Fix some C99 format specifiers
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2010 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   Copyright (C) 2011 by Broadcom Corporation                            *
18  *   Evan Hunter - ehunter@broadcom.com                                    *
19  *                                                                         *
20  *   Copyright (C) ST-Ericsson SA 2011                                     *
21  *   michel.jaouen@stericsson.com : smp minimum support                    *
22  *                                                                         *
23  *   Copyright (C) 2011 Andreas Fritiofson                                 *
24  *   andreas.fritiofson@gmail.com                                          *
25  *                                                                         *
26  *   This program is free software; you can redistribute it and/or modify  *
27  *   it under the terms of the GNU General Public License as published by  *
28  *   the Free Software Foundation; either version 2 of the License, or     *
29  *   (at your option) any later version.                                   *
30  *                                                                         *
31  *   This program is distributed in the hope that it will be useful,       *
32  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
33  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
34  *   GNU General Public License for more details.                          *
35  *                                                                         *
36  *   You should have received a copy of the GNU General Public License     *
37  *   along with this program; if not, write to the                         *
38  *   Free Software Foundation, Inc.,                                       *
39  *   51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.           *
40  ***************************************************************************/
41
42 #ifdef HAVE_CONFIG_H
43 #include "config.h"
44 #endif
45
46 #include <helper/time_support.h>
47 #include <jtag/jtag.h>
48 #include <flash/nor/core.h>
49
50 #include "target.h"
51 #include "target_type.h"
52 #include "target_request.h"
53 #include "breakpoints.h"
54 #include "register.h"
55 #include "trace.h"
56 #include "image.h"
57 #include "rtos/rtos.h"
58
59 /* default halt wait timeout (ms) */
60 #define DEFAULT_HALT_TIMEOUT 5000
61
62 static int target_read_buffer_default(struct target *target, uint32_t address,
63                 uint32_t count, uint8_t *buffer);
64 static int target_write_buffer_default(struct target *target, uint32_t address,
65                 uint32_t count, const uint8_t *buffer);
66 static int target_array2mem(Jim_Interp *interp, struct target *target,
67                 int argc, Jim_Obj * const *argv);
68 static int target_mem2array(Jim_Interp *interp, struct target *target,
69                 int argc, Jim_Obj * const *argv);
70 static int target_register_user_commands(struct command_context *cmd_ctx);
71 static int target_get_gdb_fileio_info_default(struct target *target,
72                 struct gdb_fileio_info *fileio_info);
73 static int target_gdb_fileio_end_default(struct target *target, int retcode,
74                 int fileio_errno, bool ctrl_c);
75 static int target_profiling_default(struct target *target, uint32_t *samples,
76                 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds);
77
78 /* targets */
79 extern struct target_type arm7tdmi_target;
80 extern struct target_type arm720t_target;
81 extern struct target_type arm9tdmi_target;
82 extern struct target_type arm920t_target;
83 extern struct target_type arm966e_target;
84 extern struct target_type arm946e_target;
85 extern struct target_type arm926ejs_target;
86 extern struct target_type fa526_target;
87 extern struct target_type feroceon_target;
88 extern struct target_type dragonite_target;
89 extern struct target_type xscale_target;
90 extern struct target_type cortexm_target;
91 extern struct target_type cortexa8_target;
92 extern struct target_type cortexr4_target;
93 extern struct target_type arm11_target;
94 extern struct target_type mips_m4k_target;
95 extern struct target_type avr_target;
96 extern struct target_type dsp563xx_target;
97 extern struct target_type dsp5680xx_target;
98 extern struct target_type testee_target;
99 extern struct target_type avr32_ap7k_target;
100 extern struct target_type hla_target;
101 extern struct target_type nds32_v2_target;
102 extern struct target_type nds32_v3_target;
103 extern struct target_type nds32_v3m_target;
104 extern struct target_type or1k_target;
105 extern struct target_type quark_x10xx_target;
106
107 static struct target_type *target_types[] = {
108         &arm7tdmi_target,
109         &arm9tdmi_target,
110         &arm920t_target,
111         &arm720t_target,
112         &arm966e_target,
113         &arm946e_target,
114         &arm926ejs_target,
115         &fa526_target,
116         &feroceon_target,
117         &dragonite_target,
118         &xscale_target,
119         &cortexm_target,
120         &cortexa8_target,
121         &cortexr4_target,
122         &arm11_target,
123         &mips_m4k_target,
124         &avr_target,
125         &dsp563xx_target,
126         &dsp5680xx_target,
127         &testee_target,
128         &avr32_ap7k_target,
129         &hla_target,
130         &nds32_v2_target,
131         &nds32_v3_target,
132         &nds32_v3m_target,
133         &or1k_target,
134         &quark_x10xx_target,
135         NULL,
136 };
137
138 struct target *all_targets;
139 static struct target_event_callback *target_event_callbacks;
140 static struct target_timer_callback *target_timer_callbacks;
141 static const int polling_interval = 100;
142
143 static const Jim_Nvp nvp_assert[] = {
144         { .name = "assert", NVP_ASSERT },
145         { .name = "deassert", NVP_DEASSERT },
146         { .name = "T", NVP_ASSERT },
147         { .name = "F", NVP_DEASSERT },
148         { .name = "t", NVP_ASSERT },
149         { .name = "f", NVP_DEASSERT },
150         { .name = NULL, .value = -1 }
151 };
152
153 static const Jim_Nvp nvp_error_target[] = {
154         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
155         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
156         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
157         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
158         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
159         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
160         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
161         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
162         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
163         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
164         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
165         { .value = -1, .name = NULL }
166 };
167
168 static const char *target_strerror_safe(int err)
169 {
170         const Jim_Nvp *n;
171
172         n = Jim_Nvp_value2name_simple(nvp_error_target, err);
173         if (n->name == NULL)
174                 return "unknown";
175         else
176                 return n->name;
177 }
178
179 static const Jim_Nvp nvp_target_event[] = {
180
181         { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
182         { .value = TARGET_EVENT_HALTED, .name = "halted" },
183         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
184         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
185         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
186
187         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
188         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
189
190         { .value = TARGET_EVENT_RESET_START,         .name = "reset-start" },
191         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
192         { .value = TARGET_EVENT_RESET_ASSERT,        .name = "reset-assert" },
193         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
194         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
195         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
196         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
197         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
198         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
199         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
200         { .value = TARGET_EVENT_RESET_INIT,          .name = "reset-init" },
201         { .value = TARGET_EVENT_RESET_END,           .name = "reset-end" },
202
203         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
204         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
205
206         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
207         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
208
209         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
210         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
211
212         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
213         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
214
215         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
216         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
217
218         { .name = NULL, .value = -1 }
219 };
220
221 static const Jim_Nvp nvp_target_state[] = {
222         { .name = "unknown", .value = TARGET_UNKNOWN },
223         { .name = "running", .value = TARGET_RUNNING },
224         { .name = "halted",  .value = TARGET_HALTED },
225         { .name = "reset",   .value = TARGET_RESET },
226         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
227         { .name = NULL, .value = -1 },
228 };
229
230 static const Jim_Nvp nvp_target_debug_reason[] = {
231         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
232         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
233         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
234         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
235         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
236         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
237         { .name = "program-exit"             , .value = DBG_REASON_EXIT },
238         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
239         { .name = NULL, .value = -1 },
240 };
241
242 static const Jim_Nvp nvp_target_endian[] = {
243         { .name = "big",    .value = TARGET_BIG_ENDIAN },
244         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
245         { .name = "be",     .value = TARGET_BIG_ENDIAN },
246         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
247         { .name = NULL,     .value = -1 },
248 };
249
250 static const Jim_Nvp nvp_reset_modes[] = {
251         { .name = "unknown", .value = RESET_UNKNOWN },
252         { .name = "run"    , .value = RESET_RUN },
253         { .name = "halt"   , .value = RESET_HALT },
254         { .name = "init"   , .value = RESET_INIT },
255         { .name = NULL     , .value = -1 },
256 };
257
258 const char *debug_reason_name(struct target *t)
259 {
260         const char *cp;
261
262         cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
263                         t->debug_reason)->name;
264         if (!cp) {
265                 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
266                 cp = "(*BUG*unknown*BUG*)";
267         }
268         return cp;
269 }
270
271 const char *target_state_name(struct target *t)
272 {
273         const char *cp;
274         cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
275         if (!cp) {
276                 LOG_ERROR("Invalid target state: %d", (int)(t->state));
277                 cp = "(*BUG*unknown*BUG*)";
278         }
279         return cp;
280 }
281
282 /* determine the number of the new target */
283 static int new_target_number(void)
284 {
285         struct target *t;
286         int x;
287
288         /* number is 0 based */
289         x = -1;
290         t = all_targets;
291         while (t) {
292                 if (x < t->target_number)
293                         x = t->target_number;
294                 t = t->next;
295         }
296         return x + 1;
297 }
298
299 /* read a uint64_t from a buffer in target memory endianness */
300 uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
301 {
302         if (target->endianness == TARGET_LITTLE_ENDIAN)
303                 return le_to_h_u64(buffer);
304         else
305                 return be_to_h_u64(buffer);
306 }
307
308 /* read a uint32_t from a buffer in target memory endianness */
309 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
310 {
311         if (target->endianness == TARGET_LITTLE_ENDIAN)
312                 return le_to_h_u32(buffer);
313         else
314                 return be_to_h_u32(buffer);
315 }
316
317 /* read a uint24_t from a buffer in target memory endianness */
318 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
319 {
320         if (target->endianness == TARGET_LITTLE_ENDIAN)
321                 return le_to_h_u24(buffer);
322         else
323                 return be_to_h_u24(buffer);
324 }
325
326 /* read a uint16_t from a buffer in target memory endianness */
327 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
328 {
329         if (target->endianness == TARGET_LITTLE_ENDIAN)
330                 return le_to_h_u16(buffer);
331         else
332                 return be_to_h_u16(buffer);
333 }
334
335 /* read a uint8_t from a buffer in target memory endianness */
336 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
337 {
338         return *buffer & 0x0ff;
339 }
340
341 /* write a uint64_t to a buffer in target memory endianness */
342 void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
343 {
344         if (target->endianness == TARGET_LITTLE_ENDIAN)
345                 h_u64_to_le(buffer, value);
346         else
347                 h_u64_to_be(buffer, value);
348 }
349
350 /* write a uint32_t to a buffer in target memory endianness */
351 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
352 {
353         if (target->endianness == TARGET_LITTLE_ENDIAN)
354                 h_u32_to_le(buffer, value);
355         else
356                 h_u32_to_be(buffer, value);
357 }
358
359 /* write a uint24_t to a buffer in target memory endianness */
360 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
361 {
362         if (target->endianness == TARGET_LITTLE_ENDIAN)
363                 h_u24_to_le(buffer, value);
364         else
365                 h_u24_to_be(buffer, value);
366 }
367
368 /* write a uint16_t to a buffer in target memory endianness */
369 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
370 {
371         if (target->endianness == TARGET_LITTLE_ENDIAN)
372                 h_u16_to_le(buffer, value);
373         else
374                 h_u16_to_be(buffer, value);
375 }
376
377 /* write a uint8_t to a buffer in target memory endianness */
378 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
379 {
380         *buffer = value;
381 }
382
383 /* write a uint64_t array to a buffer in target memory endianness */
384 void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf)
385 {
386         uint32_t i;
387         for (i = 0; i < count; i++)
388                 dstbuf[i] = target_buffer_get_u64(target, &buffer[i * 8]);
389 }
390
391 /* write a uint32_t array to a buffer in target memory endianness */
392 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
393 {
394         uint32_t i;
395         for (i = 0; i < count; i++)
396                 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
397 }
398
399 /* write a uint16_t array to a buffer in target memory endianness */
400 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
401 {
402         uint32_t i;
403         for (i = 0; i < count; i++)
404                 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
405 }
406
407 /* write a uint64_t array to a buffer in target memory endianness */
408 void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf)
409 {
410         uint32_t i;
411         for (i = 0; i < count; i++)
412                 target_buffer_set_u64(target, &buffer[i * 8], srcbuf[i]);
413 }
414
415 /* write a uint32_t array to a buffer in target memory endianness */
416 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
417 {
418         uint32_t i;
419         for (i = 0; i < count; i++)
420                 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
421 }
422
423 /* write a uint16_t array to a buffer in target memory endianness */
424 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf)
425 {
426         uint32_t i;
427         for (i = 0; i < count; i++)
428                 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
429 }
430
431 /* return a pointer to a configured target; id is name or number */
432 struct target *get_target(const char *id)
433 {
434         struct target *target;
435
436         /* try as tcltarget name */
437         for (target = all_targets; target; target = target->next) {
438                 if (target_name(target) == NULL)
439                         continue;
440                 if (strcmp(id, target_name(target)) == 0)
441                         return target;
442         }
443
444         /* It's OK to remove this fallback sometime after August 2010 or so */
445
446         /* no match, try as number */
447         unsigned num;
448         if (parse_uint(id, &num) != ERROR_OK)
449                 return NULL;
450
451         for (target = all_targets; target; target = target->next) {
452                 if (target->target_number == (int)num) {
453                         LOG_WARNING("use '%s' as target identifier, not '%u'",
454                                         target_name(target), num);
455                         return target;
456                 }
457         }
458
459         return NULL;
460 }
461
462 /* returns a pointer to the n-th configured target */
463 static struct target *get_target_by_num(int num)
464 {
465         struct target *target = all_targets;
466
467         while (target) {
468                 if (target->target_number == num)
469                         return target;
470                 target = target->next;
471         }
472
473         return NULL;
474 }
475
476 struct target *get_current_target(struct command_context *cmd_ctx)
477 {
478         struct target *target = get_target_by_num(cmd_ctx->current_target);
479
480         if (target == NULL) {
481                 LOG_ERROR("BUG: current_target out of bounds");
482                 exit(-1);
483         }
484
485         return target;
486 }
487
488 int target_poll(struct target *target)
489 {
490         int retval;
491
492         /* We can't poll until after examine */
493         if (!target_was_examined(target)) {
494                 /* Fail silently lest we pollute the log */
495                 return ERROR_FAIL;
496         }
497
498         retval = target->type->poll(target);
499         if (retval != ERROR_OK)
500                 return retval;
501
502         if (target->halt_issued) {
503                 if (target->state == TARGET_HALTED)
504                         target->halt_issued = false;
505                 else {
506                         long long t = timeval_ms() - target->halt_issued_time;
507                         if (t > DEFAULT_HALT_TIMEOUT) {
508                                 target->halt_issued = false;
509                                 LOG_INFO("Halt timed out, wake up GDB.");
510                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
511                         }
512                 }
513         }
514
515         return ERROR_OK;
516 }
517
518 int target_halt(struct target *target)
519 {
520         int retval;
521         /* We can't poll until after examine */
522         if (!target_was_examined(target)) {
523                 LOG_ERROR("Target not examined yet");
524                 return ERROR_FAIL;
525         }
526
527         retval = target->type->halt(target);
528         if (retval != ERROR_OK)
529                 return retval;
530
531         target->halt_issued = true;
532         target->halt_issued_time = timeval_ms();
533
534         return ERROR_OK;
535 }
536
537 /**
538  * Make the target (re)start executing using its saved execution
539  * context (possibly with some modifications).
540  *
541  * @param target Which target should start executing.
542  * @param current True to use the target's saved program counter instead
543  *      of the address parameter
544  * @param address Optionally used as the program counter.
545  * @param handle_breakpoints True iff breakpoints at the resumption PC
546  *      should be skipped.  (For example, maybe execution was stopped by
547  *      such a breakpoint, in which case it would be counterprodutive to
548  *      let it re-trigger.
549  * @param debug_execution False if all working areas allocated by OpenOCD
550  *      should be released and/or restored to their original contents.
551  *      (This would for example be true to run some downloaded "helper"
552  *      algorithm code, which resides in one such working buffer and uses
553  *      another for data storage.)
554  *
555  * @todo Resolve the ambiguity about what the "debug_execution" flag
556  * signifies.  For example, Target implementations don't agree on how
557  * it relates to invalidation of the register cache, or to whether
558  * breakpoints and watchpoints should be enabled.  (It would seem wrong
559  * to enable breakpoints when running downloaded "helper" algorithms
560  * (debug_execution true), since the breakpoints would be set to match
561  * target firmware being debugged, not the helper algorithm.... and
562  * enabling them could cause such helpers to malfunction (for example,
563  * by overwriting data with a breakpoint instruction.  On the other
564  * hand the infrastructure for running such helpers might use this
565  * procedure but rely on hardware breakpoint to detect termination.)
566  */
567 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
568 {
569         int retval;
570
571         /* We can't poll until after examine */
572         if (!target_was_examined(target)) {
573                 LOG_ERROR("Target not examined yet");
574                 return ERROR_FAIL;
575         }
576
577         target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
578
579         /* note that resume *must* be asynchronous. The CPU can halt before
580          * we poll. The CPU can even halt at the current PC as a result of
581          * a software breakpoint being inserted by (a bug?) the application.
582          */
583         retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
584         if (retval != ERROR_OK)
585                 return retval;
586
587         target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
588
589         return retval;
590 }
591
592 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
593 {
594         char buf[100];
595         int retval;
596         Jim_Nvp *n;
597         n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
598         if (n->name == NULL) {
599                 LOG_ERROR("invalid reset mode");
600                 return ERROR_FAIL;
601         }
602
603         /* disable polling during reset to make reset event scripts
604          * more predictable, i.e. dr/irscan & pathmove in events will
605          * not have JTAG operations injected into the middle of a sequence.
606          */
607         bool save_poll = jtag_poll_get_enabled();
608
609         jtag_poll_set_enabled(false);
610
611         sprintf(buf, "ocd_process_reset %s", n->name);
612         retval = Jim_Eval(cmd_ctx->interp, buf);
613
614         jtag_poll_set_enabled(save_poll);
615
616         if (retval != JIM_OK) {
617                 Jim_MakeErrorMessage(cmd_ctx->interp);
618                 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
619                 return ERROR_FAIL;
620         }
621
622         /* We want any events to be processed before the prompt */
623         retval = target_call_timer_callbacks_now();
624
625         struct target *target;
626         for (target = all_targets; target; target = target->next) {
627                 target->type->check_reset(target);
628                 target->running_alg = false;
629         }
630
631         return retval;
632 }
633
634 static int identity_virt2phys(struct target *target,
635                 uint32_t virtual, uint32_t *physical)
636 {
637         *physical = virtual;
638         return ERROR_OK;
639 }
640
641 static int no_mmu(struct target *target, int *enabled)
642 {
643         *enabled = 0;
644         return ERROR_OK;
645 }
646
647 static int default_examine(struct target *target)
648 {
649         target_set_examined(target);
650         return ERROR_OK;
651 }
652
653 /* no check by default */
654 static int default_check_reset(struct target *target)
655 {
656         return ERROR_OK;
657 }
658
659 int target_examine_one(struct target *target)
660 {
661         return target->type->examine(target);
662 }
663
664 static int jtag_enable_callback(enum jtag_event event, void *priv)
665 {
666         struct target *target = priv;
667
668         if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
669                 return ERROR_OK;
670
671         jtag_unregister_event_callback(jtag_enable_callback, target);
672
673         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
674
675         int retval = target_examine_one(target);
676         if (retval != ERROR_OK)
677                 return retval;
678
679         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
680
681         return retval;
682 }
683
684 /* Targets that correctly implement init + examine, i.e.
685  * no communication with target during init:
686  *
687  * XScale
688  */
689 int target_examine(void)
690 {
691         int retval = ERROR_OK;
692         struct target *target;
693
694         for (target = all_targets; target; target = target->next) {
695                 /* defer examination, but don't skip it */
696                 if (!target->tap->enabled) {
697                         jtag_register_event_callback(jtag_enable_callback,
698                                         target);
699                         continue;
700                 }
701
702                 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
703
704                 retval = target_examine_one(target);
705                 if (retval != ERROR_OK)
706                         return retval;
707
708                 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
709         }
710         return retval;
711 }
712
713 const char *target_type_name(struct target *target)
714 {
715         return target->type->name;
716 }
717
718 static int target_soft_reset_halt(struct target *target)
719 {
720         if (!target_was_examined(target)) {
721                 LOG_ERROR("Target not examined yet");
722                 return ERROR_FAIL;
723         }
724         if (!target->type->soft_reset_halt) {
725                 LOG_ERROR("Target %s does not support soft_reset_halt",
726                                 target_name(target));
727                 return ERROR_FAIL;
728         }
729         return target->type->soft_reset_halt(target);
730 }
731
732 /**
733  * Downloads a target-specific native code algorithm to the target,
734  * and executes it.  * Note that some targets may need to set up, enable,
735  * and tear down a breakpoint (hard or * soft) to detect algorithm
736  * termination, while others may support  lower overhead schemes where
737  * soft breakpoints embedded in the algorithm automatically terminate the
738  * algorithm.
739  *
740  * @param target used to run the algorithm
741  * @param arch_info target-specific description of the algorithm.
742  */
743 int target_run_algorithm(struct target *target,
744                 int num_mem_params, struct mem_param *mem_params,
745                 int num_reg_params, struct reg_param *reg_param,
746                 uint32_t entry_point, uint32_t exit_point,
747                 int timeout_ms, void *arch_info)
748 {
749         int retval = ERROR_FAIL;
750
751         if (!target_was_examined(target)) {
752                 LOG_ERROR("Target not examined yet");
753                 goto done;
754         }
755         if (!target->type->run_algorithm) {
756                 LOG_ERROR("Target type '%s' does not support %s",
757                                 target_type_name(target), __func__);
758                 goto done;
759         }
760
761         target->running_alg = true;
762         retval = target->type->run_algorithm(target,
763                         num_mem_params, mem_params,
764                         num_reg_params, reg_param,
765                         entry_point, exit_point, timeout_ms, arch_info);
766         target->running_alg = false;
767
768 done:
769         return retval;
770 }
771
772 /**
773  * Downloads a target-specific native code algorithm to the target,
774  * executes and leaves it running.
775  *
776  * @param target used to run the algorithm
777  * @param arch_info target-specific description of the algorithm.
778  */
779 int target_start_algorithm(struct target *target,
780                 int num_mem_params, struct mem_param *mem_params,
781                 int num_reg_params, struct reg_param *reg_params,
782                 uint32_t entry_point, uint32_t exit_point,
783                 void *arch_info)
784 {
785         int retval = ERROR_FAIL;
786
787         if (!target_was_examined(target)) {
788                 LOG_ERROR("Target not examined yet");
789                 goto done;
790         }
791         if (!target->type->start_algorithm) {
792                 LOG_ERROR("Target type '%s' does not support %s",
793                                 target_type_name(target), __func__);
794                 goto done;
795         }
796         if (target->running_alg) {
797                 LOG_ERROR("Target is already running an algorithm");
798                 goto done;
799         }
800
801         target->running_alg = true;
802         retval = target->type->start_algorithm(target,
803                         num_mem_params, mem_params,
804                         num_reg_params, reg_params,
805                         entry_point, exit_point, arch_info);
806
807 done:
808         return retval;
809 }
810
811 /**
812  * Waits for an algorithm started with target_start_algorithm() to complete.
813  *
814  * @param target used to run the algorithm
815  * @param arch_info target-specific description of the algorithm.
816  */
817 int target_wait_algorithm(struct target *target,
818                 int num_mem_params, struct mem_param *mem_params,
819                 int num_reg_params, struct reg_param *reg_params,
820                 uint32_t exit_point, int timeout_ms,
821                 void *arch_info)
822 {
823         int retval = ERROR_FAIL;
824
825         if (!target->type->wait_algorithm) {
826                 LOG_ERROR("Target type '%s' does not support %s",
827                                 target_type_name(target), __func__);
828                 goto done;
829         }
830         if (!target->running_alg) {
831                 LOG_ERROR("Target is not running an algorithm");
832                 goto done;
833         }
834
835         retval = target->type->wait_algorithm(target,
836                         num_mem_params, mem_params,
837                         num_reg_params, reg_params,
838                         exit_point, timeout_ms, arch_info);
839         if (retval != ERROR_TARGET_TIMEOUT)
840                 target->running_alg = false;
841
842 done:
843         return retval;
844 }
845
846 /**
847  * Executes a target-specific native code algorithm in the target.
848  * It differs from target_run_algorithm in that the algorithm is asynchronous.
849  * Because of this it requires an compliant algorithm:
850  * see contrib/loaders/flash/stm32f1x.S for example.
851  *
852  * @param target used to run the algorithm
853  */
854
855 int target_run_flash_async_algorithm(struct target *target,
856                 const uint8_t *buffer, uint32_t count, int block_size,
857                 int num_mem_params, struct mem_param *mem_params,
858                 int num_reg_params, struct reg_param *reg_params,
859                 uint32_t buffer_start, uint32_t buffer_size,
860                 uint32_t entry_point, uint32_t exit_point, void *arch_info)
861 {
862         int retval;
863         int timeout = 0;
864
865         /* Set up working area. First word is write pointer, second word is read pointer,
866          * rest is fifo data area. */
867         uint32_t wp_addr = buffer_start;
868         uint32_t rp_addr = buffer_start + 4;
869         uint32_t fifo_start_addr = buffer_start + 8;
870         uint32_t fifo_end_addr = buffer_start + buffer_size;
871
872         uint32_t wp = fifo_start_addr;
873         uint32_t rp = fifo_start_addr;
874
875         /* validate block_size is 2^n */
876         assert(!block_size || !(block_size & (block_size - 1)));
877
878         retval = target_write_u32(target, wp_addr, wp);
879         if (retval != ERROR_OK)
880                 return retval;
881         retval = target_write_u32(target, rp_addr, rp);
882         if (retval != ERROR_OK)
883                 return retval;
884
885         /* Start up algorithm on target and let it idle while writing the first chunk */
886         retval = target_start_algorithm(target, num_mem_params, mem_params,
887                         num_reg_params, reg_params,
888                         entry_point,
889                         exit_point,
890                         arch_info);
891
892         if (retval != ERROR_OK) {
893                 LOG_ERROR("error starting target flash write algorithm");
894                 return retval;
895         }
896
897         while (count > 0) {
898
899                 retval = target_read_u32(target, rp_addr, &rp);
900                 if (retval != ERROR_OK) {
901                         LOG_ERROR("failed to get read pointer");
902                         break;
903                 }
904
905                 LOG_DEBUG("count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32, count, wp, rp);
906
907                 if (rp == 0) {
908                         LOG_ERROR("flash write algorithm aborted by target");
909                         retval = ERROR_FLASH_OPERATION_FAILED;
910                         break;
911                 }
912
913                 if ((rp & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
914                         LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
915                         break;
916                 }
917
918                 /* Count the number of bytes available in the fifo without
919                  * crossing the wrap around. Make sure to not fill it completely,
920                  * because that would make wp == rp and that's the empty condition. */
921                 uint32_t thisrun_bytes;
922                 if (rp > wp)
923                         thisrun_bytes = rp - wp - block_size;
924                 else if (rp > fifo_start_addr)
925                         thisrun_bytes = fifo_end_addr - wp;
926                 else
927                         thisrun_bytes = fifo_end_addr - wp - block_size;
928
929                 if (thisrun_bytes == 0) {
930                         /* Throttle polling a bit if transfer is (much) faster than flash
931                          * programming. The exact delay shouldn't matter as long as it's
932                          * less than buffer size / flash speed. This is very unlikely to
933                          * run when using high latency connections such as USB. */
934                         alive_sleep(10);
935
936                         /* to stop an infinite loop on some targets check and increment a timeout
937                          * this issue was observed on a stellaris using the new ICDI interface */
938                         if (timeout++ >= 500) {
939                                 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
940                                 return ERROR_FLASH_OPERATION_FAILED;
941                         }
942                         continue;
943                 }
944
945                 /* reset our timeout */
946                 timeout = 0;
947
948                 /* Limit to the amount of data we actually want to write */
949                 if (thisrun_bytes > count * block_size)
950                         thisrun_bytes = count * block_size;
951
952                 /* Write data to fifo */
953                 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
954                 if (retval != ERROR_OK)
955                         break;
956
957                 /* Update counters and wrap write pointer */
958                 buffer += thisrun_bytes;
959                 count -= thisrun_bytes / block_size;
960                 wp += thisrun_bytes;
961                 if (wp >= fifo_end_addr)
962                         wp = fifo_start_addr;
963
964                 /* Store updated write pointer to target */
965                 retval = target_write_u32(target, wp_addr, wp);
966                 if (retval != ERROR_OK)
967                         break;
968         }
969
970         if (retval != ERROR_OK) {
971                 /* abort flash write algorithm on target */
972                 target_write_u32(target, wp_addr, 0);
973         }
974
975         int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
976                         num_reg_params, reg_params,
977                         exit_point,
978                         10000,
979                         arch_info);
980
981         if (retval2 != ERROR_OK) {
982                 LOG_ERROR("error waiting for target flash write algorithm");
983                 retval = retval2;
984         }
985
986         return retval;
987 }
988
989 int target_read_memory(struct target *target,
990                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
991 {
992         if (!target_was_examined(target)) {
993                 LOG_ERROR("Target not examined yet");
994                 return ERROR_FAIL;
995         }
996         return target->type->read_memory(target, address, size, count, buffer);
997 }
998
999 int target_read_phys_memory(struct target *target,
1000                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1001 {
1002         if (!target_was_examined(target)) {
1003                 LOG_ERROR("Target not examined yet");
1004                 return ERROR_FAIL;
1005         }
1006         return target->type->read_phys_memory(target, address, size, count, buffer);
1007 }
1008
1009 int target_write_memory(struct target *target,
1010                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1011 {
1012         if (!target_was_examined(target)) {
1013                 LOG_ERROR("Target not examined yet");
1014                 return ERROR_FAIL;
1015         }
1016         return target->type->write_memory(target, address, size, count, buffer);
1017 }
1018
1019 int target_write_phys_memory(struct target *target,
1020                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1021 {
1022         if (!target_was_examined(target)) {
1023                 LOG_ERROR("Target not examined yet");
1024                 return ERROR_FAIL;
1025         }
1026         return target->type->write_phys_memory(target, address, size, count, buffer);
1027 }
1028
1029 int target_add_breakpoint(struct target *target,
1030                 struct breakpoint *breakpoint)
1031 {
1032         if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
1033                 LOG_WARNING("target %s is not halted", target_name(target));
1034                 return ERROR_TARGET_NOT_HALTED;
1035         }
1036         return target->type->add_breakpoint(target, breakpoint);
1037 }
1038
1039 int target_add_context_breakpoint(struct target *target,
1040                 struct breakpoint *breakpoint)
1041 {
1042         if (target->state != TARGET_HALTED) {
1043                 LOG_WARNING("target %s is not halted", target_name(target));
1044                 return ERROR_TARGET_NOT_HALTED;
1045         }
1046         return target->type->add_context_breakpoint(target, breakpoint);
1047 }
1048
1049 int target_add_hybrid_breakpoint(struct target *target,
1050                 struct breakpoint *breakpoint)
1051 {
1052         if (target->state != TARGET_HALTED) {
1053                 LOG_WARNING("target %s is not halted", target_name(target));
1054                 return ERROR_TARGET_NOT_HALTED;
1055         }
1056         return target->type->add_hybrid_breakpoint(target, breakpoint);
1057 }
1058
1059 int target_remove_breakpoint(struct target *target,
1060                 struct breakpoint *breakpoint)
1061 {
1062         return target->type->remove_breakpoint(target, breakpoint);
1063 }
1064
1065 int target_add_watchpoint(struct target *target,
1066                 struct watchpoint *watchpoint)
1067 {
1068         if (target->state != TARGET_HALTED) {
1069                 LOG_WARNING("target %s is not halted", target_name(target));
1070                 return ERROR_TARGET_NOT_HALTED;
1071         }
1072         return target->type->add_watchpoint(target, watchpoint);
1073 }
1074 int target_remove_watchpoint(struct target *target,
1075                 struct watchpoint *watchpoint)
1076 {
1077         return target->type->remove_watchpoint(target, watchpoint);
1078 }
1079 int target_hit_watchpoint(struct target *target,
1080                 struct watchpoint **hit_watchpoint)
1081 {
1082         if (target->state != TARGET_HALTED) {
1083                 LOG_WARNING("target %s is not halted", target->cmd_name);
1084                 return ERROR_TARGET_NOT_HALTED;
1085         }
1086
1087         if (target->type->hit_watchpoint == NULL) {
1088                 /* For backward compatible, if hit_watchpoint is not implemented,
1089                  * return ERROR_FAIL such that gdb_server will not take the nonsense
1090                  * information. */
1091                 return ERROR_FAIL;
1092         }
1093
1094         return target->type->hit_watchpoint(target, hit_watchpoint);
1095 }
1096
1097 int target_get_gdb_reg_list(struct target *target,
1098                 struct reg **reg_list[], int *reg_list_size,
1099                 enum target_register_class reg_class)
1100 {
1101         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1102 }
1103 int target_step(struct target *target,
1104                 int current, uint32_t address, int handle_breakpoints)
1105 {
1106         return target->type->step(target, current, address, handle_breakpoints);
1107 }
1108
1109 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1110 {
1111         if (target->state != TARGET_HALTED) {
1112                 LOG_WARNING("target %s is not halted", target->cmd_name);
1113                 return ERROR_TARGET_NOT_HALTED;
1114         }
1115         return target->type->get_gdb_fileio_info(target, fileio_info);
1116 }
1117
1118 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1119 {
1120         if (target->state != TARGET_HALTED) {
1121                 LOG_WARNING("target %s is not halted", target->cmd_name);
1122                 return ERROR_TARGET_NOT_HALTED;
1123         }
1124         return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1125 }
1126
1127 int target_profiling(struct target *target, uint32_t *samples,
1128                         uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1129 {
1130         if (target->state != TARGET_HALTED) {
1131                 LOG_WARNING("target %s is not halted", target->cmd_name);
1132                 return ERROR_TARGET_NOT_HALTED;
1133         }
1134         return target->type->profiling(target, samples, max_num_samples,
1135                         num_samples, seconds);
1136 }
1137
1138 /**
1139  * Reset the @c examined flag for the given target.
1140  * Pure paranoia -- targets are zeroed on allocation.
1141  */
1142 static void target_reset_examined(struct target *target)
1143 {
1144         target->examined = false;
1145 }
1146
1147 static int err_read_phys_memory(struct target *target, uint32_t address,
1148                 uint32_t size, uint32_t count, uint8_t *buffer)
1149 {
1150         LOG_ERROR("Not implemented: %s", __func__);
1151         return ERROR_FAIL;
1152 }
1153
1154 static int err_write_phys_memory(struct target *target, uint32_t address,
1155                 uint32_t size, uint32_t count, const uint8_t *buffer)
1156 {
1157         LOG_ERROR("Not implemented: %s", __func__);
1158         return ERROR_FAIL;
1159 }
1160
1161 static int handle_target(void *priv);
1162
1163 static int target_init_one(struct command_context *cmd_ctx,
1164                 struct target *target)
1165 {
1166         target_reset_examined(target);
1167
1168         struct target_type *type = target->type;
1169         if (type->examine == NULL)
1170                 type->examine = default_examine;
1171
1172         if (type->check_reset == NULL)
1173                 type->check_reset = default_check_reset;
1174
1175         assert(type->init_target != NULL);
1176
1177         int retval = type->init_target(cmd_ctx, target);
1178         if (ERROR_OK != retval) {
1179                 LOG_ERROR("target '%s' init failed", target_name(target));
1180                 return retval;
1181         }
1182
1183         /* Sanity-check MMU support ... stub in what we must, to help
1184          * implement it in stages, but warn if we need to do so.
1185          */
1186         if (type->mmu) {
1187                 if (type->write_phys_memory == NULL) {
1188                         LOG_ERROR("type '%s' is missing write_phys_memory",
1189                                         type->name);
1190                         type->write_phys_memory = err_write_phys_memory;
1191                 }
1192                 if (type->read_phys_memory == NULL) {
1193                         LOG_ERROR("type '%s' is missing read_phys_memory",
1194                                         type->name);
1195                         type->read_phys_memory = err_read_phys_memory;
1196                 }
1197                 if (type->virt2phys == NULL) {
1198                         LOG_ERROR("type '%s' is missing virt2phys", type->name);
1199                         type->virt2phys = identity_virt2phys;
1200                 }
1201         } else {
1202                 /* Make sure no-MMU targets all behave the same:  make no
1203                  * distinction between physical and virtual addresses, and
1204                  * ensure that virt2phys() is always an identity mapping.
1205                  */
1206                 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1207                         LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1208
1209                 type->mmu = no_mmu;
1210                 type->write_phys_memory = type->write_memory;
1211                 type->read_phys_memory = type->read_memory;
1212                 type->virt2phys = identity_virt2phys;
1213         }
1214
1215         if (target->type->read_buffer == NULL)
1216                 target->type->read_buffer = target_read_buffer_default;
1217
1218         if (target->type->write_buffer == NULL)
1219                 target->type->write_buffer = target_write_buffer_default;
1220
1221         if (target->type->get_gdb_fileio_info == NULL)
1222                 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1223
1224         if (target->type->gdb_fileio_end == NULL)
1225                 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1226
1227         if (target->type->profiling == NULL)
1228                 target->type->profiling = target_profiling_default;
1229
1230         return ERROR_OK;
1231 }
1232
1233 static int target_init(struct command_context *cmd_ctx)
1234 {
1235         struct target *target;
1236         int retval;
1237
1238         for (target = all_targets; target; target = target->next) {
1239                 retval = target_init_one(cmd_ctx, target);
1240                 if (ERROR_OK != retval)
1241                         return retval;
1242         }
1243
1244         if (!all_targets)
1245                 return ERROR_OK;
1246
1247         retval = target_register_user_commands(cmd_ctx);
1248         if (ERROR_OK != retval)
1249                 return retval;
1250
1251         retval = target_register_timer_callback(&handle_target,
1252                         polling_interval, 1, cmd_ctx->interp);
1253         if (ERROR_OK != retval)
1254                 return retval;
1255
1256         return ERROR_OK;
1257 }
1258
1259 COMMAND_HANDLER(handle_target_init_command)
1260 {
1261         int retval;
1262
1263         if (CMD_ARGC != 0)
1264                 return ERROR_COMMAND_SYNTAX_ERROR;
1265
1266         static bool target_initialized;
1267         if (target_initialized) {
1268                 LOG_INFO("'target init' has already been called");
1269                 return ERROR_OK;
1270         }
1271         target_initialized = true;
1272
1273         retval = command_run_line(CMD_CTX, "init_targets");
1274         if (ERROR_OK != retval)
1275                 return retval;
1276
1277         retval = command_run_line(CMD_CTX, "init_target_events");
1278         if (ERROR_OK != retval)
1279                 return retval;
1280
1281         retval = command_run_line(CMD_CTX, "init_board");
1282         if (ERROR_OK != retval)
1283                 return retval;
1284
1285         LOG_DEBUG("Initializing targets...");
1286         return target_init(CMD_CTX);
1287 }
1288
1289 int target_register_event_callback(int (*callback)(struct target *target,
1290                 enum target_event event, void *priv), void *priv)
1291 {
1292         struct target_event_callback **callbacks_p = &target_event_callbacks;
1293
1294         if (callback == NULL)
1295                 return ERROR_COMMAND_SYNTAX_ERROR;
1296
1297         if (*callbacks_p) {
1298                 while ((*callbacks_p)->next)
1299                         callbacks_p = &((*callbacks_p)->next);
1300                 callbacks_p = &((*callbacks_p)->next);
1301         }
1302
1303         (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1304         (*callbacks_p)->callback = callback;
1305         (*callbacks_p)->priv = priv;
1306         (*callbacks_p)->next = NULL;
1307
1308         return ERROR_OK;
1309 }
1310
1311 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1312 {
1313         struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1314         struct timeval now;
1315
1316         if (callback == NULL)
1317                 return ERROR_COMMAND_SYNTAX_ERROR;
1318
1319         if (*callbacks_p) {
1320                 while ((*callbacks_p)->next)
1321                         callbacks_p = &((*callbacks_p)->next);
1322                 callbacks_p = &((*callbacks_p)->next);
1323         }
1324
1325         (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1326         (*callbacks_p)->callback = callback;
1327         (*callbacks_p)->periodic = periodic;
1328         (*callbacks_p)->time_ms = time_ms;
1329
1330         gettimeofday(&now, NULL);
1331         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
1332         time_ms -= (time_ms % 1000);
1333         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
1334         if ((*callbacks_p)->when.tv_usec > 1000000) {
1335                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
1336                 (*callbacks_p)->when.tv_sec += 1;
1337         }
1338
1339         (*callbacks_p)->priv = priv;
1340         (*callbacks_p)->next = NULL;
1341
1342         return ERROR_OK;
1343 }
1344
1345 int target_unregister_event_callback(int (*callback)(struct target *target,
1346                 enum target_event event, void *priv), void *priv)
1347 {
1348         struct target_event_callback **p = &target_event_callbacks;
1349         struct target_event_callback *c = target_event_callbacks;
1350
1351         if (callback == NULL)
1352                 return ERROR_COMMAND_SYNTAX_ERROR;
1353
1354         while (c) {
1355                 struct target_event_callback *next = c->next;
1356                 if ((c->callback == callback) && (c->priv == priv)) {
1357                         *p = next;
1358                         free(c);
1359                         return ERROR_OK;
1360                 } else
1361                         p = &(c->next);
1362                 c = next;
1363         }
1364
1365         return ERROR_OK;
1366 }
1367
1368 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1369 {
1370         struct target_timer_callback **p = &target_timer_callbacks;
1371         struct target_timer_callback *c = target_timer_callbacks;
1372
1373         if (callback == NULL)
1374                 return ERROR_COMMAND_SYNTAX_ERROR;
1375
1376         while (c) {
1377                 struct target_timer_callback *next = c->next;
1378                 if ((c->callback == callback) && (c->priv == priv)) {
1379                         *p = next;
1380                         free(c);
1381                         return ERROR_OK;
1382                 } else
1383                         p = &(c->next);
1384                 c = next;
1385         }
1386
1387         return ERROR_OK;
1388 }
1389
1390 int target_call_event_callbacks(struct target *target, enum target_event event)
1391 {
1392         struct target_event_callback *callback = target_event_callbacks;
1393         struct target_event_callback *next_callback;
1394
1395         if (event == TARGET_EVENT_HALTED) {
1396                 /* execute early halted first */
1397                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1398         }
1399
1400         LOG_DEBUG("target event %i (%s)", event,
1401                         Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1402
1403         target_handle_event(target, event);
1404
1405         while (callback) {
1406                 next_callback = callback->next;
1407                 callback->callback(target, event, callback->priv);
1408                 callback = next_callback;
1409         }
1410
1411         return ERROR_OK;
1412 }
1413
1414 static int target_timer_callback_periodic_restart(
1415                 struct target_timer_callback *cb, struct timeval *now)
1416 {
1417         int time_ms = cb->time_ms;
1418         cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1419         time_ms -= (time_ms % 1000);
1420         cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1421         if (cb->when.tv_usec > 1000000) {
1422                 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1423                 cb->when.tv_sec += 1;
1424         }
1425         return ERROR_OK;
1426 }
1427
1428 static int target_call_timer_callback(struct target_timer_callback *cb,
1429                 struct timeval *now)
1430 {
1431         cb->callback(cb->priv);
1432
1433         if (cb->periodic)
1434                 return target_timer_callback_periodic_restart(cb, now);
1435
1436         return target_unregister_timer_callback(cb->callback, cb->priv);
1437 }
1438
1439 static int target_call_timer_callbacks_check_time(int checktime)
1440 {
1441         keep_alive();
1442
1443         struct timeval now;
1444         gettimeofday(&now, NULL);
1445
1446         struct target_timer_callback *callback = target_timer_callbacks;
1447         while (callback) {
1448                 /* cleaning up may unregister and free this callback */
1449                 struct target_timer_callback *next_callback = callback->next;
1450
1451                 bool call_it = callback->callback &&
1452                         ((!checktime && callback->periodic) ||
1453                           now.tv_sec > callback->when.tv_sec ||
1454                          (now.tv_sec == callback->when.tv_sec &&
1455                           now.tv_usec >= callback->when.tv_usec));
1456
1457                 if (call_it) {
1458                         int retval = target_call_timer_callback(callback, &now);
1459                         if (retval != ERROR_OK)
1460                                 return retval;
1461                 }
1462
1463                 callback = next_callback;
1464         }
1465
1466         return ERROR_OK;
1467 }
1468
1469 int target_call_timer_callbacks(void)
1470 {
1471         return target_call_timer_callbacks_check_time(1);
1472 }
1473
1474 /* invoke periodic callbacks immediately */
1475 int target_call_timer_callbacks_now(void)
1476 {
1477         return target_call_timer_callbacks_check_time(0);
1478 }
1479
1480 /* Prints the working area layout for debug purposes */
1481 static void print_wa_layout(struct target *target)
1482 {
1483         struct working_area *c = target->working_areas;
1484
1485         while (c) {
1486                 LOG_DEBUG("%c%c 0x%08"PRIx32"-0x%08"PRIx32" (%"PRIu32" bytes)",
1487                         c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1488                         c->address, c->address + c->size - 1, c->size);
1489                 c = c->next;
1490         }
1491 }
1492
1493 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1494 static void target_split_working_area(struct working_area *area, uint32_t size)
1495 {
1496         assert(area->free); /* Shouldn't split an allocated area */
1497         assert(size <= area->size); /* Caller should guarantee this */
1498
1499         /* Split only if not already the right size */
1500         if (size < area->size) {
1501                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1502
1503                 if (new_wa == NULL)
1504                         return;
1505
1506                 new_wa->next = area->next;
1507                 new_wa->size = area->size - size;
1508                 new_wa->address = area->address + size;
1509                 new_wa->backup = NULL;
1510                 new_wa->user = NULL;
1511                 new_wa->free = true;
1512
1513                 area->next = new_wa;
1514                 area->size = size;
1515
1516                 /* If backup memory was allocated to this area, it has the wrong size
1517                  * now so free it and it will be reallocated if/when needed */
1518                 if (area->backup) {
1519                         free(area->backup);
1520                         area->backup = NULL;
1521                 }
1522         }
1523 }
1524
1525 /* Merge all adjacent free areas into one */
1526 static void target_merge_working_areas(struct target *target)
1527 {
1528         struct working_area *c = target->working_areas;
1529
1530         while (c && c->next) {
1531                 assert(c->next->address == c->address + c->size); /* This is an invariant */
1532
1533                 /* Find two adjacent free areas */
1534                 if (c->free && c->next->free) {
1535                         /* Merge the last into the first */
1536                         c->size += c->next->size;
1537
1538                         /* Remove the last */
1539                         struct working_area *to_be_freed = c->next;
1540                         c->next = c->next->next;
1541                         if (to_be_freed->backup)
1542                                 free(to_be_freed->backup);
1543                         free(to_be_freed);
1544
1545                         /* If backup memory was allocated to the remaining area, it's has
1546                          * the wrong size now */
1547                         if (c->backup) {
1548                                 free(c->backup);
1549                                 c->backup = NULL;
1550                         }
1551                 } else {
1552                         c = c->next;
1553                 }
1554         }
1555 }
1556
1557 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1558 {
1559         /* Reevaluate working area address based on MMU state*/
1560         if (target->working_areas == NULL) {
1561                 int retval;
1562                 int enabled;
1563
1564                 retval = target->type->mmu(target, &enabled);
1565                 if (retval != ERROR_OK)
1566                         return retval;
1567
1568                 if (!enabled) {
1569                         if (target->working_area_phys_spec) {
1570                                 LOG_DEBUG("MMU disabled, using physical "
1571                                         "address for working memory 0x%08"PRIx32,
1572                                         target->working_area_phys);
1573                                 target->working_area = target->working_area_phys;
1574                         } else {
1575                                 LOG_ERROR("No working memory available. "
1576                                         "Specify -work-area-phys to target.");
1577                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1578                         }
1579                 } else {
1580                         if (target->working_area_virt_spec) {
1581                                 LOG_DEBUG("MMU enabled, using virtual "
1582                                         "address for working memory 0x%08"PRIx32,
1583                                         target->working_area_virt);
1584                                 target->working_area = target->working_area_virt;
1585                         } else {
1586                                 LOG_ERROR("No working memory available. "
1587                                         "Specify -work-area-virt to target.");
1588                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1589                         }
1590                 }
1591
1592                 /* Set up initial working area on first call */
1593                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1594                 if (new_wa) {
1595                         new_wa->next = NULL;
1596                         new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1597                         new_wa->address = target->working_area;
1598                         new_wa->backup = NULL;
1599                         new_wa->user = NULL;
1600                         new_wa->free = true;
1601                 }
1602
1603                 target->working_areas = new_wa;
1604         }
1605
1606         /* only allocate multiples of 4 byte */
1607         if (size % 4)
1608                 size = (size + 3) & (~3UL);
1609
1610         struct working_area *c = target->working_areas;
1611
1612         /* Find the first large enough working area */
1613         while (c) {
1614                 if (c->free && c->size >= size)
1615                         break;
1616                 c = c->next;
1617         }
1618
1619         if (c == NULL)
1620                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1621
1622         /* Split the working area into the requested size */
1623         target_split_working_area(c, size);
1624
1625         LOG_DEBUG("allocated new working area of %"PRIu32" bytes at address 0x%08"PRIx32, size, c->address);
1626
1627         if (target->backup_working_area) {
1628                 if (c->backup == NULL) {
1629                         c->backup = malloc(c->size);
1630                         if (c->backup == NULL)
1631                                 return ERROR_FAIL;
1632                 }
1633
1634                 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1635                 if (retval != ERROR_OK)
1636                         return retval;
1637         }
1638
1639         /* mark as used, and return the new (reused) area */
1640         c->free = false;
1641         *area = c;
1642
1643         /* user pointer */
1644         c->user = area;
1645
1646         print_wa_layout(target);
1647
1648         return ERROR_OK;
1649 }
1650
1651 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1652 {
1653         int retval;
1654
1655         retval = target_alloc_working_area_try(target, size, area);
1656         if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1657                 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1658         return retval;
1659
1660 }
1661
1662 static int target_restore_working_area(struct target *target, struct working_area *area)
1663 {
1664         int retval = ERROR_OK;
1665
1666         if (target->backup_working_area && area->backup != NULL) {
1667                 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1668                 if (retval != ERROR_OK)
1669                         LOG_ERROR("failed to restore %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1670                                         area->size, area->address);
1671         }
1672
1673         return retval;
1674 }
1675
1676 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1677 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1678 {
1679         int retval = ERROR_OK;
1680
1681         if (area->free)
1682                 return retval;
1683
1684         if (restore) {
1685                 retval = target_restore_working_area(target, area);
1686                 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1687                 if (retval != ERROR_OK)
1688                         return retval;
1689         }
1690
1691         area->free = true;
1692
1693         LOG_DEBUG("freed %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1694                         area->size, area->address);
1695
1696         /* mark user pointer invalid */
1697         /* TODO: Is this really safe? It points to some previous caller's memory.
1698          * How could we know that the area pointer is still in that place and not
1699          * some other vital data? What's the purpose of this, anyway? */
1700         *area->user = NULL;
1701         area->user = NULL;
1702
1703         target_merge_working_areas(target);
1704
1705         print_wa_layout(target);
1706
1707         return retval;
1708 }
1709
1710 int target_free_working_area(struct target *target, struct working_area *area)
1711 {
1712         return target_free_working_area_restore(target, area, 1);
1713 }
1714
1715 /* free resources and restore memory, if restoring memory fails,
1716  * free up resources anyway
1717  */
1718 static void target_free_all_working_areas_restore(struct target *target, int restore)
1719 {
1720         struct working_area *c = target->working_areas;
1721
1722         LOG_DEBUG("freeing all working areas");
1723
1724         /* Loop through all areas, restoring the allocated ones and marking them as free */
1725         while (c) {
1726                 if (!c->free) {
1727                         if (restore)
1728                                 target_restore_working_area(target, c);
1729                         c->free = true;
1730                         *c->user = NULL; /* Same as above */
1731                         c->user = NULL;
1732                 }
1733                 c = c->next;
1734         }
1735
1736         /* Run a merge pass to combine all areas into one */
1737         target_merge_working_areas(target);
1738
1739         print_wa_layout(target);
1740 }
1741
1742 void target_free_all_working_areas(struct target *target)
1743 {
1744         target_free_all_working_areas_restore(target, 1);
1745 }
1746
1747 /* Find the largest number of bytes that can be allocated */
1748 uint32_t target_get_working_area_avail(struct target *target)
1749 {
1750         struct working_area *c = target->working_areas;
1751         uint32_t max_size = 0;
1752
1753         if (c == NULL)
1754                 return target->working_area_size;
1755
1756         while (c) {
1757                 if (c->free && max_size < c->size)
1758                         max_size = c->size;
1759
1760                 c = c->next;
1761         }
1762
1763         return max_size;
1764 }
1765
1766 int target_arch_state(struct target *target)
1767 {
1768         int retval;
1769         if (target == NULL) {
1770                 LOG_USER("No target has been configured");
1771                 return ERROR_OK;
1772         }
1773
1774         LOG_USER("target state: %s", target_state_name(target));
1775
1776         if (target->state != TARGET_HALTED)
1777                 return ERROR_OK;
1778
1779         retval = target->type->arch_state(target);
1780         return retval;
1781 }
1782
1783 static int target_get_gdb_fileio_info_default(struct target *target,
1784                 struct gdb_fileio_info *fileio_info)
1785 {
1786         /* If target does not support semi-hosting function, target
1787            has no need to provide .get_gdb_fileio_info callback.
1788            It just return ERROR_FAIL and gdb_server will return "Txx"
1789            as target halted every time.  */
1790         return ERROR_FAIL;
1791 }
1792
1793 static int target_gdb_fileio_end_default(struct target *target,
1794                 int retcode, int fileio_errno, bool ctrl_c)
1795 {
1796         return ERROR_OK;
1797 }
1798
1799 static int target_profiling_default(struct target *target, uint32_t *samples,
1800                 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1801 {
1802         struct timeval timeout, now;
1803
1804         gettimeofday(&timeout, NULL);
1805         timeval_add_time(&timeout, seconds, 0);
1806
1807         LOG_INFO("Starting profiling. Halting and resuming the"
1808                         " target as often as we can...");
1809
1810         uint32_t sample_count = 0;
1811         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
1812         struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
1813
1814         int retval = ERROR_OK;
1815         for (;;) {
1816                 target_poll(target);
1817                 if (target->state == TARGET_HALTED) {
1818                         uint32_t t = *((uint32_t *)reg->value);
1819                         samples[sample_count++] = t;
1820                         /* current pc, addr = 0, do not handle breakpoints, not debugging */
1821                         retval = target_resume(target, 1, 0, 0, 0);
1822                         target_poll(target);
1823                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
1824                 } else if (target->state == TARGET_RUNNING) {
1825                         /* We want to quickly sample the PC. */
1826                         retval = target_halt(target);
1827                 } else {
1828                         LOG_INFO("Target not halted or running");
1829                         retval = ERROR_OK;
1830                         break;
1831                 }
1832
1833                 if (retval != ERROR_OK)
1834                         break;
1835
1836                 gettimeofday(&now, NULL);
1837                 if ((sample_count >= max_num_samples) ||
1838                         ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec))) {
1839                         LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
1840                         break;
1841                 }
1842         }
1843
1844         *num_samples = sample_count;
1845         return retval;
1846 }
1847
1848 /* Single aligned words are guaranteed to use 16 or 32 bit access
1849  * mode respectively, otherwise data is handled as quickly as
1850  * possible
1851  */
1852 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1853 {
1854         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1855                         (int)size, (unsigned)address);
1856
1857         if (!target_was_examined(target)) {
1858                 LOG_ERROR("Target not examined yet");
1859                 return ERROR_FAIL;
1860         }
1861
1862         if (size == 0)
1863                 return ERROR_OK;
1864
1865         if ((address + size - 1) < address) {
1866                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1867                 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1868                                   (unsigned)address,
1869                                   (unsigned)size);
1870                 return ERROR_FAIL;
1871         }
1872
1873         return target->type->write_buffer(target, address, size, buffer);
1874 }
1875
1876 static int target_write_buffer_default(struct target *target, uint32_t address, uint32_t count, const uint8_t *buffer)
1877 {
1878         uint32_t size;
1879
1880         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
1881          * will have something to do with the size we leave to it. */
1882         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
1883                 if (address & size) {
1884                         int retval = target_write_memory(target, address, size, 1, buffer);
1885                         if (retval != ERROR_OK)
1886                                 return retval;
1887                         address += size;
1888                         count -= size;
1889                         buffer += size;
1890                 }
1891         }
1892
1893         /* Write the data with as large access size as possible. */
1894         for (; size > 0; size /= 2) {
1895                 uint32_t aligned = count - count % size;
1896                 if (aligned > 0) {
1897                         int retval = target_write_memory(target, address, size, aligned / size, buffer);
1898                         if (retval != ERROR_OK)
1899                                 return retval;
1900                         address += aligned;
1901                         count -= aligned;
1902                         buffer += aligned;
1903                 }
1904         }
1905
1906         return ERROR_OK;
1907 }
1908
1909 /* Single aligned words are guaranteed to use 16 or 32 bit access
1910  * mode respectively, otherwise data is handled as quickly as
1911  * possible
1912  */
1913 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1914 {
1915         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1916                           (int)size, (unsigned)address);
1917
1918         if (!target_was_examined(target)) {
1919                 LOG_ERROR("Target not examined yet");
1920                 return ERROR_FAIL;
1921         }
1922
1923         if (size == 0)
1924                 return ERROR_OK;
1925
1926         if ((address + size - 1) < address) {
1927                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1928                 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1929                                   address,
1930                                   size);
1931                 return ERROR_FAIL;
1932         }
1933
1934         return target->type->read_buffer(target, address, size, buffer);
1935 }
1936
1937 static int target_read_buffer_default(struct target *target, uint32_t address, uint32_t count, uint8_t *buffer)
1938 {
1939         uint32_t size;
1940
1941         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
1942          * will have something to do with the size we leave to it. */
1943         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
1944                 if (address & size) {
1945                         int retval = target_read_memory(target, address, size, 1, buffer);
1946                         if (retval != ERROR_OK)
1947                                 return retval;
1948                         address += size;
1949                         count -= size;
1950                         buffer += size;
1951                 }
1952         }
1953
1954         /* Read the data with as large access size as possible. */
1955         for (; size > 0; size /= 2) {
1956                 uint32_t aligned = count - count % size;
1957                 if (aligned > 0) {
1958                         int retval = target_read_memory(target, address, size, aligned / size, buffer);
1959                         if (retval != ERROR_OK)
1960                                 return retval;
1961                         address += aligned;
1962                         count -= aligned;
1963                         buffer += aligned;
1964                 }
1965         }
1966
1967         return ERROR_OK;
1968 }
1969
1970 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1971 {
1972         uint8_t *buffer;
1973         int retval;
1974         uint32_t i;
1975         uint32_t checksum = 0;
1976         if (!target_was_examined(target)) {
1977                 LOG_ERROR("Target not examined yet");
1978                 return ERROR_FAIL;
1979         }
1980
1981         retval = target->type->checksum_memory(target, address, size, &checksum);
1982         if (retval != ERROR_OK) {
1983                 buffer = malloc(size);
1984                 if (buffer == NULL) {
1985                         LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1986                         return ERROR_COMMAND_SYNTAX_ERROR;
1987                 }
1988                 retval = target_read_buffer(target, address, size, buffer);
1989                 if (retval != ERROR_OK) {
1990                         free(buffer);
1991                         return retval;
1992                 }
1993
1994                 /* convert to target endianness */
1995                 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
1996                         uint32_t target_data;
1997                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1998                         target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1999                 }
2000
2001                 retval = image_calculate_checksum(buffer, size, &checksum);
2002                 free(buffer);
2003         }
2004
2005         *crc = checksum;
2006
2007         return retval;
2008 }
2009
2010 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
2011 {
2012         int retval;
2013         if (!target_was_examined(target)) {
2014                 LOG_ERROR("Target not examined yet");
2015                 return ERROR_FAIL;
2016         }
2017
2018         if (target->type->blank_check_memory == 0)
2019                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2020
2021         retval = target->type->blank_check_memory(target, address, size, blank);
2022
2023         return retval;
2024 }
2025
2026 int target_read_u64(struct target *target, uint64_t address, uint64_t *value)
2027 {
2028         uint8_t value_buf[8];
2029         if (!target_was_examined(target)) {
2030                 LOG_ERROR("Target not examined yet");
2031                 return ERROR_FAIL;
2032         }
2033
2034         int retval = target_read_memory(target, address, 8, 1, value_buf);
2035
2036         if (retval == ERROR_OK) {
2037                 *value = target_buffer_get_u64(target, value_buf);
2038                 LOG_DEBUG("address: 0x%" PRIx64 ", value: 0x%16.16" PRIx64 "",
2039                                   address,
2040                                   *value);
2041         } else {
2042                 *value = 0x0;
2043                 LOG_DEBUG("address: 0x%" PRIx64 " failed",
2044                                   address);
2045         }
2046
2047         return retval;
2048 }
2049
2050 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
2051 {
2052         uint8_t value_buf[4];
2053         if (!target_was_examined(target)) {
2054                 LOG_ERROR("Target not examined yet");
2055                 return ERROR_FAIL;
2056         }
2057
2058         int retval = target_read_memory(target, address, 4, 1, value_buf);
2059
2060         if (retval == ERROR_OK) {
2061                 *value = target_buffer_get_u32(target, value_buf);
2062                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
2063                                   address,
2064                                   *value);
2065         } else {
2066                 *value = 0x0;
2067                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2068                                   address);
2069         }
2070
2071         return retval;
2072 }
2073
2074 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
2075 {
2076         uint8_t value_buf[2];
2077         if (!target_was_examined(target)) {
2078                 LOG_ERROR("Target not examined yet");
2079                 return ERROR_FAIL;
2080         }
2081
2082         int retval = target_read_memory(target, address, 2, 1, value_buf);
2083
2084         if (retval == ERROR_OK) {
2085                 *value = target_buffer_get_u16(target, value_buf);
2086                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
2087                                   address,
2088                                   *value);
2089         } else {
2090                 *value = 0x0;
2091                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2092                                   address);
2093         }
2094
2095         return retval;
2096 }
2097
2098 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
2099 {
2100         if (!target_was_examined(target)) {
2101                 LOG_ERROR("Target not examined yet");
2102                 return ERROR_FAIL;
2103         }
2104
2105         int retval = target_read_memory(target, address, 1, 1, value);
2106
2107         if (retval == ERROR_OK) {
2108                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
2109                                   address,
2110                                   *value);
2111         } else {
2112                 *value = 0x0;
2113                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2114                                   address);
2115         }
2116
2117         return retval;
2118 }
2119
2120 int target_write_u64(struct target *target, uint64_t address, uint64_t value)
2121 {
2122         int retval;
2123         uint8_t value_buf[8];
2124         if (!target_was_examined(target)) {
2125                 LOG_ERROR("Target not examined yet");
2126                 return ERROR_FAIL;
2127         }
2128
2129         LOG_DEBUG("address: 0x%" PRIx64 ", value: 0x%16.16" PRIx64 "",
2130                           address,
2131                           value);
2132
2133         target_buffer_set_u64(target, value_buf, value);
2134         retval = target_write_memory(target, address, 8, 1, value_buf);
2135         if (retval != ERROR_OK)
2136                 LOG_DEBUG("failed: %i", retval);
2137
2138         return retval;
2139 }
2140
2141 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
2142 {
2143         int retval;
2144         uint8_t value_buf[4];
2145         if (!target_was_examined(target)) {
2146                 LOG_ERROR("Target not examined yet");
2147                 return ERROR_FAIL;
2148         }
2149
2150         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
2151                           address,
2152                           value);
2153
2154         target_buffer_set_u32(target, value_buf, value);
2155         retval = target_write_memory(target, address, 4, 1, value_buf);
2156         if (retval != ERROR_OK)
2157                 LOG_DEBUG("failed: %i", retval);
2158
2159         return retval;
2160 }
2161
2162 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
2163 {
2164         int retval;
2165         uint8_t value_buf[2];
2166         if (!target_was_examined(target)) {
2167                 LOG_ERROR("Target not examined yet");
2168                 return ERROR_FAIL;
2169         }
2170
2171         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
2172                           address,
2173                           value);
2174
2175         target_buffer_set_u16(target, value_buf, value);
2176         retval = target_write_memory(target, address, 2, 1, value_buf);
2177         if (retval != ERROR_OK)
2178                 LOG_DEBUG("failed: %i", retval);
2179
2180         return retval;
2181 }
2182
2183 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
2184 {
2185         int retval;
2186         if (!target_was_examined(target)) {
2187                 LOG_ERROR("Target not examined yet");
2188                 return ERROR_FAIL;
2189         }
2190
2191         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
2192                           address, value);
2193
2194         retval = target_write_memory(target, address, 1, 1, &value);
2195         if (retval != ERROR_OK)
2196                 LOG_DEBUG("failed: %i", retval);
2197
2198         return retval;
2199 }
2200
2201 static int find_target(struct command_context *cmd_ctx, const char *name)
2202 {
2203         struct target *target = get_target(name);
2204         if (target == NULL) {
2205                 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2206                 return ERROR_FAIL;
2207         }
2208         if (!target->tap->enabled) {
2209                 LOG_USER("Target: TAP %s is disabled, "
2210                          "can't be the current target\n",
2211                          target->tap->dotted_name);
2212                 return ERROR_FAIL;
2213         }
2214
2215         cmd_ctx->current_target = target->target_number;
2216         return ERROR_OK;
2217 }
2218
2219
2220 COMMAND_HANDLER(handle_targets_command)
2221 {
2222         int retval = ERROR_OK;
2223         if (CMD_ARGC == 1) {
2224                 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2225                 if (retval == ERROR_OK) {
2226                         /* we're done! */
2227                         return retval;
2228                 }
2229         }
2230
2231         struct target *target = all_targets;
2232         command_print(CMD_CTX, "    TargetName         Type       Endian TapName            State       ");
2233         command_print(CMD_CTX, "--  ------------------ ---------- ------ ------------------ ------------");
2234         while (target) {
2235                 const char *state;
2236                 char marker = ' ';
2237
2238                 if (target->tap->enabled)
2239                         state = target_state_name(target);
2240                 else
2241                         state = "tap-disabled";
2242
2243                 if (CMD_CTX->current_target == target->target_number)
2244                         marker = '*';
2245
2246                 /* keep columns lined up to match the headers above */
2247                 command_print(CMD_CTX,
2248                                 "%2d%c %-18s %-10s %-6s %-18s %s",
2249                                 target->target_number,
2250                                 marker,
2251                                 target_name(target),
2252                                 target_type_name(target),
2253                                 Jim_Nvp_value2name_simple(nvp_target_endian,
2254                                         target->endianness)->name,
2255                                 target->tap->dotted_name,
2256                                 state);
2257                 target = target->next;
2258         }
2259
2260         return retval;
2261 }
2262
2263 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2264
2265 static int powerDropout;
2266 static int srstAsserted;
2267
2268 static int runPowerRestore;
2269 static int runPowerDropout;
2270 static int runSrstAsserted;
2271 static int runSrstDeasserted;
2272
2273 static int sense_handler(void)
2274 {
2275         static int prevSrstAsserted;
2276         static int prevPowerdropout;
2277
2278         int retval = jtag_power_dropout(&powerDropout);
2279         if (retval != ERROR_OK)
2280                 return retval;
2281
2282         int powerRestored;
2283         powerRestored = prevPowerdropout && !powerDropout;
2284         if (powerRestored)
2285                 runPowerRestore = 1;
2286
2287         long long current = timeval_ms();
2288         static long long lastPower;
2289         int waitMore = lastPower + 2000 > current;
2290         if (powerDropout && !waitMore) {
2291                 runPowerDropout = 1;
2292                 lastPower = current;
2293         }
2294
2295         retval = jtag_srst_asserted(&srstAsserted);
2296         if (retval != ERROR_OK)
2297                 return retval;
2298
2299         int srstDeasserted;
2300         srstDeasserted = prevSrstAsserted && !srstAsserted;
2301
2302         static long long lastSrst;
2303         waitMore = lastSrst + 2000 > current;
2304         if (srstDeasserted && !waitMore) {
2305                 runSrstDeasserted = 1;
2306                 lastSrst = current;
2307         }
2308
2309         if (!prevSrstAsserted && srstAsserted)
2310                 runSrstAsserted = 1;
2311
2312         prevSrstAsserted = srstAsserted;
2313         prevPowerdropout = powerDropout;
2314
2315         if (srstDeasserted || powerRestored) {
2316                 /* Other than logging the event we can't do anything here.
2317                  * Issuing a reset is a particularly bad idea as we might
2318                  * be inside a reset already.
2319                  */
2320         }
2321
2322         return ERROR_OK;
2323 }
2324
2325 /* process target state changes */
2326 static int handle_target(void *priv)
2327 {
2328         Jim_Interp *interp = (Jim_Interp *)priv;
2329         int retval = ERROR_OK;
2330
2331         if (!is_jtag_poll_safe()) {
2332                 /* polling is disabled currently */
2333                 return ERROR_OK;
2334         }
2335
2336         /* we do not want to recurse here... */
2337         static int recursive;
2338         if (!recursive) {
2339                 recursive = 1;
2340                 sense_handler();
2341                 /* danger! running these procedures can trigger srst assertions and power dropouts.
2342                  * We need to avoid an infinite loop/recursion here and we do that by
2343                  * clearing the flags after running these events.
2344                  */
2345                 int did_something = 0;
2346                 if (runSrstAsserted) {
2347                         LOG_INFO("srst asserted detected, running srst_asserted proc.");
2348                         Jim_Eval(interp, "srst_asserted");
2349                         did_something = 1;
2350                 }
2351                 if (runSrstDeasserted) {
2352                         Jim_Eval(interp, "srst_deasserted");
2353                         did_something = 1;
2354                 }
2355                 if (runPowerDropout) {
2356                         LOG_INFO("Power dropout detected, running power_dropout proc.");
2357                         Jim_Eval(interp, "power_dropout");
2358                         did_something = 1;
2359                 }
2360                 if (runPowerRestore) {
2361                         Jim_Eval(interp, "power_restore");
2362                         did_something = 1;
2363                 }
2364
2365                 if (did_something) {
2366                         /* clear detect flags */
2367                         sense_handler();
2368                 }
2369
2370                 /* clear action flags */
2371
2372                 runSrstAsserted = 0;
2373                 runSrstDeasserted = 0;
2374                 runPowerRestore = 0;
2375                 runPowerDropout = 0;
2376
2377                 recursive = 0;
2378         }
2379
2380         /* Poll targets for state changes unless that's globally disabled.
2381          * Skip targets that are currently disabled.
2382          */
2383         for (struct target *target = all_targets;
2384                         is_jtag_poll_safe() && target;
2385                         target = target->next) {
2386
2387                 if (!target_was_examined(target))
2388                         continue;
2389
2390                 if (!target->tap->enabled)
2391                         continue;
2392
2393                 if (target->backoff.times > target->backoff.count) {
2394                         /* do not poll this time as we failed previously */
2395                         target->backoff.count++;
2396                         continue;
2397                 }
2398                 target->backoff.count = 0;
2399
2400                 /* only poll target if we've got power and srst isn't asserted */
2401                 if (!powerDropout && !srstAsserted) {
2402                         /* polling may fail silently until the target has been examined */
2403                         retval = target_poll(target);
2404                         if (retval != ERROR_OK) {
2405                                 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2406                                 if (target->backoff.times * polling_interval < 5000) {
2407                                         target->backoff.times *= 2;
2408                                         target->backoff.times++;
2409                                 }
2410                                 LOG_USER("Polling target %s failed, GDB will be halted. Polling again in %dms",
2411                                                 target_name(target),
2412                                                 target->backoff.times * polling_interval);
2413
2414                                 /* Tell GDB to halt the debugger. This allows the user to
2415                                  * run monitor commands to handle the situation.
2416                                  */
2417                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2418                                 return retval;
2419                         }
2420                         /* Since we succeeded, we reset backoff count */
2421                         if (target->backoff.times > 0)
2422                                 LOG_USER("Polling target %s succeeded again", target_name(target));
2423                         target->backoff.times = 0;
2424                 }
2425         }
2426
2427         return retval;
2428 }
2429
2430 COMMAND_HANDLER(handle_reg_command)
2431 {
2432         struct target *target;
2433         struct reg *reg = NULL;
2434         unsigned count = 0;
2435         char *value;
2436
2437         LOG_DEBUG("-");
2438
2439         target = get_current_target(CMD_CTX);
2440
2441         /* list all available registers for the current target */
2442         if (CMD_ARGC == 0) {
2443                 struct reg_cache *cache = target->reg_cache;
2444
2445                 count = 0;
2446                 while (cache) {
2447                         unsigned i;
2448
2449                         command_print(CMD_CTX, "===== %s", cache->name);
2450
2451                         for (i = 0, reg = cache->reg_list;
2452                                         i < cache->num_regs;
2453                                         i++, reg++, count++) {
2454                                 /* only print cached values if they are valid */
2455                                 if (reg->valid) {
2456                                         value = buf_to_str(reg->value,
2457                                                         reg->size, 16);
2458                                         command_print(CMD_CTX,
2459                                                         "(%i) %s (/%" PRIu32 "): 0x%s%s",
2460                                                         count, reg->name,
2461                                                         reg->size, value,
2462                                                         reg->dirty
2463                                                                 ? " (dirty)"
2464                                                                 : "");
2465                                         free(value);
2466                                 } else {
2467                                         command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2468                                                           count, reg->name,
2469                                                           reg->size) ;
2470                                 }
2471                         }
2472                         cache = cache->next;
2473                 }
2474
2475                 return ERROR_OK;
2476         }
2477
2478         /* access a single register by its ordinal number */
2479         if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2480                 unsigned num;
2481                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2482
2483                 struct reg_cache *cache = target->reg_cache;
2484                 count = 0;
2485                 while (cache) {
2486                         unsigned i;
2487                         for (i = 0; i < cache->num_regs; i++) {
2488                                 if (count++ == num) {
2489                                         reg = &cache->reg_list[i];
2490                                         break;
2491                                 }
2492                         }
2493                         if (reg)
2494                                 break;
2495                         cache = cache->next;
2496                 }
2497
2498                 if (!reg) {
2499                         command_print(CMD_CTX, "%i is out of bounds, the current target "
2500                                         "has only %i registers (0 - %i)", num, count, count - 1);
2501                         return ERROR_OK;
2502                 }
2503         } else {
2504                 /* access a single register by its name */
2505                 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2506
2507                 if (!reg) {
2508                         command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2509                         return ERROR_OK;
2510                 }
2511         }
2512
2513         assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2514
2515         /* display a register */
2516         if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2517                         && (CMD_ARGV[1][0] <= '9')))) {
2518                 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2519                         reg->valid = 0;
2520
2521                 if (reg->valid == 0)
2522                         reg->type->get(reg);
2523                 value = buf_to_str(reg->value, reg->size, 16);
2524                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2525                 free(value);
2526                 return ERROR_OK;
2527         }
2528
2529         /* set register value */
2530         if (CMD_ARGC == 2) {
2531                 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2532                 if (buf == NULL)
2533                         return ERROR_FAIL;
2534                 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2535
2536                 reg->type->set(reg, buf);
2537
2538                 value = buf_to_str(reg->value, reg->size, 16);
2539                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2540                 free(value);
2541
2542                 free(buf);
2543
2544                 return ERROR_OK;
2545         }
2546
2547         return ERROR_COMMAND_SYNTAX_ERROR;
2548 }
2549
2550 COMMAND_HANDLER(handle_poll_command)
2551 {
2552         int retval = ERROR_OK;
2553         struct target *target = get_current_target(CMD_CTX);
2554
2555         if (CMD_ARGC == 0) {
2556                 command_print(CMD_CTX, "background polling: %s",
2557                                 jtag_poll_get_enabled() ? "on" : "off");
2558                 command_print(CMD_CTX, "TAP: %s (%s)",
2559                                 target->tap->dotted_name,
2560                                 target->tap->enabled ? "enabled" : "disabled");
2561                 if (!target->tap->enabled)
2562                         return ERROR_OK;
2563                 retval = target_poll(target);
2564                 if (retval != ERROR_OK)
2565                         return retval;
2566                 retval = target_arch_state(target);
2567                 if (retval != ERROR_OK)
2568                         return retval;
2569         } else if (CMD_ARGC == 1) {
2570                 bool enable;
2571                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2572                 jtag_poll_set_enabled(enable);
2573         } else
2574                 return ERROR_COMMAND_SYNTAX_ERROR;
2575
2576         return retval;
2577 }
2578
2579 COMMAND_HANDLER(handle_wait_halt_command)
2580 {
2581         if (CMD_ARGC > 1)
2582                 return ERROR_COMMAND_SYNTAX_ERROR;
2583
2584         unsigned ms = DEFAULT_HALT_TIMEOUT;
2585         if (1 == CMD_ARGC) {
2586                 int retval = parse_uint(CMD_ARGV[0], &ms);
2587                 if (ERROR_OK != retval)
2588                         return ERROR_COMMAND_SYNTAX_ERROR;
2589         }
2590
2591         struct target *target = get_current_target(CMD_CTX);
2592         return target_wait_state(target, TARGET_HALTED, ms);
2593 }
2594
2595 /* wait for target state to change. The trick here is to have a low
2596  * latency for short waits and not to suck up all the CPU time
2597  * on longer waits.
2598  *
2599  * After 500ms, keep_alive() is invoked
2600  */
2601 int target_wait_state(struct target *target, enum target_state state, int ms)
2602 {
2603         int retval;
2604         long long then = 0, cur;
2605         int once = 1;
2606
2607         for (;;) {
2608                 retval = target_poll(target);
2609                 if (retval != ERROR_OK)
2610                         return retval;
2611                 if (target->state == state)
2612                         break;
2613                 cur = timeval_ms();
2614                 if (once) {
2615                         once = 0;
2616                         then = timeval_ms();
2617                         LOG_DEBUG("waiting for target %s...",
2618                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2619                 }
2620
2621                 if (cur-then > 500)
2622                         keep_alive();
2623
2624                 if ((cur-then) > ms) {
2625                         LOG_ERROR("timed out while waiting for target %s",
2626                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2627                         return ERROR_FAIL;
2628                 }
2629         }
2630
2631         return ERROR_OK;
2632 }
2633
2634 COMMAND_HANDLER(handle_halt_command)
2635 {
2636         LOG_DEBUG("-");
2637
2638         struct target *target = get_current_target(CMD_CTX);
2639         int retval = target_halt(target);
2640         if (ERROR_OK != retval)
2641                 return retval;
2642
2643         if (CMD_ARGC == 1) {
2644                 unsigned wait_local;
2645                 retval = parse_uint(CMD_ARGV[0], &wait_local);
2646                 if (ERROR_OK != retval)
2647                         return ERROR_COMMAND_SYNTAX_ERROR;
2648                 if (!wait_local)
2649                         return ERROR_OK;
2650         }
2651
2652         return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2653 }
2654
2655 COMMAND_HANDLER(handle_soft_reset_halt_command)
2656 {
2657         struct target *target = get_current_target(CMD_CTX);
2658
2659         LOG_USER("requesting target halt and executing a soft reset");
2660
2661         target_soft_reset_halt(target);
2662
2663         return ERROR_OK;
2664 }
2665
2666 COMMAND_HANDLER(handle_reset_command)
2667 {
2668         if (CMD_ARGC > 1)
2669                 return ERROR_COMMAND_SYNTAX_ERROR;
2670
2671         enum target_reset_mode reset_mode = RESET_RUN;
2672         if (CMD_ARGC == 1) {
2673                 const Jim_Nvp *n;
2674                 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2675                 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
2676                         return ERROR_COMMAND_SYNTAX_ERROR;
2677                 reset_mode = n->value;
2678         }
2679
2680         /* reset *all* targets */
2681         return target_process_reset(CMD_CTX, reset_mode);
2682 }
2683
2684
2685 COMMAND_HANDLER(handle_resume_command)
2686 {
2687         int current = 1;
2688         if (CMD_ARGC > 1)
2689                 return ERROR_COMMAND_SYNTAX_ERROR;
2690
2691         struct target *target = get_current_target(CMD_CTX);
2692
2693         /* with no CMD_ARGV, resume from current pc, addr = 0,
2694          * with one arguments, addr = CMD_ARGV[0],
2695          * handle breakpoints, not debugging */
2696         uint32_t addr = 0;
2697         if (CMD_ARGC == 1) {
2698                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2699                 current = 0;
2700         }
2701
2702         return target_resume(target, current, addr, 1, 0);
2703 }
2704
2705 COMMAND_HANDLER(handle_step_command)
2706 {
2707         if (CMD_ARGC > 1)
2708                 return ERROR_COMMAND_SYNTAX_ERROR;
2709
2710         LOG_DEBUG("-");
2711
2712         /* with no CMD_ARGV, step from current pc, addr = 0,
2713          * with one argument addr = CMD_ARGV[0],
2714          * handle breakpoints, debugging */
2715         uint32_t addr = 0;
2716         int current_pc = 1;
2717         if (CMD_ARGC == 1) {
2718                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2719                 current_pc = 0;
2720         }
2721
2722         struct target *target = get_current_target(CMD_CTX);
2723
2724         return target->type->step(target, current_pc, addr, 1);
2725 }
2726
2727 static void handle_md_output(struct command_context *cmd_ctx,
2728                 struct target *target, uint32_t address, unsigned size,
2729                 unsigned count, const uint8_t *buffer)
2730 {
2731         const unsigned line_bytecnt = 32;
2732         unsigned line_modulo = line_bytecnt / size;
2733
2734         char output[line_bytecnt * 4 + 1];
2735         unsigned output_len = 0;
2736
2737         const char *value_fmt;
2738         switch (size) {
2739         case 4:
2740                 value_fmt = "%8.8x ";
2741                 break;
2742         case 2:
2743                 value_fmt = "%4.4x ";
2744                 break;
2745         case 1:
2746                 value_fmt = "%2.2x ";
2747                 break;
2748         default:
2749                 /* "can't happen", caller checked */
2750                 LOG_ERROR("invalid memory read size: %u", size);
2751                 return;
2752         }
2753
2754         for (unsigned i = 0; i < count; i++) {
2755                 if (i % line_modulo == 0) {
2756                         output_len += snprintf(output + output_len,
2757                                         sizeof(output) - output_len,
2758                                         "0x%8.8x: ",
2759                                         (unsigned)(address + (i*size)));
2760                 }
2761
2762                 uint32_t value = 0;
2763                 const uint8_t *value_ptr = buffer + i * size;
2764                 switch (size) {
2765                 case 4:
2766                         value = target_buffer_get_u32(target, value_ptr);
2767                         break;
2768                 case 2:
2769                         value = target_buffer_get_u16(target, value_ptr);
2770                         break;
2771                 case 1:
2772                         value = *value_ptr;
2773                 }
2774                 output_len += snprintf(output + output_len,
2775                                 sizeof(output) - output_len,
2776                                 value_fmt, value);
2777
2778                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
2779                         command_print(cmd_ctx, "%s", output);
2780                         output_len = 0;
2781                 }
2782         }
2783 }
2784
2785 COMMAND_HANDLER(handle_md_command)
2786 {
2787         if (CMD_ARGC < 1)
2788                 return ERROR_COMMAND_SYNTAX_ERROR;
2789
2790         unsigned size = 0;
2791         switch (CMD_NAME[2]) {
2792         case 'w':
2793                 size = 4;
2794                 break;
2795         case 'h':
2796                 size = 2;
2797                 break;
2798         case 'b':
2799                 size = 1;
2800                 break;
2801         default:
2802                 return ERROR_COMMAND_SYNTAX_ERROR;
2803         }
2804
2805         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2806         int (*fn)(struct target *target,
2807                         uint32_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
2808         if (physical) {
2809                 CMD_ARGC--;
2810                 CMD_ARGV++;
2811                 fn = target_read_phys_memory;
2812         } else
2813                 fn = target_read_memory;
2814         if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2815                 return ERROR_COMMAND_SYNTAX_ERROR;
2816
2817         uint32_t address;
2818         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2819
2820         unsigned count = 1;
2821         if (CMD_ARGC == 2)
2822                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2823
2824         uint8_t *buffer = calloc(count, size);
2825
2826         struct target *target = get_current_target(CMD_CTX);
2827         int retval = fn(target, address, size, count, buffer);
2828         if (ERROR_OK == retval)
2829                 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2830
2831         free(buffer);
2832
2833         return retval;
2834 }
2835
2836 typedef int (*target_write_fn)(struct target *target,
2837                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
2838
2839 static int target_fill_mem(struct target *target,
2840                 uint32_t address,
2841                 target_write_fn fn,
2842                 unsigned data_size,
2843                 /* value */
2844                 uint32_t b,
2845                 /* count */
2846                 unsigned c)
2847 {
2848         /* We have to write in reasonably large chunks to be able
2849          * to fill large memory areas with any sane speed */
2850         const unsigned chunk_size = 16384;
2851         uint8_t *target_buf = malloc(chunk_size * data_size);
2852         if (target_buf == NULL) {
2853                 LOG_ERROR("Out of memory");
2854                 return ERROR_FAIL;
2855         }
2856
2857         for (unsigned i = 0; i < chunk_size; i++) {
2858                 switch (data_size) {
2859                 case 4:
2860                         target_buffer_set_u32(target, target_buf + i * data_size, b);
2861                         break;
2862                 case 2:
2863                         target_buffer_set_u16(target, target_buf + i * data_size, b);
2864                         break;
2865                 case 1:
2866                         target_buffer_set_u8(target, target_buf + i * data_size, b);
2867                         break;
2868                 default:
2869                         exit(-1);
2870                 }
2871         }
2872
2873         int retval = ERROR_OK;
2874
2875         for (unsigned x = 0; x < c; x += chunk_size) {
2876                 unsigned current;
2877                 current = c - x;
2878                 if (current > chunk_size)
2879                         current = chunk_size;
2880                 retval = fn(target, address + x * data_size, data_size, current, target_buf);
2881                 if (retval != ERROR_OK)
2882                         break;
2883                 /* avoid GDB timeouts */
2884                 keep_alive();
2885         }
2886         free(target_buf);
2887
2888         return retval;
2889 }
2890
2891
2892 COMMAND_HANDLER(handle_mw_command)
2893 {
2894         if (CMD_ARGC < 2)
2895                 return ERROR_COMMAND_SYNTAX_ERROR;
2896         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2897         target_write_fn fn;
2898         if (physical) {
2899                 CMD_ARGC--;
2900                 CMD_ARGV++;
2901                 fn = target_write_phys_memory;
2902         } else
2903                 fn = target_write_memory;
2904         if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2905                 return ERROR_COMMAND_SYNTAX_ERROR;
2906
2907         uint32_t address;
2908         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2909
2910         uint32_t value;
2911         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2912
2913         unsigned count = 1;
2914         if (CMD_ARGC == 3)
2915                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2916
2917         struct target *target = get_current_target(CMD_CTX);
2918         unsigned wordsize;
2919         switch (CMD_NAME[2]) {
2920                 case 'w':
2921                         wordsize = 4;
2922                         break;
2923                 case 'h':
2924                         wordsize = 2;
2925                         break;
2926                 case 'b':
2927                         wordsize = 1;
2928                         break;
2929                 default:
2930                         return ERROR_COMMAND_SYNTAX_ERROR;
2931         }
2932
2933         return target_fill_mem(target, address, fn, wordsize, value, count);
2934 }
2935
2936 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2937                 uint32_t *min_address, uint32_t *max_address)
2938 {
2939         if (CMD_ARGC < 1 || CMD_ARGC > 5)
2940                 return ERROR_COMMAND_SYNTAX_ERROR;
2941
2942         /* a base address isn't always necessary,
2943          * default to 0x0 (i.e. don't relocate) */
2944         if (CMD_ARGC >= 2) {
2945                 uint32_t addr;
2946                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2947                 image->base_address = addr;
2948                 image->base_address_set = 1;
2949         } else
2950                 image->base_address_set = 0;
2951
2952         image->start_address_set = 0;
2953
2954         if (CMD_ARGC >= 4)
2955                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2956         if (CMD_ARGC == 5) {
2957                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2958                 /* use size (given) to find max (required) */
2959                 *max_address += *min_address;
2960         }
2961
2962         if (*min_address > *max_address)
2963                 return ERROR_COMMAND_SYNTAX_ERROR;
2964
2965         return ERROR_OK;
2966 }
2967
2968 COMMAND_HANDLER(handle_load_image_command)
2969 {
2970         uint8_t *buffer;
2971         size_t buf_cnt;
2972         uint32_t image_size;
2973         uint32_t min_address = 0;
2974         uint32_t max_address = 0xffffffff;
2975         int i;
2976         struct image image;
2977
2978         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2979                         &image, &min_address, &max_address);
2980         if (ERROR_OK != retval)
2981                 return retval;
2982
2983         struct target *target = get_current_target(CMD_CTX);
2984
2985         struct duration bench;
2986         duration_start(&bench);
2987
2988         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2989                 return ERROR_OK;
2990
2991         image_size = 0x0;
2992         retval = ERROR_OK;
2993         for (i = 0; i < image.num_sections; i++) {
2994                 buffer = malloc(image.sections[i].size);
2995                 if (buffer == NULL) {
2996                         command_print(CMD_CTX,
2997                                                   "error allocating buffer for section (%d bytes)",
2998                                                   (int)(image.sections[i].size));
2999                         break;
3000                 }
3001
3002                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3003                 if (retval != ERROR_OK) {
3004                         free(buffer);
3005                         break;
3006                 }
3007
3008                 uint32_t offset = 0;
3009                 uint32_t length = buf_cnt;
3010
3011                 /* DANGER!!! beware of unsigned comparision here!!! */
3012
3013                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
3014                                 (image.sections[i].base_address < max_address)) {
3015
3016                         if (image.sections[i].base_address < min_address) {
3017                                 /* clip addresses below */
3018                                 offset += min_address-image.sections[i].base_address;
3019                                 length -= offset;
3020                         }
3021
3022                         if (image.sections[i].base_address + buf_cnt > max_address)
3023                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
3024
3025                         retval = target_write_buffer(target,
3026                                         image.sections[i].base_address + offset, length, buffer + offset);
3027                         if (retval != ERROR_OK) {
3028                                 free(buffer);
3029                                 break;
3030                         }
3031                         image_size += length;
3032                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
3033                                         (unsigned int)length,
3034                                         image.sections[i].base_address + offset);
3035                 }
3036
3037                 free(buffer);
3038         }
3039
3040         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3041                 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
3042                                 "in %fs (%0.3f KiB/s)", image_size,
3043                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3044         }
3045
3046         image_close(&image);
3047
3048         return retval;
3049
3050 }
3051
3052 COMMAND_HANDLER(handle_dump_image_command)
3053 {
3054         struct fileio fileio;
3055         uint8_t *buffer;
3056         int retval, retvaltemp;
3057         uint32_t address, size;
3058         struct duration bench;
3059         struct target *target = get_current_target(CMD_CTX);
3060
3061         if (CMD_ARGC != 3)
3062                 return ERROR_COMMAND_SYNTAX_ERROR;
3063
3064         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
3065         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
3066
3067         uint32_t buf_size = (size > 4096) ? 4096 : size;
3068         buffer = malloc(buf_size);
3069         if (!buffer)
3070                 return ERROR_FAIL;
3071
3072         retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
3073         if (retval != ERROR_OK) {
3074                 free(buffer);
3075                 return retval;
3076         }
3077
3078         duration_start(&bench);
3079
3080         while (size > 0) {
3081                 size_t size_written;
3082                 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
3083                 retval = target_read_buffer(target, address, this_run_size, buffer);
3084                 if (retval != ERROR_OK)
3085                         break;
3086
3087                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
3088                 if (retval != ERROR_OK)
3089                         break;
3090
3091                 size -= this_run_size;
3092                 address += this_run_size;
3093         }
3094
3095         free(buffer);
3096
3097         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3098                 int filesize;
3099                 retval = fileio_size(&fileio, &filesize);
3100                 if (retval != ERROR_OK)
3101                         return retval;
3102                 command_print(CMD_CTX,
3103                                 "dumped %ld bytes in %fs (%0.3f KiB/s)", (long)filesize,
3104                                 duration_elapsed(&bench), duration_kbps(&bench, filesize));
3105         }
3106
3107         retvaltemp = fileio_close(&fileio);
3108         if (retvaltemp != ERROR_OK)
3109                 return retvaltemp;
3110
3111         return retval;
3112 }
3113
3114 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
3115 {
3116         uint8_t *buffer;
3117         size_t buf_cnt;
3118         uint32_t image_size;
3119         int i;
3120         int retval;
3121         uint32_t checksum = 0;
3122         uint32_t mem_checksum = 0;
3123
3124         struct image image;
3125
3126         struct target *target = get_current_target(CMD_CTX);
3127
3128         if (CMD_ARGC < 1)
3129                 return ERROR_COMMAND_SYNTAX_ERROR;
3130
3131         if (!target) {
3132                 LOG_ERROR("no target selected");
3133                 return ERROR_FAIL;
3134         }
3135
3136         struct duration bench;
3137         duration_start(&bench);
3138
3139         if (CMD_ARGC >= 2) {
3140                 uint32_t addr;
3141                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
3142                 image.base_address = addr;
3143                 image.base_address_set = 1;
3144         } else {
3145                 image.base_address_set = 0;
3146                 image.base_address = 0x0;
3147         }
3148
3149         image.start_address_set = 0;
3150
3151         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
3152         if (retval != ERROR_OK)
3153                 return retval;
3154
3155         image_size = 0x0;
3156         int diffs = 0;
3157         retval = ERROR_OK;
3158         for (i = 0; i < image.num_sections; i++) {
3159                 buffer = malloc(image.sections[i].size);
3160                 if (buffer == NULL) {
3161                         command_print(CMD_CTX,
3162                                         "error allocating buffer for section (%d bytes)",
3163                                         (int)(image.sections[i].size));
3164                         break;
3165                 }
3166                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3167                 if (retval != ERROR_OK) {
3168                         free(buffer);
3169                         break;
3170                 }
3171
3172                 if (verify) {
3173                         /* calculate checksum of image */
3174                         retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3175                         if (retval != ERROR_OK) {
3176                                 free(buffer);
3177                                 break;
3178                         }
3179
3180                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3181                         if (retval != ERROR_OK) {
3182                                 free(buffer);
3183                                 break;
3184                         }
3185
3186                         if (checksum != mem_checksum) {
3187                                 /* failed crc checksum, fall back to a binary compare */
3188                                 uint8_t *data;
3189
3190                                 if (diffs == 0)
3191                                         LOG_ERROR("checksum mismatch - attempting binary compare");
3192
3193                                 data = malloc(buf_cnt);
3194
3195                                 /* Can we use 32bit word accesses? */
3196                                 int size = 1;
3197                                 int count = buf_cnt;
3198                                 if ((count % 4) == 0) {
3199                                         size *= 4;
3200                                         count /= 4;
3201                                 }
3202                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3203                                 if (retval == ERROR_OK) {
3204                                         uint32_t t;
3205                                         for (t = 0; t < buf_cnt; t++) {
3206                                                 if (data[t] != buffer[t]) {
3207                                                         command_print(CMD_CTX,
3208                                                                                   "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3209                                                                                   diffs,
3210                                                                                   (unsigned)(t + image.sections[i].base_address),
3211                                                                                   data[t],
3212                                                                                   buffer[t]);
3213                                                         if (diffs++ >= 127) {
3214                                                                 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3215                                                                 free(data);
3216                                                                 free(buffer);
3217                                                                 goto done;
3218                                                         }
3219                                                 }
3220                                                 keep_alive();
3221                                         }
3222                                 }
3223                                 free(data);
3224                         }
3225                 } else {
3226                         command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
3227                                                   image.sections[i].base_address,
3228                                                   buf_cnt);
3229                 }
3230
3231                 free(buffer);
3232                 image_size += buf_cnt;
3233         }
3234         if (diffs > 0)
3235                 command_print(CMD_CTX, "No more differences found.");
3236 done:
3237         if (diffs > 0)
3238                 retval = ERROR_FAIL;
3239         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3240                 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3241                                 "in %fs (%0.3f KiB/s)", image_size,
3242                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3243         }
3244
3245         image_close(&image);
3246
3247         return retval;
3248 }
3249
3250 COMMAND_HANDLER(handle_verify_image_command)
3251 {
3252         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
3253 }
3254
3255 COMMAND_HANDLER(handle_test_image_command)
3256 {
3257         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
3258 }
3259
3260 static int handle_bp_command_list(struct command_context *cmd_ctx)
3261 {
3262         struct target *target = get_current_target(cmd_ctx);
3263         struct breakpoint *breakpoint = target->breakpoints;
3264         while (breakpoint) {
3265                 if (breakpoint->type == BKPT_SOFT) {
3266                         char *buf = buf_to_str(breakpoint->orig_instr,
3267                                         breakpoint->length, 16);
3268                         command_print(cmd_ctx, "IVA breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
3269                                         breakpoint->address,
3270                                         breakpoint->length,
3271                                         breakpoint->set, buf);
3272                         free(buf);
3273                 } else {
3274                         if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3275                                 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3276                                                         breakpoint->asid,
3277                                                         breakpoint->length, breakpoint->set);
3278                         else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3279                                 command_print(cmd_ctx, "Hybrid breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3280                                                         breakpoint->address,
3281                                                         breakpoint->length, breakpoint->set);
3282                                 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3283                                                         breakpoint->asid);
3284                         } else
3285                                 command_print(cmd_ctx, "Breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3286                                                         breakpoint->address,
3287                                                         breakpoint->length, breakpoint->set);
3288                 }
3289
3290                 breakpoint = breakpoint->next;
3291         }
3292         return ERROR_OK;
3293 }
3294
3295 static int handle_bp_command_set(struct command_context *cmd_ctx,
3296                 uint32_t addr, uint32_t asid, uint32_t length, int hw)
3297 {
3298         struct target *target = get_current_target(cmd_ctx);
3299
3300         if (asid == 0) {
3301                 int retval = breakpoint_add(target, addr, length, hw);
3302                 if (ERROR_OK == retval)
3303                         command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
3304                 else {
3305                         LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3306                         return retval;
3307                 }
3308         } else if (addr == 0) {
3309                 int retval = context_breakpoint_add(target, asid, length, hw);
3310                 if (ERROR_OK == retval)
3311                         command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3312                 else {
3313                         LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3314                         return retval;
3315                 }
3316         } else {
3317                 int retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3318                 if (ERROR_OK == retval)
3319                         command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3320                 else {
3321                         LOG_ERROR("Failure setting breakpoint, the same address is already used");
3322                         return retval;
3323                 }
3324         }
3325         return ERROR_OK;
3326 }
3327
3328 COMMAND_HANDLER(handle_bp_command)
3329 {
3330         uint32_t addr;
3331         uint32_t asid;
3332         uint32_t length;
3333         int hw = BKPT_SOFT;
3334
3335         switch (CMD_ARGC) {
3336                 case 0:
3337                         return handle_bp_command_list(CMD_CTX);
3338
3339                 case 2:
3340                         asid = 0;
3341                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3342                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3343                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3344
3345                 case 3:
3346                         if (strcmp(CMD_ARGV[2], "hw") == 0) {
3347                                 hw = BKPT_HARD;
3348                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3349
3350                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3351
3352                                 asid = 0;
3353                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3354                         } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
3355                                 hw = BKPT_HARD;
3356                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3357                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3358                                 addr = 0;
3359                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3360                         }
3361
3362                 case 4:
3363                         hw = BKPT_HARD;
3364                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3365                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3366                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3367                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3368
3369                 default:
3370                         return ERROR_COMMAND_SYNTAX_ERROR;
3371         }
3372 }
3373
3374 COMMAND_HANDLER(handle_rbp_command)
3375 {
3376         if (CMD_ARGC != 1)
3377                 return ERROR_COMMAND_SYNTAX_ERROR;
3378
3379         uint32_t addr;
3380         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3381
3382         struct target *target = get_current_target(CMD_CTX);
3383         breakpoint_remove(target, addr);
3384
3385         return ERROR_OK;
3386 }
3387
3388 COMMAND_HANDLER(handle_wp_command)
3389 {
3390         struct target *target = get_current_target(CMD_CTX);
3391
3392         if (CMD_ARGC == 0) {
3393                 struct watchpoint *watchpoint = target->watchpoints;
3394
3395                 while (watchpoint) {
3396                         command_print(CMD_CTX, "address: 0x%8.8" PRIx32
3397                                         ", len: 0x%8.8" PRIx32
3398                                         ", r/w/a: %i, value: 0x%8.8" PRIx32
3399                                         ", mask: 0x%8.8" PRIx32,
3400                                         watchpoint->address,
3401                                         watchpoint->length,
3402                                         (int)watchpoint->rw,
3403                                         watchpoint->value,
3404                                         watchpoint->mask);
3405                         watchpoint = watchpoint->next;
3406                 }
3407                 return ERROR_OK;
3408         }
3409
3410         enum watchpoint_rw type = WPT_ACCESS;
3411         uint32_t addr = 0;
3412         uint32_t length = 0;
3413         uint32_t data_value = 0x0;
3414         uint32_t data_mask = 0xffffffff;
3415
3416         switch (CMD_ARGC) {
3417         case 5:
3418                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3419                 /* fall through */
3420         case 4:
3421                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3422                 /* fall through */
3423         case 3:
3424                 switch (CMD_ARGV[2][0]) {
3425                 case 'r':
3426                         type = WPT_READ;
3427                         break;
3428                 case 'w':
3429                         type = WPT_WRITE;
3430                         break;
3431                 case 'a':
3432                         type = WPT_ACCESS;
3433                         break;
3434                 default:
3435                         LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3436                         return ERROR_COMMAND_SYNTAX_ERROR;
3437                 }
3438                 /* fall through */
3439         case 2:
3440                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3441                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3442                 break;
3443
3444         default:
3445                 return ERROR_COMMAND_SYNTAX_ERROR;
3446         }
3447
3448         int retval = watchpoint_add(target, addr, length, type,
3449                         data_value, data_mask);
3450         if (ERROR_OK != retval)
3451                 LOG_ERROR("Failure setting watchpoints");
3452
3453         return retval;
3454 }
3455
3456 COMMAND_HANDLER(handle_rwp_command)
3457 {
3458         if (CMD_ARGC != 1)
3459                 return ERROR_COMMAND_SYNTAX_ERROR;
3460
3461         uint32_t addr;
3462         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3463
3464         struct target *target = get_current_target(CMD_CTX);
3465         watchpoint_remove(target, addr);
3466
3467         return ERROR_OK;
3468 }
3469
3470 /**
3471  * Translate a virtual address to a physical address.
3472  *
3473  * The low-level target implementation must have logged a detailed error
3474  * which is forwarded to telnet/GDB session.
3475  */
3476 COMMAND_HANDLER(handle_virt2phys_command)
3477 {
3478         if (CMD_ARGC != 1)
3479                 return ERROR_COMMAND_SYNTAX_ERROR;
3480
3481         uint32_t va;
3482         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
3483         uint32_t pa;
3484
3485         struct target *target = get_current_target(CMD_CTX);
3486         int retval = target->type->virt2phys(target, va, &pa);
3487         if (retval == ERROR_OK)
3488                 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
3489
3490         return retval;
3491 }
3492
3493 static void writeData(FILE *f, const void *data, size_t len)
3494 {
3495         size_t written = fwrite(data, 1, len, f);
3496         if (written != len)
3497                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3498 }
3499
3500 static void writeLong(FILE *f, int l)
3501 {
3502         int i;
3503         for (i = 0; i < 4; i++) {
3504                 char c = (l >> (i*8))&0xff;
3505                 writeData(f, &c, 1);
3506         }
3507
3508 }
3509
3510 static void writeString(FILE *f, char *s)
3511 {
3512         writeData(f, s, strlen(s));
3513 }
3514
3515 typedef unsigned char UNIT[2];  /* unit of profiling */
3516
3517 /* Dump a gmon.out histogram file. */
3518 static void write_gmon(uint32_t *samples, uint32_t sampleNum, const char *filename,
3519                 bool with_range, uint32_t start_address, uint32_t end_address)
3520 {
3521         uint32_t i;
3522         FILE *f = fopen(filename, "w");
3523         if (f == NULL)
3524                 return;
3525         writeString(f, "gmon");
3526         writeLong(f, 0x00000001); /* Version */
3527         writeLong(f, 0); /* padding */
3528         writeLong(f, 0); /* padding */
3529         writeLong(f, 0); /* padding */
3530
3531         uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
3532         writeData(f, &zero, 1);
3533
3534         /* figure out bucket size */
3535         uint32_t min;
3536         uint32_t max;
3537         if (with_range) {
3538                 min = start_address;
3539                 max = end_address;
3540         } else {
3541                 min = samples[0];
3542                 max = samples[0];
3543                 for (i = 0; i < sampleNum; i++) {
3544                         if (min > samples[i])
3545                                 min = samples[i];
3546                         if (max < samples[i])
3547                                 max = samples[i];
3548                 }
3549
3550                 /* max should be (largest sample + 1)
3551                  * Refer to binutils/gprof/hist.c (find_histogram_for_pc) */
3552                 max++;
3553         }
3554
3555         int addressSpace = max - min;
3556         assert(addressSpace >= 2);
3557
3558         /* FIXME: What is the reasonable number of buckets?
3559          * The profiling result will be more accurate if there are enough buckets. */
3560         static const uint32_t maxBuckets = 128 * 1024; /* maximum buckets. */
3561         uint32_t numBuckets = addressSpace / sizeof(UNIT);
3562         if (numBuckets > maxBuckets)
3563                 numBuckets = maxBuckets;
3564         int *buckets = malloc(sizeof(int) * numBuckets);
3565         if (buckets == NULL) {
3566                 fclose(f);
3567                 return;
3568         }
3569         memset(buckets, 0, sizeof(int) * numBuckets);
3570         for (i = 0; i < sampleNum; i++) {
3571                 uint32_t address = samples[i];
3572
3573                 if ((address < min) || (max <= address))
3574                         continue;
3575
3576                 long long a = address - min;
3577                 long long b = numBuckets;
3578                 long long c = addressSpace;
3579                 int index_t = (a * b) / c; /* danger!!!! int32 overflows */
3580                 buckets[index_t]++;
3581         }
3582
3583         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3584         writeLong(f, min);                      /* low_pc */
3585         writeLong(f, max);                      /* high_pc */
3586         writeLong(f, numBuckets);       /* # of buckets */
3587         writeLong(f, 100);                      /* KLUDGE! We lie, ca. 100Hz best case. */
3588         writeString(f, "seconds");
3589         for (i = 0; i < (15-strlen("seconds")); i++)
3590                 writeData(f, &zero, 1);
3591         writeString(f, "s");
3592
3593         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3594
3595         char *data = malloc(2 * numBuckets);
3596         if (data != NULL) {
3597                 for (i = 0; i < numBuckets; i++) {
3598                         int val;
3599                         val = buckets[i];
3600                         if (val > 65535)
3601                                 val = 65535;
3602                         data[i * 2] = val&0xff;
3603                         data[i * 2 + 1] = (val >> 8) & 0xff;
3604                 }
3605                 free(buckets);
3606                 writeData(f, data, numBuckets * 2);
3607                 free(data);
3608         } else
3609                 free(buckets);
3610
3611         fclose(f);
3612 }
3613
3614 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3615  * which will be used as a random sampling of PC */
3616 COMMAND_HANDLER(handle_profile_command)
3617 {
3618         struct target *target = get_current_target(CMD_CTX);
3619
3620         if ((CMD_ARGC != 2) && (CMD_ARGC != 4))
3621                 return ERROR_COMMAND_SYNTAX_ERROR;
3622
3623         const uint32_t MAX_PROFILE_SAMPLE_NUM = 10000;
3624         uint32_t offset;
3625         uint32_t num_of_samples;
3626         int retval = ERROR_OK;
3627
3628         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], offset);
3629
3630         uint32_t *samples = malloc(sizeof(uint32_t) * MAX_PROFILE_SAMPLE_NUM);
3631         if (samples == NULL) {
3632                 LOG_ERROR("No memory to store samples.");
3633                 return ERROR_FAIL;
3634         }
3635
3636         /**
3637          * Some cores let us sample the PC without the
3638          * annoying halt/resume step; for example, ARMv7 PCSR.
3639          * Provide a way to use that more efficient mechanism.
3640          */
3641         retval = target_profiling(target, samples, MAX_PROFILE_SAMPLE_NUM,
3642                                 &num_of_samples, offset);
3643         if (retval != ERROR_OK) {
3644                 free(samples);
3645                 return retval;
3646         }
3647
3648         assert(num_of_samples <= MAX_PROFILE_SAMPLE_NUM);
3649
3650         retval = target_poll(target);
3651         if (retval != ERROR_OK) {
3652                 free(samples);
3653                 return retval;
3654         }
3655         if (target->state == TARGET_RUNNING) {
3656                 retval = target_halt(target);
3657                 if (retval != ERROR_OK) {
3658                         free(samples);
3659                         return retval;
3660                 }
3661         }
3662
3663         retval = target_poll(target);
3664         if (retval != ERROR_OK) {
3665                 free(samples);
3666                 return retval;
3667         }
3668
3669         uint32_t start_address = 0;
3670         uint32_t end_address = 0;
3671         bool with_range = false;
3672         if (CMD_ARGC == 4) {
3673                 with_range = true;
3674                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], start_address);
3675                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], end_address);
3676         }
3677
3678         write_gmon(samples, num_of_samples, CMD_ARGV[1],
3679                         with_range, start_address, end_address);
3680         command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3681
3682         free(samples);
3683         return retval;
3684 }
3685
3686 static int new_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t val)
3687 {
3688         char *namebuf;
3689         Jim_Obj *nameObjPtr, *valObjPtr;
3690         int result;
3691
3692         namebuf = alloc_printf("%s(%d)", varname, idx);
3693         if (!namebuf)
3694                 return JIM_ERR;
3695
3696         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3697         valObjPtr = Jim_NewIntObj(interp, val);
3698         if (!nameObjPtr || !valObjPtr) {
3699                 free(namebuf);
3700                 return JIM_ERR;
3701         }
3702
3703         Jim_IncrRefCount(nameObjPtr);
3704         Jim_IncrRefCount(valObjPtr);
3705         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3706         Jim_DecrRefCount(interp, nameObjPtr);
3707         Jim_DecrRefCount(interp, valObjPtr);
3708         free(namebuf);
3709         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3710         return result;
3711 }
3712
3713 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3714 {
3715         struct command_context *context;
3716         struct target *target;
3717
3718         context = current_command_context(interp);
3719         assert(context != NULL);
3720
3721         target = get_current_target(context);
3722         if (target == NULL) {
3723                 LOG_ERROR("mem2array: no current target");
3724                 return JIM_ERR;
3725         }
3726
3727         return target_mem2array(interp, target, argc - 1, argv + 1);
3728 }
3729
3730 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3731 {
3732         long l;
3733         uint32_t width;
3734         int len;
3735         uint32_t addr;
3736         uint32_t count;
3737         uint32_t v;
3738         const char *varname;
3739         int  n, e, retval;
3740         uint32_t i;
3741
3742         /* argv[1] = name of array to receive the data
3743          * argv[2] = desired width
3744          * argv[3] = memory address
3745          * argv[4] = count of times to read
3746          */
3747         if (argc != 4) {
3748                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3749                 return JIM_ERR;
3750         }
3751         varname = Jim_GetString(argv[0], &len);
3752         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3753
3754         e = Jim_GetLong(interp, argv[1], &l);
3755         width = l;
3756         if (e != JIM_OK)
3757                 return e;
3758
3759         e = Jim_GetLong(interp, argv[2], &l);
3760         addr = l;
3761         if (e != JIM_OK)
3762                 return e;
3763         e = Jim_GetLong(interp, argv[3], &l);
3764         len = l;
3765         if (e != JIM_OK)
3766                 return e;
3767         switch (width) {
3768                 case 8:
3769                         width = 1;
3770                         break;
3771                 case 16:
3772                         width = 2;
3773                         break;
3774                 case 32:
3775                         width = 4;
3776                         break;
3777                 default:
3778                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3779                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3780                         return JIM_ERR;
3781         }
3782         if (len == 0) {
3783                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3784                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3785                 return JIM_ERR;
3786         }
3787         if ((addr + (len * width)) < addr) {
3788                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3789                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3790                 return JIM_ERR;
3791         }
3792         /* absurd transfer size? */
3793         if (len > 65536) {
3794                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3795                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3796                 return JIM_ERR;
3797         }
3798
3799         if ((width == 1) ||
3800                 ((width == 2) && ((addr & 1) == 0)) ||
3801                 ((width == 4) && ((addr & 3) == 0))) {
3802                 /* all is well */
3803         } else {
3804                 char buf[100];
3805                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3806                 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3807                                 addr,
3808                                 width);
3809                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3810                 return JIM_ERR;
3811         }
3812
3813         /* Transfer loop */
3814
3815         /* index counter */
3816         n = 0;
3817
3818         size_t buffersize = 4096;
3819         uint8_t *buffer = malloc(buffersize);
3820         if (buffer == NULL)
3821                 return JIM_ERR;
3822
3823         /* assume ok */
3824         e = JIM_OK;
3825         while (len) {
3826                 /* Slurp... in buffer size chunks */
3827
3828                 count = len; /* in objects.. */
3829                 if (count > (buffersize / width))
3830                         count = (buffersize / width);
3831
3832                 retval = target_read_memory(target, addr, width, count, buffer);
3833                 if (retval != ERROR_OK) {
3834                         /* BOO !*/
3835                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3836                                           (unsigned int)addr,
3837                                           (int)width,
3838                                           (int)count);
3839                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3840                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3841                         e = JIM_ERR;
3842                         break;
3843                 } else {
3844                         v = 0; /* shut up gcc */
3845                         for (i = 0; i < count ; i++, n++) {
3846                                 switch (width) {
3847                                         case 4:
3848                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
3849                                                 break;
3850                                         case 2:
3851                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
3852                                                 break;
3853                                         case 1:
3854                                                 v = buffer[i] & 0x0ff;
3855                                                 break;
3856                                 }
3857                                 new_int_array_element(interp, varname, n, v);
3858                         }
3859                         len -= count;
3860                         addr += count * width;
3861                 }
3862         }
3863
3864         free(buffer);
3865
3866         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3867
3868         return e;
3869 }
3870
3871 static int get_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t *val)
3872 {
3873         char *namebuf;
3874         Jim_Obj *nameObjPtr, *valObjPtr;
3875         int result;
3876         long l;
3877
3878         namebuf = alloc_printf("%s(%d)", varname, idx);
3879         if (!namebuf)
3880                 return JIM_ERR;
3881
3882         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3883         if (!nameObjPtr) {
3884                 free(namebuf);
3885                 return JIM_ERR;
3886         }
3887
3888         Jim_IncrRefCount(nameObjPtr);
3889         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3890         Jim_DecrRefCount(interp, nameObjPtr);
3891         free(namebuf);
3892         if (valObjPtr == NULL)
3893                 return JIM_ERR;
3894
3895         result = Jim_GetLong(interp, valObjPtr, &l);
3896         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3897         *val = l;
3898         return result;
3899 }
3900
3901 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3902 {
3903         struct command_context *context;
3904         struct target *target;
3905
3906         context = current_command_context(interp);
3907         assert(context != NULL);
3908
3909         target = get_current_target(context);
3910         if (target == NULL) {
3911                 LOG_ERROR("array2mem: no current target");
3912                 return JIM_ERR;
3913         }
3914
3915         return target_array2mem(interp, target, argc-1, argv + 1);
3916 }
3917
3918 static int target_array2mem(Jim_Interp *interp, struct target *target,
3919                 int argc, Jim_Obj *const *argv)
3920 {
3921         long l;
3922         uint32_t width;
3923         int len;
3924         uint32_t addr;
3925         uint32_t count;
3926         uint32_t v;
3927         const char *varname;
3928         int  n, e, retval;
3929         uint32_t i;
3930
3931         /* argv[1] = name of array to get the data
3932          * argv[2] = desired width
3933          * argv[3] = memory address
3934          * argv[4] = count to write
3935          */
3936         if (argc != 4) {
3937                 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems");
3938                 return JIM_ERR;
3939         }
3940         varname = Jim_GetString(argv[0], &len);
3941         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3942
3943         e = Jim_GetLong(interp, argv[1], &l);
3944         width = l;
3945         if (e != JIM_OK)
3946                 return e;
3947
3948         e = Jim_GetLong(interp, argv[2], &l);
3949         addr = l;
3950         if (e != JIM_OK)
3951                 return e;
3952         e = Jim_GetLong(interp, argv[3], &l);
3953         len = l;
3954         if (e != JIM_OK)
3955                 return e;
3956         switch (width) {
3957                 case 8:
3958                         width = 1;
3959                         break;
3960                 case 16:
3961                         width = 2;
3962                         break;
3963                 case 32:
3964                         width = 4;
3965                         break;
3966                 default:
3967                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3968                         Jim_AppendStrings(interp, Jim_GetResult(interp),
3969                                         "Invalid width param, must be 8/16/32", NULL);
3970                         return JIM_ERR;
3971         }
3972         if (len == 0) {
3973                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3974                 Jim_AppendStrings(interp, Jim_GetResult(interp),
3975                                 "array2mem: zero width read?", NULL);
3976                 return JIM_ERR;
3977         }
3978         if ((addr + (len * width)) < addr) {
3979                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3980                 Jim_AppendStrings(interp, Jim_GetResult(interp),
3981                                 "array2mem: addr + len - wraps to zero?", NULL);
3982                 return JIM_ERR;
3983         }
3984         /* absurd transfer size? */
3985         if (len > 65536) {
3986                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3987                 Jim_AppendStrings(interp, Jim_GetResult(interp),
3988                                 "array2mem: absurd > 64K item request", NULL);
3989                 return JIM_ERR;
3990         }
3991
3992         if ((width == 1) ||
3993                 ((width == 2) && ((addr & 1) == 0)) ||
3994                 ((width == 4) && ((addr & 3) == 0))) {
3995                 /* all is well */
3996         } else {
3997                 char buf[100];
3998                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3999                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
4000                                 (unsigned int)addr,
4001                                 (int)width);
4002                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
4003                 return JIM_ERR;
4004         }
4005
4006         /* Transfer loop */
4007
4008         /* index counter */
4009         n = 0;
4010         /* assume ok */
4011         e = JIM_OK;
4012
4013         size_t buffersize = 4096;
4014         uint8_t *buffer = malloc(buffersize);
4015         if (buffer == NULL)
4016                 return JIM_ERR;
4017
4018         while (len) {
4019                 /* Slurp... in buffer size chunks */
4020
4021                 count = len; /* in objects.. */
4022                 if (count > (buffersize / width))
4023                         count = (buffersize / width);
4024
4025                 v = 0; /* shut up gcc */
4026                 for (i = 0; i < count; i++, n++) {
4027                         get_int_array_element(interp, varname, n, &v);
4028                         switch (width) {
4029                         case 4:
4030                                 target_buffer_set_u32(target, &buffer[i * width], v);
4031                                 break;
4032                         case 2:
4033                                 target_buffer_set_u16(target, &buffer[i * width], v);
4034                                 break;
4035                         case 1:
4036                                 buffer[i] = v & 0x0ff;
4037                                 break;
4038                         }
4039                 }
4040                 len -= count;
4041
4042                 retval = target_write_memory(target, addr, width, count, buffer);
4043                 if (retval != ERROR_OK) {
4044                         /* BOO !*/
4045                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
4046                                           (unsigned int)addr,
4047                                           (int)width,
4048                                           (int)count);
4049                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4050                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
4051                         e = JIM_ERR;
4052                         break;
4053                 }
4054                 addr += count * width;
4055         }
4056
4057         free(buffer);
4058
4059         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4060
4061         return e;
4062 }
4063
4064 /* FIX? should we propagate errors here rather than printing them
4065  * and continuing?
4066  */
4067 void target_handle_event(struct target *target, enum target_event e)
4068 {
4069         struct target_event_action *teap;
4070
4071         for (teap = target->event_action; teap != NULL; teap = teap->next) {
4072                 if (teap->event == e) {
4073                         LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
4074                                            target->target_number,
4075                                            target_name(target),
4076                                            target_type_name(target),
4077                                            e,
4078                                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
4079                                            Jim_GetString(teap->body, NULL));
4080                         if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK) {
4081                                 Jim_MakeErrorMessage(teap->interp);
4082                                 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(teap->interp), NULL));
4083                         }
4084                 }
4085         }
4086 }
4087
4088 /**
4089  * Returns true only if the target has a handler for the specified event.
4090  */
4091 bool target_has_event_action(struct target *target, enum target_event event)
4092 {
4093         struct target_event_action *teap;
4094
4095         for (teap = target->event_action; teap != NULL; teap = teap->next) {
4096                 if (teap->event == event)
4097                         return true;
4098         }
4099         return false;
4100 }
4101
4102 enum target_cfg_param {
4103         TCFG_TYPE,
4104         TCFG_EVENT,
4105         TCFG_WORK_AREA_VIRT,
4106         TCFG_WORK_AREA_PHYS,
4107         TCFG_WORK_AREA_SIZE,
4108         TCFG_WORK_AREA_BACKUP,
4109         TCFG_ENDIAN,
4110         TCFG_VARIANT,
4111         TCFG_COREID,
4112         TCFG_CHAIN_POSITION,
4113         TCFG_DBGBASE,
4114         TCFG_RTOS,
4115 };
4116
4117 static Jim_Nvp nvp_config_opts[] = {
4118         { .name = "-type",             .value = TCFG_TYPE },
4119         { .name = "-event",            .value = TCFG_EVENT },
4120         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
4121         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
4122         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
4123         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
4124         { .name = "-endian" ,          .value = TCFG_ENDIAN },
4125         { .name = "-variant",          .value = TCFG_VARIANT },
4126         { .name = "-coreid",           .value = TCFG_COREID },
4127         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
4128         { .name = "-dbgbase",          .value = TCFG_DBGBASE },
4129         { .name = "-rtos",             .value = TCFG_RTOS },
4130         { .name = NULL, .value = -1 }
4131 };
4132
4133 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
4134 {
4135         Jim_Nvp *n;
4136         Jim_Obj *o;
4137         jim_wide w;
4138         char *cp;
4139         int e;
4140
4141         /* parse config or cget options ... */
4142         while (goi->argc > 0) {
4143                 Jim_SetEmptyResult(goi->interp);
4144                 /* Jim_GetOpt_Debug(goi); */
4145
4146                 if (target->type->target_jim_configure) {
4147                         /* target defines a configure function */
4148                         /* target gets first dibs on parameters */
4149                         e = (*(target->type->target_jim_configure))(target, goi);
4150                         if (e == JIM_OK) {
4151                                 /* more? */
4152                                 continue;
4153                         }
4154                         if (e == JIM_ERR) {
4155                                 /* An error */
4156                                 return e;
4157                         }
4158                         /* otherwise we 'continue' below */
4159                 }
4160                 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
4161                 if (e != JIM_OK) {
4162                         Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
4163                         return e;
4164                 }
4165                 switch (n->value) {
4166                 case TCFG_TYPE:
4167                         /* not setable */
4168                         if (goi->isconfigure) {
4169                                 Jim_SetResultFormatted(goi->interp,
4170                                                 "not settable: %s", n->name);
4171                                 return JIM_ERR;
4172                         } else {
4173 no_params:
4174                                 if (goi->argc != 0) {
4175                                         Jim_WrongNumArgs(goi->interp,
4176                                                         goi->argc, goi->argv,
4177                                                         "NO PARAMS");
4178                                         return JIM_ERR;
4179                                 }
4180                         }
4181                         Jim_SetResultString(goi->interp,
4182                                         target_type_name(target), -1);
4183                         /* loop for more */
4184                         break;
4185                 case TCFG_EVENT:
4186                         if (goi->argc == 0) {
4187                                 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
4188                                 return JIM_ERR;
4189                         }
4190
4191                         e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
4192                         if (e != JIM_OK) {
4193                                 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
4194                                 return e;
4195                         }
4196
4197                         if (goi->isconfigure) {
4198                                 if (goi->argc != 1) {
4199                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
4200                                         return JIM_ERR;
4201                                 }
4202                         } else {
4203                                 if (goi->argc != 0) {
4204                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
4205                                         return JIM_ERR;
4206                                 }
4207                         }
4208
4209                         {
4210                                 struct target_event_action *teap;
4211
4212                                 teap = target->event_action;
4213                                 /* replace existing? */
4214                                 while (teap) {
4215                                         if (teap->event == (enum target_event)n->value)
4216                                                 break;
4217                                         teap = teap->next;
4218                                 }
4219
4220                                 if (goi->isconfigure) {
4221                                         bool replace = true;
4222                                         if (teap == NULL) {
4223                                                 /* create new */
4224                                                 teap = calloc(1, sizeof(*teap));
4225                                                 replace = false;
4226                                         }
4227                                         teap->event = n->value;
4228                                         teap->interp = goi->interp;
4229                                         Jim_GetOpt_Obj(goi, &o);
4230                                         if (teap->body)
4231                                                 Jim_DecrRefCount(teap->interp, teap->body);
4232                                         teap->body  = Jim_DuplicateObj(goi->interp, o);
4233                                         /*
4234                                          * FIXME:
4235                                          *     Tcl/TK - "tk events" have a nice feature.
4236                                          *     See the "BIND" command.
4237                                          *    We should support that here.
4238                                          *     You can specify %X and %Y in the event code.
4239                                          *     The idea is: %T - target name.
4240                                          *     The idea is: %N - target number
4241                                          *     The idea is: %E - event name.
4242                                          */
4243                                         Jim_IncrRefCount(teap->body);
4244
4245                                         if (!replace) {
4246                                                 /* add to head of event list */
4247                                                 teap->next = target->event_action;
4248                                                 target->event_action = teap;
4249                                         }
4250                                         Jim_SetEmptyResult(goi->interp);
4251                                 } else {
4252                                         /* get */
4253                                         if (teap == NULL)
4254                                                 Jim_SetEmptyResult(goi->interp);
4255                                         else
4256                                                 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
4257                                 }
4258                         }
4259                         /* loop for more */
4260                         break;
4261
4262                 case TCFG_WORK_AREA_VIRT:
4263                         if (goi->isconfigure) {
4264                                 target_free_all_working_areas(target);
4265                                 e = Jim_GetOpt_Wide(goi, &w);
4266                                 if (e != JIM_OK)
4267                                         return e;
4268                                 target->working_area_virt = w;
4269                                 target->working_area_virt_spec = true;
4270                         } else {
4271                                 if (goi->argc != 0)
4272                                         goto no_params;
4273                         }
4274                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
4275                         /* loop for more */
4276                         break;
4277
4278                 case TCFG_WORK_AREA_PHYS:
4279                         if (goi->isconfigure) {
4280                                 target_free_all_working_areas(target);
4281                                 e = Jim_GetOpt_Wide(goi, &w);
4282                                 if (e != JIM_OK)
4283                                         return e;
4284                                 target->working_area_phys = w;
4285                                 target->working_area_phys_spec = true;
4286                         } else {
4287                                 if (goi->argc != 0)
4288                                         goto no_params;
4289                         }
4290                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
4291                         /* loop for more */
4292                         break;
4293
4294                 case TCFG_WORK_AREA_SIZE:
4295                         if (goi->isconfigure) {
4296                                 target_free_all_working_areas(target);
4297                                 e = Jim_GetOpt_Wide(goi, &w);
4298                                 if (e != JIM_OK)
4299                                         return e;
4300                                 target->working_area_size = w;
4301                         } else {
4302                                 if (goi->argc != 0)
4303                                         goto no_params;
4304                         }
4305                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4306                         /* loop for more */
4307                         break;
4308
4309                 case TCFG_WORK_AREA_BACKUP:
4310                         if (goi->isconfigure) {
4311                                 target_free_all_working_areas(target);
4312                                 e = Jim_GetOpt_Wide(goi, &w);
4313                                 if (e != JIM_OK)
4314                                         return e;
4315                                 /* make this exactly 1 or 0 */
4316                                 target->backup_working_area = (!!w);
4317                         } else {
4318                                 if (goi->argc != 0)
4319                                         goto no_params;
4320                         }
4321                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
4322                         /* loop for more e*/
4323                         break;
4324
4325
4326                 case TCFG_ENDIAN:
4327                         if (goi->isconfigure) {
4328                                 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
4329                                 if (e != JIM_OK) {
4330                                         Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
4331                                         return e;
4332                                 }
4333                                 target->endianness = n->value;
4334                         } else {
4335                                 if (goi->argc != 0)
4336                                         goto no_params;
4337                         }
4338                         n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4339                         if (n->name == NULL) {
4340                                 target->endianness = TARGET_LITTLE_ENDIAN;
4341                                 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4342                         }
4343                         Jim_SetResultString(goi->interp, n->name, -1);
4344                         /* loop for more */
4345                         break;
4346
4347                 case TCFG_VARIANT:
4348                         if (goi->isconfigure) {
4349                                 if (goi->argc < 1) {
4350                                         Jim_SetResultFormatted(goi->interp,
4351                                                                                    "%s ?STRING?",
4352                                                                                    n->name);
4353                                         return JIM_ERR;
4354                                 }
4355                                 e = Jim_GetOpt_String(goi, &cp, NULL);
4356                                 if (e != JIM_OK)
4357                                         return e;
4358                                 free(target->variant);
4359                                 target->variant = strdup(cp);
4360                         } else {
4361                                 if (goi->argc != 0)
4362                                         goto no_params;
4363                         }
4364                         Jim_SetResultString(goi->interp, target->variant, -1);
4365                         /* loop for more */
4366                         break;
4367
4368                 case TCFG_COREID:
4369                         if (goi->isconfigure) {
4370                                 e = Jim_GetOpt_Wide(goi, &w);
4371                                 if (e != JIM_OK)
4372                                         return e;
4373                                 target->coreid = (int32_t)w;
4374                         } else {
4375                                 if (goi->argc != 0)
4376                                         goto no_params;
4377                         }
4378                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4379                         /* loop for more */
4380                         break;
4381
4382                 case TCFG_CHAIN_POSITION:
4383                         if (goi->isconfigure) {
4384                                 Jim_Obj *o_t;
4385                                 struct jtag_tap *tap;
4386                                 target_free_all_working_areas(target);
4387                                 e = Jim_GetOpt_Obj(goi, &o_t);
4388                                 if (e != JIM_OK)
4389                                         return e;
4390                                 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
4391                                 if (tap == NULL)
4392                                         return JIM_ERR;
4393                                 /* make this exactly 1 or 0 */
4394                                 target->tap = tap;
4395                         } else {
4396                                 if (goi->argc != 0)
4397                                         goto no_params;
4398                         }
4399                         Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
4400                         /* loop for more e*/
4401                         break;
4402                 case TCFG_DBGBASE:
4403                         if (goi->isconfigure) {
4404                                 e = Jim_GetOpt_Wide(goi, &w);
4405                                 if (e != JIM_OK)
4406                                         return e;
4407                                 target->dbgbase = (uint32_t)w;
4408                                 target->dbgbase_set = true;
4409                         } else {
4410                                 if (goi->argc != 0)
4411                                         goto no_params;
4412                         }
4413                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
4414                         /* loop for more */
4415                         break;
4416
4417                 case TCFG_RTOS:
4418                         /* RTOS */
4419                         {
4420                                 int result = rtos_create(goi, target);
4421                                 if (result != JIM_OK)
4422                                         return result;
4423                         }
4424                         /* loop for more */
4425                         break;
4426                 }
4427         } /* while (goi->argc) */
4428
4429
4430                 /* done - we return */
4431         return JIM_OK;
4432 }
4433
4434 static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
4435 {
4436         Jim_GetOptInfo goi;
4437
4438         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4439         goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
4440         int need_args = 1 + goi.isconfigure;
4441         if (goi.argc < need_args) {
4442                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4443                         goi.isconfigure
4444                                 ? "missing: -option VALUE ..."
4445                                 : "missing: -option ...");
4446                 return JIM_ERR;
4447         }
4448         struct target *target = Jim_CmdPrivData(goi.interp);
4449         return target_configure(&goi, target);
4450 }
4451
4452 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4453 {
4454         const char *cmd_name = Jim_GetString(argv[0], NULL);
4455
4456         Jim_GetOptInfo goi;
4457         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4458
4459         if (goi.argc < 2 || goi.argc > 4) {
4460                 Jim_SetResultFormatted(goi.interp,
4461                                 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
4462                 return JIM_ERR;
4463         }
4464
4465         target_write_fn fn;
4466         fn = target_write_memory;
4467
4468         int e;
4469         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4470                 /* consume it */
4471                 struct Jim_Obj *obj;
4472                 e = Jim_GetOpt_Obj(&goi, &obj);
4473                 if (e != JIM_OK)
4474                         return e;
4475
4476                 fn = target_write_phys_memory;
4477         }
4478
4479         jim_wide a;
4480         e = Jim_GetOpt_Wide(&goi, &a);
4481         if (e != JIM_OK)
4482                 return e;
4483
4484         jim_wide b;
4485         e = Jim_GetOpt_Wide(&goi, &b);
4486         if (e != JIM_OK)
4487                 return e;
4488
4489         jim_wide c = 1;
4490         if (goi.argc == 1) {
4491                 e = Jim_GetOpt_Wide(&goi, &c);
4492                 if (e != JIM_OK)
4493                         return e;
4494         }
4495
4496         /* all args must be consumed */
4497         if (goi.argc != 0)
4498                 return JIM_ERR;
4499
4500         struct target *target = Jim_CmdPrivData(goi.interp);
4501         unsigned data_size;
4502         if (strcasecmp(cmd_name, "mww") == 0)
4503                 data_size = 4;
4504         else if (strcasecmp(cmd_name, "mwh") == 0)
4505                 data_size = 2;
4506         else if (strcasecmp(cmd_name, "mwb") == 0)
4507                 data_size = 1;
4508         else {
4509                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4510                 return JIM_ERR;
4511         }
4512
4513         return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4514 }
4515
4516 /**
4517 *  @brief Reads an array of words/halfwords/bytes from target memory starting at specified address.
4518 *
4519 *  Usage: mdw [phys] <address> [<count>] - for 32 bit reads
4520 *         mdh [phys] <address> [<count>] - for 16 bit reads
4521 *         mdb [phys] <address> [<count>] - for  8 bit reads
4522 *
4523 *  Count defaults to 1.
4524 *
4525 *  Calls target_read_memory or target_read_phys_memory depending on
4526 *  the presence of the "phys" argument
4527 *  Reads the target memory in blocks of max. 32 bytes, and returns an array of ints formatted
4528 *  to int representation in base16.
4529 *  Also outputs read data in a human readable form using command_print
4530 *
4531 *  @param phys if present target_read_phys_memory will be used instead of target_read_memory
4532 *  @param address address where to start the read. May be specified in decimal or hex using the standard "0x" prefix
4533 *  @param count optional count parameter to read an array of values. If not specified, defaults to 1.
4534 *  @returns:  JIM_ERR on error or JIM_OK on success and sets the result string to an array of ascii formatted numbers
4535 *  on success, with [<count>] number of elements.
4536 *
4537 *  In case of little endian target:
4538 *      Example1: "mdw 0x00000000"  returns "10123456"
4539 *      Exmaple2: "mdh 0x00000000 1" returns "3456"
4540 *      Example3: "mdb 0x00000000" returns "56"
4541 *      Example4: "mdh 0x00000000 2" returns "3456 1012"
4542 *      Example5: "mdb 0x00000000 3" returns "56 34 12"
4543 **/
4544 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4545 {
4546         const char *cmd_name = Jim_GetString(argv[0], NULL);
4547
4548         Jim_GetOptInfo goi;
4549         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4550
4551         if ((goi.argc < 1) || (goi.argc > 3)) {
4552                 Jim_SetResultFormatted(goi.interp,
4553                                 "usage: %s [phys] <address> [<count>]", cmd_name);
4554                 return JIM_ERR;
4555         }
4556
4557         int (*fn)(struct target *target,
4558                         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
4559         fn = target_read_memory;
4560
4561         int e;
4562         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4563                 /* consume it */
4564                 struct Jim_Obj *obj;
4565                 e = Jim_GetOpt_Obj(&goi, &obj);
4566                 if (e != JIM_OK)
4567                         return e;
4568
4569                 fn = target_read_phys_memory;
4570         }
4571
4572         /* Read address parameter */
4573         jim_wide addr;
4574         e = Jim_GetOpt_Wide(&goi, &addr);
4575         if (e != JIM_OK)
4576                 return JIM_ERR;
4577
4578         /* If next parameter exists, read it out as the count parameter, if not, set it to 1 (default) */
4579         jim_wide count;
4580         if (goi.argc == 1) {
4581                 e = Jim_GetOpt_Wide(&goi, &count);
4582                 if (e != JIM_OK)
4583                         return JIM_ERR;
4584         } else
4585                 count = 1;
4586
4587         /* all args must be consumed */
4588         if (goi.argc != 0)
4589                 return JIM_ERR;
4590
4591         jim_wide dwidth = 1; /* shut up gcc */
4592         if (strcasecmp(cmd_name, "mdw") == 0)
4593                 dwidth = 4;
4594         else if (strcasecmp(cmd_name, "mdh") == 0)
4595                 dwidth = 2;
4596         else if (strcasecmp(cmd_name, "mdb") == 0)
4597                 dwidth = 1;
4598         else {
4599                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4600                 return JIM_ERR;
4601         }
4602
4603         /* convert count to "bytes" */
4604         int bytes = count * dwidth;
4605
4606         struct target *target = Jim_CmdPrivData(goi.interp);
4607         uint8_t  target_buf[32];
4608         jim_wide x, y, z;
4609         while (bytes > 0) {
4610                 y = (bytes < 16) ? bytes : 16; /* y = min(bytes, 16); */
4611
4612                 /* Try to read out next block */
4613                 e = fn(target, addr, dwidth, y / dwidth, target_buf);
4614
4615                 if (e != ERROR_OK) {
4616                         Jim_SetResultFormatted(interp, "error reading target @ 0x%08lx", (long)addr);
4617                         return JIM_ERR;
4618                 }
4619
4620                 command_print_sameline(NULL, "0x%08x ", (int)(addr));
4621                 switch (dwidth) {
4622                 case 4:
4623                         for (x = 0; x < 16 && x < y; x += 4) {
4624                                 z = target_buffer_get_u32(target, &(target_buf[x]));
4625                                 command_print_sameline(NULL, "%08x ", (int)(z));
4626                         }
4627                         for (; (x < 16) ; x += 4)
4628                                 command_print_sameline(NULL, "         ");
4629                         break;
4630                 case 2:
4631                         for (x = 0; x < 16 && x < y; x += 2) {
4632                                 z = target_buffer_get_u16(target, &(target_buf[x]));
4633                                 command_print_sameline(NULL, "%04x ", (int)(z));
4634                         }
4635                         for (; (x < 16) ; x += 2)
4636                                 command_print_sameline(NULL, "     ");
4637                         break;
4638                 case 1:
4639                 default:
4640                         for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4641                                 z = target_buffer_get_u8(target, &(target_buf[x]));
4642                                 command_print_sameline(NULL, "%02x ", (int)(z));
4643                         }
4644                         for (; (x < 16) ; x += 1)
4645                                 command_print_sameline(NULL, "   ");
4646                         break;
4647                 }
4648                 /* ascii-ify the bytes */
4649                 for (x = 0 ; x < y ; x++) {
4650                         if ((target_buf[x] >= 0x20) &&
4651                                 (target_buf[x] <= 0x7e)) {
4652                                 /* good */
4653                         } else {
4654                                 /* smack it */
4655                                 target_buf[x] = '.';
4656                         }
4657                 }
4658                 /* space pad  */
4659                 while (x < 16) {
4660                         target_buf[x] = ' ';
4661                         x++;
4662                 }
4663                 /* terminate */
4664                 target_buf[16] = 0;
4665                 /* print - with a newline */
4666                 command_print_sameline(NULL, "%s\n", target_buf);
4667                 /* NEXT... */
4668                 bytes -= 16;
4669                 addr += 16;
4670         }
4671         return JIM_OK;
4672 }
4673
4674 static int jim_target_mem2array(Jim_Interp *interp,
4675                 int argc, Jim_Obj *const *argv)
4676 {
4677         struct target *target = Jim_CmdPrivData(interp);
4678         return target_mem2array(interp, target, argc - 1, argv + 1);
4679 }
4680
4681 static int jim_target_array2mem(Jim_Interp *interp,
4682                 int argc, Jim_Obj *const *argv)
4683 {
4684         struct target *target = Jim_CmdPrivData(interp);
4685         return target_array2mem(interp, target, argc - 1, argv + 1);
4686 }
4687
4688 static int jim_target_tap_disabled(Jim_Interp *interp)
4689 {
4690         Jim_SetResultFormatted(interp, "[TAP is disabled]");
4691         return JIM_ERR;
4692 }
4693
4694 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4695 {
4696         if (argc != 1) {
4697                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4698                 return JIM_ERR;
4699         }
4700         struct target *target = Jim_CmdPrivData(interp);
4701         if (!target->tap->enabled)
4702                 return jim_target_tap_disabled(interp);
4703
4704         int e = target->type->examine(target);
4705         if (e != ERROR_OK)
4706                 return JIM_ERR;
4707         return JIM_OK;
4708 }
4709
4710 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4711 {
4712         if (argc != 1) {
4713                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4714                 return JIM_ERR;
4715         }
4716         struct target *target = Jim_CmdPrivData(interp);
4717
4718         if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
4719                 return JIM_ERR;
4720
4721         return JIM_OK;
4722 }
4723
4724 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4725 {
4726         if (argc != 1) {
4727                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4728                 return JIM_ERR;
4729         }
4730         struct target *target = Jim_CmdPrivData(interp);
4731         if (!target->tap->enabled)
4732                 return jim_target_tap_disabled(interp);
4733
4734         int e;
4735         if (!(target_was_examined(target)))
4736                 e = ERROR_TARGET_NOT_EXAMINED;
4737         else
4738                 e = target->type->poll(target);
4739         if (e != ERROR_OK)
4740                 return JIM_ERR;
4741         return JIM_OK;
4742 }
4743
4744 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4745 {
4746         Jim_GetOptInfo goi;
4747         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4748
4749         if (goi.argc != 2) {
4750                 Jim_WrongNumArgs(interp, 0, argv,
4751                                 "([tT]|[fF]|assert|deassert) BOOL");
4752                 return JIM_ERR;
4753         }
4754
4755         Jim_Nvp *n;
4756         int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4757         if (e != JIM_OK) {
4758                 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4759                 return e;
4760         }
4761         /* the halt or not param */
4762         jim_wide a;
4763         e = Jim_GetOpt_Wide(&goi, &a);
4764         if (e != JIM_OK)
4765                 return e;
4766
4767         struct target *target = Jim_CmdPrivData(goi.interp);
4768         if (!target->tap->enabled)
4769                 return jim_target_tap_disabled(interp);
4770         if (!(target_was_examined(target))) {
4771                 LOG_ERROR("Target not examined yet");
4772                 return ERROR_TARGET_NOT_EXAMINED;
4773         }
4774         if (!target->type->assert_reset || !target->type->deassert_reset) {
4775                 Jim_SetResultFormatted(interp,
4776                                 "No target-specific reset for %s",
4777                                 target_name(target));
4778                 return JIM_ERR;
4779         }
4780         /* determine if we should halt or not. */
4781         target->reset_halt = !!a;
4782         /* When this happens - all workareas are invalid. */
4783         target_free_all_working_areas_restore(target, 0);
4784
4785         /* do the assert */
4786         if (n->value == NVP_ASSERT)
4787                 e = target->type->assert_reset(target);
4788         else
4789                 e = target->type->deassert_reset(target);
4790         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4791 }
4792
4793 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4794 {
4795         if (argc != 1) {
4796                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4797                 return JIM_ERR;
4798         }
4799         struct target *target = Jim_CmdPrivData(interp);
4800         if (!target->tap->enabled)
4801                 return jim_target_tap_disabled(interp);
4802         int e = target->type->halt(target);
4803         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4804 }
4805
4806 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4807 {
4808         Jim_GetOptInfo goi;
4809         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4810
4811         /* params:  <name>  statename timeoutmsecs */
4812         if (goi.argc != 2) {
4813                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4814                 Jim_SetResultFormatted(goi.interp,
4815                                 "%s <state_name> <timeout_in_msec>", cmd_name);
4816                 return JIM_ERR;
4817         }
4818
4819         Jim_Nvp *n;
4820         int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4821         if (e != JIM_OK) {
4822                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state, 1);
4823                 return e;
4824         }
4825         jim_wide a;
4826         e = Jim_GetOpt_Wide(&goi, &a);
4827         if (e != JIM_OK)
4828                 return e;
4829         struct target *target = Jim_CmdPrivData(interp);
4830         if (!target->tap->enabled)
4831                 return jim_target_tap_disabled(interp);
4832
4833         e = target_wait_state(target, n->value, a);
4834         if (e != ERROR_OK) {
4835                 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
4836                 Jim_SetResultFormatted(goi.interp,
4837                                 "target: %s wait %s fails (%#s) %s",
4838                                 target_name(target), n->name,
4839                                 eObj, target_strerror_safe(e));
4840                 Jim_FreeNewObj(interp, eObj);
4841                 return JIM_ERR;
4842         }
4843         return JIM_OK;
4844 }
4845 /* List for human, Events defined for this target.
4846  * scripts/programs should use 'name cget -event NAME'
4847  */
4848 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4849 {
4850         struct command_context *cmd_ctx = current_command_context(interp);
4851         assert(cmd_ctx != NULL);
4852
4853         struct target *target = Jim_CmdPrivData(interp);
4854         struct target_event_action *teap = target->event_action;
4855         command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4856                                    target->target_number,
4857                                    target_name(target));
4858         command_print(cmd_ctx, "%-25s | Body", "Event");
4859         command_print(cmd_ctx, "------------------------- | "
4860                         "----------------------------------------");
4861         while (teap) {
4862                 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
4863                 command_print(cmd_ctx, "%-25s | %s",
4864                                 opt->name, Jim_GetString(teap->body, NULL));
4865                 teap = teap->next;
4866         }
4867         command_print(cmd_ctx, "***END***");
4868         return JIM_OK;
4869 }
4870 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4871 {
4872         if (argc != 1) {
4873                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4874                 return JIM_ERR;
4875         }
4876         struct target *target = Jim_CmdPrivData(interp);
4877         Jim_SetResultString(interp, target_state_name(target), -1);
4878         return JIM_OK;
4879 }
4880 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4881 {
4882         Jim_GetOptInfo goi;
4883         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4884         if (goi.argc != 1) {
4885                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4886                 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
4887                 return JIM_ERR;
4888         }
4889         Jim_Nvp *n;
4890         int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4891         if (e != JIM_OK) {
4892                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4893                 return e;
4894         }
4895         struct target *target = Jim_CmdPrivData(interp);
4896         target_handle_event(target, n->value);
4897         return JIM_OK;
4898 }
4899
4900 static const struct command_registration target_instance_command_handlers[] = {
4901         {
4902                 .name = "configure",
4903                 .mode = COMMAND_CONFIG,
4904                 .jim_handler = jim_target_configure,
4905                 .help  = "configure a new target for use",
4906                 .usage = "[target_attribute ...]",
4907         },
4908         {
4909                 .name = "cget",
4910                 .mode = COMMAND_ANY,
4911                 .jim_handler = jim_target_configure,
4912                 .help  = "returns the specified target attribute",
4913                 .usage = "target_attribute",
4914         },
4915         {
4916                 .name = "mww",
4917                 .mode = COMMAND_EXEC,
4918                 .jim_handler = jim_target_mw,
4919                 .help = "Write 32-bit word(s) to target memory",
4920                 .usage = "address data [count]",
4921         },
4922         {
4923                 .name = "mwh",
4924                 .mode = COMMAND_EXEC,
4925                 .jim_handler = jim_target_mw,
4926                 .help = "Write 16-bit half-word(s) to target memory",
4927                 .usage = "address data [count]",
4928         },
4929         {
4930                 .name = "mwb",
4931                 .mode = COMMAND_EXEC,
4932                 .jim_handler = jim_target_mw,
4933                 .help = "Write byte(s) to target memory",
4934                 .usage = "address data [count]",
4935         },
4936         {
4937                 .name = "mdw",
4938                 .mode = COMMAND_EXEC,
4939                 .jim_handler = jim_target_md,
4940                 .help = "Display target memory as 32-bit words",
4941                 .usage = "address [count]",
4942         },
4943         {
4944                 .name = "mdh",
4945                 .mode = COMMAND_EXEC,
4946                 .jim_handler = jim_target_md,
4947                 .help = "Display target memory as 16-bit half-words",
4948                 .usage = "address [count]",
4949         },
4950         {
4951                 .name = "mdb",
4952                 .mode = COMMAND_EXEC,
4953                 .jim_handler = jim_target_md,
4954                 .help = "Display target memory as 8-bit bytes",
4955                 .usage = "address [count]",
4956         },
4957         {
4958                 .name = "array2mem",
4959                 .mode = COMMAND_EXEC,
4960                 .jim_handler = jim_target_array2mem,
4961                 .help = "Writes Tcl array of 8/16/32 bit numbers "
4962                         "to target memory",
4963                 .usage = "arrayname bitwidth address count",
4964         },
4965         {
4966                 .name = "mem2array",
4967                 .mode = COMMAND_EXEC,
4968                 .jim_handler = jim_target_mem2array,
4969                 .help = "Loads Tcl array of 8/16/32 bit numbers "
4970                         "from target memory",
4971                 .usage = "arrayname bitwidth address count",
4972         },
4973         {
4974                 .name = "eventlist",
4975                 .mode = COMMAND_EXEC,
4976                 .jim_handler = jim_target_event_list,
4977                 .help = "displays a table of events defined for this target",
4978         },
4979         {
4980                 .name = "curstate",
4981                 .mode = COMMAND_EXEC,
4982                 .jim_handler = jim_target_current_state,
4983                 .help = "displays the current state of this target",
4984         },
4985         {
4986                 .name = "arp_examine",
4987                 .mode = COMMAND_EXEC,
4988                 .jim_handler = jim_target_examine,
4989                 .help = "used internally for reset processing",
4990         },
4991         {
4992                 .name = "arp_halt_gdb",
4993                 .mode = COMMAND_EXEC,
4994                 .jim_handler = jim_target_halt_gdb,
4995                 .help = "used internally for reset processing to halt GDB",
4996         },
4997         {
4998                 .name = "arp_poll",
4999                 .mode = COMMAND_EXEC,
5000                 .jim_handler = jim_target_poll,
5001                 .help = "used internally for reset processing",
5002         },
5003         {
5004                 .name = "arp_reset",
5005                 .mode = COMMAND_EXEC,
5006                 .jim_handler = jim_target_reset,
5007                 .help = "used internally for reset processing",
5008         },
5009         {
5010                 .name = "arp_halt",
5011                 .mode = COMMAND_EXEC,
5012                 .jim_handler = jim_target_halt,
5013                 .help = "used internally for reset processing",
5014         },
5015         {
5016                 .name = "arp_waitstate",
5017                 .mode = COMMAND_EXEC,
5018                 .jim_handler = jim_target_wait_state,
5019                 .help = "used internally for reset processing",
5020         },
5021         {
5022                 .name = "invoke-event",
5023                 .mode = COMMAND_EXEC,
5024                 .jim_handler = jim_target_invoke_event,
5025                 .help = "invoke handler for specified event",
5026                 .usage = "event_name",
5027         },
5028         COMMAND_REGISTRATION_DONE
5029 };
5030
5031 static int target_create(Jim_GetOptInfo *goi)
5032 {
5033         Jim_Obj *new_cmd;
5034         Jim_Cmd *cmd;
5035         const char *cp;
5036         char *cp2;
5037         int e;
5038         int x;
5039         struct target *target;
5040         struct command_context *cmd_ctx;
5041
5042         cmd_ctx = current_command_context(goi->interp);
5043         assert(cmd_ctx != NULL);
5044
5045         if (goi->argc < 3) {
5046                 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
5047                 return JIM_ERR;
5048         }
5049
5050         /* COMMAND */
5051         Jim_GetOpt_Obj(goi, &new_cmd);
5052         /* does this command exist? */
5053         cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
5054         if (cmd) {
5055                 cp = Jim_GetString(new_cmd, NULL);
5056                 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
5057                 return JIM_ERR;
5058         }
5059
5060         /* TYPE */
5061         e = Jim_GetOpt_String(goi, &cp2, NULL);
5062         if (e != JIM_OK)
5063                 return e;
5064         cp = cp2;
5065         /* now does target type exist */
5066         for (x = 0 ; target_types[x] ; x++) {
5067                 if (0 == strcmp(cp, target_types[x]->name)) {
5068                         /* found */
5069                         break;
5070                 }
5071
5072                 /* check for deprecated name */
5073                 if (target_types[x]->deprecated_name) {
5074                         if (0 == strcmp(cp, target_types[x]->deprecated_name)) {
5075                                 /* found */
5076                                 LOG_WARNING("target name is deprecated use: \'%s\'", target_types[x]->name);
5077                                 break;
5078                         }
5079                 }
5080         }
5081         if (target_types[x] == NULL) {
5082                 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
5083                 for (x = 0 ; target_types[x] ; x++) {
5084                         if (target_types[x + 1]) {
5085                                 Jim_AppendStrings(goi->interp,
5086                                                                    Jim_GetResult(goi->interp),
5087                                                                    target_types[x]->name,
5088                                                                    ", ", NULL);
5089                         } else {
5090                                 Jim_AppendStrings(goi->interp,
5091                                                                    Jim_GetResult(goi->interp),
5092                                                                    " or ",
5093                                                                    target_types[x]->name, NULL);
5094                         }
5095                 }
5096                 return JIM_ERR;
5097         }
5098
5099         /* Create it */
5100         target = calloc(1, sizeof(struct target));
5101         /* set target number */
5102         target->target_number = new_target_number();
5103
5104         /* allocate memory for each unique target type */
5105         target->type = calloc(1, sizeof(struct target_type));
5106
5107         memcpy(target->type, target_types[x], sizeof(struct target_type));
5108
5109         /* will be set by "-endian" */
5110         target->endianness = TARGET_ENDIAN_UNKNOWN;
5111
5112         /* default to first core, override with -coreid */
5113         target->coreid = 0;
5114
5115         target->working_area        = 0x0;
5116         target->working_area_size   = 0x0;
5117         target->working_areas       = NULL;
5118         target->backup_working_area = 0;
5119
5120         target->state               = TARGET_UNKNOWN;
5121         target->debug_reason        = DBG_REASON_UNDEFINED;
5122         target->reg_cache           = NULL;
5123         target->breakpoints         = NULL;
5124         target->watchpoints         = NULL;
5125         target->next                = NULL;
5126         target->arch_info           = NULL;
5127
5128         target->display             = 1;
5129
5130         target->halt_issued                     = false;
5131
5132         /* initialize trace information */
5133         target->trace_info = malloc(sizeof(struct trace));
5134         target->trace_info->num_trace_points         = 0;
5135         target->trace_info->trace_points_size        = 0;
5136         target->trace_info->trace_points             = NULL;
5137         target->trace_info->trace_history_size       = 0;
5138         target->trace_info->trace_history            = NULL;
5139         target->trace_info->trace_history_pos        = 0;
5140         target->trace_info->trace_history_overflowed = 0;
5141
5142         target->dbgmsg          = NULL;
5143         target->dbg_msg_enabled = 0;
5144
5145         target->endianness = TARGET_ENDIAN_UNKNOWN;
5146
5147         target->rtos = NULL;
5148         target->rtos_auto_detect = false;
5149
5150         /* Do the rest as "configure" options */
5151         goi->isconfigure = 1;
5152         e = target_configure(goi, target);
5153
5154         if (target->tap == NULL) {
5155                 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
5156                 e = JIM_ERR;
5157         }
5158
5159         if (e != JIM_OK) {
5160                 free(target->type);
5161                 free(target);
5162                 return e;
5163         }
5164
5165         if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
5166                 /* default endian to little if not specified */
5167                 target->endianness = TARGET_LITTLE_ENDIAN;
5168         }
5169
5170         /* incase variant is not set */
5171         if (!target->variant)
5172                 target->variant = strdup("");
5173
5174         cp = Jim_GetString(new_cmd, NULL);
5175         target->cmd_name = strdup(cp);
5176
5177         /* create the target specific commands */
5178         if (target->type->commands) {
5179                 e = register_commands(cmd_ctx, NULL, target->type->commands);
5180                 if (ERROR_OK != e)
5181                         LOG_ERROR("unable to register '%s' commands", cp);
5182         }
5183         if (target->type->target_create)
5184                 (*(target->type->target_create))(target, goi->interp);
5185
5186         /* append to end of list */
5187         {
5188                 struct target **tpp;
5189                 tpp = &(all_targets);
5190                 while (*tpp)
5191                         tpp = &((*tpp)->next);
5192                 *tpp = target;
5193         }
5194
5195         /* now - create the new target name command */
5196         const struct command_registration target_subcommands[] = {
5197                 {
5198                         .chain = target_instance_command_handlers,
5199                 },
5200                 {
5201                         .chain = target->type->commands,
5202                 },
5203                 COMMAND_REGISTRATION_DONE
5204         };
5205         const struct command_registration target_commands[] = {
5206                 {
5207                         .name = cp,
5208                         .mode = COMMAND_ANY,
5209                         .help = "target command group",
5210                         .usage = "",
5211                         .chain = target_subcommands,
5212                 },
5213                 COMMAND_REGISTRATION_DONE
5214         };
5215         e = register_commands(cmd_ctx, NULL, target_commands);
5216         if (ERROR_OK != e)
5217                 return JIM_ERR;
5218
5219         struct command *c = command_find_in_context(cmd_ctx, cp);
5220         assert(c);
5221         command_set_handler_data(c, target);
5222
5223         return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
5224 }
5225
5226 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5227 {
5228         if (argc != 1) {
5229                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5230                 return JIM_ERR;
5231         }
5232         struct command_context *cmd_ctx = current_command_context(interp);
5233         assert(cmd_ctx != NULL);
5234
5235         Jim_SetResultString(interp, target_name(get_current_target(cmd_ctx)), -1);
5236         return JIM_OK;
5237 }
5238
5239 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5240 {
5241         if (argc != 1) {
5242                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5243                 return JIM_ERR;
5244         }
5245         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5246         for (unsigned x = 0; NULL != target_types[x]; x++) {
5247                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5248                         Jim_NewStringObj(interp, target_types[x]->name, -1));
5249         }
5250         return JIM_OK;
5251 }
5252
5253 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5254 {
5255         if (argc != 1) {
5256                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5257                 return JIM_ERR;
5258         }
5259         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5260         struct target *target = all_targets;
5261         while (target) {
5262                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5263                         Jim_NewStringObj(interp, target_name(target), -1));
5264                 target = target->next;
5265         }
5266         return JIM_OK;
5267 }
5268
5269 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5270 {
5271         int i;
5272         const char *targetname;
5273         int retval, len;
5274         struct target *target = (struct target *) NULL;
5275         struct target_list *head, *curr, *new;
5276         curr = (struct target_list *) NULL;
5277         head = (struct target_list *) NULL;
5278
5279         retval = 0;
5280         LOG_DEBUG("%d", argc);
5281         /* argv[1] = target to associate in smp
5282          * argv[2] = target to assoicate in smp
5283          * argv[3] ...
5284          */
5285
5286         for (i = 1; i < argc; i++) {
5287
5288                 targetname = Jim_GetString(argv[i], &len);
5289                 target = get_target(targetname);
5290                 LOG_DEBUG("%s ", targetname);
5291                 if (target) {
5292                         new = malloc(sizeof(struct target_list));
5293                         new->target = target;
5294                         new->next = (struct target_list *)NULL;
5295                         if (head == (struct target_list *)NULL) {
5296                                 head = new;
5297                                 curr = head;
5298                         } else {
5299                                 curr->next = new;
5300                                 curr = new;
5301                         }
5302                 }
5303         }
5304         /*  now parse the list of cpu and put the target in smp mode*/
5305         curr = head;
5306
5307         while (curr != (struct target_list *)NULL) {
5308                 target = curr->target;
5309                 target->smp = 1;
5310                 target->head = head;
5311                 curr = curr->next;
5312         }
5313
5314         if (target && target->rtos)
5315                 retval = rtos_smp_init(head->target);
5316
5317         return retval;
5318 }
5319
5320
5321 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5322 {
5323         Jim_GetOptInfo goi;
5324         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5325         if (goi.argc < 3) {
5326                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5327                         "<name> <target_type> [<target_options> ...]");
5328                 return JIM_ERR;
5329         }
5330         return target_create(&goi);
5331 }
5332
5333 static int jim_target_number(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5334 {
5335         Jim_GetOptInfo goi;
5336         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5337
5338         /* It's OK to remove this mechanism sometime after August 2010 or so */
5339         LOG_WARNING("don't use numbers as target identifiers; use names");
5340         if (goi.argc != 1) {
5341                 Jim_SetResultFormatted(goi.interp, "usage: target number <number>");
5342                 return JIM_ERR;
5343         }
5344         jim_wide w;
5345         int e = Jim_GetOpt_Wide(&goi, &w);
5346         if (e != JIM_OK)
5347                 return JIM_ERR;
5348
5349         struct target *target;
5350         for (target = all_targets; NULL != target; target = target->next) {
5351                 if (target->target_number != w)
5352                         continue;
5353
5354                 Jim_SetResultString(goi.interp, target_name(target), -1);
5355                 return JIM_OK;
5356         }
5357         {
5358                 Jim_Obj *wObj = Jim_NewIntObj(goi.interp, w);
5359                 Jim_SetResultFormatted(goi.interp,
5360                         "Target: number %#s does not exist", wObj);
5361                 Jim_FreeNewObj(interp, wObj);
5362         }
5363         return JIM_ERR;
5364 }
5365
5366 static int jim_target_count(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5367 {
5368         if (argc != 1) {
5369                 Jim_WrongNumArgs(interp, 1, argv, "<no parameters>");
5370                 return JIM_ERR;
5371         }
5372         unsigned count = 0;
5373         struct target *target = all_targets;
5374         while (NULL != target) {
5375                 target = target->next;
5376                 count++;
5377         }
5378         Jim_SetResult(interp, Jim_NewIntObj(interp, count));
5379         return JIM_OK;
5380 }
5381
5382 static const struct command_registration target_subcommand_handlers[] = {
5383         {
5384                 .name = "init",
5385                 .mode = COMMAND_CONFIG,
5386                 .handler = handle_target_init_command,
5387                 .help = "initialize targets",
5388         },
5389         {
5390                 .name = "create",
5391                 /* REVISIT this should be COMMAND_CONFIG ... */
5392                 .mode = COMMAND_ANY,
5393                 .jim_handler = jim_target_create,
5394                 .usage = "name type '-chain-position' name [options ...]",
5395                 .help = "Creates and selects a new target",
5396         },
5397         {
5398                 .name = "current",
5399                 .mode = COMMAND_ANY,
5400                 .jim_handler = jim_target_current,
5401                 .help = "Returns the currently selected target",
5402         },
5403         {
5404                 .name = "types",
5405                 .mode = COMMAND_ANY,
5406                 .jim_handler = jim_target_types,
5407                 .help = "Returns the available target types as "
5408                                 "a list of strings",
5409         },
5410         {
5411                 .name = "names",
5412                 .mode = COMMAND_ANY,
5413                 .jim_handler = jim_target_names,
5414                 .help = "Returns the names of all targets as a list of strings",
5415         },
5416         {
5417                 .name = "number",
5418                 .mode = COMMAND_ANY,
5419                 .jim_handler = jim_target_number,
5420                 .usage = "number",
5421                 .help = "Returns the name of the numbered target "
5422                         "(DEPRECATED)",
5423         },
5424         {
5425                 .name = "count",
5426                 .mode = COMMAND_ANY,
5427                 .jim_handler = jim_target_count,
5428                 .help = "Returns the number of targets as an integer "
5429                         "(DEPRECATED)",
5430         },
5431         {
5432                 .name = "smp",
5433                 .mode = COMMAND_ANY,
5434                 .jim_handler = jim_target_smp,
5435                 .usage = "targetname1 targetname2 ...",
5436                 .help = "gather several target in a smp list"
5437         },
5438
5439         COMMAND_REGISTRATION_DONE
5440 };
5441
5442 struct FastLoad {
5443         uint32_t address;
5444         uint8_t *data;
5445         int length;
5446
5447 };
5448
5449 static int fastload_num;
5450 static struct FastLoad *fastload;
5451
5452 static void free_fastload(void)
5453 {
5454         if (fastload != NULL) {
5455                 int i;
5456                 for (i = 0; i < fastload_num; i++) {
5457                         if (fastload[i].data)
5458                                 free(fastload[i].data);
5459                 }
5460                 free(fastload);
5461                 fastload = NULL;
5462         }
5463 }
5464
5465 COMMAND_HANDLER(handle_fast_load_image_command)
5466 {
5467         uint8_t *buffer;
5468         size_t buf_cnt;
5469         uint32_t image_size;
5470         uint32_t min_address = 0;
5471         uint32_t max_address = 0xffffffff;
5472         int i;
5473
5474         struct image image;
5475
5476         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
5477                         &image, &min_address, &max_address);
5478         if (ERROR_OK != retval)
5479                 return retval;
5480
5481         struct duration bench;
5482         duration_start(&bench);
5483
5484         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
5485         if (retval != ERROR_OK)
5486                 return retval;
5487
5488         image_size = 0x0;
5489         retval = ERROR_OK;
5490         fastload_num = image.num_sections;
5491         fastload = malloc(sizeof(struct FastLoad)*image.num_sections);
5492         if (fastload == NULL) {
5493                 command_print(CMD_CTX, "out of memory");
5494                 image_close(&image);
5495                 return ERROR_FAIL;
5496         }
5497         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
5498         for (i = 0; i < image.num_sections; i++) {
5499                 buffer = malloc(image.sections[i].size);
5500                 if (buffer == NULL) {
5501                         command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5502                                                   (int)(image.sections[i].size));
5503                         retval = ERROR_FAIL;
5504                         break;
5505                 }
5506
5507                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
5508                 if (retval != ERROR_OK) {
5509                         free(buffer);
5510                         break;
5511                 }
5512
5513                 uint32_t offset = 0;
5514                 uint32_t length = buf_cnt;
5515
5516                 /* DANGER!!! beware of unsigned comparision here!!! */
5517
5518                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
5519                                 (image.sections[i].base_address < max_address)) {
5520                         if (image.sections[i].base_address < min_address) {
5521                                 /* clip addresses below */
5522                                 offset += min_address-image.sections[i].base_address;
5523                                 length -= offset;
5524                         }
5525
5526                         if (image.sections[i].base_address + buf_cnt > max_address)
5527                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5528
5529                         fastload[i].address = image.sections[i].base_address + offset;
5530                         fastload[i].data = malloc(length);
5531                         if (fastload[i].data == NULL) {
5532                                 free(buffer);
5533                                 command_print(CMD_CTX, "error allocating buffer for section (%" PRIu32 " bytes)",
5534                                                           length);
5535                                 retval = ERROR_FAIL;
5536                                 break;
5537                         }
5538                         memcpy(fastload[i].data, buffer + offset, length);
5539                         fastload[i].length = length;
5540
5541                         image_size += length;
5542                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
5543                                                   (unsigned int)length,
5544                                                   ((unsigned int)(image.sections[i].base_address + offset)));
5545                 }
5546
5547                 free(buffer);
5548         }
5549
5550         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
5551                 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
5552                                 "in %fs (%0.3f KiB/s)", image_size,
5553                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5554
5555                 command_print(CMD_CTX,
5556                                 "WARNING: image has not been loaded to target!"
5557                                 "You can issue a 'fast_load' to finish loading.");
5558         }
5559
5560         image_close(&image);
5561
5562         if (retval != ERROR_OK)
5563                 free_fastload();
5564
5565         return retval;
5566 }
5567
5568 COMMAND_HANDLER(handle_fast_load_command)
5569 {
5570         if (CMD_ARGC > 0)
5571                 return ERROR_COMMAND_SYNTAX_ERROR;
5572         if (fastload == NULL) {
5573                 LOG_ERROR("No image in memory");
5574                 return ERROR_FAIL;
5575         }
5576         int i;
5577         int ms = timeval_ms();
5578         int size = 0;
5579         int retval = ERROR_OK;
5580         for (i = 0; i < fastload_num; i++) {
5581                 struct target *target = get_current_target(CMD_CTX);
5582                 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
5583                                           (unsigned int)(fastload[i].address),
5584                                           (unsigned int)(fastload[i].length));
5585                 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5586                 if (retval != ERROR_OK)
5587                         break;
5588                 size += fastload[i].length;
5589         }
5590         if (retval == ERROR_OK) {
5591                 int after = timeval_ms();
5592                 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5593         }
5594         return retval;
5595 }
5596
5597 static const struct command_registration target_command_handlers[] = {
5598         {
5599                 .name = "targets",
5600                 .handler = handle_targets_command,
5601                 .mode = COMMAND_ANY,
5602                 .help = "change current default target (one parameter) "
5603                         "or prints table of all targets (no parameters)",
5604                 .usage = "[target]",
5605         },
5606         {
5607                 .name = "target",
5608                 .mode = COMMAND_CONFIG,
5609                 .help = "configure target",
5610
5611                 .chain = target_subcommand_handlers,
5612         },
5613         COMMAND_REGISTRATION_DONE
5614 };
5615
5616 int target_register_commands(struct command_context *cmd_ctx)
5617 {
5618         return register_commands(cmd_ctx, NULL, target_command_handlers);
5619 }
5620
5621 static bool target_reset_nag = true;
5622
5623 bool get_target_reset_nag(void)
5624 {
5625         return target_reset_nag;
5626 }
5627
5628 COMMAND_HANDLER(handle_target_reset_nag)
5629 {
5630         return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5631                         &target_reset_nag, "Nag after each reset about options to improve "
5632                         "performance");
5633 }
5634
5635 COMMAND_HANDLER(handle_ps_command)
5636 {
5637         struct target *target = get_current_target(CMD_CTX);
5638         char *display;
5639         if (target->state != TARGET_HALTED) {
5640                 LOG_INFO("target not halted !!");
5641                 return ERROR_OK;
5642         }
5643
5644         if ((target->rtos) && (target->rtos->type)
5645                         && (target->rtos->type->ps_command)) {
5646                 display = target->rtos->type->ps_command(target);
5647                 command_print(CMD_CTX, "%s", display);
5648                 free(display);
5649                 return ERROR_OK;
5650         } else {
5651                 LOG_INFO("failed");
5652                 return ERROR_TARGET_FAILURE;
5653         }
5654 }
5655
5656 static void binprint(struct command_context *cmd_ctx, const char *text, const uint8_t *buf, int size)
5657 {
5658         if (text != NULL)
5659                 command_print_sameline(cmd_ctx, "%s", text);
5660         for (int i = 0; i < size; i++)
5661                 command_print_sameline(cmd_ctx, " %02x", buf[i]);
5662         command_print(cmd_ctx, " ");
5663 }
5664
5665 COMMAND_HANDLER(handle_test_mem_access_command)
5666 {
5667         struct target *target = get_current_target(CMD_CTX);
5668         uint32_t test_size;
5669         int retval = ERROR_OK;
5670
5671         if (target->state != TARGET_HALTED) {
5672                 LOG_INFO("target not halted !!");
5673                 return ERROR_FAIL;
5674         }
5675
5676         if (CMD_ARGC != 1)
5677                 return ERROR_COMMAND_SYNTAX_ERROR;
5678
5679         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], test_size);
5680
5681         /* Test reads */
5682         size_t num_bytes = test_size + 4;
5683
5684         struct working_area *wa = NULL;
5685         retval = target_alloc_working_area(target, num_bytes, &wa);
5686         if (retval != ERROR_OK) {
5687                 LOG_ERROR("Not enough working area");
5688                 return ERROR_FAIL;
5689         }
5690
5691         uint8_t *test_pattern = malloc(num_bytes);
5692
5693         for (size_t i = 0; i < num_bytes; i++)
5694                 test_pattern[i] = rand();
5695
5696         retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
5697         if (retval != ERROR_OK) {
5698                 LOG_ERROR("Test pattern write failed");
5699                 goto out;
5700         }
5701
5702         for (int host_offset = 0; host_offset <= 1; host_offset++) {
5703                 for (int size = 1; size <= 4; size *= 2) {
5704                         for (int offset = 0; offset < 4; offset++) {
5705                                 uint32_t count = test_size / size;
5706                                 size_t host_bufsiz = (count + 2) * size + host_offset;
5707                                 uint8_t *read_ref = malloc(host_bufsiz);
5708                                 uint8_t *read_buf = malloc(host_bufsiz);
5709
5710                                 for (size_t i = 0; i < host_bufsiz; i++) {
5711                                         read_ref[i] = rand();
5712                                         read_buf[i] = read_ref[i];
5713                                 }
5714                                 command_print_sameline(CMD_CTX,
5715                                                 "Test read %" PRIu32 " x %d @ %d to %saligned buffer: ", count,
5716                                                 size, offset, host_offset ? "un" : "");
5717
5718                                 struct duration bench;
5719                                 duration_start(&bench);
5720
5721                                 retval = target_read_memory(target, wa->address + offset, size, count,
5722                                                 read_buf + size + host_offset);
5723
5724                                 duration_measure(&bench);
5725
5726                                 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
5727                                         command_print(CMD_CTX, "Unsupported alignment");
5728                                         goto next;
5729                                 } else if (retval != ERROR_OK) {
5730                                         command_print(CMD_CTX, "Memory read failed");
5731                                         goto next;
5732                                 }
5733
5734                                 /* replay on host */
5735                                 memcpy(read_ref + size + host_offset, test_pattern + offset, count * size);
5736
5737                                 /* check result */
5738                                 int result = memcmp(read_ref, read_buf, host_bufsiz);
5739                                 if (result == 0) {
5740                                         command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
5741                                                         duration_elapsed(&bench),
5742                                                         duration_kbps(&bench, count * size));
5743                                 } else {
5744                                         command_print(CMD_CTX, "Compare failed");
5745                                         binprint(CMD_CTX, "ref:", read_ref, host_bufsiz);
5746                                         binprint(CMD_CTX, "buf:", read_buf, host_bufsiz);
5747                                 }
5748 next:
5749                                 free(read_ref);
5750                                 free(read_buf);
5751                         }
5752                 }
5753         }
5754
5755 out:
5756         free(test_pattern);
5757
5758         if (wa != NULL)
5759                 target_free_working_area(target, wa);
5760
5761         /* Test writes */
5762         num_bytes = test_size + 4 + 4 + 4;
5763
5764         retval = target_alloc_working_area(target, num_bytes, &wa);
5765         if (retval != ERROR_OK) {
5766                 LOG_ERROR("Not enough working area");
5767                 return ERROR_FAIL;
5768         }
5769
5770         test_pattern = malloc(num_bytes);
5771
5772         for (size_t i = 0; i < num_bytes; i++)
5773                 test_pattern[i] = rand();
5774
5775         for (int host_offset = 0; host_offset <= 1; host_offset++) {
5776                 for (int size = 1; size <= 4; size *= 2) {
5777                         for (int offset = 0; offset < 4; offset++) {
5778                                 uint32_t count = test_size / size;
5779                                 size_t host_bufsiz = count * size + host_offset;
5780                                 uint8_t *read_ref = malloc(num_bytes);
5781                                 uint8_t *read_buf = malloc(num_bytes);
5782                                 uint8_t *write_buf = malloc(host_bufsiz);
5783
5784                                 for (size_t i = 0; i < host_bufsiz; i++)
5785                                         write_buf[i] = rand();
5786                                 command_print_sameline(CMD_CTX,
5787                                                 "Test write %" PRIu32 " x %d @ %d from %saligned buffer: ", count,
5788                                                 size, offset, host_offset ? "un" : "");
5789
5790                                 retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
5791                                 if (retval != ERROR_OK) {
5792                                         command_print(CMD_CTX, "Test pattern write failed");
5793                                         goto nextw;
5794                                 }
5795
5796                                 /* replay on host */
5797                                 memcpy(read_ref, test_pattern, num_bytes);
5798                                 memcpy(read_ref + size + offset, write_buf + host_offset, count * size);
5799
5800                                 struct duration bench;
5801                                 duration_start(&bench);
5802
5803                                 retval = target_write_memory(target, wa->address + size + offset, size, count,
5804                                                 write_buf + host_offset);
5805
5806                                 duration_measure(&bench);
5807
5808                                 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
5809                                         command_print(CMD_CTX, "Unsupported alignment");
5810                                         goto nextw;
5811                                 } else if (retval != ERROR_OK) {
5812                                         command_print(CMD_CTX, "Memory write failed");
5813                                         goto nextw;
5814                                 }
5815
5816                                 /* read back */
5817                                 retval = target_read_memory(target, wa->address, 1, num_bytes, read_buf);
5818                                 if (retval != ERROR_OK) {
5819                                         command_print(CMD_CTX, "Test pattern write failed");
5820                                         goto nextw;
5821                                 }
5822
5823                                 /* check result */
5824                                 int result = memcmp(read_ref, read_buf, num_bytes);
5825                                 if (result == 0) {
5826                                         command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
5827                                                         duration_elapsed(&bench),
5828                                                         duration_kbps(&bench, count * size));
5829                                 } else {
5830                                         command_print(CMD_CTX, "Compare failed");
5831                                         binprint(CMD_CTX, "ref:", read_ref, num_bytes);
5832                                         binprint(CMD_CTX, "buf:", read_buf, num_bytes);
5833                                 }
5834 nextw:
5835                                 free(read_ref);
5836                                 free(read_buf);
5837                         }
5838                 }
5839         }
5840
5841         free(test_pattern);
5842
5843         if (wa != NULL)
5844                 target_free_working_area(target, wa);
5845         return retval;
5846 }
5847
5848 static const struct command_registration target_exec_command_handlers[] = {
5849         {
5850                 .name = "fast_load_image",
5851                 .handler = handle_fast_load_image_command,
5852                 .mode = COMMAND_ANY,
5853                 .help = "Load image into server memory for later use by "
5854                         "fast_load; primarily for profiling",
5855                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5856                         "[min_address [max_length]]",
5857         },
5858         {
5859                 .name = "fast_load",
5860                 .handler = handle_fast_load_command,
5861                 .mode = COMMAND_EXEC,
5862                 .help = "loads active fast load image to current target "
5863                         "- mainly for profiling purposes",
5864                 .usage = "",
5865         },
5866         {
5867                 .name = "profile",
5868                 .handler = handle_profile_command,
5869                 .mode = COMMAND_EXEC,
5870                 .usage = "seconds filename [start end]",
5871                 .help = "profiling samples the CPU PC",
5872         },
5873         /** @todo don't register virt2phys() unless target supports it */
5874         {
5875                 .name = "virt2phys",
5876                 .handler = handle_virt2phys_command,
5877                 .mode = COMMAND_ANY,
5878                 .help = "translate a virtual address into a physical address",
5879                 .usage = "virtual_address",
5880         },
5881         {
5882                 .name = "reg",
5883                 .handler = handle_reg_command,
5884                 .mode = COMMAND_EXEC,
5885                 .help = "display (reread from target with \"force\") or set a register; "
5886                         "with no arguments, displays all registers and their values",
5887                 .usage = "[(register_number|register_name) [(value|'force')]]",
5888         },
5889         {
5890                 .name = "poll",
5891                 .handler = handle_poll_command,
5892                 .mode = COMMAND_EXEC,
5893                 .help = "poll target state; or reconfigure background polling",
5894                 .usage = "['on'|'off']",
5895         },
5896         {
5897                 .name = "wait_halt",
5898                 .handler = handle_wait_halt_command,
5899                 .mode = COMMAND_EXEC,
5900                 .help = "wait up to the specified number of milliseconds "
5901                         "(default 5000) for a previously requested halt",
5902                 .usage = "[milliseconds]",
5903         },
5904         {
5905                 .name = "halt",
5906                 .handler = handle_halt_command,
5907                 .mode = COMMAND_EXEC,
5908                 .help = "request target to halt, then wait up to the specified"
5909                         "number of milliseconds (default 5000) for it to complete",
5910                 .usage = "[milliseconds]",
5911         },
5912         {
5913                 .name = "resume",
5914                 .handler = handle_resume_command,
5915                 .mode = COMMAND_EXEC,
5916                 .help = "resume target execution from current PC or address",
5917                 .usage = "[address]",
5918         },
5919         {
5920                 .name = "reset",
5921                 .handler = handle_reset_command,
5922                 .mode = COMMAND_EXEC,
5923                 .usage = "[run|halt|init]",
5924                 .help = "Reset all targets into the specified mode."
5925                         "Default reset mode is run, if not given.",
5926         },
5927         {
5928                 .name = "soft_reset_halt",
5929                 .handler = handle_soft_reset_halt_command,
5930                 .mode = COMMAND_EXEC,
5931                 .usage = "",
5932                 .help = "halt the target and do a soft reset",
5933         },
5934         {
5935                 .name = "step",
5936                 .handler = handle_step_command,
5937                 .mode = COMMAND_EXEC,
5938                 .help = "step one instruction from current PC or address",
5939                 .usage = "[address]",
5940         },
5941         {
5942                 .name = "mdw",
5943                 .handler = handle_md_command,
5944                 .mode = COMMAND_EXEC,
5945                 .help = "display memory words",
5946                 .usage = "['phys'] address [count]",
5947         },
5948         {
5949                 .name = "mdh",
5950                 .handler = handle_md_command,
5951                 .mode = COMMAND_EXEC,
5952                 .help = "display memory half-words",
5953                 .usage = "['phys'] address [count]",
5954         },
5955         {
5956                 .name = "mdb",
5957                 .handler = handle_md_command,
5958                 .mode = COMMAND_EXEC,
5959                 .help = "display memory bytes",
5960                 .usage = "['phys'] address [count]",
5961         },
5962         {
5963                 .name = "mww",
5964                 .handler = handle_mw_command,
5965                 .mode = COMMAND_EXEC,
5966                 .help = "write memory word",
5967                 .usage = "['phys'] address value [count]",
5968         },
5969         {
5970                 .name = "mwh",
5971                 .handler = handle_mw_command,
5972                 .mode = COMMAND_EXEC,
5973                 .help = "write memory half-word",
5974                 .usage = "['phys'] address value [count]",
5975         },
5976         {
5977                 .name = "mwb",
5978                 .handler = handle_mw_command,
5979                 .mode = COMMAND_EXEC,
5980                 .help = "write memory byte",
5981                 .usage = "['phys'] address value [count]",
5982         },
5983         {
5984                 .name = "bp",
5985                 .handler = handle_bp_command,
5986                 .mode = COMMAND_EXEC,
5987                 .help = "list or set hardware or software breakpoint",
5988                 .usage = "<address> [<asid>]<length> ['hw'|'hw_ctx']",
5989         },
5990         {
5991                 .name = "rbp",
5992                 .handler = handle_rbp_command,
5993                 .mode = COMMAND_EXEC,
5994                 .help = "remove breakpoint",
5995                 .usage = "address",
5996         },
5997         {
5998                 .name = "wp",
5999                 .handler = handle_wp_command,
6000                 .mode = COMMAND_EXEC,
6001                 .help = "list (no params) or create watchpoints",
6002                 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
6003         },
6004         {
6005                 .name = "rwp",
6006                 .handler = handle_rwp_command,
6007                 .mode = COMMAND_EXEC,
6008                 .help = "remove watchpoint",
6009                 .usage = "address",
6010         },
6011         {
6012                 .name = "load_image",
6013                 .handler = handle_load_image_command,
6014                 .mode = COMMAND_EXEC,
6015                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6016                         "[min_address] [max_length]",
6017         },
6018         {
6019                 .name = "dump_image",
6020                 .handler = handle_dump_image_command,
6021                 .mode = COMMAND_EXEC,
6022                 .usage = "filename address size",
6023         },
6024         {
6025                 .name = "verify_image",
6026                 .handler = handle_verify_image_command,
6027                 .mode = COMMAND_EXEC,
6028                 .usage = "filename [offset [type]]",
6029         },
6030         {
6031                 .name = "test_image",
6032                 .handler = handle_test_image_command,
6033                 .mode = COMMAND_EXEC,
6034                 .usage = "filename [offset [type]]",
6035         },
6036         {
6037                 .name = "mem2array",
6038                 .mode = COMMAND_EXEC,
6039                 .jim_handler = jim_mem2array,
6040                 .help = "read 8/16/32 bit memory and return as a TCL array "
6041                         "for script processing",
6042                 .usage = "arrayname bitwidth address count",
6043         },
6044         {
6045                 .name = "array2mem",
6046                 .mode = COMMAND_EXEC,
6047                 .jim_handler = jim_array2mem,
6048                 .help = "convert a TCL array to memory locations "
6049                         "and write the 8/16/32 bit values",
6050                 .usage = "arrayname bitwidth address count",
6051         },
6052         {
6053                 .name = "reset_nag",
6054                 .handler = handle_target_reset_nag,
6055                 .mode = COMMAND_ANY,
6056                 .help = "Nag after each reset about options that could have been "
6057                                 "enabled to improve performance. ",
6058                 .usage = "['enable'|'disable']",
6059         },
6060         {
6061                 .name = "ps",
6062                 .handler = handle_ps_command,
6063                 .mode = COMMAND_EXEC,
6064                 .help = "list all tasks ",
6065                 .usage = " ",
6066         },
6067         {
6068                 .name = "test_mem_access",
6069                 .handler = handle_test_mem_access_command,
6070                 .mode = COMMAND_EXEC,
6071                 .help = "Test the target's memory access functions",
6072                 .usage = "size",
6073         },
6074
6075         COMMAND_REGISTRATION_DONE
6076 };
6077 static int target_register_user_commands(struct command_context *cmd_ctx)
6078 {
6079         int retval = ERROR_OK;
6080         retval = target_request_register_commands(cmd_ctx);
6081         if (retval != ERROR_OK)
6082                 return retval;
6083
6084         retval = trace_register_commands(cmd_ctx);
6085         if (retval != ERROR_OK)
6086                 return retval;
6087
6088
6089         return register_commands(cmd_ctx, NULL, target_exec_command_handlers);
6090 }