58a940bd7d6000cc290a069735d404783c15aa14
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007,2008 Ã˜yvind Harboe                                      *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   This program is free software; you can redistribute it and/or modify  *
9  *   it under the terms of the GNU General Public License as published by  *
10  *   the Free Software Foundation; either version 2 of the License, or     *
11  *   (at your option) any later version.                                   *
12  *                                                                         *
13  *   This program is distributed in the hope that it will be useful,       *
14  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
15  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
16  *   GNU General Public License for more details.                          *
17  *                                                                         *
18  *   You should have received a copy of the GNU General Public License     *
19  *   along with this program; if not, write to the                         *
20  *   Free Software Foundation, Inc.,                                       *
21  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
22  ***************************************************************************/
23 #ifdef HAVE_CONFIG_H
24 #include "config.h"
25 #endif
26
27 #include "replacements.h"
28 #include "target.h"
29 #include "target_request.h"
30
31 #include "log.h"
32 #include "configuration.h"
33 #include "binarybuffer.h"
34 #include "jtag.h"
35
36 #include <string.h>
37 #include <stdlib.h>
38 #include <inttypes.h>
39
40 #include <sys/types.h>
41 #include <sys/stat.h>
42 #include <unistd.h>
43 #include <errno.h>
44
45 #include <sys/time.h>
46 #include <time.h>
47
48 #include <time_support.h>
49
50 #include <fileio.h>
51 #include <image.h>
52
53 int cli_target_callback_event_handler(struct target_s *target, enum target_event event, void *priv);
54
55 int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
56 int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
57
58 int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
59 int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
60
61 int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
62 int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
63 int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
64 int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
65 int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
66 int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
67 int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
68 int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
69 int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
70 int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
71 int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
72 int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
73 int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
74 int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
75 int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
76 int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
77 int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
78 int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc);
79 int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
80 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
81 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
82
83
84 /* targets */
85 extern target_type_t arm7tdmi_target;
86 extern target_type_t arm720t_target;
87 extern target_type_t arm9tdmi_target;
88 extern target_type_t arm920t_target;
89 extern target_type_t arm966e_target;
90 extern target_type_t arm926ejs_target;
91 extern target_type_t feroceon_target;
92 extern target_type_t xscale_target;
93 extern target_type_t cortexm3_target;
94 extern target_type_t arm11_target;
95 extern target_type_t mips_m4k_target;
96
97 target_type_t *target_types[] =
98 {
99         &arm7tdmi_target,
100         &arm9tdmi_target,
101         &arm920t_target,
102         &arm720t_target,
103         &arm966e_target,
104         &arm926ejs_target,
105         &feroceon_target,
106         &xscale_target,
107         &cortexm3_target,
108         &arm11_target,
109         &mips_m4k_target,
110         NULL,
111 };
112
113 target_t *targets = NULL;
114 target_event_callback_t *target_event_callbacks = NULL;
115 target_timer_callback_t *target_timer_callbacks = NULL;
116
117 char *target_state_strings[] =
118 {
119         "unknown",
120         "running",
121         "halted",
122         "reset",
123         "debug_running",
124 };
125
126 char *target_debug_reason_strings[] =
127 {
128         "debug request", "breakpoint", "watchpoint",
129         "watchpoint and breakpoint", "single step",
130         "target not halted", "undefined"
131 };
132
133 char *target_endianess_strings[] =
134 {
135         "big endian",
136         "little endian",
137 };
138
139 static int target_continous_poll = 1;
140
141 /* read a u32 from a buffer in target memory endianness */
142 u32 target_buffer_get_u32(target_t *target, u8 *buffer)
143 {
144         if (target->endianness == TARGET_LITTLE_ENDIAN)
145                 return le_to_h_u32(buffer);
146         else
147                 return be_to_h_u32(buffer);
148 }
149
150 /* read a u16 from a buffer in target memory endianness */
151 u16 target_buffer_get_u16(target_t *target, u8 *buffer)
152 {
153         if (target->endianness == TARGET_LITTLE_ENDIAN)
154                 return le_to_h_u16(buffer);
155         else
156                 return be_to_h_u16(buffer);
157 }
158
159 /* write a u32 to a buffer in target memory endianness */
160 void target_buffer_set_u32(target_t *target, u8 *buffer, u32 value)
161 {
162         if (target->endianness == TARGET_LITTLE_ENDIAN)
163                 h_u32_to_le(buffer, value);
164         else
165                 h_u32_to_be(buffer, value);
166 }
167
168 /* write a u16 to a buffer in target memory endianness */
169 void target_buffer_set_u16(target_t *target, u8 *buffer, u16 value)
170 {
171         if (target->endianness == TARGET_LITTLE_ENDIAN)
172                 h_u16_to_le(buffer, value);
173         else
174                 h_u16_to_be(buffer, value);
175 }
176
177 /* returns a pointer to the n-th configured target */
178 target_t* get_target_by_num(int num)
179 {
180         target_t *target = targets;
181         int i = 0;
182
183         while (target)
184         {
185                 if (num == i)
186                         return target;
187                 target = target->next;
188                 i++;
189         }
190
191         return NULL;
192 }
193
194 int get_num_by_target(target_t *query_target)
195 {
196         target_t *target = targets;
197         int i = 0;      
198         
199         while (target)
200         {
201                 if (target == query_target)
202                         return i;
203                 target = target->next;
204                 i++;
205         }
206         
207         return -1;
208 }
209
210 target_t* get_current_target(command_context_t *cmd_ctx)
211 {
212         target_t *target = get_target_by_num(cmd_ctx->current_target);
213         
214         if (target == NULL)
215         {
216                 LOG_ERROR("BUG: current_target out of bounds");
217                 exit(-1);
218         }
219         
220         return target;
221 }
222
223 /* Process target initialization, when target entered debug out of reset
224  * the handler is unregistered at the end of this function, so it's only called once
225  */
226 int target_init_handler(struct target_s *target, enum target_event event, void *priv)
227 {
228         struct command_context_s *cmd_ctx = priv;
229         
230         if (event == TARGET_EVENT_HALTED)
231         {
232                 target_unregister_event_callback(target_init_handler, priv);
233                 target_invoke_script(cmd_ctx, target, "post_reset");
234                 jtag_execute_queue();
235         }
236         
237         return ERROR_OK;
238 }
239
240 int target_run_and_halt_handler(void *priv)
241 {
242         target_t *target = priv;
243         
244         target_halt(target);
245         
246         return ERROR_OK;
247 }
248
249 int target_poll(struct target_s *target)
250 {
251         /* We can't poll until after examine */
252         if (!target->type->examined)
253         {
254                 /* Fail silently lest we pollute the log */
255                 return ERROR_FAIL;
256         }
257         return target->type->poll(target);
258 }
259
260 int target_halt(struct target_s *target)
261 {
262         /* We can't poll until after examine */
263         if (!target->type->examined)
264         {
265                 LOG_ERROR("Target not examined yet");
266                 return ERROR_FAIL;
267         }
268         return target->type->halt(target);
269 }
270
271 int target_resume(struct target_s *target, int current, u32 address, int handle_breakpoints, int debug_execution)
272 {
273         int retval;
274         
275         /* We can't poll until after examine */
276         if (!target->type->examined)
277         {
278                 LOG_ERROR("Target not examined yet");
279                 return ERROR_FAIL;
280         }
281         
282         /* note that resume *must* be asynchronous. The CPU can halt before we poll. The CPU can
283          * even halt at the current PC as a result of a software breakpoint being inserted by (a bug?)
284          * the application.
285          */
286         if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
287                 return retval;
288         
289         return retval;
290 }
291
292 int target_process_reset(struct command_context_s *cmd_ctx, enum target_reset_mode reset_mode)
293 {
294         int retval = ERROR_OK;
295         target_t *target;
296         struct timeval timeout, now;
297
298         target = targets;
299         while (target)
300         {
301                 target_invoke_script(cmd_ctx, target, "pre_reset");
302                 target = target->next;
303         }
304         
305         if ((retval = jtag_init_reset(cmd_ctx)) != ERROR_OK)
306                 return retval;
307         
308         keep_alive(); /* we might be running on a very slow JTAG clk */
309         
310         /* First time this is executed after launching OpenOCD, it will read out 
311          * the type of CPU, etc. and init Embedded ICE registers in host
312          * memory. 
313          * 
314          * It will also set up ICE registers in the target.
315          * 
316          * However, if we assert TRST later, we need to set up the registers again. 
317          * 
318          * For the "reset halt/init" case we must only set up the registers here.
319          */
320         if ((retval = target_examine(cmd_ctx)) != ERROR_OK)
321                 return retval;
322         
323         keep_alive(); /* we might be running on a very slow JTAG clk */
324                 
325         target = targets;
326         while (target)
327         {
328                 /* we have no idea what state the target is in, so we
329                  * have to drop working areas
330                  */
331                 target_free_all_working_areas_restore(target, 0);
332                 target->reset_halt=((reset_mode==RESET_HALT)||(reset_mode==RESET_INIT));
333                 target->type->assert_reset(target);
334                 target = target->next;
335         }
336         if ((retval = jtag_execute_queue()) != ERROR_OK)
337         {
338                 LOG_WARNING("JTAG communication failed asserting reset.");
339                 retval = ERROR_OK;
340         }
341         
342         /* request target halt if necessary, and schedule further action */
343         target = targets;
344         while (target)
345         {
346                 switch (reset_mode)
347                 {
348                         case RESET_RUN:
349                                 /* nothing to do if target just wants to be run */
350                                 break;
351                         case RESET_RUN_AND_HALT:
352                                 /* schedule halt */
353                                 target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target);
354                                 break;
355                         case RESET_RUN_AND_INIT:
356                                 /* schedule halt */
357                                 target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target);
358                                 target_register_event_callback(target_init_handler, cmd_ctx);
359                                 break;
360                         case RESET_HALT:
361                                 if ((jtag_reset_config & RESET_SRST_PULLS_TRST)==0)
362                                         target_halt(target);
363                                 break;
364                         case RESET_INIT:
365                                 if ((jtag_reset_config & RESET_SRST_PULLS_TRST)==0)
366                                         target_halt(target);
367                                 target_register_event_callback(target_init_handler, cmd_ctx);
368                                 break;
369                         default:
370                                 LOG_ERROR("BUG: unknown target->reset_mode");
371                 }
372                 target = target->next;
373         }
374         
375         if ((retval = jtag_execute_queue()) != ERROR_OK)
376         {
377                 LOG_WARNING("JTAG communication failed while reset was asserted. Consider using srst_only for reset_config.");
378                 retval = ERROR_OK;              
379         }
380         
381         target = targets;
382         while (target)
383         {
384                 target->type->deassert_reset(target);
385                 /* We can fail to bring the target into the halted state  */
386                 target_poll(target);
387                 if (target->reset_halt&&((target->state != TARGET_HALTED)))
388                 {
389                         LOG_WARNING("Failed to reset target into halted mode - issuing halt");
390                         target->type->halt(target);
391                 }
392                 
393                 target = target->next;
394         }
395         
396         if ((retval = jtag_execute_queue()) != ERROR_OK)
397         {
398                 LOG_WARNING("JTAG communication failed while deasserting reset.");
399                 retval = ERROR_OK;
400         }
401
402         if (jtag_reset_config & RESET_SRST_PULLS_TRST)
403         {
404                 /* If TRST was asserted we need to set up registers again */
405                 if ((retval = target_examine(cmd_ctx)) != ERROR_OK)
406                         return retval;
407         }               
408         
409         LOG_DEBUG("Waiting for halted stated as appropriate");
410         
411         /* Wait for reset to complete, maximum 5 seconds. */    
412         gettimeofday(&timeout, NULL);
413         timeval_add_time(&timeout, 5, 0);
414         for(;;)
415         {
416                 gettimeofday(&now, NULL);
417                 
418                 target_call_timer_callbacks_now();
419                 
420                 target = targets;
421                 while (target)
422                 {
423                         LOG_DEBUG("Polling target");
424                         target_poll(target);
425                         if ((reset_mode == RESET_RUN_AND_INIT) || 
426                                         (reset_mode == RESET_RUN_AND_HALT) ||
427                                         (reset_mode == RESET_HALT) ||
428                                         (reset_mode == RESET_INIT))
429                         {
430                                 if (target->state != TARGET_HALTED)
431                                 {
432                                         if ((now.tv_sec > timeout.tv_sec) || ((now.tv_sec == timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
433                                         {
434                                                 LOG_USER("Timed out waiting for halt after reset");
435                                                 goto done;
436                                         }
437                                         /* this will send alive messages on e.g. GDB remote protocol. */
438                                         usleep(500*1000); 
439                                         LOG_USER_N("%s", ""); /* avoid warning about zero length formatting message*/ 
440                                         goto again;
441                                 }
442                         }
443                         target = target->next;
444                 }
445                 /* All targets we're waiting for are halted */
446                 break;
447                 
448                 again:;
449         }
450         done:
451         
452         
453         /* We want any events to be processed before the prompt */
454         target_call_timer_callbacks_now();
455
456         /* if we timed out we need to unregister these handlers */
457         target = targets;
458         while (target)
459         {
460                 target_unregister_timer_callback(target_run_and_halt_handler, target);
461                 target = target->next;
462         }
463         target_unregister_event_callback(target_init_handler, cmd_ctx);
464         
465         return retval;
466 }
467
468 static int default_virt2phys(struct target_s *target, u32 virtual, u32 *physical)
469 {
470         *physical = virtual;
471         return ERROR_OK;
472 }
473
474 static int default_mmu(struct target_s *target, int *enabled)
475 {
476         *enabled = 0;
477         return ERROR_OK;
478 }
479
480 static int default_examine(struct command_context_s *cmd_ctx, struct target_s *target)
481 {
482         target->type->examined = 1;
483         return ERROR_OK;
484 }
485
486
487 /* Targets that correctly implement init+examine, i.e.
488  * no communication with target during init:
489  * 
490  * XScale 
491  */
492 int target_examine(struct command_context_s *cmd_ctx)
493 {
494         int retval = ERROR_OK;
495         target_t *target = targets;
496         while (target)
497         {
498                 if ((retval = target->type->examine(cmd_ctx, target))!=ERROR_OK)
499                         return retval;
500                 target = target->next;
501         }
502         return retval;
503 }
504
505 static int target_write_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
506 {
507         if (!target->type->examined)
508         {
509                 LOG_ERROR("Target not examined yet");
510                 return ERROR_FAIL;
511         }
512         return target->type->write_memory_imp(target, address, size, count, buffer);
513 }
514
515 static int target_read_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
516 {
517         if (!target->type->examined)
518         {
519                 LOG_ERROR("Target not examined yet");
520                 return ERROR_FAIL;
521         }
522         return target->type->read_memory_imp(target, address, size, count, buffer);
523 }
524
525 static int target_soft_reset_halt_imp(struct target_s *target)
526 {
527         if (!target->type->examined)
528         {
529                 LOG_ERROR("Target not examined yet");
530                 return ERROR_FAIL;
531         }
532         return target->type->soft_reset_halt_imp(target);
533 }
534
535 static int target_run_algorithm_imp(struct target_s *target, int num_mem_params, mem_param_t *mem_params, int num_reg_params, reg_param_t *reg_param, u32 entry_point, u32 exit_point, int timeout_ms, void *arch_info)
536 {
537         if (!target->type->examined)
538         {
539                 LOG_ERROR("Target not examined yet");
540                 return ERROR_FAIL;
541         }
542         return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
543 }
544
545 int target_init(struct command_context_s *cmd_ctx)
546 {
547         target_t *target = targets;
548         
549         while (target)
550         {
551                 target->type->examined = 0;
552                 if (target->type->examine == NULL)
553                 {
554                         target->type->examine = default_examine;
555                 }
556                 
557                 if (target->type->init_target(cmd_ctx, target) != ERROR_OK)
558                 {
559                         LOG_ERROR("target '%s' init failed", target->type->name);
560                         exit(-1);
561                 }
562                 
563                 /* Set up default functions if none are provided by target */
564                 if (target->type->virt2phys == NULL)
565                 {
566                         target->type->virt2phys = default_virt2phys;
567                 }
568                 target->type->virt2phys = default_virt2phys;
569                 /* a non-invasive way(in terms of patches) to add some code that
570                  * runs before the type->write/read_memory implementation
571                  */
572                 target->type->write_memory_imp = target->type->write_memory;
573                 target->type->write_memory = target_write_memory_imp;
574                 target->type->read_memory_imp = target->type->read_memory;
575                 target->type->read_memory = target_read_memory_imp;
576                 target->type->soft_reset_halt_imp = target->type->soft_reset_halt;
577                 target->type->soft_reset_halt = target_soft_reset_halt_imp;
578                 target->type->run_algorithm_imp = target->type->run_algorithm;
579                 target->type->run_algorithm = target_run_algorithm_imp;
580
581                 
582                 if (target->type->mmu == NULL)
583                 {
584                         target->type->mmu = default_mmu;
585                 }
586                 target = target->next;
587         }
588         
589         if (targets)
590         {
591                 target_register_user_commands(cmd_ctx);
592                 target_register_timer_callback(handle_target, 100, 1, NULL);
593         }
594                 
595         return ERROR_OK;
596 }
597
598 int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
599 {
600         target_event_callback_t **callbacks_p = &target_event_callbacks;
601         
602         if (callback == NULL)
603         {
604                 return ERROR_INVALID_ARGUMENTS;
605         }
606         
607         if (*callbacks_p)
608         {
609                 while ((*callbacks_p)->next)
610                         callbacks_p = &((*callbacks_p)->next);
611                 callbacks_p = &((*callbacks_p)->next);
612         }
613         
614         (*callbacks_p) = malloc(sizeof(target_event_callback_t));
615         (*callbacks_p)->callback = callback;
616         (*callbacks_p)->priv = priv;
617         (*callbacks_p)->next = NULL;
618         
619         return ERROR_OK;
620 }
621
622 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
623 {
624         target_timer_callback_t **callbacks_p = &target_timer_callbacks;
625         struct timeval now;
626         
627         if (callback == NULL)
628         {
629                 return ERROR_INVALID_ARGUMENTS;
630         }
631         
632         if (*callbacks_p)
633         {
634                 while ((*callbacks_p)->next)
635                         callbacks_p = &((*callbacks_p)->next);
636                 callbacks_p = &((*callbacks_p)->next);
637         }
638         
639         (*callbacks_p) = malloc(sizeof(target_timer_callback_t));
640         (*callbacks_p)->callback = callback;
641         (*callbacks_p)->periodic = periodic;
642         (*callbacks_p)->time_ms = time_ms;
643         
644         gettimeofday(&now, NULL);
645         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
646         time_ms -= (time_ms % 1000);
647         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
648         if ((*callbacks_p)->when.tv_usec > 1000000)
649         {
650                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
651                 (*callbacks_p)->when.tv_sec += 1;
652         }
653         
654         (*callbacks_p)->priv = priv;
655         (*callbacks_p)->next = NULL;
656         
657         return ERROR_OK;
658 }
659
660 int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
661 {
662         target_event_callback_t **p = &target_event_callbacks;
663         target_event_callback_t *c = target_event_callbacks;
664         
665         if (callback == NULL)
666         {
667                 return ERROR_INVALID_ARGUMENTS;
668         }
669                 
670         while (c)
671         {
672                 target_event_callback_t *next = c->next;
673                 if ((c->callback == callback) && (c->priv == priv))
674                 {
675                         *p = next;
676                         free(c);
677                         return ERROR_OK;
678                 }
679                 else
680                         p = &(c->next);
681                 c = next;
682         }
683         
684         return ERROR_OK;
685 }
686
687 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
688 {
689         target_timer_callback_t **p = &target_timer_callbacks;
690         target_timer_callback_t *c = target_timer_callbacks;
691         
692         if (callback == NULL)
693         {
694                 return ERROR_INVALID_ARGUMENTS;
695         }
696                 
697         while (c)
698         {
699                 target_timer_callback_t *next = c->next;
700                 if ((c->callback == callback) && (c->priv == priv))
701                 {
702                         *p = next;
703                         free(c);
704                         return ERROR_OK;
705                 }
706                 else
707                         p = &(c->next);
708                 c = next;
709         }
710         
711         return ERROR_OK;
712 }
713
714 int target_call_event_callbacks(target_t *target, enum target_event event)
715 {
716         target_event_callback_t *callback = target_event_callbacks;
717         target_event_callback_t *next_callback;
718         
719         LOG_DEBUG("target event %i", event);
720         
721         while (callback)
722         {
723                 next_callback = callback->next;
724                 callback->callback(target, event, callback->priv);
725                 callback = next_callback;
726         }
727         
728         return ERROR_OK;
729 }
730
731 static int target_call_timer_callbacks_check_time(int checktime)
732 {
733         target_timer_callback_t *callback = target_timer_callbacks;
734         target_timer_callback_t *next_callback;
735         struct timeval now;
736
737         keep_alive();
738         
739         gettimeofday(&now, NULL);
740         
741         while (callback)
742         {
743                 next_callback = callback->next;
744                 
745                 if ((!checktime&&callback->periodic)||
746                                 (((now.tv_sec >= callback->when.tv_sec) && (now.tv_usec >= callback->when.tv_usec))
747                                                 || (now.tv_sec > callback->when.tv_sec)))
748                 {
749                         if(callback->callback != NULL)
750                         {
751                                 callback->callback(callback->priv);
752                                 if (callback->periodic)
753                                 {
754                                         int time_ms = callback->time_ms;
755                                         callback->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
756                                         time_ms -= (time_ms % 1000);
757                                         callback->when.tv_sec = now.tv_sec + time_ms / 1000;
758                                         if (callback->when.tv_usec > 1000000)
759                                         {
760                                                 callback->when.tv_usec = callback->when.tv_usec - 1000000;
761                                                 callback->when.tv_sec += 1;
762                                         }
763                                 }
764                                 else
765                                         target_unregister_timer_callback(callback->callback, callback->priv);
766                         }
767                 }
768                         
769                 callback = next_callback;
770         }
771         
772         return ERROR_OK;
773 }
774
775 int target_call_timer_callbacks()
776 {
777         return target_call_timer_callbacks_check_time(1);
778 }
779
780 /* invoke periodic callbacks immediately */
781 int target_call_timer_callbacks_now()
782 {
783         return target_call_timer_callbacks(0);
784 }
785
786 int target_alloc_working_area(struct target_s *target, u32 size, working_area_t **area)
787 {
788         working_area_t *c = target->working_areas;
789         working_area_t *new_wa = NULL;
790         
791         /* Reevaluate working area address based on MMU state*/
792         if (target->working_areas == NULL)
793         {
794                 int retval;
795                 int enabled;
796                 retval = target->type->mmu(target, &enabled);
797                 if (retval != ERROR_OK)
798                 {
799                         return retval;
800                 }
801                 if (enabled)
802                 {
803                         target->working_area = target->working_area_virt;
804                 }
805                 else
806                 {
807                         target->working_area = target->working_area_phys;
808                 }
809         }
810         
811         /* only allocate multiples of 4 byte */
812         if (size % 4)
813         {
814                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes, padding");
815                 size = CEIL(size, 4);
816         }
817         
818         /* see if there's already a matching working area */
819         while (c)
820         {
821                 if ((c->free) && (c->size == size))
822                 {
823                         new_wa = c;
824                         break;
825                 }
826                 c = c->next;
827         }
828         
829         /* if not, allocate a new one */
830         if (!new_wa)
831         {
832                 working_area_t **p = &target->working_areas;
833                 u32 first_free = target->working_area;
834                 u32 free_size = target->working_area_size;
835                 
836                 LOG_DEBUG("allocating new working area");
837                 
838                 c = target->working_areas;
839                 while (c)
840                 {
841                         first_free += c->size;
842                         free_size -= c->size;
843                         p = &c->next;
844                         c = c->next;
845                 }
846                 
847                 if (free_size < size)
848                 {
849                         LOG_WARNING("not enough working area available(requested %d, free %d)", size, free_size);
850                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
851                 }
852                 
853                 new_wa = malloc(sizeof(working_area_t));
854                 new_wa->next = NULL;
855                 new_wa->size = size;
856                 new_wa->address = first_free;
857                 
858                 if (target->backup_working_area)
859                 {
860                         new_wa->backup = malloc(new_wa->size);
861                         target->type->read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup);
862                 }
863                 else
864                 {
865                         new_wa->backup = NULL;
866                 }
867                 
868                 /* put new entry in list */
869                 *p = new_wa;
870         }
871         
872         /* mark as used, and return the new (reused) area */
873         new_wa->free = 0;
874         *area = new_wa;
875         
876         /* user pointer */
877         new_wa->user = area;
878         
879         return ERROR_OK;
880 }
881
882 int target_free_working_area_restore(struct target_s *target, working_area_t *area, int restore)
883 {
884         if (area->free)
885                 return ERROR_OK;
886         
887         if (restore&&target->backup_working_area)
888                 target->type->write_memory(target, area->address, 4, area->size / 4, area->backup);
889         
890         area->free = 1;
891         
892         /* mark user pointer invalid */
893         *area->user = NULL;
894         area->user = NULL;
895         
896         return ERROR_OK;
897 }
898
899 int target_free_working_area(struct target_s *target, working_area_t *area)
900 {
901         return target_free_working_area_restore(target, area, 1);
902 }
903
904 int target_free_all_working_areas_restore(struct target_s *target, int restore)
905 {
906         working_area_t *c = target->working_areas;
907
908         while (c)
909         {
910                 working_area_t *next = c->next;
911                 target_free_working_area_restore(target, c, restore);
912                 
913                 if (c->backup)
914                         free(c->backup);
915                 
916                 free(c);
917                 
918                 c = next;
919         }
920         
921         target->working_areas = NULL;
922         
923         return ERROR_OK;
924 }
925
926 int target_free_all_working_areas(struct target_s *target)
927 {
928         return target_free_all_working_areas_restore(target, 1); 
929 }
930
931 int target_register_commands(struct command_context_s *cmd_ctx)
932 {
933         register_command(cmd_ctx, NULL, "target", handle_target_command, COMMAND_CONFIG, "target <cpu> [reset_init default - DEPRECATED] <chainpos> <endianness> <variant> [cpu type specifc args]");
934         register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, NULL);
935         register_command(cmd_ctx, NULL, "run_and_halt_time", handle_run_and_halt_time_command, COMMAND_CONFIG, "<target> <run time ms>");
936         register_command(cmd_ctx, NULL, "working_area", handle_working_area_command, COMMAND_ANY, "working_area <target#> <address> <size> <'backup'|'nobackup'> [virtual address]");
937         register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "virt2phys <virtual address>");
938         register_command(cmd_ctx, NULL, "profile", handle_profile_command, COMMAND_EXEC, "PRELIMINARY! - profile <seconds> <gmon.out>");
939
940
941         /* script procedures */
942         register_jim(cmd_ctx, "ocd_mem2array", jim_mem2array, "read memory and return as a TCL array for script processing");
943         register_jim(cmd_ctx, "ocd_array2mem", jim_array2mem, "convert a TCL array to memory locations and write the values");
944         return ERROR_OK;
945 }
946
947 int target_arch_state(struct target_s *target)
948 {
949         int retval;
950         if (target==NULL)
951         {
952                 LOG_USER("No target has been configured");
953                 return ERROR_OK;
954         }
955         
956         LOG_USER("target state: %s", target_state_strings[target->state]);
957         
958         if (target->state!=TARGET_HALTED)
959                 return ERROR_OK;
960         
961         retval=target->type->arch_state(target);
962         return retval;
963 }
964
965 /* Single aligned words are guaranteed to use 16 or 32 bit access 
966  * mode respectively, otherwise data is handled as quickly as 
967  * possible
968  */
969 int target_write_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
970 {
971         int retval;
972         if (!target->type->examined)
973         {
974                 LOG_ERROR("Target not examined yet");
975                 return ERROR_FAIL;
976         }
977         
978         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x", size, address);
979         
980         if (((address % 2) == 0) && (size == 2))
981         {
982                 return target->type->write_memory(target, address, 2, 1, buffer);
983         }
984         
985         /* handle unaligned head bytes */
986         if (address % 4)
987         {
988                 int unaligned = 4 - (address % 4);
989                 
990                 if (unaligned > size)
991                         unaligned = size;
992
993                 if ((retval = target->type->write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
994                         return retval;
995                 
996                 buffer += unaligned;
997                 address += unaligned;
998                 size -= unaligned;
999         }
1000                 
1001         /* handle aligned words */
1002         if (size >= 4)
1003         {
1004                 int aligned = size - (size % 4);
1005         
1006                 /* use bulk writes above a certain limit. This may have to be changed */
1007                 if (aligned > 128)
1008                 {
1009                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1010                                 return retval;
1011                 }
1012                 else
1013                 {
1014                         if ((retval = target->type->write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1015                                 return retval;
1016                 }
1017                 
1018                 buffer += aligned;
1019                 address += aligned;
1020                 size -= aligned;
1021         }
1022         
1023         /* handle tail writes of less than 4 bytes */
1024         if (size > 0)
1025         {
1026                 if ((retval = target->type->write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1027                         return retval;
1028         }
1029         
1030         return ERROR_OK;
1031 }
1032
1033
1034 /* Single aligned words are guaranteed to use 16 or 32 bit access 
1035  * mode respectively, otherwise data is handled as quickly as 
1036  * possible
1037  */
1038 int target_read_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
1039 {
1040         int retval;
1041         if (!target->type->examined)
1042         {
1043                 LOG_ERROR("Target not examined yet");
1044                 return ERROR_FAIL;
1045         }
1046
1047         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x", size, address);
1048         
1049         if (((address % 2) == 0) && (size == 2))
1050         {
1051                 return target->type->read_memory(target, address, 2, 1, buffer);
1052         }
1053         
1054         /* handle unaligned head bytes */
1055         if (address % 4)
1056         {
1057                 int unaligned = 4 - (address % 4);
1058                 
1059                 if (unaligned > size)
1060                         unaligned = size;
1061
1062                 if ((retval = target->type->read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1063                         return retval;
1064                 
1065                 buffer += unaligned;
1066                 address += unaligned;
1067                 size -= unaligned;
1068         }
1069                 
1070         /* handle aligned words */
1071         if (size >= 4)
1072         {
1073                 int aligned = size - (size % 4);
1074         
1075                 if ((retval = target->type->read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1076                         return retval;
1077                 
1078                 buffer += aligned;
1079                 address += aligned;
1080                 size -= aligned;
1081         }
1082         
1083         /* handle tail writes of less than 4 bytes */
1084         if (size > 0)
1085         {
1086                 if ((retval = target->type->read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1087                         return retval;
1088         }
1089         
1090         return ERROR_OK;
1091 }
1092
1093 int target_checksum_memory(struct target_s *target, u32 address, u32 size, u32* crc)
1094 {
1095         u8 *buffer;
1096         int retval;
1097         int i;
1098         u32 checksum = 0;
1099         if (!target->type->examined)
1100         {
1101                 LOG_ERROR("Target not examined yet");
1102                 return ERROR_FAIL;
1103         }
1104         
1105         if ((retval = target->type->checksum_memory(target, address,
1106                 size, &checksum)) == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1107         {
1108                 buffer = malloc(size);
1109                 if (buffer == NULL)
1110                 {
1111                         LOG_ERROR("error allocating buffer for section (%d bytes)", size);
1112                         return ERROR_INVALID_ARGUMENTS;
1113                 }
1114                 retval = target_read_buffer(target, address, size, buffer);
1115                 if (retval != ERROR_OK)
1116                 {
1117                         free(buffer);
1118                         return retval;
1119                 }
1120
1121                 /* convert to target endianess */
1122                 for (i = 0; i < (size/sizeof(u32)); i++)
1123                 {
1124                         u32 target_data;
1125                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(u32)]);
1126                         target_buffer_set_u32(target, &buffer[i*sizeof(u32)], target_data);
1127                 }
1128
1129                 retval = image_calculate_checksum( buffer, size, &checksum );
1130                 free(buffer);
1131         }
1132         
1133         *crc = checksum;
1134         
1135         return retval;
1136 }
1137
1138 int target_blank_check_memory(struct target_s *target, u32 address, u32 size, u32* blank)
1139 {
1140         int retval;
1141         if (!target->type->examined)
1142         {
1143                 LOG_ERROR("Target not examined yet");
1144                 return ERROR_FAIL;
1145         }
1146         
1147         if (target->type->blank_check_memory == 0)
1148                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1149         
1150         retval = target->type->blank_check_memory(target, address, size, blank);
1151                         
1152         return retval;
1153 }
1154
1155 int target_read_u32(struct target_s *target, u32 address, u32 *value)
1156 {
1157         u8 value_buf[4];
1158         if (!target->type->examined)
1159         {
1160                 LOG_ERROR("Target not examined yet");
1161                 return ERROR_FAIL;
1162         }
1163
1164         int retval = target->type->read_memory(target, address, 4, 1, value_buf);
1165         
1166         if (retval == ERROR_OK)
1167         {
1168                 *value = target_buffer_get_u32(target, value_buf);
1169                 LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, *value);
1170         }
1171         else
1172         {
1173                 *value = 0x0;
1174                 LOG_DEBUG("address: 0x%8.8x failed", address);
1175         }
1176         
1177         return retval;
1178 }
1179
1180 int target_read_u16(struct target_s *target, u32 address, u16 *value)
1181 {
1182         u8 value_buf[2];
1183         if (!target->type->examined)
1184         {
1185                 LOG_ERROR("Target not examined yet");
1186                 return ERROR_FAIL;
1187         }
1188
1189         int retval = target->type->read_memory(target, address, 2, 1, value_buf);
1190         
1191         if (retval == ERROR_OK)
1192         {
1193                 *value = target_buffer_get_u16(target, value_buf);
1194                 LOG_DEBUG("address: 0x%8.8x, value: 0x%4.4x", address, *value);
1195         }
1196         else
1197         {
1198                 *value = 0x0;
1199                 LOG_DEBUG("address: 0x%8.8x failed", address);
1200         }
1201         
1202         return retval;
1203 }
1204
1205 int target_read_u8(struct target_s *target, u32 address, u8 *value)
1206 {
1207         int retval = target->type->read_memory(target, address, 1, 1, value);
1208         if (!target->type->examined)
1209         {
1210                 LOG_ERROR("Target not examined yet");
1211                 return ERROR_FAIL;
1212         }
1213
1214         if (retval == ERROR_OK)
1215         {
1216                 LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, *value);
1217         }
1218         else
1219         {
1220                 *value = 0x0;
1221                 LOG_DEBUG("address: 0x%8.8x failed", address);
1222         }
1223         
1224         return retval;
1225 }
1226
1227 int target_write_u32(struct target_s *target, u32 address, u32 value)
1228 {
1229         int retval;
1230         u8 value_buf[4];
1231         if (!target->type->examined)
1232         {
1233                 LOG_ERROR("Target not examined yet");
1234                 return ERROR_FAIL;
1235         }
1236
1237         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1238
1239         target_buffer_set_u32(target, value_buf, value);        
1240         if ((retval = target->type->write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1241         {
1242                 LOG_DEBUG("failed: %i", retval);
1243         }
1244         
1245         return retval;
1246 }
1247
1248 int target_write_u16(struct target_s *target, u32 address, u16 value)
1249 {
1250         int retval;
1251         u8 value_buf[2];
1252         if (!target->type->examined)
1253         {
1254                 LOG_ERROR("Target not examined yet");
1255                 return ERROR_FAIL;
1256         }
1257
1258         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1259
1260         target_buffer_set_u16(target, value_buf, value);        
1261         if ((retval = target->type->write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1262         {
1263                 LOG_DEBUG("failed: %i", retval);
1264         }
1265         
1266         return retval;
1267 }
1268
1269 int target_write_u8(struct target_s *target, u32 address, u8 value)
1270 {
1271         int retval;
1272         if (!target->type->examined)
1273         {
1274                 LOG_ERROR("Target not examined yet");
1275                 return ERROR_FAIL;
1276         }
1277
1278         LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, value);
1279
1280         if ((retval = target->type->read_memory(target, address, 1, 1, &value)) != ERROR_OK)
1281         {
1282                 LOG_DEBUG("failed: %i", retval);
1283         }
1284         
1285         return retval;
1286 }
1287
1288 int target_register_user_commands(struct command_context_s *cmd_ctx)
1289 {
1290         register_command(cmd_ctx,  NULL, "reg", handle_reg_command, COMMAND_EXEC, NULL);
1291         register_command(cmd_ctx,  NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state");
1292         register_command(cmd_ctx,  NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]");
1293         register_command(cmd_ctx,  NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target");
1294         register_command(cmd_ctx,  NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]");
1295         register_command(cmd_ctx,  NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]");
1296         register_command(cmd_ctx,  NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run|halt|init|run_and_halt|run_and_init]");
1297         register_command(cmd_ctx,  NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset");
1298
1299         register_command(cmd_ctx,  NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words <addr> [count]");
1300         register_command(cmd_ctx,  NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words <addr> [count]");
1301         register_command(cmd_ctx,  NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes <addr> [count]");
1302         
1303         register_command(cmd_ctx,  NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word <addr> <value> [count]");
1304         register_command(cmd_ctx,  NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word <addr> <value> [count]");
1305         register_command(cmd_ctx,  NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte <addr> <value> [count]");
1306         
1307         register_command(cmd_ctx,  NULL, "bp", handle_bp_command, COMMAND_EXEC, "set breakpoint <address> <length> [hw]");      
1308         register_command(cmd_ctx,  NULL, "rbp", handle_rbp_command, COMMAND_EXEC, "remove breakpoint <adress>");
1309         register_command(cmd_ctx,  NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint <address> <length> <r/w/a> [value] [mask]");    
1310         register_command(cmd_ctx,  NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint <adress>");
1311         
1312         register_command(cmd_ctx,  NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> ['bin'|'ihex'|'elf'|'s19'] [min_address] [max_length]");
1313         register_command(cmd_ctx,  NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>");
1314         register_command(cmd_ctx,  NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image <file> [offset] [type]");
1315         
1316         target_request_register_commands(cmd_ctx);
1317         trace_register_commands(cmd_ctx);
1318         
1319         return ERROR_OK;
1320 }
1321
1322 int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1323 {
1324         target_t *target = targets;
1325         int count = 0;
1326         
1327         if (argc == 1)
1328         {
1329                 int num = strtoul(args[0], NULL, 0);
1330                 
1331                 while (target)
1332                 {
1333                         count++;
1334                         target = target->next;
1335                 }
1336                 
1337                 if (num < count)
1338                         cmd_ctx->current_target = num;
1339                 else
1340                         command_print(cmd_ctx, "%i is out of bounds, only %i targets are configured", num, count);
1341                         
1342                 return ERROR_OK;
1343         }
1344                 
1345         while (target)
1346         {
1347                 command_print(cmd_ctx, "%i: %s (%s), state: %s", count++, target->type->name, target_endianess_strings[target->endianness], target_state_strings[target->state]);
1348                 target = target->next;
1349         }
1350         
1351         return ERROR_OK;
1352 }
1353
1354 int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1355 {
1356         int i;
1357         int found = 0;
1358         
1359         if (argc < 3)
1360         {
1361                 return ERROR_COMMAND_SYNTAX_ERROR;
1362         }
1363         
1364         /* search for the specified target */
1365         if (args[0] && (args[0][0] != 0))
1366         {
1367                 for (i = 0; target_types[i]; i++)
1368                 {
1369                         if (strcmp(args[0], target_types[i]->name) == 0)
1370                         {
1371                                 target_t **last_target_p = &targets;
1372                                 
1373                                 /* register target specific commands */
1374                                 if (target_types[i]->register_commands(cmd_ctx) != ERROR_OK)
1375                                 {
1376                                         LOG_ERROR("couldn't register '%s' commands", args[0]);
1377                                         exit(-1);
1378                                 }
1379
1380                                 if (*last_target_p)
1381                                 {
1382                                         while ((*last_target_p)->next)
1383                                                 last_target_p = &((*last_target_p)->next);
1384                                         last_target_p = &((*last_target_p)->next);
1385                                 }
1386
1387                                 *last_target_p = malloc(sizeof(target_t));
1388                                 
1389                                 /* allocate memory for each unique target type */
1390                                 (*last_target_p)->type = (target_type_t*)malloc(sizeof(target_type_t));
1391                                 *((*last_target_p)->type) = *target_types[i]; 
1392                                 
1393                                 if (strcmp(args[1], "big") == 0)
1394                                         (*last_target_p)->endianness = TARGET_BIG_ENDIAN;
1395                                 else if (strcmp(args[1], "little") == 0)
1396                                         (*last_target_p)->endianness = TARGET_LITTLE_ENDIAN;
1397                                 else
1398                                 {
1399                                         LOG_ERROR("endianness must be either 'little' or 'big', not '%s'", args[1]);
1400                                         return ERROR_COMMAND_SYNTAX_ERROR;
1401                                 }
1402                                 
1403                                 if (strcmp(args[2], "reset_halt") == 0)
1404                                 {
1405                                         LOG_WARNING("reset_mode argument is obsolete.");
1406                                         return ERROR_COMMAND_SYNTAX_ERROR;
1407                                 }
1408                                 else if (strcmp(args[2], "reset_run") == 0)
1409                                 {
1410                                         LOG_WARNING("reset_mode argument is obsolete.");
1411                                         return ERROR_COMMAND_SYNTAX_ERROR;
1412                                 }
1413                                 else if (strcmp(args[2], "reset_init") == 0)
1414                                 {
1415                                         LOG_WARNING("reset_mode argument is obsolete.");
1416                                         return ERROR_COMMAND_SYNTAX_ERROR;
1417                                 }
1418                                 else if (strcmp(args[2], "run_and_halt") == 0)
1419                                 {
1420                                         LOG_WARNING("reset_mode argument is obsolete.");
1421                                         return ERROR_COMMAND_SYNTAX_ERROR;
1422                                 }
1423                                 else if (strcmp(args[2], "run_and_init") == 0)
1424                                 {
1425                                         LOG_WARNING("reset_mode argument is obsolete.");
1426                                         return ERROR_COMMAND_SYNTAX_ERROR;
1427                                 }
1428                                 else
1429                                 {
1430                                         /* Kludge! we want to make this reset arg optional while remaining compatible! */
1431                                         args--;
1432                                         argc++;
1433                                 }
1434                                 (*last_target_p)->run_and_halt_time = 1000; /* default 1s */
1435                                 
1436                                 (*last_target_p)->working_area = 0x0;
1437                                 (*last_target_p)->working_area_size = 0x0;
1438                                 (*last_target_p)->working_areas = NULL;
1439                                 (*last_target_p)->backup_working_area = 0;
1440                                 
1441                                 (*last_target_p)->state = TARGET_UNKNOWN;
1442                                 (*last_target_p)->debug_reason = DBG_REASON_UNDEFINED;
1443                                 (*last_target_p)->reg_cache = NULL;
1444                                 (*last_target_p)->breakpoints = NULL;
1445                                 (*last_target_p)->watchpoints = NULL;
1446                                 (*last_target_p)->next = NULL;
1447                                 (*last_target_p)->arch_info = NULL;
1448                                 
1449                                 /* initialize trace information */
1450                                 (*last_target_p)->trace_info = malloc(sizeof(trace_t));
1451                                 (*last_target_p)->trace_info->num_trace_points = 0;
1452                                 (*last_target_p)->trace_info->trace_points_size = 0;
1453                                 (*last_target_p)->trace_info->trace_points = NULL;
1454                                 (*last_target_p)->trace_info->trace_history_size = 0;
1455                                 (*last_target_p)->trace_info->trace_history = NULL;
1456                                 (*last_target_p)->trace_info->trace_history_pos = 0;
1457                                 (*last_target_p)->trace_info->trace_history_overflowed = 0;
1458                                 
1459                                 (*last_target_p)->dbgmsg = NULL;
1460                                 (*last_target_p)->dbg_msg_enabled = 0;
1461                                                                 
1462                                 (*last_target_p)->type->target_command(cmd_ctx, cmd, args, argc, *last_target_p);
1463                                 
1464                                 found = 1;
1465                                 break;
1466                         }
1467                 }
1468         }
1469         
1470         /* no matching target found */
1471         if (!found)
1472         {
1473                 LOG_ERROR("target '%s' not found", args[0]);
1474                 return ERROR_COMMAND_SYNTAX_ERROR;
1475         }
1476
1477         return ERROR_OK;
1478 }
1479
1480 int target_invoke_script(struct command_context_s *cmd_ctx, target_t *target, char *name)
1481 {
1482         return command_run_linef(cmd_ctx, " if {[catch {info body target_%d_%s} t]==0} {target_%d_%s}", 
1483                         get_num_by_target(target), name, 
1484                         get_num_by_target(target), name);
1485 }
1486
1487 int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1488 {
1489         target_t *target = NULL;
1490         
1491         if (argc < 2)
1492         {
1493                 return ERROR_COMMAND_SYNTAX_ERROR;
1494         }
1495         
1496         target = get_target_by_num(strtoul(args[0], NULL, 0));
1497         if (!target)
1498         {
1499                 return ERROR_COMMAND_SYNTAX_ERROR;
1500         }
1501         
1502         target->run_and_halt_time = strtoul(args[1], NULL, 0);
1503         
1504         return ERROR_OK;
1505 }
1506
1507 int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1508 {
1509         target_t *target = NULL;
1510         
1511         if ((argc < 4) || (argc > 5))
1512         {
1513                 return ERROR_COMMAND_SYNTAX_ERROR;
1514         }
1515         
1516         target = get_target_by_num(strtoul(args[0], NULL, 0));
1517         if (!target)
1518         {
1519                 return ERROR_COMMAND_SYNTAX_ERROR;
1520         }
1521         target_free_all_working_areas(target);
1522         
1523         target->working_area_phys = target->working_area_virt = strtoul(args[1], NULL, 0);
1524         if (argc == 5)
1525         {
1526                 target->working_area_virt = strtoul(args[4], NULL, 0);
1527         }
1528         target->working_area_size = strtoul(args[2], NULL, 0);
1529         
1530         if (strcmp(args[3], "backup") == 0)
1531         {
1532                 target->backup_working_area = 1;
1533         }
1534         else if (strcmp(args[3], "nobackup") == 0)
1535         {
1536                 target->backup_working_area = 0;
1537         }
1538         else
1539         {
1540                 LOG_ERROR("unrecognized <backup|nobackup> argument (%s)", args[3]);
1541                 return ERROR_COMMAND_SYNTAX_ERROR;
1542         }
1543         
1544         return ERROR_OK;
1545 }
1546
1547
1548 /* process target state changes */
1549 int handle_target(void *priv)
1550 {
1551         target_t *target = targets;
1552         
1553         while (target)
1554         {
1555                 if (target_continous_poll)
1556                 {
1557                         /* polling may fail silently until the target has been examined */
1558                         target_poll(target);
1559                 }
1560         
1561                 target = target->next;
1562         }
1563         
1564         return ERROR_OK;
1565 }
1566
1567 int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1568 {
1569         target_t *target;
1570         reg_t *reg = NULL;
1571         int count = 0;
1572         char *value;
1573         
1574         LOG_DEBUG("-");
1575         
1576         target = get_current_target(cmd_ctx);
1577         
1578         /* list all available registers for the current target */
1579         if (argc == 0)
1580         {
1581                 reg_cache_t *cache = target->reg_cache;
1582                 
1583                 count = 0;
1584                 while(cache)
1585                 {
1586                         int i;
1587                         for (i = 0; i < cache->num_regs; i++)
1588                         {
1589                                 value = buf_to_str(cache->reg_list[i].value, cache->reg_list[i].size, 16);
1590                                 command_print(cmd_ctx, "(%i) %s (/%i): 0x%s (dirty: %i, valid: %i)", count++, cache->reg_list[i].name, cache->reg_list[i].size, value, cache->reg_list[i].dirty, cache->reg_list[i].valid);
1591                                 free(value);
1592                         }
1593                         cache = cache->next;
1594                 }
1595                 
1596                 return ERROR_OK;
1597         }
1598         
1599         /* access a single register by its ordinal number */
1600         if ((args[0][0] >= '0') && (args[0][0] <= '9'))
1601         {
1602                 int num = strtoul(args[0], NULL, 0);
1603                 reg_cache_t *cache = target->reg_cache;
1604                 
1605                 count = 0;
1606                 while(cache)
1607                 {
1608                         int i;
1609                         for (i = 0; i < cache->num_regs; i++)
1610                         {
1611                                 if (count++ == num)
1612                                 {
1613                                         reg = &cache->reg_list[i];
1614                                         break;
1615                                 }
1616                         }
1617                         if (reg)
1618                                 break;
1619                         cache = cache->next;
1620                 }
1621                 
1622                 if (!reg)
1623                 {
1624                         command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1625                         return ERROR_OK;
1626                 }
1627         } else /* access a single register by its name */
1628         {
1629                 reg = register_get_by_name(target->reg_cache, args[0], 1);
1630                 
1631                 if (!reg)
1632                 {
1633                         command_print(cmd_ctx, "register %s not found in current target", args[0]);
1634                         return ERROR_OK;
1635                 }
1636         }
1637
1638         /* display a register */
1639         if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
1640         {
1641                 if ((argc == 2) && (strcmp(args[1], "force") == 0))
1642                         reg->valid = 0;
1643                 
1644                 if (reg->valid == 0)
1645                 {
1646                         reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1647                         if (arch_type == NULL)
1648                         {
1649                                 LOG_ERROR("BUG: encountered unregistered arch type");
1650                                 return ERROR_OK;
1651                         }
1652                         arch_type->get(reg);
1653                 }
1654                 value = buf_to_str(reg->value, reg->size, 16);
1655                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1656                 free(value);
1657                 return ERROR_OK;
1658         }
1659         
1660         /* set register value */
1661         if (argc == 2)
1662         {
1663                 u8 *buf = malloc(CEIL(reg->size, 8));
1664                 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
1665
1666                 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1667                 if (arch_type == NULL)
1668                 {
1669                         LOG_ERROR("BUG: encountered unregistered arch type");
1670                         return ERROR_OK;
1671                 }
1672                 
1673                 arch_type->set(reg, buf);
1674                 
1675                 value = buf_to_str(reg->value, reg->size, 16);
1676                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1677                 free(value);
1678                 
1679                 free(buf);
1680                 
1681                 return ERROR_OK;
1682         }
1683         
1684         command_print(cmd_ctx, "usage: reg <#|name> [value]");
1685         
1686         return ERROR_OK;
1687 }
1688
1689
1690 int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1691 {
1692         target_t *target = get_current_target(cmd_ctx);
1693
1694         if (argc == 0)
1695         {
1696                 target_poll(target);
1697                 target_arch_state(target);
1698         }
1699         else
1700         {
1701                 if (strcmp(args[0], "on") == 0)
1702                 {
1703                         target_continous_poll = 1;
1704                 }
1705                 else if (strcmp(args[0], "off") == 0)
1706                 {
1707                         target_continous_poll = 0;
1708                 }
1709                 else
1710                 {
1711                         command_print(cmd_ctx, "arg is \"on\" or \"off\"");
1712                 }
1713         }
1714         
1715         
1716         return ERROR_OK;
1717 }
1718
1719 int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1720 {
1721         int ms = 5000;
1722         
1723         if (argc > 0)
1724         {
1725                 char *end;
1726
1727                 ms = strtoul(args[0], &end, 0) * 1000;
1728                 if (*end)
1729                 {
1730                         command_print(cmd_ctx, "usage: %s [seconds]", cmd);
1731                         return ERROR_OK;
1732                 }
1733         }
1734         target_t *target = get_current_target(cmd_ctx);
1735
1736         return target_wait_state(target, TARGET_HALTED, ms); 
1737 }
1738
1739 int target_wait_state(target_t *target, enum target_state state, int ms)
1740 {
1741         int retval;
1742         struct timeval timeout, now;
1743         int once=1;
1744         gettimeofday(&timeout, NULL);
1745         timeval_add_time(&timeout, 0, ms * 1000);
1746         
1747         for (;;)
1748         {
1749                 if ((retval=target_poll(target))!=ERROR_OK)
1750                         return retval;
1751                 target_call_timer_callbacks_now();
1752                 if (target->state == state)
1753                 {
1754                         break;
1755                 }
1756                 if (once)
1757                 {
1758                         once=0;
1759                         LOG_USER("waiting for target %s...", target_state_strings[state]);
1760                 }
1761                 
1762                 gettimeofday(&now, NULL);
1763                 if ((now.tv_sec > timeout.tv_sec) || ((now.tv_sec == timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
1764                 {
1765                         LOG_ERROR("timed out while waiting for target %s", target_state_strings[state]);
1766                         break;
1767                 }
1768         }
1769         
1770         return ERROR_OK;
1771 }
1772
1773 int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1774 {
1775         int retval;
1776         target_t *target = get_current_target(cmd_ctx);
1777
1778         LOG_DEBUG("-");
1779
1780         if ((retval = target_halt(target)) != ERROR_OK)
1781         {
1782                 return retval;
1783         }
1784         
1785         return handle_wait_halt_command(cmd_ctx, cmd, args, argc);
1786 }
1787
1788 int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1789 {
1790         target_t *target = get_current_target(cmd_ctx);
1791         
1792         LOG_USER("requesting target halt and executing a soft reset");
1793         
1794         target->type->soft_reset_halt(target);
1795         
1796         return ERROR_OK;
1797 }
1798
1799 int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1800 {
1801         target_t *target = get_current_target(cmd_ctx);
1802         enum target_reset_mode reset_mode = RESET_RUN;
1803         
1804         LOG_DEBUG("-");
1805         
1806         if (argc >= 1)
1807         {
1808                 if (strcmp("run", args[0]) == 0)
1809                         reset_mode = RESET_RUN;
1810                 else if (strcmp("halt", args[0]) == 0)
1811                         reset_mode = RESET_HALT;
1812                 else if (strcmp("init", args[0]) == 0)
1813                         reset_mode = RESET_INIT;
1814                 else if (strcmp("run_and_halt", args[0]) == 0)
1815                 {
1816                         reset_mode = RESET_RUN_AND_HALT;
1817                         if (argc >= 2)
1818                         {
1819                                 target->run_and_halt_time = strtoul(args[1], NULL, 0);
1820                         }
1821                 }
1822                 else if (strcmp("run_and_init", args[0]) == 0)
1823                 {
1824                         reset_mode = RESET_RUN_AND_INIT;
1825                         if (argc >= 2)
1826                         {
1827                                 target->run_and_halt_time = strtoul(args[1], NULL, 0);
1828                         }
1829                 }
1830                 else
1831                 {
1832                         command_print(cmd_ctx, "usage: reset ['run', 'halt', 'init', 'run_and_halt', 'run_and_init]");
1833                         return ERROR_OK;
1834                 }
1835         }
1836         
1837         /* reset *all* targets */
1838         target_process_reset(cmd_ctx, reset_mode);
1839         
1840         return ERROR_OK;
1841 }
1842
1843 int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1844 {
1845         int retval;
1846         target_t *target = get_current_target(cmd_ctx);
1847         
1848         target_invoke_script(cmd_ctx, target, "pre_resume");
1849         
1850         if (argc == 0)
1851                 retval = target_resume(target, 1, 0, 1, 0); /* current pc, addr = 0, handle breakpoints, not debugging */
1852         else if (argc == 1)
1853                 retval = target_resume(target, 0, strtoul(args[0], NULL, 0), 1, 0); /* addr = args[0], handle breakpoints, not debugging */
1854         else
1855         {
1856                 return ERROR_COMMAND_SYNTAX_ERROR;
1857         }
1858         
1859         return retval;
1860 }
1861
1862 int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1863 {
1864         target_t *target = get_current_target(cmd_ctx);
1865         
1866         LOG_DEBUG("-");
1867         
1868         if (argc == 0)
1869                 target->type->step(target, 1, 0, 1); /* current pc, addr = 0, handle breakpoints */
1870
1871         if (argc == 1)
1872                 target->type->step(target, 0, strtoul(args[0], NULL, 0), 1); /* addr = args[0], handle breakpoints */
1873         
1874         return ERROR_OK;
1875 }
1876
1877 int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1878 {
1879         const int line_bytecnt = 32;
1880         int count = 1;
1881         int size = 4;
1882         u32 address = 0;
1883         int line_modulo;
1884         int i;
1885
1886         char output[128];
1887         int output_len;
1888
1889         int retval;
1890
1891         u8 *buffer;
1892         target_t *target = get_current_target(cmd_ctx);
1893
1894         if (argc < 1)
1895                 return ERROR_OK;
1896
1897         if (argc == 2)
1898                 count = strtoul(args[1], NULL, 0);
1899
1900         address = strtoul(args[0], NULL, 0);
1901         
1902
1903         switch (cmd[2])
1904         {
1905                 case 'w':
1906                         size = 4; line_modulo = line_bytecnt / 4;
1907                         break;
1908                 case 'h':
1909                         size = 2; line_modulo = line_bytecnt / 2;
1910                         break;
1911                 case 'b':
1912                         size = 1; line_modulo = line_bytecnt / 1;
1913                         break;
1914                 default:
1915                         return ERROR_OK;
1916         }
1917
1918         buffer = calloc(count, size);
1919         retval  = target->type->read_memory(target, address, size, count, buffer);
1920         if (retval == ERROR_OK)
1921         {
1922                 output_len = 0;
1923         
1924                 for (i = 0; i < count; i++)
1925                 {
1926                         if (i%line_modulo == 0)
1927                                 output_len += snprintf(output + output_len, 128 - output_len, "0x%8.8x: ", address + (i*size));
1928                         
1929                         switch (size)
1930                         {
1931                                 case 4:
1932                                         output_len += snprintf(output + output_len, 128 - output_len, "%8.8x ", target_buffer_get_u32(target, &buffer[i*4]));
1933                                         break;
1934                                 case 2:
1935                                         output_len += snprintf(output + output_len, 128 - output_len, "%4.4x ", target_buffer_get_u16(target, &buffer[i*2]));
1936                                         break;
1937                                 case 1:
1938                                         output_len += snprintf(output + output_len, 128 - output_len, "%2.2x ", buffer[i*1]);
1939                                         break;
1940                         }
1941         
1942                         if ((i%line_modulo == line_modulo-1) || (i == count - 1))
1943                         {
1944                                 command_print(cmd_ctx, output);
1945                                 output_len = 0;
1946                         }
1947                 }
1948         }
1949
1950         free(buffer);
1951         
1952         return retval;
1953 }
1954
1955 int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1956 {
1957         u32 address = 0;
1958         u32 value = 0;
1959         int count = 1;
1960         int i;
1961         int wordsize;
1962         target_t *target = get_current_target(cmd_ctx);
1963         u8 value_buf[4];
1964
1965          if ((argc < 2) || (argc > 3))
1966                 return ERROR_COMMAND_SYNTAX_ERROR;
1967
1968         address = strtoul(args[0], NULL, 0);
1969         value = strtoul(args[1], NULL, 0);
1970         if (argc == 3)
1971                 count = strtoul(args[2], NULL, 0);
1972         
1973         switch (cmd[2])
1974         {
1975                 case 'w':
1976                         wordsize = 4;
1977                         target_buffer_set_u32(target, value_buf, value);
1978                         break;
1979                 case 'h':
1980                         wordsize = 2;
1981                         target_buffer_set_u16(target, value_buf, value);
1982                         break;
1983                 case 'b':
1984                         wordsize = 1;
1985                         value_buf[0] = value;
1986                         break;
1987                 default:
1988                         return ERROR_COMMAND_SYNTAX_ERROR;
1989         }
1990         for (i=0; i<count; i++)
1991         {
1992                 int retval;
1993                 switch (wordsize)
1994                 {
1995                         case 4:
1996                                 retval = target->type->write_memory(target, address + i*wordsize, 4, 1, value_buf);
1997                                 break;
1998                         case 2:
1999                                 retval = target->type->write_memory(target, address + i*wordsize, 2, 1, value_buf);
2000                                 break;
2001                         case 1:
2002                                 retval = target->type->write_memory(target, address + i*wordsize, 1, 1, value_buf);
2003                         break;
2004                         default:
2005                         return ERROR_OK;
2006                 }
2007                 if (retval!=ERROR_OK)
2008                 {
2009                         return retval;
2010                 }
2011         }
2012
2013         return ERROR_OK;
2014
2015 }
2016
2017 int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2018 {
2019         u8 *buffer;
2020         u32 buf_cnt;
2021         u32 image_size;
2022         u32 min_address=0;
2023         u32 max_address=0xffffffff;
2024         int i;
2025         int retval;
2026
2027         image_t image;  
2028         
2029         duration_t duration;
2030         char *duration_text;
2031         
2032         target_t *target = get_current_target(cmd_ctx);
2033
2034         if ((argc < 1)||(argc > 5))
2035         {
2036                 return ERROR_COMMAND_SYNTAX_ERROR;
2037         }
2038         
2039         /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
2040         if (argc >= 2)
2041         {
2042                 image.base_address_set = 1;
2043                 image.base_address = strtoul(args[1], NULL, 0);
2044         }
2045         else
2046         {
2047                 image.base_address_set = 0;
2048         }
2049         
2050         
2051         image.start_address_set = 0;
2052         
2053         if (argc>=4)
2054         {
2055                 min_address=strtoul(args[3], NULL, 0);
2056         }
2057         if (argc>=5)
2058         {
2059                 max_address=strtoul(args[4], NULL, 0)+min_address;
2060         }
2061         
2062         if (min_address>max_address)
2063         {
2064                 return ERROR_COMMAND_SYNTAX_ERROR;
2065         }
2066         
2067
2068         duration_start_measure(&duration);
2069         
2070         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
2071         {
2072                 return ERROR_OK;
2073         }
2074         
2075         image_size = 0x0;
2076         retval = ERROR_OK;
2077         for (i = 0; i < image.num_sections; i++)
2078         {
2079                 buffer = malloc(image.sections[i].size);
2080                 if (buffer == NULL)
2081                 {
2082                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2083                         break;
2084                 }
2085                 
2086                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2087                 {
2088                         free(buffer);
2089                         break;
2090                 }
2091                 
2092                 u32 offset=0;
2093                 u32 length=buf_cnt;
2094                 
2095                 
2096                 /* DANGER!!! beware of unsigned comparision here!!! */
2097                 
2098                 if ((image.sections[i].base_address+buf_cnt>=min_address)&&
2099                                 (image.sections[i].base_address<max_address))
2100                 {
2101                         if (image.sections[i].base_address<min_address)
2102                         {
2103                                 /* clip addresses below */
2104                                 offset+=min_address-image.sections[i].base_address;
2105                                 length-=offset;
2106                         }
2107                         
2108                         if (image.sections[i].base_address+buf_cnt>max_address)
2109                         {
2110                                 length-=(image.sections[i].base_address+buf_cnt)-max_address;
2111                         }
2112                         
2113                         if ((retval = target_write_buffer(target, image.sections[i].base_address+offset, length, buffer+offset)) != ERROR_OK)
2114                         {
2115                                 free(buffer);
2116                                 break;
2117                         }
2118                         image_size += length;
2119                         command_print(cmd_ctx, "%u byte written at address 0x%8.8x", length, image.sections[i].base_address+offset);
2120                 }
2121                 
2122                 free(buffer);
2123         }
2124
2125         duration_stop_measure(&duration, &duration_text);
2126         if (retval==ERROR_OK)
2127         {
2128                 command_print(cmd_ctx, "downloaded %u byte in %s", image_size, duration_text);
2129         }
2130         free(duration_text);
2131         
2132         image_close(&image);
2133
2134         return retval;
2135
2136 }
2137
2138 int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2139 {
2140         fileio_t fileio;
2141         
2142         u32 address;
2143         u32 size;
2144         u8 buffer[560];
2145         int retval=ERROR_OK;
2146         
2147         duration_t duration;
2148         char *duration_text;
2149         
2150         target_t *target = get_current_target(cmd_ctx);
2151
2152         if (argc != 3)
2153         {
2154                 command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
2155                 return ERROR_OK;
2156         }
2157
2158         address = strtoul(args[1], NULL, 0);
2159         size = strtoul(args[2], NULL, 0);
2160
2161         if ((address & 3) || (size & 3))
2162         {
2163                 command_print(cmd_ctx, "only 32-bit aligned address and size are supported");
2164                 return ERROR_OK;
2165         }
2166         
2167         if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2168         {
2169                 return ERROR_OK;
2170         }
2171         
2172         duration_start_measure(&duration);
2173         
2174         while (size > 0)
2175         {
2176                 u32 size_written;
2177                 u32 this_run_size = (size > 560) ? 560 : size;
2178                 
2179                 retval = target->type->read_memory(target, address, 4, this_run_size / 4, buffer);
2180                 if (retval != ERROR_OK)
2181                 {
2182                         break;
2183                 }
2184                 
2185                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2186                 if (retval != ERROR_OK)
2187                 {
2188                         break;
2189                 }
2190                 
2191                 size -= this_run_size;
2192                 address += this_run_size;
2193         }
2194
2195         fileio_close(&fileio);
2196
2197         duration_stop_measure(&duration, &duration_text);
2198         if (retval==ERROR_OK)
2199         {
2200                 command_print(cmd_ctx, "dumped %"PRIi64" byte in %s", fileio.size, duration_text);
2201         }
2202         free(duration_text);
2203         
2204         return ERROR_OK;
2205 }
2206
2207 int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2208 {
2209         u8 *buffer;
2210         u32 buf_cnt;
2211         u32 image_size;
2212         int i;
2213         int retval;
2214         u32 checksum = 0;
2215         u32 mem_checksum = 0;
2216
2217         image_t image;  
2218         
2219         duration_t duration;
2220         char *duration_text;
2221         
2222         target_t *target = get_current_target(cmd_ctx);
2223         
2224         if (argc < 1)
2225         {
2226                 return ERROR_COMMAND_SYNTAX_ERROR;
2227         }
2228         
2229         if (!target)
2230         {
2231                 LOG_ERROR("no target selected");
2232                 return ERROR_FAIL;
2233         }
2234         
2235         duration_start_measure(&duration);
2236         
2237         if (argc >= 2)
2238         {
2239                 image.base_address_set = 1;
2240                 image.base_address = strtoul(args[1], NULL, 0);
2241         }
2242         else
2243         {
2244                 image.base_address_set = 0;
2245                 image.base_address = 0x0;
2246         }
2247
2248         image.start_address_set = 0;
2249
2250         if ((retval=image_open(&image, args[0], (argc == 3) ? args[2] : NULL)) != ERROR_OK)
2251         {
2252                 return retval;
2253         }
2254         
2255         image_size = 0x0;
2256         retval=ERROR_OK;
2257         for (i = 0; i < image.num_sections; i++)
2258         {
2259                 buffer = malloc(image.sections[i].size);
2260                 if (buffer == NULL)
2261                 {
2262                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2263                         break;
2264                 }
2265                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2266                 {
2267                         free(buffer);
2268                         break;
2269                 }
2270                 
2271                 /* calculate checksum of image */
2272                 image_calculate_checksum( buffer, buf_cnt, &checksum );
2273                 
2274                 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2275                 if( retval != ERROR_OK )
2276                 {
2277                         free(buffer);
2278                         break;
2279                 }
2280                 
2281                 if( checksum != mem_checksum )
2282                 {
2283                         /* failed crc checksum, fall back to a binary compare */
2284                         u8 *data;
2285                         
2286                         command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
2287                         
2288                         data = (u8*)malloc(buf_cnt);
2289                         
2290                         /* Can we use 32bit word accesses? */
2291                         int size = 1;
2292                         int count = buf_cnt;
2293                         if ((count % 4) == 0)
2294                         {
2295                                 size *= 4;
2296                                 count /= 4;
2297                         }
2298                         retval = target->type->read_memory(target, image.sections[i].base_address, size, count, data);
2299                         if (retval == ERROR_OK)
2300                         {
2301                                 int t;
2302                                 for (t = 0; t < buf_cnt; t++)
2303                                 {
2304                                         if (data[t] != buffer[t])
2305                                         {
2306                                                 command_print(cmd_ctx, "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n", t + image.sections[i].base_address, data[t], buffer[t]);
2307                                                 free(data);
2308                                                 free(buffer);
2309                                                 retval=ERROR_FAIL;
2310                                                 goto done;
2311                                         }
2312                                 }
2313                         }
2314                         
2315                         free(data);
2316                 }
2317                 
2318                 free(buffer);
2319                 image_size += buf_cnt;
2320         }
2321 done:   
2322         duration_stop_measure(&duration, &duration_text);
2323         if (retval==ERROR_OK)
2324         {
2325                 command_print(cmd_ctx, "verified %u bytes in %s", image_size, duration_text);
2326         }
2327         free(duration_text);
2328         
2329         image_close(&image);
2330         
2331         return retval;
2332 }
2333
2334 int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2335 {
2336         int retval;
2337         target_t *target = get_current_target(cmd_ctx);
2338
2339         if (argc == 0)
2340         {
2341                 breakpoint_t *breakpoint = target->breakpoints;
2342
2343                 while (breakpoint)
2344                 {
2345                         if (breakpoint->type == BKPT_SOFT)
2346                         {
2347                                 char* buf = buf_to_str(breakpoint->orig_instr, breakpoint->length, 16);
2348                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i, 0x%s", breakpoint->address, breakpoint->length, breakpoint->set, buf);
2349                                 free(buf);
2350                         }
2351                         else
2352                         {
2353                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i", breakpoint->address, breakpoint->length, breakpoint->set);
2354                         }
2355                         breakpoint = breakpoint->next;
2356                 }
2357         }
2358         else if (argc >= 2)
2359         {
2360                 int hw = BKPT_SOFT;
2361                 u32 length = 0;
2362
2363                 length = strtoul(args[1], NULL, 0);
2364                 
2365                 if (argc >= 3)
2366                         if (strcmp(args[2], "hw") == 0)
2367                                 hw = BKPT_HARD;
2368
2369                 if ((retval = breakpoint_add(target, strtoul(args[0], NULL, 0), length, hw)) != ERROR_OK)
2370                 {
2371                         LOG_ERROR("Failure setting breakpoints");
2372                 }
2373                 else
2374                 {
2375                         command_print(cmd_ctx, "breakpoint added at address 0x%8.8x", strtoul(args[0], NULL, 0));
2376                 }
2377         }
2378         else
2379         {
2380                 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
2381         }
2382
2383         return ERROR_OK;
2384 }
2385
2386 int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2387 {
2388         target_t *target = get_current_target(cmd_ctx);
2389
2390         if (argc > 0)
2391                 breakpoint_remove(target, strtoul(args[0], NULL, 0));
2392
2393         return ERROR_OK;
2394 }
2395
2396 int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2397 {
2398         target_t *target = get_current_target(cmd_ctx);
2399         int retval;
2400
2401         if (argc == 0)
2402         {
2403                 watchpoint_t *watchpoint = target->watchpoints;
2404
2405                 while (watchpoint)
2406                 {
2407                         command_print(cmd_ctx, "address: 0x%8.8x, len: 0x%8.8x, r/w/a: %i, value: 0x%8.8x, mask: 0x%8.8x", watchpoint->address, watchpoint->length, watchpoint->rw, watchpoint->value, watchpoint->mask);
2408                         watchpoint = watchpoint->next;
2409                 }
2410         } 
2411         else if (argc >= 2)
2412         {
2413                 enum watchpoint_rw type = WPT_ACCESS;
2414                 u32 data_value = 0x0;
2415                 u32 data_mask = 0xffffffff;
2416                 
2417                 if (argc >= 3)
2418                 {
2419                         switch(args[2][0])
2420                         {
2421                                 case 'r':
2422                                         type = WPT_READ;
2423                                         break;
2424                                 case 'w':
2425                                         type = WPT_WRITE;
2426                                         break;
2427                                 case 'a':
2428                                         type = WPT_ACCESS;
2429                                         break;
2430                                 default:
2431                                         command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2432                                         return ERROR_OK;
2433                         }
2434                 }
2435                 if (argc >= 4)
2436                 {
2437                         data_value = strtoul(args[3], NULL, 0);
2438                 }
2439                 if (argc >= 5)
2440                 {
2441                         data_mask = strtoul(args[4], NULL, 0);
2442                 }
2443                 
2444                 if ((retval = watchpoint_add(target, strtoul(args[0], NULL, 0),
2445                                 strtoul(args[1], NULL, 0), type, data_value, data_mask)) != ERROR_OK)
2446                 {
2447                         LOG_ERROR("Failure setting breakpoints");
2448                 }
2449         }
2450         else
2451         {
2452                 command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2453         }
2454                 
2455         return ERROR_OK;
2456 }
2457
2458 int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2459 {
2460         target_t *target = get_current_target(cmd_ctx);
2461
2462         if (argc > 0)
2463                 watchpoint_remove(target, strtoul(args[0], NULL, 0));
2464         
2465         return ERROR_OK;
2466 }
2467
2468 int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc)
2469 {
2470         int retval;
2471         target_t *target = get_current_target(cmd_ctx);
2472         u32 va;
2473         u32 pa;
2474
2475         if (argc != 1)
2476         {
2477                 return ERROR_COMMAND_SYNTAX_ERROR;
2478         }
2479         va = strtoul(args[0], NULL, 0);
2480
2481         retval = target->type->virt2phys(target, va, &pa);
2482         if (retval == ERROR_OK)
2483         {
2484                 command_print(cmd_ctx, "Physical address 0x%08x", pa);
2485         }
2486         else
2487         {
2488                 /* lower levels will have logged a detailed error which is 
2489                  * forwarded to telnet/GDB session.  
2490                  */
2491         }
2492         return retval;
2493 }
2494 static void writeLong(FILE *f, int l)
2495 {
2496         int i;
2497         for (i=0; i<4; i++)
2498         {
2499                 char c=(l>>(i*8))&0xff;
2500                 fwrite(&c, 1, 1, f); 
2501         }
2502         
2503 }
2504 static void writeString(FILE *f, char *s)
2505 {
2506         fwrite(s, 1, strlen(s), f); 
2507 }
2508
2509
2510
2511 // Dump a gmon.out histogram file.
2512 static void writeGmon(u32 *samples, int sampleNum, char *filename)
2513 {
2514         int i;
2515         FILE *f=fopen(filename, "w");
2516         if (f==NULL)
2517                 return;
2518         fwrite("gmon", 1, 4, f);
2519         writeLong(f, 0x00000001); // Version
2520         writeLong(f, 0); // padding
2521         writeLong(f, 0); // padding
2522         writeLong(f, 0); // padding
2523                                 
2524         fwrite("", 1, 1, f);  // GMON_TAG_TIME_HIST 
2525
2526         // figure out bucket size
2527         u32 min=samples[0];
2528         u32 max=samples[0];
2529         for (i=0; i<sampleNum; i++)
2530         {
2531                 if (min>samples[i])
2532                 {
2533                         min=samples[i];
2534                 }
2535                 if (max<samples[i])
2536                 {
2537                         max=samples[i];
2538                 }
2539         }
2540
2541         int addressSpace=(max-min+1);
2542         
2543         static int const maxBuckets=256*1024; // maximum buckets.
2544         int length=addressSpace;
2545         if (length > maxBuckets)
2546         {
2547                 length=maxBuckets; 
2548         }
2549         int *buckets=malloc(sizeof(int)*length);
2550         if (buckets==NULL)
2551         {
2552                 fclose(f);
2553                 return;
2554         }
2555         memset(buckets, 0, sizeof(int)*length);
2556         for (i=0; i<sampleNum;i++)
2557         {
2558                 u32 address=samples[i];
2559                 long long a=address-min;
2560                 long long b=length-1;
2561                 long long c=addressSpace-1;
2562                 int index=(a*b)/c; // danger!!!! int32 overflows 
2563                 buckets[index]++;
2564         }
2565         
2566         //                         append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr))
2567         writeLong(f, min);                                      // low_pc
2568         writeLong(f, max);              // high_pc
2569         writeLong(f, length);           // # of samples
2570         writeLong(f, 64000000);                         // 64MHz
2571         writeString(f, "seconds");
2572         for (i=0; i<(15-strlen("seconds")); i++)
2573         {
2574                 fwrite("", 1, 1, f);  // padding
2575         }
2576         writeString(f, "s");
2577                 
2578 //                         append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size)
2579         
2580         char *data=malloc(2*length);
2581         if (data!=NULL)
2582         {
2583                 for (i=0; i<length;i++)
2584                 {
2585                         int val;
2586                         val=buckets[i];
2587                         if (val>65535)
2588                         {
2589                                 val=65535;
2590                         }
2591                         data[i*2]=val&0xff;
2592                         data[i*2+1]=(val>>8)&0xff;
2593                 }
2594                 free(buckets);
2595                 fwrite(data, 1, length*2, f);
2596                 free(data);
2597         } else
2598         {
2599                 free(buckets);
2600         }
2601
2602         fclose(f);
2603 }
2604
2605 /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
2606 int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2607 {
2608         target_t *target = get_current_target(cmd_ctx);
2609         struct timeval timeout, now;
2610         
2611         gettimeofday(&timeout, NULL);
2612         if (argc!=2)
2613         {
2614                 return ERROR_COMMAND_SYNTAX_ERROR;
2615         }
2616         char *end;
2617         timeval_add_time(&timeout, strtoul(args[0], &end, 0), 0);
2618         if (*end) 
2619         {
2620                 return ERROR_OK;
2621         }
2622         
2623         command_print(cmd_ctx, "Starting profiling. Halting and resuming the target as often as we can...");
2624
2625         static const int maxSample=10000;
2626         u32 *samples=malloc(sizeof(u32)*maxSample);
2627         if (samples==NULL)
2628                 return ERROR_OK;
2629         
2630         int numSamples=0;
2631         int retval=ERROR_OK;
2632         // hopefully it is safe to cache! We want to stop/restart as quickly as possible.
2633         reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1);
2634         
2635         for (;;)
2636         {
2637                 target_poll(target);
2638                 if (target->state == TARGET_HALTED)
2639                 {
2640                         u32 t=*((u32 *)reg->value);
2641                         samples[numSamples++]=t;
2642                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2643                         target_poll(target);
2644                         usleep(10*1000); // sleep 10ms, i.e. <100 samples/second.
2645                 } else if (target->state == TARGET_RUNNING)
2646                 {
2647                         // We want to quickly sample the PC.
2648                         target_halt(target);
2649                 } else
2650                 {
2651                         command_print(cmd_ctx, "Target not halted or running");
2652                         retval=ERROR_OK;
2653                         break;
2654                 }
2655                 if (retval!=ERROR_OK)
2656                 {
2657                         break;
2658                 }
2659                 
2660                 gettimeofday(&now, NULL);
2661                 if ((numSamples>=maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
2662                 {
2663                         command_print(cmd_ctx, "Profiling completed. %d samples.", numSamples);
2664                         target_poll(target);
2665                         if (target->state == TARGET_HALTED)
2666                         {
2667                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2668                         }
2669                         target_poll(target);
2670                         writeGmon(samples, numSamples, args[1]);
2671                         command_print(cmd_ctx, "Wrote %s", args[1]);
2672                         break;
2673                 }
2674         }
2675         free(samples);
2676         
2677         return ERROR_OK;
2678 }
2679
2680 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 val)
2681 {
2682         char *namebuf;
2683         Jim_Obj *nameObjPtr, *valObjPtr;
2684         int result;
2685
2686         namebuf = alloc_printf("%s(%d)", varname, idx);
2687         if (!namebuf)
2688                 return JIM_ERR;
2689         
2690         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
2691         valObjPtr = Jim_NewIntObj(interp, val);
2692         if (!nameObjPtr || !valObjPtr)
2693         {
2694                 free(namebuf);
2695                 return JIM_ERR;
2696         }
2697
2698         Jim_IncrRefCount(nameObjPtr);
2699         Jim_IncrRefCount(valObjPtr);
2700         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
2701         Jim_DecrRefCount(interp, nameObjPtr);
2702         Jim_DecrRefCount(interp, valObjPtr);
2703         free(namebuf);
2704         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
2705         return result;
2706 }
2707
2708 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
2709 {
2710         target_t *target;
2711         command_context_t *context;
2712         long l;
2713         u32 width;
2714         u32 len;
2715         u32 addr;
2716         u32 count;
2717         u32 v;
2718         const char *varname;
2719         u8 buffer[4096];
2720         int  i, n, e, retval;
2721
2722         /* argv[1] = name of array to receive the data
2723          * argv[2] = desired width
2724          * argv[3] = memory address 
2725          * argv[4] = count of times to read
2726          */
2727         if (argc != 5) {
2728                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
2729                 return JIM_ERR;
2730         }
2731         varname = Jim_GetString(argv[1], &len);
2732         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
2733
2734         e = Jim_GetLong(interp, argv[2], &l);
2735         width = l;
2736         if (e != JIM_OK) {
2737                 return e;
2738         }
2739         
2740         e = Jim_GetLong(interp, argv[3], &l);
2741         addr = l;
2742         if (e != JIM_OK) {
2743                 return e;
2744         }
2745         e = Jim_GetLong(interp, argv[4], &l);
2746         len = l;
2747         if (e != JIM_OK) {
2748                 return e;
2749         }
2750         switch (width) {
2751                 case 8:
2752                         width = 1;
2753                         break;
2754                 case 16:
2755                         width = 2;
2756                         break;
2757                 case 32:
2758                         width = 4;
2759                         break;
2760                 default:
2761                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2762                         Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
2763                         return JIM_ERR;
2764         }
2765         if (len == 0) {
2766                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2767                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
2768                 return JIM_ERR;
2769         }
2770         if ((addr + (len * width)) < addr) {
2771                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2772                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
2773                 return JIM_ERR;
2774         }
2775         /* absurd transfer size? */
2776         if (len > 65536) {
2777                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2778                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
2779                 return JIM_ERR;
2780         }               
2781                 
2782         if ((width == 1) ||
2783                 ((width == 2) && ((addr & 1) == 0)) ||
2784                 ((width == 4) && ((addr & 3) == 0))) {
2785                 /* all is well */
2786         } else {
2787                 char buf[100];
2788                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2789                 sprintf(buf, "mem2array address: 0x%08x is not aligned for %d byte reads", addr, width); 
2790                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
2791                 return JIM_ERR;
2792         }
2793
2794         context = Jim_GetAssocData(interp, "context");
2795         if (context == NULL)
2796         {
2797                 LOG_ERROR("mem2array: no command context");
2798                 return JIM_ERR;
2799         }
2800         target = get_current_target(context);
2801         if (target == NULL)
2802         {
2803                 LOG_ERROR("mem2array: no current target");
2804                 return JIM_ERR;
2805         }
2806         
2807         /* Transfer loop */
2808
2809         /* index counter */
2810         n = 0;
2811         /* assume ok */
2812         e = JIM_OK;
2813         while (len) {
2814                 /* Slurp... in buffer size chunks */
2815                 
2816                 count = len; /* in objects.. */
2817                 if (count > (sizeof(buffer)/width)) {
2818                         count = (sizeof(buffer)/width);
2819                 }
2820                 
2821                 retval = target->type->read_memory( target, addr, width, count, buffer );
2822                 if (retval != ERROR_OK) {
2823                         /* BOO !*/
2824                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
2825                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2826                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
2827                         e = JIM_ERR;
2828                         len = 0;
2829                 } else {
2830                         v = 0; /* shut up gcc */
2831                         for (i = 0 ;i < count ;i++, n++) {
2832                                 switch (width) {
2833                                         case 4:
2834                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
2835                                                 break;
2836                                         case 2:
2837                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
2838                                                 break;
2839                                         case 1:
2840                                                 v = buffer[i] & 0x0ff;
2841                                                 break;
2842                                 }
2843                                 new_int_array_element(interp, varname, n, v);
2844                         }
2845                         len -= count;
2846                 }
2847         }
2848         
2849         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2850
2851         return JIM_OK;
2852 }
2853
2854 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 *val)
2855 {
2856         char *namebuf;
2857         Jim_Obj *nameObjPtr, *valObjPtr;
2858         int result;
2859         long l;
2860
2861         namebuf = alloc_printf("%s(%d)", varname, idx);
2862         if (!namebuf)
2863                 return JIM_ERR;
2864
2865         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
2866         if (!nameObjPtr)
2867         {
2868                 free(namebuf);
2869                 return JIM_ERR;
2870         }
2871
2872         Jim_IncrRefCount(nameObjPtr);
2873         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
2874         Jim_DecrRefCount(interp, nameObjPtr);
2875         free(namebuf);
2876         if (valObjPtr == NULL)
2877                 return JIM_ERR;
2878
2879         result = Jim_GetLong(interp, valObjPtr, &l);
2880         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
2881         *val = l;
2882         return result;
2883 }
2884
2885 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
2886 {
2887         target_t *target;
2888         command_context_t *context;
2889         long l;
2890         u32 width;
2891         u32 len;
2892         u32 addr;
2893         u32 count;
2894         u32 v;
2895         const char *varname;
2896         u8 buffer[4096];
2897         int  i, n, e, retval;
2898
2899         /* argv[1] = name of array to get the data
2900          * argv[2] = desired width
2901          * argv[3] = memory address 
2902          * argv[4] = count to write
2903          */
2904         if (argc != 5) {
2905                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
2906                 return JIM_ERR;
2907         }
2908         varname = Jim_GetString(argv[1], &len);
2909         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
2910
2911         e = Jim_GetLong(interp, argv[2], &l);
2912         width = l;
2913         if (e != JIM_OK) {
2914                 return e;
2915         }
2916         
2917         e = Jim_GetLong(interp, argv[3], &l);
2918         addr = l;
2919         if (e != JIM_OK) {
2920                 return e;
2921         }
2922         e = Jim_GetLong(interp, argv[4], &l);
2923         len = l;
2924         if (e != JIM_OK) {
2925                 return e;
2926         }
2927         switch (width) {
2928                 case 8:
2929                         width = 1;
2930                         break;
2931                 case 16:
2932                         width = 2;
2933                         break;
2934                 case 32:
2935                         width = 4;
2936                         break;
2937                 default:
2938                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2939                         Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
2940                         return JIM_ERR;
2941         }
2942         if (len == 0) {
2943                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2944                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
2945                 return JIM_ERR;
2946         }
2947         if ((addr + (len * width)) < addr) {
2948                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2949                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
2950                 return JIM_ERR;
2951         }
2952         /* absurd transfer size? */
2953         if (len > 65536) {
2954                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2955                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
2956                 return JIM_ERR;
2957         }               
2958                 
2959         if ((width == 1) ||
2960                 ((width == 2) && ((addr & 1) == 0)) ||
2961                 ((width == 4) && ((addr & 3) == 0))) {
2962                 /* all is well */
2963         } else {
2964                 char buf[100];
2965                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2966                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads", addr, width); 
2967                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
2968                 return JIM_ERR;
2969         }
2970
2971         context = Jim_GetAssocData(interp, "context");
2972         if (context == NULL)
2973         {
2974                 LOG_ERROR("array2mem: no command context");
2975                 return JIM_ERR;
2976         }
2977         target = get_current_target(context);
2978         if (target == NULL)
2979         {
2980                 LOG_ERROR("array2mem: no current target");
2981                 return JIM_ERR;
2982         }
2983         
2984         /* Transfer loop */
2985
2986         /* index counter */
2987         n = 0;
2988         /* assume ok */
2989         e = JIM_OK;
2990         while (len) {
2991                 /* Slurp... in buffer size chunks */
2992                 
2993                 count = len; /* in objects.. */
2994                 if (count > (sizeof(buffer)/width)) {
2995                         count = (sizeof(buffer)/width);
2996                 }
2997
2998                 v = 0; /* shut up gcc */
2999                 for (i = 0 ;i < count ;i++, n++) {
3000                         get_int_array_element(interp, varname, n, &v);
3001                         switch (width) {
3002                         case 4:
3003                                 target_buffer_set_u32(target, &buffer[i*width], v);
3004                                 break;
3005                         case 2:
3006                                 target_buffer_set_u16(target, &buffer[i*width], v);
3007                                 break;
3008                         case 1:
3009                                 buffer[i] = v & 0x0ff;
3010                                 break;
3011                         }
3012                 }
3013                 len -= count;
3014
3015                 retval = target->type->write_memory(target, addr, width, count, buffer);
3016                 if (retval != ERROR_OK) {
3017                         /* BOO !*/
3018                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
3019                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3020                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3021                         e = JIM_ERR;
3022                         len = 0;
3023                 }
3024         }
3025         
3026         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3027
3028         return JIM_OK;
3029 }