8a38f1fb53a4466c5b9c55d78a348c7a8916a774
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007,2008 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   This program is free software; you can redistribute it and/or modify  *
18  *   it under the terms of the GNU General Public License as published by  *
19  *   the Free Software Foundation; either version 2 of the License, or     *
20  *   (at your option) any later version.                                   *
21  *                                                                         *
22  *   This program is distributed in the hope that it will be useful,       *
23  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
24  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
25  *   GNU General Public License for more details.                          *
26  *                                                                         *
27  *   You should have received a copy of the GNU General Public License     *
28  *   along with this program; if not, write to the                         *
29  *   Free Software Foundation, Inc.,                                       *
30  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "replacements.h"
37 #include "target.h"
38 #include "target_request.h"
39
40 #include "log.h"
41 #include "configuration.h"
42 #include "binarybuffer.h"
43 #include "jtag.h"
44
45 #include <string.h>
46 #include <stdlib.h>
47 #include <inttypes.h>
48
49 #include <sys/types.h>
50 #include <sys/stat.h>
51 #include <unistd.h>
52 #include <errno.h>
53
54 #include <sys/time.h>
55 #include <time.h>
56
57 #include <time_support.h>
58
59 #include <fileio.h>
60 #include <image.h>
61
62 static int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
63
64 static int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
65 static int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
66 static int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
67 static int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
68 static int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
69 static int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
70 static int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
71 static int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
72 static int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
73 static int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
74 static int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
75 static int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
76 static int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
77 static int handle_test_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
78 static int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
79 static int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
80 static int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
81 static int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
82 static int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc);
83 static int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
84 static int handle_fast_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
85 static int handle_fast_load_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
86
87 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
88 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
89 static int jim_target( Jim_Interp *interp, int argc, Jim_Obj *const *argv);
90
91 static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv);
92 static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv);
93
94 /* targets */
95 extern target_type_t arm7tdmi_target;
96 extern target_type_t arm720t_target;
97 extern target_type_t arm9tdmi_target;
98 extern target_type_t arm920t_target;
99 extern target_type_t arm966e_target;
100 extern target_type_t arm926ejs_target;
101 extern target_type_t feroceon_target;
102 extern target_type_t xscale_target;
103 extern target_type_t cortexm3_target;
104 extern target_type_t cortexa8_target;
105 extern target_type_t arm11_target;
106 extern target_type_t mips_m4k_target;
107 extern target_type_t avr_target;
108
109 target_type_t *target_types[] =
110 {
111         &arm7tdmi_target,
112         &arm9tdmi_target,
113         &arm920t_target,
114         &arm720t_target,
115         &arm966e_target,
116         &arm926ejs_target,
117         &feroceon_target,
118         &xscale_target,
119         &cortexm3_target,
120         &cortexa8_target,
121         &arm11_target,
122         &mips_m4k_target,
123         &avr_target,
124         NULL,
125 };
126
127 target_t *all_targets = NULL;
128 target_event_callback_t *target_event_callbacks = NULL;
129 target_timer_callback_t *target_timer_callbacks = NULL;
130
131 const Jim_Nvp nvp_assert[] = {
132         { .name = "assert", NVP_ASSERT },
133         { .name = "deassert", NVP_DEASSERT },
134         { .name = "T", NVP_ASSERT },
135         { .name = "F", NVP_DEASSERT },
136         { .name = "t", NVP_ASSERT },
137         { .name = "f", NVP_DEASSERT },
138         { .name = NULL, .value = -1 }
139 };
140
141 const Jim_Nvp nvp_error_target[] = {
142         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
143         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
144         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
145         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
146         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
147         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
148         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
149         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
150         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
151         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
152         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
153         { .value = -1, .name = NULL }
154 };
155
156 const char *target_strerror_safe( int err )
157 {
158         const Jim_Nvp *n;
159
160         n = Jim_Nvp_value2name_simple( nvp_error_target, err );
161         if( n->name == NULL ){
162                 return "unknown";
163         } else {
164                 return n->name;
165         }
166 }
167
168 const Jim_Nvp nvp_target_event[] = {
169         { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
170         { .value = TARGET_EVENT_OLD_pre_resume         , .name = "old-pre_resume" },
171
172         { .value = TARGET_EVENT_EARLY_HALTED, .name = "early-halted" },
173         { .value = TARGET_EVENT_HALTED, .name = "halted" },
174         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
175         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
176         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
177
178         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
179         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
180
181         /* historical name */
182
183         { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
184
185         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
186         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
187         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
188         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
189         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
190         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
191         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
192         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
193         { .value = TARGET_EVENT_RESET_INIT , .name = "reset-init" },
194         { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
195
196         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
197         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
198
199         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
200         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
201
202         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
203         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
204
205         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
206         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
207
208         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
209         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
210
211         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
212         { .value = TARGET_EVENT_RESUMED     , .name = "resume-ok" },
213         { .value = TARGET_EVENT_RESUME_END  , .name = "resume-end" },
214
215         { .name = NULL, .value = -1 }
216 };
217
218 const Jim_Nvp nvp_target_state[] = {
219         { .name = "unknown", .value = TARGET_UNKNOWN },
220         { .name = "running", .value = TARGET_RUNNING },
221         { .name = "halted",  .value = TARGET_HALTED },
222         { .name = "reset",   .value = TARGET_RESET },
223         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
224         { .name = NULL, .value = -1 },
225 };
226
227 const Jim_Nvp nvp_target_debug_reason [] = {
228         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
229         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
230         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
231         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
232         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
233         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
234         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
235         { .name = NULL, .value = -1 },
236 };
237
238 const Jim_Nvp nvp_target_endian[] = {
239         { .name = "big",    .value = TARGET_BIG_ENDIAN },
240         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
241         { .name = "be",     .value = TARGET_BIG_ENDIAN },
242         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
243         { .name = NULL,     .value = -1 },
244 };
245
246 const Jim_Nvp nvp_reset_modes[] = {
247         { .name = "unknown", .value = RESET_UNKNOWN },
248         { .name = "run"    , .value = RESET_RUN },
249         { .name = "halt"   , .value = RESET_HALT },
250         { .name = "init"   , .value = RESET_INIT },
251         { .name = NULL     , .value = -1 },
252 };
253
254 static int max_target_number(void)
255 {
256         target_t *t;
257         int x;
258
259         x = -1;
260         t = all_targets;
261         while( t ){
262                 if( x < t->target_number ){
263                         x = (t->target_number)+1;
264                 }
265                 t = t->next;
266         }
267         return x;
268 }
269
270 /* determine the number of the new target */
271 static int new_target_number(void)
272 {
273         target_t *t;
274         int x;
275
276         /* number is 0 based */
277         x = -1;
278         t = all_targets;
279         while(t){
280                 if( x < t->target_number ){
281                         x = t->target_number;
282                 }
283                 t = t->next;
284         }
285         return x+1;
286 }
287
288 static int target_continous_poll = 1;
289
290 /* read a u32 from a buffer in target memory endianness */
291 u32 target_buffer_get_u32(target_t *target, u8 *buffer)
292 {
293         if (target->endianness == TARGET_LITTLE_ENDIAN)
294                 return le_to_h_u32(buffer);
295         else
296                 return be_to_h_u32(buffer);
297 }
298
299 /* read a u16 from a buffer in target memory endianness */
300 u16 target_buffer_get_u16(target_t *target, u8 *buffer)
301 {
302         if (target->endianness == TARGET_LITTLE_ENDIAN)
303                 return le_to_h_u16(buffer);
304         else
305                 return be_to_h_u16(buffer);
306 }
307
308 /* read a u8 from a buffer in target memory endianness */
309 u8 target_buffer_get_u8(target_t *target, u8 *buffer)
310 {
311         return *buffer & 0x0ff;
312 }
313
314 /* write a u32 to a buffer in target memory endianness */
315 void target_buffer_set_u32(target_t *target, u8 *buffer, u32 value)
316 {
317         if (target->endianness == TARGET_LITTLE_ENDIAN)
318                 h_u32_to_le(buffer, value);
319         else
320                 h_u32_to_be(buffer, value);
321 }
322
323 /* write a u16 to a buffer in target memory endianness */
324 void target_buffer_set_u16(target_t *target, u8 *buffer, u16 value)
325 {
326         if (target->endianness == TARGET_LITTLE_ENDIAN)
327                 h_u16_to_le(buffer, value);
328         else
329                 h_u16_to_be(buffer, value);
330 }
331
332 /* write a u8 to a buffer in target memory endianness */
333 void target_buffer_set_u8(target_t *target, u8 *buffer, u8 value)
334 {
335         *buffer = value;
336 }
337
338 /* returns a pointer to the n-th configured target */
339 target_t* get_target_by_num(int num)
340 {
341         target_t *target = all_targets;
342
343         while (target){
344                 if( target->target_number == num ){
345                         return target;
346                 }
347                 target = target->next;
348         }
349
350         return NULL;
351 }
352
353 int get_num_by_target(target_t *query_target)
354 {
355         return query_target->target_number;
356 }
357
358 target_t* get_current_target(command_context_t *cmd_ctx)
359 {
360         target_t *target = get_target_by_num(cmd_ctx->current_target);
361
362         if (target == NULL)
363         {
364                 LOG_ERROR("BUG: current_target out of bounds");
365                 exit(-1);
366         }
367
368         return target;
369 }
370
371 int target_poll(struct target_s *target)
372 {
373         /* We can't poll until after examine */
374         if (!target->type->examined)
375         {
376                 /* Fail silently lest we pollute the log */
377                 return ERROR_FAIL;
378         }
379         return target->type->poll(target);
380 }
381
382 int target_halt(struct target_s *target)
383 {
384         /* We can't poll until after examine */
385         if (!target->type->examined)
386         {
387                 LOG_ERROR("Target not examined yet");
388                 return ERROR_FAIL;
389         }
390         return target->type->halt(target);
391 }
392
393 int target_resume(struct target_s *target, int current, u32 address, int handle_breakpoints, int debug_execution)
394 {
395         int retval;
396
397         /* We can't poll until after examine */
398         if (!target->type->examined)
399         {
400                 LOG_ERROR("Target not examined yet");
401                 return ERROR_FAIL;
402         }
403
404         /* note that resume *must* be asynchronous. The CPU can halt before we poll. The CPU can
405          * even halt at the current PC as a result of a software breakpoint being inserted by (a bug?)
406          * the application.
407          */
408         if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
409                 return retval;
410
411         return retval;
412 }
413
414 int target_process_reset(struct command_context_s *cmd_ctx, enum target_reset_mode reset_mode)
415 {
416         char buf[100];
417         int retval;
418         Jim_Nvp *n;
419         n = Jim_Nvp_value2name_simple( nvp_reset_modes, reset_mode );
420         if( n->name == NULL ){
421                 LOG_ERROR("invalid reset mode");
422                 return ERROR_FAIL;
423         }
424
425         sprintf( buf, "ocd_process_reset %s", n->name );
426         retval = Jim_Eval( interp, buf );
427
428         if(retval != JIM_OK) {
429                 Jim_PrintErrorMessage(interp);
430                 return ERROR_FAIL;
431         }
432
433         /* We want any events to be processed before the prompt */
434         retval = target_call_timer_callbacks_now();
435
436         return retval;
437 }
438
439 static int default_virt2phys(struct target_s *target, u32 virtual, u32 *physical)
440 {
441         *physical = virtual;
442         return ERROR_OK;
443 }
444
445 static int default_mmu(struct target_s *target, int *enabled)
446 {
447         *enabled = 0;
448         return ERROR_OK;
449 }
450
451 static int default_examine(struct target_s *target)
452 {
453         target->type->examined = 1;
454         return ERROR_OK;
455 }
456
457 /* Targets that correctly implement init+examine, i.e.
458  * no communication with target during init:
459  *
460  * XScale
461  */
462 int target_examine(void)
463 {
464         int retval = ERROR_OK;
465         target_t *target = all_targets;
466         while (target)
467         {
468                 if ((retval = target->type->examine(target))!=ERROR_OK)
469                         return retval;
470                 target = target->next;
471         }
472         return retval;
473 }
474
475 static int target_write_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
476 {
477         if (!target->type->examined)
478         {
479                 LOG_ERROR("Target not examined yet");
480                 return ERROR_FAIL;
481         }
482         return target->type->write_memory_imp(target, address, size, count, buffer);
483 }
484
485 static int target_read_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
486 {
487         if (!target->type->examined)
488         {
489                 LOG_ERROR("Target not examined yet");
490                 return ERROR_FAIL;
491         }
492         return target->type->read_memory_imp(target, address, size, count, buffer);
493 }
494
495 static int target_soft_reset_halt_imp(struct target_s *target)
496 {
497         if (!target->type->examined)
498         {
499                 LOG_ERROR("Target not examined yet");
500                 return ERROR_FAIL;
501         }
502         return target->type->soft_reset_halt_imp(target);
503 }
504
505 static int target_run_algorithm_imp(struct target_s *target, int num_mem_params, mem_param_t *mem_params, int num_reg_params, reg_param_t *reg_param, u32 entry_point, u32 exit_point, int timeout_ms, void *arch_info)
506 {
507         if (!target->type->examined)
508         {
509                 LOG_ERROR("Target not examined yet");
510                 return ERROR_FAIL;
511         }
512         return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
513 }
514
515 int target_init(struct command_context_s *cmd_ctx)
516 {
517         target_t *target = all_targets;
518         int retval;
519
520         while (target)
521         {
522                 target->type->examined = 0;
523                 if (target->type->examine == NULL)
524                 {
525                         target->type->examine = default_examine;
526                 }
527
528                 if ((retval = target->type->init_target(cmd_ctx, target)) != ERROR_OK)
529                 {
530                         LOG_ERROR("target '%s' init failed", target->type->name);
531                         return retval;
532                 }
533
534                 /* Set up default functions if none are provided by target */
535                 if (target->type->virt2phys == NULL)
536                 {
537                         target->type->virt2phys = default_virt2phys;
538                 }
539                 target->type->virt2phys = default_virt2phys;
540                 /* a non-invasive way(in terms of patches) to add some code that
541                  * runs before the type->write/read_memory implementation
542                  */
543                 target->type->write_memory_imp = target->type->write_memory;
544                 target->type->write_memory = target_write_memory_imp;
545                 target->type->read_memory_imp = target->type->read_memory;
546                 target->type->read_memory = target_read_memory_imp;
547                 target->type->soft_reset_halt_imp = target->type->soft_reset_halt;
548                 target->type->soft_reset_halt = target_soft_reset_halt_imp;
549                 target->type->run_algorithm_imp = target->type->run_algorithm;
550                 target->type->run_algorithm = target_run_algorithm_imp;
551
552                 if (target->type->mmu == NULL)
553                 {
554                         target->type->mmu = default_mmu;
555                 }
556                 target = target->next;
557         }
558
559         if (all_targets)
560         {
561                 if((retval = target_register_user_commands(cmd_ctx)) != ERROR_OK)
562                         return retval;
563                 if((retval = target_register_timer_callback(handle_target, 100, 1, NULL)) != ERROR_OK)
564                         return retval;
565         }
566
567         return ERROR_OK;
568 }
569
570 int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
571 {
572         target_event_callback_t **callbacks_p = &target_event_callbacks;
573
574         if (callback == NULL)
575         {
576                 return ERROR_INVALID_ARGUMENTS;
577         }
578
579         if (*callbacks_p)
580         {
581                 while ((*callbacks_p)->next)
582                         callbacks_p = &((*callbacks_p)->next);
583                 callbacks_p = &((*callbacks_p)->next);
584         }
585
586         (*callbacks_p) = malloc(sizeof(target_event_callback_t));
587         (*callbacks_p)->callback = callback;
588         (*callbacks_p)->priv = priv;
589         (*callbacks_p)->next = NULL;
590
591         return ERROR_OK;
592 }
593
594 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
595 {
596         target_timer_callback_t **callbacks_p = &target_timer_callbacks;
597         struct timeval now;
598
599         if (callback == NULL)
600         {
601                 return ERROR_INVALID_ARGUMENTS;
602         }
603
604         if (*callbacks_p)
605         {
606                 while ((*callbacks_p)->next)
607                         callbacks_p = &((*callbacks_p)->next);
608                 callbacks_p = &((*callbacks_p)->next);
609         }
610
611         (*callbacks_p) = malloc(sizeof(target_timer_callback_t));
612         (*callbacks_p)->callback = callback;
613         (*callbacks_p)->periodic = periodic;
614         (*callbacks_p)->time_ms = time_ms;
615
616         gettimeofday(&now, NULL);
617         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
618         time_ms -= (time_ms % 1000);
619         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
620         if ((*callbacks_p)->when.tv_usec > 1000000)
621         {
622                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
623                 (*callbacks_p)->when.tv_sec += 1;
624         }
625
626         (*callbacks_p)->priv = priv;
627         (*callbacks_p)->next = NULL;
628
629         return ERROR_OK;
630 }
631
632 int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
633 {
634         target_event_callback_t **p = &target_event_callbacks;
635         target_event_callback_t *c = target_event_callbacks;
636
637         if (callback == NULL)
638         {
639                 return ERROR_INVALID_ARGUMENTS;
640         }
641
642         while (c)
643         {
644                 target_event_callback_t *next = c->next;
645                 if ((c->callback == callback) && (c->priv == priv))
646                 {
647                         *p = next;
648                         free(c);
649                         return ERROR_OK;
650                 }
651                 else
652                         p = &(c->next);
653                 c = next;
654         }
655
656         return ERROR_OK;
657 }
658
659 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
660 {
661         target_timer_callback_t **p = &target_timer_callbacks;
662         target_timer_callback_t *c = target_timer_callbacks;
663
664         if (callback == NULL)
665         {
666                 return ERROR_INVALID_ARGUMENTS;
667         }
668
669         while (c)
670         {
671                 target_timer_callback_t *next = c->next;
672                 if ((c->callback == callback) && (c->priv == priv))
673                 {
674                         *p = next;
675                         free(c);
676                         return ERROR_OK;
677                 }
678                 else
679                         p = &(c->next);
680                 c = next;
681         }
682
683         return ERROR_OK;
684 }
685
686 int target_call_event_callbacks(target_t *target, enum target_event event)
687 {
688         target_event_callback_t *callback = target_event_callbacks;
689         target_event_callback_t *next_callback;
690
691         if (event == TARGET_EVENT_HALTED)
692         {
693                 /* execute early halted first */
694                 target_call_event_callbacks(target, TARGET_EVENT_EARLY_HALTED);
695         }
696
697         LOG_DEBUG("target event %i (%s)",
698                           event,
699                           Jim_Nvp_value2name_simple( nvp_target_event, event )->name );
700
701         target_handle_event( target, event );
702
703         while (callback)
704         {
705                 next_callback = callback->next;
706                 callback->callback(target, event, callback->priv);
707                 callback = next_callback;
708         }
709
710         return ERROR_OK;
711 }
712
713 static int target_call_timer_callbacks_check_time(int checktime)
714 {
715         target_timer_callback_t *callback = target_timer_callbacks;
716         target_timer_callback_t *next_callback;
717         struct timeval now;
718
719         keep_alive();
720
721         gettimeofday(&now, NULL);
722
723         while (callback)
724         {
725                 next_callback = callback->next;
726
727                 if ((!checktime&&callback->periodic)||
728                                 (((now.tv_sec >= callback->when.tv_sec) && (now.tv_usec >= callback->when.tv_usec))
729                                                 || (now.tv_sec > callback->when.tv_sec)))
730                 {
731                         if(callback->callback != NULL)
732                         {
733                                 callback->callback(callback->priv);
734                                 if (callback->periodic)
735                                 {
736                                         int time_ms = callback->time_ms;
737                                         callback->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
738                                         time_ms -= (time_ms % 1000);
739                                         callback->when.tv_sec = now.tv_sec + time_ms / 1000;
740                                         if (callback->when.tv_usec > 1000000)
741                                         {
742                                                 callback->when.tv_usec = callback->when.tv_usec - 1000000;
743                                                 callback->when.tv_sec += 1;
744                                         }
745                                 }
746                                 else
747                                 {
748                                         int retval;
749                                         if((retval = target_unregister_timer_callback(callback->callback, callback->priv)) != ERROR_OK)
750                                                 return retval;
751                                 }
752                         }
753                 }
754
755                 callback = next_callback;
756         }
757
758         return ERROR_OK;
759 }
760
761 int target_call_timer_callbacks(void)
762 {
763         return target_call_timer_callbacks_check_time(1);
764 }
765
766 /* invoke periodic callbacks immediately */
767 int target_call_timer_callbacks_now(void)
768 {
769         return target_call_timer_callbacks_check_time(0);
770 }
771
772 int target_alloc_working_area(struct target_s *target, u32 size, working_area_t **area)
773 {
774         working_area_t *c = target->working_areas;
775         working_area_t *new_wa = NULL;
776
777         /* Reevaluate working area address based on MMU state*/
778         if (target->working_areas == NULL)
779         {
780                 int retval;
781                 int enabled;
782                 retval = target->type->mmu(target, &enabled);
783                 if (retval != ERROR_OK)
784                 {
785                         return retval;
786                 }
787                 if (enabled)
788                 {
789                         target->working_area = target->working_area_virt;
790                 }
791                 else
792                 {
793                         target->working_area = target->working_area_phys;
794                 }
795         }
796
797         /* only allocate multiples of 4 byte */
798         if (size % 4)
799         {
800                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes, padding");
801                 size = CEIL(size, 4);
802         }
803
804         /* see if there's already a matching working area */
805         while (c)
806         {
807                 if ((c->free) && (c->size == size))
808                 {
809                         new_wa = c;
810                         break;
811                 }
812                 c = c->next;
813         }
814
815         /* if not, allocate a new one */
816         if (!new_wa)
817         {
818                 working_area_t **p = &target->working_areas;
819                 u32 first_free = target->working_area;
820                 u32 free_size = target->working_area_size;
821
822                 LOG_DEBUG("allocating new working area");
823
824                 c = target->working_areas;
825                 while (c)
826                 {
827                         first_free += c->size;
828                         free_size -= c->size;
829                         p = &c->next;
830                         c = c->next;
831                 }
832
833                 if (free_size < size)
834                 {
835                         LOG_WARNING("not enough working area available(requested %d, free %d)", size, free_size);
836                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
837                 }
838
839                 new_wa = malloc(sizeof(working_area_t));
840                 new_wa->next = NULL;
841                 new_wa->size = size;
842                 new_wa->address = first_free;
843
844                 if (target->backup_working_area)
845                 {
846                         int retval;
847                         new_wa->backup = malloc(new_wa->size);
848                         if((retval = target->type->read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
849                         {
850                                 free(new_wa->backup);
851                                 free(new_wa);
852                                 return retval;
853                         }
854                 }
855                 else
856                 {
857                         new_wa->backup = NULL;
858                 }
859
860                 /* put new entry in list */
861                 *p = new_wa;
862         }
863
864         /* mark as used, and return the new (reused) area */
865         new_wa->free = 0;
866         *area = new_wa;
867
868         /* user pointer */
869         new_wa->user = area;
870
871         return ERROR_OK;
872 }
873
874 int target_free_working_area_restore(struct target_s *target, working_area_t *area, int restore)
875 {
876         if (area->free)
877                 return ERROR_OK;
878
879         if (restore&&target->backup_working_area)
880         {
881                 int retval;
882                 if((retval = target->type->write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
883                         return retval;
884         }
885
886         area->free = 1;
887
888         /* mark user pointer invalid */
889         *area->user = NULL;
890         area->user = NULL;
891
892         return ERROR_OK;
893 }
894
895 int target_free_working_area(struct target_s *target, working_area_t *area)
896 {
897         return target_free_working_area_restore(target, area, 1);
898 }
899
900 /* free resources and restore memory, if restoring memory fails,
901  * free up resources anyway
902  */
903 void target_free_all_working_areas_restore(struct target_s *target, int restore)
904 {
905         working_area_t *c = target->working_areas;
906
907         while (c)
908         {
909                 working_area_t *next = c->next;
910                 target_free_working_area_restore(target, c, restore);
911
912                 if (c->backup)
913                         free(c->backup);
914
915                 free(c);
916
917                 c = next;
918         }
919
920         target->working_areas = NULL;
921 }
922
923 void target_free_all_working_areas(struct target_s *target)
924 {
925         target_free_all_working_areas_restore(target, 1);
926 }
927
928 int target_register_commands(struct command_context_s *cmd_ctx)
929 {
930
931         register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, "change the current command line target (one parameter) or lists targets (with no parameter)");
932
933
934
935
936         register_jim(cmd_ctx, "target", jim_target, "configure target" );
937
938         return ERROR_OK;
939 }
940
941 int target_arch_state(struct target_s *target)
942 {
943         int retval;
944         if (target==NULL)
945         {
946                 LOG_USER("No target has been configured");
947                 return ERROR_OK;
948         }
949
950         LOG_USER("target state: %s",
951                  Jim_Nvp_value2name_simple(nvp_target_state,target->state)->name);
952
953         if (target->state!=TARGET_HALTED)
954                 return ERROR_OK;
955
956         retval=target->type->arch_state(target);
957         return retval;
958 }
959
960 /* Single aligned words are guaranteed to use 16 or 32 bit access
961  * mode respectively, otherwise data is handled as quickly as
962  * possible
963  */
964 int target_write_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
965 {
966         int retval;
967         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x", size, address);
968
969         if (!target->type->examined)
970         {
971                 LOG_ERROR("Target not examined yet");
972                 return ERROR_FAIL;
973         }
974
975         if ((address + size - 1) < address)
976         {
977                 /* GDB can request this when e.g. PC is 0xfffffffc*/
978                 LOG_ERROR("address+size wrapped(0x%08x, 0x%08x)", address, size);
979                 return ERROR_FAIL;
980         }
981
982         if (((address % 2) == 0) && (size == 2))
983         {
984                 return target->type->write_memory(target, address, 2, 1, buffer);
985         }
986
987         /* handle unaligned head bytes */
988         if (address % 4)
989         {
990                 u32 unaligned = 4 - (address % 4);
991
992                 if (unaligned > size)
993                         unaligned = size;
994
995                 if ((retval = target->type->write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
996                         return retval;
997
998                 buffer += unaligned;
999                 address += unaligned;
1000                 size -= unaligned;
1001         }
1002
1003         /* handle aligned words */
1004         if (size >= 4)
1005         {
1006                 int aligned = size - (size % 4);
1007
1008                 /* use bulk writes above a certain limit. This may have to be changed */
1009                 if (aligned > 128)
1010                 {
1011                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1012                                 return retval;
1013                 }
1014                 else
1015                 {
1016                         if ((retval = target->type->write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1017                                 return retval;
1018                 }
1019
1020                 buffer += aligned;
1021                 address += aligned;
1022                 size -= aligned;
1023         }
1024
1025         /* handle tail writes of less than 4 bytes */
1026         if (size > 0)
1027         {
1028                 if ((retval = target->type->write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1029                         return retval;
1030         }
1031
1032         return ERROR_OK;
1033 }
1034
1035 /* Single aligned words are guaranteed to use 16 or 32 bit access
1036  * mode respectively, otherwise data is handled as quickly as
1037  * possible
1038  */
1039 int target_read_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
1040 {
1041         int retval;
1042         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x", size, address);
1043
1044         if (!target->type->examined)
1045         {
1046                 LOG_ERROR("Target not examined yet");
1047                 return ERROR_FAIL;
1048         }
1049
1050         if ((address + size - 1) < address)
1051         {
1052                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1053                 LOG_ERROR("address+size wrapped(0x%08x, 0x%08x)", address, size);
1054                 return ERROR_FAIL;
1055         }
1056
1057         if (((address % 2) == 0) && (size == 2))
1058         {
1059                 return target->type->read_memory(target, address, 2, 1, buffer);
1060         }
1061
1062         /* handle unaligned head bytes */
1063         if (address % 4)
1064         {
1065                 u32 unaligned = 4 - (address % 4);
1066
1067                 if (unaligned > size)
1068                         unaligned = size;
1069
1070                 if ((retval = target->type->read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1071                         return retval;
1072
1073                 buffer += unaligned;
1074                 address += unaligned;
1075                 size -= unaligned;
1076         }
1077
1078         /* handle aligned words */
1079         if (size >= 4)
1080         {
1081                 int aligned = size - (size % 4);
1082
1083                 if ((retval = target->type->read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1084                         return retval;
1085
1086                 buffer += aligned;
1087                 address += aligned;
1088                 size -= aligned;
1089         }
1090
1091         /* handle tail writes of less than 4 bytes */
1092         if (size > 0)
1093         {
1094                 if ((retval = target->type->read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1095                         return retval;
1096         }
1097
1098         return ERROR_OK;
1099 }
1100
1101 int target_checksum_memory(struct target_s *target, u32 address, u32 size, u32* crc)
1102 {
1103         u8 *buffer;
1104         int retval;
1105         u32 i;
1106         u32 checksum = 0;
1107         if (!target->type->examined)
1108         {
1109                 LOG_ERROR("Target not examined yet");
1110                 return ERROR_FAIL;
1111         }
1112
1113         if ((retval = target->type->checksum_memory(target, address,
1114                 size, &checksum)) != ERROR_OK)
1115         {
1116                 buffer = malloc(size);
1117                 if (buffer == NULL)
1118                 {
1119                         LOG_ERROR("error allocating buffer for section (%d bytes)", size);
1120                         return ERROR_INVALID_ARGUMENTS;
1121                 }
1122                 retval = target_read_buffer(target, address, size, buffer);
1123                 if (retval != ERROR_OK)
1124                 {
1125                         free(buffer);
1126                         return retval;
1127                 }
1128
1129                 /* convert to target endianess */
1130                 for (i = 0; i < (size/sizeof(u32)); i++)
1131                 {
1132                         u32 target_data;
1133                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(u32)]);
1134                         target_buffer_set_u32(target, &buffer[i*sizeof(u32)], target_data);
1135                 }
1136
1137                 retval = image_calculate_checksum( buffer, size, &checksum );
1138                 free(buffer);
1139         }
1140
1141         *crc = checksum;
1142
1143         return retval;
1144 }
1145
1146 int target_blank_check_memory(struct target_s *target, u32 address, u32 size, u32* blank)
1147 {
1148         int retval;
1149         if (!target->type->examined)
1150         {
1151                 LOG_ERROR("Target not examined yet");
1152                 return ERROR_FAIL;
1153         }
1154
1155         if (target->type->blank_check_memory == 0)
1156                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1157
1158         retval = target->type->blank_check_memory(target, address, size, blank);
1159
1160         return retval;
1161 }
1162
1163 int target_read_u32(struct target_s *target, u32 address, u32 *value)
1164 {
1165         u8 value_buf[4];
1166         if (!target->type->examined)
1167         {
1168                 LOG_ERROR("Target not examined yet");
1169                 return ERROR_FAIL;
1170         }
1171
1172         int retval = target->type->read_memory(target, address, 4, 1, value_buf);
1173
1174         if (retval == ERROR_OK)
1175         {
1176                 *value = target_buffer_get_u32(target, value_buf);
1177                 LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, *value);
1178         }
1179         else
1180         {
1181                 *value = 0x0;
1182                 LOG_DEBUG("address: 0x%8.8x failed", address);
1183         }
1184
1185         return retval;
1186 }
1187
1188 int target_read_u16(struct target_s *target, u32 address, u16 *value)
1189 {
1190         u8 value_buf[2];
1191         if (!target->type->examined)
1192         {
1193                 LOG_ERROR("Target not examined yet");
1194                 return ERROR_FAIL;
1195         }
1196
1197         int retval = target->type->read_memory(target, address, 2, 1, value_buf);
1198
1199         if (retval == ERROR_OK)
1200         {
1201                 *value = target_buffer_get_u16(target, value_buf);
1202                 LOG_DEBUG("address: 0x%8.8x, value: 0x%4.4x", address, *value);
1203         }
1204         else
1205         {
1206                 *value = 0x0;
1207                 LOG_DEBUG("address: 0x%8.8x failed", address);
1208         }
1209
1210         return retval;
1211 }
1212
1213 int target_read_u8(struct target_s *target, u32 address, u8 *value)
1214 {
1215         int retval = target->type->read_memory(target, address, 1, 1, value);
1216         if (!target->type->examined)
1217         {
1218                 LOG_ERROR("Target not examined yet");
1219                 return ERROR_FAIL;
1220         }
1221
1222         if (retval == ERROR_OK)
1223         {
1224                 LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, *value);
1225         }
1226         else
1227         {
1228                 *value = 0x0;
1229                 LOG_DEBUG("address: 0x%8.8x failed", address);
1230         }
1231
1232         return retval;
1233 }
1234
1235 int target_write_u32(struct target_s *target, u32 address, u32 value)
1236 {
1237         int retval;
1238         u8 value_buf[4];
1239         if (!target->type->examined)
1240         {
1241                 LOG_ERROR("Target not examined yet");
1242                 return ERROR_FAIL;
1243         }
1244
1245         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1246
1247         target_buffer_set_u32(target, value_buf, value);
1248         if ((retval = target->type->write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1249         {
1250                 LOG_DEBUG("failed: %i", retval);
1251         }
1252
1253         return retval;
1254 }
1255
1256 int target_write_u16(struct target_s *target, u32 address, u16 value)
1257 {
1258         int retval;
1259         u8 value_buf[2];
1260         if (!target->type->examined)
1261         {
1262                 LOG_ERROR("Target not examined yet");
1263                 return ERROR_FAIL;
1264         }
1265
1266         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1267
1268         target_buffer_set_u16(target, value_buf, value);
1269         if ((retval = target->type->write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1270         {
1271                 LOG_DEBUG("failed: %i", retval);
1272         }
1273
1274         return retval;
1275 }
1276
1277 int target_write_u8(struct target_s *target, u32 address, u8 value)
1278 {
1279         int retval;
1280         if (!target->type->examined)
1281         {
1282                 LOG_ERROR("Target not examined yet");
1283                 return ERROR_FAIL;
1284         }
1285
1286         LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, value);
1287
1288         if ((retval = target->type->write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1289         {
1290                 LOG_DEBUG("failed: %i", retval);
1291         }
1292
1293         return retval;
1294 }
1295
1296 int target_register_user_commands(struct command_context_s *cmd_ctx)
1297 {
1298         int retval = ERROR_OK;
1299
1300
1301         /* script procedures */
1302         register_command(cmd_ctx, NULL, "profile", handle_profile_command, COMMAND_EXEC, "profiling samples the CPU PC");
1303         register_jim(cmd_ctx, "ocd_mem2array", jim_mem2array, "read memory and return as a TCL array for script processing");
1304         register_jim(cmd_ctx, "ocd_array2mem", jim_array2mem, "convert a TCL array to memory locations and write the values");
1305
1306         register_command(cmd_ctx, NULL, "fast_load_image", handle_fast_load_image_command, COMMAND_ANY,
1307                         "same args as load_image, image stored in memory - mainly for profiling purposes");
1308
1309         register_command(cmd_ctx, NULL, "fast_load", handle_fast_load_command, COMMAND_ANY,
1310                         "loads active fast load image to current target - mainly for profiling purposes");
1311
1312
1313         register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "translate a virtual address into a physical address");
1314         register_command(cmd_ctx,  NULL, "reg", handle_reg_command, COMMAND_EXEC, "display or set a register");
1315         register_command(cmd_ctx,  NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state");
1316         register_command(cmd_ctx,  NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]");
1317         register_command(cmd_ctx,  NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target");
1318         register_command(cmd_ctx,  NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]");
1319         register_command(cmd_ctx,  NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]");
1320         register_command(cmd_ctx,  NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run|halt|init] - default is run");
1321         register_command(cmd_ctx,  NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset");
1322
1323         register_command(cmd_ctx,  NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words <addr> [count]");
1324         register_command(cmd_ctx,  NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words <addr> [count]");
1325         register_command(cmd_ctx,  NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes <addr> [count]");
1326
1327         register_command(cmd_ctx,  NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word <addr> <value> [count]");
1328         register_command(cmd_ctx,  NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word <addr> <value> [count]");
1329         register_command(cmd_ctx,  NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte <addr> <value> [count]");
1330
1331         register_command(cmd_ctx,  NULL, "bp", handle_bp_command, COMMAND_EXEC, "set breakpoint <address> <length> [hw]");
1332         register_command(cmd_ctx,  NULL, "rbp", handle_rbp_command, COMMAND_EXEC, "remove breakpoint <adress>");
1333         register_command(cmd_ctx,  NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint <address> <length> <r/w/a> [value] [mask]");
1334         register_command(cmd_ctx,  NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint <adress>");
1335
1336         register_command(cmd_ctx,  NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> ['bin'|'ihex'|'elf'|'s19'] [min_address] [max_length]");
1337         register_command(cmd_ctx,  NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>");
1338         register_command(cmd_ctx,  NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image <file> [offset] [type]");
1339         register_command(cmd_ctx,  NULL, "test_image", handle_test_image_command, COMMAND_EXEC, "test_image <file> [offset] [type]");
1340
1341         if((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
1342                 return retval;
1343         if((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
1344                 return retval;
1345
1346         return retval;
1347 }
1348
1349 static int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1350 {
1351         char *cp;
1352         target_t *target = all_targets;
1353
1354         if (argc == 1)
1355         {
1356                 /* try as tcltarget name */
1357                 for( target = all_targets ; target ; target = target->next ){
1358                   if( target->cmd_name ){
1359                         if( 0 == strcmp( args[0], target->cmd_name ) ){
1360                                 /* MATCH */
1361                                 goto Match;
1362                         }
1363                   }
1364                 }
1365                 /* no match, try as number */
1366
1367                 int num = strtoul(args[0], &cp, 0 );
1368                 if( *cp != 0 ){
1369                         /* then it was not a number */
1370                         command_print( cmd_ctx, "Target: %s unknown, try one of:\n", args[0] );
1371                         goto DumpTargets;
1372                 }
1373
1374                 target = get_target_by_num( num );
1375                 if( target == NULL ){
1376                         command_print(cmd_ctx,"Target: %s is unknown, try one of:\n", args[0] );
1377                         goto DumpTargets;
1378                 }
1379         Match:
1380                 cmd_ctx->current_target = target->target_number;
1381                 return ERROR_OK;
1382         }
1383 DumpTargets:
1384
1385         target = all_targets;
1386         command_print(cmd_ctx, "    CmdName    Type       Endian     AbsChainPos Name          State     ");
1387         command_print(cmd_ctx, "--  ---------- ---------- ---------- ----------- ------------- ----------");
1388         while (target)
1389         {
1390                 /* XX: abcdefghij abcdefghij abcdefghij abcdefghij */
1391                 command_print(cmd_ctx, "%2d: %-10s %-10s %-10s %10d %14s %s",
1392                                           target->target_number,
1393                                           target->cmd_name,
1394                                           target->type->name,
1395                                           Jim_Nvp_value2name_simple( nvp_target_endian, target->endianness )->name,
1396                                           target->tap->abs_chain_position,
1397                                           target->tap->dotted_name,
1398                                           Jim_Nvp_value2name_simple( nvp_target_state, target->state )->name );
1399                 target = target->next;
1400         }
1401
1402         return ERROR_OK;
1403 }
1404
1405 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1406
1407 static int powerDropout;
1408 static int srstAsserted;
1409
1410 static int runPowerRestore;
1411 static int runPowerDropout;
1412 static int runSrstAsserted;
1413 static int runSrstDeasserted;
1414
1415 static int sense_handler(void)
1416 {
1417         static int prevSrstAsserted = 0;
1418         static int prevPowerdropout = 0;
1419
1420         int retval;
1421         if ((retval=jtag_power_dropout(&powerDropout))!=ERROR_OK)
1422                 return retval;
1423
1424         int powerRestored;
1425         powerRestored = prevPowerdropout && !powerDropout;
1426         if (powerRestored)
1427         {
1428                 runPowerRestore = 1;
1429         }
1430
1431         long long current = timeval_ms();
1432         static long long lastPower = 0;
1433         int waitMore = lastPower + 2000 > current;
1434         if (powerDropout && !waitMore)
1435         {
1436                 runPowerDropout = 1;
1437                 lastPower = current;
1438         }
1439
1440         if ((retval=jtag_srst_asserted(&srstAsserted))!=ERROR_OK)
1441                 return retval;
1442
1443         int srstDeasserted;
1444         srstDeasserted = prevSrstAsserted && !srstAsserted;
1445
1446         static long long lastSrst = 0;
1447         waitMore = lastSrst + 2000 > current;
1448         if (srstDeasserted && !waitMore)
1449         {
1450                 runSrstDeasserted = 1;
1451                 lastSrst = current;
1452         }
1453
1454         if (!prevSrstAsserted && srstAsserted)
1455         {
1456                 runSrstAsserted = 1;
1457         }
1458
1459         prevSrstAsserted = srstAsserted;
1460         prevPowerdropout = powerDropout;
1461
1462         if (srstDeasserted || powerRestored)
1463         {
1464                 /* Other than logging the event we can't do anything here.
1465                  * Issuing a reset is a particularly bad idea as we might
1466                  * be inside a reset already.
1467                  */
1468         }
1469
1470         return ERROR_OK;
1471 }
1472
1473 /* process target state changes */
1474 int handle_target(void *priv)
1475 {
1476         int retval = ERROR_OK;
1477
1478         /* we do not want to recurse here... */
1479         static int recursive = 0;
1480         if (! recursive)
1481         {
1482                 recursive = 1;
1483                 sense_handler();
1484                 /* danger! running these procedures can trigger srst assertions and power dropouts.
1485                  * We need to avoid an infinite loop/recursion here and we do that by
1486                  * clearing the flags after running these events.
1487                  */
1488                 int did_something = 0;
1489                 if (runSrstAsserted)
1490                 {
1491                         Jim_Eval( interp, "srst_asserted");
1492                         did_something = 1;
1493                 }
1494                 if (runSrstDeasserted)
1495                 {
1496                         Jim_Eval( interp, "srst_deasserted");
1497                         did_something = 1;
1498                 }
1499                 if (runPowerDropout)
1500                 {
1501                         Jim_Eval( interp, "power_dropout");
1502                         did_something = 1;
1503                 }
1504                 if (runPowerRestore)
1505                 {
1506                         Jim_Eval( interp, "power_restore");
1507                         did_something = 1;
1508                 }
1509
1510                 if (did_something)
1511                 {
1512                         /* clear detect flags */
1513                         sense_handler();
1514                 }
1515
1516                 /* clear action flags */
1517
1518                 runSrstAsserted=0;
1519                 runSrstDeasserted=0;
1520                 runPowerRestore=0;
1521                 runPowerDropout=0;
1522
1523                 recursive = 0;
1524         }
1525
1526         target_t *target = all_targets;
1527
1528         while (target)
1529         {
1530
1531                 /* only poll target if we've got power and srst isn't asserted */
1532                 if (target_continous_poll&&!powerDropout&&!srstAsserted)
1533                 {
1534                         /* polling may fail silently until the target has been examined */
1535                         if((retval = target_poll(target)) != ERROR_OK)
1536                                 return retval;
1537                 }
1538
1539                 target = target->next;
1540         }
1541
1542         return retval;
1543 }
1544
1545 static int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1546 {
1547         target_t *target;
1548         reg_t *reg = NULL;
1549         int count = 0;
1550         char *value;
1551
1552         LOG_DEBUG("-");
1553
1554         target = get_current_target(cmd_ctx);
1555
1556         /* list all available registers for the current target */
1557         if (argc == 0)
1558         {
1559                 reg_cache_t *cache = target->reg_cache;
1560
1561                 count = 0;
1562                 while(cache)
1563                 {
1564                         int i;
1565                         for (i = 0; i < cache->num_regs; i++)
1566                         {
1567                                 value = buf_to_str(cache->reg_list[i].value, cache->reg_list[i].size, 16);
1568                                 command_print(cmd_ctx, "(%i) %s (/%i): 0x%s (dirty: %i, valid: %i)", count++, cache->reg_list[i].name, cache->reg_list[i].size, value, cache->reg_list[i].dirty, cache->reg_list[i].valid);
1569                                 free(value);
1570                         }
1571                         cache = cache->next;
1572                 }
1573
1574                 return ERROR_OK;
1575         }
1576
1577         /* access a single register by its ordinal number */
1578         if ((args[0][0] >= '0') && (args[0][0] <= '9'))
1579         {
1580                 int num = strtoul(args[0], NULL, 0);
1581                 reg_cache_t *cache = target->reg_cache;
1582
1583                 count = 0;
1584                 while(cache)
1585                 {
1586                         int i;
1587                         for (i = 0; i < cache->num_regs; i++)
1588                         {
1589                                 if (count++ == num)
1590                                 {
1591                                         reg = &cache->reg_list[i];
1592                                         break;
1593                                 }
1594                         }
1595                         if (reg)
1596                                 break;
1597                         cache = cache->next;
1598                 }
1599
1600                 if (!reg)
1601                 {
1602                         command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1603                         return ERROR_OK;
1604                 }
1605         } else /* access a single register by its name */
1606         {
1607                 reg = register_get_by_name(target->reg_cache, args[0], 1);
1608
1609                 if (!reg)
1610                 {
1611                         command_print(cmd_ctx, "register %s not found in current target", args[0]);
1612                         return ERROR_OK;
1613                 }
1614         }
1615
1616         /* display a register */
1617         if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
1618         {
1619                 if ((argc == 2) && (strcmp(args[1], "force") == 0))
1620                         reg->valid = 0;
1621
1622                 if (reg->valid == 0)
1623                 {
1624                         reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1625                         arch_type->get(reg);
1626                 }
1627                 value = buf_to_str(reg->value, reg->size, 16);
1628                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1629                 free(value);
1630                 return ERROR_OK;
1631         }
1632
1633         /* set register value */
1634         if (argc == 2)
1635         {
1636                 u8 *buf = malloc(CEIL(reg->size, 8));
1637                 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
1638
1639                 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1640                 arch_type->set(reg, buf);
1641
1642                 value = buf_to_str(reg->value, reg->size, 16);
1643                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1644                 free(value);
1645
1646                 free(buf);
1647
1648                 return ERROR_OK;
1649         }
1650
1651         command_print(cmd_ctx, "usage: reg <#|name> [value]");
1652
1653         return ERROR_OK;
1654 }
1655
1656 static int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1657 {
1658         int retval = ERROR_OK;
1659         target_t *target = get_current_target(cmd_ctx);
1660
1661         if (argc == 0)
1662         {
1663                 if((retval = target_poll(target)) != ERROR_OK)
1664                         return retval;
1665                 if((retval = target_arch_state(target)) != ERROR_OK)
1666                         return retval;
1667
1668         }
1669         else if (argc==1)
1670         {
1671                 if (strcmp(args[0], "on") == 0)
1672                 {
1673                         target_continous_poll = 1;
1674                 }
1675                 else if (strcmp(args[0], "off") == 0)
1676                 {
1677                         target_continous_poll = 0;
1678                 }
1679                 else
1680                 {
1681                         command_print(cmd_ctx, "arg is \"on\" or \"off\"");
1682                 }
1683         } else
1684         {
1685                 return ERROR_COMMAND_SYNTAX_ERROR;
1686         }
1687
1688         return retval;
1689 }
1690
1691 static int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1692 {
1693         int ms = 5000;
1694
1695         if (argc > 0)
1696         {
1697                 char *end;
1698
1699                 ms = strtoul(args[0], &end, 0) * 1000;
1700                 if (*end)
1701                 {
1702                         command_print(cmd_ctx, "usage: %s [seconds]", cmd);
1703                         return ERROR_OK;
1704                 }
1705         }
1706         target_t *target = get_current_target(cmd_ctx);
1707
1708         return target_wait_state(target, TARGET_HALTED, ms);
1709 }
1710
1711 /* wait for target state to change. The trick here is to have a low
1712  * latency for short waits and not to suck up all the CPU time
1713  * on longer waits.
1714  *
1715  * After 500ms, keep_alive() is invoked
1716  */
1717 int target_wait_state(target_t *target, enum target_state state, int ms)
1718 {
1719         int retval;
1720         long long then=0, cur;
1721         int once=1;
1722
1723         for (;;)
1724         {
1725                 if ((retval=target_poll(target))!=ERROR_OK)
1726                         return retval;
1727                 if (target->state == state)
1728                 {
1729                         break;
1730                 }
1731                 cur = timeval_ms();
1732                 if (once)
1733                 {
1734                         once=0;
1735                         then = timeval_ms();
1736                         LOG_DEBUG("waiting for target %s...",
1737                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
1738                 }
1739
1740                 if (cur-then>500)
1741                 {
1742                         keep_alive();
1743                 }
1744
1745                 if ((cur-then)>ms)
1746                 {
1747                         LOG_ERROR("timed out while waiting for target %s",
1748                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
1749                         return ERROR_FAIL;
1750                 }
1751         }
1752
1753         return ERROR_OK;
1754 }
1755
1756 static int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1757 {
1758         int retval;
1759         target_t *target = get_current_target(cmd_ctx);
1760
1761         LOG_DEBUG("-");
1762
1763         if ((retval = target_halt(target)) != ERROR_OK)
1764         {
1765                 return retval;
1766         }
1767
1768         if (argc == 1)
1769         {
1770                 int wait;
1771                 char *end;
1772
1773                 wait = strtoul(args[0], &end, 0);
1774                 if (!*end && !wait)
1775                         return ERROR_OK;
1776         }
1777
1778         return handle_wait_halt_command(cmd_ctx, cmd, args, argc);
1779 }
1780
1781 static int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1782 {
1783         target_t *target = get_current_target(cmd_ctx);
1784
1785         LOG_USER("requesting target halt and executing a soft reset");
1786
1787         target->type->soft_reset_halt(target);
1788
1789         return ERROR_OK;
1790 }
1791
1792 static int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1793 {
1794         const Jim_Nvp *n;
1795         enum target_reset_mode reset_mode = RESET_RUN;
1796
1797         if (argc >= 1)
1798         {
1799                 n = Jim_Nvp_name2value_simple( nvp_reset_modes, args[0] );
1800                 if( (n->name == NULL) || (n->value == RESET_UNKNOWN) ){
1801                         return ERROR_COMMAND_SYNTAX_ERROR;
1802                 }
1803                 reset_mode = n->value;
1804         }
1805
1806         /* reset *all* targets */
1807         return target_process_reset(cmd_ctx, reset_mode);
1808 }
1809
1810
1811 static int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1812 {
1813         int retval;
1814         target_t *target = get_current_target(cmd_ctx);
1815
1816         target_handle_event( target, TARGET_EVENT_OLD_pre_resume );
1817
1818         if (argc == 0)
1819                 retval = target_resume(target, 1, 0, 1, 0); /* current pc, addr = 0, handle breakpoints, not debugging */
1820         else if (argc == 1)
1821                 retval = target_resume(target, 0, strtoul(args[0], NULL, 0), 1, 0); /* addr = args[0], handle breakpoints, not debugging */
1822         else
1823         {
1824                 retval = ERROR_COMMAND_SYNTAX_ERROR;
1825         }
1826
1827         return retval;
1828 }
1829
1830 static int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1831 {
1832         target_t *target = get_current_target(cmd_ctx);
1833
1834         LOG_DEBUG("-");
1835
1836         if (argc == 0)
1837                 return target->type->step(target, 1, 0, 1); /* current pc, addr = 0, handle breakpoints */
1838
1839         if (argc == 1)
1840                 return target->type->step(target, 0, strtoul(args[0], NULL, 0), 1); /* addr = args[0], handle breakpoints */
1841
1842         return ERROR_OK;
1843 }
1844
1845 static int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1846 {
1847         const int line_bytecnt = 32;
1848         int count = 1;
1849         int size = 4;
1850         u32 address = 0;
1851         int line_modulo;
1852         int i;
1853
1854         char output[128];
1855         int output_len;
1856
1857         int retval;
1858
1859         u8 *buffer;
1860         target_t *target = get_current_target(cmd_ctx);
1861
1862         if (argc < 1)
1863                 return ERROR_OK;
1864
1865         if (argc == 2)
1866                 count = strtoul(args[1], NULL, 0);
1867
1868         address = strtoul(args[0], NULL, 0);
1869
1870         switch (cmd[2])
1871         {
1872                 case 'w':
1873                         size = 4; line_modulo = line_bytecnt / 4;
1874                         break;
1875                 case 'h':
1876                         size = 2; line_modulo = line_bytecnt / 2;
1877                         break;
1878                 case 'b':
1879                         size = 1; line_modulo = line_bytecnt / 1;
1880                         break;
1881                 default:
1882                         return ERROR_OK;
1883         }
1884
1885         buffer = calloc(count, size);
1886         retval  = target->type->read_memory(target, address, size, count, buffer);
1887         if (retval == ERROR_OK)
1888         {
1889                 output_len = 0;
1890
1891                 for (i = 0; i < count; i++)
1892                 {
1893                         if (i%line_modulo == 0)
1894                                 output_len += snprintf(output + output_len, 128 - output_len, "0x%8.8x: ", address + (i*size));
1895
1896                         switch (size)
1897                         {
1898                                 case 4:
1899                                         output_len += snprintf(output + output_len, 128 - output_len, "%8.8x ", target_buffer_get_u32(target, &buffer[i*4]));
1900                                         break;
1901                                 case 2:
1902                                         output_len += snprintf(output + output_len, 128 - output_len, "%4.4x ", target_buffer_get_u16(target, &buffer[i*2]));
1903                                         break;
1904                                 case 1:
1905                                         output_len += snprintf(output + output_len, 128 - output_len, "%2.2x ", buffer[i*1]);
1906                                         break;
1907                         }
1908
1909                         if ((i%line_modulo == line_modulo-1) || (i == count - 1))
1910                         {
1911                                 command_print(cmd_ctx, output);
1912                                 output_len = 0;
1913                         }
1914                 }
1915         }
1916
1917         free(buffer);
1918
1919         return retval;
1920 }
1921
1922 static int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1923 {
1924         u32 address = 0;
1925         u32 value = 0;
1926         int count = 1;
1927         int i;
1928         int wordsize;
1929         target_t *target = get_current_target(cmd_ctx);
1930         u8 value_buf[4];
1931
1932          if ((argc < 2) || (argc > 3))
1933                 return ERROR_COMMAND_SYNTAX_ERROR;
1934
1935         address = strtoul(args[0], NULL, 0);
1936         value = strtoul(args[1], NULL, 0);
1937         if (argc == 3)
1938                 count = strtoul(args[2], NULL, 0);
1939
1940         switch (cmd[2])
1941         {
1942                 case 'w':
1943                         wordsize = 4;
1944                         target_buffer_set_u32(target, value_buf, value);
1945                         break;
1946                 case 'h':
1947                         wordsize = 2;
1948                         target_buffer_set_u16(target, value_buf, value);
1949                         break;
1950                 case 'b':
1951                         wordsize = 1;
1952                         value_buf[0] = value;
1953                         break;
1954                 default:
1955                         return ERROR_COMMAND_SYNTAX_ERROR;
1956         }
1957         for (i=0; i<count; i++)
1958         {
1959                 int retval;
1960                 switch (wordsize)
1961                 {
1962                         case 4:
1963                                 retval = target->type->write_memory(target, address + i*wordsize, 4, 1, value_buf);
1964                                 break;
1965                         case 2:
1966                                 retval = target->type->write_memory(target, address + i*wordsize, 2, 1, value_buf);
1967                                 break;
1968                         case 1:
1969                                 retval = target->type->write_memory(target, address + i*wordsize, 1, 1, value_buf);
1970                         break;
1971                         default:
1972                         return ERROR_OK;
1973                 }
1974                 keep_alive();
1975
1976                 if (retval!=ERROR_OK)
1977                 {
1978                         return retval;
1979                 }
1980         }
1981
1982         return ERROR_OK;
1983
1984 }
1985
1986 static int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1987 {
1988         u8 *buffer;
1989         u32 buf_cnt;
1990         u32 image_size;
1991         u32 min_address=0;
1992         u32 max_address=0xffffffff;
1993         int i;
1994         int retval, retvaltemp;
1995
1996         image_t image;
1997
1998         duration_t duration;
1999         char *duration_text;
2000
2001         target_t *target = get_current_target(cmd_ctx);
2002
2003         if ((argc < 1)||(argc > 5))
2004         {
2005                 return ERROR_COMMAND_SYNTAX_ERROR;
2006         }
2007
2008         /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
2009         if (argc >= 2)
2010         {
2011                 image.base_address_set = 1;
2012                 image.base_address = strtoul(args[1], NULL, 0);
2013         }
2014         else
2015         {
2016                 image.base_address_set = 0;
2017         }
2018
2019
2020         image.start_address_set = 0;
2021
2022         if (argc>=4)
2023         {
2024                 min_address=strtoul(args[3], NULL, 0);
2025         }
2026         if (argc>=5)
2027         {
2028                 max_address=strtoul(args[4], NULL, 0)+min_address;
2029         }
2030
2031         if (min_address>max_address)
2032         {
2033                 return ERROR_COMMAND_SYNTAX_ERROR;
2034         }
2035
2036         duration_start_measure(&duration);
2037
2038         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
2039         {
2040                 return ERROR_OK;
2041         }
2042
2043         image_size = 0x0;
2044         retval = ERROR_OK;
2045         for (i = 0; i < image.num_sections; i++)
2046         {
2047                 buffer = malloc(image.sections[i].size);
2048                 if (buffer == NULL)
2049                 {
2050                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2051                         break;
2052                 }
2053
2054                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2055                 {
2056                         free(buffer);
2057                         break;
2058                 }
2059
2060                 u32 offset=0;
2061                 u32 length=buf_cnt;
2062
2063                 /* DANGER!!! beware of unsigned comparision here!!! */
2064
2065                 if ((image.sections[i].base_address+buf_cnt>=min_address)&&
2066                                 (image.sections[i].base_address<max_address))
2067                 {
2068                         if (image.sections[i].base_address<min_address)
2069                         {
2070                                 /* clip addresses below */
2071                                 offset+=min_address-image.sections[i].base_address;
2072                                 length-=offset;
2073                         }
2074
2075                         if (image.sections[i].base_address+buf_cnt>max_address)
2076                         {
2077                                 length-=(image.sections[i].base_address+buf_cnt)-max_address;
2078                         }
2079
2080                         if ((retval = target_write_buffer(target, image.sections[i].base_address+offset, length, buffer+offset)) != ERROR_OK)
2081                         {
2082                                 free(buffer);
2083                                 break;
2084                         }
2085                         image_size += length;
2086                         command_print(cmd_ctx, "%u byte written at address 0x%8.8x", length, image.sections[i].base_address+offset);
2087                 }
2088
2089                 free(buffer);
2090         }
2091
2092         if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2093         {
2094                 image_close(&image);
2095                 return retvaltemp;
2096         }
2097
2098         if (retval==ERROR_OK)
2099         {
2100                 command_print(cmd_ctx, "downloaded %u byte in %s", image_size, duration_text);
2101         }
2102         free(duration_text);
2103
2104         image_close(&image);
2105
2106         return retval;
2107
2108 }
2109
2110 static int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2111 {
2112         fileio_t fileio;
2113
2114         u32 address;
2115         u32 size;
2116         u8 buffer[560];
2117         int retval=ERROR_OK, retvaltemp;
2118
2119         duration_t duration;
2120         char *duration_text;
2121
2122         target_t *target = get_current_target(cmd_ctx);
2123
2124         if (argc != 3)
2125         {
2126                 command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
2127                 return ERROR_OK;
2128         }
2129
2130         address = strtoul(args[1], NULL, 0);
2131         size = strtoul(args[2], NULL, 0);
2132
2133         if ((address & 3) || (size & 3))
2134         {
2135                 command_print(cmd_ctx, "only 32-bit aligned address and size are supported");
2136                 return ERROR_OK;
2137         }
2138
2139         if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2140         {
2141                 return ERROR_OK;
2142         }
2143
2144         duration_start_measure(&duration);
2145
2146         while (size > 0)
2147         {
2148                 u32 size_written;
2149                 u32 this_run_size = (size > 560) ? 560 : size;
2150
2151                 retval = target->type->read_memory(target, address, 4, this_run_size / 4, buffer);
2152                 if (retval != ERROR_OK)
2153                 {
2154                         break;
2155                 }
2156
2157                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2158                 if (retval != ERROR_OK)
2159                 {
2160                         break;
2161                 }
2162
2163                 size -= this_run_size;
2164                 address += this_run_size;
2165         }
2166
2167         if((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2168                 return retvaltemp;
2169
2170         if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2171                 return retvaltemp;
2172
2173         if (retval==ERROR_OK)
2174         {
2175                 command_print(cmd_ctx, "dumped %"PRIi64" byte in %s", fileio.size, duration_text);
2176         }
2177         free(duration_text);
2178
2179         return ERROR_OK;
2180 }
2181
2182 static int handle_verify_image_command_internal(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc, int verify)
2183 {
2184         u8 *buffer;
2185         u32 buf_cnt;
2186         u32 image_size;
2187         int i;
2188         int retval, retvaltemp;
2189         u32 checksum = 0;
2190         u32 mem_checksum = 0;
2191
2192         image_t image;
2193
2194         duration_t duration;
2195         char *duration_text;
2196
2197         target_t *target = get_current_target(cmd_ctx);
2198
2199         if (argc < 1)
2200         {
2201                 return ERROR_COMMAND_SYNTAX_ERROR;
2202         }
2203
2204         if (!target)
2205         {
2206                 LOG_ERROR("no target selected");
2207                 return ERROR_FAIL;
2208         }
2209
2210         duration_start_measure(&duration);
2211
2212         if (argc >= 2)
2213         {
2214                 image.base_address_set = 1;
2215                 image.base_address = strtoul(args[1], NULL, 0);
2216         }
2217         else
2218         {
2219                 image.base_address_set = 0;
2220                 image.base_address = 0x0;
2221         }
2222
2223         image.start_address_set = 0;
2224
2225         if ((retval=image_open(&image, args[0], (argc == 3) ? args[2] : NULL)) != ERROR_OK)
2226         {
2227                 return retval;
2228         }
2229
2230         image_size = 0x0;
2231         retval=ERROR_OK;
2232         for (i = 0; i < image.num_sections; i++)
2233         {
2234                 buffer = malloc(image.sections[i].size);
2235                 if (buffer == NULL)
2236                 {
2237                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2238                         break;
2239                 }
2240                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2241                 {
2242                         free(buffer);
2243                         break;
2244                 }
2245
2246                 if (verify)
2247                 {
2248                         /* calculate checksum of image */
2249                         image_calculate_checksum( buffer, buf_cnt, &checksum );
2250
2251                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2252                         if( retval != ERROR_OK )
2253                         {
2254                                 free(buffer);
2255                                 break;
2256                         }
2257
2258                         if( checksum != mem_checksum )
2259                         {
2260                                 /* failed crc checksum, fall back to a binary compare */
2261                                 u8 *data;
2262
2263                                 command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
2264
2265                                 data = (u8*)malloc(buf_cnt);
2266
2267                                 /* Can we use 32bit word accesses? */
2268                                 int size = 1;
2269                                 int count = buf_cnt;
2270                                 if ((count % 4) == 0)
2271                                 {
2272                                         size *= 4;
2273                                         count /= 4;
2274                                 }
2275                                 retval = target->type->read_memory(target, image.sections[i].base_address, size, count, data);
2276                                 if (retval == ERROR_OK)
2277                                 {
2278                                         u32 t;
2279                                         for (t = 0; t < buf_cnt; t++)
2280                                         {
2281                                                 if (data[t] != buffer[t])
2282                                                 {
2283                                                         command_print(cmd_ctx, "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n", t + image.sections[i].base_address, data[t], buffer[t]);
2284                                                         free(data);
2285                                                         free(buffer);
2286                                                         retval=ERROR_FAIL;
2287                                                         goto done;
2288                                                 }
2289                                                 if ((t%16384)==0)
2290                                                 {
2291                                                         keep_alive();
2292                                                 }
2293                                         }
2294                                 }
2295
2296                                 free(data);
2297                         }
2298                 } else
2299                 {
2300                         command_print(cmd_ctx, "address 0x%08x length 0x%08x", image.sections[i].base_address, buf_cnt);
2301                 }
2302
2303                 free(buffer);
2304                 image_size += buf_cnt;
2305         }
2306 done:
2307
2308         if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2309         {
2310                 image_close(&image);
2311                 return retvaltemp;
2312         }
2313
2314         if (retval==ERROR_OK)
2315         {
2316                 command_print(cmd_ctx, "verified %u bytes in %s", image_size, duration_text);
2317         }
2318         free(duration_text);
2319
2320         image_close(&image);
2321
2322         return retval;
2323 }
2324
2325 static int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2326 {
2327         return handle_verify_image_command_internal(cmd_ctx, cmd, args, argc, 1);
2328 }
2329
2330 static int handle_test_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2331 {
2332         return handle_verify_image_command_internal(cmd_ctx, cmd, args, argc, 0);
2333 }
2334
2335 static int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2336 {
2337         int retval;
2338         target_t *target = get_current_target(cmd_ctx);
2339
2340         if (argc == 0)
2341         {
2342                 breakpoint_t *breakpoint = target->breakpoints;
2343
2344                 while (breakpoint)
2345                 {
2346                         if (breakpoint->type == BKPT_SOFT)
2347                         {
2348                                 char* buf = buf_to_str(breakpoint->orig_instr, breakpoint->length, 16);
2349                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i, 0x%s", breakpoint->address, breakpoint->length, breakpoint->set, buf);
2350                                 free(buf);
2351                         }
2352                         else
2353                         {
2354                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i", breakpoint->address, breakpoint->length, breakpoint->set);
2355                         }
2356                         breakpoint = breakpoint->next;
2357                 }
2358         }
2359         else if (argc >= 2)
2360         {
2361                 int hw = BKPT_SOFT;
2362                 u32 length = 0;
2363
2364                 length = strtoul(args[1], NULL, 0);
2365
2366                 if (argc >= 3)
2367                         if (strcmp(args[2], "hw") == 0)
2368                                 hw = BKPT_HARD;
2369
2370                 if ((retval = breakpoint_add(target, strtoul(args[0], NULL, 0), length, hw)) != ERROR_OK)
2371                 {
2372                         LOG_ERROR("Failure setting breakpoints");
2373                 }
2374                 else
2375                 {
2376                         command_print(cmd_ctx, "breakpoint added at address 0x%8.8x", strtoul(args[0], NULL, 0));
2377                 }
2378         }
2379         else
2380         {
2381                 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
2382         }
2383
2384         return ERROR_OK;
2385 }
2386
2387 static int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2388 {
2389         target_t *target = get_current_target(cmd_ctx);
2390
2391         if (argc > 0)
2392                 breakpoint_remove(target, strtoul(args[0], NULL, 0));
2393
2394         return ERROR_OK;
2395 }
2396
2397 static int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2398 {
2399         target_t *target = get_current_target(cmd_ctx);
2400         int retval;
2401
2402         if (argc == 0)
2403         {
2404                 watchpoint_t *watchpoint = target->watchpoints;
2405
2406                 while (watchpoint)
2407                 {
2408                         command_print(cmd_ctx, "address: 0x%8.8x, len: 0x%8.8x, r/w/a: %i, value: 0x%8.8x, mask: 0x%8.8x", watchpoint->address, watchpoint->length, watchpoint->rw, watchpoint->value, watchpoint->mask);
2409                         watchpoint = watchpoint->next;
2410                 }
2411         }
2412         else if (argc >= 2)
2413         {
2414                 enum watchpoint_rw type = WPT_ACCESS;
2415                 u32 data_value = 0x0;
2416                 u32 data_mask = 0xffffffff;
2417
2418                 if (argc >= 3)
2419                 {
2420                         switch(args[2][0])
2421                         {
2422                                 case 'r':
2423                                         type = WPT_READ;
2424                                         break;
2425                                 case 'w':
2426                                         type = WPT_WRITE;
2427                                         break;
2428                                 case 'a':
2429                                         type = WPT_ACCESS;
2430                                         break;
2431                                 default:
2432                                         command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2433                                         return ERROR_OK;
2434                         }
2435                 }
2436                 if (argc >= 4)
2437                 {
2438                         data_value = strtoul(args[3], NULL, 0);
2439                 }
2440                 if (argc >= 5)
2441                 {
2442                         data_mask = strtoul(args[4], NULL, 0);
2443                 }
2444
2445                 if ((retval = watchpoint_add(target, strtoul(args[0], NULL, 0),
2446                                 strtoul(args[1], NULL, 0), type, data_value, data_mask)) != ERROR_OK)
2447                 {
2448                         LOG_ERROR("Failure setting breakpoints");
2449                 }
2450         }
2451         else
2452         {
2453                 command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2454         }
2455
2456         return ERROR_OK;
2457 }
2458
2459 static int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2460 {
2461         target_t *target = get_current_target(cmd_ctx);
2462
2463         if (argc > 0)
2464                 watchpoint_remove(target, strtoul(args[0], NULL, 0));
2465
2466         return ERROR_OK;
2467 }
2468
2469 static int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc)
2470 {
2471         int retval;
2472         target_t *target = get_current_target(cmd_ctx);
2473         u32 va;
2474         u32 pa;
2475
2476         if (argc != 1)
2477         {
2478                 return ERROR_COMMAND_SYNTAX_ERROR;
2479         }
2480         va = strtoul(args[0], NULL, 0);
2481
2482         retval = target->type->virt2phys(target, va, &pa);
2483         if (retval == ERROR_OK)
2484         {
2485                 command_print(cmd_ctx, "Physical address 0x%08x", pa);
2486         }
2487         else
2488         {
2489                 /* lower levels will have logged a detailed error which is
2490                  * forwarded to telnet/GDB session.
2491                  */
2492         }
2493         return retval;
2494 }
2495
2496 static void writeData(FILE *f, const void *data, size_t len)
2497 {
2498         size_t written = fwrite(data, len, 1, f);
2499         if (written != len)
2500                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
2501 }
2502
2503 static void writeLong(FILE *f, int l)
2504 {
2505         int i;
2506         for (i=0; i<4; i++)
2507         {
2508                 char c=(l>>(i*8))&0xff;
2509                 writeData(f, &c, 1);
2510         }
2511
2512 }
2513
2514 static void writeString(FILE *f, char *s)
2515 {
2516         writeData(f, s, strlen(s));
2517 }
2518
2519 /* Dump a gmon.out histogram file. */
2520 static void writeGmon(u32 *samples, u32 sampleNum, char *filename)
2521 {
2522         u32 i;
2523         FILE *f=fopen(filename, "w");
2524         if (f==NULL)
2525                 return;
2526         writeString(f, "gmon");
2527         writeLong(f, 0x00000001); /* Version */
2528         writeLong(f, 0); /* padding */
2529         writeLong(f, 0); /* padding */
2530         writeLong(f, 0); /* padding */
2531
2532         u8 zero = 0;  /* GMON_TAG_TIME_HIST */
2533         writeData(f, &zero, 1);
2534
2535         /* figure out bucket size */
2536         u32 min=samples[0];
2537         u32 max=samples[0];
2538         for (i=0; i<sampleNum; i++)
2539         {
2540                 if (min>samples[i])
2541                 {
2542                         min=samples[i];
2543                 }
2544                 if (max<samples[i])
2545                 {
2546                         max=samples[i];
2547                 }
2548         }
2549
2550         int addressSpace=(max-min+1);
2551
2552         static const u32 maxBuckets = 256 * 1024; /* maximum buckets. */
2553         u32 length = addressSpace;
2554         if (length > maxBuckets)
2555         {
2556                 length=maxBuckets;
2557         }
2558         int *buckets=malloc(sizeof(int)*length);
2559         if (buckets==NULL)
2560         {
2561                 fclose(f);
2562                 return;
2563         }
2564         memset(buckets, 0, sizeof(int)*length);
2565         for (i=0; i<sampleNum;i++)
2566         {
2567                 u32 address=samples[i];
2568                 long long a=address-min;
2569                 long long b=length-1;
2570                 long long c=addressSpace-1;
2571                 int index=(a*b)/c; /* danger!!!! int32 overflows */
2572                 buckets[index]++;
2573         }
2574
2575         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
2576         writeLong(f, min);                      /* low_pc */
2577         writeLong(f, max);                      /* high_pc */
2578         writeLong(f, length);           /* # of samples */
2579         writeLong(f, 64000000);         /* 64MHz */
2580         writeString(f, "seconds");
2581         for (i=0; i<(15-strlen("seconds")); i++)
2582                 writeData(f, &zero, 1);
2583         writeString(f, "s");
2584
2585         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
2586
2587         char *data=malloc(2*length);
2588         if (data!=NULL)
2589         {
2590                 for (i=0; i<length;i++)
2591                 {
2592                         int val;
2593                         val=buckets[i];
2594                         if (val>65535)
2595                         {
2596                                 val=65535;
2597                         }
2598                         data[i*2]=val&0xff;
2599                         data[i*2+1]=(val>>8)&0xff;
2600                 }
2601                 free(buckets);
2602                 writeData(f, data, length * 2);
2603                 free(data);
2604         } else
2605         {
2606                 free(buckets);
2607         }
2608
2609         fclose(f);
2610 }
2611
2612 /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
2613 static int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2614 {
2615         target_t *target = get_current_target(cmd_ctx);
2616         struct timeval timeout, now;
2617
2618         gettimeofday(&timeout, NULL);
2619         if (argc!=2)
2620         {
2621                 return ERROR_COMMAND_SYNTAX_ERROR;
2622         }
2623         char *end;
2624         timeval_add_time(&timeout, strtoul(args[0], &end, 0), 0);
2625         if (*end)
2626         {
2627                 return ERROR_OK;
2628         }
2629
2630         command_print(cmd_ctx, "Starting profiling. Halting and resuming the target as often as we can...");
2631
2632         static const int maxSample=10000;
2633         u32 *samples=malloc(sizeof(u32)*maxSample);
2634         if (samples==NULL)
2635                 return ERROR_OK;
2636
2637         int numSamples=0;
2638         int retval=ERROR_OK;
2639         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2640         reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1);
2641
2642         for (;;)
2643         {
2644                 target_poll(target);
2645                 if (target->state == TARGET_HALTED)
2646                 {
2647                         u32 t=*((u32 *)reg->value);
2648                         samples[numSamples++]=t;
2649                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2650                         target_poll(target);
2651                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2652                 } else if (target->state == TARGET_RUNNING)
2653                 {
2654                         /* We want to quickly sample the PC. */
2655                         if((retval = target_halt(target)) != ERROR_OK)
2656                         {
2657                                 free(samples);
2658                                 return retval;
2659                         }
2660                 } else
2661                 {
2662                         command_print(cmd_ctx, "Target not halted or running");
2663                         retval=ERROR_OK;
2664                         break;
2665                 }
2666                 if (retval!=ERROR_OK)
2667                 {
2668                         break;
2669                 }
2670
2671                 gettimeofday(&now, NULL);
2672                 if ((numSamples>=maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
2673                 {
2674                         command_print(cmd_ctx, "Profiling completed. %d samples.", numSamples);
2675                         if((retval = target_poll(target)) != ERROR_OK)
2676                         {
2677                                 free(samples);
2678                                 return retval;
2679                         }
2680                         if (target->state == TARGET_HALTED)
2681                         {
2682                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2683                         }
2684                         if((retval = target_poll(target)) != ERROR_OK)
2685                         {
2686                                 free(samples);
2687                                 return retval;
2688                         }
2689                         writeGmon(samples, numSamples, args[1]);
2690                         command_print(cmd_ctx, "Wrote %s", args[1]);
2691                         break;
2692                 }
2693         }
2694         free(samples);
2695
2696         return ERROR_OK;
2697 }
2698
2699 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 val)
2700 {
2701         char *namebuf;
2702         Jim_Obj *nameObjPtr, *valObjPtr;
2703         int result;
2704
2705         namebuf = alloc_printf("%s(%d)", varname, idx);
2706         if (!namebuf)
2707                 return JIM_ERR;
2708
2709         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
2710         valObjPtr = Jim_NewIntObj(interp, val);
2711         if (!nameObjPtr || !valObjPtr)
2712         {
2713                 free(namebuf);
2714                 return JIM_ERR;
2715         }
2716
2717         Jim_IncrRefCount(nameObjPtr);
2718         Jim_IncrRefCount(valObjPtr);
2719         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
2720         Jim_DecrRefCount(interp, nameObjPtr);
2721         Jim_DecrRefCount(interp, valObjPtr);
2722         free(namebuf);
2723         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
2724         return result;
2725 }
2726
2727 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
2728 {
2729         command_context_t *context;
2730         target_t *target;
2731
2732         context = Jim_GetAssocData(interp, "context");
2733         if (context == NULL)
2734         {
2735                 LOG_ERROR("mem2array: no command context");
2736                 return JIM_ERR;
2737         }
2738         target = get_current_target(context);
2739         if (target == NULL)
2740         {
2741                 LOG_ERROR("mem2array: no current target");
2742                 return JIM_ERR;
2743         }
2744
2745         return  target_mem2array(interp, target, argc,argv);
2746 }
2747
2748 static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv)
2749 {
2750         long l;
2751         u32 width;
2752         int len;
2753         u32 addr;
2754         u32 count;
2755         u32 v;
2756         const char *varname;
2757         u8 buffer[4096];
2758         int  n, e, retval;
2759         u32 i;
2760
2761         /* argv[1] = name of array to receive the data
2762          * argv[2] = desired width
2763          * argv[3] = memory address
2764          * argv[4] = count of times to read
2765          */
2766         if (argc != 5) {
2767                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
2768                 return JIM_ERR;
2769         }
2770         varname = Jim_GetString(argv[1], &len);
2771         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
2772
2773         e = Jim_GetLong(interp, argv[2], &l);
2774         width = l;
2775         if (e != JIM_OK) {
2776                 return e;
2777         }
2778
2779         e = Jim_GetLong(interp, argv[3], &l);
2780         addr = l;
2781         if (e != JIM_OK) {
2782                 return e;
2783         }
2784         e = Jim_GetLong(interp, argv[4], &l);
2785         len = l;
2786         if (e != JIM_OK) {
2787                 return e;
2788         }
2789         switch (width) {
2790                 case 8:
2791                         width = 1;
2792                         break;
2793                 case 16:
2794                         width = 2;
2795                         break;
2796                 case 32:
2797                         width = 4;
2798                         break;
2799                 default:
2800                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2801                         Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
2802                         return JIM_ERR;
2803         }
2804         if (len == 0) {
2805                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2806                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
2807                 return JIM_ERR;
2808         }
2809         if ((addr + (len * width)) < addr) {
2810                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2811                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
2812                 return JIM_ERR;
2813         }
2814         /* absurd transfer size? */
2815         if (len > 65536) {
2816                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2817                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
2818                 return JIM_ERR;
2819         }
2820
2821         if ((width == 1) ||
2822                 ((width == 2) && ((addr & 1) == 0)) ||
2823                 ((width == 4) && ((addr & 3) == 0))) {
2824                 /* all is well */
2825         } else {
2826                 char buf[100];
2827                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2828                 sprintf(buf, "mem2array address: 0x%08x is not aligned for %d byte reads", addr, width);
2829                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
2830                 return JIM_ERR;
2831         }
2832
2833         /* Transfer loop */
2834
2835         /* index counter */
2836         n = 0;
2837         /* assume ok */
2838         e = JIM_OK;
2839         while (len) {
2840                 /* Slurp... in buffer size chunks */
2841
2842                 count = len; /* in objects.. */
2843                 if (count > (sizeof(buffer)/width)) {
2844                         count = (sizeof(buffer)/width);
2845                 }
2846
2847                 retval = target->type->read_memory( target, addr, width, count, buffer );
2848                 if (retval != ERROR_OK) {
2849                         /* BOO !*/
2850                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
2851                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2852                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
2853                         e = JIM_ERR;
2854                         len = 0;
2855                 } else {
2856                         v = 0; /* shut up gcc */
2857                         for (i = 0 ;i < count ;i++, n++) {
2858                                 switch (width) {
2859                                         case 4:
2860                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
2861                                                 break;
2862                                         case 2:
2863                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
2864                                                 break;
2865                                         case 1:
2866                                                 v = buffer[i] & 0x0ff;
2867                                                 break;
2868                                 }
2869                                 new_int_array_element(interp, varname, n, v);
2870                         }
2871                         len -= count;
2872                 }
2873         }
2874
2875         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2876
2877         return JIM_OK;
2878 }
2879
2880 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 *val)
2881 {
2882         char *namebuf;
2883         Jim_Obj *nameObjPtr, *valObjPtr;
2884         int result;
2885         long l;
2886
2887         namebuf = alloc_printf("%s(%d)", varname, idx);
2888         if (!namebuf)
2889                 return JIM_ERR;
2890
2891         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
2892         if (!nameObjPtr)
2893         {
2894                 free(namebuf);
2895                 return JIM_ERR;
2896         }
2897
2898         Jim_IncrRefCount(nameObjPtr);
2899         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
2900         Jim_DecrRefCount(interp, nameObjPtr);
2901         free(namebuf);
2902         if (valObjPtr == NULL)
2903                 return JIM_ERR;
2904
2905         result = Jim_GetLong(interp, valObjPtr, &l);
2906         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
2907         *val = l;
2908         return result;
2909 }
2910
2911 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
2912 {
2913         command_context_t *context;
2914         target_t *target;
2915
2916         context = Jim_GetAssocData(interp, "context");
2917         if (context == NULL){
2918                 LOG_ERROR("array2mem: no command context");
2919                 return JIM_ERR;
2920         }
2921         target = get_current_target(context);
2922         if (target == NULL){
2923                 LOG_ERROR("array2mem: no current target");
2924                 return JIM_ERR;
2925         }
2926
2927         return target_array2mem( interp,target, argc, argv );
2928 }
2929
2930 static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv)
2931 {
2932         long l;
2933         u32 width;
2934         int len;
2935         u32 addr;
2936         u32 count;
2937         u32 v;
2938         const char *varname;
2939         u8 buffer[4096];
2940         int  n, e, retval;
2941         u32 i;
2942
2943         /* argv[1] = name of array to get the data
2944          * argv[2] = desired width
2945          * argv[3] = memory address
2946          * argv[4] = count to write
2947          */
2948         if (argc != 5) {
2949                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
2950                 return JIM_ERR;
2951         }
2952         varname = Jim_GetString(argv[1], &len);
2953         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
2954
2955         e = Jim_GetLong(interp, argv[2], &l);
2956         width = l;
2957         if (e != JIM_OK) {
2958                 return e;
2959         }
2960
2961         e = Jim_GetLong(interp, argv[3], &l);
2962         addr = l;
2963         if (e != JIM_OK) {
2964                 return e;
2965         }
2966         e = Jim_GetLong(interp, argv[4], &l);
2967         len = l;
2968         if (e != JIM_OK) {
2969                 return e;
2970         }
2971         switch (width) {
2972                 case 8:
2973                         width = 1;
2974                         break;
2975                 case 16:
2976                         width = 2;
2977                         break;
2978                 case 32:
2979                         width = 4;
2980                         break;
2981                 default:
2982                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2983                         Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
2984                         return JIM_ERR;
2985         }
2986         if (len == 0) {
2987                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2988                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
2989                 return JIM_ERR;
2990         }
2991         if ((addr + (len * width)) < addr) {
2992                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2993                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
2994                 return JIM_ERR;
2995         }
2996         /* absurd transfer size? */
2997         if (len > 65536) {
2998                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2999                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
3000                 return JIM_ERR;
3001         }
3002
3003         if ((width == 1) ||
3004                 ((width == 2) && ((addr & 1) == 0)) ||
3005                 ((width == 4) && ((addr & 3) == 0))) {
3006                 /* all is well */
3007         } else {
3008                 char buf[100];
3009                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3010                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads", addr, width);
3011                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3012                 return JIM_ERR;
3013         }
3014
3015         /* Transfer loop */
3016
3017         /* index counter */
3018         n = 0;
3019         /* assume ok */
3020         e = JIM_OK;
3021         while (len) {
3022                 /* Slurp... in buffer size chunks */
3023
3024                 count = len; /* in objects.. */
3025                 if (count > (sizeof(buffer)/width)) {
3026                         count = (sizeof(buffer)/width);
3027                 }
3028
3029                 v = 0; /* shut up gcc */
3030                 for (i = 0 ;i < count ;i++, n++) {
3031                         get_int_array_element(interp, varname, n, &v);
3032                         switch (width) {
3033                         case 4:
3034                                 target_buffer_set_u32(target, &buffer[i*width], v);
3035                                 break;
3036                         case 2:
3037                                 target_buffer_set_u16(target, &buffer[i*width], v);
3038                                 break;
3039                         case 1:
3040                                 buffer[i] = v & 0x0ff;
3041                                 break;
3042                         }
3043                 }
3044                 len -= count;
3045
3046                 retval = target->type->write_memory(target, addr, width, count, buffer);
3047                 if (retval != ERROR_OK) {
3048                         /* BOO !*/
3049                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
3050                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3051                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3052                         e = JIM_ERR;
3053                         len = 0;
3054                 }
3055         }
3056
3057         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3058
3059         return JIM_OK;
3060 }
3061
3062 void target_all_handle_event( enum target_event e )
3063 {
3064         target_t *target;
3065
3066         LOG_DEBUG( "**all*targets: event: %d, %s",
3067                         e,
3068                         Jim_Nvp_value2name_simple( nvp_target_event, e )->name );
3069
3070         target = all_targets;
3071         while (target){
3072                 target_handle_event( target, e );
3073                 target = target->next;
3074         }
3075 }
3076
3077 void target_handle_event( target_t *target, enum target_event e )
3078 {
3079         target_event_action_t *teap;
3080         int done;
3081
3082         teap = target->event_action;
3083
3084         done = 0;
3085         while( teap ){
3086                 if( teap->event == e ){
3087                         done = 1;
3088                         LOG_DEBUG( "target: (%d) %s (%s) event: %d (%s) action: %s\n",
3089                                            target->target_number,
3090                                            target->cmd_name,
3091                                            target->type->name,
3092                                            e,
3093                                            Jim_Nvp_value2name_simple( nvp_target_event, e )->name,
3094                                            Jim_GetString( teap->body, NULL ) );
3095                         if (Jim_EvalObj( interp, teap->body )!=JIM_OK)
3096                         {
3097                                 Jim_PrintErrorMessage(interp);
3098                         }
3099                 }
3100                 teap = teap->next;
3101         }
3102         if( !done ){
3103                 LOG_DEBUG( "event: %d %s - no action",
3104                                    e,
3105                                    Jim_Nvp_value2name_simple( nvp_target_event, e )->name );
3106         }
3107 }
3108
3109 enum target_cfg_param {
3110         TCFG_TYPE,
3111         TCFG_EVENT,
3112         TCFG_WORK_AREA_VIRT,
3113         TCFG_WORK_AREA_PHYS,
3114         TCFG_WORK_AREA_SIZE,
3115         TCFG_WORK_AREA_BACKUP,
3116         TCFG_ENDIAN,
3117         TCFG_VARIANT,
3118         TCFG_CHAIN_POSITION,
3119 };
3120
3121 static Jim_Nvp nvp_config_opts[] = {
3122         { .name = "-type",             .value = TCFG_TYPE },
3123         { .name = "-event",            .value = TCFG_EVENT },
3124         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
3125         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
3126         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
3127         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3128         { .name = "-endian" ,          .value = TCFG_ENDIAN },
3129         { .name = "-variant",          .value = TCFG_VARIANT },
3130         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
3131
3132         { .name = NULL, .value = -1 }
3133 };
3134
3135 static int target_configure( Jim_GetOptInfo *goi, target_t *target )
3136 {
3137         Jim_Nvp *n;
3138         Jim_Obj *o;
3139         jim_wide w;
3140         char *cp;
3141         int e;
3142
3143         /* parse config or cget options ... */
3144         while( goi->argc > 0 ){
3145                 Jim_SetEmptyResult( goi->interp );
3146                 /* Jim_GetOpt_Debug( goi ); */
3147
3148                 if( target->type->target_jim_configure ){
3149                         /* target defines a configure function */
3150                         /* target gets first dibs on parameters */
3151                         e = (*(target->type->target_jim_configure))( target, goi );
3152                         if( e == JIM_OK ){
3153                                 /* more? */
3154                                 continue;
3155                         }
3156                         if( e == JIM_ERR ){
3157                                 /* An error */
3158                                 return e;
3159                         }
3160                         /* otherwise we 'continue' below */
3161                 }
3162                 e = Jim_GetOpt_Nvp( goi, nvp_config_opts, &n );
3163                 if( e != JIM_OK ){
3164                         Jim_GetOpt_NvpUnknown( goi, nvp_config_opts, 0 );
3165                         return e;
3166                 }
3167                 switch( n->value ){
3168                 case TCFG_TYPE:
3169                         /* not setable */
3170                         if( goi->isconfigure ){
3171                                 Jim_SetResult_sprintf( goi->interp, "not setable: %s", n->name );
3172                                 return JIM_ERR;
3173                         } else {
3174                         no_params:
3175                                 if( goi->argc != 0 ){
3176                                         Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "NO PARAMS");
3177                                         return JIM_ERR;
3178                                 }
3179                         }
3180                         Jim_SetResultString( goi->interp, target->type->name, -1 );
3181                         /* loop for more */
3182                         break;
3183                 case TCFG_EVENT:
3184                         if( goi->argc == 0 ){
3185                                 Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
3186                                 return JIM_ERR;
3187                         }
3188
3189                         e = Jim_GetOpt_Nvp( goi, nvp_target_event, &n );
3190                         if( e != JIM_OK ){
3191                                 Jim_GetOpt_NvpUnknown( goi, nvp_target_event, 1 );
3192                                 return e;
3193                         }
3194
3195                         if( goi->isconfigure ){
3196                                 if( goi->argc != 1 ){
3197                                         Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
3198                                         return JIM_ERR;
3199                                 }
3200                         } else {
3201                                 if( goi->argc != 0 ){
3202                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
3203                                         return JIM_ERR;
3204                                 }
3205                         }
3206
3207                         {
3208                                 target_event_action_t *teap;
3209
3210                                 teap = target->event_action;
3211                                 /* replace existing? */
3212                                 while( teap ){
3213                                         if( teap->event == (enum target_event)n->value ){
3214                                                 break;
3215                                         }
3216                                         teap = teap->next;
3217                                 }
3218
3219                                 if( goi->isconfigure ){
3220                                         if( teap == NULL ){
3221                                                 /* create new */
3222                                                 teap = calloc( 1, sizeof(*teap) );
3223                                         }
3224                                         teap->event = n->value;
3225                                         Jim_GetOpt_Obj( goi, &o );
3226                                         if( teap->body ){
3227                                                 Jim_DecrRefCount( interp, teap->body );
3228                                         }
3229                                         teap->body  = Jim_DuplicateObj( goi->interp, o );
3230                                         /*
3231                                          * FIXME:
3232                                          *     Tcl/TK - "tk events" have a nice feature.
3233                                          *     See the "BIND" command.
3234                                          *    We should support that here.
3235                                          *     You can specify %X and %Y in the event code.
3236                                          *     The idea is: %T - target name.
3237                                          *     The idea is: %N - target number
3238                                          *     The idea is: %E - event name.
3239                                          */
3240                                         Jim_IncrRefCount( teap->body );
3241
3242                                         /* add to head of event list */
3243                                         teap->next = target->event_action;
3244                                         target->event_action = teap;
3245                                         Jim_SetEmptyResult(goi->interp);
3246                                 } else {
3247                                         /* get */
3248                                         if( teap == NULL ){
3249                                                 Jim_SetEmptyResult( goi->interp );
3250                                         } else {
3251                                                 Jim_SetResult( goi->interp, Jim_DuplicateObj( goi->interp, teap->body ) );
3252                                         }
3253                                 }
3254                         }
3255                         /* loop for more */
3256                         break;
3257
3258                 case TCFG_WORK_AREA_VIRT:
3259                         if( goi->isconfigure ){
3260                                 target_free_all_working_areas(target);
3261                                 e = Jim_GetOpt_Wide( goi, &w );
3262                                 if( e != JIM_OK ){
3263                                         return e;
3264                                 }
3265                                 target->working_area_virt = w;
3266                         } else {
3267                                 if( goi->argc != 0 ){
3268                                         goto no_params;
3269                                 }
3270                         }
3271                         Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_virt ) );
3272                         /* loop for more */
3273                         break;
3274
3275                 case TCFG_WORK_AREA_PHYS:
3276                         if( goi->isconfigure ){
3277                                 target_free_all_working_areas(target);
3278                                 e = Jim_GetOpt_Wide( goi, &w );
3279                                 if( e != JIM_OK ){
3280                                         return e;
3281                                 }
3282                                 target->working_area_phys = w;
3283                         } else {
3284                                 if( goi->argc != 0 ){
3285                                         goto no_params;
3286                                 }
3287                         }
3288                         Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_phys ) );
3289                         /* loop for more */
3290                         break;
3291
3292                 case TCFG_WORK_AREA_SIZE:
3293                         if( goi->isconfigure ){
3294                                 target_free_all_working_areas(target);
3295                                 e = Jim_GetOpt_Wide( goi, &w );
3296                                 if( e != JIM_OK ){
3297                                         return e;
3298                                 }
3299                                 target->working_area_size = w;
3300                         } else {
3301                                 if( goi->argc != 0 ){
3302                                         goto no_params;
3303                                 }
3304                         }
3305                         Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_size ) );
3306                         /* loop for more */
3307                         break;
3308
3309                 case TCFG_WORK_AREA_BACKUP:
3310                         if( goi->isconfigure ){
3311                                 target_free_all_working_areas(target);
3312                                 e = Jim_GetOpt_Wide( goi, &w );
3313                                 if( e != JIM_OK ){
3314                                         return e;
3315                                 }
3316                                 /* make this exactly 1 or 0 */
3317                                 target->backup_working_area = (!!w);
3318                         } else {
3319                                 if( goi->argc != 0 ){
3320                                         goto no_params;
3321                                 }
3322                         }
3323                         Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_size ) );
3324                         /* loop for more e*/
3325                         break;
3326
3327                 case TCFG_ENDIAN:
3328                         if( goi->isconfigure ){
3329                                 e = Jim_GetOpt_Nvp( goi, nvp_target_endian, &n );
3330                                 if( e != JIM_OK ){
3331                                         Jim_GetOpt_NvpUnknown( goi, nvp_target_endian, 1 );
3332                                         return e;
3333                                 }
3334                                 target->endianness = n->value;
3335                         } else {
3336                                 if( goi->argc != 0 ){
3337                                         goto no_params;
3338                                 }
3339                         }
3340                         n = Jim_Nvp_value2name_simple( nvp_target_endian, target->endianness );
3341                         if( n->name == NULL ){
3342                                 target->endianness = TARGET_LITTLE_ENDIAN;
3343                                 n = Jim_Nvp_value2name_simple( nvp_target_endian, target->endianness );
3344                         }
3345                         Jim_SetResultString( goi->interp, n->name, -1 );
3346                         /* loop for more */
3347                         break;
3348
3349                 case TCFG_VARIANT:
3350                         if( goi->isconfigure ){
3351                                 if( goi->argc < 1 ){
3352                                         Jim_SetResult_sprintf( goi->interp,
3353                                                                                    "%s ?STRING?",
3354                                                                                    n->name );
3355                                         return JIM_ERR;
3356                                 }
3357                                 if( target->variant ){
3358                                         free((void *)(target->variant));
3359                                 }
3360                                 e = Jim_GetOpt_String( goi, &cp, NULL );
3361                                 target->variant = strdup(cp);
3362                         } else {
3363                                 if( goi->argc != 0 ){
3364                                         goto no_params;
3365                                 }
3366                         }
3367                         Jim_SetResultString( goi->interp, target->variant,-1 );
3368                         /* loop for more */
3369                         break;
3370                 case TCFG_CHAIN_POSITION:
3371                         if( goi->isconfigure ){
3372                                 Jim_Obj *o;
3373                                 jtag_tap_t *tap;
3374                                 target_free_all_working_areas(target);
3375                                 e = Jim_GetOpt_Obj( goi, &o );
3376                                 if( e != JIM_OK ){
3377                                         return e;
3378                                 }
3379                                 tap = jtag_TapByJimObj( goi->interp, o );
3380                                 if( tap == NULL ){
3381                                         return JIM_ERR;
3382                                 }
3383                                 /* make this exactly 1 or 0 */
3384                                 target->tap = tap;
3385                         } else {
3386                                 if( goi->argc != 0 ){
3387                                         goto no_params;
3388                                 }
3389                         }
3390                         Jim_SetResultString( interp, target->tap->dotted_name, -1 );
3391                         /* loop for more e*/
3392                         break;
3393                 }
3394         } /* while( goi->argc ) */
3395
3396
3397                 /* done - we return */
3398         return JIM_OK;
3399 }
3400
3401 /** this is the 'tcl' handler for the target specific command */
3402 static int tcl_target_func( Jim_Interp *interp, int argc, Jim_Obj *const *argv )
3403 {
3404         Jim_GetOptInfo goi;
3405         jim_wide a,b,c;
3406         int x,y,z;
3407         u8  target_buf[32];
3408         Jim_Nvp *n;
3409         target_t *target;
3410         struct command_context_s *cmd_ctx;
3411         int e;
3412
3413         enum {
3414                 TS_CMD_CONFIGURE,
3415                 TS_CMD_CGET,
3416
3417                 TS_CMD_MWW, TS_CMD_MWH, TS_CMD_MWB,
3418                 TS_CMD_MDW, TS_CMD_MDH, TS_CMD_MDB,
3419                 TS_CMD_MRW, TS_CMD_MRH, TS_CMD_MRB,
3420                 TS_CMD_MEM2ARRAY, TS_CMD_ARRAY2MEM,
3421                 TS_CMD_EXAMINE,
3422                 TS_CMD_POLL,
3423                 TS_CMD_RESET,
3424                 TS_CMD_HALT,
3425                 TS_CMD_WAITSTATE,
3426                 TS_CMD_EVENTLIST,
3427                 TS_CMD_CURSTATE,
3428                 TS_CMD_INVOKE_EVENT,
3429         };
3430
3431         static const Jim_Nvp target_options[] = {
3432                 { .name = "configure", .value = TS_CMD_CONFIGURE },
3433                 { .name = "cget", .value = TS_CMD_CGET },
3434                 { .name = "mww", .value = TS_CMD_MWW },
3435                 { .name = "mwh", .value = TS_CMD_MWH },
3436                 { .name = "mwb", .value = TS_CMD_MWB },
3437                 { .name = "mdw", .value = TS_CMD_MDW },
3438                 { .name = "mdh", .value = TS_CMD_MDH },
3439                 { .name = "mdb", .value = TS_CMD_MDB },
3440                 { .name = "mem2array", .value = TS_CMD_MEM2ARRAY },
3441                 { .name = "array2mem", .value = TS_CMD_ARRAY2MEM },
3442                 { .name = "eventlist", .value = TS_CMD_EVENTLIST },
3443                 { .name = "curstate",  .value = TS_CMD_CURSTATE },
3444
3445                 { .name = "arp_examine", .value = TS_CMD_EXAMINE },
3446                 { .name = "arp_poll", .value = TS_CMD_POLL },
3447                 { .name = "arp_reset", .value = TS_CMD_RESET },
3448                 { .name = "arp_halt", .value = TS_CMD_HALT },
3449                 { .name = "arp_waitstate", .value = TS_CMD_WAITSTATE },
3450                 { .name = "invoke-event", .value = TS_CMD_INVOKE_EVENT },
3451
3452                 { .name = NULL, .value = -1 },
3453         };
3454
3455         /* go past the "command" */
3456         Jim_GetOpt_Setup( &goi, interp, argc-1, argv+1 );
3457
3458         target = Jim_CmdPrivData( goi.interp );
3459         cmd_ctx = Jim_GetAssocData(goi.interp, "context");
3460
3461         /* commands here are in an NVP table */
3462         e = Jim_GetOpt_Nvp( &goi, target_options, &n );
3463         if( e != JIM_OK ){
3464                 Jim_GetOpt_NvpUnknown( &goi, target_options, 0 );
3465                 return e;
3466         }
3467         /* Assume blank result */
3468         Jim_SetEmptyResult( goi.interp );
3469
3470         switch( n->value ){
3471         case TS_CMD_CONFIGURE:
3472                 if( goi.argc < 2 ){
3473                         Jim_WrongNumArgs( goi.interp, goi.argc, goi.argv, "missing: -option VALUE ...");
3474                         return JIM_ERR;
3475                 }
3476                 goi.isconfigure = 1;
3477                 return target_configure( &goi, target );
3478         case TS_CMD_CGET:
3479                 // some things take params
3480                 if( goi.argc < 1 ){
3481                         Jim_WrongNumArgs( goi.interp, 0, goi.argv, "missing: ?-option?");
3482                         return JIM_ERR;
3483                 }
3484                 goi.isconfigure = 0;
3485                 return target_configure( &goi, target );
3486                 break;
3487         case TS_CMD_MWW:
3488         case TS_CMD_MWH:
3489         case TS_CMD_MWB:
3490                 /* argv[0] = cmd
3491                  * argv[1] = address
3492                  * argv[2] = data
3493                  * argv[3] = optional count.
3494                  */
3495
3496                 if( (goi.argc == 3) || (goi.argc == 4) ){
3497                         /* all is well */
3498                 } else {
3499                 mwx_error:
3500                         Jim_SetResult_sprintf( goi.interp, "expected: %s ADDR DATA [COUNT]", n->name );
3501                         return JIM_ERR;
3502                 }
3503
3504                 e = Jim_GetOpt_Wide( &goi, &a );
3505                 if( e != JIM_OK ){
3506                         goto mwx_error;
3507                 }
3508
3509                 e = Jim_GetOpt_Wide( &goi, &b );
3510                 if( e != JIM_OK ){
3511                         goto mwx_error;
3512                 }
3513                 if( goi.argc ){
3514                         e = Jim_GetOpt_Wide( &goi, &c );
3515                         if( e != JIM_OK ){
3516                                 goto mwx_error;
3517                         }
3518                 } else {
3519                         c = 1;
3520                 }
3521
3522                 switch( n->value ){
3523                 case TS_CMD_MWW:
3524                         target_buffer_set_u32( target, target_buf, b );
3525                         b = 4;
3526                         break;
3527                 case TS_CMD_MWH:
3528                         target_buffer_set_u16( target, target_buf, b );
3529                         b = 2;
3530                         break;
3531                 case TS_CMD_MWB:
3532                         target_buffer_set_u8( target, target_buf, b );
3533                         b = 1;
3534                         break;
3535                 }
3536                 for( x = 0 ; x < c ; x++ ){
3537                         e = target->type->write_memory( target, a, b, 1, target_buf );
3538                         if( e != ERROR_OK ){
3539                                 Jim_SetResult_sprintf( interp, "Error writing @ 0x%08x: %d\n", (int)(a), e );
3540                                 return JIM_ERR;
3541                         }
3542                         /* b = width */
3543                         a = a + b;
3544                 }
3545                 return JIM_OK;
3546                 break;
3547
3548                 /* display */
3549         case TS_CMD_MDW:
3550         case TS_CMD_MDH:
3551         case TS_CMD_MDB:
3552                 /* argv[0] = command
3553                  * argv[1] = address
3554                  * argv[2] = optional count
3555                  */
3556                 if( (goi.argc == 2) || (goi.argc == 3) ){
3557                         Jim_SetResult_sprintf( goi.interp, "expected: %s ADDR [COUNT]", n->name );
3558                         return JIM_ERR;
3559                 }
3560                 e = Jim_GetOpt_Wide( &goi, &a );
3561                 if( e != JIM_OK ){
3562                         return JIM_ERR;
3563                 }
3564                 if( goi.argc ){
3565                         e = Jim_GetOpt_Wide( &goi, &c );
3566                         if( e != JIM_OK ){
3567                                 return JIM_ERR;
3568                         }
3569                 } else {
3570                         c = 1;
3571                 }
3572                 b = 1; /* shut up gcc */
3573                 switch( n->value ){
3574                 case TS_CMD_MDW:
3575                         b =  4;
3576                         break;
3577                 case TS_CMD_MDH:
3578                         b = 2;
3579                         break;
3580                 case TS_CMD_MDB:
3581                         b = 1;
3582                         break;
3583                 }
3584
3585                 /* convert to "bytes" */
3586                 c = c * b;
3587                 /* count is now in 'BYTES' */
3588                 while( c > 0 ){
3589                         y = c;
3590                         if( y > 16 ){
3591                                 y = 16;
3592                         }
3593                         e = target->type->read_memory( target, a, b, y / b, target_buf );
3594                         if( e != ERROR_OK ){
3595                                 Jim_SetResult_sprintf( interp, "error reading target @ 0x%08lx", (int)(a) );
3596                                 return JIM_ERR;
3597                         }
3598
3599                         Jim_fprintf( interp, interp->cookie_stdout, "0x%08x ", (int)(a) );
3600                         switch( b ){
3601                         case 4:
3602                                 for( x = 0 ; (x < 16) && (x < y) ; x += 4 ){
3603                                         z = target_buffer_get_u32( target, &(target_buf[ x * 4 ]) );
3604                                         Jim_fprintf( interp, interp->cookie_stdout, "%08x ", (int)(z) );
3605                                 }
3606                                 for( ; (x < 16) ; x += 4 ){
3607                                         Jim_fprintf( interp, interp->cookie_stdout, "         " );
3608                                 }
3609                                 break;
3610                         case 2:
3611                                 for( x = 0 ; (x < 16) && (x < y) ; x += 2 ){
3612                                         z = target_buffer_get_u16( target, &(target_buf[ x * 2 ]) );
3613                                         Jim_fprintf( interp, interp->cookie_stdout, "%04x ", (int)(z) );
3614                                 }
3615                                 for( ; (x < 16) ; x += 2 ){
3616                                         Jim_fprintf( interp, interp->cookie_stdout, "     " );
3617                                 }
3618                                 break;
3619                         case 1:
3620                         default:
3621                                 for( x = 0 ; (x < 16) && (x < y) ; x += 1 ){
3622                                         z = target_buffer_get_u8( target, &(target_buf[ x * 4 ]) );
3623                                         Jim_fprintf( interp, interp->cookie_stdout, "%02x ", (int)(z) );
3624                                 }
3625                                 for( ; (x < 16) ; x += 1 ){
3626                                         Jim_fprintf( interp, interp->cookie_stdout, "   " );
3627                                 }
3628                                 break;
3629                         }
3630                         /* ascii-ify the bytes */
3631                         for( x = 0 ; x < y ; x++ ){
3632                                 if( (target_buf[x] >= 0x20) &&
3633                                         (target_buf[x] <= 0x7e) ){
3634                                         /* good */
3635                                 } else {
3636                                         /* smack it */
3637                                         target_buf[x] = '.';
3638                                 }
3639                         }
3640                         /* space pad  */
3641                         while( x < 16 ){
3642                                 target_buf[x] = ' ';
3643                                 x++;
3644                         }
3645                         /* terminate */
3646                         target_buf[16] = 0;
3647                         /* print - with a newline */
3648                         Jim_fprintf( interp, interp->cookie_stdout, "%s\n", target_buf );
3649                         /* NEXT... */
3650                         c -= 16;
3651                         a += 16;
3652                 }
3653                 return JIM_OK;
3654         case TS_CMD_MEM2ARRAY:
3655                 return target_mem2array( goi.interp, target, goi.argc, goi.argv );
3656                 break;
3657         case TS_CMD_ARRAY2MEM:
3658                 return target_array2mem( goi.interp, target, goi.argc, goi.argv );
3659                 break;
3660         case TS_CMD_EXAMINE:
3661                 if( goi.argc ){
3662                         Jim_WrongNumArgs( goi.interp, 2, argv, "[no parameters]");
3663                         return JIM_ERR;
3664                 }
3665                 e = target->type->examine( target );
3666                 if( e != ERROR_OK ){
3667                         Jim_SetResult_sprintf( interp, "examine-fails: %d", e );
3668                         return JIM_ERR;
3669                 }
3670                 return JIM_OK;
3671         case TS_CMD_POLL:
3672                 if( goi.argc ){
3673                         Jim_WrongNumArgs( goi.interp, 2, argv, "[no parameters]");
3674                         return JIM_ERR;
3675                 }
3676                 if( !(target->type->examined) ){
3677                         e = ERROR_TARGET_NOT_EXAMINED;
3678                 } else {
3679                         e = target->type->poll( target );
3680                 }
3681                 if( e != ERROR_OK ){
3682                         Jim_SetResult_sprintf( interp, "poll-fails: %d", e );
3683                         return JIM_ERR;
3684                 } else {
3685                         return JIM_OK;
3686                 }
3687                 break;
3688         case TS_CMD_RESET:
3689                 if( goi.argc != 2 ){
3690                         Jim_WrongNumArgs( interp, 2, argv, "t|f|assert|deassert BOOL");
3691                         return JIM_ERR;
3692                 }
3693                 e = Jim_GetOpt_Nvp( &goi, nvp_assert, &n );
3694                 if( e != JIM_OK ){
3695                         Jim_GetOpt_NvpUnknown( &goi, nvp_assert, 1 );
3696                         return e;
3697                 }
3698                 /* the halt or not param */
3699                 e = Jim_GetOpt_Wide( &goi, &a);
3700                 if( e != JIM_OK ){
3701                         return e;
3702                 }
3703                 /* determine if we should halt or not. */
3704                 target->reset_halt = !!a;
3705                 /* When this happens - all workareas are invalid. */
3706                 target_free_all_working_areas_restore(target, 0);
3707
3708                 /* do the assert */
3709                 if( n->value == NVP_ASSERT ){
3710                         target->type->assert_reset( target );
3711                 } else {
3712                         target->type->deassert_reset( target );
3713                 }
3714                 return JIM_OK;
3715         case TS_CMD_HALT:
3716                 if( goi.argc ){
3717                         Jim_WrongNumArgs( goi.interp, 0, argv, "halt [no parameters]");
3718                         return JIM_ERR;
3719                 }
3720                 target->type->halt( target );
3721                 return JIM_OK;
3722         case TS_CMD_WAITSTATE:
3723                 /* params:  <name>  statename timeoutmsecs */
3724                 if( goi.argc != 2 ){
3725                         Jim_SetResult_sprintf( goi.interp, "%s STATENAME TIMEOUTMSECS", n->name );
3726                         return JIM_ERR;
3727                 }
3728                 e = Jim_GetOpt_Nvp( &goi, nvp_target_state, &n );
3729                 if( e != JIM_OK ){
3730                         Jim_GetOpt_NvpUnknown( &goi, nvp_target_state,1 );
3731                         return e;
3732                 }
3733                 e = Jim_GetOpt_Wide( &goi, &a );
3734                 if( e != JIM_OK ){
3735                         return e;
3736                 }
3737                 e = target_wait_state( target, n->value, a );
3738                 if( e != ERROR_OK ){
3739                         Jim_SetResult_sprintf( goi.interp,
3740                                                                    "target: %s wait %s fails (%d) %s",
3741                                                                    target->cmd_name,
3742                                                                    n->name,
3743                                                                    e, target_strerror_safe(e) );
3744                         return JIM_ERR;
3745                 } else {
3746                         return JIM_OK;
3747                 }
3748         case TS_CMD_EVENTLIST:
3749                 /* List for human, Events defined for this target.
3750                  * scripts/programs should use 'name cget -event NAME'
3751                  */
3752                 {
3753                         target_event_action_t *teap;
3754                         teap = target->event_action;
3755                         command_print( cmd_ctx, "Event actions for target (%d) %s\n",
3756                                                    target->target_number,
3757                                                    target->cmd_name );
3758                         command_print( cmd_ctx, "%-25s | Body", "Event");
3759                         command_print( cmd_ctx, "------------------------- | ----------------------------------------");
3760                         while( teap ){
3761                                 command_print( cmd_ctx,
3762                                                            "%-25s | %s",
3763                                                            Jim_Nvp_value2name_simple( nvp_target_event, teap->event )->name,
3764                                                            Jim_GetString( teap->body, NULL ) );
3765                                 teap = teap->next;
3766                         }
3767                         command_print( cmd_ctx, "***END***");
3768                         return JIM_OK;
3769                 }
3770         case TS_CMD_CURSTATE:
3771                 if( goi.argc != 0 ){
3772                         Jim_WrongNumArgs( goi.interp, 0, argv, "[no parameters]");
3773                         return JIM_ERR;
3774                 }
3775                 Jim_SetResultString( goi.interp,
3776                                                          Jim_Nvp_value2name_simple(nvp_target_state,target->state)->name,-1);
3777                 return JIM_OK;
3778         case TS_CMD_INVOKE_EVENT:
3779                 if( goi.argc != 1 ){
3780                         Jim_SetResult_sprintf( goi.interp, "%s ?EVENTNAME?",n->name);
3781                         return JIM_ERR;
3782                 }
3783                 e = Jim_GetOpt_Nvp( &goi, nvp_target_event, &n );
3784                 if( e != JIM_OK ){
3785                         Jim_GetOpt_NvpUnknown( &goi, nvp_target_event, 1 );
3786                         return e;
3787                 }
3788                 target_handle_event( target, n->value );
3789                 return JIM_OK;
3790         }
3791         return JIM_ERR;
3792 }
3793
3794 static int target_create( Jim_GetOptInfo *goi )
3795 {
3796         Jim_Obj *new_cmd;
3797         Jim_Cmd *cmd;
3798         const char *cp;
3799         char *cp2;
3800         int e;
3801         int x;
3802         target_t *target;
3803         struct command_context_s *cmd_ctx;
3804
3805         cmd_ctx = Jim_GetAssocData(goi->interp, "context");
3806         if( goi->argc < 3 ){
3807                 Jim_WrongNumArgs( goi->interp, 1, goi->argv, "?name? ?type? ..options...");
3808                 return JIM_ERR;
3809         }
3810
3811         /* COMMAND */
3812         Jim_GetOpt_Obj( goi, &new_cmd );
3813         /* does this command exist? */
3814         cmd = Jim_GetCommand( goi->interp, new_cmd, JIM_ERRMSG );
3815         if( cmd ){
3816                 cp = Jim_GetString( new_cmd, NULL );
3817                 Jim_SetResult_sprintf(goi->interp, "Command/target: %s Exists", cp);
3818                 return JIM_ERR;
3819         }
3820
3821         /* TYPE */
3822         e = Jim_GetOpt_String( goi, &cp2, NULL );
3823         cp = cp2;
3824         /* now does target type exist */
3825         for( x = 0 ; target_types[x] ; x++ ){
3826                 if( 0 == strcmp( cp, target_types[x]->name ) ){
3827                         /* found */
3828                         break;
3829                 }
3830         }
3831         if( target_types[x] == NULL ){
3832                 Jim_SetResult_sprintf( goi->interp, "Unknown target type %s, try one of ", cp );
3833                 for( x = 0 ; target_types[x] ; x++ ){
3834                         if( target_types[x+1] ){
3835                                 Jim_AppendStrings( goi->interp,
3836                                                                    Jim_GetResult(goi->interp),
3837                                                                    target_types[x]->name,
3838                                                                    ", ", NULL);
3839                         } else {
3840                                 Jim_AppendStrings( goi->interp,
3841                                                                    Jim_GetResult(goi->interp),
3842                                                                    " or ",
3843                                                                    target_types[x]->name,NULL );
3844                         }
3845                 }
3846                 return JIM_ERR;
3847         }
3848
3849         /* Create it */
3850         target = calloc(1,sizeof(target_t));
3851         /* set target number */
3852         target->target_number = new_target_number();
3853
3854         /* allocate memory for each unique target type */
3855         target->type = (target_type_t*)calloc(1,sizeof(target_type_t));
3856
3857         memcpy( target->type, target_types[x], sizeof(target_type_t));
3858
3859         /* will be set by "-endian" */
3860         target->endianness = TARGET_ENDIAN_UNKNOWN;
3861
3862         target->working_area        = 0x0;
3863         target->working_area_size   = 0x0;
3864         target->working_areas       = NULL;
3865         target->backup_working_area = 0;
3866
3867         target->state               = TARGET_UNKNOWN;
3868         target->debug_reason        = DBG_REASON_UNDEFINED;
3869         target->reg_cache           = NULL;
3870         target->breakpoints         = NULL;
3871         target->watchpoints         = NULL;
3872         target->next                = NULL;
3873         target->arch_info           = NULL;
3874
3875         target->display             = 1;
3876
3877         /* initialize trace information */
3878         target->trace_info = malloc(sizeof(trace_t));
3879         target->trace_info->num_trace_points         = 0;
3880         target->trace_info->trace_points_size        = 0;
3881         target->trace_info->trace_points             = NULL;
3882         target->trace_info->trace_history_size       = 0;
3883         target->trace_info->trace_history            = NULL;
3884         target->trace_info->trace_history_pos        = 0;
3885         target->trace_info->trace_history_overflowed = 0;
3886
3887         target->dbgmsg          = NULL;
3888         target->dbg_msg_enabled = 0;
3889
3890         target->endianness = TARGET_ENDIAN_UNKNOWN;
3891
3892         /* Do the rest as "configure" options */
3893         goi->isconfigure = 1;
3894         e = target_configure( goi, target);
3895
3896         if (target->tap == NULL)
3897         {
3898                 Jim_SetResultString( interp, "-chain-position required when creating target", -1);
3899                 e=JIM_ERR;
3900         }
3901
3902         if( e != JIM_OK ){
3903                 free( target->type );
3904                 free( target );
3905                 return e;
3906         }
3907
3908         if( target->endianness == TARGET_ENDIAN_UNKNOWN ){
3909                 /* default endian to little if not specified */
3910                 target->endianness = TARGET_LITTLE_ENDIAN;
3911         }
3912
3913         /* incase variant is not set */
3914         if (!target->variant)
3915                 target->variant = strdup("");
3916
3917         /* create the target specific commands */
3918         if( target->type->register_commands ){
3919                 (*(target->type->register_commands))( cmd_ctx );
3920         }
3921         if( target->type->target_create ){
3922                 (*(target->type->target_create))( target, goi->interp );
3923         }
3924
3925         /* append to end of list */
3926         {
3927                 target_t **tpp;
3928                 tpp = &(all_targets);
3929                 while( *tpp ){
3930                         tpp = &( (*tpp)->next );
3931                 }
3932                 *tpp = target;
3933         }
3934
3935         cp = Jim_GetString( new_cmd, NULL );
3936         target->cmd_name = strdup(cp);
3937
3938         /* now - create the new target name command */
3939         e = Jim_CreateCommand( goi->interp,
3940                                                    /* name */
3941                                                    cp,
3942                                                    tcl_target_func, /* C function */
3943                                                    target, /* private data */
3944                                                    NULL ); /* no del proc */
3945
3946         return e;
3947 }
3948
3949 static int jim_target( Jim_Interp *interp, int argc, Jim_Obj *const *argv )
3950 {
3951         int x,r,e;
3952         jim_wide w;
3953         struct command_context_s *cmd_ctx;
3954         target_t *target;
3955         Jim_GetOptInfo goi;
3956         enum tcmd {
3957                 /* TG = target generic */
3958                 TG_CMD_CREATE,
3959                 TG_CMD_TYPES,
3960                 TG_CMD_NAMES,
3961                 TG_CMD_CURRENT,
3962                 TG_CMD_NUMBER,
3963                 TG_CMD_COUNT,
3964         };
3965         const char *target_cmds[] = {
3966                 "create", "types", "names", "current", "number",
3967                 "count",
3968                 NULL /* terminate */
3969         };
3970
3971         LOG_DEBUG("Target command params:");
3972         LOG_DEBUG("%s", Jim_Debug_ArgvString(interp, argc, argv));
3973
3974         cmd_ctx = Jim_GetAssocData( interp, "context" );
3975
3976         Jim_GetOpt_Setup( &goi, interp, argc-1, argv+1 );
3977
3978         if( goi.argc == 0 ){
3979                 Jim_WrongNumArgs(interp, 1, argv, "missing: command ...");
3980                 return JIM_ERR;
3981         }
3982
3983         /* Jim_GetOpt_Debug( &goi ); */
3984         r = Jim_GetOpt_Enum( &goi, target_cmds, &x   );
3985         if( r != JIM_OK ){
3986                 return r;
3987         }
3988
3989         switch(x){
3990         default:
3991                 Jim_Panic(goi.interp,"Why am I here?");
3992                 return JIM_ERR;
3993         case TG_CMD_CURRENT:
3994                 if( goi.argc != 0 ){
3995                         Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters");
3996                         return JIM_ERR;
3997                 }
3998                 Jim_SetResultString( goi.interp, get_current_target( cmd_ctx )->cmd_name, -1 );
3999                 return JIM_OK;
4000         case TG_CMD_TYPES:
4001                 if( goi.argc != 0 ){
4002                         Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters" );
4003                         return JIM_ERR;
4004                 }
4005                 Jim_SetResult( goi.interp, Jim_NewListObj( goi.interp, NULL, 0 ) );
4006                 for( x = 0 ; target_types[x] ; x++ ){
4007                         Jim_ListAppendElement( goi.interp,
4008                                                                    Jim_GetResult(goi.interp),
4009                                                                    Jim_NewStringObj( goi.interp, target_types[x]->name, -1 ) );
4010                 }
4011                 return JIM_OK;
4012         case TG_CMD_NAMES:
4013                 if( goi.argc != 0 ){
4014                         Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters" );
4015                         return JIM_ERR;
4016                 }
4017                 Jim_SetResult( goi.interp, Jim_NewListObj( goi.interp, NULL, 0 ) );
4018                 target = all_targets;
4019                 while( target ){
4020                         Jim_ListAppendElement( goi.interp,
4021                                                                    Jim_GetResult(goi.interp),
4022                                                                    Jim_NewStringObj( goi.interp, target->cmd_name, -1 ) );
4023                         target = target->next;
4024                 }
4025                 return JIM_OK;
4026         case TG_CMD_CREATE:
4027                 if( goi.argc < 3 ){
4028                         Jim_WrongNumArgs( goi.interp, goi.argc, goi.argv, "?name  ... config options ...");
4029                         return JIM_ERR;
4030                 }
4031                 return target_create( &goi );
4032                 break;
4033         case TG_CMD_NUMBER:
4034                 if( goi.argc != 1 ){
4035                         Jim_SetResult_sprintf( goi.interp, "expected: target number ?NUMBER?");
4036                         return JIM_ERR;
4037                 }
4038                 e = Jim_GetOpt_Wide( &goi, &w );
4039                 if( e != JIM_OK ){
4040                         return JIM_ERR;
4041                 }
4042                 {
4043                         target_t *t;
4044                         t = get_target_by_num(w);
4045                         if( t == NULL ){
4046                                 Jim_SetResult_sprintf( goi.interp,"Target: number %d does not exist", (int)(w));
4047                                 return JIM_ERR;
4048                         }
4049                         Jim_SetResultString( goi.interp, t->cmd_name, -1 );
4050                         return JIM_OK;
4051                 }
4052         case TG_CMD_COUNT:
4053                 if( goi.argc != 0 ){
4054                         Jim_WrongNumArgs( goi.interp, 0, goi.argv, "<no parameters>");
4055                         return JIM_ERR;
4056                 }
4057                 Jim_SetResult( goi.interp,
4058                                            Jim_NewIntObj( goi.interp, max_target_number()));
4059                 return JIM_OK;
4060         }
4061
4062         return JIM_ERR;
4063 }
4064
4065
4066 struct FastLoad
4067 {
4068         u32 address;
4069         u8 *data;
4070         int length;
4071
4072 };
4073
4074 static int fastload_num;
4075 static struct FastLoad *fastload;
4076
4077 static void free_fastload(void)
4078 {
4079         if (fastload!=NULL)
4080         {
4081                 int i;
4082                 for (i=0; i<fastload_num; i++)
4083                 {
4084                         if (fastload[i].data)
4085                                 free(fastload[i].data);
4086                 }
4087                 free(fastload);
4088                 fastload=NULL;
4089         }
4090 }
4091
4092
4093
4094
4095 static int handle_fast_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
4096 {
4097         u8 *buffer;
4098         u32 buf_cnt;
4099         u32 image_size;
4100         u32 min_address=0;
4101         u32 max_address=0xffffffff;
4102         int i;
4103         int retval;
4104
4105         image_t image;
4106
4107         duration_t duration;
4108         char *duration_text;
4109
4110         if ((argc < 1)||(argc > 5))
4111         {
4112                 return ERROR_COMMAND_SYNTAX_ERROR;
4113         }
4114
4115         /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
4116         if (argc >= 2)
4117         {
4118                 image.base_address_set = 1;
4119                 image.base_address = strtoul(args[1], NULL, 0);
4120         }
4121         else
4122         {
4123                 image.base_address_set = 0;
4124         }
4125
4126
4127         image.start_address_set = 0;
4128
4129         if (argc>=4)
4130         {
4131                 min_address=strtoul(args[3], NULL, 0);
4132         }
4133         if (argc>=5)
4134         {
4135                 max_address=strtoul(args[4], NULL, 0)+min_address;
4136         }
4137
4138         if (min_address>max_address)
4139         {
4140                 return ERROR_COMMAND_SYNTAX_ERROR;
4141         }
4142
4143         duration_start_measure(&duration);
4144
4145         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
4146         {
4147                 return ERROR_OK;
4148         }
4149
4150         image_size = 0x0;
4151         retval = ERROR_OK;
4152         fastload_num=image.num_sections;
4153         fastload=(struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
4154         if (fastload==NULL)
4155         {
4156                 image_close(&image);
4157                 return ERROR_FAIL;
4158         }
4159         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
4160         for (i = 0; i < image.num_sections; i++)
4161         {
4162                 buffer = malloc(image.sections[i].size);
4163                 if (buffer == NULL)
4164                 {
4165                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
4166                         break;
4167                 }
4168
4169                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
4170                 {
4171                         free(buffer);
4172                         break;
4173                 }
4174
4175                 u32 offset=0;
4176                 u32 length=buf_cnt;
4177
4178
4179                 /* DANGER!!! beware of unsigned comparision here!!! */
4180
4181                 if ((image.sections[i].base_address+buf_cnt>=min_address)&&
4182                                 (image.sections[i].base_address<max_address))
4183                 {
4184                         if (image.sections[i].base_address<min_address)
4185                         {
4186                                 /* clip addresses below */
4187                                 offset+=min_address-image.sections[i].base_address;
4188                                 length-=offset;
4189                         }
4190
4191                         if (image.sections[i].base_address+buf_cnt>max_address)
4192                         {
4193                                 length-=(image.sections[i].base_address+buf_cnt)-max_address;
4194                         }
4195
4196                         fastload[i].address=image.sections[i].base_address+offset;
4197                         fastload[i].data=malloc(length);
4198                         if (fastload[i].data==NULL)
4199                         {
4200                                 free(buffer);
4201                                 break;
4202                         }
4203                         memcpy(fastload[i].data, buffer+offset, length);
4204                         fastload[i].length=length;
4205
4206                         image_size += length;
4207                         command_print(cmd_ctx, "%u byte written at address 0x%8.8x", length, image.sections[i].base_address+offset);
4208                 }
4209
4210                 free(buffer);
4211         }
4212
4213         duration_stop_measure(&duration, &duration_text);
4214         if (retval==ERROR_OK)
4215         {
4216                 command_print(cmd_ctx, "Loaded %u bytes in %s", image_size, duration_text);
4217                 command_print(cmd_ctx, "NB!!! image has not been loaded to target, issue a subsequent 'fast_load' to do so.");
4218         }
4219         free(duration_text);
4220
4221         image_close(&image);
4222
4223         if (retval!=ERROR_OK)
4224         {
4225                 free_fastload();
4226         }
4227
4228         return retval;
4229 }
4230
4231 static int handle_fast_load_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
4232 {
4233         if (argc>0)
4234                 return ERROR_COMMAND_SYNTAX_ERROR;
4235         if (fastload==NULL)
4236         {
4237                 LOG_ERROR("No image in memory");
4238                 return ERROR_FAIL;
4239         }
4240         int i;
4241         int ms=timeval_ms();
4242         int size=0;
4243         int retval=ERROR_OK;
4244         for (i=0; i<fastload_num;i++)
4245         {
4246                 target_t *target = get_current_target(cmd_ctx);
4247                 command_print(cmd_ctx, "Write to 0x%08x, length 0x%08x", fastload[i].address, fastload[i].length);
4248                 if (retval==ERROR_OK)
4249                 {
4250                         retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
4251                 }
4252                 size+=fastload[i].length;
4253         }
4254         int after=timeval_ms();
4255         command_print(cmd_ctx, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
4256         return retval;
4257 }