Wide(goi, &w);
3702                                 if (e != JIM_OK) {
3703                                         return e;
3704                                 }
3705                                 target->working_area_phys = w;
3706                                 target->working_area_phys_spec = true;
3707                         } else {
3708                                 if (goi->argc != 0) {
3709                                         goto no_params;
3710                                 }
3711                         }
3712                         Jim_SetResult(interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
3713                         /* loop for more */
3714                         break;
3715
3716                 case TCFG_WORK_AREA_SIZE:
3717                         if (goi->isconfigure) {
3718                                 target_free_all_working_areas(target);
3719                                 e = Jim_GetOpt_Wide(goi, &w);
3720                                 if (e != JIM_OK) {
3721                                         return e;
3722                                 }
3723                                 target->working_area_size = w;
3724                         } else {
3725                                 if (goi->argc != 0) {
3726                                         goto no_params;
3727                                 }
3728                         }
3729                         Jim_SetResult(interp, Jim_NewIntObj(goi->interp, target->working_area_size));
3730                         /* loop for more */
3731                         break;
3732
3733                 case TCFG_WORK_AREA_BACKUP:
3734                         if (goi->isconfigure) {
3735                                 target_free_all_working_areas(target);
3736                                 e = Jim_GetOpt_Wide(goi, &w);
3737                                 if (e != JIM_OK) {
3738                                         return e;
3739                                 }
3740                                 /* make this exactly 1 or 0 */
3741                                 target->backup_working_area = (!!w);
3742                         } else {
3743                                 if (goi->argc != 0) {
3744                                         goto no_params;
3745                                 }
3746                         }
3747                         Jim_SetResult(interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
3748                         /* loop for more e*/
3749                         break;
3750
3751                 case TCFG_ENDIAN:
3752                         if (goi->isconfigure) {
3753                                 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
3754                                 if (e != JIM_OK) {
3755                                         Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
3756                                         return e;
3757                                 }
3758                                 target->endianness = n->value;
3759                         } else {
3760                                 if (goi->argc != 0) {
3761                                         goto no_params;
3762                                 }
3763                         }
3764                         n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3765                         if (n->name == NULL) {
3766                                 target->endianness = TARGET_LITTLE_ENDIAN;
3767                                 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3768                         }
3769                         Jim_SetResultString(goi->interp, n->name, -1);
3770                         /* loop for more */
3771                         break;
3772
3773                 case TCFG_VARIANT:
3774                         if (goi->isconfigure) {
3775                                 if (goi->argc < 1) {
3776                                         Jim_SetResult_sprintf(goi->interp,
3777                                                                                    "%s ?STRING?",
3778                                                                                    n->name);
3779                                         return JIM_ERR;
3780                                 }
3781                                 if (target->variant) {
3782                                         free((void *)(target->variant));
3783                                 }
3784                                 e = Jim_GetOpt_String(goi, &cp, NULL);
3785                                 target->variant = strdup(cp);
3786                         } else {
3787                                 if (goi->argc != 0) {
3788                                         goto no_params;
3789                                 }
3790                         }
3791                         Jim_SetResultString(goi->interp, target->variant,-1);
3792                         /* loop for more */
3793                         break;
3794                 case TCFG_CHAIN_POSITION:
3795                         if (goi->isconfigure) {
3796                                 Jim_Obj *o;
3797                                 struct jtag_tap *tap;
3798                                 target_free_all_working_areas(target);
3799                                 e = Jim_GetOpt_Obj(goi, &o);
3800                                 if (e != JIM_OK) {
3801                                         return e;
3802                                 }
3803                                 tap = jtag_tap_by_jim_obj(goi->interp, o);
3804                                 if (tap == NULL) {
3805                                         return JIM_ERR;
3806                                 }
3807                                 /* make this exactly 1 or 0 */
3808                                 target->tap = tap;
3809                         } else {
3810                                 if (goi->argc != 0) {
3811                                         goto no_params;
3812                                 }
3813                         }
3814                         Jim_SetResultString(interp, target->tap->dotted_name, -1);
3815                         /* loop for more e*/
3816                         break;
3817                 }
3818         } /* while (goi->argc) */
3819
3820
3821                 /* done - we return */
3822         return JIM_OK;
3823 }
3824
3825 /** this is the 'tcl' handler for the target specific command */
3826 static int tcl_target_func(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3827 {
3828         Jim_GetOptInfo goi;
3829         jim_wide a,b,c;
3830         int x,y,z;
3831         uint8_t  target_buf[32];
3832         Jim_Nvp *n;
3833         struct target *target;
3834         struct command_context *cmd_ctx;
3835         int e;
3836
3837         enum {
3838                 TS_CMD_CONFIGURE,
3839                 TS_CMD_CGET,
3840
3841                 TS_CMD_MWW, TS_CMD_MWH, TS_CMD_MWB,
3842                 TS_CMD_MDW, TS_CMD_MDH, TS_CMD_MDB,
3843                 TS_CMD_MRW, TS_CMD_MRH, TS_CMD_MRB,
3844                 TS_CMD_MEM2ARRAY, TS_CMD_ARRAY2MEM,
3845                 TS_CMD_EXAMINE,
3846                 TS_CMD_POLL,
3847                 TS_CMD_RESET,
3848                 TS_CMD_HALT,
3849                 TS_CMD_WAITSTATE,
3850                 TS_CMD_EVENTLIST,
3851                 TS_CMD_CURSTATE,
3852                 TS_CMD_INVOKE_EVENT,
3853         };
3854
3855         static const Jim_Nvp target_options[] = {
3856                 { .name = "configure", .value = TS_CMD_CONFIGURE },
3857                 { .name = "cget", .value = TS_CMD_CGET },
3858                 { .name = "mww", .value = TS_CMD_MWW },
3859                 { .name = "mwh", .value = TS_CMD_MWH },
3860                 { .name = "mwb", .value = TS_CMD_MWB },
3861                 { .name = "mdw", .value = TS_CMD_MDW },
3862                 { .name = "mdh", .value = TS_CMD_MDH },
3863                 { .name = "mdb", .value = TS_CMD_MDB },
3864                 { .name = "mem2array", .value = TS_CMD_MEM2ARRAY },
3865                 { .name = "array2mem", .value = TS_CMD_ARRAY2MEM },
3866                 { .name = "eventlist", .value = TS_CMD_EVENTLIST },
3867                 { .name = "curstate",  .value = TS_CMD_CURSTATE },
3868
3869                 { .name = "arp_examine", .value = TS_CMD_EXAMINE },
3870                 { .name = "arp_poll", .value = TS_CMD_POLL },
3871                 { .name = "arp_reset", .value = TS_CMD_RESET },
3872                 { .name = "arp_halt", .value = TS_CMD_HALT },
3873                 { .name = "arp_waitstate", .value = TS_CMD_WAITSTATE },
3874                 { .name = "invoke-event", .value = TS_CMD_INVOKE_EVENT },
3875
3876                 { .name = NULL, .value = -1 },
3877         };
3878
3879         /* go past the "command" */
3880         Jim_GetOpt_Setup(&goi, interp, argc-1, argv + 1);
3881
3882         target = Jim_CmdPrivData(goi.interp);
3883         cmd_ctx = Jim_GetAssocData(goi.interp, "context");
3884
3885         /* commands here are in an NVP table */
3886         e = Jim_GetOpt_Nvp(&goi, target_options, &n);
3887         if (e != JIM_OK) {
3888                 Jim_GetOpt_NvpUnknown(&goi, target_options, 0);
3889                 return e;
3890         }
3891         /* Assume blank result */
3892         Jim_SetEmptyResult(goi.interp);
3893
3894         switch (n->value) {
3895         case TS_CMD_CONFIGURE:
3896                 if (goi.argc < 2) {
3897                         Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv, "missing: -option VALUE ...");
3898                         return JIM_ERR;
3899                 }
3900                 goi.isconfigure = 1;
3901                 return target_configure(&goi, target);
3902         case TS_CMD_CGET:
3903                 // some things take params
3904                 if (goi.argc < 1) {
3905                         Jim_WrongNumArgs(goi.interp, 0, goi.argv, "missing: ?-option?");
3906                         return JIM_ERR;
3907                 }
3908                 goi.isconfigure = 0;
3909                 return target_configure(&goi, target);
3910                 break;
3911         case TS_CMD_MWW:
3912         case TS_CMD_MWH:
3913         case TS_CMD_MWB:
3914                 /* argv[0] = cmd
3915                  * argv[1] = address
3916                  * argv[2] = data
3917                  * argv[3] = optional count.
3918                  */
3919
3920                 if ((goi.argc == 2) || (goi.argc == 3)) {
3921                         /* all is well */
3922                 } else {
3923                 mwx_error:
3924                         Jim_SetResult_sprintf(goi.interp, "expected: %s ADDR DATA [COUNT]", n->name);
3925                         return JIM_ERR;
3926                 }
3927
3928                 e = Jim_GetOpt_Wide(&goi, &a);
3929                 if (e != JIM_OK) {
3930                         goto mwx_error;
3931                 }
3932
3933                 e = Jim_GetOpt_Wide(&goi, &b);
3934                 if (e != JIM_OK) {
3935                         goto mwx_error;
3936                 }
3937                 if (goi.argc == 3) {
3938                         e = Jim_GetOpt_Wide(&goi, &c);
3939                         if (e != JIM_OK) {
3940                                 goto mwx_error;
3941                         }
3942                 } else {
3943                         c = 1;
3944                 }
3945
3946                 switch (n->value) {
3947                 case TS_CMD_MWW:
3948                         target_buffer_set_u32(target, target_buf, b);
3949                         b = 4;
3950                         break;
3951                 case TS_CMD_MWH:
3952                         target_buffer_set_u16(target, target_buf, b);
3953                         b = 2;
3954                         break;
3955                 case TS_CMD_MWB:
3956                         target_buffer_set_u8(target, target_buf, b);
3957                         b = 1;
3958                         break;
3959                 }
3960                 for (x = 0 ; x < c ; x++) {
3961                         e = target_write_memory(target, a, b, 1, target_buf);
3962                         if (e != ERROR_OK) {
3963                                 Jim_SetResult_sprintf(interp, "Error writing @ 0x%08x: %d\n", (int)(a), e);
3964                                 return JIM_ERR;
3965                         }
3966                         /* b = width */
3967                         a = a + b;
3968                 }
3969                 return JIM_OK;
3970                 break;
3971
3972                 /* display */
3973         case TS_CMD_MDW:
3974         case TS_CMD_MDH:
3975         case TS_CMD_MDB:
3976                 /* argv[0] = command
3977                  * argv[1] = address
3978                  * argv[2] = optional count
3979                  */
3980                 if ((goi.argc == 2) || (goi.argc == 3)) {
3981                         Jim_SetResult_sprintf(goi.interp, "expected: %s ADDR [COUNT]", n->name);
3982                         return JIM_ERR;
3983                 }
3984                 e = Jim_GetOpt_Wide(&goi, &a);
3985                 if (e != JIM_OK) {
3986                         return JIM_ERR;
3987                 }
3988                 if (goi.argc) {
3989                         e = Jim_GetOpt_Wide(&goi, &c);
3990                         if (e != JIM_OK) {
3991                                 return JIM_ERR;
3992                         }
3993                 } else {
3994                         c = 1;
3995                 }
3996                 b = 1; /* shut up gcc */
3997                 switch (n->value) {
3998                 case TS_CMD_MDW:
3999                         b =  4;
4000                         break;
4001                 case TS_CMD_MDH:
4002                         b = 2;
4003                         break;
4004                 case TS_CMD_MDB:
4005                         b = 1;
4006                         break;
4007                 }
4008
4009                 /* convert to "bytes" */
4010                 c = c * b;
4011                 /* count is now in 'BYTES' */
4012                 while (c > 0) {
4013                         y = c;
4014                         if (y > 16) {
4015                                 y = 16;
4016                         }
4017                         e = target_read_memory(target, a, b, y / b, target_buf);
4018                         if (e != ERROR_OK) {
4019                                 Jim_SetResult_sprintf(interp, "error reading target @ 0x%08lx", (int)(a));
4020                                 return JIM_ERR;
4021                         }
4022
4023                         Jim_fprintf(interp, interp->cookie_stdout, "0x%08x ", (int)(a));
4024                         switch (b) {
4025                         case 4:
4026                                 for (x = 0 ; (x < 16) && (x < y) ; x += 4) {
4027                                         z = target_buffer_get_u32(target, &(target_buf[ x * 4 ]));
4028                                         Jim_fprintf(interp, interp->cookie_stdout, "%08x ", (int)(z));
4029                                 }
4030                                 for (; (x < 16) ; x += 4) {
4031                                         Jim_fprintf(interp, interp->cookie_stdout, "         ");
4032                                 }
4033                                 break;
4034                         case 2:
4035                                 for (x = 0 ; (x < 16) && (x < y) ; x += 2) {
4036                                         z = target_buffer_get_u16(target, &(target_buf[ x * 2 ]));
4037                                         Jim_fprintf(interp, interp->cookie_stdout, "%04x ", (int)(z));
4038                                 }
4039                                 for (; (x < 16) ; x += 2) {
4040                                         Jim_fprintf(interp, interp->cookie_stdout, "     ");
4041                                 }
4042                                 break;
4043                         case 1:
4044                         default:
4045                                 for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4046                                         z = target_buffer_get_u8(target, &(target_buf[ x * 4 ]));
4047                                         Jim_fprintf(interp, interp->cookie_stdout, "%02x ", (int)(z));
4048                                 }
4049                                 for (; (x < 16) ; x += 1) {
4050                                         Jim_fprintf(interp, interp->cookie_stdout, "   ");
4051                                 }
4052                                 break;
4053                         }
4054                         /* ascii-ify the bytes */
4055                         for (x = 0 ; x < y ; x++) {
4056                                 if ((target_buf[x] >= 0x20) &&
4057                                         (target_buf[x] <= 0x7e)) {
4058                                         /* good */
4059                                 } else {
4060                                         /* smack it */
4061                                         target_buf[x] = '.';
4062                                 }
4063                         }
4064                         /* space pad  */
4065                         while (x < 16) {
4066                                 target_buf[x] = ' ';
4067                                 x++;
4068                         }
4069                         /* terminate */
4070                         target_buf[16] = 0;
4071                         /* print - with a newline */
4072                         Jim_fprintf(interp, interp->cookie_stdout, "%s\n", target_buf);
4073                         /* NEXT... */
4074                         c -= 16;
4075                         a += 16;
4076                 }
4077                 return JIM_OK;
4078         case TS_CMD_MEM2ARRAY:
4079                 return target_mem2array(goi.interp, target, goi.argc, goi.argv);
4080                 break;
4081         case TS_CMD_ARRAY2MEM:
4082                 return target_array2mem(goi.interp, target, goi.argc, goi.argv);
4083                 break;
4084         case TS_CMD_EXAMINE:
4085                 if (goi.argc) {
4086                         Jim_WrongNumArgs(goi.interp, 2, argv, "[no parameters]");
4087                         return JIM_ERR;
4088                 }
4089                 if (!target->tap->enabled)
4090                         goto err_tap_disabled;
4091                 e = target->type->examine(target);
4092                 if (e != ERROR_OK) {
4093                         Jim_SetResult_sprintf(interp, "examine-fails: %d", e);
4094                         return JIM_ERR;
4095                 }
4096                 return JIM_OK;
4097         case TS_CMD_POLL:
4098                 if (goi.argc) {
4099                         Jim_WrongNumArgs(goi.interp, 2, argv, "[no parameters]");
4100                         return JIM_ERR;
4101                 }
4102                 if (!target->tap->enabled)
4103                         goto err_tap_disabled;
4104                 if (!(target_was_examined(target))) {
4105                         e = ERROR_TARGET_NOT_EXAMINED;
4106                 } else {
4107                         e = target->type->poll(target);
4108                 }
4109                 if (e != ERROR_OK) {
4110                         Jim_SetResult_sprintf(interp, "poll-fails: %d", e);
4111                         return JIM_ERR;
4112                 } else {
4113                         return JIM_OK;
4114                 }
4115                 break;
4116         case TS_CMD_RESET:
4117                 if (goi.argc != 2) {
4118                         Jim_WrongNumArgs(interp, 2, argv,
4119                                         "([tT]|[fF]|assert|deassert) BOOL");
4120                         return JIM_ERR;
4121                 }
4122                 e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4123                 if (e != JIM_OK) {
4124                         Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4125                         return e;
4126                 }
4127                 /* the halt or not param */
4128                 e = Jim_GetOpt_Wide(&goi, &a);
4129                 if (e != JIM_OK) {
4130                         return e;
4131                 }
4132                 if (!target->tap->enabled)
4133                         goto err_tap_disabled;
4134                 if (!target->type->assert_reset
4135                                 || !target->type->deassert_reset) {
4136                         Jim_SetResult_sprintf(interp,
4137                                         "No target-specific reset for %s",
4138                                         target->cmd_name);
4139                         return JIM_ERR;
4140                 }
4141                 /* determine if we should halt or not. */
4142                 target->reset_halt = !!a;
4143                 /* When this happens - all workareas are invalid. */
4144                 target_free_all_working_areas_restore(target, 0);
4145
4146                 /* do the assert */
4147                 if (n->value == NVP_ASSERT) {
4148                         e = target->type->assert_reset(target);
4149                 } else {
4150                         e = target->type->deassert_reset(target);
4151                 }
4152                 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4153         case TS_CMD_HALT:
4154                 if (goi.argc) {
4155                         Jim_WrongNumArgs(goi.interp, 0, argv, "halt [no parameters]");
4156                         return JIM_ERR;
4157                 }
4158                 if (!target->tap->enabled)
4159                         goto err_tap_disabled;
4160                 e = target->type->halt(target);
4161                 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4162         case TS_CMD_WAITSTATE:
4163                 /* params:  <name>  statename timeoutmsecs */
4164                 if (goi.argc != 2) {
4165                         Jim_SetResult_sprintf(goi.interp, "%s STATENAME TIMEOUTMSECS", n->name);
4166                         return JIM_ERR;
4167                 }
4168                 e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4169                 if (e != JIM_OK) {
4170                         Jim_GetOpt_NvpUnknown(&goi, nvp_target_state,1);
4171                         return e;
4172                 }
4173                 e = Jim_GetOpt_Wide(&goi, &a);
4174                 if (e != JIM_OK) {
4175                         return e;
4176                 }
4177                 if (!target->tap->enabled)
4178                         goto err_tap_disabled;
4179                 e = target_wait_state(target, n->value, a);
4180                 if (e != ERROR_OK) {
4181                         Jim_SetResult_sprintf(goi.interp,
4182                                                                    "target: %s wait %s fails (%d) %s",
4183                                                                    target->cmd_name,
4184                                                                    n->name,
4185                                                                    e, target_strerror_safe(e));
4186                         return JIM_ERR;
4187                 } else {
4188                         return JIM_OK;
4189                 }
4190         case TS_CMD_EVENTLIST:
4191                 /* List for human, Events defined for this target.
4192                  * scripts/programs should use 'name cget -event NAME'
4193                  */
4194                 {
4195                         struct target_event_action *teap;
4196                         teap = target->event_action;
4197                         command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4198                                                    target->target_number,
4199                                                    target->cmd_name);
4200                         command_print(cmd_ctx, "%-25s | Body", "Event");
4201                         command_print(cmd_ctx, "------------------------- | ----------------------------------------");
4202                         while (teap) {
4203                                 command_print(cmd_ctx,
4204                                                            "%-25s | %s",
4205                                                            Jim_Nvp_value2name_simple(nvp_target_event, teap->event)->name,
4206                                                            Jim_GetString(teap->body, NULL));
4207                                 teap = teap->next;
4208                         }
4209                         command_print(cmd_ctx, "***END***");
4210                         return JIM_OK;
4211                 }
4212         case TS_CMD_CURSTATE:
4213                 if (goi.argc != 0) {
4214                         Jim_WrongNumArgs(goi.interp, 0, argv, "[no parameters]");
4215                         return JIM_ERR;
4216                 }
4217                 Jim_SetResultString(goi.interp,
4218                                                         target_state_name( target ),
4219                                                         -1);
4220                 return JIM_OK;
4221         case TS_CMD_INVOKE_EVENT:
4222                 if (goi.argc != 1) {
4223                         Jim_SetResult_sprintf(goi.interp, "%s ?EVENTNAME?",n->name);
4224                         return JIM_ERR;
4225                 }
4226                 e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4227                 if (e != JIM_OK) {
4228                         Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4229                         return e;
4230                 }
4231                 target_handle_event(target, n->value);
4232                 return JIM_OK;
4233         }
4234         return JIM_ERR;
4235
4236 err_tap_disabled:
4237         Jim_SetResult_sprintf(interp, "[TAP is disabled]");
4238         return JIM_ERR;
4239 }
4240
4241 static int target_create(Jim_GetOptInfo *goi)
4242 {
4243         Jim_Obj *new_cmd;
4244         Jim_Cmd *cmd;
4245         const char *cp;
4246         char *cp2;
4247         int e;
4248         int x;
4249         struct target *target;
4250         struct command_context *cmd_ctx;
4251
4252         cmd_ctx = Jim_GetAssocData(goi->interp, "context");
4253         if (goi->argc < 3) {
4254                 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
4255                 return JIM_ERR;
4256         }
4257
4258         /* COMMAND */
4259         Jim_GetOpt_Obj(goi, &new_cmd);
4260         /* does this command exist? */
4261         cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
4262         if (cmd) {
4263                 cp = Jim_GetString(new_cmd, NULL);
4264                 Jim_SetResult_sprintf(goi->interp, "Command/target: %s Exists", cp);
4265                 return JIM_ERR;
4266         }
4267
4268         /* TYPE */
4269         e = Jim_GetOpt_String(goi, &cp2, NULL);
4270         cp = cp2;
4271         /* now does target type exist */
4272         for (x = 0 ; target_types[x] ; x++) {
4273                 if (0 == strcmp(cp, target_types[x]->name)) {
4274                         /* found */
4275                         break;
4276                 }
4277         }
4278         if (target_types[x] == NULL) {
4279                 Jim_SetResult_sprintf(goi->interp, "Unknown target type %s, try one of ", cp);
4280                 for (x = 0 ; target_types[x] ; x++) {
4281                         if (target_types[x + 1]) {
4282                                 Jim_AppendStrings(goi->interp,
4283                                                                    Jim_GetResult(goi->interp),
4284                                                                    target_types[x]->name,
4285                                                                    ", ", NULL);
4286                         } else {
4287                                 Jim_AppendStrings(goi->interp,
4288                                                                    Jim_GetResult(goi->interp),
4289                                                                    " or ",
4290                                                                    target_types[x]->name,NULL);
4291                         }
4292                 }
4293                 return JIM_ERR;
4294         }
4295
4296         /* Create it */
4297         target = calloc(1,sizeof(struct target));
4298         /* set target number */
4299         target->target_number = new_target_number();
4300
4301         /* allocate memory for each unique target type */
4302         target->type = (struct target_type*)calloc(1,sizeof(struct target_type));
4303
4304         memcpy(target->type, target_types[x], sizeof(struct target_type));
4305
4306         /* will be set by "-endian" */
4307         target->endianness = TARGET_ENDIAN_UNKNOWN;
4308
4309         target->working_area        = 0x0;
4310         target->working_area_size   = 0x0;
4311         target->working_areas       = NULL;
4312         target->backup_working_area = 0;
4313
4314         target->state               = TARGET_UNKNOWN;
4315         target->debug_reason        = DBG_REASON_UNDEFINED;
4316         target->reg_cache           = NULL;
4317         target->breakpoints         = NULL;
4318         target->watchpoints         = NULL;
4319         target->next                = NULL;
4320         target->arch_info           = NULL;
4321
4322         target->display             = 1;
4323
4324         target->halt_issued                     = false;
4325
4326         /* initialize trace information */
4327         target->trace_info = malloc(sizeof(struct trace));
4328         target->trace_info->num_trace_points         = 0;
4329         target->trace_info->trace_points_size        = 0;
4330         target->trace_info->trace_points             = NULL;
4331         target->trace_info->trace_history_size       = 0;
4332         target->trace_info->trace_history            = NULL;
4333         target->trace_info->trace_history_pos        = 0;
4334         target->trace_info->trace_history_overflowed = 0;
4335
4336         target->dbgmsg          = NULL;
4337         target->dbg_msg_enabled = 0;
4338
4339         target->endianness = TARGET_ENDIAN_UNKNOWN;
4340
4341         /* Do the rest as "configure" options */
4342         goi->isconfigure = 1;
4343         e = target_configure(goi, target);
4344
4345         if (target->tap == NULL)
4346         {
4347                 Jim_SetResultString(interp, "-chain-position required when creating target", -1);
4348                 e = JIM_ERR;
4349         }
4350
4351         if (e != JIM_OK) {
4352                 free(target->type);
4353                 free(target);
4354                 return e;
4355         }
4356
4357         if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
4358                 /* default endian to little if not specified */
4359                 target->endianness = TARGET_LITTLE_ENDIAN;
4360         }
4361
4362         /* incase variant is not set */
4363         if (!target->variant)
4364                 target->variant = strdup("");
4365
4366         cp = Jim_GetString(new_cmd, NULL);
4367         target->cmd_name = strdup(cp);
4368
4369         /* create the target specific commands */
4370         if (target->type->commands) {
4371                 e = register_commands(cmd_ctx, NULL, target->type->commands);
4372                 if (ERROR_OK != e)
4373                         LOG_ERROR("unable to register '%s' commands", cp);
4374         }
4375         if (target->type->target_create) {
4376                 (*(target->type->target_create))(target, goi->interp);
4377         }
4378
4379         /* append to end of list */
4380         {
4381                 struct target **tpp;
4382                 tpp = &(all_targets);
4383                 while (*tpp) {
4384                         tpp = &((*tpp)->next);
4385                 }
4386                 *tpp = target;
4387         }
4388
4389         /* now - create the new target name command */
4390         const struct command_registration target_command = {
4391                 .name = cp,
4392                 .jim_handler = &tcl_target_func,
4393                 .jim_handler_data = target,
4394                 .help = "target command group",
4395         };
4396         struct command *c = register_command(cmd_ctx, NULL, &target_command);
4397         return (NULL != c) ? ERROR_OK : ERROR_FAIL;
4398 }
4399
4400 static int jim_target(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4401 {
4402         int x,r,e;
4403         jim_wide w;
4404         struct command_context *cmd_ctx;
4405         struct target *target;
4406         Jim_GetOptInfo goi;
4407         enum tcmd {
4408                 /* TG = target generic */
4409                 TG_CMD_CREATE,
4410                 TG_CMD_TYPES,
4411                 TG_CMD_NAMES,
4412                 TG_CMD_CURRENT,
4413                 TG_CMD_NUMBER,
4414                 TG_CMD_COUNT,
4415         };
4416         const char *target_cmds[] = {
4417                 "create", "types", "names", "current", "number",
4418                 "count",
4419                 NULL /* terminate */
4420         };
4421
4422         LOG_DEBUG("Target command params:");
4423         LOG_DEBUG("%s", Jim_Debug_ArgvString(interp, argc, argv));
4424
4425         cmd_ctx = Jim_GetAssocData(interp, "context");
4426
4427         Jim_GetOpt_Setup(&goi, interp, argc-1, argv + 1);
4428
4429         if (goi.argc == 0) {
4430                 Jim_WrongNumArgs(interp, 1, argv, "missing: command ...");
4431                 return JIM_ERR;
4432         }
4433
4434         /* Jim_GetOpt_Debug(&goi); */
4435         r = Jim_GetOpt_Enum(&goi, target_cmds, &x);
4436         if (r != JIM_OK) {
4437                 return r;
4438         }
4439
4440         switch (x) {
4441         default:
4442                 Jim_Panic(goi.interp,"Why am I here?");
4443                 return JIM_ERR;
4444         case TG_CMD_CURRENT:
4445                 if (goi.argc != 0) {
4446                         Jim_WrongNumArgs(goi.interp, 1, goi.argv, "Too many parameters");
4447                         return JIM_ERR;
4448                 }
4449                 Jim_SetResultString(goi.interp, get_current_target(cmd_ctx)->cmd_name, -1);
4450                 return JIM_OK;
4451         case TG_CMD_TYPES:
4452                 if (goi.argc != 0) {
4453                         Jim_WrongNumArgs(goi.interp, 1, goi.argv, "Too many parameters");
4454                         return JIM_ERR;
4455                 }
4456                 Jim_SetResult(goi.interp, Jim_NewListObj(goi.interp, NULL, 0));
4457                 for (x = 0 ; target_types[x] ; x++) {
4458                         Jim_ListAppendElement(goi.interp,
4459                                                                    Jim_GetResult(goi.interp),
4460                                                                    Jim_NewStringObj(goi.interp, target_types[x]->name, -1));
4461                 }
4462                 return JIM_OK;
4463         case TG_CMD_NAMES:
4464                 if (goi.argc != 0) {
4465                         Jim_WrongNumArgs(goi.interp, 1, goi.argv, "Too many parameters");
4466                         return JIM_ERR;
4467                 }
4468                 Jim_SetResult(goi.interp, Jim_NewListObj(goi.interp, NULL, 0));
4469                 target = all_targets;
4470                 while (target) {
4471                         Jim_ListAppendElement(goi.interp,
4472                                                                    Jim_GetResult(goi.interp),
4473                                                                    Jim_NewStringObj(goi.interp, target->cmd_name, -1));
4474                         target = target->next;
4475                 }
4476                 return JIM_OK;
4477         case TG_CMD_CREATE:
4478                 if (goi.argc < 3) {
4479                         Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv, "?name  ... config options ...");
4480                         return JIM_ERR;
4481                 }
4482                 return target_create(&goi);
4483                 break;
4484         case TG_CMD_NUMBER:
4485                 /* It's OK to remove this mechanism sometime after August 2010 or so */
4486                 LOG_WARNING("don't use numbers as target identifiers; use names");
4487                 if (goi.argc != 1) {
4488                         Jim_SetResult_sprintf(goi.interp, "expected: target number ?NUMBER?");
4489                         return JIM_ERR;
4490                 }
4491                 e = Jim_GetOpt_Wide(&goi, &w);
4492                 if (e != JIM_OK) {
4493                         return JIM_ERR;
4494                 }
4495                 for (x = 0, target = all_targets; target; target = target->next, x++) {
4496                         if (target->target_number == w)
4497                                 break;
4498                 }
4499                 if (target == NULL) {
4500                         Jim_SetResult_sprintf(goi.interp,
4501                                         "Target: number %d does not exist", (int)(w));
4502                         return JIM_ERR;
4503                 }
4504                 Jim_SetResultString(goi.interp, target->cmd_name, -1);
4505                 return JIM_OK;
4506         case TG_CMD_COUNT:
4507                 if (goi.argc != 0) {
4508                         Jim_WrongNumArgs(goi.interp, 0, goi.argv, "<no parameters>");
4509                         return JIM_ERR;
4510                 }
4511                 for (x = 0, target = all_targets; target; target = target->next, x++)
4512                         continue;
4513                 Jim_SetResult(goi.interp, Jim_NewIntObj(goi.interp, x));
4514                 return JIM_OK;
4515         }
4516
4517         return JIM_ERR;
4518 }
4519
4520
4521 struct FastLoad
4522 {
4523         uint32_t address;
4524         uint8_t *data;
4525         int length;
4526
4527 };
4528
4529 static int fastload_num;
4530 static struct FastLoad *fastload;
4531
4532 static void free_fastload(void)
4533 {
4534         if (fastload != NULL)
4535         {
4536                 int i;
4537                 for (i = 0; i < fastload_num; i++)
4538                 {
4539                         if (fastload[i].data)
4540                                 free(fastload[i].data);
4541                 }
4542                 free(fastload);
4543                 fastload = NULL;
4544         }
4545 }
4546
4547
4548
4549
4550 COMMAND_HANDLER(handle_fast_load_image_command)
4551 {
4552         uint8_t *buffer;
4553         size_t buf_cnt;
4554         uint32_t image_size;
4555         uint32_t min_address = 0;
4556         uint32_t max_address = 0xffffffff;
4557         int i;
4558
4559         struct image image;
4560
4561         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
4562                         &image, &min_address, &max_address);
4563         if (ERROR_OK != retval)
4564                 return retval;
4565
4566         struct duration bench;
4567         duration_start(&bench);
4568
4569         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
4570         {
4571                 return ERROR_OK;
4572         }
4573
4574         image_size = 0x0;
4575         retval = ERROR_OK;
4576         fastload_num = image.num_sections;
4577         fastload = (struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
4578         if (fastload == NULL)
4579         {
4580                 image_close(&image);
4581                 return ERROR_FAIL;
4582         }
4583         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
4584         for (i = 0; i < image.num_sections; i++)
4585         {
4586                 buffer = malloc(image.sections[i].size);
4587                 if (buffer == NULL)
4588                 {
4589                         command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
4590                                                   (int)(image.sections[i].size));
4591                         break;
4592                 }
4593
4594                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
4595                 {
4596                         free(buffer);
4597                         break;
4598                 }
4599
4600                 uint32_t offset = 0;
4601                 uint32_t length = buf_cnt;
4602
4603
4604                 /* DANGER!!! beware of unsigned comparision here!!! */
4605
4606                 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
4607                                 (image.sections[i].base_address < max_address))
4608                 {
4609                         if (image.sections[i].base_address < min_address)
4610                         {
4611                                 /* clip addresses below */
4612                                 offset += min_address-image.sections[i].base_address;
4613                                 length -= offset;
4614                         }
4615
4616                         if (image.sections[i].base_address + buf_cnt > max_address)
4617                         {
4618                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
4619                         }
4620
4621                         fastload[i].address = image.sections[i].base_address + offset;
4622                         fastload[i].data = malloc(length);
4623                         if (fastload[i].data == NULL)
4624                         {
4625                                 free(buffer);
4626                                 break;
4627                         }
4628                         memcpy(fastload[i].data, buffer + offset, length);
4629                         fastload[i].length = length;
4630
4631                         image_size += length;
4632                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
4633                                                   (unsigned int)length,
4634                                                   ((unsigned int)(image.sections[i].base_address + offset)));
4635                 }
4636
4637                 free(buffer);
4638         }
4639
4640         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
4641         {
4642                 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
4643                                 "in %fs (%0.3f kb/s)", image_size, 
4644                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
4645
4646                 command_print(CMD_CTX,
4647                                 "WARNING: image has not been loaded to target!"
4648                                 "You can issue a 'fast_load' to finish loading.");
4649         }
4650
4651         image_close(&image);
4652
4653         if (retval != ERROR_OK)
4654         {
4655                 free_fastload();
4656         }
4657
4658         return retval;
4659 }
4660
4661 COMMAND_HANDLER(handle_fast_load_command)
4662 {
4663         if (CMD_ARGC > 0)
4664                 return ERROR_COMMAND_SYNTAX_ERROR;
4665         if (fastload == NULL)
4666         {
4667                 LOG_ERROR("No image in memory");
4668                 return ERROR_FAIL;
4669         }
4670         int i;
4671         int ms = timeval_ms();
4672         int size = 0;
4673         int retval = ERROR_OK;
4674         for (i = 0; i < fastload_num;i++)
4675         {
4676                 struct target *target = get_current_target(CMD_CTX);
4677                 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
4678                                           (unsigned int)(fastload[i].address),
4679                                           (unsigned int)(fastload[i].length));
4680                 if (retval == ERROR_OK)
4681                 {
4682                         retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
4683                 }
4684                 size += fastload[i].length;
4685         }
4686         int after = timeval_ms();
4687         command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
4688         return retval;
4689 }
4690
4691 static int jim_mcrmrc(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4692 {
4693         struct command_context *context;
4694         struct target *target;
4695         int retval;
4696
4697         context = Jim_GetAssocData(interp, "context");
4698         if (context == NULL) {
4699                 LOG_ERROR("array2mem: no command context");
4700                 return JIM_ERR;
4701         }
4702         target = get_current_target(context);
4703         if (target == NULL) {
4704                 LOG_ERROR("array2mem: no current target");
4705                 return JIM_ERR;
4706         }
4707
4708         if ((argc < 6) || (argc > 7))
4709         {
4710                 return JIM_ERR;
4711         }
4712
4713         int cpnum;
4714         uint32_t op1;
4715         uint32_t op2;
4716         uint32_t CRn;
4717         uint32_t CRm;
4718         uint32_t value;
4719
4720         int e;
4721         long l;
4722         e = Jim_GetLong(interp, argv[1], &l);
4723         if (e != JIM_OK) {
4724                 return e;
4725         }
4726         cpnum = l;
4727
4728         e = Jim_GetLong(interp, argv[2], &l);
4729         if (e != JIM_OK) {
4730                 return e;
4731         }
4732         op1 = l;
4733
4734         e = Jim_GetLong(interp, argv[3], &l);
4735         if (e != JIM_OK) {
4736                 return e;
4737         }
4738         CRn = l;
4739
4740         e = Jim_GetLong(interp, argv[4], &l);
4741         if (e != JIM_OK) {
4742                 return e;
4743         }
4744         CRm = l;
4745
4746         e = Jim_GetLong(interp, argv[5], &l);
4747         if (e != JIM_OK) {
4748                 return e;
4749         }
4750         op2 = l;
4751
4752         value = 0;
4753
4754         if (argc == 7)
4755         {
4756                 e = Jim_GetLong(interp, argv[6], &l);
4757                 if (e != JIM_OK) {
4758                         return e;
4759                 }
4760                 value = l;
4761
4762                 retval = target_mcr(target, cpnum, op1, op2, CRn, CRm, value);
4763                 if (retval != ERROR_OK)
4764                         return JIM_ERR;
4765         } else
4766         {
4767                 retval = target_mrc(target, cpnum, op1, op2, CRn, CRm, &value);
4768                 if (retval != ERROR_OK)
4769                         return JIM_ERR;
4770
4771                 Jim_SetResult(interp, Jim_NewIntObj(interp, value));
4772         }
4773
4774         return JIM_OK;
4775 }
4776
4777 static const struct command_registration target_command_handlers[] = {
4778         {
4779                 .name = "targets",
4780                 .handler = &handle_targets_command,
4781                 .mode = COMMAND_ANY,
4782                 .help = "change current command line target (one parameter) "
4783                         "or list targets (no parameters)",
4784                 .usage = "[<new_current_target>]",
4785         },
4786         {
4787                 .name = "target",
4788                 .mode = COMMAND_CONFIG,
4789                 .jim_handler = &jim_target,
4790                 .help = "configure target",
4791         },
4792         COMMAND_REGISTRATION_DONE
4793 };
4794
4795 int target_register_commands(struct command_context *cmd_ctx)
4796 {
4797         return register_commands(cmd_ctx, NULL, target_command_handlers);
4798 }
4799
4800 static const struct command_registration target_exec_command_handlers[] = {
4801         {
4802                 .name = "fast_load_image",
4803                 .handler = &handle_fast_load_image_command,
4804                 .mode = COMMAND_ANY,
4805                 .help = "Load image into memory, mainly for profiling purposes",
4806                 .usage = "<file> <address> ['bin'|'ihex'|'elf'|'s19'] "
4807                         "[min_address] [max_length]",
4808         },
4809         {
4810                 .name = "fast_load",
4811                 .handler = &handle_fast_load_command,
4812                 .mode = COMMAND_ANY,
4813                 .help = "loads active fast load image to current target "
4814                         "- mainly for profiling purposes",
4815         },
4816         {
4817                 .name = "profile",
4818                 .handler = &handle_profile_command,
4819                 .mode = COMMAND_EXEC,
4820                 .help = "profiling samples the CPU PC",
4821         },
4822         /** @todo don't register virt2phys() unless target supports it */
4823         {
4824                 .name = "virt2phys",
4825                 .handler = &handle_virt2phys_command,
4826                 .mode = COMMAND_ANY,
4827                 .help = "translate a virtual address into a physical address",
4828         },
4829
4830         {
4831                 .name = "reg",
4832                 .handler = &handle_reg_command,
4833                 .mode = COMMAND_EXEC,
4834                 .help = "display or set a register",
4835         },
4836
4837         {
4838                 .name = "poll",
4839                 .handler = &handle_poll_command,
4840                 .mode = COMMAND_EXEC,
4841                 .help = "poll target state",
4842         },
4843         {
4844                 .name = "wait_halt",
4845                 .handler = &handle_wait_halt_command,
4846                 .mode = COMMAND_EXEC,
4847                 .help = "wait for target halt",
4848                 .usage = "[time (s)]",
4849         },
4850         {
4851                 .name = "halt",
4852                 .handler = &handle_halt_command,
4853                 .mode = COMMAND_EXEC,
4854                 .help = "halt target",
4855         },
4856         {
4857                 .name = "resume",
4858                 .handler = &handle_resume_command,
4859                 .mode = COMMAND_EXEC,
4860                 .help = "resume target",
4861                 .usage = "[<address>]",
4862         },
4863         {
4864                 .name = "reset",
4865                 .handler = &handle_reset_command,
4866                 .mode = COMMAND_EXEC,
4867                 .usage = "[run|halt|init]",
4868                 .help = "Reset all targets into the specified mode."
4869                         "Default reset mode is run, if not given.",
4870         },
4871         {
4872                 .name = "soft_reset_halt",
4873                 .handler = &handle_soft_reset_halt_command,
4874                 .mode = COMMAND_EXEC,
4875                 .help = "halt the target and do a soft reset",
4876         },
4877         {
4878
4879                 .name = "step",
4880                 .handler = &handle_step_command,
4881                 .mode = COMMAND_EXEC,
4882                 .help = "step one instruction from current PC or [addr]",
4883                 .usage = "[<address>]",
4884         },
4885         {
4886
4887                 .name = "mdw",
4888                 .handler = &handle_md_command,
4889                 .mode = COMMAND_EXEC,
4890                 .help = "display memory words",
4891                 .usage = "[phys] <addr> [count]",
4892         },
4893         {
4894                 .name = "mdh",
4895                 .handler = &handle_md_command,
4896                 .mode = COMMAND_EXEC,
4897                 .help = "display memory half-words",
4898                 .usage = "[phys] <addr> [count]",
4899         },
4900         {
4901                 .name = "mdb",
4902                 .handler = &handle_md_command,
4903                 .mode = COMMAND_EXEC,
4904                 .help = "display memory bytes",
4905                 .usage = "[phys] <addr> [count]",
4906         },
4907         {
4908
4909                 .name = "mww",
4910                 .handler = &handle_mw_command,
4911                 .mode = COMMAND_EXEC,
4912                 .help = "write memory word",
4913                 .usage = "[phys]  <addr> <value> [count]",
4914         },
4915         {
4916                 .name = "mwh",
4917                 .handler = &handle_mw_command,
4918                 .mode = COMMAND_EXEC,
4919                 .help = "write memory half-word",
4920                 .usage = "[phys] <addr> <value> [count]",
4921         },
4922         {
4923                 .name = "mwb",
4924                 .handler = &handle_mw_command,
4925                 .mode = COMMAND_EXEC,
4926                 .help = "write memory byte",
4927                 .usage = "[phys] <addr> <value> [count]",
4928         },
4929         {
4930
4931                 .name = "bp",
4932                 .handler = &handle_bp_command,
4933                 .mode = COMMAND_EXEC,
4934                 .help = "list or set breakpoint",
4935                 .usage = "[<address> <length> [hw]]",
4936         },
4937         {
4938                 .name = "rbp",
4939                 .handler = &handle_rbp_command,
4940                 .mode = COMMAND_EXEC,
4941                 .help = "remove breakpoint",
4942                 .usage = "<address>",
4943         },
4944         {
4945
4946                 .name = "wp",
4947                 .handler = &handle_wp_command,
4948                 .mode = COMMAND_EXEC,
4949                 .help = "list or set watchpoint",
4950                 .usage = "[<address> <length> <r/w/a> [value] [mask]]",
4951         },
4952         {
4953                 .name = "rwp",
4954                 .handler = &handle_rwp_command,
4955                 .mode = COMMAND_EXEC,
4956                 .help = "remove watchpoint",
4957                 .usage = "<address>",
4958
4959         },
4960         {
4961                 .name = "load_image",
4962                 .handler = &handle_load_image_command,
4963                 .mode = COMMAND_EXEC,
4964                 .usage = "<file> <address> ['bin'|'ihex'|'elf'|'s19'] "
4965                         "[min_address] [max_length]",
4966         },
4967         {
4968                 .name = "dump_image",
4969                 .handler = &handle_dump_image_command,
4970                 .mode = COMMAND_EXEC,
4971                 .usage = "<file> <address> <size>",
4972         },
4973         {
4974                 .name = "verify_image",
4975                 .handler = &handle_verify_image_command,
4976                 .mode = COMMAND_EXEC,
4977                 .usage = "<file> [offset] [type]",
4978         },
4979         {
4980                 .name = "test_image",
4981                 .handler = &handle_test_image_command,
4982                 .mode = COMMAND_EXEC,
4983                 .usage = "<file> [offset] [type]",
4984         },
4985         {
4986                 .name = "ocd_mem2array",
4987                 .mode = COMMAND_EXEC,
4988                 .jim_handler = &jim_mem2array,
4989                 .help = "read memory and return as a TCL array "
4990                         "for script processing",
4991                 .usage = "<arrayname> <width=32|16|8> <address> <count>",
4992         },
4993         {
4994                 .name = "ocd_array2mem",
4995                 .mode = COMMAND_EXEC,
4996                 .jim_handler = &jim_array2mem,
4997                 .help = "convert a TCL array to memory locations "
4998                         "and write the values",
4999                 .usage = "<arrayname> <width=32|16|8> <address> <count>",
5000         },
5001         COMMAND_REGISTRATION_DONE
5002 };
5003 int target_register_user_commands(struct command_context *cmd_ctx)
5004 {
5005         int retval = ERROR_OK;
5006         if ((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
5007                 return retval;
5008
5009         if ((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
5010                 return retval;
5011
5012
5013         return register_commands(cmd_ctx, NULL, target_exec_command_handlers);
5014 }