27df12fc33f42d34466c6f5ea6ad300ce90f822a
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   This program is free software; you can redistribute it and/or modify  *
6  *   it under the terms of the GNU General Public License as published by  *
7  *   the Free Software Foundation; either version 2 of the License, or     *
8  *   (at your option) any later version.                                   *
9  *                                                                         *
10  *   This program is distributed in the hope that it will be useful,       *
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
13  *   GNU General Public License for more details.                          *
14  *                                                                         *
15  *   You should have received a copy of the GNU General Public License     *
16  *   along with this program; if not, write to the                         *
17  *   Free Software Foundation, Inc.,                                       *
18  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
19  ***************************************************************************/
20 #ifdef HAVE_CONFIG_H
21 #include "config.h"
22 #endif
23
24 #include "replacements.h"
25 #include "target.h"
26 #include "target_request.h"
27
28 #include "log.h"
29 #include "configuration.h"
30 #include "binarybuffer.h"
31 #include "jtag.h"
32
33 #include <string.h>
34 #include <stdlib.h>
35 #include <inttypes.h>
36
37 #include <sys/types.h>
38 #include <sys/stat.h>
39 #include <unistd.h>
40 #include <errno.h>
41
42 #include <sys/time.h>
43 #include <time.h>
44
45 #include <time_support.h>
46
47 #include <fileio.h>
48 #include <image.h>
49
50 int cli_target_callback_event_handler(struct target_s *target, enum target_event event, void *priv);
51
52
53 int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
54 int handle_daemon_startup_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
55 int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
56
57 int handle_target_script_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
58 int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
59 int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
60
61 int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
62 int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
63 int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
64 int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
65 int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
66 int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
67 int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
68 int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
69 int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
70 int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
71 int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
72 int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
73 int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
74 int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
75 int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
76 int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
77 int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
78 int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc);
79
80 /* targets
81  */
82 extern target_type_t arm7tdmi_target;
83 extern target_type_t arm720t_target;
84 extern target_type_t arm9tdmi_target;
85 extern target_type_t arm920t_target;
86 extern target_type_t arm966e_target;
87 extern target_type_t arm926ejs_target;
88 extern target_type_t feroceon_target;
89 extern target_type_t xscale_target;
90 extern target_type_t cortexm3_target;
91
92 target_type_t *target_types[] =
93 {
94         &arm7tdmi_target,
95         &arm9tdmi_target,
96         &arm920t_target,
97         &arm720t_target,
98         &arm966e_target,
99         &arm926ejs_target,
100         &feroceon_target,
101         &xscale_target,
102         &cortexm3_target,
103         NULL,
104 };
105
106 target_t *targets = NULL;
107 target_event_callback_t *target_event_callbacks = NULL;
108 target_timer_callback_t *target_timer_callbacks = NULL;
109
110 char *target_state_strings[] =
111 {
112         "unknown",
113         "running",
114         "halted",
115         "reset",
116         "debug_running",
117 };
118
119 char *target_debug_reason_strings[] =
120 {
121         "debug request", "breakpoint", "watchpoint",
122         "watchpoint and breakpoint", "single step",
123         "target not halted"
124 };
125
126 char *target_endianess_strings[] =
127 {
128         "big endian",
129         "little endian",
130 };
131
132 enum daemon_startup_mode startup_mode = DAEMON_ATTACH;
133
134 static int target_continous_poll = 1;
135
136 /* read a u32 from a buffer in target memory endianness */
137 u32 target_buffer_get_u32(target_t *target, u8 *buffer)
138 {
139         if (target->endianness == TARGET_LITTLE_ENDIAN)
140                 return le_to_h_u32(buffer);
141         else
142                 return be_to_h_u32(buffer);
143 }
144
145 /* read a u16 from a buffer in target memory endianness */
146 u16 target_buffer_get_u16(target_t *target, u8 *buffer)
147 {
148         if (target->endianness == TARGET_LITTLE_ENDIAN)
149                 return le_to_h_u16(buffer);
150         else
151                 return be_to_h_u16(buffer);
152 }
153
154 /* write a u32 to a buffer in target memory endianness */
155 void target_buffer_set_u32(target_t *target, u8 *buffer, u32 value)
156 {
157         if (target->endianness == TARGET_LITTLE_ENDIAN)
158                 h_u32_to_le(buffer, value);
159         else
160                 h_u32_to_be(buffer, value);
161 }
162
163 /* write a u16 to a buffer in target memory endianness */
164 void target_buffer_set_u16(target_t *target, u8 *buffer, u16 value)
165 {
166         if (target->endianness == TARGET_LITTLE_ENDIAN)
167                 h_u16_to_le(buffer, value);
168         else
169                 h_u16_to_be(buffer, value);
170 }
171
172 /* returns a pointer to the n-th configured target */
173 target_t* get_target_by_num(int num)
174 {
175         target_t *target = targets;
176         int i = 0;
177
178         while (target)
179         {
180                 if (num == i)
181                         return target;
182                 target = target->next;
183                 i++;
184         }
185
186         return NULL;
187 }
188
189 int get_num_by_target(target_t *query_target)
190 {
191         target_t *target = targets;
192         int i = 0;      
193         
194         while (target)
195         {
196                 if (target == query_target)
197                         return i;
198                 target = target->next;
199                 i++;
200         }
201         
202         return -1;
203 }
204
205 target_t* get_current_target(command_context_t *cmd_ctx)
206 {
207         target_t *target = get_target_by_num(cmd_ctx->current_target);
208         
209         if (target == NULL)
210         {
211                 ERROR("BUG: current_target out of bounds");
212                 exit(-1);
213         }
214         
215         return target;
216 }
217
218 /* Process target initialization, when target entered debug out of reset
219  * the handler is unregistered at the end of this function, so it's only called once
220  */
221 int target_init_handler(struct target_s *target, enum target_event event, void *priv)
222 {
223         FILE *script;
224         struct command_context_s *cmd_ctx = priv;
225         
226         if ((event == TARGET_EVENT_HALTED) && (target->reset_script))
227         {
228                 target_unregister_event_callback(target_init_handler, priv);
229
230                 script = open_file_from_path(cmd_ctx, target->reset_script, "r");
231                 if (!script)
232                 {
233                         ERROR("couldn't open script file %s", target->reset_script);
234                                 return ERROR_OK;
235                 }
236
237                 INFO("executing reset script '%s'", target->reset_script);
238                 command_run_file(cmd_ctx, script, COMMAND_EXEC);
239                 fclose(script);
240
241                 jtag_execute_queue();
242         }
243         
244         return ERROR_OK;
245 }
246
247 int target_run_and_halt_handler(void *priv)
248 {
249         target_t *target = priv;
250         
251         target->type->halt(target);
252         
253         return ERROR_OK;
254 }
255
256 int target_process_reset(struct command_context_s *cmd_ctx)
257 {
258         int retval = ERROR_OK;
259         target_t *target;
260         struct timeval timeout, now;
261         
262         /* prepare reset_halt where necessary */
263         target = targets;
264         while (target)
265         {
266                 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
267                 {
268                         switch (target->reset_mode)
269                         {
270                                 case RESET_HALT:
271                                         command_print(cmd_ctx, "nSRST pulls nTRST, falling back to RESET_RUN_AND_HALT");
272                                         target->reset_mode = RESET_RUN_AND_HALT;
273                                         break;
274                                 case RESET_INIT:
275                                         command_print(cmd_ctx, "nSRST pulls nTRST, falling back to RESET_RUN_AND_INIT");
276                                         target->reset_mode = RESET_RUN_AND_INIT;
277                                         break;
278                                 default:
279                                         break;
280                         } 
281                 }
282                 switch (target->reset_mode)
283                 {
284                         case RESET_HALT:
285                         case RESET_INIT:
286                                 target->type->prepare_reset_halt(target);
287                                 break;
288                         default:
289                                 break;
290                 }
291                 target = target->next;
292         }
293         
294         target = targets;
295         while (target)
296         {
297                 target->type->assert_reset(target);
298                 target = target->next;
299         }
300         jtag_execute_queue();
301         
302         /* request target halt if necessary, and schedule further action */
303         target = targets;
304         while (target)
305         {
306                 switch (target->reset_mode)
307                 {
308                         case RESET_RUN:
309                                 /* nothing to do if target just wants to be run */
310                                 break;
311                         case RESET_RUN_AND_HALT:
312                                 /* schedule halt */
313                                 target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target);
314                                 break;
315                         case RESET_RUN_AND_INIT:
316                                 /* schedule halt */
317                                 target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target);
318                                 target_register_event_callback(target_init_handler, cmd_ctx);
319                                 break;
320                         case RESET_HALT:
321                                 target->type->halt(target);
322                                 break;
323                         case RESET_INIT:
324                                 target->type->halt(target);
325                                 target_register_event_callback(target_init_handler, cmd_ctx);
326                                 break;
327                         default:
328                                 ERROR("BUG: unknown target->reset_mode");
329                 }
330                 target = target->next;
331         }
332         
333         target = targets;
334         while (target)
335         {
336                 target->type->deassert_reset(target);
337                 target = target->next;
338         }
339         jtag_execute_queue();
340
341         /* Wait for reset to complete, maximum 5 seconds. */    
342         gettimeofday(&timeout, NULL);
343         timeval_add_time(&timeout, 5, 0);
344         for(;;)
345         {
346                 gettimeofday(&now, NULL);
347                 
348                 target_call_timer_callbacks();
349                 
350                 target = targets;
351                 while (target)
352                 {
353                         target->type->poll(target);
354                         if ((target->reset_mode == RESET_RUN_AND_INIT) || (target->reset_mode == RESET_RUN_AND_HALT))
355                         {
356                                 if (target->state != TARGET_HALTED)
357                                 {
358                                         if ((now.tv_sec > timeout.tv_sec) || ((now.tv_sec == timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
359                                         {
360                                                 command_print(cmd_ctx, "Timed out waiting for reset");
361                                                 goto done;
362                                         }
363                                         usleep(100*1000); /* Do not eat all cpu */
364                                         goto again;
365                                 }
366                         }
367                         target = target->next;
368                 }
369                 /* All targets we're waiting for are halted */
370                 break;
371                 
372                 again:;
373         }
374         done:
375         
376         
377         /* We want any events to be processed before the prompt */
378         target_call_timer_callbacks();
379         
380         return retval;
381 }
382
383 static int default_virt2phys(struct target_s *target, u32 virtual, u32 *physical)
384 {
385         *physical = virtual;
386         return ERROR_OK;
387 }
388
389 static int default_mmu(struct target_s *target, int *enabled)
390 {
391         *enabled = 0;
392         return ERROR_OK;
393 }
394
395 int target_init(struct command_context_s *cmd_ctx)
396 {
397         target_t *target = targets;
398         
399         while (target)
400         {
401                 if (target->type->init_target(cmd_ctx, target) != ERROR_OK)
402                 {
403                         ERROR("target '%s' init failed", target->type->name);
404                         exit(-1);
405                 }
406                 
407                 /* Set up default functions if none are provided by target */
408                 if (target->type->virt2phys == NULL)
409                 {
410                         target->type->virt2phys = default_virt2phys;
411                 }
412                 if (target->type->mmu == NULL)
413                 {
414                         target->type->mmu = default_mmu;
415                 }
416                 target = target->next;
417         }
418         
419         if (targets)
420         {
421                 target_register_user_commands(cmd_ctx);
422                 target_register_timer_callback(handle_target, 100, 1, NULL);
423         }
424                 
425         return ERROR_OK;
426 }
427
428 int target_init_reset(struct command_context_s *cmd_ctx)
429 {
430         if (startup_mode == DAEMON_RESET)
431                 target_process_reset(cmd_ctx);
432         
433         return ERROR_OK;
434 }
435
436 int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
437 {
438         target_event_callback_t **callbacks_p = &target_event_callbacks;
439         
440         if (callback == NULL)
441         {
442                 return ERROR_INVALID_ARGUMENTS;
443         }
444         
445         if (*callbacks_p)
446         {
447                 while ((*callbacks_p)->next)
448                         callbacks_p = &((*callbacks_p)->next);
449                 callbacks_p = &((*callbacks_p)->next);
450         }
451         
452         (*callbacks_p) = malloc(sizeof(target_event_callback_t));
453         (*callbacks_p)->callback = callback;
454         (*callbacks_p)->priv = priv;
455         (*callbacks_p)->next = NULL;
456         
457         return ERROR_OK;
458 }
459
460 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
461 {
462         target_timer_callback_t **callbacks_p = &target_timer_callbacks;
463         struct timeval now;
464         
465         if (callback == NULL)
466         {
467                 return ERROR_INVALID_ARGUMENTS;
468         }
469         
470         if (*callbacks_p)
471         {
472                 while ((*callbacks_p)->next)
473                         callbacks_p = &((*callbacks_p)->next);
474                 callbacks_p = &((*callbacks_p)->next);
475         }
476         
477         (*callbacks_p) = malloc(sizeof(target_timer_callback_t));
478         (*callbacks_p)->callback = callback;
479         (*callbacks_p)->periodic = periodic;
480         (*callbacks_p)->time_ms = time_ms;
481         
482         gettimeofday(&now, NULL);
483         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
484         time_ms -= (time_ms % 1000);
485         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
486         if ((*callbacks_p)->when.tv_usec > 1000000)
487         {
488                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
489                 (*callbacks_p)->when.tv_sec += 1;
490         }
491         
492         (*callbacks_p)->priv = priv;
493         (*callbacks_p)->next = NULL;
494         
495         return ERROR_OK;
496 }
497
498 int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
499 {
500         target_event_callback_t **p = &target_event_callbacks;
501         target_event_callback_t *c = target_event_callbacks;
502         
503         if (callback == NULL)
504         {
505                 return ERROR_INVALID_ARGUMENTS;
506         }
507                 
508         while (c)
509         {
510                 target_event_callback_t *next = c->next;
511                 if ((c->callback == callback) && (c->priv == priv))
512                 {
513                         *p = next;
514                         free(c);
515                         return ERROR_OK;
516                 }
517                 else
518                         p = &(c->next);
519                 c = next;
520         }
521         
522         return ERROR_OK;
523 }
524
525 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
526 {
527         target_timer_callback_t **p = &target_timer_callbacks;
528         target_timer_callback_t *c = target_timer_callbacks;
529         
530         if (callback == NULL)
531         {
532                 return ERROR_INVALID_ARGUMENTS;
533         }
534                 
535         while (c)
536         {
537                 target_timer_callback_t *next = c->next;
538                 if ((c->callback == callback) && (c->priv == priv))
539                 {
540                         *p = next;
541                         free(c);
542                         return ERROR_OK;
543                 }
544                 else
545                         p = &(c->next);
546                 c = next;
547         }
548         
549         return ERROR_OK;
550 }
551
552 int target_call_event_callbacks(target_t *target, enum target_event event)
553 {
554         target_event_callback_t *callback = target_event_callbacks;
555         target_event_callback_t *next_callback;
556         
557         DEBUG("target event %i", event);
558         
559         while (callback)
560         {
561                 next_callback = callback->next;
562                 callback->callback(target, event, callback->priv);
563                 callback = next_callback;
564         }
565         
566         return ERROR_OK;
567 }
568
569 int target_call_timer_callbacks()
570 {
571         target_timer_callback_t *callback = target_timer_callbacks;
572         target_timer_callback_t *next_callback;
573         struct timeval now;
574
575         gettimeofday(&now, NULL);
576         
577         while (callback)
578         {
579                 next_callback = callback->next;
580                 
581                 if (((now.tv_sec >= callback->when.tv_sec) && (now.tv_usec >= callback->when.tv_usec))
582                         || (now.tv_sec > callback->when.tv_sec))
583                 {
584                         callback->callback(callback->priv);
585                         if (callback->periodic)
586                         {
587                                 int time_ms = callback->time_ms;
588                                 callback->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
589                                 time_ms -= (time_ms % 1000);
590                                 callback->when.tv_sec = now.tv_sec + time_ms / 1000;
591                                 if (callback->when.tv_usec > 1000000)
592                                 {
593                                         callback->when.tv_usec = callback->when.tv_usec - 1000000;
594                                         callback->when.tv_sec += 1;
595                                 }
596                         }
597                         else
598                                 target_unregister_timer_callback(callback->callback, callback->priv);
599                 }
600                         
601                 callback = next_callback;
602         }
603         
604         return ERROR_OK;
605 }
606
607 int target_alloc_working_area(struct target_s *target, u32 size, working_area_t **area)
608 {
609         working_area_t *c = target->working_areas;
610         working_area_t *new_wa = NULL;
611         
612         /* Reevaluate working area address based on MMU state*/
613         if (target->working_areas == NULL)
614         {
615                 int retval;
616                 int enabled;
617                 retval = target->type->mmu(target, &enabled);
618                 if (retval != ERROR_OK)
619                 {
620                         return retval;
621                 }
622                 if (enabled)
623                 {
624                         target->working_area = target->working_area_virt;
625                 }
626                 else
627                 {
628                         target->working_area = target->working_area_phys;
629                 }
630         }
631         
632         /* only allocate multiples of 4 byte */
633         if (size % 4)
634         {
635                 ERROR("BUG: code tried to allocate unaligned number of bytes, padding");
636                 size = CEIL(size, 4);
637         }
638         
639         /* see if there's already a matching working area */
640         while (c)
641         {
642                 if ((c->free) && (c->size == size))
643                 {
644                         new_wa = c;
645                         break;
646                 }
647                 c = c->next;
648         }
649         
650         /* if not, allocate a new one */
651         if (!new_wa)
652         {
653                 working_area_t **p = &target->working_areas;
654                 u32 first_free = target->working_area;
655                 u32 free_size = target->working_area_size;
656                 
657                 DEBUG("allocating new working area");
658                 
659                 c = target->working_areas;
660                 while (c)
661                 {
662                         first_free += c->size;
663                         free_size -= c->size;
664                         p = &c->next;
665                         c = c->next;
666                 }
667                 
668                 if (free_size < size)
669                 {
670                         WARNING("not enough working area available(requested %d, free %d)", size, free_size);
671                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
672                 }
673                 
674                 new_wa = malloc(sizeof(working_area_t));
675                 new_wa->next = NULL;
676                 new_wa->size = size;
677                 new_wa->address = first_free;
678                 
679                 if (target->backup_working_area)
680                 {
681                         new_wa->backup = malloc(new_wa->size);
682                         target->type->read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup);
683                 }
684                 else
685                 {
686                         new_wa->backup = NULL;
687                 }
688                 
689                 /* put new entry in list */
690                 *p = new_wa;
691         }
692         
693         /* mark as used, and return the new (reused) area */
694         new_wa->free = 0;
695         *area = new_wa;
696         
697         /* user pointer */
698         new_wa->user = area;
699         
700         return ERROR_OK;
701 }
702
703 int target_free_working_area(struct target_s *target, working_area_t *area)
704 {
705         if (area->free)
706                 return ERROR_OK;
707         
708         if (target->backup_working_area)
709                 target->type->write_memory(target, area->address, 4, area->size / 4, area->backup);
710         
711         area->free = 1;
712         
713         /* mark user pointer invalid */
714         *area->user = NULL;
715         area->user = NULL;
716         
717         return ERROR_OK;
718 }
719
720 int target_free_all_working_areas(struct target_s *target)
721 {
722         working_area_t *c = target->working_areas;
723
724         while (c)
725         {
726                 working_area_t *next = c->next;
727                 target_free_working_area(target, c);
728                 
729                 if (c->backup)
730                         free(c->backup);
731                 
732                 free(c);
733                 
734                 c = next;
735         }
736         
737         target->working_areas = NULL;
738         
739         return ERROR_OK;
740 }
741
742 int target_register_commands(struct command_context_s *cmd_ctx)
743 {
744         register_command(cmd_ctx, NULL, "target", handle_target_command, COMMAND_CONFIG, NULL);
745         register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, NULL);
746         register_command(cmd_ctx, NULL, "daemon_startup", handle_daemon_startup_command, COMMAND_CONFIG, NULL);
747         register_command(cmd_ctx, NULL, "target_script", handle_target_script_command, COMMAND_CONFIG, NULL);
748         register_command(cmd_ctx, NULL, "run_and_halt_time", handle_run_and_halt_time_command, COMMAND_CONFIG, NULL);
749         register_command(cmd_ctx, NULL, "working_area", handle_working_area_command, COMMAND_ANY, "working_area <target#> <address> <size> <'backup'|'nobackup'> [virtual address]");
750         register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "virt2phys <virtual address>");
751
752         return ERROR_OK;
753 }
754
755 int target_arch_state(struct target_s *target)
756 {
757         int retval;
758         if (target==NULL)
759         {
760                 USER("No target has been configured");
761                 return ERROR_OK;
762         }
763         
764         USER("target state: %s", target_state_strings[target->state]);
765         
766         if (target->state!=TARGET_HALTED)
767                 return ERROR_OK;
768         
769         retval=target->type->arch_state(target);
770         return retval;
771 }
772
773 /* Single aligned words are guaranteed to use 16 or 32 bit access 
774  * mode respectively, otherwise data is handled as quickly as 
775  * possible
776  */
777 int target_write_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
778 {
779         int retval;
780         
781         DEBUG("writing buffer of %i byte at 0x%8.8x", size, address);
782         
783         if (((address % 2) == 0) && (size == 2))
784         {
785                 return target->type->write_memory(target, address, 2, 1, buffer);
786         }
787         
788         /* handle unaligned head bytes */
789         if (address % 4)
790         {
791                 int unaligned = 4 - (address % 4);
792                 
793                 if (unaligned > size)
794                         unaligned = size;
795
796                 if ((retval = target->type->write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
797                         return retval;
798                 
799                 buffer += unaligned;
800                 address += unaligned;
801                 size -= unaligned;
802         }
803                 
804         /* handle aligned words */
805         if (size >= 4)
806         {
807                 int aligned = size - (size % 4);
808         
809                 /* use bulk writes above a certain limit. This may have to be changed */
810                 if (aligned > 128)
811                 {
812                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
813                                 return retval;
814                 }
815                 else
816                 {
817                         if ((retval = target->type->write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
818                                 return retval;
819                 }
820                 
821                 buffer += aligned;
822                 address += aligned;
823                 size -= aligned;
824         }
825         
826         /* handle tail writes of less than 4 bytes */
827         if (size > 0)
828         {
829                 if ((retval = target->type->write_memory(target, address, 1, size, buffer)) != ERROR_OK)
830                         return retval;
831         }
832         
833         return ERROR_OK;
834 }
835
836
837 /* Single aligned words are guaranteed to use 16 or 32 bit access 
838  * mode respectively, otherwise data is handled as quickly as 
839  * possible
840  */
841 int target_read_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
842 {
843         int retval;
844         
845         DEBUG("reading buffer of %i byte at 0x%8.8x", size, address);
846         
847         if (((address % 2) == 0) && (size == 2))
848         {
849                 return target->type->read_memory(target, address, 2, 1, buffer);
850         }
851         
852         /* handle unaligned head bytes */
853         if (address % 4)
854         {
855                 int unaligned = 4 - (address % 4);
856                 
857                 if (unaligned > size)
858                         unaligned = size;
859
860                 if ((retval = target->type->read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
861                         return retval;
862                 
863                 buffer += unaligned;
864                 address += unaligned;
865                 size -= unaligned;
866         }
867                 
868         /* handle aligned words */
869         if (size >= 4)
870         {
871                 int aligned = size - (size % 4);
872         
873                 if ((retval = target->type->read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
874                         return retval;
875                 
876                 buffer += aligned;
877                 address += aligned;
878                 size -= aligned;
879         }
880         
881         /* handle tail writes of less than 4 bytes */
882         if (size > 0)
883         {
884                 if ((retval = target->type->read_memory(target, address, 1, size, buffer)) != ERROR_OK)
885                         return retval;
886         }
887         
888         return ERROR_OK;
889 }
890
891 int target_checksum_memory(struct target_s *target, u32 address, u32 size, u32* crc)
892 {
893         u8 *buffer;
894         int retval;
895         int i;
896         u32 checksum = 0;
897         
898         if ((retval = target->type->checksum_memory(target, address,
899                 size, &checksum)) == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
900         {
901                 buffer = malloc(size);
902                 if (buffer == NULL)
903                 {
904                         ERROR("error allocating buffer for section (%d bytes)", size);
905                         return ERROR_INVALID_ARGUMENTS;
906                 }
907                 retval = target_read_buffer(target, address, size, buffer);
908                 if (retval != ERROR_OK)
909                 {
910                         free(buffer);
911                         return retval;
912                 }
913
914                 /* convert to target endianess */
915                 for (i = 0; i < (size/sizeof(u32)); i++)
916                 {
917                         u32 target_data;
918                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(u32)]);
919                         target_buffer_set_u32(target, &buffer[i*sizeof(u32)], target_data);
920                 }
921
922                 retval = image_calculate_checksum( buffer, size, &checksum );
923                 free(buffer);
924         }
925         
926         *crc = checksum;
927         
928         return retval;
929 }
930
931 int target_read_u32(struct target_s *target, u32 address, u32 *value)
932 {
933         u8 value_buf[4];
934
935         int retval = target->type->read_memory(target, address, 4, 1, value_buf);
936         
937         if (retval == ERROR_OK)
938         {
939                 *value = target_buffer_get_u32(target, value_buf);
940                 DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, *value);
941         }
942         else
943         {
944                 *value = 0x0;
945                 DEBUG("address: 0x%8.8x failed", address);
946         }
947         
948         return retval;
949 }
950
951 int target_read_u16(struct target_s *target, u32 address, u16 *value)
952 {
953         u8 value_buf[2];
954         
955         int retval = target->type->read_memory(target, address, 2, 1, value_buf);
956         
957         if (retval == ERROR_OK)
958         {
959                 *value = target_buffer_get_u16(target, value_buf);
960                 DEBUG("address: 0x%8.8x, value: 0x%4.4x", address, *value);
961         }
962         else
963         {
964                 *value = 0x0;
965                 DEBUG("address: 0x%8.8x failed", address);
966         }
967         
968         return retval;
969 }
970
971 int target_read_u8(struct target_s *target, u32 address, u8 *value)
972 {
973         int retval = target->type->read_memory(target, address, 1, 1, value);
974
975         if (retval == ERROR_OK)
976         {
977                 DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, *value);
978         }
979         else
980         {
981                 *value = 0x0;
982                 DEBUG("address: 0x%8.8x failed", address);
983         }
984         
985         return retval;
986 }
987
988 int target_write_u32(struct target_s *target, u32 address, u32 value)
989 {
990         int retval;
991         u8 value_buf[4];
992
993         DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
994
995         target_buffer_set_u32(target, value_buf, value);        
996         if ((retval = target->type->write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
997         {
998                 DEBUG("failed: %i", retval);
999         }
1000         
1001         return retval;
1002 }
1003
1004 int target_write_u16(struct target_s *target, u32 address, u16 value)
1005 {
1006         int retval;
1007         u8 value_buf[2];
1008         
1009         DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1010
1011         target_buffer_set_u16(target, value_buf, value);        
1012         if ((retval = target->type->write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1013         {
1014                 DEBUG("failed: %i", retval);
1015         }
1016         
1017         return retval;
1018 }
1019
1020 int target_write_u8(struct target_s *target, u32 address, u8 value)
1021 {
1022         int retval;
1023         
1024         DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, value);
1025
1026         if ((retval = target->type->read_memory(target, address, 1, 1, &value)) != ERROR_OK)
1027         {
1028                 DEBUG("failed: %i", retval);
1029         }
1030         
1031         return retval;
1032 }
1033
1034 int target_register_user_commands(struct command_context_s *cmd_ctx)
1035 {
1036         register_command(cmd_ctx,  NULL, "reg", handle_reg_command, COMMAND_EXEC, NULL);
1037         register_command(cmd_ctx,  NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state");
1038         register_command(cmd_ctx,  NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]");
1039         register_command(cmd_ctx,  NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target");
1040         register_command(cmd_ctx,  NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]");
1041         register_command(cmd_ctx,  NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]");
1042         register_command(cmd_ctx,  NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run|halt|init|run_and_halt|run_and_init]");
1043         register_command(cmd_ctx,  NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset");
1044
1045         register_command(cmd_ctx,  NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words <addr> [count]");
1046         register_command(cmd_ctx,  NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words <addr> [count]");
1047         register_command(cmd_ctx,  NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes <addr> [count]");
1048         
1049         register_command(cmd_ctx,  NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word <addr> <value>");
1050         register_command(cmd_ctx,  NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word <addr> <value>");
1051         register_command(cmd_ctx,  NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte <addr> <value>");
1052         
1053         register_command(cmd_ctx,  NULL, "bp", handle_bp_command, COMMAND_EXEC, "set breakpoint <address> <length> [hw]");      
1054         register_command(cmd_ctx,  NULL, "rbp", handle_rbp_command, COMMAND_EXEC, "remove breakpoint <adress>");
1055         register_command(cmd_ctx,  NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint <address> <length> <r/w/a> [value] [mask]");    
1056         register_command(cmd_ctx,  NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint <adress>");
1057         
1058         register_command(cmd_ctx,  NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> ['bin'|'ihex'|'elf'|'s19']");
1059         register_command(cmd_ctx,  NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>");
1060         register_command(cmd_ctx,  NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image <file> [offset] [type]");
1061         register_command(cmd_ctx,  NULL, "load_binary", handle_load_image_command, COMMAND_EXEC, "[DEPRECATED] load_binary <file> <address>");
1062         register_command(cmd_ctx,  NULL, "dump_binary", handle_dump_image_command, COMMAND_EXEC, "[DEPRECATED] dump_binary <file> <address> <size>");
1063         
1064         target_request_register_commands(cmd_ctx);
1065         trace_register_commands(cmd_ctx);
1066         
1067         return ERROR_OK;
1068 }
1069
1070 int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1071 {
1072         target_t *target = targets;
1073         int count = 0;
1074         
1075         if (argc == 1)
1076         {
1077                 int num = strtoul(args[0], NULL, 0);
1078                 
1079                 while (target)
1080                 {
1081                         count++;
1082                         target = target->next;
1083                 }
1084                 
1085                 if (num < count)
1086                         cmd_ctx->current_target = num;
1087                 else
1088                         command_print(cmd_ctx, "%i is out of bounds, only %i targets are configured", num, count);
1089                         
1090                 return ERROR_OK;
1091         }
1092                 
1093         while (target)
1094         {
1095                 command_print(cmd_ctx, "%i: %s (%s), state: %s", count++, target->type->name, target_endianess_strings[target->endianness], target_state_strings[target->state]);
1096                 target = target->next;
1097         }
1098         
1099         return ERROR_OK;
1100 }
1101
1102 int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1103 {
1104         int i;
1105         int found = 0;
1106         
1107         if (argc < 3)
1108         {
1109                 ERROR("target command requires at least three arguments: <type> <endianess> <reset_mode>");
1110                 exit(-1);
1111         }
1112         
1113         /* search for the specified target */
1114         if (args[0] && (args[0][0] != 0))
1115         {
1116                 for (i = 0; target_types[i]; i++)
1117                 {
1118                         if (strcmp(args[0], target_types[i]->name) == 0)
1119                         {
1120                                 target_t **last_target_p = &targets;
1121                                 
1122                                 /* register target specific commands */
1123                                 if (target_types[i]->register_commands(cmd_ctx) != ERROR_OK)
1124                                 {
1125                                         ERROR("couldn't register '%s' commands", args[0]);
1126                                         exit(-1);
1127                                 }
1128
1129                                 if (*last_target_p)
1130                                 {
1131                                         while ((*last_target_p)->next)
1132                                                 last_target_p = &((*last_target_p)->next);
1133                                         last_target_p = &((*last_target_p)->next);
1134                                 }
1135
1136                                 *last_target_p = malloc(sizeof(target_t));
1137                                 
1138                                 (*last_target_p)->type = target_types[i];
1139                                 
1140                                 if (strcmp(args[1], "big") == 0)
1141                                         (*last_target_p)->endianness = TARGET_BIG_ENDIAN;
1142                                 else if (strcmp(args[1], "little") == 0)
1143                                         (*last_target_p)->endianness = TARGET_LITTLE_ENDIAN;
1144                                 else
1145                                 {
1146                                         ERROR("endianness must be either 'little' or 'big', not '%s'", args[1]);
1147                                         exit(-1);
1148                                 }
1149                                 
1150                                 /* what to do on a target reset */
1151                                 if (strcmp(args[2], "reset_halt") == 0)
1152                                         (*last_target_p)->reset_mode = RESET_HALT;
1153                                 else if (strcmp(args[2], "reset_run") == 0)
1154                                         (*last_target_p)->reset_mode = RESET_RUN;
1155                                 else if (strcmp(args[2], "reset_init") == 0)
1156                                         (*last_target_p)->reset_mode = RESET_INIT;
1157                                 else if (strcmp(args[2], "run_and_halt") == 0)
1158                                         (*last_target_p)->reset_mode = RESET_RUN_AND_HALT;
1159                                 else if (strcmp(args[2], "run_and_init") == 0)
1160                                         (*last_target_p)->reset_mode = RESET_RUN_AND_INIT;
1161                                 else
1162                                 {
1163                                         ERROR("unknown target startup mode %s", args[2]);
1164                                         exit(-1);
1165                                 }
1166                                 (*last_target_p)->run_and_halt_time = 1000; /* default 1s */
1167                                 
1168                                 (*last_target_p)->reset_script = NULL;
1169                                 (*last_target_p)->post_halt_script = NULL;
1170                                 (*last_target_p)->pre_resume_script = NULL;
1171                                 (*last_target_p)->gdb_program_script = NULL;
1172                                 
1173                                 (*last_target_p)->working_area = 0x0;
1174                                 (*last_target_p)->working_area_size = 0x0;
1175                                 (*last_target_p)->working_areas = NULL;
1176                                 (*last_target_p)->backup_working_area = 0;
1177                                 
1178                                 (*last_target_p)->state = TARGET_UNKNOWN;
1179                                 (*last_target_p)->reg_cache = NULL;
1180                                 (*last_target_p)->breakpoints = NULL;
1181                                 (*last_target_p)->watchpoints = NULL;
1182                                 (*last_target_p)->next = NULL;
1183                                 (*last_target_p)->arch_info = NULL;
1184                                 
1185                                 /* initialize trace information */
1186                                 (*last_target_p)->trace_info = malloc(sizeof(trace_t));
1187                                 (*last_target_p)->trace_info->num_trace_points = 0;
1188                                 (*last_target_p)->trace_info->trace_points_size = 0;
1189                                 (*last_target_p)->trace_info->trace_points = NULL;
1190                                 (*last_target_p)->trace_info->trace_history_size = 0;
1191                                 (*last_target_p)->trace_info->trace_history = NULL;
1192                                 (*last_target_p)->trace_info->trace_history_pos = 0;
1193                                 (*last_target_p)->trace_info->trace_history_overflowed = 0;
1194                                 
1195                                 (*last_target_p)->dbgmsg = NULL;
1196                                 (*last_target_p)->dbg_msg_enabled = 0;
1197                                                                 
1198                                 (*last_target_p)->type->target_command(cmd_ctx, cmd, args, argc, *last_target_p);
1199                                 
1200                                 found = 1;
1201                                 break;
1202                         }
1203                 }
1204         }
1205         
1206         /* no matching target found */
1207         if (!found)
1208         {
1209                 ERROR("target '%s' not found", args[0]);
1210                 exit(-1);
1211         }
1212
1213         return ERROR_OK;
1214 }
1215
1216 /* usage: target_script <target#> <event> <script_file> */
1217 int handle_target_script_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1218 {
1219         target_t *target = NULL;
1220         
1221         if (argc < 3)
1222         {
1223                 ERROR("incomplete target_script command");
1224                 exit(-1);
1225         }
1226         
1227         target = get_target_by_num(strtoul(args[0], NULL, 0));
1228         
1229         if (!target)
1230         {
1231                 ERROR("target number '%s' not defined", args[0]);
1232                 exit(-1);
1233         }
1234         
1235         if (strcmp(args[1], "reset") == 0)
1236         {
1237                 if (target->reset_script)
1238                         free(target->reset_script);
1239                 target->reset_script = strdup(args[2]);
1240         }
1241         else if (strcmp(args[1], "post_halt") == 0)
1242         {
1243                 if (target->post_halt_script)
1244                         free(target->post_halt_script);
1245                 target->post_halt_script = strdup(args[2]);
1246         }
1247         else if (strcmp(args[1], "pre_resume") == 0)
1248         {
1249                 if (target->pre_resume_script)
1250                         free(target->pre_resume_script);
1251                 target->pre_resume_script = strdup(args[2]);
1252         }
1253         else if (strcmp(args[1], "gdb_program_config") == 0)
1254         {
1255                 if (target->gdb_program_script)
1256                         free(target->gdb_program_script);
1257                 target->gdb_program_script = strdup(args[2]);
1258         }
1259         else
1260         {
1261                 ERROR("unknown event type: '%s", args[1]);
1262                 exit(-1);       
1263         }
1264         
1265         return ERROR_OK;
1266 }
1267
1268 int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1269 {
1270         target_t *target = NULL;
1271         
1272         if (argc < 2)
1273         {
1274                 ERROR("incomplete run_and_halt_time command");
1275                 exit(-1);
1276         }
1277         
1278         target = get_target_by_num(strtoul(args[0], NULL, 0));
1279         
1280         if (!target)
1281         {
1282                 ERROR("target number '%s' not defined", args[0]);
1283                 exit(-1);
1284         }
1285         
1286         target->run_and_halt_time = strtoul(args[1], NULL, 0);
1287         
1288         return ERROR_OK;
1289 }
1290
1291 int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1292 {
1293         target_t *target = NULL;
1294         
1295         if ((argc < 4) || (argc > 5))
1296         {
1297                 return ERROR_COMMAND_SYNTAX_ERROR;
1298         }
1299         
1300         target = get_target_by_num(strtoul(args[0], NULL, 0));
1301         
1302         if (!target)
1303         {
1304                 ERROR("target number '%s' not defined", args[0]);
1305                 exit(-1);
1306         }
1307         target_free_all_working_areas(target);
1308         
1309         target->working_area_phys = target->working_area_virt = strtoul(args[1], NULL, 0);
1310         if (argc == 5)
1311         {
1312                 target->working_area_virt = strtoul(args[4], NULL, 0);
1313         }
1314         target->working_area_size = strtoul(args[2], NULL, 0);
1315         
1316         if (strcmp(args[3], "backup") == 0)
1317         {
1318                 target->backup_working_area = 1;
1319         }
1320         else if (strcmp(args[3], "nobackup") == 0)
1321         {
1322                 target->backup_working_area = 0;
1323         }
1324         else
1325         {
1326                 ERROR("unrecognized <backup|nobackup> argument (%s)", args[3]);
1327                 return ERROR_COMMAND_SYNTAX_ERROR;
1328         }
1329         
1330         return ERROR_OK;
1331 }
1332
1333
1334 /* process target state changes */
1335 int handle_target(void *priv)
1336 {
1337         int retval;
1338         target_t *target = targets;
1339         
1340         while (target)
1341         {
1342                 /* only poll if target isn't already halted */
1343                 if (target->state != TARGET_HALTED)
1344                 {
1345                         if (target_continous_poll)
1346                                 if ((retval = target->type->poll(target)) != ERROR_OK)
1347                                 {
1348                                         ERROR("couldn't poll target(%d). It's due for a reset.", retval);
1349                                 }
1350                 }
1351         
1352                 target = target->next;
1353         }
1354         
1355         return ERROR_OK;
1356 }
1357
1358 int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1359 {
1360         target_t *target;
1361         reg_t *reg = NULL;
1362         int count = 0;
1363         char *value;
1364         
1365         DEBUG("-");
1366         
1367         target = get_current_target(cmd_ctx);
1368         
1369         /* list all available registers for the current target */
1370         if (argc == 0)
1371         {
1372                 reg_cache_t *cache = target->reg_cache;
1373                 
1374                 count = 0;
1375                 while(cache)
1376                 {
1377                         int i;
1378                         for (i = 0; i < cache->num_regs; i++)
1379                         {
1380                                 value = buf_to_str(cache->reg_list[i].value, cache->reg_list[i].size, 16);
1381                                 command_print(cmd_ctx, "(%i) %s (/%i): 0x%s (dirty: %i, valid: %i)", count++, cache->reg_list[i].name, cache->reg_list[i].size, value, cache->reg_list[i].dirty, cache->reg_list[i].valid);
1382                                 free(value);
1383                         }
1384                         cache = cache->next;
1385                 }
1386                 
1387                 return ERROR_OK;
1388         }
1389         
1390         /* access a single register by its ordinal number */
1391         if ((args[0][0] >= '0') && (args[0][0] <= '9'))
1392         {
1393                 int num = strtoul(args[0], NULL, 0);
1394                 reg_cache_t *cache = target->reg_cache;
1395                 
1396                 count = 0;
1397                 while(cache)
1398                 {
1399                         int i;
1400                         for (i = 0; i < cache->num_regs; i++)
1401                         {
1402                                 if (count++ == num)
1403                                 {
1404                                         reg = &cache->reg_list[i];
1405                                         break;
1406                                 }
1407                         }
1408                         if (reg)
1409                                 break;
1410                         cache = cache->next;
1411                 }
1412                 
1413                 if (!reg)
1414                 {
1415                         command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1416                         return ERROR_OK;
1417                 }
1418         } else /* access a single register by its name */
1419         {
1420                 reg = register_get_by_name(target->reg_cache, args[0], 1);
1421                 
1422                 if (!reg)
1423                 {
1424                         command_print(cmd_ctx, "register %s not found in current target", args[0]);
1425                         return ERROR_OK;
1426                 }
1427         }
1428
1429         /* display a register */
1430         if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
1431         {
1432                 if ((argc == 2) && (strcmp(args[1], "force") == 0))
1433                         reg->valid = 0;
1434                 
1435                 if (reg->valid == 0)
1436                 {
1437                         reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1438                         if (arch_type == NULL)
1439                         {
1440                                 ERROR("BUG: encountered unregistered arch type");
1441                                 return ERROR_OK;
1442                         }
1443                         arch_type->get(reg);
1444                 }
1445                 value = buf_to_str(reg->value, reg->size, 16);
1446                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1447                 free(value);
1448                 return ERROR_OK;
1449         }
1450         
1451         /* set register value */
1452         if (argc == 2)
1453         {
1454                 u8 *buf = malloc(CEIL(reg->size, 8));
1455                 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
1456
1457                 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1458                 if (arch_type == NULL)
1459                 {
1460                         ERROR("BUG: encountered unregistered arch type");
1461                         return ERROR_OK;
1462                 }
1463                 
1464                 arch_type->set(reg, buf);
1465                 
1466                 value = buf_to_str(reg->value, reg->size, 16);
1467                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1468                 free(value);
1469                 
1470                 free(buf);
1471                 
1472                 return ERROR_OK;
1473         }
1474         
1475         command_print(cmd_ctx, "usage: reg <#|name> [value]");
1476         
1477         return ERROR_OK;
1478 }
1479
1480 static int wait_state(struct command_context_s *cmd_ctx, char *cmd, enum target_state state, int ms);
1481
1482 int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1483 {
1484         target_t *target = get_current_target(cmd_ctx);
1485
1486         if (argc == 0)
1487         {
1488                 target->type->poll(target);
1489                         target_arch_state(target);
1490         }
1491         else
1492         {
1493                 if (strcmp(args[0], "on") == 0)
1494                 {
1495                         target_continous_poll = 1;
1496                 }
1497                 else if (strcmp(args[0], "off") == 0)
1498                 {
1499                         target_continous_poll = 0;
1500                 }
1501                 else
1502                 {
1503                         command_print(cmd_ctx, "arg is \"on\" or \"off\"");
1504                 }
1505         }
1506         
1507         
1508         return ERROR_OK;
1509 }
1510
1511 int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1512 {
1513         int ms = 5000;
1514         
1515         if (argc > 0)
1516         {
1517                 char *end;
1518
1519                 ms = strtoul(args[0], &end, 0) * 1000;
1520                 if (*end)
1521                 {
1522                         command_print(cmd_ctx, "usage: %s [seconds]", cmd);
1523                         return ERROR_OK;
1524                 }
1525         }
1526
1527         return wait_state(cmd_ctx, cmd, TARGET_HALTED, ms); 
1528 }
1529
1530 static void target_process_events(struct command_context_s *cmd_ctx)
1531 {
1532         target_t *target = get_current_target(cmd_ctx);
1533         target->type->poll(target);
1534         target_call_timer_callbacks();
1535 }
1536
1537 static int wait_state(struct command_context_s *cmd_ctx, char *cmd, enum target_state state, int ms)
1538 {
1539         int retval;
1540         struct timeval timeout, now;
1541         
1542         gettimeofday(&timeout, NULL);
1543         timeval_add_time(&timeout, 0, ms * 1000);
1544         
1545         target_t *target = get_current_target(cmd_ctx);
1546         for (;;)
1547         {
1548                 if ((retval=target->type->poll(target))!=ERROR_OK)
1549                         return retval;
1550                 target_call_timer_callbacks();
1551                 if (target->state == state)
1552                 {
1553                         break;
1554                 }
1555                 command_print(cmd_ctx, "waiting for target %s...", target_state_strings[state]);
1556                 
1557                 gettimeofday(&now, NULL);
1558                 if ((now.tv_sec > timeout.tv_sec) || ((now.tv_sec == timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
1559                 {
1560                         command_print(cmd_ctx, "timed out while waiting for target %s", target_state_strings[state]);
1561                         ERROR("timed out while waiting for target %s", target_state_strings[state]);
1562                         break;
1563                 }
1564         }
1565         
1566         return ERROR_OK;
1567 }
1568
1569 int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1570 {
1571         int retval;
1572         target_t *target = get_current_target(cmd_ctx);
1573
1574         DEBUG("-");
1575         
1576         command_print(cmd_ctx, "requesting target halt...");
1577
1578         if ((retval = target->type->halt(target)) != ERROR_OK)
1579         {       
1580                 switch (retval)
1581                 {
1582                         case ERROR_TARGET_ALREADY_HALTED:
1583                                 command_print(cmd_ctx, "target already halted");
1584                                 break;
1585                         case ERROR_TARGET_TIMEOUT:
1586                                 command_print(cmd_ctx, "target timed out... shutting down");
1587                                 return retval;
1588                         default:
1589                                 command_print(cmd_ctx, "unknown error... shutting down");
1590                                 return retval;
1591                 }
1592         }
1593         
1594         return handle_wait_halt_command(cmd_ctx, cmd, args, argc);
1595 }
1596
1597 /* what to do on daemon startup */
1598 int handle_daemon_startup_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1599 {
1600         if (argc == 1)
1601         {
1602                 if (strcmp(args[0], "attach") == 0)
1603                 {
1604                         startup_mode = DAEMON_ATTACH;
1605                         return ERROR_OK;
1606                 }
1607                 else if (strcmp(args[0], "reset") == 0)
1608                 {
1609                         startup_mode = DAEMON_RESET;
1610                         return ERROR_OK;
1611                 }
1612         }
1613         
1614         WARNING("invalid daemon_startup configuration directive: %s", args[0]);
1615         return ERROR_OK;
1616
1617 }
1618                 
1619 int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1620 {
1621         target_t *target = get_current_target(cmd_ctx);
1622         int retval;
1623         
1624         command_print(cmd_ctx, "requesting target halt and executing a soft reset");
1625         
1626         if ((retval = target->type->soft_reset_halt(target)) != ERROR_OK)
1627         {       
1628                 switch (retval)
1629                 {
1630                         case ERROR_TARGET_TIMEOUT:
1631                                 command_print(cmd_ctx, "target timed out... shutting down");
1632                                 exit(-1);
1633                         default:
1634                                 command_print(cmd_ctx, "unknown error... shutting down");
1635                                 exit(-1);
1636                 }
1637         }
1638         
1639         return ERROR_OK;
1640 }
1641
1642 int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1643 {
1644         target_t *target = get_current_target(cmd_ctx);
1645         enum target_reset_mode reset_mode = target->reset_mode;
1646         enum target_reset_mode save = target->reset_mode;
1647         
1648         DEBUG("-");
1649         
1650         if (argc >= 1)
1651         {
1652                 if (strcmp("run", args[0]) == 0)
1653                         reset_mode = RESET_RUN;
1654                 else if (strcmp("halt", args[0]) == 0)
1655                         reset_mode = RESET_HALT;
1656                 else if (strcmp("init", args[0]) == 0)
1657                         reset_mode = RESET_INIT;
1658                 else if (strcmp("run_and_halt", args[0]) == 0)
1659                 {
1660                         reset_mode = RESET_RUN_AND_HALT;
1661                         if (argc >= 2)
1662                         {
1663                                 target->run_and_halt_time = strtoul(args[1], NULL, 0);
1664                         }
1665                 }
1666                 else if (strcmp("run_and_init", args[0]) == 0)
1667                 {
1668                         reset_mode = RESET_RUN_AND_INIT;
1669                         if (argc >= 2)
1670                         {
1671                                 target->run_and_halt_time = strtoul(args[1], NULL, 0);
1672                         }
1673                 }
1674                 else
1675                 {
1676                         command_print(cmd_ctx, "usage: reset ['run', 'halt', 'init', 'run_and_halt', 'run_and_init]");
1677                         return ERROR_OK;
1678                 }
1679         }
1680         
1681         /* temporarily modify mode of current reset target */
1682         target->reset_mode = reset_mode;
1683
1684         /* reset *all* targets */
1685         target_process_reset(cmd_ctx);
1686         
1687         /* Restore default reset mode for this target */
1688     target->reset_mode = save;
1689         
1690         return ERROR_OK;
1691 }
1692
1693 int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1694 {
1695         int retval;
1696         target_t *target = get_current_target(cmd_ctx);
1697         
1698         if (argc == 0)
1699                 retval = target->type->resume(target, 1, 0, 1, 0); /* current pc, addr = 0, handle breakpoints, not debugging */
1700         else if (argc == 1)
1701                 retval = target->type->resume(target, 0, strtoul(args[0], NULL, 0), 1, 0); /* addr = args[0], handle breakpoints, not debugging */
1702         else
1703         {
1704                 return ERROR_COMMAND_SYNTAX_ERROR;
1705         }
1706
1707         target_process_events(cmd_ctx);
1708         
1709         target_arch_state(target);
1710         
1711         return retval;
1712 }
1713
1714 int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1715 {
1716         target_t *target = get_current_target(cmd_ctx);
1717         
1718         DEBUG("-");
1719         
1720         if (argc == 0)
1721                 target->type->step(target, 1, 0, 1); /* current pc, addr = 0, handle breakpoints */
1722
1723         if (argc == 1)
1724                 target->type->step(target, 0, strtoul(args[0], NULL, 0), 1); /* addr = args[0], handle breakpoints */
1725         
1726         return ERROR_OK;
1727 }
1728
1729 int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1730 {
1731         const int line_bytecnt = 32;
1732         int count = 1;
1733         int size = 4;
1734         u32 address = 0;
1735         int line_modulo;
1736         int i;
1737
1738         char output[128];
1739         int output_len;
1740
1741         int retval;
1742
1743         u8 *buffer;
1744         target_t *target = get_current_target(cmd_ctx);
1745
1746         if (argc < 1)
1747                 return ERROR_OK;
1748
1749         if (argc == 2)
1750                 count = strtoul(args[1], NULL, 0);
1751
1752         address = strtoul(args[0], NULL, 0);
1753         
1754
1755         switch (cmd[2])
1756         {
1757                 case 'w':
1758                         size = 4; line_modulo = line_bytecnt / 4;
1759                         break;
1760                 case 'h':
1761                         size = 2; line_modulo = line_bytecnt / 2;
1762                         break;
1763                 case 'b':
1764                         size = 1; line_modulo = line_bytecnt / 1;
1765                         break;
1766                 default:
1767                         return ERROR_OK;
1768         }
1769
1770         buffer = calloc(count, size);
1771         retval  = target->type->read_memory(target, address, size, count, buffer);
1772         if (retval != ERROR_OK)
1773         {
1774                 switch (retval)
1775                 {
1776                         case ERROR_TARGET_UNALIGNED_ACCESS:
1777                                 command_print(cmd_ctx, "error: address not aligned");
1778                                 break;
1779                         case ERROR_TARGET_NOT_HALTED:
1780                                 command_print(cmd_ctx, "error: target must be halted for memory accesses");
1781                                 break;                  
1782                         case ERROR_TARGET_DATA_ABORT:
1783                                 command_print(cmd_ctx, "error: access caused data abort, system possibly corrupted");
1784                                 break;
1785                         default:
1786                                 command_print(cmd_ctx, "error: unknown error");
1787                                 break;
1788                 }
1789                 return ERROR_OK;
1790         }
1791
1792         output_len = 0;
1793
1794         for (i = 0; i < count; i++)
1795         {
1796                 if (i%line_modulo == 0)
1797                         output_len += snprintf(output + output_len, 128 - output_len, "0x%8.8x: ", address + (i*size));
1798                 
1799                 switch (size)
1800                 {
1801                         case 4:
1802                                 output_len += snprintf(output + output_len, 128 - output_len, "%8.8x ", target_buffer_get_u32(target, &buffer[i*4]));
1803                                 break;
1804                         case 2:
1805                                 output_len += snprintf(output + output_len, 128 - output_len, "%4.4x ", target_buffer_get_u16(target, &buffer[i*2]));
1806                                 break;
1807                         case 1:
1808                                 output_len += snprintf(output + output_len, 128 - output_len, "%2.2x ", buffer[i*1]);
1809                                 break;
1810                 }
1811
1812                 if ((i%line_modulo == line_modulo-1) || (i == count - 1))
1813                 {
1814                         command_print(cmd_ctx, output);
1815                         output_len = 0;
1816                 }
1817         }
1818
1819         free(buffer);
1820         
1821         return ERROR_OK;
1822 }
1823
1824 int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1825 {
1826         u32 address = 0;
1827         u32 value = 0;
1828         int retval;
1829         target_t *target = get_current_target(cmd_ctx);
1830         u8 value_buf[4];
1831
1832         if (argc < 2)
1833                 return ERROR_OK;
1834
1835         address = strtoul(args[0], NULL, 0);
1836         value = strtoul(args[1], NULL, 0);
1837
1838         switch (cmd[2])
1839         {
1840                 case 'w':
1841                         target_buffer_set_u32(target, value_buf, value);
1842                         retval = target->type->write_memory(target, address, 4, 1, value_buf);
1843                         break;
1844                 case 'h':
1845                         target_buffer_set_u16(target, value_buf, value);
1846                         retval = target->type->write_memory(target, address, 2, 1, value_buf);
1847                         break;
1848                 case 'b':
1849                         value_buf[0] = value;
1850                         retval = target->type->write_memory(target, address, 1, 1, value_buf);
1851                         break;
1852                 default:
1853                         return ERROR_OK;
1854         }
1855
1856         switch (retval)
1857         {
1858                 case ERROR_TARGET_UNALIGNED_ACCESS:
1859                         command_print(cmd_ctx, "error: address not aligned");
1860                         break;
1861                 case ERROR_TARGET_DATA_ABORT:
1862                         command_print(cmd_ctx, "error: access caused data abort, system possibly corrupted");
1863                         break;
1864                 case ERROR_TARGET_NOT_HALTED:
1865                         command_print(cmd_ctx, "error: target must be halted for memory accesses");
1866                         break;
1867                 case ERROR_OK:
1868                         break;
1869                 default:
1870                         command_print(cmd_ctx, "error: unknown error");
1871                         break;
1872         }
1873
1874         return ERROR_OK;
1875
1876 }
1877
1878 int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1879 {
1880         u8 *buffer;
1881         u32 buf_cnt;
1882         u32 image_size;
1883         int i;
1884         int retval;
1885
1886         image_t image;  
1887         
1888         duration_t duration;
1889         char *duration_text;
1890         
1891         target_t *target = get_current_target(cmd_ctx);
1892
1893         if (argc < 1)
1894         {
1895                 command_print(cmd_ctx, "usage: load_image <filename> [address] [type]");
1896                 return ERROR_OK;
1897         }
1898         
1899         /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
1900         if (argc >= 2)
1901         {
1902                 image.base_address_set = 1;
1903                 image.base_address = strtoul(args[1], NULL, 0);
1904         }
1905         else
1906         {
1907                 image.base_address_set = 0;
1908         }
1909         
1910         image.start_address_set = 0;
1911
1912         duration_start_measure(&duration);
1913         
1914         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
1915         {
1916                 command_print(cmd_ctx, "load_image error: %s", image.error_str);
1917                 return ERROR_OK;
1918         }
1919         
1920         image_size = 0x0;
1921         for (i = 0; i < image.num_sections; i++)
1922         {
1923                 buffer = malloc(image.sections[i].size);
1924                 if (buffer == NULL)
1925                 {
1926                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
1927                         break;
1928                 }
1929                 
1930                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
1931                 {
1932                         ERROR("image_read_section failed with error code: %i", retval);
1933                         command_print(cmd_ctx, "image reading failed, download aborted");
1934                         free(buffer);
1935                         image_close(&image);
1936                         return ERROR_OK;
1937                 }
1938                 target_write_buffer(target, image.sections[i].base_address, buf_cnt, buffer);
1939                 image_size += buf_cnt;
1940                 command_print(cmd_ctx, "%u byte written at address 0x%8.8x", buf_cnt, image.sections[i].base_address);
1941                 
1942                 free(buffer);
1943         }
1944
1945         duration_stop_measure(&duration, &duration_text);
1946         command_print(cmd_ctx, "downloaded %u byte in %s", image_size, duration_text);
1947         free(duration_text);
1948         
1949         image_close(&image);
1950
1951         return ERROR_OK;
1952
1953 }
1954
1955 int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1956 {
1957         fileio_t fileio;
1958         
1959         u32 address;
1960         u32 size;
1961         u8 buffer[560];
1962         int retval;
1963         
1964         duration_t duration;
1965         char *duration_text;
1966         
1967         target_t *target = get_current_target(cmd_ctx);
1968
1969         if (argc != 3)
1970         {
1971                 command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
1972                 return ERROR_OK;
1973         }
1974
1975         address = strtoul(args[1], NULL, 0);
1976         size = strtoul(args[2], NULL, 0);
1977
1978         if ((address & 3) || (size & 3))
1979         {
1980                 command_print(cmd_ctx, "only 32-bit aligned address and size are supported");
1981                 return ERROR_OK;
1982         }
1983         
1984         if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
1985         {
1986                 command_print(cmd_ctx, "dump_image error: %s", fileio.error_str);
1987                 return ERROR_OK;
1988         }
1989         
1990         duration_start_measure(&duration);
1991         
1992         while (size > 0)
1993         {
1994                 u32 size_written;
1995                 u32 this_run_size = (size > 560) ? 560 : size;
1996                 
1997                 retval = target->type->read_memory(target, address, 4, this_run_size / 4, buffer);
1998                 if (retval != ERROR_OK)
1999                 {
2000                         command_print(cmd_ctx, "Reading memory failed %d", retval);
2001                         break;
2002                 }
2003                 
2004                 fileio_write(&fileio, this_run_size, buffer, &size_written);
2005                 
2006                 size -= this_run_size;
2007                 address += this_run_size;
2008         }
2009
2010         fileio_close(&fileio);
2011
2012         duration_stop_measure(&duration, &duration_text);
2013         command_print(cmd_ctx, "dumped %"PRIi64" byte in %s", fileio.size, duration_text);
2014         free(duration_text);
2015         
2016         return ERROR_OK;
2017 }
2018
2019 int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2020 {
2021         u8 *buffer;
2022         u32 buf_cnt;
2023         u32 image_size;
2024         int i;
2025         int retval;
2026         u32 checksum = 0;
2027         u32 mem_checksum = 0;
2028
2029         image_t image;  
2030         
2031         duration_t duration;
2032         char *duration_text;
2033         
2034         target_t *target = get_current_target(cmd_ctx);
2035         
2036         if (argc < 1)
2037         {
2038                 command_print(cmd_ctx, "usage: verify_image <file> [offset] [type]");
2039                 return ERROR_OK;
2040         }
2041         
2042         if (!target)
2043         {
2044                 ERROR("no target selected");
2045                 return ERROR_OK;
2046         }
2047         
2048         duration_start_measure(&duration);
2049         
2050         if (argc >= 2)
2051         {
2052                 image.base_address_set = 1;
2053                 image.base_address = strtoul(args[1], NULL, 0);
2054         }
2055         else
2056         {
2057                 image.base_address_set = 0;
2058                 image.base_address = 0x0;
2059         }
2060
2061         image.start_address_set = 0;
2062
2063         if (image_open(&image, args[0], (argc == 3) ? args[2] : NULL) != ERROR_OK)
2064         {
2065                 command_print(cmd_ctx, "verify_image error: %s", image.error_str);
2066                 return ERROR_OK;
2067         }
2068         
2069         image_size = 0x0;
2070         for (i = 0; i < image.num_sections; i++)
2071         {
2072                 buffer = malloc(image.sections[i].size);
2073                 if (buffer == NULL)
2074                 {
2075                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2076                         break;
2077                 }
2078                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2079                 {
2080                         ERROR("image_read_section failed with error code: %i", retval);
2081                         command_print(cmd_ctx, "image reading failed, verify aborted");
2082                         free(buffer);
2083                         image_close(&image);
2084                         return ERROR_OK;
2085                 }
2086                 
2087                 /* calculate checksum of image */
2088                 image_calculate_checksum( buffer, buf_cnt, &checksum );
2089                 
2090                 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2091                 
2092                 if( retval != ERROR_OK )
2093                 {
2094                         command_print(cmd_ctx, "could not calculate checksum, verify aborted");
2095                         free(buffer);
2096                         image_close(&image);
2097                         return ERROR_OK;
2098                 }
2099                 
2100                 if( checksum != mem_checksum )
2101                 {
2102                         /* failed crc checksum, fall back to a binary compare */
2103                         u8 *data;
2104                         
2105                         command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
2106                         
2107                         data = (u8*)malloc(buf_cnt);
2108                         
2109                         /* Can we use 32bit word accesses? */
2110                         int size = 1;
2111                         int count = buf_cnt;
2112                         if ((count % 4) == 0)
2113                         {
2114                                 size *= 4;
2115                                 count /= 4;
2116                         }
2117                         retval = target->type->read_memory(target, image.sections[i].base_address, size, count, data);
2118         
2119                         if (retval == ERROR_OK)
2120                         {
2121                                 int t;
2122                                 for (t = 0; t < buf_cnt; t++)
2123                                 {
2124                                         if (data[t] != buffer[t])
2125                                         {
2126                                                 command_print(cmd_ctx, "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n", t + image.sections[i].base_address, data[t], buffer[t]);
2127                                                 free(data);
2128                                                 free(buffer);
2129                                                 image_close(&image);
2130                                                 return ERROR_OK;
2131                                         }
2132                                 }
2133                         }
2134                         
2135                         free(data);
2136                 }
2137                 
2138                 free(buffer);
2139                 image_size += buf_cnt;
2140         }
2141         
2142         duration_stop_measure(&duration, &duration_text);
2143         command_print(cmd_ctx, "verified %u bytes in %s", image_size, duration_text);
2144         free(duration_text);
2145         
2146         image_close(&image);
2147         
2148         return ERROR_OK;
2149 }
2150
2151 int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2152 {
2153         int retval;
2154         target_t *target = get_current_target(cmd_ctx);
2155
2156         if (argc == 0)
2157         {
2158                 breakpoint_t *breakpoint = target->breakpoints;
2159
2160                 while (breakpoint)
2161                 {
2162                         if (breakpoint->type == BKPT_SOFT)
2163                         {
2164                                 char* buf = buf_to_str(breakpoint->orig_instr, breakpoint->length, 16);
2165                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i, 0x%s", breakpoint->address, breakpoint->length, breakpoint->set, buf);
2166                                 free(buf);
2167                         }
2168                         else
2169                         {
2170                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i", breakpoint->address, breakpoint->length, breakpoint->set);
2171                         }
2172                         breakpoint = breakpoint->next;
2173                 }
2174         }
2175         else if (argc >= 2)
2176         {
2177                 int hw = BKPT_SOFT;
2178                 u32 length = 0;
2179
2180                 length = strtoul(args[1], NULL, 0);
2181                 
2182                 if (argc >= 3)
2183                         if (strcmp(args[2], "hw") == 0)
2184                                 hw = BKPT_HARD;
2185
2186                 if ((retval = breakpoint_add(target, strtoul(args[0], NULL, 0), length, hw)) != ERROR_OK)
2187                 {
2188                         switch (retval)
2189                         {
2190                                 case ERROR_TARGET_NOT_HALTED:
2191                                         command_print(cmd_ctx, "target must be halted to set breakpoints");
2192                                         break;
2193                                 case ERROR_TARGET_RESOURCE_NOT_AVAILABLE:
2194                                         command_print(cmd_ctx, "no more breakpoints available");
2195                                         break;
2196                                 default:
2197                                         command_print(cmd_ctx, "unknown error, breakpoint not set");
2198                                         break;
2199                         }
2200                 }
2201                 else
2202                 {
2203                         command_print(cmd_ctx, "breakpoint added at address 0x%8.8x", strtoul(args[0], NULL, 0));
2204                 }
2205         }
2206         else
2207         {
2208                 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
2209         }
2210
2211         return ERROR_OK;
2212 }
2213
2214 int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2215 {
2216         target_t *target = get_current_target(cmd_ctx);
2217
2218         if (argc > 0)
2219                 breakpoint_remove(target, strtoul(args[0], NULL, 0));
2220
2221         return ERROR_OK;
2222 }
2223
2224 int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2225 {
2226         target_t *target = get_current_target(cmd_ctx);
2227         int retval;
2228
2229         if (argc == 0)
2230         {
2231                 watchpoint_t *watchpoint = target->watchpoints;
2232
2233                 while (watchpoint)
2234                 {
2235                         command_print(cmd_ctx, "address: 0x%8.8x, mask: 0x%8.8x, r/w/a: %i, value: 0x%8.8x, mask: 0x%8.8x", watchpoint->address, watchpoint->length, watchpoint->rw, watchpoint->value, watchpoint->mask);
2236                         watchpoint = watchpoint->next;
2237                 }
2238         } 
2239         else if (argc >= 2)
2240         {
2241                 enum watchpoint_rw type = WPT_ACCESS;
2242                 u32 data_value = 0x0;
2243                 u32 data_mask = 0xffffffff;
2244                 
2245                 if (argc >= 3)
2246                 {
2247                         switch(args[2][0])
2248                         {
2249                                 case 'r':
2250                                         type = WPT_READ;
2251                                         break;
2252                                 case 'w':
2253                                         type = WPT_WRITE;
2254                                         break;
2255                                 case 'a':
2256                                         type = WPT_ACCESS;
2257                                         break;
2258                                 default:
2259                                         command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2260                                         return ERROR_OK;
2261                         }
2262                 }
2263                 if (argc >= 4)
2264                 {
2265                         data_value = strtoul(args[3], NULL, 0);
2266                 }
2267                 if (argc >= 5)
2268                 {
2269                         data_mask = strtoul(args[4], NULL, 0);
2270                 }
2271                 
2272                 if ((retval = watchpoint_add(target, strtoul(args[0], NULL, 0),
2273                                 strtoul(args[1], NULL, 0), type, data_value, data_mask)) != ERROR_OK)
2274                 {
2275                         switch (retval)
2276                         {
2277                                 case ERROR_TARGET_NOT_HALTED:
2278                                         command_print(cmd_ctx, "target must be halted to set watchpoints");
2279                                         break;
2280                                 case ERROR_TARGET_RESOURCE_NOT_AVAILABLE:
2281                                         command_print(cmd_ctx, "no more watchpoints available");
2282                                         break;
2283                                 default:
2284                                         command_print(cmd_ctx, "unknown error, watchpoint not set");
2285                                         break;
2286                         }       
2287                 }
2288         }
2289         else
2290         {
2291                 command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2292         }
2293                 
2294         return ERROR_OK;
2295 }
2296
2297 int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2298 {
2299         target_t *target = get_current_target(cmd_ctx);
2300
2301         if (argc > 0)
2302                 watchpoint_remove(target, strtoul(args[0], NULL, 0));
2303         
2304         return ERROR_OK;
2305 }
2306
2307 int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc)
2308 {
2309         int retval;
2310         target_t *target = get_current_target(cmd_ctx);
2311         u32 va;
2312         u32 pa;
2313
2314         if (argc != 1)
2315         {
2316                 return ERROR_COMMAND_SYNTAX_ERROR;
2317         }
2318         va = strtoul(args[0], NULL, 0);
2319
2320         retval = target->type->virt2phys(target, va, &pa);
2321         if (retval == ERROR_OK)
2322         {
2323                 command_print(cmd_ctx, "Physical address 0x%08x", pa);
2324         }
2325         else
2326         {
2327                 /* lower levels will have logged a detailed error which is 
2328                  * forwarded to telnet/GDB session.  
2329                  */
2330         }
2331         return retval;
2332 }