7a4548cccf48fcf4f6c306a39596346f27bae61f
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007,2008 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   This program is free software; you can redistribute it and/or modify  *
18  *   it under the terms of the GNU General Public License as published by  *
19  *   the Free Software Foundation; either version 2 of the License, or     *
20  *   (at your option) any later version.                                   *
21  *                                                                         *
22  *   This program is distributed in the hope that it will be useful,       *
23  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
24  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
25  *   GNU General Public License for more details.                          *
26  *                                                                         *
27  *   You should have received a copy of the GNU General Public License     *
28  *   along with this program; if not, write to the                         *
29  *   Free Software Foundation, Inc.,                                       *
30  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "target.h"
37 #include "target_request.h"
38 #include "time_support.h"
39 #include "register.h"
40 #include "trace.h"
41 #include "image.h"
42 #include "jtag.h"
43
44 #include <inttypes.h>
45
46
47 static int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
48
49 static int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
50 static int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
51 static int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
52 static int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
53 static int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
54 static int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
55 static int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
56 static int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
57 static int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
58 static int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
59 static int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
60 static int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
61 static int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
62 static int handle_test_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
63 static int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
64 static int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
65 static int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
66 static int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
67 static int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc);
68 static int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
69 static int handle_fast_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
70 static int handle_fast_load_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
71
72 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
73 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
74 static int jim_target( Jim_Interp *interp, int argc, Jim_Obj *const *argv);
75
76 static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv);
77 static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv);
78
79 /* targets */
80 extern target_type_t arm7tdmi_target;
81 extern target_type_t arm720t_target;
82 extern target_type_t arm9tdmi_target;
83 extern target_type_t arm920t_target;
84 extern target_type_t arm966e_target;
85 extern target_type_t arm926ejs_target;
86 extern target_type_t feroceon_target;
87 extern target_type_t xscale_target;
88 extern target_type_t cortexm3_target;
89 extern target_type_t cortexa8_target;
90 extern target_type_t arm11_target;
91 extern target_type_t mips_m4k_target;
92 extern target_type_t avr_target;
93
94 target_type_t *target_types[] =
95 {
96         &arm7tdmi_target,
97         &arm9tdmi_target,
98         &arm920t_target,
99         &arm720t_target,
100         &arm966e_target,
101         &arm926ejs_target,
102         &feroceon_target,
103         &xscale_target,
104         &cortexm3_target,
105         &cortexa8_target,
106         &arm11_target,
107         &mips_m4k_target,
108         &avr_target,
109         NULL,
110 };
111
112 target_t *all_targets = NULL;
113 target_event_callback_t *target_event_callbacks = NULL;
114 target_timer_callback_t *target_timer_callbacks = NULL;
115
116 const Jim_Nvp nvp_assert[] = {
117         { .name = "assert", NVP_ASSERT },
118         { .name = "deassert", NVP_DEASSERT },
119         { .name = "T", NVP_ASSERT },
120         { .name = "F", NVP_DEASSERT },
121         { .name = "t", NVP_ASSERT },
122         { .name = "f", NVP_DEASSERT },
123         { .name = NULL, .value = -1 }
124 };
125
126 const Jim_Nvp nvp_error_target[] = {
127         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
128         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
129         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
130         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
131         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
132         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
133         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
134         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
135         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
136         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
137         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
138         { .value = -1, .name = NULL }
139 };
140
141 const char *target_strerror_safe( int err )
142 {
143         const Jim_Nvp *n;
144
145         n = Jim_Nvp_value2name_simple( nvp_error_target, err );
146         if( n->name == NULL ){
147                 return "unknown";
148         } else {
149                 return n->name;
150         }
151 }
152
153 static const Jim_Nvp nvp_target_event[] = {
154         { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
155         { .value = TARGET_EVENT_OLD_pre_resume         , .name = "old-pre_resume" },
156
157         { .value = TARGET_EVENT_EARLY_HALTED, .name = "early-halted" },
158         { .value = TARGET_EVENT_HALTED, .name = "halted" },
159         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
160         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
161         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
162
163         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
164         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
165
166         /* historical name */
167
168         { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
169
170         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
171         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
172         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
173         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
174         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
175         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
176         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
177         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
178         { .value = TARGET_EVENT_RESET_INIT , .name = "reset-init" },
179         { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
180
181         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
182         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
183
184         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
185         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
186
187         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
188         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
189
190         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
191         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
192
193         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
194         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
195
196         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
197         { .value = TARGET_EVENT_RESUMED     , .name = "resume-ok" },
198         { .value = TARGET_EVENT_RESUME_END  , .name = "resume-end" },
199
200         { .name = NULL, .value = -1 }
201 };
202
203 const Jim_Nvp nvp_target_state[] = {
204         { .name = "unknown", .value = TARGET_UNKNOWN },
205         { .name = "running", .value = TARGET_RUNNING },
206         { .name = "halted",  .value = TARGET_HALTED },
207         { .name = "reset",   .value = TARGET_RESET },
208         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
209         { .name = NULL, .value = -1 },
210 };
211
212 const Jim_Nvp nvp_target_debug_reason [] = {
213         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
214         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
215         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
216         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
217         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
218         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
219         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
220         { .name = NULL, .value = -1 },
221 };
222
223 const Jim_Nvp nvp_target_endian[] = {
224         { .name = "big",    .value = TARGET_BIG_ENDIAN },
225         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
226         { .name = "be",     .value = TARGET_BIG_ENDIAN },
227         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
228         { .name = NULL,     .value = -1 },
229 };
230
231 const Jim_Nvp nvp_reset_modes[] = {
232         { .name = "unknown", .value = RESET_UNKNOWN },
233         { .name = "run"    , .value = RESET_RUN },
234         { .name = "halt"   , .value = RESET_HALT },
235         { .name = "init"   , .value = RESET_INIT },
236         { .name = NULL     , .value = -1 },
237 };
238
239 static int max_target_number(void)
240 {
241         target_t *t;
242         int x;
243
244         x = -1;
245         t = all_targets;
246         while( t ){
247                 if( x < t->target_number ){
248                         x = (t->target_number)+1;
249                 }
250                 t = t->next;
251         }
252         return x;
253 }
254
255 /* determine the number of the new target */
256 static int new_target_number(void)
257 {
258         target_t *t;
259         int x;
260
261         /* number is 0 based */
262         x = -1;
263         t = all_targets;
264         while(t){
265                 if( x < t->target_number ){
266                         x = t->target_number;
267                 }
268                 t = t->next;
269         }
270         return x+1;
271 }
272
273 static int target_continous_poll = 1;
274
275 /* read a u32 from a buffer in target memory endianness */
276 u32 target_buffer_get_u32(target_t *target, const u8 *buffer)
277 {
278         if (target->endianness == TARGET_LITTLE_ENDIAN)
279                 return le_to_h_u32(buffer);
280         else
281                 return be_to_h_u32(buffer);
282 }
283
284 /* read a u16 from a buffer in target memory endianness */
285 u16 target_buffer_get_u16(target_t *target, const u8 *buffer)
286 {
287         if (target->endianness == TARGET_LITTLE_ENDIAN)
288                 return le_to_h_u16(buffer);
289         else
290                 return be_to_h_u16(buffer);
291 }
292
293 /* read a u8 from a buffer in target memory endianness */
294 u8 target_buffer_get_u8(target_t *target, const u8 *buffer)
295 {
296         return *buffer & 0x0ff;
297 }
298
299 /* write a u32 to a buffer in target memory endianness */
300 void target_buffer_set_u32(target_t *target, u8 *buffer, u32 value)
301 {
302         if (target->endianness == TARGET_LITTLE_ENDIAN)
303                 h_u32_to_le(buffer, value);
304         else
305                 h_u32_to_be(buffer, value);
306 }
307
308 /* write a u16 to a buffer in target memory endianness */
309 void target_buffer_set_u16(target_t *target, u8 *buffer, u16 value)
310 {
311         if (target->endianness == TARGET_LITTLE_ENDIAN)
312                 h_u16_to_le(buffer, value);
313         else
314                 h_u16_to_be(buffer, value);
315 }
316
317 /* write a u8 to a buffer in target memory endianness */
318 void target_buffer_set_u8(target_t *target, u8 *buffer, u8 value)
319 {
320         *buffer = value;
321 }
322
323 /* return a pointer to a configured target; id is name or number */
324 target_t *get_target(const char *id)
325 {
326         target_t *target;
327         char *endptr;
328         int num;
329
330         /* try as tcltarget name */
331         for (target = all_targets; target; target = target->next) {
332                 if (target->cmd_name == NULL)
333                         continue;
334                 if (strcmp(id, target->cmd_name) == 0)
335                         return target;
336         }
337
338         /* no match, try as number */
339         num = strtoul(id, &endptr, 0);
340         if (*endptr != 0)
341                 return NULL;
342
343         for (target = all_targets; target; target = target->next) {
344                 if (target->target_number == num)
345                         return target;
346         }
347
348         return NULL;
349 }
350
351 /* returns a pointer to the n-th configured target */
352 static target_t *get_target_by_num(int num)
353 {
354         target_t *target = all_targets;
355
356         while (target){
357                 if( target->target_number == num ){
358                         return target;
359                 }
360                 target = target->next;
361         }
362
363         return NULL;
364 }
365
366 int get_num_by_target(target_t *query_target)
367 {
368         return query_target->target_number;
369 }
370
371 target_t* get_current_target(command_context_t *cmd_ctx)
372 {
373         target_t *target = get_target_by_num(cmd_ctx->current_target);
374
375         if (target == NULL)
376         {
377                 LOG_ERROR("BUG: current_target out of bounds");
378                 exit(-1);
379         }
380
381         return target;
382 }
383
384 int target_poll(struct target_s *target)
385 {
386         /* We can't poll until after examine */
387         if (!target_was_examined(target))
388         {
389                 /* Fail silently lest we pollute the log */
390                 return ERROR_FAIL;
391         }
392         return target->type->poll(target);
393 }
394
395 int target_halt(struct target_s *target)
396 {
397         /* We can't poll until after examine */
398         if (!target_was_examined(target))
399         {
400                 LOG_ERROR("Target not examined yet");
401                 return ERROR_FAIL;
402         }
403         return target->type->halt(target);
404 }
405
406 int target_resume(struct target_s *target, int current, u32 address, int handle_breakpoints, int debug_execution)
407 {
408         int retval;
409
410         /* We can't poll until after examine */
411         if (!target_was_examined(target))
412         {
413                 LOG_ERROR("Target not examined yet");
414                 return ERROR_FAIL;
415         }
416
417         /* note that resume *must* be asynchronous. The CPU can halt before we poll. The CPU can
418          * even halt at the current PC as a result of a software breakpoint being inserted by (a bug?)
419          * the application.
420          */
421         if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
422                 return retval;
423
424         return retval;
425 }
426
427 int target_process_reset(struct command_context_s *cmd_ctx, enum target_reset_mode reset_mode)
428 {
429         char buf[100];
430         int retval;
431         Jim_Nvp *n;
432         n = Jim_Nvp_value2name_simple( nvp_reset_modes, reset_mode );
433         if( n->name == NULL ){
434                 LOG_ERROR("invalid reset mode");
435                 return ERROR_FAIL;
436         }
437
438         sprintf( buf, "ocd_process_reset %s", n->name );
439         retval = Jim_Eval( interp, buf );
440
441         if(retval != JIM_OK) {
442                 Jim_PrintErrorMessage(interp);
443                 return ERROR_FAIL;
444         }
445
446         /* We want any events to be processed before the prompt */
447         retval = target_call_timer_callbacks_now();
448
449         return retval;
450 }
451
452 static int default_virt2phys(struct target_s *target, u32 virtual, u32 *physical)
453 {
454         *physical = virtual;
455         return ERROR_OK;
456 }
457
458 static int default_mmu(struct target_s *target, int *enabled)
459 {
460         *enabled = 0;
461         return ERROR_OK;
462 }
463
464 static int default_examine(struct target_s *target)
465 {
466         target_set_examined(target);
467         return ERROR_OK;
468 }
469
470 /* Targets that correctly implement init+examine, i.e.
471  * no communication with target during init:
472  *
473  * XScale
474  */
475 int target_examine(void)
476 {
477         int retval = ERROR_OK;
478         target_t *target = all_targets;
479         while (target)
480         {
481                 if ((retval = target->type->examine(target))!=ERROR_OK)
482                         return retval;
483                 target = target->next;
484         }
485         return retval;
486 }
487
488 static int target_write_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
489 {
490         if (!target_was_examined(target))
491         {
492                 LOG_ERROR("Target not examined yet");
493                 return ERROR_FAIL;
494         }
495         return target->type->write_memory_imp(target, address, size, count, buffer);
496 }
497
498 static int target_read_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
499 {
500         if (!target_was_examined(target))
501         {
502                 LOG_ERROR("Target not examined yet");
503                 return ERROR_FAIL;
504         }
505         return target->type->read_memory_imp(target, address, size, count, buffer);
506 }
507
508 static int target_soft_reset_halt_imp(struct target_s *target)
509 {
510         if (!target_was_examined(target))
511         {
512                 LOG_ERROR("Target not examined yet");
513                 return ERROR_FAIL;
514         }
515         return target->type->soft_reset_halt_imp(target);
516 }
517
518 static int target_run_algorithm_imp(struct target_s *target, int num_mem_params, mem_param_t *mem_params, int num_reg_params, reg_param_t *reg_param, u32 entry_point, u32 exit_point, int timeout_ms, void *arch_info)
519 {
520         if (!target_was_examined(target))
521         {
522                 LOG_ERROR("Target not examined yet");
523                 return ERROR_FAIL;
524         }
525         return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
526 }
527
528 int target_read_memory(struct target_s *target,
529                 u32 address, u32 size, u32 count, u8 *buffer)
530 {
531         return target->type->read_memory(target, address, size, count, buffer);
532 }
533
534 int target_write_memory(struct target_s *target,
535                 u32 address, u32 size, u32 count, u8 *buffer)
536 {
537         return target->type->write_memory(target, address, size, count, buffer);
538 }
539 int target_bulk_write_memory(struct target_s *target,
540                 u32 address, u32 count, u8 *buffer)
541 {
542         return target->type->bulk_write_memory(target, address, count, buffer);
543 }
544
545
546 int target_get_gdb_reg_list(struct target_s *target,
547                 struct reg_s **reg_list[], int *reg_list_size)
548 {
549         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
550 }
551
552 int target_run_algorithm(struct target_s *target,
553                 int num_mem_params, mem_param_t *mem_params,
554                 int num_reg_params, reg_param_t *reg_param,
555                 u32 entry_point, u32 exit_point,
556                 int timeout_ms, void *arch_info)
557 {
558         return target->type->run_algorithm(target,
559                         num_mem_params, mem_params, num_reg_params, reg_param,
560                         entry_point, exit_point, timeout_ms, arch_info);
561 }
562
563 /// @returns @c true if the target has been examined.
564 bool target_was_examined(struct target_s *target)
565 {
566         return target->type->examined;
567 }
568 /// Sets the @c examined flag for the given target.
569 void target_set_examined(struct target_s *target)
570 {
571         target->type->examined = true;
572 }
573 // Reset the @c examined flag for the given target.
574 void target_reset_examined(struct target_s *target)
575 {
576         target->type->examined = false;
577 }
578
579
580 int target_init(struct command_context_s *cmd_ctx)
581 {
582         target_t *target = all_targets;
583         int retval;
584
585         while (target)
586         {
587                 target_reset_examined(target);
588                 if (target->type->examine == NULL)
589                 {
590                         target->type->examine = default_examine;
591                 }
592
593                 if ((retval = target->type->init_target(cmd_ctx, target)) != ERROR_OK)
594                 {
595                         LOG_ERROR("target '%s' init failed", target->type->name);
596                         return retval;
597                 }
598
599                 /* Set up default functions if none are provided by target */
600                 if (target->type->virt2phys == NULL)
601                 {
602                         target->type->virt2phys = default_virt2phys;
603                 }
604                 target->type->virt2phys = default_virt2phys;
605                 /* a non-invasive way(in terms of patches) to add some code that
606                  * runs before the type->write/read_memory implementation
607                  */
608                 target->type->write_memory_imp = target->type->write_memory;
609                 target->type->write_memory = target_write_memory_imp;
610                 target->type->read_memory_imp = target->type->read_memory;
611                 target->type->read_memory = target_read_memory_imp;
612                 target->type->soft_reset_halt_imp = target->type->soft_reset_halt;
613                 target->type->soft_reset_halt = target_soft_reset_halt_imp;
614                 target->type->run_algorithm_imp = target->type->run_algorithm;
615                 target->type->run_algorithm = target_run_algorithm_imp;
616
617                 if (target->type->mmu == NULL)
618                 {
619                         target->type->mmu = default_mmu;
620                 }
621                 target = target->next;
622         }
623
624         if (all_targets)
625         {
626                 if((retval = target_register_user_commands(cmd_ctx)) != ERROR_OK)
627                         return retval;
628                 if((retval = target_register_timer_callback(handle_target, 100, 1, NULL)) != ERROR_OK)
629                         return retval;
630         }
631
632         return ERROR_OK;
633 }
634
635 int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
636 {
637         target_event_callback_t **callbacks_p = &target_event_callbacks;
638
639         if (callback == NULL)
640         {
641                 return ERROR_INVALID_ARGUMENTS;
642         }
643
644         if (*callbacks_p)
645         {
646                 while ((*callbacks_p)->next)
647                         callbacks_p = &((*callbacks_p)->next);
648                 callbacks_p = &((*callbacks_p)->next);
649         }
650
651         (*callbacks_p) = malloc(sizeof(target_event_callback_t));
652         (*callbacks_p)->callback = callback;
653         (*callbacks_p)->priv = priv;
654         (*callbacks_p)->next = NULL;
655
656         return ERROR_OK;
657 }
658
659 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
660 {
661         target_timer_callback_t **callbacks_p = &target_timer_callbacks;
662         struct timeval now;
663
664         if (callback == NULL)
665         {
666                 return ERROR_INVALID_ARGUMENTS;
667         }
668
669         if (*callbacks_p)
670         {
671                 while ((*callbacks_p)->next)
672                         callbacks_p = &((*callbacks_p)->next);
673                 callbacks_p = &((*callbacks_p)->next);
674         }
675
676         (*callbacks_p) = malloc(sizeof(target_timer_callback_t));
677         (*callbacks_p)->callback = callback;
678         (*callbacks_p)->periodic = periodic;
679         (*callbacks_p)->time_ms = time_ms;
680
681         gettimeofday(&now, NULL);
682         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
683         time_ms -= (time_ms % 1000);
684         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
685         if ((*callbacks_p)->when.tv_usec > 1000000)
686         {
687                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
688                 (*callbacks_p)->when.tv_sec += 1;
689         }
690
691         (*callbacks_p)->priv = priv;
692         (*callbacks_p)->next = NULL;
693
694         return ERROR_OK;
695 }
696
697 int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
698 {
699         target_event_callback_t **p = &target_event_callbacks;
700         target_event_callback_t *c = target_event_callbacks;
701
702         if (callback == NULL)
703         {
704                 return ERROR_INVALID_ARGUMENTS;
705         }
706
707         while (c)
708         {
709                 target_event_callback_t *next = c->next;
710                 if ((c->callback == callback) && (c->priv == priv))
711                 {
712                         *p = next;
713                         free(c);
714                         return ERROR_OK;
715                 }
716                 else
717                         p = &(c->next);
718                 c = next;
719         }
720
721         return ERROR_OK;
722 }
723
724 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
725 {
726         target_timer_callback_t **p = &target_timer_callbacks;
727         target_timer_callback_t *c = target_timer_callbacks;
728
729         if (callback == NULL)
730         {
731                 return ERROR_INVALID_ARGUMENTS;
732         }
733
734         while (c)
735         {
736                 target_timer_callback_t *next = c->next;
737                 if ((c->callback == callback) && (c->priv == priv))
738                 {
739                         *p = next;
740                         free(c);
741                         return ERROR_OK;
742                 }
743                 else
744                         p = &(c->next);
745                 c = next;
746         }
747
748         return ERROR_OK;
749 }
750
751 int target_call_event_callbacks(target_t *target, enum target_event event)
752 {
753         target_event_callback_t *callback = target_event_callbacks;
754         target_event_callback_t *next_callback;
755
756         if (event == TARGET_EVENT_HALTED)
757         {
758                 /* execute early halted first */
759                 target_call_event_callbacks(target, TARGET_EVENT_EARLY_HALTED);
760         }
761
762         LOG_DEBUG("target event %i (%s)",
763                           event,
764                           Jim_Nvp_value2name_simple( nvp_target_event, event )->name );
765
766         target_handle_event( target, event );
767
768         while (callback)
769         {
770                 next_callback = callback->next;
771                 callback->callback(target, event, callback->priv);
772                 callback = next_callback;
773         }
774
775         return ERROR_OK;
776 }
777
778 static int target_call_timer_callbacks_check_time(int checktime)
779 {
780         target_timer_callback_t *callback = target_timer_callbacks;
781         target_timer_callback_t *next_callback;
782         struct timeval now;
783
784         keep_alive();
785
786         gettimeofday(&now, NULL);
787
788         while (callback)
789         {
790                 next_callback = callback->next;
791
792                 if ((!checktime&&callback->periodic)||
793                                 (((now.tv_sec >= callback->when.tv_sec) && (now.tv_usec >= callback->when.tv_usec))
794                                                 || (now.tv_sec > callback->when.tv_sec)))
795                 {
796                         if(callback->callback != NULL)
797                         {
798                                 callback->callback(callback->priv);
799                                 if (callback->periodic)
800                                 {
801                                         int time_ms = callback->time_ms;
802                                         callback->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
803                                         time_ms -= (time_ms % 1000);
804                                         callback->when.tv_sec = now.tv_sec + time_ms / 1000;
805                                         if (callback->when.tv_usec > 1000000)
806                                         {
807                                                 callback->when.tv_usec = callback->when.tv_usec - 1000000;
808                                                 callback->when.tv_sec += 1;
809                                         }
810                                 }
811                                 else
812                                 {
813                                         int retval;
814                                         if((retval = target_unregister_timer_callback(callback->callback, callback->priv)) != ERROR_OK)
815                                                 return retval;
816                                 }
817                         }
818                 }
819
820                 callback = next_callback;
821         }
822
823         return ERROR_OK;
824 }
825
826 int target_call_timer_callbacks(void)
827 {
828         return target_call_timer_callbacks_check_time(1);
829 }
830
831 /* invoke periodic callbacks immediately */
832 int target_call_timer_callbacks_now(void)
833 {
834         return target_call_timer_callbacks_check_time(0);
835 }
836
837 int target_alloc_working_area(struct target_s *target, u32 size, working_area_t **area)
838 {
839         working_area_t *c = target->working_areas;
840         working_area_t *new_wa = NULL;
841
842         /* Reevaluate working area address based on MMU state*/
843         if (target->working_areas == NULL)
844         {
845                 int retval;
846                 int enabled;
847                 retval = target->type->mmu(target, &enabled);
848                 if (retval != ERROR_OK)
849                 {
850                         return retval;
851                 }
852                 if (enabled)
853                 {
854                         target->working_area = target->working_area_virt;
855                 }
856                 else
857                 {
858                         target->working_area = target->working_area_phys;
859                 }
860         }
861
862         /* only allocate multiples of 4 byte */
863         if (size % 4)
864         {
865                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes, padding");
866                 size = CEIL(size, 4);
867         }
868
869         /* see if there's already a matching working area */
870         while (c)
871         {
872                 if ((c->free) && (c->size == size))
873                 {
874                         new_wa = c;
875                         break;
876                 }
877                 c = c->next;
878         }
879
880         /* if not, allocate a new one */
881         if (!new_wa)
882         {
883                 working_area_t **p = &target->working_areas;
884                 u32 first_free = target->working_area;
885                 u32 free_size = target->working_area_size;
886
887                 LOG_DEBUG("allocating new working area");
888
889                 c = target->working_areas;
890                 while (c)
891                 {
892                         first_free += c->size;
893                         free_size -= c->size;
894                         p = &c->next;
895                         c = c->next;
896                 }
897
898                 if (free_size < size)
899                 {
900                         LOG_WARNING("not enough working area available(requested %d, free %d)", size, free_size);
901                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
902                 }
903
904                 new_wa = malloc(sizeof(working_area_t));
905                 new_wa->next = NULL;
906                 new_wa->size = size;
907                 new_wa->address = first_free;
908
909                 if (target->backup_working_area)
910                 {
911                         int retval;
912                         new_wa->backup = malloc(new_wa->size);
913                         if((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
914                         {
915                                 free(new_wa->backup);
916                                 free(new_wa);
917                                 return retval;
918                         }
919                 }
920                 else
921                 {
922                         new_wa->backup = NULL;
923                 }
924
925                 /* put new entry in list */
926                 *p = new_wa;
927         }
928
929         /* mark as used, and return the new (reused) area */
930         new_wa->free = 0;
931         *area = new_wa;
932
933         /* user pointer */
934         new_wa->user = area;
935
936         return ERROR_OK;
937 }
938
939 int target_free_working_area_restore(struct target_s *target, working_area_t *area, int restore)
940 {
941         if (area->free)
942                 return ERROR_OK;
943
944         if (restore&&target->backup_working_area)
945         {
946                 int retval;
947                 if((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
948                         return retval;
949         }
950
951         area->free = 1;
952
953         /* mark user pointer invalid */
954         *area->user = NULL;
955         area->user = NULL;
956
957         return ERROR_OK;
958 }
959
960 int target_free_working_area(struct target_s *target, working_area_t *area)
961 {
962         return target_free_working_area_restore(target, area, 1);
963 }
964
965 /* free resources and restore memory, if restoring memory fails,
966  * free up resources anyway
967  */
968 void target_free_all_working_areas_restore(struct target_s *target, int restore)
969 {
970         working_area_t *c = target->working_areas;
971
972         while (c)
973         {
974                 working_area_t *next = c->next;
975                 target_free_working_area_restore(target, c, restore);
976
977                 if (c->backup)
978                         free(c->backup);
979
980                 free(c);
981
982                 c = next;
983         }
984
985         target->working_areas = NULL;
986 }
987
988 void target_free_all_working_areas(struct target_s *target)
989 {
990         target_free_all_working_areas_restore(target, 1);
991 }
992
993 int target_register_commands(struct command_context_s *cmd_ctx)
994 {
995
996         register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, "change the current command line target (one parameter) or lists targets (with no parameter)");
997
998
999
1000
1001         register_jim(cmd_ctx, "target", jim_target, "configure target" );
1002
1003         return ERROR_OK;
1004 }
1005
1006 int target_arch_state(struct target_s *target)
1007 {
1008         int retval;
1009         if (target==NULL)
1010         {
1011                 LOG_USER("No target has been configured");
1012                 return ERROR_OK;
1013         }
1014
1015         LOG_USER("target state: %s",
1016                  Jim_Nvp_value2name_simple(nvp_target_state,target->state)->name);
1017
1018         if (target->state!=TARGET_HALTED)
1019                 return ERROR_OK;
1020
1021         retval=target->type->arch_state(target);
1022         return retval;
1023 }
1024
1025 /* Single aligned words are guaranteed to use 16 or 32 bit access
1026  * mode respectively, otherwise data is handled as quickly as
1027  * possible
1028  */
1029 int target_write_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
1030 {
1031         int retval;
1032         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x", size, address);
1033
1034         if (!target_was_examined(target))
1035         {
1036                 LOG_ERROR("Target not examined yet");
1037                 return ERROR_FAIL;
1038         }
1039
1040         if (size == 0) {
1041                 return ERROR_OK;
1042         }
1043
1044         if ((address + size - 1) < address)
1045         {
1046                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1047                 LOG_ERROR("address+size wrapped(0x%08x, 0x%08x)", address, size);
1048                 return ERROR_FAIL;
1049         }
1050
1051         if (((address % 2) == 0) && (size == 2))
1052         {
1053                 return target_write_memory(target, address, 2, 1, buffer);
1054         }
1055
1056         /* handle unaligned head bytes */
1057         if (address % 4)
1058         {
1059                 u32 unaligned = 4 - (address % 4);
1060
1061                 if (unaligned > size)
1062                         unaligned = size;
1063
1064                 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1065                         return retval;
1066
1067                 buffer += unaligned;
1068                 address += unaligned;
1069                 size -= unaligned;
1070         }
1071
1072         /* handle aligned words */
1073         if (size >= 4)
1074         {
1075                 int aligned = size - (size % 4);
1076
1077                 /* use bulk writes above a certain limit. This may have to be changed */
1078                 if (aligned > 128)
1079                 {
1080                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1081                                 return retval;
1082                 }
1083                 else
1084                 {
1085                         if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1086                                 return retval;
1087                 }
1088
1089                 buffer += aligned;
1090                 address += aligned;
1091                 size -= aligned;
1092         }
1093
1094         /* handle tail writes of less than 4 bytes */
1095         if (size > 0)
1096         {
1097                 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1098                         return retval;
1099         }
1100
1101         return ERROR_OK;
1102 }
1103
1104 /* Single aligned words are guaranteed to use 16 or 32 bit access
1105  * mode respectively, otherwise data is handled as quickly as
1106  * possible
1107  */
1108 int target_read_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
1109 {
1110         int retval;
1111         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x", size, address);
1112
1113         if (!target_was_examined(target))
1114         {
1115                 LOG_ERROR("Target not examined yet");
1116                 return ERROR_FAIL;
1117         }
1118
1119         if (size == 0) {
1120                 return ERROR_OK;
1121         }
1122
1123         if ((address + size - 1) < address)
1124         {
1125                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1126                 LOG_ERROR("address+size wrapped(0x%08x, 0x%08x)", address, size);
1127                 return ERROR_FAIL;
1128         }
1129
1130         if (((address % 2) == 0) && (size == 2))
1131         {
1132                 return target_read_memory(target, address, 2, 1, buffer);
1133         }
1134
1135         /* handle unaligned head bytes */
1136         if (address % 4)
1137         {
1138                 u32 unaligned = 4 - (address % 4);
1139
1140                 if (unaligned > size)
1141                         unaligned = size;
1142
1143                 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1144                         return retval;
1145
1146                 buffer += unaligned;
1147                 address += unaligned;
1148                 size -= unaligned;
1149         }
1150
1151         /* handle aligned words */
1152         if (size >= 4)
1153         {
1154                 int aligned = size - (size % 4);
1155
1156                 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1157                         return retval;
1158
1159                 buffer += aligned;
1160                 address += aligned;
1161                 size -= aligned;
1162         }
1163
1164         /* handle tail writes of less than 4 bytes */
1165         if (size > 0)
1166         {
1167                 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1168                         return retval;
1169         }
1170
1171         return ERROR_OK;
1172 }
1173
1174 int target_checksum_memory(struct target_s *target, u32 address, u32 size, u32* crc)
1175 {
1176         u8 *buffer;
1177         int retval;
1178         u32 i;
1179         u32 checksum = 0;
1180         if (!target_was_examined(target))
1181         {
1182                 LOG_ERROR("Target not examined yet");
1183                 return ERROR_FAIL;
1184         }
1185
1186         if ((retval = target->type->checksum_memory(target, address,
1187                 size, &checksum)) != ERROR_OK)
1188         {
1189                 buffer = malloc(size);
1190                 if (buffer == NULL)
1191                 {
1192                         LOG_ERROR("error allocating buffer for section (%d bytes)", size);
1193                         return ERROR_INVALID_ARGUMENTS;
1194                 }
1195                 retval = target_read_buffer(target, address, size, buffer);
1196                 if (retval != ERROR_OK)
1197                 {
1198                         free(buffer);
1199                         return retval;
1200                 }
1201
1202                 /* convert to target endianess */
1203                 for (i = 0; i < (size/sizeof(u32)); i++)
1204                 {
1205                         u32 target_data;
1206                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(u32)]);
1207                         target_buffer_set_u32(target, &buffer[i*sizeof(u32)], target_data);
1208                 }
1209
1210                 retval = image_calculate_checksum( buffer, size, &checksum );
1211                 free(buffer);
1212         }
1213
1214         *crc = checksum;
1215
1216         return retval;
1217 }
1218
1219 int target_blank_check_memory(struct target_s *target, u32 address, u32 size, u32* blank)
1220 {
1221         int retval;
1222         if (!target_was_examined(target))
1223         {
1224                 LOG_ERROR("Target not examined yet");
1225                 return ERROR_FAIL;
1226         }
1227
1228         if (target->type->blank_check_memory == 0)
1229                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1230
1231         retval = target->type->blank_check_memory(target, address, size, blank);
1232
1233         return retval;
1234 }
1235
1236 int target_read_u32(struct target_s *target, u32 address, u32 *value)
1237 {
1238         u8 value_buf[4];
1239         if (!target_was_examined(target))
1240         {
1241                 LOG_ERROR("Target not examined yet");
1242                 return ERROR_FAIL;
1243         }
1244
1245         int retval = target_read_memory(target, address, 4, 1, value_buf);
1246
1247         if (retval == ERROR_OK)
1248         {
1249                 *value = target_buffer_get_u32(target, value_buf);
1250                 LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, *value);
1251         }
1252         else
1253         {
1254                 *value = 0x0;
1255                 LOG_DEBUG("address: 0x%8.8x failed", address);
1256         }
1257
1258         return retval;
1259 }
1260
1261 int target_read_u16(struct target_s *target, u32 address, u16 *value)
1262 {
1263         u8 value_buf[2];
1264         if (!target_was_examined(target))
1265         {
1266                 LOG_ERROR("Target not examined yet");
1267                 return ERROR_FAIL;
1268         }
1269
1270         int retval = target_read_memory(target, address, 2, 1, value_buf);
1271
1272         if (retval == ERROR_OK)
1273         {
1274                 *value = target_buffer_get_u16(target, value_buf);
1275                 LOG_DEBUG("address: 0x%8.8x, value: 0x%4.4x", address, *value);
1276         }
1277         else
1278         {
1279                 *value = 0x0;
1280                 LOG_DEBUG("address: 0x%8.8x failed", address);
1281         }
1282
1283         return retval;
1284 }
1285
1286 int target_read_u8(struct target_s *target, u32 address, u8 *value)
1287 {
1288         int retval = target_read_memory(target, address, 1, 1, value);
1289         if (!target_was_examined(target))
1290         {
1291                 LOG_ERROR("Target not examined yet");
1292                 return ERROR_FAIL;
1293         }
1294
1295         if (retval == ERROR_OK)
1296         {
1297                 LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, *value);
1298         }
1299         else
1300         {
1301                 *value = 0x0;
1302                 LOG_DEBUG("address: 0x%8.8x failed", address);
1303         }
1304
1305         return retval;
1306 }
1307
1308 int target_write_u32(struct target_s *target, u32 address, u32 value)
1309 {
1310         int retval;
1311         u8 value_buf[4];
1312         if (!target_was_examined(target))
1313         {
1314                 LOG_ERROR("Target not examined yet");
1315                 return ERROR_FAIL;
1316         }
1317
1318         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1319
1320         target_buffer_set_u32(target, value_buf, value);
1321         if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1322         {
1323                 LOG_DEBUG("failed: %i", retval);
1324         }
1325
1326         return retval;
1327 }
1328
1329 int target_write_u16(struct target_s *target, u32 address, u16 value)
1330 {
1331         int retval;
1332         u8 value_buf[2];
1333         if (!target_was_examined(target))
1334         {
1335                 LOG_ERROR("Target not examined yet");
1336                 return ERROR_FAIL;
1337         }
1338
1339         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1340
1341         target_buffer_set_u16(target, value_buf, value);
1342         if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1343         {
1344                 LOG_DEBUG("failed: %i", retval);
1345         }
1346
1347         return retval;
1348 }
1349
1350 int target_write_u8(struct target_s *target, u32 address, u8 value)
1351 {
1352         int retval;
1353         if (!target_was_examined(target))
1354         {
1355                 LOG_ERROR("Target not examined yet");
1356                 return ERROR_FAIL;
1357         }
1358
1359         LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, value);
1360
1361         if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1362         {
1363                 LOG_DEBUG("failed: %i", retval);
1364         }
1365
1366         return retval;
1367 }
1368
1369 int target_register_user_commands(struct command_context_s *cmd_ctx)
1370 {
1371         int retval = ERROR_OK;
1372
1373
1374         /* script procedures */
1375         register_command(cmd_ctx, NULL, "profile", handle_profile_command, COMMAND_EXEC, "profiling samples the CPU PC");
1376         register_jim(cmd_ctx, "ocd_mem2array", jim_mem2array, "read memory and return as a TCL array for script processing <ARRAYNAME> <WIDTH=32/16/8> <ADDRESS> <COUNT>");
1377         register_jim(cmd_ctx, "ocd_array2mem", jim_array2mem, "convert a TCL array to memory locations and write the values  <ARRAYNAME> <WIDTH=32/16/8> <ADDRESS> <COUNT>");
1378
1379         register_command(cmd_ctx, NULL, "fast_load_image", handle_fast_load_image_command, COMMAND_ANY,
1380                         "same args as load_image, image stored in memory - mainly for profiling purposes");
1381
1382         register_command(cmd_ctx, NULL, "fast_load", handle_fast_load_command, COMMAND_ANY,
1383                         "loads active fast load image to current target - mainly for profiling purposes");
1384
1385
1386         register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "translate a virtual address into a physical address");
1387         register_command(cmd_ctx,  NULL, "reg", handle_reg_command, COMMAND_EXEC, "display or set a register");
1388         register_command(cmd_ctx,  NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state");
1389         register_command(cmd_ctx,  NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]");
1390         register_command(cmd_ctx,  NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target");
1391         register_command(cmd_ctx,  NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]");
1392         register_command(cmd_ctx,  NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]");
1393         register_command(cmd_ctx,  NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run|halt|init] - default is run");
1394         register_command(cmd_ctx,  NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset");
1395
1396         register_command(cmd_ctx,  NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words <addr> [count]");
1397         register_command(cmd_ctx,  NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words <addr> [count]");
1398         register_command(cmd_ctx,  NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes <addr> [count]");
1399
1400         register_command(cmd_ctx,  NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word <addr> <value> [count]");
1401         register_command(cmd_ctx,  NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word <addr> <value> [count]");
1402         register_command(cmd_ctx,  NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte <addr> <value> [count]");
1403
1404         register_command(cmd_ctx,  NULL, "bp", handle_bp_command, COMMAND_EXEC, "set breakpoint <address> <length> [hw]");
1405         register_command(cmd_ctx,  NULL, "rbp", handle_rbp_command, COMMAND_EXEC, "remove breakpoint <adress>");
1406         register_command(cmd_ctx,  NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint <address> <length> <r/w/a> [value] [mask]");
1407         register_command(cmd_ctx,  NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint <adress>");
1408
1409         register_command(cmd_ctx,  NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> ['bin'|'ihex'|'elf'|'s19'] [min_address] [max_length]");
1410         register_command(cmd_ctx,  NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>");
1411         register_command(cmd_ctx,  NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image <file> [offset] [type]");
1412         register_command(cmd_ctx,  NULL, "test_image", handle_test_image_command, COMMAND_EXEC, "test_image <file> [offset] [type]");
1413
1414         if((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
1415                 return retval;
1416         if((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
1417                 return retval;
1418
1419         return retval;
1420 }
1421
1422 static int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1423 {
1424         target_t *target = all_targets;
1425
1426         if (argc == 1)
1427         {
1428                 target = get_target(args[0]);
1429                 if (target == NULL) {
1430                         command_print(cmd_ctx,"Target: %s is unknown, try one of:\n", args[0] );
1431                         goto DumpTargets;
1432                 }
1433
1434                 cmd_ctx->current_target = target->target_number;
1435                 return ERROR_OK;
1436         }
1437 DumpTargets:
1438
1439         target = all_targets;
1440         command_print(cmd_ctx, "    CmdName    Type       Endian     AbsChainPos Name          State     ");
1441         command_print(cmd_ctx, "--  ---------- ---------- ---------- ----------- ------------- ----------");
1442         while (target)
1443         {
1444                 /* XX: abcdefghij abcdefghij abcdefghij abcdefghij */
1445                 command_print(cmd_ctx, "%2d: %-10s %-10s %-10s %10d %14s %s",
1446                                           target->target_number,
1447                                           target->cmd_name,
1448                                           target->type->name,
1449                                           Jim_Nvp_value2name_simple( nvp_target_endian, target->endianness )->name,
1450                                           target->tap->abs_chain_position,
1451                                           target->tap->dotted_name,
1452                                           Jim_Nvp_value2name_simple( nvp_target_state, target->state )->name );
1453                 target = target->next;
1454         }
1455
1456         return ERROR_OK;
1457 }
1458
1459 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1460
1461 static int powerDropout;
1462 static int srstAsserted;
1463
1464 static int runPowerRestore;
1465 static int runPowerDropout;
1466 static int runSrstAsserted;
1467 static int runSrstDeasserted;
1468
1469 static int sense_handler(void)
1470 {
1471         static int prevSrstAsserted = 0;
1472         static int prevPowerdropout = 0;
1473
1474         int retval;
1475         if ((retval=jtag_power_dropout(&powerDropout))!=ERROR_OK)
1476                 return retval;
1477
1478         int powerRestored;
1479         powerRestored = prevPowerdropout && !powerDropout;
1480         if (powerRestored)
1481         {
1482                 runPowerRestore = 1;
1483         }
1484
1485         long long current = timeval_ms();
1486         static long long lastPower = 0;
1487         int waitMore = lastPower + 2000 > current;
1488         if (powerDropout && !waitMore)
1489         {
1490                 runPowerDropout = 1;
1491                 lastPower = current;
1492         }
1493
1494         if ((retval=jtag_srst_asserted(&srstAsserted))!=ERROR_OK)
1495                 return retval;
1496
1497         int srstDeasserted;
1498         srstDeasserted = prevSrstAsserted && !srstAsserted;
1499
1500         static long long lastSrst = 0;
1501         waitMore = lastSrst + 2000 > current;
1502         if (srstDeasserted && !waitMore)
1503         {
1504                 runSrstDeasserted = 1;
1505                 lastSrst = current;
1506         }
1507
1508         if (!prevSrstAsserted && srstAsserted)
1509         {
1510                 runSrstAsserted = 1;
1511         }
1512
1513         prevSrstAsserted = srstAsserted;
1514         prevPowerdropout = powerDropout;
1515
1516         if (srstDeasserted || powerRestored)
1517         {
1518                 /* Other than logging the event we can't do anything here.
1519                  * Issuing a reset is a particularly bad idea as we might
1520                  * be inside a reset already.
1521                  */
1522         }
1523
1524         return ERROR_OK;
1525 }
1526
1527 /* process target state changes */
1528 int handle_target(void *priv)
1529 {
1530         int retval = ERROR_OK;
1531
1532         /* we do not want to recurse here... */
1533         static int recursive = 0;
1534         if (! recursive)
1535         {
1536                 recursive = 1;
1537                 sense_handler();
1538                 /* danger! running these procedures can trigger srst assertions and power dropouts.
1539                  * We need to avoid an infinite loop/recursion here and we do that by
1540                  * clearing the flags after running these events.
1541                  */
1542                 int did_something = 0;
1543                 if (runSrstAsserted)
1544                 {
1545                         Jim_Eval( interp, "srst_asserted");
1546                         did_something = 1;
1547                 }
1548                 if (runSrstDeasserted)
1549                 {
1550                         Jim_Eval( interp, "srst_deasserted");
1551                         did_something = 1;
1552                 }
1553                 if (runPowerDropout)
1554                 {
1555                         Jim_Eval( interp, "power_dropout");
1556                         did_something = 1;
1557                 }
1558                 if (runPowerRestore)
1559                 {
1560                         Jim_Eval( interp, "power_restore");
1561                         did_something = 1;
1562                 }
1563
1564                 if (did_something)
1565                 {
1566                         /* clear detect flags */
1567                         sense_handler();
1568                 }
1569
1570                 /* clear action flags */
1571
1572                 runSrstAsserted=0;
1573                 runSrstDeasserted=0;
1574                 runPowerRestore=0;
1575                 runPowerDropout=0;
1576
1577                 recursive = 0;
1578         }
1579
1580         target_t *target = all_targets;
1581
1582         while (target)
1583         {
1584
1585                 /* only poll target if we've got power and srst isn't asserted */
1586                 if (target_continous_poll&&!powerDropout&&!srstAsserted)
1587                 {
1588                         /* polling may fail silently until the target has been examined */
1589                         if((retval = target_poll(target)) != ERROR_OK)
1590                                 return retval;
1591                 }
1592
1593                 target = target->next;
1594         }
1595
1596         return retval;
1597 }
1598
1599 static int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1600 {
1601         target_t *target;
1602         reg_t *reg = NULL;
1603         int count = 0;
1604         char *value;
1605
1606         LOG_DEBUG("-");
1607
1608         target = get_current_target(cmd_ctx);
1609
1610         /* list all available registers for the current target */
1611         if (argc == 0)
1612         {
1613                 reg_cache_t *cache = target->reg_cache;
1614
1615                 count = 0;
1616                 while(cache)
1617                 {
1618                         int i;
1619                         for (i = 0; i < cache->num_regs; i++)
1620                         {
1621                                 value = buf_to_str(cache->reg_list[i].value, cache->reg_list[i].size, 16);
1622                                 command_print(cmd_ctx, "(%i) %s (/%i): 0x%s (dirty: %i, valid: %i)", count++, cache->reg_list[i].name, cache->reg_list[i].size, value, cache->reg_list[i].dirty, cache->reg_list[i].valid);
1623                                 free(value);
1624                         }
1625                         cache = cache->next;
1626                 }
1627
1628                 return ERROR_OK;
1629         }
1630
1631         /* access a single register by its ordinal number */
1632         if ((args[0][0] >= '0') && (args[0][0] <= '9'))
1633         {
1634                 int num = strtoul(args[0], NULL, 0);
1635                 reg_cache_t *cache = target->reg_cache;
1636
1637                 count = 0;
1638                 while(cache)
1639                 {
1640                         int i;
1641                         for (i = 0; i < cache->num_regs; i++)
1642                         {
1643                                 if (count++ == num)
1644                                 {
1645                                         reg = &cache->reg_list[i];
1646                                         break;
1647                                 }
1648                         }
1649                         if (reg)
1650                                 break;
1651                         cache = cache->next;
1652                 }
1653
1654                 if (!reg)
1655                 {
1656                         command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1657                         return ERROR_OK;
1658                 }
1659         } else /* access a single register by its name */
1660         {
1661                 reg = register_get_by_name(target->reg_cache, args[0], 1);
1662
1663                 if (!reg)
1664                 {
1665                         command_print(cmd_ctx, "register %s not found in current target", args[0]);
1666                         return ERROR_OK;
1667                 }
1668         }
1669
1670         /* display a register */
1671         if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
1672         {
1673                 if ((argc == 2) && (strcmp(args[1], "force") == 0))
1674                         reg->valid = 0;
1675
1676                 if (reg->valid == 0)
1677                 {
1678                         reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1679                         arch_type->get(reg);
1680                 }
1681                 value = buf_to_str(reg->value, reg->size, 16);
1682                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1683                 free(value);
1684                 return ERROR_OK;
1685         }
1686
1687         /* set register value */
1688         if (argc == 2)
1689         {
1690                 u8 *buf = malloc(CEIL(reg->size, 8));
1691                 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
1692
1693                 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1694                 arch_type->set(reg, buf);
1695
1696                 value = buf_to_str(reg->value, reg->size, 16);
1697                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1698                 free(value);
1699
1700                 free(buf);
1701
1702                 return ERROR_OK;
1703         }
1704
1705         command_print(cmd_ctx, "usage: reg <#|name> [value]");
1706
1707         return ERROR_OK;
1708 }
1709
1710 static int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1711 {
1712         int retval = ERROR_OK;
1713         target_t *target = get_current_target(cmd_ctx);
1714
1715         if (argc == 0)
1716         {
1717                 if((retval = target_poll(target)) != ERROR_OK)
1718                         return retval;
1719                 if((retval = target_arch_state(target)) != ERROR_OK)
1720                         return retval;
1721
1722         }
1723         else if (argc==1)
1724         {
1725                 if (strcmp(args[0], "on") == 0)
1726                 {
1727                         target_continous_poll = 1;
1728                 }
1729                 else if (strcmp(args[0], "off") == 0)
1730                 {
1731                         target_continous_poll = 0;
1732                 }
1733                 else
1734                 {
1735                         command_print(cmd_ctx, "arg is \"on\" or \"off\"");
1736                 }
1737         } else
1738         {
1739                 return ERROR_COMMAND_SYNTAX_ERROR;
1740         }
1741
1742         return retval;
1743 }
1744
1745 static int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1746 {
1747         int ms = 5000;
1748
1749         if (argc > 0)
1750         {
1751                 char *end;
1752
1753                 ms = strtoul(args[0], &end, 0) * 1000;
1754                 if (*end)
1755                 {
1756                         command_print(cmd_ctx, "usage: %s [seconds]", cmd);
1757                         return ERROR_OK;
1758                 }
1759         }
1760         target_t *target = get_current_target(cmd_ctx);
1761
1762         return target_wait_state(target, TARGET_HALTED, ms);
1763 }
1764
1765 /* wait for target state to change. The trick here is to have a low
1766  * latency for short waits and not to suck up all the CPU time
1767  * on longer waits.
1768  *
1769  * After 500ms, keep_alive() is invoked
1770  */
1771 int target_wait_state(target_t *target, enum target_state state, int ms)
1772 {
1773         int retval;
1774         long long then=0, cur;
1775         int once=1;
1776
1777         for (;;)
1778         {
1779                 if ((retval=target_poll(target))!=ERROR_OK)
1780                         return retval;
1781                 if (target->state == state)
1782                 {
1783                         break;
1784                 }
1785                 cur = timeval_ms();
1786                 if (once)
1787                 {
1788                         once=0;
1789                         then = timeval_ms();
1790                         LOG_DEBUG("waiting for target %s...",
1791                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
1792                 }
1793
1794                 if (cur-then>500)
1795                 {
1796                         keep_alive();
1797                 }
1798
1799                 if ((cur-then)>ms)
1800                 {
1801                         LOG_ERROR("timed out while waiting for target %s",
1802                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
1803                         return ERROR_FAIL;
1804                 }
1805         }
1806
1807         return ERROR_OK;
1808 }
1809
1810 static int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1811 {
1812         int retval;
1813         target_t *target = get_current_target(cmd_ctx);
1814
1815         LOG_DEBUG("-");
1816
1817         if ((retval = target_halt(target)) != ERROR_OK)
1818         {
1819                 return retval;
1820         }
1821
1822         if (argc == 1)
1823         {
1824                 int wait;
1825                 char *end;
1826
1827                 wait = strtoul(args[0], &end, 0);
1828                 if (!*end && !wait)
1829                         return ERROR_OK;
1830         }
1831
1832         return handle_wait_halt_command(cmd_ctx, cmd, args, argc);
1833 }
1834
1835 static int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1836 {
1837         target_t *target = get_current_target(cmd_ctx);
1838
1839         LOG_USER("requesting target halt and executing a soft reset");
1840
1841         target->type->soft_reset_halt(target);
1842
1843         return ERROR_OK;
1844 }
1845
1846 static int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1847 {
1848         const Jim_Nvp *n;
1849         enum target_reset_mode reset_mode = RESET_RUN;
1850
1851         if (argc >= 1)
1852         {
1853                 n = Jim_Nvp_name2value_simple( nvp_reset_modes, args[0] );
1854                 if( (n->name == NULL) || (n->value == RESET_UNKNOWN) ){
1855                         return ERROR_COMMAND_SYNTAX_ERROR;
1856                 }
1857                 reset_mode = n->value;
1858         }
1859
1860         /* reset *all* targets */
1861         return target_process_reset(cmd_ctx, reset_mode);
1862 }
1863
1864
1865 static int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1866 {
1867         int retval;
1868         target_t *target = get_current_target(cmd_ctx);
1869
1870         target_handle_event( target, TARGET_EVENT_OLD_pre_resume );
1871
1872         if (argc == 0)
1873                 retval = target_resume(target, 1, 0, 1, 0); /* current pc, addr = 0, handle breakpoints, not debugging */
1874         else if (argc == 1)
1875                 retval = target_resume(target, 0, strtoul(args[0], NULL, 0), 1, 0); /* addr = args[0], handle breakpoints, not debugging */
1876         else
1877         {
1878                 retval = ERROR_COMMAND_SYNTAX_ERROR;
1879         }
1880
1881         return retval;
1882 }
1883
1884 static int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1885 {
1886         target_t *target = get_current_target(cmd_ctx);
1887
1888         LOG_DEBUG("-");
1889
1890         if (argc == 0)
1891                 return target->type->step(target, 1, 0, 1); /* current pc, addr = 0, handle breakpoints */
1892
1893         if (argc == 1)
1894                 return target->type->step(target, 0, strtoul(args[0], NULL, 0), 1); /* addr = args[0], handle breakpoints */
1895
1896         return ERROR_OK;
1897 }
1898
1899 static void handle_md_output(struct command_context_s *cmd_ctx,
1900                 struct target_s *target, u32 address, unsigned size,
1901                 unsigned count, const u8 *buffer)
1902 {
1903         const unsigned line_bytecnt = 32;
1904         unsigned line_modulo = line_bytecnt / size;
1905
1906         char output[line_bytecnt * 4 + 1];
1907         unsigned output_len = 0;
1908
1909         const char *value_fmt;
1910         switch (size) {
1911         case 4: value_fmt = "%8.8x"; break;
1912         case 2: value_fmt = "%4.2x"; break;
1913         case 1: value_fmt = "%2.2x"; break;
1914         default:
1915                 LOG_ERROR("invalid memory read size: %u", size);
1916                 exit(-1);
1917         }
1918
1919         for (unsigned i = 0; i < count; i++)
1920         {
1921                 if (i % line_modulo == 0)
1922                 {
1923                         output_len += snprintf(output + output_len,
1924                                         sizeof(output) - output_len,
1925                                         "0x%8.8x: ", address + (i*size));
1926                 }
1927
1928                 u32 value;
1929                 const u8 *value_ptr = buffer + i * size;
1930                 switch (size) {
1931                 case 4: value = target_buffer_get_u32(target, value_ptr); break;
1932                 case 2: value = target_buffer_get_u16(target, value_ptr); break;
1933                 case 1: value = *value_ptr;
1934                 }
1935                 output_len += snprintf(output + output_len,
1936                                 sizeof(output) - output_len,
1937                                 value_fmt, value);
1938
1939                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
1940                 {
1941                         command_print(cmd_ctx, "%s", output);
1942                         output_len = 0;
1943                 }
1944         }
1945 }
1946
1947 static int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1948 {
1949         if (argc < 1)
1950                 return ERROR_COMMAND_SYNTAX_ERROR;
1951
1952         unsigned size = 0;
1953         switch (cmd[2]) {
1954         case 'w': size = 4; break;
1955         case 'h': size = 2; break;
1956         case 'b': size = 1; break;
1957         default: return ERROR_COMMAND_SYNTAX_ERROR;
1958         }
1959
1960         u32 address = strtoul(args[0], NULL, 0);
1961
1962         unsigned count = 1;
1963         if (argc == 2)
1964                 count = strtoul(args[1], NULL, 0);
1965
1966         u8 *buffer = calloc(count, size);
1967
1968         target_t *target = get_current_target(cmd_ctx);
1969         int retval = target_read_memory(target,
1970                                 address, size, count, buffer);
1971         if (ERROR_OK == retval)
1972                 handle_md_output(cmd_ctx, target, address, size, count, buffer);
1973
1974         free(buffer);
1975
1976         return retval;
1977 }
1978
1979 static int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1980 {
1981         u32 address = 0;
1982         u32 value = 0;
1983         int count = 1;
1984         int i;
1985         int wordsize;
1986         target_t *target = get_current_target(cmd_ctx);
1987         u8 value_buf[4];
1988
1989          if ((argc < 2) || (argc > 3))
1990                 return ERROR_COMMAND_SYNTAX_ERROR;
1991
1992         address = strtoul(args[0], NULL, 0);
1993         value = strtoul(args[1], NULL, 0);
1994         if (argc == 3)
1995                 count = strtoul(args[2], NULL, 0);
1996
1997         switch (cmd[2])
1998         {
1999                 case 'w':
2000                         wordsize = 4;
2001                         target_buffer_set_u32(target, value_buf, value);
2002                         break;
2003                 case 'h':
2004                         wordsize = 2;
2005                         target_buffer_set_u16(target, value_buf, value);
2006                         break;
2007                 case 'b':
2008                         wordsize = 1;
2009                         value_buf[0] = value;
2010                         break;
2011                 default:
2012                         return ERROR_COMMAND_SYNTAX_ERROR;
2013         }
2014         for (i=0; i<count; i++)
2015         {
2016                 int retval = target_write_memory(target,
2017                                 address + i * wordsize, wordsize, 1, value_buf);
2018                 if (ERROR_OK != retval)
2019                         return retval;
2020                 keep_alive();
2021         }
2022
2023         return ERROR_OK;
2024
2025 }
2026
2027 static int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2028 {
2029         u8 *buffer;
2030         u32 buf_cnt;
2031         u32 image_size;
2032         u32 min_address=0;
2033         u32 max_address=0xffffffff;
2034         int i;
2035         int retval, retvaltemp;
2036
2037         image_t image;
2038
2039         duration_t duration;
2040         char *duration_text;
2041
2042         target_t *target = get_current_target(cmd_ctx);
2043
2044         if ((argc < 1)||(argc > 5))
2045         {
2046                 return ERROR_COMMAND_SYNTAX_ERROR;
2047         }
2048
2049         /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
2050         if (argc >= 2)
2051         {
2052                 image.base_address_set = 1;
2053                 image.base_address = strtoul(args[1], NULL, 0);
2054         }
2055         else
2056         {
2057                 image.base_address_set = 0;
2058         }
2059
2060
2061         image.start_address_set = 0;
2062
2063         if (argc>=4)
2064         {
2065                 min_address=strtoul(args[3], NULL, 0);
2066         }
2067         if (argc>=5)
2068         {
2069                 max_address=strtoul(args[4], NULL, 0)+min_address;
2070         }
2071
2072         if (min_address>max_address)
2073         {
2074                 return ERROR_COMMAND_SYNTAX_ERROR;
2075         }
2076
2077         duration_start_measure(&duration);
2078
2079         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
2080         {
2081                 return ERROR_OK;
2082         }
2083
2084         image_size = 0x0;
2085         retval = ERROR_OK;
2086         for (i = 0; i < image.num_sections; i++)
2087         {
2088                 buffer = malloc(image.sections[i].size);
2089                 if (buffer == NULL)
2090                 {
2091                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2092                         break;
2093                 }
2094
2095                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2096                 {
2097                         free(buffer);
2098                         break;
2099                 }
2100
2101                 u32 offset=0;
2102                 u32 length=buf_cnt;
2103
2104                 /* DANGER!!! beware of unsigned comparision here!!! */
2105
2106                 if ((image.sections[i].base_address+buf_cnt>=min_address)&&
2107                                 (image.sections[i].base_address<max_address))
2108                 {
2109                         if (image.sections[i].base_address<min_address)
2110                         {
2111                                 /* clip addresses below */
2112                                 offset+=min_address-image.sections[i].base_address;
2113                                 length-=offset;
2114                         }
2115
2116                         if (image.sections[i].base_address+buf_cnt>max_address)
2117                         {
2118                                 length-=(image.sections[i].base_address+buf_cnt)-max_address;
2119                         }
2120
2121                         if ((retval = target_write_buffer(target, image.sections[i].base_address+offset, length, buffer+offset)) != ERROR_OK)
2122                         {
2123                                 free(buffer);
2124                                 break;
2125                         }
2126                         image_size += length;
2127                         command_print(cmd_ctx, "%u byte written at address 0x%8.8x", length, image.sections[i].base_address+offset);
2128                 }
2129
2130                 free(buffer);
2131         }
2132
2133         if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2134         {
2135                 image_close(&image);
2136                 return retvaltemp;
2137         }
2138
2139         if (retval==ERROR_OK)
2140         {
2141                 command_print(cmd_ctx, "downloaded %u byte in %s", image_size, duration_text);
2142         }
2143         free(duration_text);
2144
2145         image_close(&image);
2146
2147         return retval;
2148
2149 }
2150
2151 static int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2152 {
2153         fileio_t fileio;
2154
2155         u32 address;
2156         u32 size;
2157         u8 buffer[560];
2158         int retval=ERROR_OK, retvaltemp;
2159
2160         duration_t duration;
2161         char *duration_text;
2162
2163         target_t *target = get_current_target(cmd_ctx);
2164
2165         if (argc != 3)
2166         {
2167                 command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
2168                 return ERROR_OK;
2169         }
2170
2171         address = strtoul(args[1], NULL, 0);
2172         size = strtoul(args[2], NULL, 0);
2173
2174         if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2175         {
2176                 return ERROR_OK;
2177         }
2178
2179         duration_start_measure(&duration);
2180
2181         while (size > 0)
2182         {
2183                 u32 size_written;
2184                 u32 this_run_size = (size > 560) ? 560 : size;
2185
2186                 retval = target_read_buffer(target, address, this_run_size, buffer);
2187                 if (retval != ERROR_OK)
2188                 {
2189                         break;
2190                 }
2191
2192                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2193                 if (retval != ERROR_OK)
2194                 {
2195                         break;
2196                 }
2197
2198                 size -= this_run_size;
2199                 address += this_run_size;
2200         }
2201
2202         if((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2203                 return retvaltemp;
2204
2205         if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2206                 return retvaltemp;
2207
2208         if (retval==ERROR_OK)
2209         {
2210                 command_print(cmd_ctx, "dumped %lld byte in %s",
2211                                 fileio.size, duration_text);
2212                 free(duration_text);
2213         }
2214
2215         return retval;
2216 }
2217
2218 static int handle_verify_image_command_internal(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc, int verify)
2219 {
2220         u8 *buffer;
2221         u32 buf_cnt;
2222         u32 image_size;
2223         int i;
2224         int retval, retvaltemp;
2225         u32 checksum = 0;
2226         u32 mem_checksum = 0;
2227
2228         image_t image;
2229
2230         duration_t duration;
2231         char *duration_text;
2232
2233         target_t *target = get_current_target(cmd_ctx);
2234
2235         if (argc < 1)
2236         {
2237                 return ERROR_COMMAND_SYNTAX_ERROR;
2238         }
2239
2240         if (!target)
2241         {
2242                 LOG_ERROR("no target selected");
2243                 return ERROR_FAIL;
2244         }
2245
2246         duration_start_measure(&duration);
2247
2248         if (argc >= 2)
2249         {
2250                 image.base_address_set = 1;
2251                 image.base_address = strtoul(args[1], NULL, 0);
2252         }
2253         else
2254         {
2255                 image.base_address_set = 0;
2256                 image.base_address = 0x0;
2257         }
2258
2259         image.start_address_set = 0;
2260
2261         if ((retval=image_open(&image, args[0], (argc == 3) ? args[2] : NULL)) != ERROR_OK)
2262         {
2263                 return retval;
2264         }
2265
2266         image_size = 0x0;
2267         retval=ERROR_OK;
2268         for (i = 0; i < image.num_sections; i++)
2269         {
2270                 buffer = malloc(image.sections[i].size);
2271                 if (buffer == NULL)
2272                 {
2273                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2274                         break;
2275                 }
2276                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2277                 {
2278                         free(buffer);
2279                         break;
2280                 }
2281
2282                 if (verify)
2283                 {
2284                         /* calculate checksum of image */
2285                         image_calculate_checksum( buffer, buf_cnt, &checksum );
2286
2287                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2288                         if( retval != ERROR_OK )
2289                         {
2290                                 free(buffer);
2291                                 break;
2292                         }
2293
2294                         if( checksum != mem_checksum )
2295                         {
2296                                 /* failed crc checksum, fall back to a binary compare */
2297                                 u8 *data;
2298
2299                                 command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
2300
2301                                 data = (u8*)malloc(buf_cnt);
2302
2303                                 /* Can we use 32bit word accesses? */
2304                                 int size = 1;
2305                                 int count = buf_cnt;
2306                                 if ((count % 4) == 0)
2307                                 {
2308                                         size *= 4;
2309                                         count /= 4;
2310                                 }
2311                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2312                                 if (retval == ERROR_OK)
2313                                 {
2314                                         u32 t;
2315                                         for (t = 0; t < buf_cnt; t++)
2316                                         {
2317                                                 if (data[t] != buffer[t])
2318                                                 {
2319                                                         command_print(cmd_ctx, "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n", t + image.sections[i].base_address, data[t], buffer[t]);
2320                                                         free(data);
2321                                                         free(buffer);
2322                                                         retval=ERROR_FAIL;
2323                                                         goto done;
2324                                                 }
2325                                                 if ((t%16384)==0)
2326                                                 {
2327                                                         keep_alive();
2328                                                 }
2329                                         }
2330                                 }
2331
2332                                 free(data);
2333                         }
2334                 } else
2335                 {
2336                         command_print(cmd_ctx, "address 0x%08x length 0x%08x", image.sections[i].base_address, buf_cnt);
2337                 }
2338
2339                 free(buffer);
2340                 image_size += buf_cnt;
2341         }
2342 done:
2343
2344         if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2345         {
2346                 image_close(&image);
2347                 return retvaltemp;
2348         }
2349
2350         if (retval==ERROR_OK)
2351         {
2352                 command_print(cmd_ctx, "verified %u bytes in %s", image_size, duration_text);
2353         }
2354         free(duration_text);
2355
2356         image_close(&image);
2357
2358         return retval;
2359 }
2360
2361 static int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2362 {
2363         return handle_verify_image_command_internal(cmd_ctx, cmd, args, argc, 1);
2364 }
2365
2366 static int handle_test_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2367 {
2368         return handle_verify_image_command_internal(cmd_ctx, cmd, args, argc, 0);
2369 }
2370
2371 static int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2372 {
2373         int retval;
2374         target_t *target = get_current_target(cmd_ctx);
2375
2376         if (argc == 0)
2377         {
2378                 breakpoint_t *breakpoint = target->breakpoints;
2379
2380                 while (breakpoint)
2381                 {
2382                         if (breakpoint->type == BKPT_SOFT)
2383                         {
2384                                 char* buf = buf_to_str(breakpoint->orig_instr, breakpoint->length, 16);
2385                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i, 0x%s", breakpoint->address, breakpoint->length, breakpoint->set, buf);
2386                                 free(buf);
2387                         }
2388                         else
2389                         {
2390                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i", breakpoint->address, breakpoint->length, breakpoint->set);
2391                         }
2392                         breakpoint = breakpoint->next;
2393                 }
2394         }
2395         else if (argc >= 2)
2396         {
2397                 int hw = BKPT_SOFT;
2398                 u32 length = 0;
2399
2400                 length = strtoul(args[1], NULL, 0);
2401
2402                 if (argc >= 3)
2403                         if (strcmp(args[2], "hw") == 0)
2404                                 hw = BKPT_HARD;
2405
2406                 if ((retval = breakpoint_add(target, strtoul(args[0], NULL, 0), length, hw)) != ERROR_OK)
2407                 {
2408                         LOG_ERROR("Failure setting breakpoints");
2409                 }
2410                 else
2411                 {
2412                         command_print(cmd_ctx, "breakpoint added at address 0x%8.8lx",
2413                                         strtoul(args[0], NULL, 0));
2414                 }
2415         }
2416         else
2417         {
2418                 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
2419         }
2420
2421         return ERROR_OK;
2422 }
2423
2424 static int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2425 {
2426         target_t *target = get_current_target(cmd_ctx);
2427
2428         if (argc > 0)
2429                 breakpoint_remove(target, strtoul(args[0], NULL, 0));
2430
2431         return ERROR_OK;
2432 }
2433
2434 static int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2435 {
2436         target_t *target = get_current_target(cmd_ctx);
2437         int retval;
2438
2439         if (argc == 0)
2440         {
2441                 watchpoint_t *watchpoint = target->watchpoints;
2442
2443                 while (watchpoint)
2444                 {
2445                         command_print(cmd_ctx, "address: 0x%8.8x, len: 0x%8.8x, r/w/a: %i, value: 0x%8.8x, mask: 0x%8.8x", watchpoint->address, watchpoint->length, watchpoint->rw, watchpoint->value, watchpoint->mask);
2446                         watchpoint = watchpoint->next;
2447                 }
2448         }
2449         else if (argc >= 2)
2450         {
2451                 enum watchpoint_rw type = WPT_ACCESS;
2452                 u32 data_value = 0x0;
2453                 u32 data_mask = 0xffffffff;
2454
2455                 if (argc >= 3)
2456                 {
2457                         switch(args[2][0])
2458                         {
2459                                 case 'r':
2460                                         type = WPT_READ;
2461                                         break;
2462                                 case 'w':
2463                                         type = WPT_WRITE;
2464                                         break;
2465                                 case 'a':
2466                                         type = WPT_ACCESS;
2467                                         break;
2468                                 default:
2469                                         command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2470                                         return ERROR_OK;
2471                         }
2472                 }
2473                 if (argc >= 4)
2474                 {
2475                         data_value = strtoul(args[3], NULL, 0);
2476                 }
2477                 if (argc >= 5)
2478                 {
2479                         data_mask = strtoul(args[4], NULL, 0);
2480                 }
2481
2482                 if ((retval = watchpoint_add(target, strtoul(args[0], NULL, 0),
2483                                 strtoul(args[1], NULL, 0), type, data_value, data_mask)) != ERROR_OK)
2484                 {
2485                         LOG_ERROR("Failure setting breakpoints");
2486                 }
2487         }
2488         else
2489         {
2490                 command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2491         }
2492
2493         return ERROR_OK;
2494 }
2495
2496 static int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2497 {
2498         target_t *target = get_current_target(cmd_ctx);
2499
2500         if (argc > 0)
2501                 watchpoint_remove(target, strtoul(args[0], NULL, 0));
2502
2503         return ERROR_OK;
2504 }
2505
2506 static int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc)
2507 {
2508         int retval;
2509         target_t *target = get_current_target(cmd_ctx);
2510         u32 va;
2511         u32 pa;
2512
2513         if (argc != 1)
2514         {
2515                 return ERROR_COMMAND_SYNTAX_ERROR;
2516         }
2517         va = strtoul(args[0], NULL, 0);
2518
2519         retval = target->type->virt2phys(target, va, &pa);
2520         if (retval == ERROR_OK)
2521         {
2522                 command_print(cmd_ctx, "Physical address 0x%08x", pa);
2523         }
2524         else
2525         {
2526                 /* lower levels will have logged a detailed error which is
2527                  * forwarded to telnet/GDB session.
2528                  */
2529         }
2530         return retval;
2531 }
2532
2533 static void writeData(FILE *f, const void *data, size_t len)
2534 {
2535         size_t written = fwrite(data, len, 1, f);
2536         if (written != len)
2537                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
2538 }
2539
2540 static void writeLong(FILE *f, int l)
2541 {
2542         int i;
2543         for (i=0; i<4; i++)
2544         {
2545                 char c=(l>>(i*8))&0xff;
2546                 writeData(f, &c, 1);
2547         }
2548
2549 }
2550
2551 static void writeString(FILE *f, char *s)
2552 {
2553         writeData(f, s, strlen(s));
2554 }
2555
2556 /* Dump a gmon.out histogram file. */
2557 static void writeGmon(u32 *samples, u32 sampleNum, char *filename)
2558 {
2559         u32 i;
2560         FILE *f=fopen(filename, "w");
2561         if (f==NULL)
2562                 return;
2563         writeString(f, "gmon");
2564         writeLong(f, 0x00000001); /* Version */
2565         writeLong(f, 0); /* padding */
2566         writeLong(f, 0); /* padding */
2567         writeLong(f, 0); /* padding */
2568
2569         u8 zero = 0;  /* GMON_TAG_TIME_HIST */
2570         writeData(f, &zero, 1);
2571
2572         /* figure out bucket size */
2573         u32 min=samples[0];
2574         u32 max=samples[0];
2575         for (i=0; i<sampleNum; i++)
2576         {
2577                 if (min>samples[i])
2578                 {
2579                         min=samples[i];
2580                 }
2581                 if (max<samples[i])
2582                 {
2583                         max=samples[i];
2584                 }
2585         }
2586
2587         int addressSpace=(max-min+1);
2588
2589         static const u32 maxBuckets = 256 * 1024; /* maximum buckets. */
2590         u32 length = addressSpace;
2591         if (length > maxBuckets)
2592         {
2593                 length=maxBuckets;
2594         }
2595         int *buckets=malloc(sizeof(int)*length);
2596         if (buckets==NULL)
2597         {
2598                 fclose(f);
2599                 return;
2600         }
2601         memset(buckets, 0, sizeof(int)*length);
2602         for (i=0; i<sampleNum;i++)
2603         {
2604                 u32 address=samples[i];
2605                 long long a=address-min;
2606                 long long b=length-1;
2607                 long long c=addressSpace-1;
2608                 int index=(a*b)/c; /* danger!!!! int32 overflows */
2609                 buckets[index]++;
2610         }
2611
2612         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
2613         writeLong(f, min);                      /* low_pc */
2614         writeLong(f, max);                      /* high_pc */
2615         writeLong(f, length);           /* # of samples */
2616         writeLong(f, 64000000);         /* 64MHz */
2617         writeString(f, "seconds");
2618         for (i=0; i<(15-strlen("seconds")); i++)
2619                 writeData(f, &zero, 1);
2620         writeString(f, "s");
2621
2622         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
2623
2624         char *data=malloc(2*length);
2625         if (data!=NULL)
2626         {
2627                 for (i=0; i<length;i++)
2628                 {
2629                         int val;
2630                         val=buckets[i];
2631                         if (val>65535)
2632                         {
2633                                 val=65535;
2634                         }
2635                         data[i*2]=val&0xff;
2636                         data[i*2+1]=(val>>8)&0xff;
2637                 }
2638                 free(buckets);
2639                 writeData(f, data, length * 2);
2640                 free(data);
2641         } else
2642         {
2643                 free(buckets);
2644         }
2645
2646         fclose(f);
2647 }
2648
2649 /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
2650 static int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2651 {
2652         target_t *target = get_current_target(cmd_ctx);
2653         struct timeval timeout, now;
2654
2655         gettimeofday(&timeout, NULL);
2656         if (argc!=2)
2657         {
2658                 return ERROR_COMMAND_SYNTAX_ERROR;
2659         }
2660         char *end;
2661         timeval_add_time(&timeout, strtoul(args[0], &end, 0), 0);
2662         if (*end)
2663         {
2664                 return ERROR_OK;
2665         }
2666
2667         command_print(cmd_ctx, "Starting profiling. Halting and resuming the target as often as we can...");
2668
2669         static const int maxSample=10000;
2670         u32 *samples=malloc(sizeof(u32)*maxSample);
2671         if (samples==NULL)
2672                 return ERROR_OK;
2673
2674         int numSamples=0;
2675         int retval=ERROR_OK;
2676         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2677         reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1);
2678
2679         for (;;)
2680         {
2681                 target_poll(target);
2682                 if (target->state == TARGET_HALTED)
2683                 {
2684                         u32 t=*((u32 *)reg->value);
2685                         samples[numSamples++]=t;
2686                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2687                         target_poll(target);
2688                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2689                 } else if (target->state == TARGET_RUNNING)
2690                 {
2691                         /* We want to quickly sample the PC. */
2692                         if((retval = target_halt(target)) != ERROR_OK)
2693                         {
2694                                 free(samples);
2695                                 return retval;
2696                         }
2697                 } else
2698                 {
2699                         command_print(cmd_ctx, "Target not halted or running");
2700                         retval=ERROR_OK;
2701                         break;
2702                 }
2703                 if (retval!=ERROR_OK)
2704                 {
2705                         break;
2706                 }
2707
2708                 gettimeofday(&now, NULL);
2709                 if ((numSamples>=maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
2710                 {
2711                         command_print(cmd_ctx, "Profiling completed. %d samples.", numSamples);
2712                         if((retval = target_poll(target)) != ERROR_OK)
2713                         {
2714                                 free(samples);
2715                                 return retval;
2716                         }
2717                         if (target->state == TARGET_HALTED)
2718                         {
2719                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2720                         }
2721                         if((retval = target_poll(target)) != ERROR_OK)
2722                         {
2723                                 free(samples);
2724                                 return retval;
2725                         }
2726                         writeGmon(samples, numSamples, args[1]);
2727                         command_print(cmd_ctx, "Wrote %s", args[1]);
2728                         break;
2729                 }
2730         }
2731         free(samples);
2732
2733         return ERROR_OK;
2734 }
2735
2736 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 val)
2737 {
2738         char *namebuf;
2739         Jim_Obj *nameObjPtr, *valObjPtr;
2740         int result;
2741
2742         namebuf = alloc_printf("%s(%d)", varname, idx);
2743         if (!namebuf)
2744                 return JIM_ERR;
2745
2746         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
2747         valObjPtr = Jim_NewIntObj(interp, val);
2748         if (!nameObjPtr || !valObjPtr)
2749         {
2750                 free(namebuf);
2751                 return JIM_ERR;
2752         }
2753
2754         Jim_IncrRefCount(nameObjPtr);
2755         Jim_IncrRefCount(valObjPtr);
2756         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
2757         Jim_DecrRefCount(interp, nameObjPtr);
2758         Jim_DecrRefCount(interp, valObjPtr);
2759         free(namebuf);
2760         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
2761         return result;
2762 }
2763
2764 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
2765 {
2766         command_context_t *context;
2767         target_t *target;
2768
2769         context = Jim_GetAssocData(interp, "context");
2770         if (context == NULL)
2771         {
2772                 LOG_ERROR("mem2array: no command context");
2773                 return JIM_ERR;
2774         }
2775         target = get_current_target(context);
2776         if (target == NULL)
2777         {
2778                 LOG_ERROR("mem2array: no current target");
2779                 return JIM_ERR;
2780         }
2781
2782         return  target_mem2array(interp, target, argc-1, argv+1);
2783 }
2784
2785 static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv)
2786 {
2787         long l;
2788         u32 width;
2789         int len;
2790         u32 addr;
2791         u32 count;
2792         u32 v;
2793         const char *varname;
2794         u8 buffer[4096];
2795         int  n, e, retval;
2796         u32 i;
2797
2798         /* argv[1] = name of array to receive the data
2799          * argv[2] = desired width
2800          * argv[3] = memory address
2801          * argv[4] = count of times to read
2802          */
2803         if (argc != 4) {
2804                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
2805                 return JIM_ERR;
2806         }
2807         varname = Jim_GetString(argv[0], &len);
2808         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
2809
2810         e = Jim_GetLong(interp, argv[1], &l);
2811         width = l;
2812         if (e != JIM_OK) {
2813                 return e;
2814         }
2815
2816         e = Jim_GetLong(interp, argv[2], &l);
2817         addr = l;
2818         if (e != JIM_OK) {
2819                 return e;
2820         }
2821         e = Jim_GetLong(interp, argv[3], &l);
2822         len = l;
2823         if (e != JIM_OK) {
2824                 return e;
2825         }
2826         switch (width) {
2827                 case 8:
2828                         width = 1;
2829                         break;
2830                 case 16:
2831                         width = 2;
2832                         break;
2833                 case 32:
2834                         width = 4;
2835                         break;
2836                 default:
2837                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2838                         Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
2839                         return JIM_ERR;
2840         }
2841         if (len == 0) {
2842                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2843                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
2844                 return JIM_ERR;
2845         }
2846         if ((addr + (len * width)) < addr) {
2847                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2848                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
2849                 return JIM_ERR;
2850         }
2851         /* absurd transfer size? */
2852         if (len > 65536) {
2853                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2854                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
2855                 return JIM_ERR;
2856         }
2857
2858         if ((width == 1) ||
2859                 ((width == 2) && ((addr & 1) == 0)) ||
2860                 ((width == 4) && ((addr & 3) == 0))) {
2861                 /* all is well */
2862         } else {
2863                 char buf[100];
2864                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2865                 sprintf(buf, "mem2array address: 0x%08x is not aligned for %d byte reads", addr, width);
2866                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
2867                 return JIM_ERR;
2868         }
2869
2870         /* Transfer loop */
2871
2872         /* index counter */
2873         n = 0;
2874         /* assume ok */
2875         e = JIM_OK;
2876         while (len) {
2877                 /* Slurp... in buffer size chunks */
2878
2879                 count = len; /* in objects.. */
2880                 if (count > (sizeof(buffer)/width)) {
2881                         count = (sizeof(buffer)/width);
2882                 }
2883
2884                 retval = target_read_memory( target, addr, width, count, buffer );
2885                 if (retval != ERROR_OK) {
2886                         /* BOO !*/
2887                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
2888                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2889                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
2890                         e = JIM_ERR;
2891                         len = 0;
2892                 } else {
2893                         v = 0; /* shut up gcc */
2894                         for (i = 0 ;i < count ;i++, n++) {
2895                                 switch (width) {
2896                                         case 4:
2897                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
2898                                                 break;
2899                                         case 2:
2900                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
2901                                                 break;
2902                                         case 1:
2903                                                 v = buffer[i] & 0x0ff;
2904                                                 break;
2905                                 }
2906                                 new_int_array_element(interp, varname, n, v);
2907                         }
2908                         len -= count;
2909                 }
2910         }
2911
2912         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2913
2914         return JIM_OK;
2915 }
2916
2917 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 *val)
2918 {
2919         char *namebuf;
2920         Jim_Obj *nameObjPtr, *valObjPtr;
2921         int result;
2922         long l;
2923
2924         namebuf = alloc_printf("%s(%d)", varname, idx);
2925         if (!namebuf)
2926                 return JIM_ERR;
2927
2928         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
2929         if (!nameObjPtr)
2930         {
2931                 free(namebuf);
2932                 return JIM_ERR;
2933         }
2934
2935         Jim_IncrRefCount(nameObjPtr);
2936         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
2937         Jim_DecrRefCount(interp, nameObjPtr);
2938         free(namebuf);
2939         if (valObjPtr == NULL)
2940                 return JIM_ERR;
2941
2942         result = Jim_GetLong(interp, valObjPtr, &l);
2943         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
2944         *val = l;
2945         return result;
2946 }
2947
2948 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
2949 {
2950         command_context_t *context;
2951         target_t *target;
2952
2953         context = Jim_GetAssocData(interp, "context");
2954         if (context == NULL){
2955                 LOG_ERROR("array2mem: no command context");
2956                 return JIM_ERR;
2957         }
2958         target = get_current_target(context);
2959         if (target == NULL){
2960                 LOG_ERROR("array2mem: no current target");
2961                 return JIM_ERR;
2962         }
2963
2964         return target_array2mem( interp,target, argc-1, argv+1 );
2965 }
2966
2967 static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv)
2968 {
2969         long l;
2970         u32 width;
2971         int len;
2972         u32 addr;
2973         u32 count;
2974         u32 v;
2975         const char *varname;
2976         u8 buffer[4096];
2977         int  n, e, retval;
2978         u32 i;
2979
2980         /* argv[1] = name of array to get the data
2981          * argv[2] = desired width
2982          * argv[3] = memory address
2983          * argv[4] = count to write
2984          */
2985         if (argc != 4) {
2986                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
2987                 return JIM_ERR;
2988         }
2989         varname = Jim_GetString(argv[0], &len);
2990         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
2991
2992         e = Jim_GetLong(interp, argv[1], &l);
2993         width = l;
2994         if (e != JIM_OK) {
2995                 return e;
2996         }
2997
2998         e = Jim_GetLong(interp, argv[2], &l);
2999         addr = l;
3000         if (e != JIM_OK) {
3001                 return e;
3002         }
3003         e = Jim_GetLong(interp, argv[3], &l);
3004         len = l;
3005         if (e != JIM_OK) {
3006                 return e;
3007         }
3008         switch (width) {
3009                 case 8:
3010                         width = 1;
3011                         break;
3012                 case 16:
3013                         width = 2;
3014                         break;
3015                 case 32:
3016                         width = 4;
3017                         break;
3018                 default:
3019                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3020                         Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
3021                         return JIM_ERR;
3022         }
3023         if (len == 0) {
3024                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3025                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
3026                 return JIM_ERR;
3027         }
3028         if ((addr + (len * width)) < addr) {
3029                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3030                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
3031                 return JIM_ERR;
3032         }
3033         /* absurd transfer size? */
3034         if (len > 65536) {
3035                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3036                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
3037                 return JIM_ERR;
3038         }
3039
3040         if ((width == 1) ||
3041                 ((width == 2) && ((addr & 1) == 0)) ||
3042                 ((width == 4) && ((addr & 3) == 0))) {
3043                 /* all is well */
3044         } else {
3045                 char buf[100];
3046                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3047                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads", addr, width);
3048                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3049                 return JIM_ERR;
3050         }
3051
3052         /* Transfer loop */
3053
3054         /* index counter */
3055         n = 0;
3056         /* assume ok */
3057         e = JIM_OK;
3058         while (len) {
3059                 /* Slurp... in buffer size chunks */
3060
3061                 count = len; /* in objects.. */
3062                 if (count > (sizeof(buffer)/width)) {
3063                         count = (sizeof(buffer)/width);
3064                 }
3065
3066                 v = 0; /* shut up gcc */
3067                 for (i = 0 ;i < count ;i++, n++) {
3068                         get_int_array_element(interp, varname, n, &v);
3069                         switch (width) {
3070                         case 4:
3071                                 target_buffer_set_u32(target, &buffer[i*width], v);
3072                                 break;
3073                         case 2:
3074                                 target_buffer_set_u16(target, &buffer[i*width], v);
3075                                 break;
3076                         case 1:
3077                                 buffer[i] = v & 0x0ff;
3078                                 break;
3079                         }
3080                 }
3081                 len -= count;
3082
3083                 retval = target_write_memory(target, addr, width, count, buffer);
3084                 if (retval != ERROR_OK) {
3085                         /* BOO !*/
3086                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
3087                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3088                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3089                         e = JIM_ERR;
3090                         len = 0;
3091                 }
3092         }
3093
3094         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3095
3096         return JIM_OK;
3097 }
3098
3099 void target_all_handle_event( enum target_event e )
3100 {
3101         target_t *target;
3102
3103         LOG_DEBUG( "**all*targets: event: %d, %s",
3104                         e,
3105                         Jim_Nvp_value2name_simple( nvp_target_event, e )->name );
3106
3107         target = all_targets;
3108         while (target){
3109                 target_handle_event( target, e );
3110                 target = target->next;
3111         }
3112 }
3113
3114 void target_handle_event( target_t *target, enum target_event e )
3115 {
3116         target_event_action_t *teap;
3117         int done;
3118
3119         teap = target->event_action;
3120
3121         done = 0;
3122         while( teap ){
3123                 if( teap->event == e ){
3124                         done = 1;
3125                         LOG_DEBUG( "target: (%d) %s (%s) event: %d (%s) action: %s\n",
3126                                            target->target_number,
3127                                            target->cmd_name,
3128                                            target->type->name,
3129                                            e,
3130                                            Jim_Nvp_value2name_simple( nvp_target_event, e )->name,
3131                                            Jim_GetString( teap->body, NULL ) );
3132                         if (Jim_EvalObj( interp, teap->body )!=JIM_OK)
3133                         {
3134                                 Jim_PrintErrorMessage(interp);
3135                         }
3136                 }
3137                 teap = teap->next;
3138         }
3139         if( !done ){
3140                 LOG_DEBUG( "event: %d %s - no action",
3141                                    e,
3142                                    Jim_Nvp_value2name_simple( nvp_target_event, e )->name );
3143         }
3144 }
3145
3146 enum target_cfg_param {
3147         TCFG_TYPE,
3148         TCFG_EVENT,
3149         TCFG_WORK_AREA_VIRT,
3150         TCFG_WORK_AREA_PHYS,
3151         TCFG_WORK_AREA_SIZE,
3152         TCFG_WORK_AREA_BACKUP,
3153         TCFG_ENDIAN,
3154         TCFG_VARIANT,
3155         TCFG_CHAIN_POSITION,
3156 };
3157
3158 static Jim_Nvp nvp_config_opts[] = {
3159         { .name = "-type",             .value = TCFG_TYPE },
3160         { .name = "-event",            .value = TCFG_EVENT },
3161         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
3162         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
3163         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
3164         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3165         { .name = "-endian" ,          .value = TCFG_ENDIAN },
3166         { .name = "-variant",          .value = TCFG_VARIANT },
3167         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
3168
3169         { .name = NULL, .value = -1 }
3170 };
3171
3172 static int target_configure( Jim_GetOptInfo *goi, target_t *target )
3173 {
3174         Jim_Nvp *n;
3175         Jim_Obj *o;
3176         jim_wide w;
3177         char *cp;
3178         int e;
3179
3180         /* parse config or cget options ... */
3181         while( goi->argc > 0 ){
3182                 Jim_SetEmptyResult( goi->interp );
3183                 /* Jim_GetOpt_Debug( goi ); */
3184
3185                 if( target->type->target_jim_configure ){
3186                         /* target defines a configure function */
3187                         /* target gets first dibs on parameters */
3188                         e = (*(target->type->target_jim_configure))( target, goi );
3189                         if( e == JIM_OK ){
3190                                 /* more? */
3191                                 continue;
3192                         }
3193                         if( e == JIM_ERR ){
3194                                 /* An error */
3195                                 return e;
3196                         }
3197                         /* otherwise we 'continue' below */
3198                 }
3199                 e = Jim_GetOpt_Nvp( goi, nvp_config_opts, &n );
3200                 if( e != JIM_OK ){
3201                         Jim_GetOpt_NvpUnknown( goi, nvp_config_opts, 0 );
3202                         return e;
3203                 }
3204                 switch( n->value ){
3205                 case TCFG_TYPE:
3206                         /* not setable */
3207                         if( goi->isconfigure ){
3208                                 Jim_SetResult_sprintf( goi->interp, "not setable: %s", n->name );
3209                                 return JIM_ERR;
3210                         } else {
3211                         no_params:
3212                                 if( goi->argc != 0 ){
3213                                         Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "NO PARAMS");
3214                                         return JIM_ERR;
3215                                 }
3216                         }
3217                         Jim_SetResultString( goi->interp, target->type->name, -1 );
3218                         /* loop for more */
3219                         break;
3220                 case TCFG_EVENT:
3221                         if( goi->argc == 0 ){
3222                                 Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
3223                                 return JIM_ERR;
3224                         }
3225
3226                         e = Jim_GetOpt_Nvp( goi, nvp_target_event, &n );
3227                         if( e != JIM_OK ){
3228                                 Jim_GetOpt_NvpUnknown( goi, nvp_target_event, 1 );
3229                                 return e;
3230                         }
3231
3232                         if( goi->isconfigure ){
3233                                 if( goi->argc != 1 ){
3234                                         Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
3235                                         return JIM_ERR;
3236                                 }
3237                         } else {
3238                                 if( goi->argc != 0 ){
3239                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
3240                                         return JIM_ERR;
3241                                 }
3242                         }
3243
3244                         {
3245                                 target_event_action_t *teap;
3246
3247                                 teap = target->event_action;
3248                                 /* replace existing? */
3249                                 while( teap ){
3250                                         if( teap->event == (enum target_event)n->value ){
3251                                                 break;
3252                                         }
3253                                         teap = teap->next;
3254                                 }
3255
3256                                 if( goi->isconfigure ){
3257                                         if( teap == NULL ){
3258                                                 /* create new */
3259                                                 teap = calloc( 1, sizeof(*teap) );
3260                                         }
3261                                         teap->event = n->value;
3262                                         Jim_GetOpt_Obj( goi, &o );
3263                                         if( teap->body ){
3264                                                 Jim_DecrRefCount( interp, teap->body );
3265                                         }
3266                                         teap->body  = Jim_DuplicateObj( goi->interp, o );
3267                                         /*
3268                                          * FIXME:
3269                                          *     Tcl/TK - "tk events" have a nice feature.
3270                                          *     See the "BIND" command.
3271                                          *    We should support that here.
3272                                          *     You can specify %X and %Y in the event code.
3273                                          *     The idea is: %T - target name.
3274                                          *     The idea is: %N - target number
3275                                          *     The idea is: %E - event name.
3276                                          */
3277                                         Jim_IncrRefCount( teap->body );
3278
3279                                         /* add to head of event list */
3280                                         teap->next = target->event_action;
3281                                         target->event_action = teap;
3282                                         Jim_SetEmptyResult(goi->interp);
3283                                 } else {
3284                                         /* get */
3285                                         if( teap == NULL ){
3286                                                 Jim_SetEmptyResult( goi->interp );
3287                                         } else {
3288                                                 Jim_SetResult( goi->interp, Jim_DuplicateObj( goi->interp, teap->body ) );
3289                                         }
3290                                 }
3291                         }
3292                         /* loop for more */
3293                         break;
3294
3295                 case TCFG_WORK_AREA_VIRT:
3296                         if( goi->isconfigure ){
3297                                 target_free_all_working_areas(target);
3298                                 e = Jim_GetOpt_Wide( goi, &w );
3299                                 if( e != JIM_OK ){
3300                                         return e;
3301                                 }
3302                                 target->working_area_virt = w;
3303                         } else {
3304                                 if( goi->argc != 0 ){
3305                                         goto no_params;
3306                                 }
3307                         }
3308                         Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_virt ) );
3309                         /* loop for more */
3310                         break;
3311
3312                 case TCFG_WORK_AREA_PHYS:
3313                         if( goi->isconfigure ){
3314                                 target_free_all_working_areas(target);
3315                                 e = Jim_GetOpt_Wide( goi, &w );
3316                                 if( e != JIM_OK ){
3317                                         return e;
3318                                 }
3319                                 target->working_area_phys = w;
3320                         } else {
3321                                 if( goi->argc != 0 ){
3322                                         goto no_params;
3323                                 }
3324                         }
3325                         Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_phys ) );
3326                         /* loop for more */
3327                         break;
3328
3329                 case TCFG_WORK_AREA_SIZE:
3330                         if( goi->isconfigure ){
3331                                 target_free_all_working_areas(target);
3332                                 e = Jim_GetOpt_Wide( goi, &w );
3333                                 if( e != JIM_OK ){
3334                                         return e;
3335                                 }
3336                                 target->working_area_size = w;
3337                         } else {
3338                                 if( goi->argc != 0 ){
3339                                         goto no_params;
3340                                 }
3341                         }
3342                         Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_size ) );
3343                         /* loop for more */
3344                         break;
3345
3346                 case TCFG_WORK_AREA_BACKUP:
3347                         if( goi->isconfigure ){
3348                                 target_free_all_working_areas(target);
3349                                 e = Jim_GetOpt_Wide( goi, &w );
3350                                 if( e != JIM_OK ){
3351                                         return e;
3352                                 }
3353                                 /* make this exactly 1 or 0 */
3354                                 target->backup_working_area = (!!w);
3355                         } else {
3356                                 if( goi->argc != 0 ){
3357                                         goto no_params;
3358                                 }
3359                         }
3360                         Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_size ) );
3361                         /* loop for more e*/
3362                         break;
3363
3364                 case TCFG_ENDIAN:
3365                         if( goi->isconfigure ){
3366                                 e = Jim_GetOpt_Nvp( goi, nvp_target_endian, &n );
3367                                 if( e != JIM_OK ){
3368                                         Jim_GetOpt_NvpUnknown( goi, nvp_target_endian, 1 );
3369                                         return e;
3370                                 }
3371                                 target->endianness = n->value;
3372                         } else {
3373                                 if( goi->argc != 0 ){
3374                                         goto no_params;
3375                                 }
3376                         }
3377                         n = Jim_Nvp_value2name_simple( nvp_target_endian, target->endianness );
3378                         if( n->name == NULL ){
3379                                 target->endianness = TARGET_LITTLE_ENDIAN;
3380                                 n = Jim_Nvp_value2name_simple( nvp_target_endian, target->endianness );
3381                         }
3382                         Jim_SetResultString( goi->interp, n->name, -1 );
3383                         /* loop for more */
3384                         break;
3385
3386                 case TCFG_VARIANT:
3387                         if( goi->isconfigure ){
3388                                 if( goi->argc < 1 ){
3389                                         Jim_SetResult_sprintf( goi->interp,
3390                                                                                    "%s ?STRING?",
3391                                                                                    n->name );
3392                                         return JIM_ERR;
3393                                 }
3394                                 if( target->variant ){
3395                                         free((void *)(target->variant));
3396                                 }
3397                                 e = Jim_GetOpt_String( goi, &cp, NULL );
3398                                 target->variant = strdup(cp);
3399                         } else {
3400                                 if( goi->argc != 0 ){
3401                                         goto no_params;
3402                                 }
3403                         }
3404                         Jim_SetResultString( goi->interp, target->variant,-1 );
3405                         /* loop for more */
3406                         break;
3407                 case TCFG_CHAIN_POSITION:
3408                         if( goi->isconfigure ){
3409                                 Jim_Obj *o;
3410                                 jtag_tap_t *tap;
3411                                 target_free_all_working_areas(target);
3412                                 e = Jim_GetOpt_Obj( goi, &o );
3413                                 if( e != JIM_OK ){
3414                                         return e;
3415                                 }
3416                                 tap = jtag_TapByJimObj( goi->interp, o );
3417                                 if( tap == NULL ){
3418                                         return JIM_ERR;
3419                                 }
3420                                 /* make this exactly 1 or 0 */
3421                                 target->tap = tap;
3422                         } else {
3423                                 if( goi->argc != 0 ){
3424                                         goto no_params;
3425                                 }
3426                         }
3427                         Jim_SetResultString( interp, target->tap->dotted_name, -1 );
3428                         /* loop for more e*/
3429                         break;
3430                 }
3431         } /* while( goi->argc ) */
3432
3433
3434                 /* done - we return */
3435         return JIM_OK;
3436 }
3437
3438 /** this is the 'tcl' handler for the target specific command */
3439 static int tcl_target_func( Jim_Interp *interp, int argc, Jim_Obj *const *argv )
3440 {
3441         Jim_GetOptInfo goi;
3442         jim_wide a,b,c;
3443         int x,y,z;
3444         u8  target_buf[32];
3445         Jim_Nvp *n;
3446         target_t *target;
3447         struct command_context_s *cmd_ctx;
3448         int e;
3449
3450         enum {
3451                 TS_CMD_CONFIGURE,
3452                 TS_CMD_CGET,
3453
3454                 TS_CMD_MWW, TS_CMD_MWH, TS_CMD_MWB,
3455                 TS_CMD_MDW, TS_CMD_MDH, TS_CMD_MDB,
3456                 TS_CMD_MRW, TS_CMD_MRH, TS_CMD_MRB,
3457                 TS_CMD_MEM2ARRAY, TS_CMD_ARRAY2MEM,
3458                 TS_CMD_EXAMINE,
3459                 TS_CMD_POLL,
3460                 TS_CMD_RESET,
3461                 TS_CMD_HALT,
3462                 TS_CMD_WAITSTATE,
3463                 TS_CMD_EVENTLIST,
3464                 TS_CMD_CURSTATE,
3465                 TS_CMD_INVOKE_EVENT,
3466         };
3467
3468         static const Jim_Nvp target_options[] = {
3469                 { .name = "configure", .value = TS_CMD_CONFIGURE },
3470                 { .name = "cget", .value = TS_CMD_CGET },
3471                 { .name = "mww", .value = TS_CMD_MWW },
3472                 { .name = "mwh", .value = TS_CMD_MWH },
3473                 { .name = "mwb", .value = TS_CMD_MWB },
3474                 { .name = "mdw", .value = TS_CMD_MDW },
3475                 { .name = "mdh", .value = TS_CMD_MDH },
3476                 { .name = "mdb", .value = TS_CMD_MDB },
3477                 { .name = "mem2array", .value = TS_CMD_MEM2ARRAY },
3478                 { .name = "array2mem", .value = TS_CMD_ARRAY2MEM },
3479                 { .name = "eventlist", .value = TS_CMD_EVENTLIST },
3480                 { .name = "curstate",  .value = TS_CMD_CURSTATE },
3481
3482                 { .name = "arp_examine", .value = TS_CMD_EXAMINE },
3483                 { .name = "arp_poll", .value = TS_CMD_POLL },
3484                 { .name = "arp_reset", .value = TS_CMD_RESET },
3485                 { .name = "arp_halt", .value = TS_CMD_HALT },
3486                 { .name = "arp_waitstate", .value = TS_CMD_WAITSTATE },
3487                 { .name = "invoke-event", .value = TS_CMD_INVOKE_EVENT },
3488
3489                 { .name = NULL, .value = -1 },
3490         };
3491
3492         /* go past the "command" */
3493         Jim_GetOpt_Setup( &goi, interp, argc-1, argv+1 );
3494
3495         target = Jim_CmdPrivData( goi.interp );
3496         cmd_ctx = Jim_GetAssocData(goi.interp, "context");
3497
3498         /* commands here are in an NVP table */
3499         e = Jim_GetOpt_Nvp( &goi, target_options, &n );
3500         if( e != JIM_OK ){
3501                 Jim_GetOpt_NvpUnknown( &goi, target_options, 0 );
3502                 return e;
3503         }
3504         /* Assume blank result */
3505         Jim_SetEmptyResult( goi.interp );
3506
3507         switch( n->value ){
3508         case TS_CMD_CONFIGURE:
3509                 if( goi.argc < 2 ){
3510                         Jim_WrongNumArgs( goi.interp, goi.argc, goi.argv, "missing: -option VALUE ...");
3511                         return JIM_ERR;
3512                 }
3513                 goi.isconfigure = 1;
3514                 return target_configure( &goi, target );
3515         case TS_CMD_CGET:
3516                 // some things take params
3517                 if( goi.argc < 1 ){
3518                         Jim_WrongNumArgs( goi.interp, 0, goi.argv, "missing: ?-option?");
3519                         return JIM_ERR;
3520                 }
3521                 goi.isconfigure = 0;
3522                 return target_configure( &goi, target );
3523                 break;
3524         case TS_CMD_MWW:
3525         case TS_CMD_MWH:
3526         case TS_CMD_MWB:
3527                 /* argv[0] = cmd
3528                  * argv[1] = address
3529                  * argv[2] = data
3530                  * argv[3] = optional count.
3531                  */
3532
3533                 if( (goi.argc == 3) || (goi.argc == 4) ){
3534                         /* all is well */
3535                 } else {
3536                 mwx_error:
3537                         Jim_SetResult_sprintf( goi.interp, "expected: %s ADDR DATA [COUNT]", n->name );
3538                         return JIM_ERR;
3539                 }
3540
3541                 e = Jim_GetOpt_Wide( &goi, &a );
3542                 if( e != JIM_OK ){
3543                         goto mwx_error;
3544                 }
3545
3546                 e = Jim_GetOpt_Wide( &goi, &b );
3547                 if( e != JIM_OK ){
3548                         goto mwx_error;
3549                 }
3550                 if( goi.argc ){
3551                         e = Jim_GetOpt_Wide( &goi, &c );
3552                         if( e != JIM_OK ){
3553                                 goto mwx_error;
3554                         }
3555                 } else {
3556                         c = 1;
3557                 }
3558
3559                 switch( n->value ){
3560                 case TS_CMD_MWW:
3561                         target_buffer_set_u32( target, target_buf, b );
3562                         b = 4;
3563                         break;
3564                 case TS_CMD_MWH:
3565                         target_buffer_set_u16( target, target_buf, b );
3566                         b = 2;
3567                         break;
3568                 case TS_CMD_MWB:
3569                         target_buffer_set_u8( target, target_buf, b );
3570                         b = 1;
3571                         break;
3572                 }
3573                 for( x = 0 ; x < c ; x++ ){
3574                         e = target_write_memory( target, a, b, 1, target_buf );
3575                         if( e != ERROR_OK ){
3576                                 Jim_SetResult_sprintf( interp, "Error writing @ 0x%08x: %d\n", (int)(a), e );
3577                                 return JIM_ERR;
3578                         }
3579                         /* b = width */
3580                         a = a + b;
3581                 }
3582                 return JIM_OK;
3583                 break;
3584
3585                 /* display */
3586         case TS_CMD_MDW:
3587         case TS_CMD_MDH:
3588         case TS_CMD_MDB:
3589                 /* argv[0] = command
3590                  * argv[1] = address
3591                  * argv[2] = optional count
3592                  */
3593                 if( (goi.argc == 2) || (goi.argc == 3) ){
3594                         Jim_SetResult_sprintf( goi.interp, "expected: %s ADDR [COUNT]", n->name );
3595                         return JIM_ERR;
3596                 }
3597                 e = Jim_GetOpt_Wide( &goi, &a );
3598                 if( e != JIM_OK ){
3599                         return JIM_ERR;
3600                 }
3601                 if( goi.argc ){
3602                         e = Jim_GetOpt_Wide( &goi, &c );
3603                         if( e != JIM_OK ){
3604                                 return JIM_ERR;
3605                         }
3606                 } else {
3607                         c = 1;
3608                 }
3609                 b = 1; /* shut up gcc */
3610                 switch( n->value ){
3611                 case TS_CMD_MDW:
3612                         b =  4;
3613                         break;
3614                 case TS_CMD_MDH:
3615                         b = 2;
3616                         break;
3617                 case TS_CMD_MDB:
3618                         b = 1;
3619                         break;
3620                 }
3621
3622                 /* convert to "bytes" */
3623                 c = c * b;
3624                 /* count is now in 'BYTES' */
3625                 while( c > 0 ){
3626                         y = c;
3627                         if( y > 16 ){
3628                                 y = 16;
3629                         }
3630                         e = target_read_memory( target, a, b, y / b, target_buf );
3631                         if( e != ERROR_OK ){
3632                                 Jim_SetResult_sprintf( interp, "error reading target @ 0x%08lx", (int)(a) );
3633                                 return JIM_ERR;
3634                         }
3635
3636                         Jim_fprintf( interp, interp->cookie_stdout, "0x%08x ", (int)(a) );
3637                         switch( b ){
3638                         case 4:
3639                                 for( x = 0 ; (x < 16) && (x < y) ; x += 4 ){
3640                                         z = target_buffer_get_u32( target, &(target_buf[ x * 4 ]) );
3641                                         Jim_fprintf( interp, interp->cookie_stdout, "%08x ", (int)(z) );
3642                                 }
3643                                 for( ; (x < 16) ; x += 4 ){
3644                                         Jim_fprintf( interp, interp->cookie_stdout, "         " );
3645                                 }
3646                                 break;
3647                         case 2:
3648                                 for( x = 0 ; (x < 16) && (x < y) ; x += 2 ){
3649                                         z = target_buffer_get_u16( target, &(target_buf[ x * 2 ]) );
3650                                         Jim_fprintf( interp, interp->cookie_stdout, "%04x ", (int)(z) );
3651                                 }
3652                                 for( ; (x < 16) ; x += 2 ){
3653                                         Jim_fprintf( interp, interp->cookie_stdout, "     " );
3654                                 }
3655                                 break;
3656                         case 1:
3657                         default:
3658                                 for( x = 0 ; (x < 16) && (x < y) ; x += 1 ){
3659                                         z = target_buffer_get_u8( target, &(target_buf[ x * 4 ]) );
3660                                         Jim_fprintf( interp, interp->cookie_stdout, "%02x ", (int)(z) );
3661                                 }
3662                                 for( ; (x < 16) ; x += 1 ){
3663                                         Jim_fprintf( interp, interp->cookie_stdout, "   " );
3664                                 }
3665                                 break;
3666                         }
3667                         /* ascii-ify the bytes */
3668                         for( x = 0 ; x < y ; x++ ){
3669                                 if( (target_buf[x] >= 0x20) &&
3670                                         (target_buf[x] <= 0x7e) ){
3671                                         /* good */
3672                                 } else {
3673                                         /* smack it */
3674                                         target_buf[x] = '.';
3675                                 }
3676                         }
3677                         /* space pad  */
3678                         while( x < 16 ){
3679                                 target_buf[x] = ' ';
3680                                 x++;
3681                         }
3682                         /* terminate */
3683                         target_buf[16] = 0;
3684                         /* print - with a newline */
3685                         Jim_fprintf( interp, interp->cookie_stdout, "%s\n", target_buf );
3686                         /* NEXT... */
3687                         c -= 16;
3688                         a += 16;
3689                 }
3690                 return JIM_OK;
3691         case TS_CMD_MEM2ARRAY:
3692                 return target_mem2array( goi.interp, target, goi.argc, goi.argv );
3693                 break;
3694         case TS_CMD_ARRAY2MEM:
3695                 return target_array2mem( goi.interp, target, goi.argc, goi.argv );
3696                 break;
3697         case TS_CMD_EXAMINE:
3698                 if( goi.argc ){
3699                         Jim_WrongNumArgs( goi.interp, 2, argv, "[no parameters]");
3700                         return JIM_ERR;
3701                 }
3702                 e = target->type->examine( target );
3703                 if( e != ERROR_OK ){
3704                         Jim_SetResult_sprintf( interp, "examine-fails: %d", e );
3705                         return JIM_ERR;
3706                 }
3707                 return JIM_OK;
3708         case TS_CMD_POLL:
3709                 if( goi.argc ){
3710                         Jim_WrongNumArgs( goi.interp, 2, argv, "[no parameters]");
3711                         return JIM_ERR;
3712                 }
3713                 if( !(target_was_examined(target)) ){
3714                         e = ERROR_TARGET_NOT_EXAMINED;
3715                 } else {
3716                         e = target->type->poll( target );
3717                 }
3718                 if( e != ERROR_OK ){
3719                         Jim_SetResult_sprintf( interp, "poll-fails: %d", e );
3720                         return JIM_ERR;
3721                 } else {
3722                         return JIM_OK;
3723                 }
3724                 break;
3725         case TS_CMD_RESET:
3726                 if( goi.argc != 2 ){
3727                         Jim_WrongNumArgs( interp, 2, argv, "t|f|assert|deassert BOOL");
3728                         return JIM_ERR;
3729                 }
3730                 e = Jim_GetOpt_Nvp( &goi, nvp_assert, &n );
3731                 if( e != JIM_OK ){
3732                         Jim_GetOpt_NvpUnknown( &goi, nvp_assert, 1 );
3733                         return e;
3734                 }
3735                 /* the halt or not param */
3736                 e = Jim_GetOpt_Wide( &goi, &a);
3737                 if( e != JIM_OK ){
3738                         return e;
3739                 }
3740                 /* determine if we should halt or not. */
3741                 target->reset_halt = !!a;
3742                 /* When this happens - all workareas are invalid. */
3743                 target_free_all_working_areas_restore(target, 0);
3744
3745                 /* do the assert */
3746                 if( n->value == NVP_ASSERT ){
3747                         target->type->assert_reset( target );
3748                 } else {
3749                         target->type->deassert_reset( target );
3750                 }
3751                 return JIM_OK;
3752         case TS_CMD_HALT:
3753                 if( goi.argc ){
3754                         Jim_WrongNumArgs( goi.interp, 0, argv, "halt [no parameters]");
3755                         return JIM_ERR;
3756                 }
3757                 target->type->halt( target );
3758                 return JIM_OK;
3759         case TS_CMD_WAITSTATE:
3760                 /* params:  <name>  statename timeoutmsecs */
3761                 if( goi.argc != 2 ){
3762                         Jim_SetResult_sprintf( goi.interp, "%s STATENAME TIMEOUTMSECS", n->name );
3763                         return JIM_ERR;
3764                 }
3765                 e = Jim_GetOpt_Nvp( &goi, nvp_target_state, &n );
3766                 if( e != JIM_OK ){
3767                         Jim_GetOpt_NvpUnknown( &goi, nvp_target_state,1 );
3768                         return e;
3769                 }
3770                 e = Jim_GetOpt_Wide( &goi, &a );
3771                 if( e != JIM_OK ){
3772                         return e;
3773                 }
3774                 e = target_wait_state( target, n->value, a );
3775                 if( e != ERROR_OK ){
3776                         Jim_SetResult_sprintf( goi.interp,
3777                                                                    "target: %s wait %s fails (%d) %s",
3778                                                                    target->cmd_name,
3779                                                                    n->name,
3780                                                                    e, target_strerror_safe(e) );
3781                         return JIM_ERR;
3782                 } else {
3783                         return JIM_OK;
3784                 }
3785         case TS_CMD_EVENTLIST:
3786                 /* List for human, Events defined for this target.
3787                  * scripts/programs should use 'name cget -event NAME'
3788                  */
3789                 {
3790                         target_event_action_t *teap;
3791                         teap = target->event_action;
3792                         command_print( cmd_ctx, "Event actions for target (%d) %s\n",
3793                                                    target->target_number,
3794                                                    target->cmd_name );
3795                         command_print( cmd_ctx, "%-25s | Body", "Event");
3796                         command_print( cmd_ctx, "------------------------- | ----------------------------------------");
3797                         while( teap ){
3798                                 command_print( cmd_ctx,
3799                                                            "%-25s | %s",
3800                                                            Jim_Nvp_value2name_simple( nvp_target_event, teap->event )->name,
3801                                                            Jim_GetString( teap->body, NULL ) );
3802                                 teap = teap->next;
3803                         }
3804                         command_print( cmd_ctx, "***END***");
3805                         return JIM_OK;
3806                 }
3807         case TS_CMD_CURSTATE:
3808                 if( goi.argc != 0 ){
3809                         Jim_WrongNumArgs( goi.interp, 0, argv, "[no parameters]");
3810                         return JIM_ERR;
3811                 }
3812                 Jim_SetResultString( goi.interp,
3813                                                          Jim_Nvp_value2name_simple(nvp_target_state,target->state)->name,-1);
3814                 return JIM_OK;
3815         case TS_CMD_INVOKE_EVENT:
3816                 if( goi.argc != 1 ){
3817                         Jim_SetResult_sprintf( goi.interp, "%s ?EVENTNAME?",n->name);
3818                         return JIM_ERR;
3819                 }
3820                 e = Jim_GetOpt_Nvp( &goi, nvp_target_event, &n );
3821                 if( e != JIM_OK ){
3822                         Jim_GetOpt_NvpUnknown( &goi, nvp_target_event, 1 );
3823                         return e;
3824                 }
3825                 target_handle_event( target, n->value );
3826                 return JIM_OK;
3827         }
3828         return JIM_ERR;
3829 }
3830
3831 static int target_create( Jim_GetOptInfo *goi )
3832 {
3833         Jim_Obj *new_cmd;
3834         Jim_Cmd *cmd;
3835         const char *cp;
3836         char *cp2;
3837         int e;
3838         int x;
3839         target_t *target;
3840         struct command_context_s *cmd_ctx;
3841
3842         cmd_ctx = Jim_GetAssocData(goi->interp, "context");
3843         if( goi->argc < 3 ){
3844                 Jim_WrongNumArgs( goi->interp, 1, goi->argv, "?name? ?type? ..options...");
3845                 return JIM_ERR;
3846         }
3847
3848         /* COMMAND */
3849         Jim_GetOpt_Obj( goi, &new_cmd );
3850         /* does this command exist? */
3851         cmd = Jim_GetCommand( goi->interp, new_cmd, JIM_ERRMSG );
3852         if( cmd ){
3853                 cp = Jim_GetString( new_cmd, NULL );
3854                 Jim_SetResult_sprintf(goi->interp, "Command/target: %s Exists", cp);
3855                 return JIM_ERR;
3856         }
3857
3858         /* TYPE */
3859         e = Jim_GetOpt_String( goi, &cp2, NULL );
3860         cp = cp2;
3861         /* now does target type exist */
3862         for( x = 0 ; target_types[x] ; x++ ){
3863                 if( 0 == strcmp( cp, target_types[x]->name ) ){
3864                         /* found */
3865                         break;
3866                 }
3867         }
3868         if( target_types[x] == NULL ){
3869                 Jim_SetResult_sprintf( goi->interp, "Unknown target type %s, try one of ", cp );
3870                 for( x = 0 ; target_types[x] ; x++ ){
3871                         if( target_types[x+1] ){
3872                                 Jim_AppendStrings( goi->interp,
3873                                                                    Jim_GetResult(goi->interp),
3874                                                                    target_types[x]->name,
3875                                                                    ", ", NULL);
3876                         } else {
3877                                 Jim_AppendStrings( goi->interp,
3878                                                                    Jim_GetResult(goi->interp),
3879                                                                    " or ",
3880                                                                    target_types[x]->name,NULL );
3881                         }
3882                 }
3883                 return JIM_ERR;
3884         }
3885
3886         /* Create it */
3887         target = calloc(1,sizeof(target_t));
3888         /* set target number */
3889         target->target_number = new_target_number();
3890
3891         /* allocate memory for each unique target type */
3892         target->type = (target_type_t*)calloc(1,sizeof(target_type_t));
3893
3894         memcpy( target->type, target_types[x], sizeof(target_type_t));
3895
3896         /* will be set by "-endian" */
3897         target->endianness = TARGET_ENDIAN_UNKNOWN;
3898
3899         target->working_area        = 0x0;
3900         target->working_area_size   = 0x0;
3901         target->working_areas       = NULL;
3902         target->backup_working_area = 0;
3903
3904         target->state               = TARGET_UNKNOWN;
3905         target->debug_reason        = DBG_REASON_UNDEFINED;
3906         target->reg_cache           = NULL;
3907         target->breakpoints         = NULL;
3908         target->watchpoints         = NULL;
3909         target->next                = NULL;
3910         target->arch_info           = NULL;
3911
3912         target->display             = 1;
3913
3914         /* initialize trace information */
3915         target->trace_info = malloc(sizeof(trace_t));
3916         target->trace_info->num_trace_points         = 0;
3917         target->trace_info->trace_points_size        = 0;
3918         target->trace_info->trace_points             = NULL;
3919         target->trace_info->trace_history_size       = 0;
3920         target->trace_info->trace_history            = NULL;
3921         target->trace_info->trace_history_pos        = 0;
3922         target->trace_info->trace_history_overflowed = 0;
3923
3924         target->dbgmsg          = NULL;
3925         target->dbg_msg_enabled = 0;
3926
3927         target->endianness = TARGET_ENDIAN_UNKNOWN;
3928
3929         /* Do the rest as "configure" options */
3930         goi->isconfigure = 1;
3931         e = target_configure( goi, target);
3932
3933         if (target->tap == NULL)
3934         {
3935                 Jim_SetResultString( interp, "-chain-position required when creating target", -1);
3936                 e=JIM_ERR;
3937         }
3938
3939         if( e != JIM_OK ){
3940                 free( target->type );
3941                 free( target );
3942                 return e;
3943         }
3944
3945         if( target->endianness == TARGET_ENDIAN_UNKNOWN ){
3946                 /* default endian to little if not specified */
3947                 target->endianness = TARGET_LITTLE_ENDIAN;
3948         }
3949
3950         /* incase variant is not set */
3951         if (!target->variant)
3952                 target->variant = strdup("");
3953
3954         /* create the target specific commands */
3955         if( target->type->register_commands ){
3956                 (*(target->type->register_commands))( cmd_ctx );
3957         }
3958         if( target->type->target_create ){
3959                 (*(target->type->target_create))( target, goi->interp );
3960         }
3961
3962         /* append to end of list */
3963         {
3964                 target_t **tpp;
3965                 tpp = &(all_targets);
3966                 while( *tpp ){
3967                         tpp = &( (*tpp)->next );
3968                 }
3969                 *tpp = target;
3970         }
3971
3972         cp = Jim_GetString( new_cmd, NULL );
3973         target->cmd_name = strdup(cp);
3974
3975         /* now - create the new target name command */
3976         e = Jim_CreateCommand( goi->interp,
3977                                                    /* name */
3978                                                    cp,
3979                                                    tcl_target_func, /* C function */
3980                                                    target, /* private data */
3981                                                    NULL ); /* no del proc */
3982
3983         return e;
3984 }
3985
3986 static int jim_target( Jim_Interp *interp, int argc, Jim_Obj *const *argv )
3987 {
3988         int x,r,e;
3989         jim_wide w;
3990         struct command_context_s *cmd_ctx;
3991         target_t *target;
3992         Jim_GetOptInfo goi;
3993         enum tcmd {
3994                 /* TG = target generic */
3995                 TG_CMD_CREATE,
3996                 TG_CMD_TYPES,
3997                 TG_CMD_NAMES,
3998                 TG_CMD_CURRENT,
3999                 TG_CMD_NUMBER,
4000                 TG_CMD_COUNT,
4001         };
4002         const char *target_cmds[] = {
4003                 "create", "types", "names", "current", "number",
4004                 "count",
4005                 NULL /* terminate */
4006         };
4007
4008         LOG_DEBUG("Target command params:");
4009         LOG_DEBUG("%s", Jim_Debug_ArgvString(interp, argc, argv));
4010
4011         cmd_ctx = Jim_GetAssocData( interp, "context" );
4012
4013         Jim_GetOpt_Setup( &goi, interp, argc-1, argv+1 );
4014
4015         if( goi.argc == 0 ){
4016                 Jim_WrongNumArgs(interp, 1, argv, "missing: command ...");
4017                 return JIM_ERR;
4018         }
4019
4020         /* Jim_GetOpt_Debug( &goi ); */
4021         r = Jim_GetOpt_Enum( &goi, target_cmds, &x   );
4022         if( r != JIM_OK ){
4023                 return r;
4024         }
4025
4026         switch(x){
4027         default:
4028                 Jim_Panic(goi.interp,"Why am I here?");
4029                 return JIM_ERR;
4030         case TG_CMD_CURRENT:
4031                 if( goi.argc != 0 ){
4032                         Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters");
4033                         return JIM_ERR;
4034                 }
4035                 Jim_SetResultString( goi.interp, get_current_target( cmd_ctx )->cmd_name, -1 );
4036                 return JIM_OK;
4037         case TG_CMD_TYPES:
4038                 if( goi.argc != 0 ){
4039                         Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters" );
4040                         return JIM_ERR;
4041                 }
4042                 Jim_SetResult( goi.interp, Jim_NewListObj( goi.interp, NULL, 0 ) );
4043                 for( x = 0 ; target_types[x] ; x++ ){
4044                         Jim_ListAppendElement( goi.interp,
4045                                                                    Jim_GetResult(goi.interp),
4046                                                                    Jim_NewStringObj( goi.interp, target_types[x]->name, -1 ) );
4047                 }
4048                 return JIM_OK;
4049         case TG_CMD_NAMES:
4050                 if( goi.argc != 0 ){
4051                         Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters" );
4052                         return JIM_ERR;
4053                 }
4054                 Jim_SetResult( goi.interp, Jim_NewListObj( goi.interp, NULL, 0 ) );
4055                 target = all_targets;
4056                 while( target ){
4057                         Jim_ListAppendElement( goi.interp,
4058                                                                    Jim_GetResult(goi.interp),
4059                                                                    Jim_NewStringObj( goi.interp, target->cmd_name, -1 ) );
4060                         target = target->next;
4061                 }
4062                 return JIM_OK;
4063         case TG_CMD_CREATE:
4064                 if( goi.argc < 3 ){
4065                         Jim_WrongNumArgs( goi.interp, goi.argc, goi.argv, "?name  ... config options ...");
4066                         return JIM_ERR;
4067                 }
4068                 return target_create( &goi );
4069                 break;
4070         case TG_CMD_NUMBER:
4071                 if( goi.argc != 1 ){
4072                         Jim_SetResult_sprintf( goi.interp, "expected: target number ?NUMBER?");
4073                         return JIM_ERR;
4074                 }
4075                 e = Jim_GetOpt_Wide( &goi, &w );
4076                 if( e != JIM_OK ){
4077                         return JIM_ERR;
4078                 }
4079                 {
4080                         target_t *t;
4081                         t = get_target_by_num(w);
4082                         if( t == NULL ){
4083                                 Jim_SetResult_sprintf( goi.interp,"Target: number %d does not exist", (int)(w));
4084                                 return JIM_ERR;
4085                         }
4086                         Jim_SetResultString( goi.interp, t->cmd_name, -1 );
4087                         return JIM_OK;
4088                 }
4089         case TG_CMD_COUNT:
4090                 if( goi.argc != 0 ){
4091                         Jim_WrongNumArgs( goi.interp, 0, goi.argv, "<no parameters>");
4092                         return JIM_ERR;
4093                 }
4094                 Jim_SetResult( goi.interp,
4095                                            Jim_NewIntObj( goi.interp, max_target_number()));
4096                 return JIM_OK;
4097         }
4098
4099         return JIM_ERR;
4100 }
4101
4102
4103 struct FastLoad
4104 {
4105         u32 address;
4106         u8 *data;
4107         int length;
4108
4109 };
4110
4111 static int fastload_num;
4112 static struct FastLoad *fastload;
4113
4114 static void free_fastload(void)
4115 {
4116         if (fastload!=NULL)
4117         {
4118                 int i;
4119                 for (i=0; i<fastload_num; i++)
4120                 {
4121                         if (fastload[i].data)
4122                                 free(fastload[i].data);
4123                 }
4124                 free(fastload);
4125                 fastload=NULL;
4126         }
4127 }
4128
4129
4130
4131
4132 static int handle_fast_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
4133 {
4134         u8 *buffer;
4135         u32 buf_cnt;
4136         u32 image_size;
4137         u32 min_address=0;
4138         u32 max_address=0xffffffff;
4139         int i;
4140         int retval;
4141
4142         image_t image;
4143
4144         duration_t duration;
4145         char *duration_text;
4146
4147         if ((argc < 1)||(argc > 5))
4148         {
4149                 return ERROR_COMMAND_SYNTAX_ERROR;
4150         }
4151
4152         /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
4153         if (argc >= 2)
4154         {
4155                 image.base_address_set = 1;
4156                 image.base_address = strtoul(args[1], NULL, 0);
4157         }
4158         else
4159         {
4160                 image.base_address_set = 0;
4161         }
4162
4163
4164         image.start_address_set = 0;
4165
4166         if (argc>=4)
4167         {
4168                 min_address=strtoul(args[3], NULL, 0);
4169         }
4170         if (argc>=5)
4171         {
4172                 max_address=strtoul(args[4], NULL, 0)+min_address;
4173         }
4174
4175         if (min_address>max_address)
4176         {
4177                 return ERROR_COMMAND_SYNTAX_ERROR;
4178         }
4179
4180         duration_start_measure(&duration);
4181
4182         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
4183         {
4184                 return ERROR_OK;
4185         }
4186
4187         image_size = 0x0;
4188         retval = ERROR_OK;
4189         fastload_num=image.num_sections;
4190         fastload=(struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
4191         if (fastload==NULL)
4192         {
4193                 image_close(&image);
4194                 return ERROR_FAIL;
4195         }
4196         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
4197         for (i = 0; i < image.num_sections; i++)
4198         {
4199                 buffer = malloc(image.sections[i].size);
4200                 if (buffer == NULL)
4201                 {
4202                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
4203                         break;
4204                 }
4205
4206                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
4207                 {
4208                         free(buffer);
4209                         break;
4210                 }
4211
4212                 u32 offset=0;
4213                 u32 length=buf_cnt;
4214
4215
4216                 /* DANGER!!! beware of unsigned comparision here!!! */
4217
4218                 if ((image.sections[i].base_address+buf_cnt>=min_address)&&
4219                                 (image.sections[i].base_address<max_address))
4220                 {
4221                         if (image.sections[i].base_address<min_address)
4222                         {
4223                                 /* clip addresses below */
4224                                 offset+=min_address-image.sections[i].base_address;
4225                                 length-=offset;
4226                         }
4227
4228                         if (image.sections[i].base_address+buf_cnt>max_address)
4229                         {
4230                                 length-=(image.sections[i].base_address+buf_cnt)-max_address;
4231                         }
4232
4233                         fastload[i].address=image.sections[i].base_address+offset;
4234                         fastload[i].data=malloc(length);
4235                         if (fastload[i].data==NULL)
4236                         {
4237                                 free(buffer);
4238                                 break;
4239                         }
4240                         memcpy(fastload[i].data, buffer+offset, length);
4241                         fastload[i].length=length;
4242
4243                         image_size += length;
4244                         command_print(cmd_ctx, "%u byte written at address 0x%8.8x", length, image.sections[i].base_address+offset);
4245                 }
4246
4247                 free(buffer);
4248         }
4249
4250         duration_stop_measure(&duration, &duration_text);
4251         if (retval==ERROR_OK)
4252         {
4253                 command_print(cmd_ctx, "Loaded %u bytes in %s", image_size, duration_text);
4254                 command_print(cmd_ctx, "NB!!! image has not been loaded to target, issue a subsequent 'fast_load' to do so.");
4255         }
4256         free(duration_text);
4257
4258         image_close(&image);
4259
4260         if (retval!=ERROR_OK)
4261         {
4262                 free_fastload();
4263         }
4264
4265         return retval;
4266 }
4267
4268 static int handle_fast_load_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
4269 {
4270         if (argc>0)
4271                 return ERROR_COMMAND_SYNTAX_ERROR;
4272         if (fastload==NULL)
4273         {
4274                 LOG_ERROR("No image in memory");
4275                 return ERROR_FAIL;
4276         }
4277         int i;
4278         int ms=timeval_ms();
4279         int size=0;
4280         int retval=ERROR_OK;
4281         for (i=0; i<fastload_num;i++)
4282         {
4283                 target_t *target = get_current_target(cmd_ctx);
4284                 command_print(cmd_ctx, "Write to 0x%08x, length 0x%08x", fastload[i].address, fastload[i].length);
4285                 if (retval==ERROR_OK)
4286                 {
4287                         retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
4288                 }
4289                 size+=fastload[i].length;
4290         }
4291         int after=timeval_ms();
4292         command_print(cmd_ctx, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
4293         return retval;
4294 }