Andreas Fritiofson <andreas.fritiofson@gmail.com> UTF8 fixes
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007,2008 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   This program is free software; you can redistribute it and/or modify  *
18  *   it under the terms of the GNU General Public License as published by  *
19  *   the Free Software Foundation; either version 2 of the License, or     *
20  *   (at your option) any later version.                                   *
21  *                                                                         *
22  *   This program is distributed in the hope that it will be useful,       *
23  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
24  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
25  *   GNU General Public License for more details.                          *
26  *                                                                         *
27  *   You should have received a copy of the GNU General Public License     *
28  *   along with this program; if not, write to the                         *
29  *   Free Software Foundation, Inc.,                                       *
30  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "target.h"
37 #include "target_type.h"
38 #include "target_request.h"
39 #include "time_support.h"
40 #include "register.h"
41 #include "trace.h"
42 #include "image.h"
43 #include "jtag.h"
44
45
46 static int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
47
48 static int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
49 static int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
50 static int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
51 static int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
52 static int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
53 static int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
54 static int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
55 static int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
56 static int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
57 static int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
58 static int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
59 static int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
60 static int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
61 static int handle_test_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
62 static int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
63 static int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
64 static int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
65 static int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
66 static int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc);
67 static int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
68 static int handle_fast_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
69 static int handle_fast_load_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
70
71 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
72 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
73 static int jim_target(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
74
75 static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv);
76 static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv);
77
78 /* targets */
79 extern target_type_t arm7tdmi_target;
80 extern target_type_t arm720t_target;
81 extern target_type_t arm9tdmi_target;
82 extern target_type_t arm920t_target;
83 extern target_type_t arm966e_target;
84 extern target_type_t arm926ejs_target;
85 extern target_type_t fa526_target;
86 extern target_type_t feroceon_target;
87 extern target_type_t xscale_target;
88 extern target_type_t cortexm3_target;
89 extern target_type_t cortexa8_target;
90 extern target_type_t arm11_target;
91 extern target_type_t mips_m4k_target;
92 extern target_type_t avr_target;
93
94 target_type_t *target_types[] =
95 {
96         &arm7tdmi_target,
97         &arm9tdmi_target,
98         &arm920t_target,
99         &arm720t_target,
100         &arm966e_target,
101         &arm926ejs_target,
102         &fa526_target,
103         &feroceon_target,
104         &xscale_target,
105         &cortexm3_target,
106         &cortexa8_target,
107         &arm11_target,
108         &mips_m4k_target,
109         &avr_target,
110         NULL,
111 };
112
113 target_t *all_targets = NULL;
114 target_event_callback_t *target_event_callbacks = NULL;
115 target_timer_callback_t *target_timer_callbacks = NULL;
116
117 const Jim_Nvp nvp_assert[] = {
118         { .name = "assert", NVP_ASSERT },
119         { .name = "deassert", NVP_DEASSERT },
120         { .name = "T", NVP_ASSERT },
121         { .name = "F", NVP_DEASSERT },
122         { .name = "t", NVP_ASSERT },
123         { .name = "f", NVP_DEASSERT },
124         { .name = NULL, .value = -1 }
125 };
126
127 const Jim_Nvp nvp_error_target[] = {
128         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
129         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
130         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
131         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
132         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
133         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
134         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
135         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
136         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
137         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
138         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
139         { .value = -1, .name = NULL }
140 };
141
142 const char *target_strerror_safe(int err)
143 {
144         const Jim_Nvp *n;
145
146         n = Jim_Nvp_value2name_simple(nvp_error_target, err);
147         if (n->name == NULL) {
148                 return "unknown";
149         } else {
150                 return n->name;
151         }
152 }
153
154 static const Jim_Nvp nvp_target_event[] = {
155         { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
156         { .value = TARGET_EVENT_OLD_pre_resume         , .name = "old-pre_resume" },
157
158         { .value = TARGET_EVENT_EARLY_HALTED, .name = "early-halted" },
159         { .value = TARGET_EVENT_HALTED, .name = "halted" },
160         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
161         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
162         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
163
164         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
165         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
166
167         /* historical name */
168
169         { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
170
171         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
172         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
173         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
174         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
175         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
176         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
177         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
178         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
179         { .value = TARGET_EVENT_RESET_INIT , .name = "reset-init" },
180         { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
181
182         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
183         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
184
185         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
186         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
187
188         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
189         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
190
191         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
192         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
193
194         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
195         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
196
197         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
198         { .value = TARGET_EVENT_RESUMED     , .name = "resume-ok" },
199         { .value = TARGET_EVENT_RESUME_END  , .name = "resume-end" },
200
201         { .name = NULL, .value = -1 }
202 };
203
204 const Jim_Nvp nvp_target_state[] = {
205         { .name = "unknown", .value = TARGET_UNKNOWN },
206         { .name = "running", .value = TARGET_RUNNING },
207         { .name = "halted",  .value = TARGET_HALTED },
208         { .name = "reset",   .value = TARGET_RESET },
209         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
210         { .name = NULL, .value = -1 },
211 };
212
213 const Jim_Nvp nvp_target_debug_reason [] = {
214         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
215         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
216         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
217         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
218         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
219         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
220         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
221         { .name = NULL, .value = -1 },
222 };
223
224 const Jim_Nvp nvp_target_endian[] = {
225         { .name = "big",    .value = TARGET_BIG_ENDIAN },
226         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
227         { .name = "be",     .value = TARGET_BIG_ENDIAN },
228         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
229         { .name = NULL,     .value = -1 },
230 };
231
232 const Jim_Nvp nvp_reset_modes[] = {
233         { .name = "unknown", .value = RESET_UNKNOWN },
234         { .name = "run"    , .value = RESET_RUN },
235         { .name = "halt"   , .value = RESET_HALT },
236         { .name = "init"   , .value = RESET_INIT },
237         { .name = NULL     , .value = -1 },
238 };
239
240 const char *
241 target_state_name( target_t *t )
242 {
243         const char *cp;
244         cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
245         if( !cp ){
246                 LOG_ERROR("Invalid target state: %d", (int)(t->state));
247                 cp = "(*BUG*unknown*BUG*)";
248         }
249         return cp;
250 }
251
252 static int max_target_number(void)
253 {
254         target_t *t;
255         int x;
256
257         x = -1;
258         t = all_targets;
259         while (t) {
260                 if (x < t->target_number) {
261                         x = (t->target_number) + 1;
262                 }
263                 t = t->next;
264         }
265         return x;
266 }
267
268 /* determine the number of the new target */
269 static int new_target_number(void)
270 {
271         target_t *t;
272         int x;
273
274         /* number is 0 based */
275         x = -1;
276         t = all_targets;
277         while (t) {
278                 if (x < t->target_number) {
279                         x = t->target_number;
280                 }
281                 t = t->next;
282         }
283         return x + 1;
284 }
285
286 static int target_continuous_poll = 1;
287
288 /* read a uint32_t from a buffer in target memory endianness */
289 uint32_t target_buffer_get_u32(target_t *target, const uint8_t *buffer)
290 {
291         if (target->endianness == TARGET_LITTLE_ENDIAN)
292                 return le_to_h_u32(buffer);
293         else
294                 return be_to_h_u32(buffer);
295 }
296
297 /* read a uint16_t from a buffer in target memory endianness */
298 uint16_t target_buffer_get_u16(target_t *target, const uint8_t *buffer)
299 {
300         if (target->endianness == TARGET_LITTLE_ENDIAN)
301                 return le_to_h_u16(buffer);
302         else
303                 return be_to_h_u16(buffer);
304 }
305
306 /* read a uint8_t from a buffer in target memory endianness */
307 uint8_t target_buffer_get_u8(target_t *target, const uint8_t *buffer)
308 {
309         return *buffer & 0x0ff;
310 }
311
312 /* write a uint32_t to a buffer in target memory endianness */
313 void target_buffer_set_u32(target_t *target, uint8_t *buffer, uint32_t value)
314 {
315         if (target->endianness == TARGET_LITTLE_ENDIAN)
316                 h_u32_to_le(buffer, value);
317         else
318                 h_u32_to_be(buffer, value);
319 }
320
321 /* write a uint16_t to a buffer in target memory endianness */
322 void target_buffer_set_u16(target_t *target, uint8_t *buffer, uint16_t value)
323 {
324         if (target->endianness == TARGET_LITTLE_ENDIAN)
325                 h_u16_to_le(buffer, value);
326         else
327                 h_u16_to_be(buffer, value);
328 }
329
330 /* write a uint8_t to a buffer in target memory endianness */
331 void target_buffer_set_u8(target_t *target, uint8_t *buffer, uint8_t value)
332 {
333         *buffer = value;
334 }
335
336 /* return a pointer to a configured target; id is name or number */
337 target_t *get_target(const char *id)
338 {
339         target_t *target;
340
341         /* try as tcltarget name */
342         for (target = all_targets; target; target = target->next) {
343                 if (target->cmd_name == NULL)
344                         continue;
345                 if (strcmp(id, target->cmd_name) == 0)
346                         return target;
347         }
348
349         /* no match, try as number */
350         unsigned num;
351         if (parse_uint(id, &num) != ERROR_OK)
352                 return NULL;
353
354         for (target = all_targets; target; target = target->next) {
355                 if (target->target_number == (int)num)
356                         return target;
357         }
358
359         return NULL;
360 }
361
362 /* returns a pointer to the n-th configured target */
363 static target_t *get_target_by_num(int num)
364 {
365         target_t *target = all_targets;
366
367         while (target) {
368                 if (target->target_number == num) {
369                         return target;
370                 }
371                 target = target->next;
372         }
373
374         return NULL;
375 }
376
377 int get_num_by_target(target_t *query_target)
378 {
379         return query_target->target_number;
380 }
381
382 target_t* get_current_target(command_context_t *cmd_ctx)
383 {
384         target_t *target = get_target_by_num(cmd_ctx->current_target);
385
386         if (target == NULL)
387         {
388                 LOG_ERROR("BUG: current_target out of bounds");
389                 exit(-1);
390         }
391
392         return target;
393 }
394
395 int target_poll(struct target_s *target)
396 {
397         /* We can't poll until after examine */
398         if (!target_was_examined(target))
399         {
400                 /* Fail silently lest we pollute the log */
401                 return ERROR_FAIL;
402         }
403         return target->type->poll(target);
404 }
405
406 int target_halt(struct target_s *target)
407 {
408         /* We can't poll until after examine */
409         if (!target_was_examined(target))
410         {
411                 LOG_ERROR("Target not examined yet");
412                 return ERROR_FAIL;
413         }
414         return target->type->halt(target);
415 }
416
417 int target_resume(struct target_s *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
418 {
419         int retval;
420
421         /* We can't poll until after examine */
422         if (!target_was_examined(target))
423         {
424                 LOG_ERROR("Target not examined yet");
425                 return ERROR_FAIL;
426         }
427
428         /* note that resume *must* be asynchronous. The CPU can halt before we poll. The CPU can
429          * even halt at the current PC as a result of a software breakpoint being inserted by (a bug?)
430          * the application.
431          */
432         if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
433                 return retval;
434
435         return retval;
436 }
437
438 int target_process_reset(struct command_context_s *cmd_ctx, enum target_reset_mode reset_mode)
439 {
440         char buf[100];
441         int retval;
442         Jim_Nvp *n;
443         n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
444         if (n->name == NULL) {
445                 LOG_ERROR("invalid reset mode");
446                 return ERROR_FAIL;
447         }
448
449         /* disable polling during reset to make reset event scripts
450          * more predictable, i.e. dr/irscan & pathmove in events will
451          * not have JTAG operations injected into the middle of a sequence.
452          */
453         int save_poll = target_continuous_poll;
454         target_continuous_poll = 0;
455
456         sprintf(buf, "ocd_process_reset %s", n->name);
457         retval = Jim_Eval(interp, buf);
458
459         target_continuous_poll = save_poll;
460
461         if (retval != JIM_OK) {
462                 Jim_PrintErrorMessage(interp);
463                 return ERROR_FAIL;
464         }
465
466         /* We want any events to be processed before the prompt */
467         retval = target_call_timer_callbacks_now();
468
469         return retval;
470 }
471
472 static int default_virt2phys(struct target_s *target, uint32_t virtual, uint32_t *physical)
473 {
474         *physical = virtual;
475         return ERROR_OK;
476 }
477
478 static int default_mmu(struct target_s *target, int *enabled)
479 {
480         *enabled = 0;
481         return ERROR_OK;
482 }
483
484 static int default_examine(struct target_s *target)
485 {
486         target_set_examined(target);
487         return ERROR_OK;
488 }
489
490 int target_examine_one(struct target_s *target)
491 {
492         return target->type->examine(target);
493 }
494
495 static int jtag_enable_callback(enum jtag_event event, void *priv)
496 {
497         target_t *target = priv;
498
499         if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
500                 return ERROR_OK;
501
502         jtag_unregister_event_callback(jtag_enable_callback, target);
503         return target_examine_one(target);
504 }
505
506
507 /* Targets that correctly implement init + examine, i.e.
508  * no communication with target during init:
509  *
510  * XScale
511  */
512 int target_examine(void)
513 {
514         int retval = ERROR_OK;
515         target_t *target;
516
517         for (target = all_targets; target; target = target->next)
518         {
519                 /* defer examination, but don't skip it */
520                 if (!target->tap->enabled) {
521                         jtag_register_event_callback(jtag_enable_callback,
522                                         target);
523                         continue;
524                 }
525                 if ((retval = target_examine_one(target)) != ERROR_OK)
526                         return retval;
527         }
528         return retval;
529 }
530 const char *target_get_name(struct target_s *target)
531 {
532         return target->type->name;
533 }
534
535 static int target_write_memory_imp(struct target_s *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
536 {
537         if (!target_was_examined(target))
538         {
539                 LOG_ERROR("Target not examined yet");
540                 return ERROR_FAIL;
541         }
542         return target->type->write_memory_imp(target, address, size, count, buffer);
543 }
544
545 static int target_read_memory_imp(struct target_s *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
546 {
547         if (!target_was_examined(target))
548         {
549                 LOG_ERROR("Target not examined yet");
550                 return ERROR_FAIL;
551         }
552         return target->type->read_memory_imp(target, address, size, count, buffer);
553 }
554
555 static int target_soft_reset_halt_imp(struct target_s *target)
556 {
557         if (!target_was_examined(target))
558         {
559                 LOG_ERROR("Target not examined yet");
560                 return ERROR_FAIL;
561         }
562         return target->type->soft_reset_halt_imp(target);
563 }
564
565 static int target_run_algorithm_imp(struct target_s *target, int num_mem_params, mem_param_t *mem_params, int num_reg_params, reg_param_t *reg_param, uint32_t entry_point, uint32_t exit_point, int timeout_ms, void *arch_info)
566 {
567         if (!target_was_examined(target))
568         {
569                 LOG_ERROR("Target not examined yet");
570                 return ERROR_FAIL;
571         }
572         return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
573 }
574
575 int target_read_memory(struct target_s *target,
576                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
577 {
578         return target->type->read_memory(target, address, size, count, buffer);
579 }
580
581 int target_write_memory(struct target_s *target,
582                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
583 {
584         return target->type->write_memory(target, address, size, count, buffer);
585 }
586 int target_bulk_write_memory(struct target_s *target,
587                 uint32_t address, uint32_t count, uint8_t *buffer)
588 {
589         return target->type->bulk_write_memory(target, address, count, buffer);
590 }
591
592 int target_add_breakpoint(struct target_s *target,
593                 struct breakpoint_s *breakpoint)
594 {
595         return target->type->add_breakpoint(target, breakpoint);
596 }
597 int target_remove_breakpoint(struct target_s *target,
598                 struct breakpoint_s *breakpoint)
599 {
600         return target->type->remove_breakpoint(target, breakpoint);
601 }
602
603 int target_add_watchpoint(struct target_s *target,
604                 struct watchpoint_s *watchpoint)
605 {
606         return target->type->add_watchpoint(target, watchpoint);
607 }
608 int target_remove_watchpoint(struct target_s *target,
609                 struct watchpoint_s *watchpoint)
610 {
611         return target->type->remove_watchpoint(target, watchpoint);
612 }
613
614 int target_get_gdb_reg_list(struct target_s *target,
615                 struct reg_s **reg_list[], int *reg_list_size)
616 {
617         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
618 }
619 int target_step(struct target_s *target,
620                 int current, uint32_t address, int handle_breakpoints)
621 {
622         return target->type->step(target, current, address, handle_breakpoints);
623 }
624
625
626 int target_run_algorithm(struct target_s *target,
627                 int num_mem_params, mem_param_t *mem_params,
628                 int num_reg_params, reg_param_t *reg_param,
629                 uint32_t entry_point, uint32_t exit_point,
630                 int timeout_ms, void *arch_info)
631 {
632         return target->type->run_algorithm(target,
633                         num_mem_params, mem_params, num_reg_params, reg_param,
634                         entry_point, exit_point, timeout_ms, arch_info);
635 }
636
637 /// @returns @c true if the target has been examined.
638 bool target_was_examined(struct target_s *target)
639 {
640         return target->type->examined;
641 }
642 /// Sets the @c examined flag for the given target.
643 void target_set_examined(struct target_s *target)
644 {
645         target->type->examined = true;
646 }
647 // Reset the @c examined flag for the given target.
648 void target_reset_examined(struct target_s *target)
649 {
650         target->type->examined = false;
651 }
652
653
654 int target_init(struct command_context_s *cmd_ctx)
655 {
656         target_t *target = all_targets;
657         int retval;
658
659         while (target)
660         {
661                 target_reset_examined(target);
662                 if (target->type->examine == NULL)
663                 {
664                         target->type->examine = default_examine;
665                 }
666
667                 if ((retval = target->type->init_target(cmd_ctx, target)) != ERROR_OK)
668                 {
669                         LOG_ERROR("target '%s' init failed", target_get_name(target));
670                         return retval;
671                 }
672
673                 /* Set up default functions if none are provided by target */
674                 if (target->type->virt2phys == NULL)
675                 {
676                         target->type->virt2phys = default_virt2phys;
677                 }
678                 target->type->virt2phys = default_virt2phys;
679                 /* a non-invasive way(in terms of patches) to add some code that
680                  * runs before the type->write/read_memory implementation
681                  */
682                 target->type->write_memory_imp = target->type->write_memory;
683                 target->type->write_memory = target_write_memory_imp;
684                 target->type->read_memory_imp = target->type->read_memory;
685                 target->type->read_memory = target_read_memory_imp;
686                 target->type->soft_reset_halt_imp = target->type->soft_reset_halt;
687                 target->type->soft_reset_halt = target_soft_reset_halt_imp;
688                 target->type->run_algorithm_imp = target->type->run_algorithm;
689                 target->type->run_algorithm = target_run_algorithm_imp;
690
691                 if (target->type->mmu == NULL)
692                 {
693                         target->type->mmu = default_mmu;
694                 }
695                 target = target->next;
696         }
697
698         if (all_targets)
699         {
700                 if ((retval = target_register_user_commands(cmd_ctx)) != ERROR_OK)
701                         return retval;
702                 if ((retval = target_register_timer_callback(handle_target, 100, 1, NULL)) != ERROR_OK)
703                         return retval;
704         }
705
706         return ERROR_OK;
707 }
708
709 int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
710 {
711         target_event_callback_t **callbacks_p = &target_event_callbacks;
712
713         if (callback == NULL)
714         {
715                 return ERROR_INVALID_ARGUMENTS;
716         }
717
718         if (*callbacks_p)
719         {
720                 while ((*callbacks_p)->next)
721                         callbacks_p = &((*callbacks_p)->next);
722                 callbacks_p = &((*callbacks_p)->next);
723         }
724
725         (*callbacks_p) = malloc(sizeof(target_event_callback_t));
726         (*callbacks_p)->callback = callback;
727         (*callbacks_p)->priv = priv;
728         (*callbacks_p)->next = NULL;
729
730         return ERROR_OK;
731 }
732
733 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
734 {
735         target_timer_callback_t **callbacks_p = &target_timer_callbacks;
736         struct timeval now;
737
738         if (callback == NULL)
739         {
740                 return ERROR_INVALID_ARGUMENTS;
741         }
742
743         if (*callbacks_p)
744         {
745                 while ((*callbacks_p)->next)
746                         callbacks_p = &((*callbacks_p)->next);
747                 callbacks_p = &((*callbacks_p)->next);
748         }
749
750         (*callbacks_p) = malloc(sizeof(target_timer_callback_t));
751         (*callbacks_p)->callback = callback;
752         (*callbacks_p)->periodic = periodic;
753         (*callbacks_p)->time_ms = time_ms;
754
755         gettimeofday(&now, NULL);
756         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
757         time_ms -= (time_ms % 1000);
758         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
759         if ((*callbacks_p)->when.tv_usec > 1000000)
760         {
761                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
762                 (*callbacks_p)->when.tv_sec += 1;
763         }
764
765         (*callbacks_p)->priv = priv;
766         (*callbacks_p)->next = NULL;
767
768         return ERROR_OK;
769 }
770
771 int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
772 {
773         target_event_callback_t **p = &target_event_callbacks;
774         target_event_callback_t *c = target_event_callbacks;
775
776         if (callback == NULL)
777         {
778                 return ERROR_INVALID_ARGUMENTS;
779         }
780
781         while (c)
782         {
783                 target_event_callback_t *next = c->next;
784                 if ((c->callback == callback) && (c->priv == priv))
785                 {
786                         *p = next;
787                         free(c);
788                         return ERROR_OK;
789                 }
790                 else
791                         p = &(c->next);
792                 c = next;
793         }
794
795         return ERROR_OK;
796 }
797
798 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
799 {
800         target_timer_callback_t **p = &target_timer_callbacks;
801         target_timer_callback_t *c = target_timer_callbacks;
802
803         if (callback == NULL)
804         {
805                 return ERROR_INVALID_ARGUMENTS;
806         }
807
808         while (c)
809         {
810                 target_timer_callback_t *next = c->next;
811                 if ((c->callback == callback) && (c->priv == priv))
812                 {
813                         *p = next;
814                         free(c);
815                         return ERROR_OK;
816                 }
817                 else
818                         p = &(c->next);
819                 c = next;
820         }
821
822         return ERROR_OK;
823 }
824
825 int target_call_event_callbacks(target_t *target, enum target_event event)
826 {
827         target_event_callback_t *callback = target_event_callbacks;
828         target_event_callback_t *next_callback;
829
830         if (event == TARGET_EVENT_HALTED)
831         {
832                 /* execute early halted first */
833                 target_call_event_callbacks(target, TARGET_EVENT_EARLY_HALTED);
834         }
835
836         LOG_DEBUG("target event %i (%s)",
837                           event,
838                           Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
839
840         target_handle_event(target, event);
841
842         while (callback)
843         {
844                 next_callback = callback->next;
845                 callback->callback(target, event, callback->priv);
846                 callback = next_callback;
847         }
848
849         return ERROR_OK;
850 }
851
852 static int target_timer_callback_periodic_restart(
853                 target_timer_callback_t *cb, struct timeval *now)
854 {
855         int time_ms = cb->time_ms;
856         cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
857         time_ms -= (time_ms % 1000);
858         cb->when.tv_sec = now->tv_sec + time_ms / 1000;
859         if (cb->when.tv_usec > 1000000)
860         {
861                 cb->when.tv_usec = cb->when.tv_usec - 1000000;
862                 cb->when.tv_sec += 1;
863         }
864         return ERROR_OK;
865 }
866
867 static int target_call_timer_callback(target_timer_callback_t *cb,
868                 struct timeval *now)
869 {
870         cb->callback(cb->priv);
871
872         if (cb->periodic)
873                 return target_timer_callback_periodic_restart(cb, now);
874
875         return target_unregister_timer_callback(cb->callback, cb->priv);
876 }
877
878 static int target_call_timer_callbacks_check_time(int checktime)
879 {
880         keep_alive();
881
882         struct timeval now;
883         gettimeofday(&now, NULL);
884
885         target_timer_callback_t *callback = target_timer_callbacks;
886         while (callback)
887         {
888                 // cleaning up may unregister and free this callback
889                 target_timer_callback_t *next_callback = callback->next;
890
891                 bool call_it = callback->callback &&
892                         ((!checktime && callback->periodic) ||
893                           now.tv_sec > callback->when.tv_sec ||
894                          (now.tv_sec == callback->when.tv_sec &&
895                           now.tv_usec >= callback->when.tv_usec));
896
897                 if (call_it)
898                 {
899                         int retval = target_call_timer_callback(callback, &now);
900                         if (retval != ERROR_OK)
901                                 return retval;
902                 }
903
904                 callback = next_callback;
905         }
906
907         return ERROR_OK;
908 }
909
910 int target_call_timer_callbacks(void)
911 {
912         return target_call_timer_callbacks_check_time(1);
913 }
914
915 /* invoke periodic callbacks immediately */
916 int target_call_timer_callbacks_now(void)
917 {
918         return target_call_timer_callbacks_check_time(0);
919 }
920
921 int target_alloc_working_area(struct target_s *target, uint32_t size, working_area_t **area)
922 {
923         working_area_t *c = target->working_areas;
924         working_area_t *new_wa = NULL;
925
926         /* Reevaluate working area address based on MMU state*/
927         if (target->working_areas == NULL)
928         {
929                 int retval;
930                 int enabled;
931                 retval = target->type->mmu(target, &enabled);
932                 if (retval != ERROR_OK)
933                 {
934                         return retval;
935                 }
936                 if (enabled)
937                 {
938                         target->working_area = target->working_area_virt;
939                 }
940                 else
941                 {
942                         target->working_area = target->working_area_phys;
943                 }
944         }
945
946         /* only allocate multiples of 4 byte */
947         if (size % 4)
948         {
949                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes (0x%08x), padding", ((unsigned)(size)));
950                 size = (size + 3) & (~3);
951         }
952
953         /* see if there's already a matching working area */
954         while (c)
955         {
956                 if ((c->free) && (c->size == size))
957                 {
958                         new_wa = c;
959                         break;
960                 }
961                 c = c->next;
962         }
963
964         /* if not, allocate a new one */
965         if (!new_wa)
966         {
967                 working_area_t **p = &target->working_areas;
968                 uint32_t first_free = target->working_area;
969                 uint32_t free_size = target->working_area_size;
970
971                 LOG_DEBUG("allocating new working area");
972
973                 c = target->working_areas;
974                 while (c)
975                 {
976                         first_free += c->size;
977                         free_size -= c->size;
978                         p = &c->next;
979                         c = c->next;
980                 }
981
982                 if (free_size < size)
983                 {
984                         LOG_WARNING("not enough working area available(requested %u, free %u)",
985                                     (unsigned)(size), (unsigned)(free_size));
986                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
987                 }
988
989                 new_wa = malloc(sizeof(working_area_t));
990                 new_wa->next = NULL;
991                 new_wa->size = size;
992                 new_wa->address = first_free;
993
994                 if (target->backup_working_area)
995                 {
996                         int retval;
997                         new_wa->backup = malloc(new_wa->size);
998                         if ((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
999                         {
1000                                 free(new_wa->backup);
1001                                 free(new_wa);
1002                                 return retval;
1003                         }
1004                 }
1005                 else
1006                 {
1007                         new_wa->backup = NULL;
1008                 }
1009
1010                 /* put new entry in list */
1011                 *p = new_wa;
1012         }
1013
1014         /* mark as used, and return the new (reused) area */
1015         new_wa->free = 0;
1016         *area = new_wa;
1017
1018         /* user pointer */
1019         new_wa->user = area;
1020
1021         return ERROR_OK;
1022 }
1023
1024 int target_free_working_area_restore(struct target_s *target, working_area_t *area, int restore)
1025 {
1026         if (area->free)
1027                 return ERROR_OK;
1028
1029         if (restore && target->backup_working_area)
1030         {
1031                 int retval;
1032                 if ((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
1033                         return retval;
1034         }
1035
1036         area->free = 1;
1037
1038         /* mark user pointer invalid */
1039         *area->user = NULL;
1040         area->user = NULL;
1041
1042         return ERROR_OK;
1043 }
1044
1045 int target_free_working_area(struct target_s *target, working_area_t *area)
1046 {
1047         return target_free_working_area_restore(target, area, 1);
1048 }
1049
1050 /* free resources and restore memory, if restoring memory fails,
1051  * free up resources anyway
1052  */
1053 void target_free_all_working_areas_restore(struct target_s *target, int restore)
1054 {
1055         working_area_t *c = target->working_areas;
1056
1057         while (c)
1058         {
1059                 working_area_t *next = c->next;
1060                 target_free_working_area_restore(target, c, restore);
1061
1062                 if (c->backup)
1063                         free(c->backup);
1064
1065                 free(c);
1066
1067                 c = next;
1068         }
1069
1070         target->working_areas = NULL;
1071 }
1072
1073 void target_free_all_working_areas(struct target_s *target)
1074 {
1075         target_free_all_working_areas_restore(target, 1);
1076 }
1077
1078 int target_register_commands(struct command_context_s *cmd_ctx)
1079 {
1080
1081         register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, "change the current command line target (one parameter) or lists targets (with no parameter)");
1082
1083
1084
1085
1086         register_jim(cmd_ctx, "target", jim_target, "configure target");
1087
1088         return ERROR_OK;
1089 }
1090
1091 int target_arch_state(struct target_s *target)
1092 {
1093         int retval;
1094         if (target == NULL)
1095         {
1096                 LOG_USER("No target has been configured");
1097                 return ERROR_OK;
1098         }
1099
1100         LOG_USER("target state: %s", target_state_name( target ));
1101
1102         if (target->state != TARGET_HALTED)
1103                 return ERROR_OK;
1104
1105         retval = target->type->arch_state(target);
1106         return retval;
1107 }
1108
1109 /* Single aligned words are guaranteed to use 16 or 32 bit access
1110  * mode respectively, otherwise data is handled as quickly as
1111  * possible
1112  */
1113 int target_write_buffer(struct target_s *target, uint32_t address, uint32_t size, uint8_t *buffer)
1114 {
1115         int retval;
1116         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1117                   (int)size, (unsigned)address);
1118
1119         if (!target_was_examined(target))
1120         {
1121                 LOG_ERROR("Target not examined yet");
1122                 return ERROR_FAIL;
1123         }
1124
1125         if (size == 0) {
1126                 return ERROR_OK;
1127         }
1128
1129         if ((address + size - 1) < address)
1130         {
1131                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1132                 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1133                                   (unsigned)address,
1134                                   (unsigned)size);
1135                 return ERROR_FAIL;
1136         }
1137
1138         if (((address % 2) == 0) && (size == 2))
1139         {
1140                 return target_write_memory(target, address, 2, 1, buffer);
1141         }
1142
1143         /* handle unaligned head bytes */
1144         if (address % 4)
1145         {
1146                 uint32_t unaligned = 4 - (address % 4);
1147
1148                 if (unaligned > size)
1149                         unaligned = size;
1150
1151                 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1152                         return retval;
1153
1154                 buffer += unaligned;
1155                 address += unaligned;
1156                 size -= unaligned;
1157         }
1158
1159         /* handle aligned words */
1160         if (size >= 4)
1161         {
1162                 int aligned = size - (size % 4);
1163
1164                 /* use bulk writes above a certain limit. This may have to be changed */
1165                 if (aligned > 128)
1166                 {
1167                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1168                                 return retval;
1169                 }
1170                 else
1171                 {
1172                         if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1173                                 return retval;
1174                 }
1175
1176                 buffer += aligned;
1177                 address += aligned;
1178                 size -= aligned;
1179         }
1180
1181         /* handle tail writes of less than 4 bytes */
1182         if (size > 0)
1183         {
1184                 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1185                         return retval;
1186         }
1187
1188         return ERROR_OK;
1189 }
1190
1191 /* Single aligned words are guaranteed to use 16 or 32 bit access
1192  * mode respectively, otherwise data is handled as quickly as
1193  * possible
1194  */
1195 int target_read_buffer(struct target_s *target, uint32_t address, uint32_t size, uint8_t *buffer)
1196 {
1197         int retval;
1198         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1199                           (int)size, (unsigned)address);
1200
1201         if (!target_was_examined(target))
1202         {
1203                 LOG_ERROR("Target not examined yet");
1204                 return ERROR_FAIL;
1205         }
1206
1207         if (size == 0) {
1208                 return ERROR_OK;
1209         }
1210
1211         if ((address + size - 1) < address)
1212         {
1213                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1214                 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1215                                   address,
1216                                   size);
1217                 return ERROR_FAIL;
1218         }
1219
1220         if (((address % 2) == 0) && (size == 2))
1221         {
1222                 return target_read_memory(target, address, 2, 1, buffer);
1223         }
1224
1225         /* handle unaligned head bytes */
1226         if (address % 4)
1227         {
1228                 uint32_t unaligned = 4 - (address % 4);
1229
1230                 if (unaligned > size)
1231                         unaligned = size;
1232
1233                 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1234                         return retval;
1235
1236                 buffer += unaligned;
1237                 address += unaligned;
1238                 size -= unaligned;
1239         }
1240
1241         /* handle aligned words */
1242         if (size >= 4)
1243         {
1244                 int aligned = size - (size % 4);
1245
1246                 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1247                         return retval;
1248
1249                 buffer += aligned;
1250                 address += aligned;
1251                 size -= aligned;
1252         }
1253
1254         /* handle tail writes of less than 4 bytes */
1255         if (size > 0)
1256         {
1257                 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1258                         return retval;
1259         }
1260
1261         return ERROR_OK;
1262 }
1263
1264 int target_checksum_memory(struct target_s *target, uint32_t address, uint32_t size, uint32_t* crc)
1265 {
1266         uint8_t *buffer;
1267         int retval;
1268         uint32_t i;
1269         uint32_t checksum = 0;
1270         if (!target_was_examined(target))
1271         {
1272                 LOG_ERROR("Target not examined yet");
1273                 return ERROR_FAIL;
1274         }
1275
1276         if ((retval = target->type->checksum_memory(target, address,
1277                 size, &checksum)) != ERROR_OK)
1278         {
1279                 buffer = malloc(size);
1280                 if (buffer == NULL)
1281                 {
1282                         LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1283                         return ERROR_INVALID_ARGUMENTS;
1284                 }
1285                 retval = target_read_buffer(target, address, size, buffer);
1286                 if (retval != ERROR_OK)
1287                 {
1288                         free(buffer);
1289                         return retval;
1290                 }
1291
1292                 /* convert to target endianess */
1293                 for (i = 0; i < (size/sizeof(uint32_t)); i++)
1294                 {
1295                         uint32_t target_data;
1296                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1297                         target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1298                 }
1299
1300                 retval = image_calculate_checksum(buffer, size, &checksum);
1301                 free(buffer);
1302         }
1303
1304         *crc = checksum;
1305
1306         return retval;
1307 }
1308
1309 int target_blank_check_memory(struct target_s *target, uint32_t address, uint32_t size, uint32_t* blank)
1310 {
1311         int retval;
1312         if (!target_was_examined(target))
1313         {
1314                 LOG_ERROR("Target not examined yet");
1315                 return ERROR_FAIL;
1316         }
1317
1318         if (target->type->blank_check_memory == 0)
1319                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1320
1321         retval = target->type->blank_check_memory(target, address, size, blank);
1322
1323         return retval;
1324 }
1325
1326 int target_read_u32(struct target_s *target, uint32_t address, uint32_t *value)
1327 {
1328         uint8_t value_buf[4];
1329         if (!target_was_examined(target))
1330         {
1331                 LOG_ERROR("Target not examined yet");
1332                 return ERROR_FAIL;
1333         }
1334
1335         int retval = target_read_memory(target, address, 4, 1, value_buf);
1336
1337         if (retval == ERROR_OK)
1338         {
1339                 *value = target_buffer_get_u32(target, value_buf);
1340                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1341                                   address,
1342                                   *value);
1343         }
1344         else
1345         {
1346                 *value = 0x0;
1347                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1348                                   address);
1349         }
1350
1351         return retval;
1352 }
1353
1354 int target_read_u16(struct target_s *target, uint32_t address, uint16_t *value)
1355 {
1356         uint8_t value_buf[2];
1357         if (!target_was_examined(target))
1358         {
1359                 LOG_ERROR("Target not examined yet");
1360                 return ERROR_FAIL;
1361         }
1362
1363         int retval = target_read_memory(target, address, 2, 1, value_buf);
1364
1365         if (retval == ERROR_OK)
1366         {
1367                 *value = target_buffer_get_u16(target, value_buf);
1368                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
1369                                   address,
1370                                   *value);
1371         }
1372         else
1373         {
1374                 *value = 0x0;
1375                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1376                                   address);
1377         }
1378
1379         return retval;
1380 }
1381
1382 int target_read_u8(struct target_s *target, uint32_t address, uint8_t *value)
1383 {
1384         int retval = target_read_memory(target, address, 1, 1, value);
1385         if (!target_was_examined(target))
1386         {
1387                 LOG_ERROR("Target not examined yet");
1388                 return ERROR_FAIL;
1389         }
1390
1391         if (retval == ERROR_OK)
1392         {
1393                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1394                                   address,
1395                                   *value);
1396         }
1397         else
1398         {
1399                 *value = 0x0;
1400                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1401                                   address);
1402         }
1403
1404         return retval;
1405 }
1406
1407 int target_write_u32(struct target_s *target, uint32_t address, uint32_t value)
1408 {
1409         int retval;
1410         uint8_t value_buf[4];
1411         if (!target_was_examined(target))
1412         {
1413                 LOG_ERROR("Target not examined yet");
1414                 return ERROR_FAIL;
1415         }
1416
1417         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1418                           address,
1419                           value);
1420
1421         target_buffer_set_u32(target, value_buf, value);
1422         if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1423         {
1424                 LOG_DEBUG("failed: %i", retval);
1425         }
1426
1427         return retval;
1428 }
1429
1430 int target_write_u16(struct target_s *target, uint32_t address, uint16_t value)
1431 {
1432         int retval;
1433         uint8_t value_buf[2];
1434         if (!target_was_examined(target))
1435         {
1436                 LOG_ERROR("Target not examined yet");
1437                 return ERROR_FAIL;
1438         }
1439
1440         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
1441                           address,
1442                           value);
1443
1444         target_buffer_set_u16(target, value_buf, value);
1445         if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1446         {
1447                 LOG_DEBUG("failed: %i", retval);
1448         }
1449
1450         return retval;
1451 }
1452
1453 int target_write_u8(struct target_s *target, uint32_t address, uint8_t value)
1454 {
1455         int retval;
1456         if (!target_was_examined(target))
1457         {
1458                 LOG_ERROR("Target not examined yet");
1459                 return ERROR_FAIL;
1460         }
1461
1462         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1463                           address, value);
1464
1465         if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1466         {
1467                 LOG_DEBUG("failed: %i", retval);
1468         }
1469
1470         return retval;
1471 }
1472
1473 int target_register_user_commands(struct command_context_s *cmd_ctx)
1474 {
1475         int retval = ERROR_OK;
1476
1477
1478         /* script procedures */
1479         register_command(cmd_ctx, NULL, "profile", handle_profile_command, COMMAND_EXEC, "profiling samples the CPU PC");
1480         register_jim(cmd_ctx, "ocd_mem2array", jim_mem2array, "read memory and return as a TCL array for script processing <ARRAYNAME> <WIDTH = 32/16/8> <ADDRESS> <COUNT>");
1481         register_jim(cmd_ctx, "ocd_array2mem", jim_array2mem, "convert a TCL array to memory locations and write the values  <ARRAYNAME> <WIDTH = 32/16/8> <ADDRESS> <COUNT>");
1482
1483         register_command(cmd_ctx, NULL, "fast_load_image", handle_fast_load_image_command, COMMAND_ANY,
1484                         "same args as load_image, image stored in memory - mainly for profiling purposes");
1485
1486         register_command(cmd_ctx, NULL, "fast_load", handle_fast_load_command, COMMAND_ANY,
1487                         "loads active fast load image to current target - mainly for profiling purposes");
1488
1489
1490         register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "translate a virtual address into a physical address");
1491         register_command(cmd_ctx,  NULL, "reg", handle_reg_command, COMMAND_EXEC, "display or set a register");
1492         register_command(cmd_ctx,  NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state");
1493         register_command(cmd_ctx,  NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]");
1494         register_command(cmd_ctx,  NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target");
1495         register_command(cmd_ctx,  NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]");
1496         register_command(cmd_ctx,  NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]");
1497         register_command(cmd_ctx,  NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run | halt | init] - default is run");
1498         register_command(cmd_ctx,  NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset");
1499
1500         register_command(cmd_ctx,  NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words <addr> [count]");
1501         register_command(cmd_ctx,  NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words <addr> [count]");
1502         register_command(cmd_ctx,  NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes <addr> [count]");
1503
1504         register_command(cmd_ctx,  NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word <addr> <value> [count]");
1505         register_command(cmd_ctx,  NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word <addr> <value> [count]");
1506         register_command(cmd_ctx,  NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte <addr> <value> [count]");
1507
1508         register_command(cmd_ctx,  NULL, "bp", handle_bp_command, COMMAND_EXEC, "set breakpoint <address> <length> [hw]");
1509         register_command(cmd_ctx,  NULL, "rbp", handle_rbp_command, COMMAND_EXEC, "remove breakpoint <adress>");
1510         register_command(cmd_ctx,  NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint <address> <length> <r/w/a> [value] [mask]");
1511         register_command(cmd_ctx,  NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint <adress>");
1512
1513         register_command(cmd_ctx,  NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> ['bin'|'ihex'|'elf'|'s19'] [min_address] [max_length]");
1514         register_command(cmd_ctx,  NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>");
1515         register_command(cmd_ctx,  NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image <file> [offset] [type]");
1516         register_command(cmd_ctx,  NULL, "test_image", handle_test_image_command, COMMAND_EXEC, "test_image <file> [offset] [type]");
1517
1518         if ((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
1519                 return retval;
1520         if ((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
1521                 return retval;
1522
1523         return retval;
1524 }
1525
1526 static int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1527 {
1528         target_t *target = all_targets;
1529
1530         if (argc == 1)
1531         {
1532                 target = get_target(args[0]);
1533                 if (target == NULL) {
1534                         command_print(cmd_ctx,"Target: %s is unknown, try one of:\n", args[0]);
1535                         goto DumpTargets;
1536                 }
1537                 if (!target->tap->enabled) {
1538                         command_print(cmd_ctx,"Target: TAP %s is disabled, "
1539                                         "can't be the current target\n",
1540                                         target->tap->dotted_name);
1541                         return ERROR_FAIL;
1542                 }
1543
1544                 cmd_ctx->current_target = target->target_number;
1545                 return ERROR_OK;
1546         }
1547 DumpTargets:
1548
1549         target = all_targets;
1550         command_print(cmd_ctx, "    TargetName         Type       Endian TapName            State       ");
1551         command_print(cmd_ctx, "--  ------------------ ---------- ------ ------------------ ------------");
1552         while (target)
1553         {
1554                 const char *state;
1555                 char marker = ' ';
1556
1557                 if (target->tap->enabled)
1558                         state = target_state_name( target );
1559                 else
1560                         state = "tap-disabled";
1561
1562                 if (cmd_ctx->current_target == target->target_number)
1563                         marker = '*';
1564
1565                 /* keep columns lined up to match the headers above */
1566                 command_print(cmd_ctx, "%2d%c %-18s %-10s %-6s %-18s %s",
1567                                           target->target_number,
1568                                           marker,
1569                                           target->cmd_name,
1570                                           target_get_name(target),
1571                                           Jim_Nvp_value2name_simple(nvp_target_endian,
1572                                                                 target->endianness)->name,
1573                                           target->tap->dotted_name,
1574                                           state);
1575                 target = target->next;
1576         }
1577
1578         return ERROR_OK;
1579 }
1580
1581 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1582
1583 static int powerDropout;
1584 static int srstAsserted;
1585
1586 static int runPowerRestore;
1587 static int runPowerDropout;
1588 static int runSrstAsserted;
1589 static int runSrstDeasserted;
1590
1591 static int sense_handler(void)
1592 {
1593         static int prevSrstAsserted = 0;
1594         static int prevPowerdropout = 0;
1595
1596         int retval;
1597         if ((retval = jtag_power_dropout(&powerDropout)) != ERROR_OK)
1598                 return retval;
1599
1600         int powerRestored;
1601         powerRestored = prevPowerdropout && !powerDropout;
1602         if (powerRestored)
1603         {
1604                 runPowerRestore = 1;
1605         }
1606
1607         long long current = timeval_ms();
1608         static long long lastPower = 0;
1609         int waitMore = lastPower + 2000 > current;
1610         if (powerDropout && !waitMore)
1611         {
1612                 runPowerDropout = 1;
1613                 lastPower = current;
1614         }
1615
1616         if ((retval = jtag_srst_asserted(&srstAsserted)) != ERROR_OK)
1617                 return retval;
1618
1619         int srstDeasserted;
1620         srstDeasserted = prevSrstAsserted && !srstAsserted;
1621
1622         static long long lastSrst = 0;
1623         waitMore = lastSrst + 2000 > current;
1624         if (srstDeasserted && !waitMore)
1625         {
1626                 runSrstDeasserted = 1;
1627                 lastSrst = current;
1628         }
1629
1630         if (!prevSrstAsserted && srstAsserted)
1631         {
1632                 runSrstAsserted = 1;
1633         }
1634
1635         prevSrstAsserted = srstAsserted;
1636         prevPowerdropout = powerDropout;
1637
1638         if (srstDeasserted || powerRestored)
1639         {
1640                 /* Other than logging the event we can't do anything here.
1641                  * Issuing a reset is a particularly bad idea as we might
1642                  * be inside a reset already.
1643                  */
1644         }
1645
1646         return ERROR_OK;
1647 }
1648
1649 /* process target state changes */
1650 int handle_target(void *priv)
1651 {
1652         int retval = ERROR_OK;
1653
1654         /* we do not want to recurse here... */
1655         static int recursive = 0;
1656         if (! recursive)
1657         {
1658                 recursive = 1;
1659                 sense_handler();
1660                 /* danger! running these procedures can trigger srst assertions and power dropouts.
1661                  * We need to avoid an infinite loop/recursion here and we do that by
1662                  * clearing the flags after running these events.
1663                  */
1664                 int did_something = 0;
1665                 if (runSrstAsserted)
1666                 {
1667                         Jim_Eval(interp, "srst_asserted");
1668                         did_something = 1;
1669                 }
1670                 if (runSrstDeasserted)
1671                 {
1672                         Jim_Eval(interp, "srst_deasserted");
1673                         did_something = 1;
1674                 }
1675                 if (runPowerDropout)
1676                 {
1677                         Jim_Eval(interp, "power_dropout");
1678                         did_something = 1;
1679                 }
1680                 if (runPowerRestore)
1681                 {
1682                         Jim_Eval(interp, "power_restore");
1683                         did_something = 1;
1684                 }
1685
1686                 if (did_something)
1687                 {
1688                         /* clear detect flags */
1689                         sense_handler();
1690                 }
1691
1692                 /* clear action flags */
1693
1694                 runSrstAsserted = 0;
1695                 runSrstDeasserted = 0;
1696                 runPowerRestore = 0;
1697                 runPowerDropout = 0;
1698
1699                 recursive = 0;
1700         }
1701
1702         /* Poll targets for state changes unless that's globally disabled.
1703          * Skip targets that are currently disabled.
1704          */
1705         for (target_t *target = all_targets;
1706                         target_continuous_poll && target;
1707                         target = target->next)
1708         {
1709                 if (!target->tap->enabled)
1710                         continue;
1711
1712                 /* only poll target if we've got power and srst isn't asserted */
1713                 if (!powerDropout && !srstAsserted)
1714                 {
1715                         /* polling may fail silently until the target has been examined */
1716                         if ((retval = target_poll(target)) != ERROR_OK)
1717                                 return retval;
1718                 }
1719         }
1720
1721         return retval;
1722 }
1723
1724 static int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1725 {
1726         target_t *target;
1727         reg_t *reg = NULL;
1728         int count = 0;
1729         char *value;
1730
1731         LOG_DEBUG("-");
1732
1733         target = get_current_target(cmd_ctx);
1734
1735         /* list all available registers for the current target */
1736         if (argc == 0)
1737         {
1738                 reg_cache_t *cache = target->reg_cache;
1739
1740                 count = 0;
1741                 while (cache)
1742                 {
1743                         int i;
1744                         for (i = 0; i < cache->num_regs; i++)
1745                         {
1746                                 value = buf_to_str(cache->reg_list[i].value, cache->reg_list[i].size, 16);
1747                                 command_print(cmd_ctx, "(%i) %s (/%i): 0x%s (dirty: %i, valid: %i)",
1748                                                           count++,
1749                                                           cache->reg_list[i].name,
1750                                                           (int)(cache->reg_list[i].size),
1751                                                           value,
1752                                                           cache->reg_list[i].dirty,
1753                                                           cache->reg_list[i].valid);
1754                                 free(value);
1755                         }
1756                         cache = cache->next;
1757                 }
1758
1759                 return ERROR_OK;
1760         }
1761
1762         /* access a single register by its ordinal number */
1763         if ((args[0][0] >= '0') && (args[0][0] <= '9'))
1764         {
1765                 unsigned num;
1766                 int retval = parse_uint(args[0], &num);
1767                 if (ERROR_OK != retval)
1768                         return ERROR_COMMAND_SYNTAX_ERROR;
1769
1770                 reg_cache_t *cache = target->reg_cache;
1771                 count = 0;
1772                 while (cache)
1773                 {
1774                         int i;
1775                         for (i = 0; i < cache->num_regs; i++)
1776                         {
1777                                 if (count++ == (int)num)
1778                                 {
1779                                         reg = &cache->reg_list[i];
1780                                         break;
1781                                 }
1782                         }
1783                         if (reg)
1784                                 break;
1785                         cache = cache->next;
1786                 }
1787
1788                 if (!reg)
1789                 {
1790                         command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1791                         return ERROR_OK;
1792                 }
1793         } else /* access a single register by its name */
1794         {
1795                 reg = register_get_by_name(target->reg_cache, args[0], 1);
1796
1797                 if (!reg)
1798                 {
1799                         command_print(cmd_ctx, "register %s not found in current target", args[0]);
1800                         return ERROR_OK;
1801                 }
1802         }
1803
1804         /* display a register */
1805         if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
1806         {
1807                 if ((argc == 2) && (strcmp(args[1], "force") == 0))
1808                         reg->valid = 0;
1809
1810                 if (reg->valid == 0)
1811                 {
1812                         reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1813                         arch_type->get(reg);
1814                 }
1815                 value = buf_to_str(reg->value, reg->size, 16);
1816                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
1817                 free(value);
1818                 return ERROR_OK;
1819         }
1820
1821         /* set register value */
1822         if (argc == 2)
1823         {
1824                 uint8_t *buf = malloc(CEIL(reg->size, 8));
1825                 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
1826
1827                 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1828                 arch_type->set(reg, buf);
1829
1830                 value = buf_to_str(reg->value, reg->size, 16);
1831                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
1832                 free(value);
1833
1834                 free(buf);
1835
1836                 return ERROR_OK;
1837         }
1838
1839         command_print(cmd_ctx, "usage: reg <#|name> [value]");
1840
1841         return ERROR_OK;
1842 }
1843
1844 static int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1845 {
1846         int retval = ERROR_OK;
1847         target_t *target = get_current_target(cmd_ctx);
1848
1849         if (argc == 0)
1850         {
1851                 command_print(cmd_ctx, "background polling: %s",
1852                                 target_continuous_poll ?  "on" : "off");
1853                 command_print(cmd_ctx, "TAP: %s (%s)",
1854                                 target->tap->dotted_name,
1855                                 target->tap->enabled ? "enabled" : "disabled");
1856                 if (!target->tap->enabled)
1857                         return ERROR_OK;
1858                 if ((retval = target_poll(target)) != ERROR_OK)
1859                         return retval;
1860                 if ((retval = target_arch_state(target)) != ERROR_OK)
1861                         return retval;
1862
1863         }
1864         else if (argc == 1)
1865         {
1866                 if (strcmp(args[0], "on") == 0)
1867                 {
1868                         target_continuous_poll = 1;
1869                 }
1870                 else if (strcmp(args[0], "off") == 0)
1871                 {
1872                         target_continuous_poll = 0;
1873                 }
1874                 else
1875                 {
1876                         command_print(cmd_ctx, "arg is \"on\" or \"off\"");
1877                 }
1878         } else
1879         {
1880                 return ERROR_COMMAND_SYNTAX_ERROR;
1881         }
1882
1883         return retval;
1884 }
1885
1886 static int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1887 {
1888         if (argc > 1)
1889                 return ERROR_COMMAND_SYNTAX_ERROR;
1890
1891         unsigned ms = 5000;
1892         if (1 == argc)
1893         {
1894                 int retval = parse_uint(args[0], &ms);
1895                 if (ERROR_OK != retval)
1896                 {
1897                         command_print(cmd_ctx, "usage: %s [seconds]", cmd);
1898                         return ERROR_COMMAND_SYNTAX_ERROR;
1899                 }
1900                 // convert seconds (given) to milliseconds (needed)
1901                 ms *= 1000;
1902         }
1903
1904         target_t *target = get_current_target(cmd_ctx);
1905         return target_wait_state(target, TARGET_HALTED, ms);
1906 }
1907
1908 /* wait for target state to change. The trick here is to have a low
1909  * latency for short waits and not to suck up all the CPU time
1910  * on longer waits.
1911  *
1912  * After 500ms, keep_alive() is invoked
1913  */
1914 int target_wait_state(target_t *target, enum target_state state, int ms)
1915 {
1916         int retval;
1917         long long then = 0, cur;
1918         int once = 1;
1919
1920         for (;;)
1921         {
1922                 if ((retval = target_poll(target)) != ERROR_OK)
1923                         return retval;
1924                 if (target->state == state)
1925                 {
1926                         break;
1927                 }
1928                 cur = timeval_ms();
1929                 if (once)
1930                 {
1931                         once = 0;
1932                         then = timeval_ms();
1933                         LOG_DEBUG("waiting for target %s...",
1934                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
1935                 }
1936
1937                 if (cur-then > 500)
1938                 {
1939                         keep_alive();
1940                 }
1941
1942                 if ((cur-then) > ms)
1943                 {
1944                         LOG_ERROR("timed out while waiting for target %s",
1945                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
1946                         return ERROR_FAIL;
1947                 }
1948         }
1949
1950         return ERROR_OK;
1951 }
1952
1953 static int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1954 {
1955         LOG_DEBUG("-");
1956
1957         target_t *target = get_current_target(cmd_ctx);
1958         int retval = target_halt(target);
1959         if (ERROR_OK != retval)
1960                 return retval;
1961
1962         if (argc == 1)
1963         {
1964                 unsigned wait;
1965                 retval = parse_uint(args[0], &wait);
1966                 if (ERROR_OK != retval)
1967                         return ERROR_COMMAND_SYNTAX_ERROR;
1968                 if (!wait)
1969                         return ERROR_OK;
1970         }
1971
1972         return handle_wait_halt_command(cmd_ctx, cmd, args, argc);
1973 }
1974
1975 static int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1976 {
1977         target_t *target = get_current_target(cmd_ctx);
1978
1979         LOG_USER("requesting target halt and executing a soft reset");
1980
1981         target->type->soft_reset_halt(target);
1982
1983         return ERROR_OK;
1984 }
1985
1986 static int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1987 {
1988         if (argc > 1)
1989                 return ERROR_COMMAND_SYNTAX_ERROR;
1990
1991         enum target_reset_mode reset_mode = RESET_RUN;
1992         if (argc == 1)
1993         {
1994                 const Jim_Nvp *n;
1995                 n = Jim_Nvp_name2value_simple(nvp_reset_modes, args[0]);
1996                 if ((n->name == NULL) || (n->value == RESET_UNKNOWN)) {
1997                         return ERROR_COMMAND_SYNTAX_ERROR;
1998                 }
1999                 reset_mode = n->value;
2000         }
2001
2002         /* reset *all* targets */
2003         return target_process_reset(cmd_ctx, reset_mode);
2004 }
2005
2006
2007 static int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2008 {
2009         int current = 1;
2010         if (argc > 1)
2011                 return ERROR_COMMAND_SYNTAX_ERROR;
2012
2013         target_t *target = get_current_target(cmd_ctx);
2014         target_handle_event(target, TARGET_EVENT_OLD_pre_resume);
2015
2016         /* with no args, resume from current pc, addr = 0,
2017          * with one arguments, addr = args[0],
2018          * handle breakpoints, not debugging */
2019         uint32_t addr = 0;
2020         if (argc == 1)
2021         {
2022                 int retval = parse_u32(args[0], &addr);
2023                 if (ERROR_OK != retval)
2024                         return retval;
2025                 current = 0;
2026         }
2027
2028         return target_resume(target, current, addr, 1, 0);
2029 }
2030
2031 static int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2032 {
2033         if (argc > 1)
2034                 return ERROR_COMMAND_SYNTAX_ERROR;
2035
2036         LOG_DEBUG("-");
2037
2038         /* with no args, step from current pc, addr = 0,
2039          * with one argument addr = args[0],
2040          * handle breakpoints, debugging */
2041         uint32_t addr = 0;
2042         int current_pc = 1;
2043         if (argc == 1)
2044         {
2045                 int retval = parse_u32(args[0], &addr);
2046                 if (ERROR_OK != retval)
2047                         return retval;
2048                 current_pc = 0;
2049         }
2050
2051         target_t *target = get_current_target(cmd_ctx);
2052
2053         return target->type->step(target, current_pc, addr, 1);
2054 }
2055
2056 static void handle_md_output(struct command_context_s *cmd_ctx,
2057                 struct target_s *target, uint32_t address, unsigned size,
2058                 unsigned count, const uint8_t *buffer)
2059 {
2060         const unsigned line_bytecnt = 32;
2061         unsigned line_modulo = line_bytecnt / size;
2062
2063         char output[line_bytecnt * 4 + 1];
2064         unsigned output_len = 0;
2065
2066         const char *value_fmt;
2067         switch (size) {
2068         case 4: value_fmt = "%8.8x "; break;
2069         case 2: value_fmt = "%4.2x "; break;
2070         case 1: value_fmt = "%2.2x "; break;
2071         default:
2072                 LOG_ERROR("invalid memory read size: %u", size);
2073                 exit(-1);
2074         }
2075
2076         for (unsigned i = 0; i < count; i++)
2077         {
2078                 if (i % line_modulo == 0)
2079                 {
2080                         output_len += snprintf(output + output_len,
2081                                         sizeof(output) - output_len,
2082                                         "0x%8.8x: ",
2083                                         (unsigned)(address + (i*size)));
2084                 }
2085
2086                 uint32_t value = 0;
2087                 const uint8_t *value_ptr = buffer + i * size;
2088                 switch (size) {
2089                 case 4: value = target_buffer_get_u32(target, value_ptr); break;
2090                 case 2: value = target_buffer_get_u16(target, value_ptr); break;
2091                 case 1: value = *value_ptr;
2092                 }
2093                 output_len += snprintf(output + output_len,
2094                                 sizeof(output) - output_len,
2095                                 value_fmt, value);
2096
2097                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
2098                 {
2099                         command_print(cmd_ctx, "%s", output);
2100                         output_len = 0;
2101                 }
2102         }
2103 }
2104
2105 static int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2106 {
2107         if (argc < 1)
2108                 return ERROR_COMMAND_SYNTAX_ERROR;
2109
2110         unsigned size = 0;
2111         switch (cmd[2]) {
2112         case 'w': size = 4; break;
2113         case 'h': size = 2; break;
2114         case 'b': size = 1; break;
2115         default: return ERROR_COMMAND_SYNTAX_ERROR;
2116         }
2117
2118         uint32_t address;
2119         int retval = parse_u32(args[0], &address);
2120         if (ERROR_OK != retval)
2121                 return retval;
2122
2123         unsigned count = 1;
2124         if (argc == 2)
2125         {
2126                 retval = parse_uint(args[1], &count);
2127                 if (ERROR_OK != retval)
2128                         return retval;
2129         }
2130
2131         uint8_t *buffer = calloc(count, size);
2132
2133         target_t *target = get_current_target(cmd_ctx);
2134         retval = target_read_memory(target,
2135                                 address, size, count, buffer);
2136         if (ERROR_OK == retval)
2137                 handle_md_output(cmd_ctx, target, address, size, count, buffer);
2138
2139         free(buffer);
2140
2141         return retval;
2142 }
2143
2144 static int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2145 {
2146          if ((argc < 2) || (argc > 3))
2147                 return ERROR_COMMAND_SYNTAX_ERROR;
2148
2149         uint32_t address;
2150         int retval = parse_u32(args[0], &address);
2151         if (ERROR_OK != retval)
2152                 return retval;
2153
2154         uint32_t value;
2155         retval = parse_u32(args[1], &value);
2156         if (ERROR_OK != retval)
2157                 return retval;
2158
2159         unsigned count = 1;
2160         if (argc == 3)
2161         {
2162                 retval = parse_uint(args[2], &count);
2163                 if (ERROR_OK != retval)
2164                         return retval;
2165         }
2166
2167         target_t *target = get_current_target(cmd_ctx);
2168         unsigned wordsize;
2169         uint8_t value_buf[4];
2170         switch (cmd[2])
2171         {
2172                 case 'w':
2173                         wordsize = 4;
2174                         target_buffer_set_u32(target, value_buf, value);
2175                         break;
2176                 case 'h':
2177                         wordsize = 2;
2178                         target_buffer_set_u16(target, value_buf, value);
2179                         break;
2180                 case 'b':
2181                         wordsize = 1;
2182                         value_buf[0] = value;
2183                         break;
2184                 default:
2185                         return ERROR_COMMAND_SYNTAX_ERROR;
2186         }
2187         for (unsigned i = 0; i < count; i++)
2188         {
2189                 retval = target_write_memory(target,
2190                                 address + i * wordsize, wordsize, 1, value_buf);
2191                 if (ERROR_OK != retval)
2192                         return retval;
2193                 keep_alive();
2194         }
2195
2196         return ERROR_OK;
2197
2198 }
2199
2200 static int parse_load_image_command_args(char **args, int argc,
2201                 image_t *image, uint32_t *min_address, uint32_t *max_address)
2202 {
2203         if (argc < 1 || argc > 5)
2204                 return ERROR_COMMAND_SYNTAX_ERROR;
2205
2206         /* a base address isn't always necessary,
2207          * default to 0x0 (i.e. don't relocate) */
2208         if (argc >= 2)
2209         {
2210                 uint32_t addr;
2211                 int retval = parse_u32(args[1], &addr);
2212                 if (ERROR_OK != retval)
2213                         return ERROR_COMMAND_SYNTAX_ERROR;
2214                 image->base_address = addr;
2215                 image->base_address_set = 1;
2216         }
2217         else
2218                 image->base_address_set = 0;
2219
2220         image->start_address_set = 0;
2221
2222         if (argc >= 4)
2223         {
2224                 int retval = parse_u32(args[3], min_address);
2225                 if (ERROR_OK != retval)
2226                         return ERROR_COMMAND_SYNTAX_ERROR;
2227         }
2228         if (argc == 5)
2229         {
2230                 int retval = parse_u32(args[4], max_address);
2231                 if (ERROR_OK != retval)
2232                         return ERROR_COMMAND_SYNTAX_ERROR;
2233                 // use size (given) to find max (required)
2234                 *max_address += *min_address;
2235         }
2236
2237         if (*min_address > *max_address)
2238                 return ERROR_COMMAND_SYNTAX_ERROR;
2239
2240         return ERROR_OK;
2241 }
2242
2243 static int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2244 {
2245         uint8_t *buffer;
2246         uint32_t buf_cnt;
2247         uint32_t image_size;
2248         uint32_t min_address = 0;
2249         uint32_t max_address = 0xffffffff;
2250         int i;
2251         int retvaltemp;
2252
2253         image_t image;
2254
2255         duration_t duration;
2256         char *duration_text;
2257
2258         int retval = parse_load_image_command_args(args, argc,
2259                         &image, &min_address, &max_address);
2260         if (ERROR_OK != retval)
2261                 return retval;
2262
2263         target_t *target = get_current_target(cmd_ctx);
2264         duration_start_measure(&duration);
2265
2266         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
2267         {
2268                 return ERROR_OK;
2269         }
2270
2271         image_size = 0x0;
2272         retval = ERROR_OK;
2273         for (i = 0; i < image.num_sections; i++)
2274         {
2275                 buffer = malloc(image.sections[i].size);
2276                 if (buffer == NULL)
2277                 {
2278                         command_print(cmd_ctx,
2279                                                   "error allocating buffer for section (%d bytes)",
2280                                                   (int)(image.sections[i].size));
2281                         break;
2282                 }
2283
2284                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2285                 {
2286                         free(buffer);
2287                         break;
2288                 }
2289
2290                 uint32_t offset = 0;
2291                 uint32_t length = buf_cnt;
2292
2293                 /* DANGER!!! beware of unsigned comparision here!!! */
2294
2295                 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
2296                                 (image.sections[i].base_address < max_address))
2297                 {
2298                         if (image.sections[i].base_address < min_address)
2299                         {
2300                                 /* clip addresses below */
2301                                 offset += min_address-image.sections[i].base_address;
2302                                 length -= offset;
2303                         }
2304
2305                         if (image.sections[i].base_address + buf_cnt > max_address)
2306                         {
2307                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2308                         }
2309
2310                         if ((retval = target_write_buffer(target, image.sections[i].base_address + offset, length, buffer + offset)) != ERROR_OK)
2311                         {
2312                                 free(buffer);
2313                                 break;
2314                         }
2315                         image_size += length;
2316                         command_print(cmd_ctx, "%u byte written at address 0x%8.8" PRIx32 "",
2317                                                   (unsigned int)length,
2318                                                   image.sections[i].base_address + offset);
2319                 }
2320
2321                 free(buffer);
2322         }
2323
2324         if ((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2325         {
2326                 image_close(&image);
2327                 return retvaltemp;
2328         }
2329
2330         if (retval == ERROR_OK)
2331         {
2332                 command_print(cmd_ctx, "downloaded %u byte in %s",
2333                                           (unsigned int)image_size,
2334                                           duration_text);
2335         }
2336         free(duration_text);
2337
2338         image_close(&image);
2339
2340         return retval;
2341
2342 }
2343
2344 static int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2345 {
2346         fileio_t fileio;
2347
2348         uint8_t buffer[560];
2349         int retvaltemp;
2350
2351         duration_t duration;
2352         char *duration_text;
2353
2354         target_t *target = get_current_target(cmd_ctx);
2355
2356         if (argc != 3)
2357         {
2358                 command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
2359                 return ERROR_OK;
2360         }
2361
2362         uint32_t address;
2363         int retval = parse_u32(args[1], &address);
2364         if (ERROR_OK != retval)
2365                 return retval;
2366
2367         uint32_t size;
2368         retval = parse_u32(args[2], &size);
2369         if (ERROR_OK != retval)
2370                 return retval;
2371
2372         if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2373         {
2374                 return ERROR_OK;
2375         }
2376
2377         duration_start_measure(&duration);
2378
2379         while (size > 0)
2380         {
2381                 uint32_t size_written;
2382                 uint32_t this_run_size = (size > 560) ? 560 : size;
2383
2384                 retval = target_read_buffer(target, address, this_run_size, buffer);
2385                 if (retval != ERROR_OK)
2386                 {
2387                         break;
2388                 }
2389
2390                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2391                 if (retval != ERROR_OK)
2392                 {
2393                         break;
2394                 }
2395
2396                 size -= this_run_size;
2397                 address += this_run_size;
2398         }
2399
2400         if ((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2401                 return retvaltemp;
2402
2403         if ((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2404                 return retvaltemp;
2405
2406         if (retval == ERROR_OK)
2407         {
2408                 command_print(cmd_ctx, "dumped %lld byte in %s",
2409                                 fileio.size, duration_text);
2410                 free(duration_text);
2411         }
2412
2413         return retval;
2414 }
2415
2416 static int handle_verify_image_command_internal(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc, int verify)
2417 {
2418         uint8_t *buffer;
2419         uint32_t buf_cnt;
2420         uint32_t image_size;
2421         int i;
2422         int retval, retvaltemp;
2423         uint32_t checksum = 0;
2424         uint32_t mem_checksum = 0;
2425
2426         image_t image;
2427
2428         duration_t duration;
2429         char *duration_text;
2430
2431         target_t *target = get_current_target(cmd_ctx);
2432
2433         if (argc < 1)
2434         {
2435                 return ERROR_COMMAND_SYNTAX_ERROR;
2436         }
2437
2438         if (!target)
2439         {
2440                 LOG_ERROR("no target selected");
2441                 return ERROR_FAIL;
2442         }
2443
2444         duration_start_measure(&duration);
2445
2446         if (argc >= 2)
2447         {
2448                 uint32_t addr;
2449                 retval = parse_u32(args[1], &addr);
2450                 if (ERROR_OK != retval)
2451                         return ERROR_COMMAND_SYNTAX_ERROR;
2452                 image.base_address = addr;
2453                 image.base_address_set = 1;
2454         }
2455         else
2456         {
2457                 image.base_address_set = 0;
2458                 image.base_address = 0x0;
2459         }
2460
2461         image.start_address_set = 0;
2462
2463         if ((retval = image_open(&image, args[0], (argc == 3) ? args[2] : NULL)) != ERROR_OK)
2464         {
2465                 return retval;
2466         }
2467
2468         image_size = 0x0;
2469         retval = ERROR_OK;
2470         for (i = 0; i < image.num_sections; i++)
2471         {
2472                 buffer = malloc(image.sections[i].size);
2473                 if (buffer == NULL)
2474                 {
2475                         command_print(cmd_ctx,
2476                                                   "error allocating buffer for section (%d bytes)",
2477                                                   (int)(image.sections[i].size));
2478                         break;
2479                 }
2480                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2481                 {
2482                         free(buffer);
2483                         break;
2484                 }
2485
2486                 if (verify)
2487                 {
2488                         /* calculate checksum of image */
2489                         image_calculate_checksum(buffer, buf_cnt, &checksum);
2490
2491                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2492                         if (retval != ERROR_OK)
2493                         {
2494                                 free(buffer);
2495                                 break;
2496                         }
2497
2498                         if (checksum != mem_checksum)
2499                         {
2500                                 /* failed crc checksum, fall back to a binary compare */
2501                                 uint8_t *data;
2502
2503                                 command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
2504
2505                                 data = (uint8_t*)malloc(buf_cnt);
2506
2507                                 /* Can we use 32bit word accesses? */
2508                                 int size = 1;
2509                                 int count = buf_cnt;
2510                                 if ((count % 4) == 0)
2511                                 {
2512                                         size *= 4;
2513                                         count /= 4;
2514                                 }
2515                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2516                                 if (retval == ERROR_OK)
2517                                 {
2518                                         uint32_t t;
2519                                         for (t = 0; t < buf_cnt; t++)
2520                                         {
2521                                                 if (data[t] != buffer[t])
2522                                                 {
2523                                                         command_print(cmd_ctx,
2524                                                                                   "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n",
2525                                                                                   (unsigned)(t + image.sections[i].base_address),
2526                                                                                   data[t],
2527                                                                                   buffer[t]);
2528                                                         free(data);
2529                                                         free(buffer);
2530                                                         retval = ERROR_FAIL;
2531                                                         goto done;
2532                                                 }
2533                                                 if ((t%16384) == 0)
2534                                                 {
2535                                                         keep_alive();
2536                                                 }
2537                                         }
2538                                 }
2539
2540                                 free(data);
2541                         }
2542                 } else
2543                 {
2544                         command_print(cmd_ctx, "address 0x%08" PRIx32 " length 0x%08" PRIx32 "",
2545                                                   image.sections[i].base_address,
2546                                                   buf_cnt);
2547                 }
2548
2549                 free(buffer);
2550                 image_size += buf_cnt;
2551         }
2552 done:
2553
2554         if ((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2555         {
2556                 image_close(&image);
2557                 return retvaltemp;
2558         }
2559
2560         if (retval == ERROR_OK)
2561         {
2562                 command_print(cmd_ctx, "verified %u bytes in %s",
2563                                           (unsigned int)image_size,
2564                                           duration_text);
2565         }
2566         free(duration_text);
2567
2568         image_close(&image);
2569
2570         return retval;
2571 }
2572
2573 static int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2574 {
2575         return handle_verify_image_command_internal(cmd_ctx, cmd, args, argc, 1);
2576 }
2577
2578 static int handle_test_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2579 {
2580         return handle_verify_image_command_internal(cmd_ctx, cmd, args, argc, 0);
2581 }
2582
2583 static int handle_bp_command_list(struct command_context_s *cmd_ctx)
2584 {
2585         target_t *target = get_current_target(cmd_ctx);
2586         breakpoint_t *breakpoint = target->breakpoints;
2587         while (breakpoint)
2588         {
2589                 if (breakpoint->type == BKPT_SOFT)
2590                 {
2591                         char* buf = buf_to_str(breakpoint->orig_instr,
2592                                         breakpoint->length, 16);
2593                         command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
2594                                         breakpoint->address,
2595                                         breakpoint->length,
2596                                         breakpoint->set, buf);
2597                         free(buf);
2598                 }
2599                 else
2600                 {
2601                         command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i",
2602                                                   breakpoint->address,
2603                                                   breakpoint->length, breakpoint->set);
2604                 }
2605
2606                 breakpoint = breakpoint->next;
2607         }
2608         return ERROR_OK;
2609 }
2610
2611 static int handle_bp_command_set(struct command_context_s *cmd_ctx,
2612                 uint32_t addr, uint32_t length, int hw)
2613 {
2614         target_t *target = get_current_target(cmd_ctx);
2615         int retval = breakpoint_add(target, addr, length, hw);
2616         if (ERROR_OK == retval)
2617                 command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
2618         else
2619                 LOG_ERROR("Failure setting breakpoint");
2620         return retval;
2621 }
2622
2623 static int handle_bp_command(struct command_context_s *cmd_ctx,
2624                 char *cmd, char **args, int argc)
2625 {
2626         if (argc == 0)
2627                 return handle_bp_command_list(cmd_ctx);
2628
2629         if (argc < 2 || argc > 3)
2630         {
2631                 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
2632                 return ERROR_COMMAND_SYNTAX_ERROR;
2633         }
2634
2635         uint32_t addr;
2636         int retval = parse_u32(args[0], &addr);
2637         if (ERROR_OK != retval)
2638                 return retval;
2639
2640         uint32_t length;
2641         retval = parse_u32(args[1], &length);
2642         if (ERROR_OK != retval)
2643                 return retval;
2644
2645         int hw = BKPT_SOFT;
2646         if (argc == 3)
2647         {
2648                 if (strcmp(args[2], "hw") == 0)
2649                         hw = BKPT_HARD;
2650                 else
2651                         return ERROR_COMMAND_SYNTAX_ERROR;
2652         }
2653
2654         return handle_bp_command_set(cmd_ctx, addr, length, hw);
2655 }
2656
2657 static int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2658 {
2659         if (argc != 1)
2660                 return ERROR_COMMAND_SYNTAX_ERROR;
2661
2662         uint32_t addr;
2663         int retval = parse_u32(args[0], &addr);
2664         if (ERROR_OK != retval)
2665                 return retval;
2666
2667         target_t *target = get_current_target(cmd_ctx);
2668         breakpoint_remove(target, addr);
2669
2670         return ERROR_OK;
2671 }
2672
2673 static int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2674 {
2675         target_t *target = get_current_target(cmd_ctx);
2676
2677         if (argc == 0)
2678         {
2679                 watchpoint_t *watchpoint = target->watchpoints;
2680
2681                 while (watchpoint)
2682                 {
2683                         command_print(cmd_ctx,
2684                                                   "address: 0x%8.8" PRIx32 ", len: 0x%8.8x, r/w/a: %i, value: 0x%8.8" PRIx32 ", mask: 0x%8.8" PRIx32 "",
2685                                                   watchpoint->address,
2686                                                   watchpoint->length,
2687                                                   (int)(watchpoint->rw),
2688                                                   watchpoint->value,
2689                                                   watchpoint->mask);
2690                         watchpoint = watchpoint->next;
2691                 }
2692                 return ERROR_OK;
2693         }
2694
2695         enum watchpoint_rw type = WPT_ACCESS;
2696         uint32_t addr = 0;
2697         uint32_t length = 0;
2698         uint32_t data_value = 0x0;
2699         uint32_t data_mask = 0xffffffff;
2700         int retval;
2701
2702         switch (argc)
2703         {
2704         case 5:
2705                 retval = parse_u32(args[4], &data_mask);
2706                 if (ERROR_OK != retval)
2707                         return retval;
2708                 // fall through
2709         case 4:
2710                 retval = parse_u32(args[3], &data_value);
2711                 if (ERROR_OK != retval)
2712                         return retval;
2713                 // fall through
2714         case 3:
2715                 switch (args[2][0])
2716                 {
2717                 case 'r':
2718                         type = WPT_READ;
2719                         break;
2720                 case 'w':
2721                         type = WPT_WRITE;
2722                         break;
2723                 case 'a':
2724                         type = WPT_ACCESS;
2725                         break;
2726                 default:
2727                         LOG_ERROR("invalid watchpoint mode ('%c')", args[2][0]);
2728                         return ERROR_COMMAND_SYNTAX_ERROR;
2729                 }
2730                 // fall through
2731         case 2:
2732                 retval = parse_u32(args[1], &length);
2733                 if (ERROR_OK != retval)
2734                         return retval;
2735                 retval = parse_u32(args[0], &addr);
2736                 if (ERROR_OK != retval)
2737                         return retval;
2738                 break;
2739
2740         default:
2741                 command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2742                 return ERROR_COMMAND_SYNTAX_ERROR;
2743         }
2744
2745         retval = watchpoint_add(target, addr, length, type,
2746                         data_value, data_mask);
2747         if (ERROR_OK != retval)
2748                 LOG_ERROR("Failure setting watchpoints");
2749
2750         return retval;
2751 }
2752
2753 static int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2754 {
2755         if (argc != 1)
2756                 return ERROR_COMMAND_SYNTAX_ERROR;
2757
2758         uint32_t addr;
2759         int retval = parse_u32(args[0], &addr);
2760         if (ERROR_OK != retval)
2761                 return retval;
2762
2763         target_t *target = get_current_target(cmd_ctx);
2764         watchpoint_remove(target, addr);
2765
2766         return ERROR_OK;
2767 }
2768
2769
2770 /**
2771  * Translate a virtual address to a physical address.
2772  *
2773  * The low-level target implementation must have logged a detailed error
2774  * which is forwarded to telnet/GDB session.
2775  */
2776 static int handle_virt2phys_command(command_context_t *cmd_ctx,
2777                 char *cmd, char **args, int argc)
2778 {
2779         if (argc != 1)
2780                 return ERROR_COMMAND_SYNTAX_ERROR;
2781
2782         uint32_t va;
2783         int retval = parse_u32(args[0], &va);
2784         if (ERROR_OK != retval)
2785                 return retval;
2786         uint32_t pa;
2787
2788         target_t *target = get_current_target(cmd_ctx);
2789         retval = target->type->virt2phys(target, va, &pa);
2790         if (retval == ERROR_OK)
2791                 command_print(cmd_ctx, "Physical address 0x%08" PRIx32 "", pa);
2792
2793         return retval;
2794 }
2795
2796 static void writeData(FILE *f, const void *data, size_t len)
2797 {
2798         size_t written = fwrite(data, 1, len, f);
2799         if (written != len)
2800                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
2801 }
2802
2803 static void writeLong(FILE *f, int l)
2804 {
2805         int i;
2806         for (i = 0; i < 4; i++)
2807         {
2808                 char c = (l >> (i*8))&0xff;
2809                 writeData(f, &c, 1);
2810         }
2811
2812 }
2813
2814 static void writeString(FILE *f, char *s)
2815 {
2816         writeData(f, s, strlen(s));
2817 }
2818
2819 /* Dump a gmon.out histogram file. */
2820 static void writeGmon(uint32_t *samples, uint32_t sampleNum, char *filename)
2821 {
2822         uint32_t i;
2823         FILE *f = fopen(filename, "w");
2824         if (f == NULL)
2825                 return;
2826         writeString(f, "gmon");
2827         writeLong(f, 0x00000001); /* Version */
2828         writeLong(f, 0); /* padding */
2829         writeLong(f, 0); /* padding */
2830         writeLong(f, 0); /* padding */
2831
2832         uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
2833         writeData(f, &zero, 1);
2834
2835         /* figure out bucket size */
2836         uint32_t min = samples[0];
2837         uint32_t max = samples[0];
2838         for (i = 0; i < sampleNum; i++)
2839         {
2840                 if (min > samples[i])
2841                 {
2842                         min = samples[i];
2843                 }
2844                 if (max < samples[i])
2845                 {
2846                         max = samples[i];
2847                 }
2848         }
2849
2850         int addressSpace = (max-min + 1);
2851
2852         static const uint32_t maxBuckets = 256 * 1024; /* maximum buckets. */
2853         uint32_t length = addressSpace;
2854         if (length > maxBuckets)
2855         {
2856                 length = maxBuckets;
2857         }
2858         int *buckets = malloc(sizeof(int)*length);
2859         if (buckets == NULL)
2860         {
2861                 fclose(f);
2862                 return;
2863         }
2864         memset(buckets, 0, sizeof(int)*length);
2865         for (i = 0; i < sampleNum;i++)
2866         {
2867                 uint32_t address = samples[i];
2868                 long long a = address-min;
2869                 long long b = length-1;
2870                 long long c = addressSpace-1;
2871                 int index = (a*b)/c; /* danger!!!! int32 overflows */
2872                 buckets[index]++;
2873         }
2874
2875         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
2876         writeLong(f, min);                      /* low_pc */
2877         writeLong(f, max);                      /* high_pc */
2878         writeLong(f, length);           /* # of samples */
2879         writeLong(f, 64000000);         /* 64MHz */
2880         writeString(f, "seconds");
2881         for (i = 0; i < (15-strlen("seconds")); i++)
2882                 writeData(f, &zero, 1);
2883         writeString(f, "s");
2884
2885         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
2886
2887         char *data = malloc(2*length);
2888         if (data != NULL)
2889         {
2890                 for (i = 0; i < length;i++)
2891                 {
2892                         int val;
2893                         val = buckets[i];
2894                         if (val > 65535)
2895                         {
2896                                 val = 65535;
2897                         }
2898                         data[i*2]=val&0xff;
2899                         data[i*2 + 1]=(val >> 8)&0xff;
2900                 }
2901                 free(buckets);
2902                 writeData(f, data, length * 2);
2903                 free(data);
2904         } else
2905         {
2906                 free(buckets);
2907         }
2908
2909         fclose(f);
2910 }
2911
2912 /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
2913 static int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2914 {
2915         target_t *target = get_current_target(cmd_ctx);
2916         struct timeval timeout, now;
2917
2918         gettimeofday(&timeout, NULL);
2919         if (argc != 2)
2920         {
2921                 return ERROR_COMMAND_SYNTAX_ERROR;
2922         }
2923         unsigned offset;
2924         int retval = parse_uint(args[0], &offset);
2925         if (ERROR_OK != retval)
2926                 return retval;
2927
2928         timeval_add_time(&timeout, offset, 0);
2929
2930         command_print(cmd_ctx, "Starting profiling. Halting and resuming the target as often as we can...");
2931
2932         static const int maxSample = 10000;
2933         uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
2934         if (samples == NULL)
2935                 return ERROR_OK;
2936
2937         int numSamples = 0;
2938         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2939         reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1);
2940
2941         for (;;)
2942         {
2943                 target_poll(target);
2944                 if (target->state == TARGET_HALTED)
2945                 {
2946                         uint32_t t=*((uint32_t *)reg->value);
2947                         samples[numSamples++]=t;
2948                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2949                         target_poll(target);
2950                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2951                 } else if (target->state == TARGET_RUNNING)
2952                 {
2953                         /* We want to quickly sample the PC. */
2954                         if ((retval = target_halt(target)) != ERROR_OK)
2955                         {
2956                                 free(samples);
2957                                 return retval;
2958                         }
2959                 } else
2960                 {
2961                         command_print(cmd_ctx, "Target not halted or running");
2962                         retval = ERROR_OK;
2963                         break;
2964                 }
2965                 if (retval != ERROR_OK)
2966                 {
2967                         break;
2968                 }
2969
2970                 gettimeofday(&now, NULL);
2971                 if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
2972                 {
2973                         command_print(cmd_ctx, "Profiling completed. %d samples.", numSamples);
2974                         if ((retval = target_poll(target)) != ERROR_OK)
2975                         {
2976                                 free(samples);
2977                                 return retval;
2978                         }
2979                         if (target->state == TARGET_HALTED)
2980                         {
2981                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2982                         }
2983                         if ((retval = target_poll(target)) != ERROR_OK)
2984                         {
2985                                 free(samples);
2986                                 return retval;
2987                         }
2988                         writeGmon(samples, numSamples, args[1]);
2989                         command_print(cmd_ctx, "Wrote %s", args[1]);
2990                         break;
2991                 }
2992         }
2993         free(samples);
2994
2995         return ERROR_OK;
2996 }
2997
2998 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t val)
2999 {
3000         char *namebuf;
3001         Jim_Obj *nameObjPtr, *valObjPtr;
3002         int result;
3003
3004         namebuf = alloc_printf("%s(%d)", varname, idx);
3005         if (!namebuf)
3006                 return JIM_ERR;
3007
3008         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3009         valObjPtr = Jim_NewIntObj(interp, val);
3010         if (!nameObjPtr || !valObjPtr)
3011         {
3012                 free(namebuf);
3013                 return JIM_ERR;
3014         }
3015
3016         Jim_IncrRefCount(nameObjPtr);
3017         Jim_IncrRefCount(valObjPtr);
3018         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3019         Jim_DecrRefCount(interp, nameObjPtr);
3020         Jim_DecrRefCount(interp, valObjPtr);
3021         free(namebuf);
3022         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3023         return result;
3024 }
3025
3026 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3027 {
3028         command_context_t *context;
3029         target_t *target;
3030
3031         context = Jim_GetAssocData(interp, "context");
3032         if (context == NULL)
3033         {
3034                 LOG_ERROR("mem2array: no command context");
3035                 return JIM_ERR;
3036         }
3037         target = get_current_target(context);
3038         if (target == NULL)
3039         {
3040                 LOG_ERROR("mem2array: no current target");
3041                 return JIM_ERR;
3042         }
3043
3044         return  target_mem2array(interp, target, argc-1, argv + 1);
3045 }
3046
3047 static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv)
3048 {
3049         long l;
3050         uint32_t width;
3051         int len;
3052         uint32_t addr;
3053         uint32_t count;
3054         uint32_t v;
3055         const char *varname;
3056         uint8_t buffer[4096];
3057         int  n, e, retval;
3058         uint32_t i;
3059
3060         /* argv[1] = name of array to receive the data
3061          * argv[2] = desired width
3062          * argv[3] = memory address
3063          * argv[4] = count of times to read
3064          */
3065         if (argc != 4) {
3066                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3067                 return JIM_ERR;
3068         }
3069         varname = Jim_GetString(argv[0], &len);
3070         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3071
3072         e = Jim_GetLong(interp, argv[1], &l);
3073         width = l;
3074         if (e != JIM_OK) {
3075                 return e;
3076         }
3077
3078         e = Jim_GetLong(interp, argv[2], &l);
3079         addr = l;
3080         if (e != JIM_OK) {
3081                 return e;
3082         }
3083         e = Jim_GetLong(interp, argv[3], &l);
3084         len = l;
3085         if (e != JIM_OK) {
3086                 return e;
3087         }
3088         switch (width) {
3089                 case 8:
3090                         width = 1;
3091                         break;
3092                 case 16:
3093                         width = 2;
3094                         break;
3095                 case 32:
3096                         width = 4;
3097                         break;
3098                 default:
3099                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3100                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3101                         return JIM_ERR;
3102         }
3103         if (len == 0) {
3104                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3105                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3106                 return JIM_ERR;
3107         }
3108         if ((addr + (len * width)) < addr) {
3109                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3110                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3111                 return JIM_ERR;
3112         }
3113         /* absurd transfer size? */
3114         if (len > 65536) {
3115                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3116                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3117                 return JIM_ERR;
3118         }
3119
3120         if ((width == 1) ||
3121                 ((width == 2) && ((addr & 1) == 0)) ||
3122                 ((width == 4) && ((addr & 3) == 0))) {
3123                 /* all is well */
3124         } else {
3125                 char buf[100];
3126                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3127                 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3128                                 addr,
3129                                 width);
3130                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3131                 return JIM_ERR;
3132         }
3133
3134         /* Transfer loop */
3135
3136         /* index counter */
3137         n = 0;
3138         /* assume ok */
3139         e = JIM_OK;
3140         while (len) {
3141                 /* Slurp... in buffer size chunks */
3142
3143                 count = len; /* in objects.. */
3144                 if (count > (sizeof(buffer)/width)) {
3145                         count = (sizeof(buffer)/width);
3146                 }
3147
3148                 retval = target_read_memory(target, addr, width, count, buffer);
3149                 if (retval != ERROR_OK) {
3150                         /* BOO !*/
3151                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3152                                           (unsigned int)addr,
3153                                           (int)width,
3154                                           (int)count);
3155                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3156                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3157                         e = JIM_ERR;
3158                         len = 0;
3159                 } else {
3160                         v = 0; /* shut up gcc */
3161                         for (i = 0 ;i < count ;i++, n++) {
3162                                 switch (width) {
3163                                         case 4:
3164                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
3165                                                 break;
3166                                         case 2:
3167                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
3168                                                 break;
3169                                         case 1:
3170                                                 v = buffer[i] & 0x0ff;
3171                                                 break;
3172                                 }
3173                                 new_int_array_element(interp, varname, n, v);
3174                         }
3175                         len -= count;
3176                 }
3177         }
3178
3179         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3180
3181         return JIM_OK;
3182 }
3183
3184 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t *val)
3185 {
3186         char *namebuf;
3187         Jim_Obj *nameObjPtr, *valObjPtr;
3188         int result;
3189         long l;
3190
3191         namebuf = alloc_printf("%s(%d)", varname, idx);
3192         if (!namebuf)
3193                 return JIM_ERR;
3194
3195         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3196         if (!nameObjPtr)
3197         {
3198                 free(namebuf);
3199                 return JIM_ERR;
3200         }
3201
3202         Jim_IncrRefCount(nameObjPtr);
3203         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3204         Jim_DecrRefCount(interp, nameObjPtr);
3205         free(namebuf);
3206         if (valObjPtr == NULL)
3207                 return JIM_ERR;
3208
3209         result = Jim_GetLong(interp, valObjPtr, &l);
3210         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3211         *val = l;
3212         return result;
3213 }
3214
3215 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3216 {
3217         command_context_t *context;
3218         target_t *target;
3219
3220         context = Jim_GetAssocData(interp, "context");
3221         if (context == NULL) {
3222                 LOG_ERROR("array2mem: no command context");
3223                 return JIM_ERR;
3224         }
3225         target = get_current_target(context);
3226         if (target == NULL) {
3227                 LOG_ERROR("array2mem: no current target");
3228                 return JIM_ERR;
3229         }
3230
3231         return target_array2mem(interp,target, argc-1, argv + 1);
3232 }
3233
3234 static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv)
3235 {
3236         long l;
3237         uint32_t width;
3238         int len;
3239         uint32_t addr;
3240         uint32_t count;
3241         uint32_t v;
3242         const char *varname;
3243         uint8_t buffer[4096];
3244         int  n, e, retval;
3245         uint32_t i;
3246
3247         /* argv[1] = name of array to get the data
3248          * argv[2] = desired width
3249          * argv[3] = memory address
3250          * argv[4] = count to write
3251          */
3252         if (argc != 4) {
3253                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3254                 return JIM_ERR;
3255         }
3256         varname = Jim_GetString(argv[0], &len);
3257         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3258
3259         e = Jim_GetLong(interp, argv[1], &l);
3260         width = l;
3261         if (e != JIM_OK) {
3262                 return e;
3263         }
3264
3265         e = Jim_GetLong(interp, argv[2], &l);
3266         addr = l;
3267         if (e != JIM_OK) {
3268                 return e;
3269         }
3270         e = Jim_GetLong(interp, argv[3], &l);
3271         len = l;
3272         if (e != JIM_OK) {
3273                 return e;
3274         }
3275         switch (width) {
3276                 case 8:
3277                         width = 1;
3278                         break;
3279                 case 16:
3280                         width = 2;
3281                         break;
3282                 case 32:
3283                         width = 4;
3284                         break;
3285                 default:
3286                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3287                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3288                         return JIM_ERR;
3289         }
3290         if (len == 0) {
3291                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3292                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
3293                 return JIM_ERR;
3294         }
3295         if ((addr + (len * width)) < addr) {
3296                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3297                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
3298                 return JIM_ERR;
3299         }
3300         /* absurd transfer size? */
3301         if (len > 65536) {
3302                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3303                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
3304                 return JIM_ERR;
3305         }
3306
3307         if ((width == 1) ||
3308                 ((width == 2) && ((addr & 1) == 0)) ||
3309                 ((width == 4) && ((addr & 3) == 0))) {
3310                 /* all is well */
3311         } else {
3312                 char buf[100];
3313                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3314                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
3315                                 (unsigned int)addr,
3316                                 (int)width);
3317                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3318                 return JIM_ERR;
3319         }
3320
3321         /* Transfer loop */
3322
3323         /* index counter */
3324         n = 0;
3325         /* assume ok */
3326         e = JIM_OK;
3327         while (len) {
3328                 /* Slurp... in buffer size chunks */
3329
3330                 count = len; /* in objects.. */
3331                 if (count > (sizeof(buffer)/width)) {
3332                         count = (sizeof(buffer)/width);
3333                 }
3334
3335                 v = 0; /* shut up gcc */
3336                 for (i = 0 ;i < count ;i++, n++) {
3337                         get_int_array_element(interp, varname, n, &v);
3338                         switch (width) {
3339                         case 4:
3340                                 target_buffer_set_u32(target, &buffer[i*width], v);
3341                                 break;
3342                         case 2:
3343                                 target_buffer_set_u16(target, &buffer[i*width], v);
3344                                 break;
3345                         case 1:
3346                                 buffer[i] = v & 0x0ff;
3347                                 break;
3348                         }
3349                 }
3350                 len -= count;
3351
3352                 retval = target_write_memory(target, addr, width, count, buffer);
3353                 if (retval != ERROR_OK) {
3354                         /* BOO !*/
3355                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
3356                                           (unsigned int)addr,
3357                                           (int)width,
3358                                           (int)count);
3359                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3360                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3361                         e = JIM_ERR;
3362                         len = 0;
3363                 }
3364         }
3365
3366         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3367
3368         return JIM_OK;
3369 }
3370
3371 void target_all_handle_event(enum target_event e)
3372 {
3373         target_t *target;
3374
3375         LOG_DEBUG("**all*targets: event: %d, %s",
3376                            (int)e,
3377                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name);
3378
3379         target = all_targets;
3380         while (target) {
3381                 target_handle_event(target, e);
3382                 target = target->next;
3383         }
3384 }
3385
3386 void target_handle_event(target_t *target, enum target_event e)
3387 {
3388         target_event_action_t *teap;
3389         int done;
3390
3391         teap = target->event_action;
3392
3393         done = 0;
3394         while (teap) {
3395                 if (teap->event == e) {
3396                         done = 1;
3397                         LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
3398                                            target->target_number,
3399                                            target->cmd_name,
3400                                            target_get_name(target),
3401                                            e,
3402                                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
3403                                            Jim_GetString(teap->body, NULL));
3404                         if (Jim_EvalObj(interp, teap->body) != JIM_OK)
3405                         {
3406                                 Jim_PrintErrorMessage(interp);
3407                         }
3408                 }
3409                 teap = teap->next;
3410         }
3411         if (!done) {
3412                 LOG_DEBUG("event: %d %s - no action",
3413                                    e,
3414                                    Jim_Nvp_value2name_simple(nvp_target_event, e)->name);
3415         }
3416 }
3417
3418 enum target_cfg_param {
3419         TCFG_TYPE,
3420         TCFG_EVENT,
3421         TCFG_WORK_AREA_VIRT,
3422         TCFG_WORK_AREA_PHYS,
3423         TCFG_WORK_AREA_SIZE,
3424         TCFG_WORK_AREA_BACKUP,
3425         TCFG_ENDIAN,
3426         TCFG_VARIANT,
3427         TCFG_CHAIN_POSITION,
3428 };
3429
3430 static Jim_Nvp nvp_config_opts[] = {
3431         { .name = "-type",             .value = TCFG_TYPE },
3432         { .name = "-event",            .value = TCFG_EVENT },
3433         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
3434         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
3435         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
3436         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3437         { .name = "-endian" ,          .value = TCFG_ENDIAN },
3438         { .name = "-variant",          .value = TCFG_VARIANT },
3439         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
3440
3441         { .name = NULL, .value = -1 }
3442 };
3443
3444 static int target_configure(Jim_GetOptInfo *goi, target_t *target)
3445 {
3446         Jim_Nvp *n;
3447         Jim_Obj *o;
3448         jim_wide w;
3449         char *cp;
3450         int e;
3451
3452         /* parse config or cget options ... */
3453         while (goi->argc > 0) {
3454                 Jim_SetEmptyResult(goi->interp);
3455                 /* Jim_GetOpt_Debug(goi); */
3456
3457                 if (target->type->target_jim_configure) {
3458                         /* target defines a configure function */
3459                         /* target gets first dibs on parameters */
3460                         e = (*(target->type->target_jim_configure))(target, goi);
3461                         if (e == JIM_OK) {
3462                                 /* more? */
3463                                 continue;
3464                         }
3465                         if (e == JIM_ERR) {
3466                                 /* An error */
3467                                 return e;
3468                         }
3469                         /* otherwise we 'continue' below */
3470                 }
3471                 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
3472                 if (e != JIM_OK) {
3473                         Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
3474                         return e;
3475                 }
3476                 switch (n->value) {
3477                 case TCFG_TYPE:
3478                         /* not setable */
3479                         if (goi->isconfigure) {
3480                                 Jim_SetResult_sprintf(goi->interp, "not setable: %s", n->name);
3481                                 return JIM_ERR;
3482                         } else {
3483                         no_params:
3484                                 if (goi->argc != 0) {
3485                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "NO PARAMS");
3486                                         return JIM_ERR;
3487                                 }
3488                         }
3489                         Jim_SetResultString(goi->interp, target_get_name(target), -1);
3490                         /* loop for more */
3491                         break;
3492                 case TCFG_EVENT:
3493                         if (goi->argc == 0) {
3494                                 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
3495                                 return JIM_ERR;
3496                         }
3497
3498                         e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
3499                         if (e != JIM_OK) {
3500                                 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
3501                                 return e;
3502                         }
3503
3504                         if (goi->isconfigure) {
3505                                 if (goi->argc != 1) {
3506                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
3507                                         return JIM_ERR;
3508                                 }
3509                         } else {
3510                                 if (goi->argc != 0) {
3511                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
3512                                         return JIM_ERR;
3513                                 }
3514                         }
3515
3516                         {
3517                                 target_event_action_t *teap;
3518
3519                                 teap = target->event_action;
3520                                 /* replace existing? */
3521                                 while (teap) {
3522                                         if (teap->event == (enum target_event)n->value) {
3523                                                 break;
3524                                         }
3525                                         teap = teap->next;
3526                                 }
3527
3528                                 if (goi->isconfigure) {
3529                                         if (teap == NULL) {
3530                                                 /* create new */
3531                                                 teap = calloc(1, sizeof(*teap));
3532                                         }
3533                                         teap->event = n->value;
3534                                         Jim_GetOpt_Obj(goi, &o);
3535                                         if (teap->body) {
3536                                                 Jim_DecrRefCount(interp, teap->body);
3537                                         }
3538                                         teap->body  = Jim_DuplicateObj(goi->interp, o);
3539                                         /*
3540                                          * FIXME:
3541                                          *     Tcl/TK - "tk events" have a nice feature.
3542                                          *     See the "BIND" command.
3543                                          *    We should support that here.
3544                                          *     You can specify %X and %Y in the event code.
3545                                          *     The idea is: %T - target name.
3546                                          *     The idea is: %N - target number
3547                                          *     The idea is: %E - event name.
3548                                          */
3549                                         Jim_IncrRefCount(teap->body);
3550
3551                                         /* add to head of event list */
3552                                         teap->next = target->event_action;
3553                                         target->event_action = teap;
3554                                         Jim_SetEmptyResult(goi->interp);
3555                                 } else {
3556                                         /* get */
3557                                         if (teap == NULL) {
3558                                                 Jim_SetEmptyResult(goi->interp);
3559                                         } else {
3560                                                 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
3561                                         }
3562                                 }
3563                         }
3564                         /* loop for more */
3565                         break;
3566
3567                 case TCFG_WORK_AREA_VIRT:
3568                         if (goi->isconfigure) {
3569                                 target_free_all_working_areas(target);
3570                                 e = Jim_GetOpt_Wide(goi, &w);
3571                                 if (e != JIM_OK) {
3572                                         return e;
3573                                 }
3574                                 target->working_area_virt = w;
3575                         } else {
3576                                 if (goi->argc != 0) {
3577                                         goto no_params;
3578                                 }
3579                         }
3580                         Jim_SetResult(interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
3581                         /* loop for more */
3582                         break;
3583
3584                 case TCFG_WORK_AREA_PHYS:
3585                         if (goi->isconfigure) {
3586                                 target_free_all_working_areas(target);
3587                                 e = Jim_GetOpt_Wide(goi, &w);
3588                                 if (e != JIM_OK) {
3589                                         return e;
3590                                 }
3591                                 target->working_area_phys = w;
3592                         } else {
3593                                 if (goi->argc != 0) {
3594                                         goto no_params;
3595                                 }
3596                         }
3597                         Jim_SetResult(interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
3598                         /* loop for more */
3599                         break;
3600
3601                 case TCFG_WORK_AREA_SIZE:
3602                         if (goi->isconfigure) {
3603                                 target_free_all_working_areas(target);
3604                                 e = Jim_GetOpt_Wide(goi, &w);
3605                                 if (e != JIM_OK) {
3606                                         return e;
3607                                 }
3608                                 target->working_area_size = w;
3609                         } else {
3610                                 if (goi->argc != 0) {
3611                                         goto no_params;
3612                                 }
3613                         }
3614                         Jim_SetResult(interp, Jim_NewIntObj(goi->interp, target->working_area_size));
3615                         /* loop for more */
3616                         break;
3617
3618                 case TCFG_WORK_AREA_BACKUP:
3619                         if (goi->isconfigure) {
3620                                 target_free_all_working_areas(target);
3621                                 e = Jim_GetOpt_Wide(goi, &w);
3622                                 if (e != JIM_OK) {
3623                                         return e;
3624                                 }
3625                                 /* make this exactly 1 or 0 */
3626                                 target->backup_working_area = (!!w);
3627                         } else {
3628                                 if (goi->argc != 0) {
3629                                         goto no_params;
3630                                 }
3631                         }
3632                         Jim_SetResult(interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
3633                         /* loop for more e*/
3634                         break;
3635
3636                 case TCFG_ENDIAN:
3637                         if (goi->isconfigure) {
3638                                 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
3639                                 if (e != JIM_OK) {
3640                                         Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
3641                                         return e;
3642                                 }
3643                                 target->endianness = n->value;
3644                         } else {
3645                                 if (goi->argc != 0) {
3646                                         goto no_params;
3647                                 }
3648                         }
3649                         n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3650                         if (n->name == NULL) {
3651                                 target->endianness = TARGET_LITTLE_ENDIAN;
3652                                 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3653                         }
3654                         Jim_SetResultString(goi->interp, n->name, -1);
3655                         /* loop for more */
3656                         break;
3657
3658                 case TCFG_VARIANT:
3659                         if (goi->isconfigure) {
3660                                 if (goi->argc < 1) {
3661                                         Jim_SetResult_sprintf(goi->interp,
3662                                                                                    "%s ?STRING?",
3663                                                                                    n->name);
3664                                         return JIM_ERR;
3665                                 }
3666                                 if (target->variant) {
3667                                         free((void *)(target->variant));
3668                                 }
3669                                 e = Jim_GetOpt_String(goi, &cp, NULL);
3670                                 target->variant = strdup(cp);
3671                         } else {
3672                                 if (goi->argc != 0) {
3673                                         goto no_params;
3674                                 }
3675                         }
3676                         Jim_SetResultString(goi->interp, target->variant,-1);
3677                         /* loop for more */
3678                         break;
3679                 case TCFG_CHAIN_POSITION:
3680                         if (goi->isconfigure) {
3681                                 Jim_Obj *o;
3682                                 jtag_tap_t *tap;
3683                                 target_free_all_working_areas(target);
3684                                 e = Jim_GetOpt_Obj(goi, &o);
3685                                 if (e != JIM_OK) {
3686                                         return e;
3687                                 }
3688                                 tap = jtag_tap_by_jim_obj(goi->interp, o);
3689                                 if (tap == NULL) {
3690                                         return JIM_ERR;
3691                                 }
3692                                 /* make this exactly 1 or 0 */
3693                                 target->tap = tap;
3694                         } else {
3695                                 if (goi->argc != 0) {
3696                                         goto no_params;
3697                                 }
3698                         }
3699                         Jim_SetResultString(interp, target->tap->dotted_name, -1);
3700                         /* loop for more e*/
3701                         break;
3702                 }
3703         } /* while (goi->argc) */
3704
3705
3706                 /* done - we return */
3707         return JIM_OK;
3708 }
3709
3710 /** this is the 'tcl' handler for the target specific command */
3711 static int tcl_target_func(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3712 {
3713         Jim_GetOptInfo goi;
3714         jim_wide a,b,c;
3715         int x,y,z;
3716         uint8_t  target_buf[32];
3717         Jim_Nvp *n;
3718         target_t *target;
3719         struct command_context_s *cmd_ctx;
3720         int e;
3721
3722         enum {
3723                 TS_CMD_CONFIGURE,
3724                 TS_CMD_CGET,
3725
3726                 TS_CMD_MWW, TS_CMD_MWH, TS_CMD_MWB,
3727                 TS_CMD_MDW, TS_CMD_MDH, TS_CMD_MDB,
3728                 TS_CMD_MRW, TS_CMD_MRH, TS_CMD_MRB,
3729                 TS_CMD_MEM2ARRAY, TS_CMD_ARRAY2MEM,
3730                 TS_CMD_EXAMINE,
3731                 TS_CMD_POLL,
3732                 TS_CMD_RESET,
3733                 TS_CMD_HALT,
3734                 TS_CMD_WAITSTATE,
3735                 TS_CMD_EVENTLIST,
3736                 TS_CMD_CURSTATE,
3737                 TS_CMD_INVOKE_EVENT,
3738         };
3739
3740         static const Jim_Nvp target_options[] = {
3741                 { .name = "configure", .value = TS_CMD_CONFIGURE },
3742                 { .name = "cget", .value = TS_CMD_CGET },
3743                 { .name = "mww", .value = TS_CMD_MWW },
3744                 { .name = "mwh", .value = TS_CMD_MWH },
3745                 { .name = "mwb", .value = TS_CMD_MWB },
3746                 { .name = "mdw", .value = TS_CMD_MDW },
3747                 { .name = "mdh", .value = TS_CMD_MDH },
3748                 { .name = "mdb", .value = TS_CMD_MDB },
3749                 { .name = "mem2array", .value = TS_CMD_MEM2ARRAY },
3750                 { .name = "array2mem", .value = TS_CMD_ARRAY2MEM },
3751                 { .name = "eventlist", .value = TS_CMD_EVENTLIST },
3752                 { .name = "curstate",  .value = TS_CMD_CURSTATE },
3753
3754                 { .name = "arp_examine", .value = TS_CMD_EXAMINE },
3755                 { .name = "arp_poll", .value = TS_CMD_POLL },
3756                 { .name = "arp_reset", .value = TS_CMD_RESET },
3757                 { .name = "arp_halt", .value = TS_CMD_HALT },
3758                 { .name = "arp_waitstate", .value = TS_CMD_WAITSTATE },
3759                 { .name = "invoke-event", .value = TS_CMD_INVOKE_EVENT },
3760
3761                 { .name = NULL, .value = -1 },
3762         };
3763
3764         /* go past the "command" */
3765         Jim_GetOpt_Setup(&goi, interp, argc-1, argv + 1);
3766
3767         target = Jim_CmdPrivData(goi.interp);
3768         cmd_ctx = Jim_GetAssocData(goi.interp, "context");
3769
3770         /* commands here are in an NVP table */
3771         e = Jim_GetOpt_Nvp(&goi, target_options, &n);
3772         if (e != JIM_OK) {
3773                 Jim_GetOpt_NvpUnknown(&goi, target_options, 0);
3774                 return e;
3775         }
3776         /* Assume blank result */
3777         Jim_SetEmptyResult(goi.interp);
3778
3779         switch (n->value) {
3780         case TS_CMD_CONFIGURE:
3781                 if (goi.argc < 2) {
3782                         Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv, "missing: -option VALUE ...");
3783                         return JIM_ERR;
3784                 }
3785                 goi.isconfigure = 1;
3786                 return target_configure(&goi, target);
3787         case TS_CMD_CGET:
3788                 // some things take params
3789                 if (goi.argc < 1) {
3790                         Jim_WrongNumArgs(goi.interp, 0, goi.argv, "missing: ?-option?");
3791                         return JIM_ERR;
3792                 }
3793                 goi.isconfigure = 0;
3794                 return target_configure(&goi, target);
3795                 break;
3796         case TS_CMD_MWW:
3797         case TS_CMD_MWH:
3798         case TS_CMD_MWB:
3799                 /* argv[0] = cmd
3800                  * argv[1] = address
3801                  * argv[2] = data
3802                  * argv[3] = optional count.
3803                  */
3804
3805                 if ((goi.argc == 2) || (goi.argc == 3)) {
3806                         /* all is well */
3807                 } else {
3808                 mwx_error:
3809                         Jim_SetResult_sprintf(goi.interp, "expected: %s ADDR DATA [COUNT]", n->name);
3810                         return JIM_ERR;
3811                 }
3812
3813                 e = Jim_GetOpt_Wide(&goi, &a);
3814                 if (e != JIM_OK) {
3815                         goto mwx_error;
3816                 }
3817
3818                 e = Jim_GetOpt_Wide(&goi, &b);
3819                 if (e != JIM_OK) {
3820                         goto mwx_error;
3821                 }
3822                 if (goi.argc == 3) {
3823                         e = Jim_GetOpt_Wide(&goi, &c);
3824                         if (e != JIM_OK) {
3825                                 goto mwx_error;
3826                         }
3827                 } else {
3828                         c = 1;
3829                 }
3830
3831                 switch (n->value) {
3832                 case TS_CMD_MWW:
3833                         target_buffer_set_u32(target, target_buf, b);
3834                         b = 4;
3835                         break;
3836                 case TS_CMD_MWH:
3837                         target_buffer_set_u16(target, target_buf, b);
3838                         b = 2;
3839                         break;
3840                 case TS_CMD_MWB:
3841                         target_buffer_set_u8(target, target_buf, b);
3842                         b = 1;
3843                         break;
3844                 }
3845                 for (x = 0 ; x < c ; x++) {
3846                         e = target_write_memory(target, a, b, 1, target_buf);
3847                         if (e != ERROR_OK) {
3848                                 Jim_SetResult_sprintf(interp, "Error writing @ 0x%08x: %d\n", (int)(a), e);
3849                                 return JIM_ERR;
3850                         }
3851                         /* b = width */
3852                         a = a + b;
3853                 }
3854                 return JIM_OK;
3855                 break;
3856
3857                 /* display */
3858         case TS_CMD_MDW:
3859         case TS_CMD_MDH:
3860         case TS_CMD_MDB:
3861                 /* argv[0] = command
3862                  * argv[1] = address
3863                  * argv[2] = optional count
3864                  */
3865                 if ((goi.argc == 2) || (goi.argc == 3)) {
3866                         Jim_SetResult_sprintf(goi.interp, "expected: %s ADDR [COUNT]", n->name);
3867                         return JIM_ERR;
3868                 }
3869                 e = Jim_GetOpt_Wide(&goi, &a);
3870                 if (e != JIM_OK) {
3871                         return JIM_ERR;
3872                 }
3873                 if (goi.argc) {
3874                         e = Jim_GetOpt_Wide(&goi, &c);
3875                         if (e != JIM_OK) {
3876                                 return JIM_ERR;
3877                         }
3878                 } else {
3879                         c = 1;
3880                 }
3881                 b = 1; /* shut up gcc */
3882                 switch (n->value) {
3883                 case TS_CMD_MDW:
3884                         b =  4;
3885                         break;
3886                 case TS_CMD_MDH:
3887                         b = 2;
3888                         break;
3889                 case TS_CMD_MDB:
3890                         b = 1;
3891                         break;
3892                 }
3893
3894                 /* convert to "bytes" */
3895                 c = c * b;
3896                 /* count is now in 'BYTES' */
3897                 while (c > 0) {
3898                         y = c;
3899                         if (y > 16) {
3900                                 y = 16;
3901                         }
3902                         e = target_read_memory(target, a, b, y / b, target_buf);
3903                         if (e != ERROR_OK) {
3904                                 Jim_SetResult_sprintf(interp, "error reading target @ 0x%08lx", (int)(a));
3905                                 return JIM_ERR;
3906                         }
3907
3908                         Jim_fprintf(interp, interp->cookie_stdout, "0x%08x ", (int)(a));
3909                         switch (b) {
3910                         case 4:
3911                                 for (x = 0 ; (x < 16) && (x < y) ; x += 4) {
3912                                         z = target_buffer_get_u32(target, &(target_buf[ x * 4 ]));
3913                                         Jim_fprintf(interp, interp->cookie_stdout, "%08x ", (int)(z));
3914                                 }
3915                                 for (; (x < 16) ; x += 4) {
3916                                         Jim_fprintf(interp, interp->cookie_stdout, "         ");
3917                                 }
3918                                 break;
3919                         case 2:
3920                                 for (x = 0 ; (x < 16) && (x < y) ; x += 2) {
3921                                         z = target_buffer_get_u16(target, &(target_buf[ x * 2 ]));
3922                                         Jim_fprintf(interp, interp->cookie_stdout, "%04x ", (int)(z));
3923                                 }
3924                                 for (; (x < 16) ; x += 2) {
3925                                         Jim_fprintf(interp, interp->cookie_stdout, "     ");
3926                                 }
3927                                 break;
3928                         case 1:
3929                         default:
3930                                 for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
3931                                         z = target_buffer_get_u8(target, &(target_buf[ x * 4 ]));
3932                                         Jim_fprintf(interp, interp->cookie_stdout, "%02x ", (int)(z));
3933                                 }
3934                                 for (; (x < 16) ; x += 1) {
3935                                         Jim_fprintf(interp, interp->cookie_stdout, "   ");
3936                                 }
3937                                 break;
3938                         }
3939                         /* ascii-ify the bytes */
3940                         for (x = 0 ; x < y ; x++) {
3941                                 if ((target_buf[x] >= 0x20) &&
3942                                         (target_buf[x] <= 0x7e)) {
3943                                         /* good */
3944                                 } else {
3945                                         /* smack it */
3946                                         target_buf[x] = '.';
3947                                 }
3948                         }
3949                         /* space pad  */
3950                         while (x < 16) {
3951                                 target_buf[x] = ' ';
3952                                 x++;
3953                         }
3954                         /* terminate */
3955                         target_buf[16] = 0;
3956                         /* print - with a newline */
3957                         Jim_fprintf(interp, interp->cookie_stdout, "%s\n", target_buf);
3958                         /* NEXT... */
3959                         c -= 16;
3960                         a += 16;
3961                 }
3962                 return JIM_OK;
3963         case TS_CMD_MEM2ARRAY:
3964                 return target_mem2array(goi.interp, target, goi.argc, goi.argv);
3965                 break;
3966         case TS_CMD_ARRAY2MEM:
3967                 return target_array2mem(goi.interp, target, goi.argc, goi.argv);
3968                 break;
3969         case TS_CMD_EXAMINE:
3970                 if (goi.argc) {
3971                         Jim_WrongNumArgs(goi.interp, 2, argv, "[no parameters]");
3972                         return JIM_ERR;
3973                 }
3974                 if (!target->tap->enabled)
3975                         goto err_tap_disabled;
3976                 e = target->type->examine(target);
3977                 if (e != ERROR_OK) {
3978                         Jim_SetResult_sprintf(interp, "examine-fails: %d", e);
3979                         return JIM_ERR;
3980                 }
3981                 return JIM_OK;
3982         case TS_CMD_POLL:
3983                 if (goi.argc) {
3984                         Jim_WrongNumArgs(goi.interp, 2, argv, "[no parameters]");
3985                         return JIM_ERR;
3986                 }
3987                 if (!target->tap->enabled)
3988                         goto err_tap_disabled;
3989                 if (!(target_was_examined(target))) {
3990                         e = ERROR_TARGET_NOT_EXAMINED;
3991                 } else {
3992                         e = target->type->poll(target);
3993                 }
3994                 if (e != ERROR_OK) {
3995                         Jim_SetResult_sprintf(interp, "poll-fails: %d", e);
3996                         return JIM_ERR;
3997                 } else {
3998                         return JIM_OK;
3999                 }
4000                 break;
4001         case TS_CMD_RESET:
4002                 if (goi.argc != 2) {
4003                         Jim_WrongNumArgs(interp, 2, argv, "t | f|assert | deassert BOOL");
4004                         return JIM_ERR;
4005                 }
4006                 e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4007                 if (e != JIM_OK) {
4008                         Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4009                         return e;
4010                 }
4011                 /* the halt or not param */
4012                 e = Jim_GetOpt_Wide(&goi, &a);
4013                 if (e != JIM_OK) {
4014                         return e;
4015                 }
4016                 if (!target->tap->enabled)
4017                         goto err_tap_disabled;
4018                 /* determine if we should halt or not. */
4019                 target->reset_halt = !!a;
4020                 /* When this happens - all workareas are invalid. */
4021                 target_free_all_working_areas_restore(target, 0);
4022
4023                 /* do the assert */
4024                 if (n->value == NVP_ASSERT) {
4025                         target->type->assert_reset(target);
4026                 } else {
4027                         target->type->deassert_reset(target);
4028                 }
4029                 return JIM_OK;
4030         case TS_CMD_HALT:
4031                 if (goi.argc) {
4032                         Jim_WrongNumArgs(goi.interp, 0, argv, "halt [no parameters]");
4033                         return JIM_ERR;
4034                 }
4035                 if (!target->tap->enabled)
4036                         goto err_tap_disabled;
4037                 target->type->halt(target);
4038                 return JIM_OK;
4039         case TS_CMD_WAITSTATE:
4040                 /* params:  <name>  statename timeoutmsecs */
4041                 if (goi.argc != 2) {
4042                         Jim_SetResult_sprintf(goi.interp, "%s STATENAME TIMEOUTMSECS", n->name);
4043                         return JIM_ERR;
4044                 }
4045                 e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4046                 if (e != JIM_OK) {
4047                         Jim_GetOpt_NvpUnknown(&goi, nvp_target_state,1);
4048                         return e;
4049                 }
4050                 e = Jim_GetOpt_Wide(&goi, &a);
4051                 if (e != JIM_OK) {
4052                         return e;
4053                 }
4054                 if (!target->tap->enabled)
4055                         goto err_tap_disabled;
4056                 e = target_wait_state(target, n->value, a);
4057                 if (e != ERROR_OK) {
4058                         Jim_SetResult_sprintf(goi.interp,
4059                                                                    "target: %s wait %s fails (%d) %s",
4060                                                                    target->cmd_name,
4061                                                                    n->name,
4062                                                                    e, target_strerror_safe(e));
4063                         return JIM_ERR;
4064                 } else {
4065                         return JIM_OK;
4066                 }
4067         case TS_CMD_EVENTLIST:
4068                 /* List for human, Events defined for this target.
4069                  * scripts/programs should use 'name cget -event NAME'
4070                  */
4071                 {
4072                         target_event_action_t *teap;
4073                         teap = target->event_action;
4074                         command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4075                                                    target->target_number,
4076                                                    target->cmd_name);
4077                         command_print(cmd_ctx, "%-25s | Body", "Event");
4078                         command_print(cmd_ctx, "------------------------- | ----------------------------------------");
4079                         while (teap) {
4080                                 command_print(cmd_ctx,
4081                                                            "%-25s | %s",
4082                                                            Jim_Nvp_value2name_simple(nvp_target_event, teap->event)->name,
4083                                                            Jim_GetString(teap->body, NULL));
4084                                 teap = teap->next;
4085                         }
4086                         command_print(cmd_ctx, "***END***");
4087                         return JIM_OK;
4088                 }
4089         case TS_CMD_CURSTATE:
4090                 if (goi.argc != 0) {
4091                         Jim_WrongNumArgs(goi.interp, 0, argv, "[no parameters]");
4092                         return JIM_ERR;
4093                 }
4094                 Jim_SetResultString(goi.interp,
4095                                                         target_state_name( target ),
4096                                                         -1);
4097                 return JIM_OK;
4098         case TS_CMD_INVOKE_EVENT:
4099                 if (goi.argc != 1) {
4100                         Jim_SetResult_sprintf(goi.interp, "%s ?EVENTNAME?",n->name);
4101                         return JIM_ERR;
4102                 }
4103                 e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4104                 if (e != JIM_OK) {
4105                         Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4106                         return e;
4107                 }
4108                 target_handle_event(target, n->value);
4109                 return JIM_OK;
4110         }
4111         return JIM_ERR;
4112
4113 err_tap_disabled:
4114         Jim_SetResult_sprintf(interp, "[TAP is disabled]");
4115         return JIM_ERR;
4116 }
4117
4118 static int target_create(Jim_GetOptInfo *goi)
4119 {
4120         Jim_Obj *new_cmd;
4121         Jim_Cmd *cmd;
4122         const char *cp;
4123         char *cp2;
4124         int e;
4125         int x;
4126         target_t *target;
4127         struct command_context_s *cmd_ctx;
4128
4129         cmd_ctx = Jim_GetAssocData(goi->interp, "context");
4130         if (goi->argc < 3) {
4131                 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
4132                 return JIM_ERR;
4133         }
4134
4135         /* COMMAND */
4136         Jim_GetOpt_Obj(goi, &new_cmd);
4137         /* does this command exist? */
4138         cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
4139         if (cmd) {
4140                 cp = Jim_GetString(new_cmd, NULL);
4141                 Jim_SetResult_sprintf(goi->interp, "Command/target: %s Exists", cp);
4142                 return JIM_ERR;
4143         }
4144
4145         /* TYPE */
4146         e = Jim_GetOpt_String(goi, &cp2, NULL);
4147         cp = cp2;
4148         /* now does target type exist */
4149         for (x = 0 ; target_types[x] ; x++) {
4150                 if (0 == strcmp(cp, target_types[x]->name)) {
4151                         /* found */
4152                         break;
4153                 }
4154         }
4155         if (target_types[x] == NULL) {
4156                 Jim_SetResult_sprintf(goi->interp, "Unknown target type %s, try one of ", cp);
4157                 for (x = 0 ; target_types[x] ; x++) {
4158                         if (target_types[x + 1]) {
4159                                 Jim_AppendStrings(goi->interp,
4160                                                                    Jim_GetResult(goi->interp),
4161                                                                    target_types[x]->name,
4162                                                                    ", ", NULL);
4163                         } else {
4164                                 Jim_AppendStrings(goi->interp,
4165                                                                    Jim_GetResult(goi->interp),
4166                                                                    " or ",
4167                                                                    target_types[x]->name,NULL);
4168                         }
4169                 }
4170                 return JIM_ERR;
4171         }
4172
4173         /* Create it */
4174         target = calloc(1,sizeof(target_t));
4175         /* set target number */
4176         target->target_number = new_target_number();
4177
4178         /* allocate memory for each unique target type */
4179         target->type = (target_type_t*)calloc(1,sizeof(target_type_t));
4180
4181         memcpy(target->type, target_types[x], sizeof(target_type_t));
4182
4183         /* will be set by "-endian" */
4184         target->endianness = TARGET_ENDIAN_UNKNOWN;
4185
4186         target->working_area        = 0x0;
4187         target->working_area_size   = 0x0;
4188         target->working_areas       = NULL;
4189         target->backup_working_area = 0;
4190
4191         target->state               = TARGET_UNKNOWN;
4192         target->debug_reason        = DBG_REASON_UNDEFINED;
4193         target->reg_cache           = NULL;
4194         target->breakpoints         = NULL;
4195         target->watchpoints         = NULL;
4196         target->next                = NULL;
4197         target->arch_info           = NULL;
4198
4199         target->display             = 1;
4200
4201         /* initialize trace information */
4202         target->trace_info = malloc(sizeof(trace_t));
4203         target->trace_info->num_trace_points         = 0;
4204         target->trace_info->trace_points_size        = 0;
4205         target->trace_info->trace_points             = NULL;
4206         target->trace_info->trace_history_size       = 0;
4207         target->trace_info->trace_history            = NULL;
4208         target->trace_info->trace_history_pos        = 0;
4209         target->trace_info->trace_history_overflowed = 0;
4210
4211         target->dbgmsg          = NULL;
4212         target->dbg_msg_enabled = 0;
4213
4214         target->endianness = TARGET_ENDIAN_UNKNOWN;
4215
4216         /* Do the rest as "configure" options */
4217         goi->isconfigure = 1;
4218         e = target_configure(goi, target);
4219
4220         if (target->tap == NULL)
4221         {
4222                 Jim_SetResultString(interp, "-chain-position required when creating target", -1);
4223                 e = JIM_ERR;
4224         }
4225
4226         if (e != JIM_OK) {
4227                 free(target->type);
4228                 free(target);
4229                 return e;
4230         }
4231
4232         if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
4233                 /* default endian to little if not specified */
4234                 target->endianness = TARGET_LITTLE_ENDIAN;
4235         }
4236
4237         /* incase variant is not set */
4238         if (!target->variant)
4239                 target->variant = strdup("");
4240
4241         /* create the target specific commands */
4242         if (target->type->register_commands) {
4243                 (*(target->type->register_commands))(cmd_ctx);
4244         }
4245         if (target->type->target_create) {
4246                 (*(target->type->target_create))(target, goi->interp);
4247         }
4248
4249         /* append to end of list */
4250         {
4251                 target_t **tpp;
4252                 tpp = &(all_targets);
4253                 while (*tpp) {
4254                         tpp = &((*tpp)->next);
4255                 }
4256                 *tpp = target;
4257         }
4258
4259         cp = Jim_GetString(new_cmd, NULL);
4260         target->cmd_name = strdup(cp);
4261
4262         /* now - create the new target name command */
4263         e = Jim_CreateCommand(goi->interp,
4264                                                    /* name */
4265                                                    cp,
4266                                                    tcl_target_func, /* C function */
4267                                                    target, /* private data */
4268                                                    NULL); /* no del proc */
4269
4270         return e;
4271 }
4272
4273 static int jim_target(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4274 {
4275         int x,r,e;
4276         jim_wide w;
4277         struct command_context_s *cmd_ctx;
4278         target_t *target;
4279         Jim_GetOptInfo goi;
4280         enum tcmd {
4281                 /* TG = target generic */
4282                 TG_CMD_CREATE,
4283                 TG_CMD_TYPES,
4284                 TG_CMD_NAMES,
4285                 TG_CMD_CURRENT,
4286                 TG_CMD_NUMBER,
4287                 TG_CMD_COUNT,
4288         };
4289         const char *target_cmds[] = {
4290                 "create", "types", "names", "current", "number",
4291                 "count",
4292                 NULL /* terminate */
4293         };
4294
4295         LOG_DEBUG("Target command params:");
4296         LOG_DEBUG("%s", Jim_Debug_ArgvString(interp, argc, argv));
4297
4298         cmd_ctx = Jim_GetAssocData(interp, "context");
4299
4300         Jim_GetOpt_Setup(&goi, interp, argc-1, argv + 1);
4301
4302         if (goi.argc == 0) {
4303                 Jim_WrongNumArgs(interp, 1, argv, "missing: command ...");
4304                 return JIM_ERR;
4305         }
4306
4307         /* Jim_GetOpt_Debug(&goi); */
4308         r = Jim_GetOpt_Enum(&goi, target_cmds, &x);
4309         if (r != JIM_OK) {
4310                 return r;
4311         }
4312
4313         switch (x) {
4314         default:
4315                 Jim_Panic(goi.interp,"Why am I here?");
4316                 return JIM_ERR;
4317         case TG_CMD_CURRENT:
4318                 if (goi.argc != 0) {
4319                         Jim_WrongNumArgs(goi.interp, 1, goi.argv, "Too many parameters");
4320                         return JIM_ERR;
4321                 }
4322                 Jim_SetResultString(goi.interp, get_current_target(cmd_ctx)->cmd_name, -1);
4323                 return JIM_OK;
4324         case TG_CMD_TYPES:
4325                 if (goi.argc != 0) {
4326                         Jim_WrongNumArgs(goi.interp, 1, goi.argv, "Too many parameters");
4327                         return JIM_ERR;
4328                 }
4329                 Jim_SetResult(goi.interp, Jim_NewListObj(goi.interp, NULL, 0));
4330                 for (x = 0 ; target_types[x] ; x++) {
4331                         Jim_ListAppendElement(goi.interp,
4332                                                                    Jim_GetResult(goi.interp),
4333                                                                    Jim_NewStringObj(goi.interp, target_types[x]->name, -1));
4334                 }
4335                 return JIM_OK;
4336         case TG_CMD_NAMES:
4337                 if (goi.argc != 0) {
4338                         Jim_WrongNumArgs(goi.interp, 1, goi.argv, "Too many parameters");
4339                         return JIM_ERR;
4340                 }
4341                 Jim_SetResult(goi.interp, Jim_NewListObj(goi.interp, NULL, 0));
4342                 target = all_targets;
4343                 while (target) {
4344                         Jim_ListAppendElement(goi.interp,
4345                                                                    Jim_GetResult(goi.interp),
4346                                                                    Jim_NewStringObj(goi.interp, target->cmd_name, -1));
4347                         target = target->next;
4348                 }
4349                 return JIM_OK;
4350         case TG_CMD_CREATE:
4351                 if (goi.argc < 3) {
4352                         Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv, "?name  ... config options ...");
4353                         return JIM_ERR;
4354                 }
4355                 return target_create(&goi);
4356                 break;
4357         case TG_CMD_NUMBER:
4358                 if (goi.argc != 1) {
4359                         Jim_SetResult_sprintf(goi.interp, "expected: target number ?NUMBER?");
4360                         return JIM_ERR;
4361                 }
4362                 e = Jim_GetOpt_Wide(&goi, &w);
4363                 if (e != JIM_OK) {
4364                         return JIM_ERR;
4365                 }
4366                 {
4367                         target_t *t;
4368                         t = get_target_by_num(w);
4369                         if (t == NULL) {
4370                                 Jim_SetResult_sprintf(goi.interp,"Target: number %d does not exist", (int)(w));
4371                                 return JIM_ERR;
4372                         }
4373                         Jim_SetResultString(goi.interp, t->cmd_name, -1);
4374                         return JIM_OK;
4375                 }
4376         case TG_CMD_COUNT:
4377                 if (goi.argc != 0) {
4378                         Jim_WrongNumArgs(goi.interp, 0, goi.argv, "<no parameters>");
4379                         return JIM_ERR;
4380                 }
4381                 Jim_SetResult(goi.interp,
4382                                            Jim_NewIntObj(goi.interp, max_target_number()));
4383                 return JIM_OK;
4384         }
4385
4386         return JIM_ERR;
4387 }
4388
4389
4390 struct FastLoad
4391 {
4392         uint32_t address;
4393         uint8_t *data;
4394         int length;
4395
4396 };
4397
4398 static int fastload_num;
4399 static struct FastLoad *fastload;
4400
4401 static void free_fastload(void)
4402 {
4403         if (fastload != NULL)
4404         {
4405                 int i;
4406                 for (i = 0; i < fastload_num; i++)
4407                 {
4408                         if (fastload[i].data)
4409                                 free(fastload[i].data);
4410                 }
4411                 free(fastload);
4412                 fastload = NULL;
4413         }
4414 }
4415
4416
4417
4418
4419 static int handle_fast_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
4420 {
4421         uint8_t *buffer;
4422         uint32_t buf_cnt;
4423         uint32_t image_size;
4424         uint32_t min_address = 0;
4425         uint32_t max_address = 0xffffffff;
4426         int i;
4427
4428         image_t image;
4429
4430         duration_t duration;
4431         char *duration_text;
4432
4433         int retval = parse_load_image_command_args(args, argc,
4434                         &image, &min_address, &max_address);
4435         if (ERROR_OK != retval)
4436                 return retval;
4437
4438         duration_start_measure(&duration);
4439
4440         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
4441         {
4442                 return ERROR_OK;
4443         }
4444
4445         image_size = 0x0;
4446         retval = ERROR_OK;
4447         fastload_num = image.num_sections;
4448         fastload = (struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
4449         if (fastload == NULL)
4450         {
4451                 image_close(&image);
4452                 return ERROR_FAIL;
4453         }
4454         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
4455         for (i = 0; i < image.num_sections; i++)
4456         {
4457                 buffer = malloc(image.sections[i].size);
4458                 if (buffer == NULL)
4459                 {
4460                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)",
4461                                                   (int)(image.sections[i].size));
4462                         break;
4463                 }
4464
4465                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
4466                 {
4467                         free(buffer);
4468                         break;
4469                 }
4470
4471                 uint32_t offset = 0;
4472                 uint32_t length = buf_cnt;
4473
4474
4475                 /* DANGER!!! beware of unsigned comparision here!!! */
4476
4477                 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
4478                                 (image.sections[i].base_address < max_address))
4479                 {
4480                         if (image.sections[i].base_address < min_address)
4481                         {
4482                                 /* clip addresses below */
4483                                 offset += min_address-image.sections[i].base_address;
4484                                 length -= offset;
4485                         }
4486
4487                         if (image.sections[i].base_address + buf_cnt > max_address)
4488                         {
4489                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
4490                         }
4491
4492                         fastload[i].address = image.sections[i].base_address + offset;
4493                         fastload[i].data = malloc(length);
4494                         if (fastload[i].data == NULL)
4495                         {
4496                                 free(buffer);
4497                                 break;
4498                         }
4499                         memcpy(fastload[i].data, buffer + offset, length);
4500                         fastload[i].length = length;
4501
4502                         image_size += length;
4503                         command_print(cmd_ctx, "%u byte written at address 0x%8.8x",
4504                                                   (unsigned int)length,
4505                                                   ((unsigned int)(image.sections[i].base_address + offset)));
4506                 }
4507
4508                 free(buffer);
4509         }
4510
4511         duration_stop_measure(&duration, &duration_text);
4512         if (retval == ERROR_OK)
4513         {
4514                 command_print(cmd_ctx, "Loaded %u bytes in %s", (unsigned int)image_size, duration_text);
4515                 command_print(cmd_ctx, "NB!!! image has not been loaded to target, issue a subsequent 'fast_load' to do so.");
4516         }
4517         free(duration_text);
4518
4519         image_close(&image);
4520
4521         if (retval != ERROR_OK)
4522         {
4523                 free_fastload();
4524         }
4525
4526         return retval;
4527 }
4528
4529 static int handle_fast_load_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
4530 {
4531         if (argc > 0)
4532                 return ERROR_COMMAND_SYNTAX_ERROR;
4533         if (fastload == NULL)
4534         {
4535                 LOG_ERROR("No image in memory");
4536                 return ERROR_FAIL;
4537         }
4538         int i;
4539         int ms = timeval_ms();
4540         int size = 0;
4541         int retval = ERROR_OK;
4542         for (i = 0; i < fastload_num;i++)
4543         {
4544                 target_t *target = get_current_target(cmd_ctx);
4545                 command_print(cmd_ctx, "Write to 0x%08x, length 0x%08x",
4546                                           (unsigned int)(fastload[i].address),
4547                                           (unsigned int)(fastload[i].length));
4548                 if (retval == ERROR_OK)
4549                 {
4550                         retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
4551                 }
4552                 size += fastload[i].length;
4553         }
4554         int after = timeval_ms();
4555         command_print(cmd_ctx, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
4556         return retval;
4557 }
4558
4559
4560 /*
4561  * Local Variables:
4562  * c-basic-offset: 4
4563  * tab-width: 4
4564  * End:
4565  */