2209612cf180a2ef03c26b2560604a173d2653f2
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007,2008 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   This program is free software; you can redistribute it and/or modify  *
18  *   it under the terms of the GNU General Public License as published by  *
19  *   the Free Software Foundation; either version 2 of the License, or     *
20  *   (at your option) any later version.                                   *
21  *                                                                         *
22  *   This program is distributed in the hope that it will be useful,       *
23  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
24  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
25  *   GNU General Public License for more details.                          *
26  *                                                                         *
27  *   You should have received a copy of the GNU General Public License     *
28  *   along with this program; if not, write to the                         *
29  *   Free Software Foundation, Inc.,                                       *
30  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "target.h"
37 #include "target_request.h"
38 #include "time_support.h"
39 #include "register.h"
40 #include "trace.h"
41 #include "image.h"
42 #include "jtag.h"
43
44 #include <inttypes.h>
45
46
47 static int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
48
49 static int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
50 static int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
51 static int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
52 static int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
53 static int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
54 static int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
55 static int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
56 static int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
57 static int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
58 static int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
59 static int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
60 static int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
61 static int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
62 static int handle_test_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
63 static int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
64 static int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
65 static int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
66 static int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
67 static int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc);
68 static int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
69 static int handle_fast_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
70 static int handle_fast_load_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
71
72 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
73 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
74 static int jim_target( Jim_Interp *interp, int argc, Jim_Obj *const *argv);
75
76 static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv);
77 static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv);
78
79 /* targets */
80 extern target_type_t arm7tdmi_target;
81 extern target_type_t arm720t_target;
82 extern target_type_t arm9tdmi_target;
83 extern target_type_t arm920t_target;
84 extern target_type_t arm966e_target;
85 extern target_type_t arm926ejs_target;
86 extern target_type_t feroceon_target;
87 extern target_type_t xscale_target;
88 extern target_type_t cortexm3_target;
89 extern target_type_t cortexa8_target;
90 extern target_type_t arm11_target;
91 extern target_type_t mips_m4k_target;
92 extern target_type_t avr_target;
93
94 target_type_t *target_types[] =
95 {
96         &arm7tdmi_target,
97         &arm9tdmi_target,
98         &arm920t_target,
99         &arm720t_target,
100         &arm966e_target,
101         &arm926ejs_target,
102         &feroceon_target,
103         &xscale_target,
104         &cortexm3_target,
105         &cortexa8_target,
106         &arm11_target,
107         &mips_m4k_target,
108         &avr_target,
109         NULL,
110 };
111
112 target_t *all_targets = NULL;
113 target_event_callback_t *target_event_callbacks = NULL;
114 target_timer_callback_t *target_timer_callbacks = NULL;
115
116 const Jim_Nvp nvp_assert[] = {
117         { .name = "assert", NVP_ASSERT },
118         { .name = "deassert", NVP_DEASSERT },
119         { .name = "T", NVP_ASSERT },
120         { .name = "F", NVP_DEASSERT },
121         { .name = "t", NVP_ASSERT },
122         { .name = "f", NVP_DEASSERT },
123         { .name = NULL, .value = -1 }
124 };
125
126 const Jim_Nvp nvp_error_target[] = {
127         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
128         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
129         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
130         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
131         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
132         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
133         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
134         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
135         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
136         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
137         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
138         { .value = -1, .name = NULL }
139 };
140
141 const char *target_strerror_safe( int err )
142 {
143         const Jim_Nvp *n;
144
145         n = Jim_Nvp_value2name_simple( nvp_error_target, err );
146         if( n->name == NULL ){
147                 return "unknown";
148         } else {
149                 return n->name;
150         }
151 }
152
153 static const Jim_Nvp nvp_target_event[] = {
154         { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
155         { .value = TARGET_EVENT_OLD_pre_resume         , .name = "old-pre_resume" },
156
157         { .value = TARGET_EVENT_EARLY_HALTED, .name = "early-halted" },
158         { .value = TARGET_EVENT_HALTED, .name = "halted" },
159         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
160         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
161         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
162
163         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
164         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
165
166         /* historical name */
167
168         { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
169
170         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
171         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
172         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
173         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
174         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
175         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
176         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
177         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
178         { .value = TARGET_EVENT_RESET_INIT , .name = "reset-init" },
179         { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
180
181         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
182         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
183
184         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
185         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
186
187         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
188         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
189
190         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
191         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
192
193         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
194         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
195
196         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
197         { .value = TARGET_EVENT_RESUMED     , .name = "resume-ok" },
198         { .value = TARGET_EVENT_RESUME_END  , .name = "resume-end" },
199
200         { .name = NULL, .value = -1 }
201 };
202
203 const Jim_Nvp nvp_target_state[] = {
204         { .name = "unknown", .value = TARGET_UNKNOWN },
205         { .name = "running", .value = TARGET_RUNNING },
206         { .name = "halted",  .value = TARGET_HALTED },
207         { .name = "reset",   .value = TARGET_RESET },
208         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
209         { .name = NULL, .value = -1 },
210 };
211
212 const Jim_Nvp nvp_target_debug_reason [] = {
213         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
214         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
215         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
216         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
217         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
218         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
219         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
220         { .name = NULL, .value = -1 },
221 };
222
223 const Jim_Nvp nvp_target_endian[] = {
224         { .name = "big",    .value = TARGET_BIG_ENDIAN },
225         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
226         { .name = "be",     .value = TARGET_BIG_ENDIAN },
227         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
228         { .name = NULL,     .value = -1 },
229 };
230
231 const Jim_Nvp nvp_reset_modes[] = {
232         { .name = "unknown", .value = RESET_UNKNOWN },
233         { .name = "run"    , .value = RESET_RUN },
234         { .name = "halt"   , .value = RESET_HALT },
235         { .name = "init"   , .value = RESET_INIT },
236         { .name = NULL     , .value = -1 },
237 };
238
239 static int max_target_number(void)
240 {
241         target_t *t;
242         int x;
243
244         x = -1;
245         t = all_targets;
246         while( t ){
247                 if( x < t->target_number ){
248                         x = (t->target_number)+1;
249                 }
250                 t = t->next;
251         }
252         return x;
253 }
254
255 /* determine the number of the new target */
256 static int new_target_number(void)
257 {
258         target_t *t;
259         int x;
260
261         /* number is 0 based */
262         x = -1;
263         t = all_targets;
264         while(t){
265                 if( x < t->target_number ){
266                         x = t->target_number;
267                 }
268                 t = t->next;
269         }
270         return x+1;
271 }
272
273 static int target_continous_poll = 1;
274
275 /* read a u32 from a buffer in target memory endianness */
276 u32 target_buffer_get_u32(target_t *target, const u8 *buffer)
277 {
278         if (target->endianness == TARGET_LITTLE_ENDIAN)
279                 return le_to_h_u32(buffer);
280         else
281                 return be_to_h_u32(buffer);
282 }
283
284 /* read a u16 from a buffer in target memory endianness */
285 u16 target_buffer_get_u16(target_t *target, const u8 *buffer)
286 {
287         if (target->endianness == TARGET_LITTLE_ENDIAN)
288                 return le_to_h_u16(buffer);
289         else
290                 return be_to_h_u16(buffer);
291 }
292
293 /* read a u8 from a buffer in target memory endianness */
294 u8 target_buffer_get_u8(target_t *target, const u8 *buffer)
295 {
296         return *buffer & 0x0ff;
297 }
298
299 /* write a u32 to a buffer in target memory endianness */
300 void target_buffer_set_u32(target_t *target, u8 *buffer, u32 value)
301 {
302         if (target->endianness == TARGET_LITTLE_ENDIAN)
303                 h_u32_to_le(buffer, value);
304         else
305                 h_u32_to_be(buffer, value);
306 }
307
308 /* write a u16 to a buffer in target memory endianness */
309 void target_buffer_set_u16(target_t *target, u8 *buffer, u16 value)
310 {
311         if (target->endianness == TARGET_LITTLE_ENDIAN)
312                 h_u16_to_le(buffer, value);
313         else
314                 h_u16_to_be(buffer, value);
315 }
316
317 /* write a u8 to a buffer in target memory endianness */
318 void target_buffer_set_u8(target_t *target, u8 *buffer, u8 value)
319 {
320         *buffer = value;
321 }
322
323 /* return a pointer to a configured target; id is name or number */
324 target_t *get_target(const char *id)
325 {
326         target_t *target;
327         char *endptr;
328         int num;
329
330         /* try as tcltarget name */
331         for (target = all_targets; target; target = target->next) {
332                 if (target->cmd_name == NULL)
333                         continue;
334                 if (strcmp(id, target->cmd_name) == 0)
335                         return target;
336         }
337
338         /* no match, try as number */
339         num = strtoul(id, &endptr, 0);
340         if (*endptr != 0)
341                 return NULL;
342
343         for (target = all_targets; target; target = target->next) {
344                 if (target->target_number == num)
345                         return target;
346         }
347
348         return NULL;
349 }
350
351 /* returns a pointer to the n-th configured target */
352 static target_t *get_target_by_num(int num)
353 {
354         target_t *target = all_targets;
355
356         while (target){
357                 if( target->target_number == num ){
358                         return target;
359                 }
360                 target = target->next;
361         }
362
363         return NULL;
364 }
365
366 int get_num_by_target(target_t *query_target)
367 {
368         return query_target->target_number;
369 }
370
371 target_t* get_current_target(command_context_t *cmd_ctx)
372 {
373         target_t *target = get_target_by_num(cmd_ctx->current_target);
374
375         if (target == NULL)
376         {
377                 LOG_ERROR("BUG: current_target out of bounds");
378                 exit(-1);
379         }
380
381         return target;
382 }
383
384 int target_poll(struct target_s *target)
385 {
386         /* We can't poll until after examine */
387         if (!target_was_examined(target))
388         {
389                 /* Fail silently lest we pollute the log */
390                 return ERROR_FAIL;
391         }
392         return target->type->poll(target);
393 }
394
395 int target_halt(struct target_s *target)
396 {
397         /* We can't poll until after examine */
398         if (!target_was_examined(target))
399         {
400                 LOG_ERROR("Target not examined yet");
401                 return ERROR_FAIL;
402         }
403         return target->type->halt(target);
404 }
405
406 int target_resume(struct target_s *target, int current, u32 address, int handle_breakpoints, int debug_execution)
407 {
408         int retval;
409
410         /* We can't poll until after examine */
411         if (!target_was_examined(target))
412         {
413                 LOG_ERROR("Target not examined yet");
414                 return ERROR_FAIL;
415         }
416
417         /* note that resume *must* be asynchronous. The CPU can halt before we poll. The CPU can
418          * even halt at the current PC as a result of a software breakpoint being inserted by (a bug?)
419          * the application.
420          */
421         if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
422                 return retval;
423
424         return retval;
425 }
426
427 int target_process_reset(struct command_context_s *cmd_ctx, enum target_reset_mode reset_mode)
428 {
429         char buf[100];
430         int retval;
431         Jim_Nvp *n;
432         n = Jim_Nvp_value2name_simple( nvp_reset_modes, reset_mode );
433         if( n->name == NULL ){
434                 LOG_ERROR("invalid reset mode");
435                 return ERROR_FAIL;
436         }
437
438         sprintf( buf, "ocd_process_reset %s", n->name );
439         retval = Jim_Eval( interp, buf );
440
441         if(retval != JIM_OK) {
442                 Jim_PrintErrorMessage(interp);
443                 return ERROR_FAIL;
444         }
445
446         /* We want any events to be processed before the prompt */
447         retval = target_call_timer_callbacks_now();
448
449         return retval;
450 }
451
452 static int default_virt2phys(struct target_s *target, u32 virtual, u32 *physical)
453 {
454         *physical = virtual;
455         return ERROR_OK;
456 }
457
458 static int default_mmu(struct target_s *target, int *enabled)
459 {
460         *enabled = 0;
461         return ERROR_OK;
462 }
463
464 static int default_examine(struct target_s *target)
465 {
466         target_set_examined(target);
467         return ERROR_OK;
468 }
469
470 /* Targets that correctly implement init+examine, i.e.
471  * no communication with target during init:
472  *
473  * XScale
474  */
475 int target_examine(void)
476 {
477         int retval = ERROR_OK;
478         target_t *target = all_targets;
479         while (target)
480         {
481                 if ((retval = target->type->examine(target))!=ERROR_OK)
482                         return retval;
483                 target = target->next;
484         }
485         return retval;
486 }
487
488 static int target_write_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
489 {
490         if (!target_was_examined(target))
491         {
492                 LOG_ERROR("Target not examined yet");
493                 return ERROR_FAIL;
494         }
495         return target->type->write_memory_imp(target, address, size, count, buffer);
496 }
497
498 static int target_read_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
499 {
500         if (!target_was_examined(target))
501         {
502                 LOG_ERROR("Target not examined yet");
503                 return ERROR_FAIL;
504         }
505         return target->type->read_memory_imp(target, address, size, count, buffer);
506 }
507
508 static int target_soft_reset_halt_imp(struct target_s *target)
509 {
510         if (!target_was_examined(target))
511         {
512                 LOG_ERROR("Target not examined yet");
513                 return ERROR_FAIL;
514         }
515         return target->type->soft_reset_halt_imp(target);
516 }
517
518 static int target_run_algorithm_imp(struct target_s *target, int num_mem_params, mem_param_t *mem_params, int num_reg_params, reg_param_t *reg_param, u32 entry_point, u32 exit_point, int timeout_ms, void *arch_info)
519 {
520         if (!target_was_examined(target))
521         {
522                 LOG_ERROR("Target not examined yet");
523                 return ERROR_FAIL;
524         }
525         return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
526 }
527
528 int target_read_memory(struct target_s *target,
529                 u32 address, u32 size, u32 count, u8 *buffer)
530 {
531         return target->type->read_memory(target, address, size, count, buffer);
532 }
533
534 int target_write_memory(struct target_s *target,
535                 u32 address, u32 size, u32 count, u8 *buffer)
536 {
537         return target->type->write_memory(target, address, size, count, buffer);
538 }
539
540 int target_run_algorithm(struct target_s *target,
541                 int num_mem_params, mem_param_t *mem_params,
542                 int num_reg_params, reg_param_t *reg_param,
543                 u32 entry_point, u32 exit_point,
544                 int timeout_ms, void *arch_info)
545 {
546         return target->type->run_algorithm(target,
547                         num_mem_params, mem_params, num_reg_params, reg_param,
548                         entry_point, exit_point, timeout_ms, arch_info);
549 }
550
551 /// @returns @c true if the target has been examined.
552 bool target_was_examined(struct target_s *target)
553 {
554         return target->type->examined;
555 }
556 /// Sets the @c examined flag for the given target.
557 void target_set_examined(struct target_s *target)
558 {
559         target->type->examined = true;
560 }
561 // Reset the @c examined flag for the given target.
562 void target_reset_examined(struct target_s *target)
563 {
564         target->type->examined = false;
565 }
566
567
568 int target_init(struct command_context_s *cmd_ctx)
569 {
570         target_t *target = all_targets;
571         int retval;
572
573         while (target)
574         {
575                 target_reset_examined(target);
576                 if (target->type->examine == NULL)
577                 {
578                         target->type->examine = default_examine;
579                 }
580
581                 if ((retval = target->type->init_target(cmd_ctx, target)) != ERROR_OK)
582                 {
583                         LOG_ERROR("target '%s' init failed", target->type->name);
584                         return retval;
585                 }
586
587                 /* Set up default functions if none are provided by target */
588                 if (target->type->virt2phys == NULL)
589                 {
590                         target->type->virt2phys = default_virt2phys;
591                 }
592                 target->type->virt2phys = default_virt2phys;
593                 /* a non-invasive way(in terms of patches) to add some code that
594                  * runs before the type->write/read_memory implementation
595                  */
596                 target->type->write_memory_imp = target->type->write_memory;
597                 target->type->write_memory = target_write_memory_imp;
598                 target->type->read_memory_imp = target->type->read_memory;
599                 target->type->read_memory = target_read_memory_imp;
600                 target->type->soft_reset_halt_imp = target->type->soft_reset_halt;
601                 target->type->soft_reset_halt = target_soft_reset_halt_imp;
602                 target->type->run_algorithm_imp = target->type->run_algorithm;
603                 target->type->run_algorithm = target_run_algorithm_imp;
604
605                 if (target->type->mmu == NULL)
606                 {
607                         target->type->mmu = default_mmu;
608                 }
609                 target = target->next;
610         }
611
612         if (all_targets)
613         {
614                 if((retval = target_register_user_commands(cmd_ctx)) != ERROR_OK)
615                         return retval;
616                 if((retval = target_register_timer_callback(handle_target, 100, 1, NULL)) != ERROR_OK)
617                         return retval;
618         }
619
620         return ERROR_OK;
621 }
622
623 int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
624 {
625         target_event_callback_t **callbacks_p = &target_event_callbacks;
626
627         if (callback == NULL)
628         {
629                 return ERROR_INVALID_ARGUMENTS;
630         }
631
632         if (*callbacks_p)
633         {
634                 while ((*callbacks_p)->next)
635                         callbacks_p = &((*callbacks_p)->next);
636                 callbacks_p = &((*callbacks_p)->next);
637         }
638
639         (*callbacks_p) = malloc(sizeof(target_event_callback_t));
640         (*callbacks_p)->callback = callback;
641         (*callbacks_p)->priv = priv;
642         (*callbacks_p)->next = NULL;
643
644         return ERROR_OK;
645 }
646
647 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
648 {
649         target_timer_callback_t **callbacks_p = &target_timer_callbacks;
650         struct timeval now;
651
652         if (callback == NULL)
653         {
654                 return ERROR_INVALID_ARGUMENTS;
655         }
656
657         if (*callbacks_p)
658         {
659                 while ((*callbacks_p)->next)
660                         callbacks_p = &((*callbacks_p)->next);
661                 callbacks_p = &((*callbacks_p)->next);
662         }
663
664         (*callbacks_p) = malloc(sizeof(target_timer_callback_t));
665         (*callbacks_p)->callback = callback;
666         (*callbacks_p)->periodic = periodic;
667         (*callbacks_p)->time_ms = time_ms;
668
669         gettimeofday(&now, NULL);
670         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
671         time_ms -= (time_ms % 1000);
672         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
673         if ((*callbacks_p)->when.tv_usec > 1000000)
674         {
675                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
676                 (*callbacks_p)->when.tv_sec += 1;
677         }
678
679         (*callbacks_p)->priv = priv;
680         (*callbacks_p)->next = NULL;
681
682         return ERROR_OK;
683 }
684
685 int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
686 {
687         target_event_callback_t **p = &target_event_callbacks;
688         target_event_callback_t *c = target_event_callbacks;
689
690         if (callback == NULL)
691         {
692                 return ERROR_INVALID_ARGUMENTS;
693         }
694
695         while (c)
696         {
697                 target_event_callback_t *next = c->next;
698                 if ((c->callback == callback) && (c->priv == priv))
699                 {
700                         *p = next;
701                         free(c);
702                         return ERROR_OK;
703                 }
704                 else
705                         p = &(c->next);
706                 c = next;
707         }
708
709         return ERROR_OK;
710 }
711
712 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
713 {
714         target_timer_callback_t **p = &target_timer_callbacks;
715         target_timer_callback_t *c = target_timer_callbacks;
716
717         if (callback == NULL)
718         {
719                 return ERROR_INVALID_ARGUMENTS;
720         }
721
722         while (c)
723         {
724                 target_timer_callback_t *next = c->next;
725                 if ((c->callback == callback) && (c->priv == priv))
726                 {
727                         *p = next;
728                         free(c);
729                         return ERROR_OK;
730                 }
731                 else
732                         p = &(c->next);
733                 c = next;
734         }
735
736         return ERROR_OK;
737 }
738
739 int target_call_event_callbacks(target_t *target, enum target_event event)
740 {
741         target_event_callback_t *callback = target_event_callbacks;
742         target_event_callback_t *next_callback;
743
744         if (event == TARGET_EVENT_HALTED)
745         {
746                 /* execute early halted first */
747                 target_call_event_callbacks(target, TARGET_EVENT_EARLY_HALTED);
748         }
749
750         LOG_DEBUG("target event %i (%s)",
751                           event,
752                           Jim_Nvp_value2name_simple( nvp_target_event, event )->name );
753
754         target_handle_event( target, event );
755
756         while (callback)
757         {
758                 next_callback = callback->next;
759                 callback->callback(target, event, callback->priv);
760                 callback = next_callback;
761         }
762
763         return ERROR_OK;
764 }
765
766 static int target_call_timer_callbacks_check_time(int checktime)
767 {
768         target_timer_callback_t *callback = target_timer_callbacks;
769         target_timer_callback_t *next_callback;
770         struct timeval now;
771
772         keep_alive();
773
774         gettimeofday(&now, NULL);
775
776         while (callback)
777         {
778                 next_callback = callback->next;
779
780                 if ((!checktime&&callback->periodic)||
781                                 (((now.tv_sec >= callback->when.tv_sec) && (now.tv_usec >= callback->when.tv_usec))
782                                                 || (now.tv_sec > callback->when.tv_sec)))
783                 {
784                         if(callback->callback != NULL)
785                         {
786                                 callback->callback(callback->priv);
787                                 if (callback->periodic)
788                                 {
789                                         int time_ms = callback->time_ms;
790                                         callback->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
791                                         time_ms -= (time_ms % 1000);
792                                         callback->when.tv_sec = now.tv_sec + time_ms / 1000;
793                                         if (callback->when.tv_usec > 1000000)
794                                         {
795                                                 callback->when.tv_usec = callback->when.tv_usec - 1000000;
796                                                 callback->when.tv_sec += 1;
797                                         }
798                                 }
799                                 else
800                                 {
801                                         int retval;
802                                         if((retval = target_unregister_timer_callback(callback->callback, callback->priv)) != ERROR_OK)
803                                                 return retval;
804                                 }
805                         }
806                 }
807
808                 callback = next_callback;
809         }
810
811         return ERROR_OK;
812 }
813
814 int target_call_timer_callbacks(void)
815 {
816         return target_call_timer_callbacks_check_time(1);
817 }
818
819 /* invoke periodic callbacks immediately */
820 int target_call_timer_callbacks_now(void)
821 {
822         return target_call_timer_callbacks_check_time(0);
823 }
824
825 int target_alloc_working_area(struct target_s *target, u32 size, working_area_t **area)
826 {
827         working_area_t *c = target->working_areas;
828         working_area_t *new_wa = NULL;
829
830         /* Reevaluate working area address based on MMU state*/
831         if (target->working_areas == NULL)
832         {
833                 int retval;
834                 int enabled;
835                 retval = target->type->mmu(target, &enabled);
836                 if (retval != ERROR_OK)
837                 {
838                         return retval;
839                 }
840                 if (enabled)
841                 {
842                         target->working_area = target->working_area_virt;
843                 }
844                 else
845                 {
846                         target->working_area = target->working_area_phys;
847                 }
848         }
849
850         /* only allocate multiples of 4 byte */
851         if (size % 4)
852         {
853                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes, padding");
854                 size = CEIL(size, 4);
855         }
856
857         /* see if there's already a matching working area */
858         while (c)
859         {
860                 if ((c->free) && (c->size == size))
861                 {
862                         new_wa = c;
863                         break;
864                 }
865                 c = c->next;
866         }
867
868         /* if not, allocate a new one */
869         if (!new_wa)
870         {
871                 working_area_t **p = &target->working_areas;
872                 u32 first_free = target->working_area;
873                 u32 free_size = target->working_area_size;
874
875                 LOG_DEBUG("allocating new working area");
876
877                 c = target->working_areas;
878                 while (c)
879                 {
880                         first_free += c->size;
881                         free_size -= c->size;
882                         p = &c->next;
883                         c = c->next;
884                 }
885
886                 if (free_size < size)
887                 {
888                         LOG_WARNING("not enough working area available(requested %d, free %d)", size, free_size);
889                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
890                 }
891
892                 new_wa = malloc(sizeof(working_area_t));
893                 new_wa->next = NULL;
894                 new_wa->size = size;
895                 new_wa->address = first_free;
896
897                 if (target->backup_working_area)
898                 {
899                         int retval;
900                         new_wa->backup = malloc(new_wa->size);
901                         if((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
902                         {
903                                 free(new_wa->backup);
904                                 free(new_wa);
905                                 return retval;
906                         }
907                 }
908                 else
909                 {
910                         new_wa->backup = NULL;
911                 }
912
913                 /* put new entry in list */
914                 *p = new_wa;
915         }
916
917         /* mark as used, and return the new (reused) area */
918         new_wa->free = 0;
919         *area = new_wa;
920
921         /* user pointer */
922         new_wa->user = area;
923
924         return ERROR_OK;
925 }
926
927 int target_free_working_area_restore(struct target_s *target, working_area_t *area, int restore)
928 {
929         if (area->free)
930                 return ERROR_OK;
931
932         if (restore&&target->backup_working_area)
933         {
934                 int retval;
935                 if((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
936                         return retval;
937         }
938
939         area->free = 1;
940
941         /* mark user pointer invalid */
942         *area->user = NULL;
943         area->user = NULL;
944
945         return ERROR_OK;
946 }
947
948 int target_free_working_area(struct target_s *target, working_area_t *area)
949 {
950         return target_free_working_area_restore(target, area, 1);
951 }
952
953 /* free resources and restore memory, if restoring memory fails,
954  * free up resources anyway
955  */
956 void target_free_all_working_areas_restore(struct target_s *target, int restore)
957 {
958         working_area_t *c = target->working_areas;
959
960         while (c)
961         {
962                 working_area_t *next = c->next;
963                 target_free_working_area_restore(target, c, restore);
964
965                 if (c->backup)
966                         free(c->backup);
967
968                 free(c);
969
970                 c = next;
971         }
972
973         target->working_areas = NULL;
974 }
975
976 void target_free_all_working_areas(struct target_s *target)
977 {
978         target_free_all_working_areas_restore(target, 1);
979 }
980
981 int target_register_commands(struct command_context_s *cmd_ctx)
982 {
983
984         register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, "change the current command line target (one parameter) or lists targets (with no parameter)");
985
986
987
988
989         register_jim(cmd_ctx, "target", jim_target, "configure target" );
990
991         return ERROR_OK;
992 }
993
994 int target_arch_state(struct target_s *target)
995 {
996         int retval;
997         if (target==NULL)
998         {
999                 LOG_USER("No target has been configured");
1000                 return ERROR_OK;
1001         }
1002
1003         LOG_USER("target state: %s",
1004                  Jim_Nvp_value2name_simple(nvp_target_state,target->state)->name);
1005
1006         if (target->state!=TARGET_HALTED)
1007                 return ERROR_OK;
1008
1009         retval=target->type->arch_state(target);
1010         return retval;
1011 }
1012
1013 /* Single aligned words are guaranteed to use 16 or 32 bit access
1014  * mode respectively, otherwise data is handled as quickly as
1015  * possible
1016  */
1017 int target_write_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
1018 {
1019         int retval;
1020         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x", size, address);
1021
1022         if (!target_was_examined(target))
1023         {
1024                 LOG_ERROR("Target not examined yet");
1025                 return ERROR_FAIL;
1026         }
1027
1028         if (size == 0) {
1029                 return ERROR_OK;
1030         }
1031
1032         if ((address + size - 1) < address)
1033         {
1034                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1035                 LOG_ERROR("address+size wrapped(0x%08x, 0x%08x)", address, size);
1036                 return ERROR_FAIL;
1037         }
1038
1039         if (((address % 2) == 0) && (size == 2))
1040         {
1041                 return target_write_memory(target, address, 2, 1, buffer);
1042         }
1043
1044         /* handle unaligned head bytes */
1045         if (address % 4)
1046         {
1047                 u32 unaligned = 4 - (address % 4);
1048
1049                 if (unaligned > size)
1050                         unaligned = size;
1051
1052                 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1053                         return retval;
1054
1055                 buffer += unaligned;
1056                 address += unaligned;
1057                 size -= unaligned;
1058         }
1059
1060         /* handle aligned words */
1061         if (size >= 4)
1062         {
1063                 int aligned = size - (size % 4);
1064
1065                 /* use bulk writes above a certain limit. This may have to be changed */
1066                 if (aligned > 128)
1067                 {
1068                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1069                                 return retval;
1070                 }
1071                 else
1072                 {
1073                         if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1074                                 return retval;
1075                 }
1076
1077                 buffer += aligned;
1078                 address += aligned;
1079                 size -= aligned;
1080         }
1081
1082         /* handle tail writes of less than 4 bytes */
1083         if (size > 0)
1084         {
1085                 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1086                         return retval;
1087         }
1088
1089         return ERROR_OK;
1090 }
1091
1092 /* Single aligned words are guaranteed to use 16 or 32 bit access
1093  * mode respectively, otherwise data is handled as quickly as
1094  * possible
1095  */
1096 int target_read_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
1097 {
1098         int retval;
1099         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x", size, address);
1100
1101         if (!target_was_examined(target))
1102         {
1103                 LOG_ERROR("Target not examined yet");
1104                 return ERROR_FAIL;
1105         }
1106
1107         if (size == 0) {
1108                 return ERROR_OK;
1109         }
1110
1111         if ((address + size - 1) < address)
1112         {
1113                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1114                 LOG_ERROR("address+size wrapped(0x%08x, 0x%08x)", address, size);
1115                 return ERROR_FAIL;
1116         }
1117
1118         if (((address % 2) == 0) && (size == 2))
1119         {
1120                 return target_read_memory(target, address, 2, 1, buffer);
1121         }
1122
1123         /* handle unaligned head bytes */
1124         if (address % 4)
1125         {
1126                 u32 unaligned = 4 - (address % 4);
1127
1128                 if (unaligned > size)
1129                         unaligned = size;
1130
1131                 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1132                         return retval;
1133
1134                 buffer += unaligned;
1135                 address += unaligned;
1136                 size -= unaligned;
1137         }
1138
1139         /* handle aligned words */
1140         if (size >= 4)
1141         {
1142                 int aligned = size - (size % 4);
1143
1144                 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1145                         return retval;
1146
1147                 buffer += aligned;
1148                 address += aligned;
1149                 size -= aligned;
1150         }
1151
1152         /* handle tail writes of less than 4 bytes */
1153         if (size > 0)
1154         {
1155                 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1156                         return retval;
1157         }
1158
1159         return ERROR_OK;
1160 }
1161
1162 int target_checksum_memory(struct target_s *target, u32 address, u32 size, u32* crc)
1163 {
1164         u8 *buffer;
1165         int retval;
1166         u32 i;
1167         u32 checksum = 0;
1168         if (!target_was_examined(target))
1169         {
1170                 LOG_ERROR("Target not examined yet");
1171                 return ERROR_FAIL;
1172         }
1173
1174         if ((retval = target->type->checksum_memory(target, address,
1175                 size, &checksum)) != ERROR_OK)
1176         {
1177                 buffer = malloc(size);
1178                 if (buffer == NULL)
1179                 {
1180                         LOG_ERROR("error allocating buffer for section (%d bytes)", size);
1181                         return ERROR_INVALID_ARGUMENTS;
1182                 }
1183                 retval = target_read_buffer(target, address, size, buffer);
1184                 if (retval != ERROR_OK)
1185                 {
1186                         free(buffer);
1187                         return retval;
1188                 }
1189
1190                 /* convert to target endianess */
1191                 for (i = 0; i < (size/sizeof(u32)); i++)
1192                 {
1193                         u32 target_data;
1194                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(u32)]);
1195                         target_buffer_set_u32(target, &buffer[i*sizeof(u32)], target_data);
1196                 }
1197
1198                 retval = image_calculate_checksum( buffer, size, &checksum );
1199                 free(buffer);
1200         }
1201
1202         *crc = checksum;
1203
1204         return retval;
1205 }
1206
1207 int target_blank_check_memory(struct target_s *target, u32 address, u32 size, u32* blank)
1208 {
1209         int retval;
1210         if (!target_was_examined(target))
1211         {
1212                 LOG_ERROR("Target not examined yet");
1213                 return ERROR_FAIL;
1214         }
1215
1216         if (target->type->blank_check_memory == 0)
1217                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1218
1219         retval = target->type->blank_check_memory(target, address, size, blank);
1220
1221         return retval;
1222 }
1223
1224 int target_read_u32(struct target_s *target, u32 address, u32 *value)
1225 {
1226         u8 value_buf[4];
1227         if (!target_was_examined(target))
1228         {
1229                 LOG_ERROR("Target not examined yet");
1230                 return ERROR_FAIL;
1231         }
1232
1233         int retval = target_read_memory(target, address, 4, 1, value_buf);
1234
1235         if (retval == ERROR_OK)
1236         {
1237                 *value = target_buffer_get_u32(target, value_buf);
1238                 LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, *value);
1239         }
1240         else
1241         {
1242                 *value = 0x0;
1243                 LOG_DEBUG("address: 0x%8.8x failed", address);
1244         }
1245
1246         return retval;
1247 }
1248
1249 int target_read_u16(struct target_s *target, u32 address, u16 *value)
1250 {
1251         u8 value_buf[2];
1252         if (!target_was_examined(target))
1253         {
1254                 LOG_ERROR("Target not examined yet");
1255                 return ERROR_FAIL;
1256         }
1257
1258         int retval = target_read_memory(target, address, 2, 1, value_buf);
1259
1260         if (retval == ERROR_OK)
1261         {
1262                 *value = target_buffer_get_u16(target, value_buf);
1263                 LOG_DEBUG("address: 0x%8.8x, value: 0x%4.4x", address, *value);
1264         }
1265         else
1266         {
1267                 *value = 0x0;
1268                 LOG_DEBUG("address: 0x%8.8x failed", address);
1269         }
1270
1271         return retval;
1272 }
1273
1274 int target_read_u8(struct target_s *target, u32 address, u8 *value)
1275 {
1276         int retval = target_read_memory(target, address, 1, 1, value);
1277         if (!target_was_examined(target))
1278         {
1279                 LOG_ERROR("Target not examined yet");
1280                 return ERROR_FAIL;
1281         }
1282
1283         if (retval == ERROR_OK)
1284         {
1285                 LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, *value);
1286         }
1287         else
1288         {
1289                 *value = 0x0;
1290                 LOG_DEBUG("address: 0x%8.8x failed", address);
1291         }
1292
1293         return retval;
1294 }
1295
1296 int target_write_u32(struct target_s *target, u32 address, u32 value)
1297 {
1298         int retval;
1299         u8 value_buf[4];
1300         if (!target_was_examined(target))
1301         {
1302                 LOG_ERROR("Target not examined yet");
1303                 return ERROR_FAIL;
1304         }
1305
1306         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1307
1308         target_buffer_set_u32(target, value_buf, value);
1309         if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1310         {
1311                 LOG_DEBUG("failed: %i", retval);
1312         }
1313
1314         return retval;
1315 }
1316
1317 int target_write_u16(struct target_s *target, u32 address, u16 value)
1318 {
1319         int retval;
1320         u8 value_buf[2];
1321         if (!target_was_examined(target))
1322         {
1323                 LOG_ERROR("Target not examined yet");
1324                 return ERROR_FAIL;
1325         }
1326
1327         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1328
1329         target_buffer_set_u16(target, value_buf, value);
1330         if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1331         {
1332                 LOG_DEBUG("failed: %i", retval);
1333         }
1334
1335         return retval;
1336 }
1337
1338 int target_write_u8(struct target_s *target, u32 address, u8 value)
1339 {
1340         int retval;
1341         if (!target_was_examined(target))
1342         {
1343                 LOG_ERROR("Target not examined yet");
1344                 return ERROR_FAIL;
1345         }
1346
1347         LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, value);
1348
1349         if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1350         {
1351                 LOG_DEBUG("failed: %i", retval);
1352         }
1353
1354         return retval;
1355 }
1356
1357 int target_register_user_commands(struct command_context_s *cmd_ctx)
1358 {
1359         int retval = ERROR_OK;
1360
1361
1362         /* script procedures */
1363         register_command(cmd_ctx, NULL, "profile", handle_profile_command, COMMAND_EXEC, "profiling samples the CPU PC");
1364         register_jim(cmd_ctx, "ocd_mem2array", jim_mem2array, "read memory and return as a TCL array for script processing <ARRAYNAME> <WIDTH=32/16/8> <ADDRESS> <COUNT>");
1365         register_jim(cmd_ctx, "ocd_array2mem", jim_array2mem, "convert a TCL array to memory locations and write the values  <ARRAYNAME> <WIDTH=32/16/8> <ADDRESS> <COUNT>");
1366
1367         register_command(cmd_ctx, NULL, "fast_load_image", handle_fast_load_image_command, COMMAND_ANY,
1368                         "same args as load_image, image stored in memory - mainly for profiling purposes");
1369
1370         register_command(cmd_ctx, NULL, "fast_load", handle_fast_load_command, COMMAND_ANY,
1371                         "loads active fast load image to current target - mainly for profiling purposes");
1372
1373
1374         register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "translate a virtual address into a physical address");
1375         register_command(cmd_ctx,  NULL, "reg", handle_reg_command, COMMAND_EXEC, "display or set a register");
1376         register_command(cmd_ctx,  NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state");
1377         register_command(cmd_ctx,  NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]");
1378         register_command(cmd_ctx,  NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target");
1379         register_command(cmd_ctx,  NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]");
1380         register_command(cmd_ctx,  NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]");
1381         register_command(cmd_ctx,  NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run|halt|init] - default is run");
1382         register_command(cmd_ctx,  NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset");
1383
1384         register_command(cmd_ctx,  NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words <addr> [count]");
1385         register_command(cmd_ctx,  NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words <addr> [count]");
1386         register_command(cmd_ctx,  NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes <addr> [count]");
1387
1388         register_command(cmd_ctx,  NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word <addr> <value> [count]");
1389         register_command(cmd_ctx,  NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word <addr> <value> [count]");
1390         register_command(cmd_ctx,  NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte <addr> <value> [count]");
1391
1392         register_command(cmd_ctx,  NULL, "bp", handle_bp_command, COMMAND_EXEC, "set breakpoint <address> <length> [hw]");
1393         register_command(cmd_ctx,  NULL, "rbp", handle_rbp_command, COMMAND_EXEC, "remove breakpoint <adress>");
1394         register_command(cmd_ctx,  NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint <address> <length> <r/w/a> [value] [mask]");
1395         register_command(cmd_ctx,  NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint <adress>");
1396
1397         register_command(cmd_ctx,  NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> ['bin'|'ihex'|'elf'|'s19'] [min_address] [max_length]");
1398         register_command(cmd_ctx,  NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>");
1399         register_command(cmd_ctx,  NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image <file> [offset] [type]");
1400         register_command(cmd_ctx,  NULL, "test_image", handle_test_image_command, COMMAND_EXEC, "test_image <file> [offset] [type]");
1401
1402         if((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
1403                 return retval;
1404         if((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
1405                 return retval;
1406
1407         return retval;
1408 }
1409
1410 static int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1411 {
1412         target_t *target = all_targets;
1413
1414         if (argc == 1)
1415         {
1416                 target = get_target(args[0]);
1417                 if (target == NULL) {
1418                         command_print(cmd_ctx,"Target: %s is unknown, try one of:\n", args[0] );
1419                         goto DumpTargets;
1420                 }
1421
1422                 cmd_ctx->current_target = target->target_number;
1423                 return ERROR_OK;
1424         }
1425 DumpTargets:
1426
1427         target = all_targets;
1428         command_print(cmd_ctx, "    CmdName    Type       Endian     AbsChainPos Name          State     ");
1429         command_print(cmd_ctx, "--  ---------- ---------- ---------- ----------- ------------- ----------");
1430         while (target)
1431         {
1432                 /* XX: abcdefghij abcdefghij abcdefghij abcdefghij */
1433                 command_print(cmd_ctx, "%2d: %-10s %-10s %-10s %10d %14s %s",
1434                                           target->target_number,
1435                                           target->cmd_name,
1436                                           target->type->name,
1437                                           Jim_Nvp_value2name_simple( nvp_target_endian, target->endianness )->name,
1438                                           target->tap->abs_chain_position,
1439                                           target->tap->dotted_name,
1440                                           Jim_Nvp_value2name_simple( nvp_target_state, target->state )->name );
1441                 target = target->next;
1442         }
1443
1444         return ERROR_OK;
1445 }
1446
1447 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1448
1449 static int powerDropout;
1450 static int srstAsserted;
1451
1452 static int runPowerRestore;
1453 static int runPowerDropout;
1454 static int runSrstAsserted;
1455 static int runSrstDeasserted;
1456
1457 static int sense_handler(void)
1458 {
1459         static int prevSrstAsserted = 0;
1460         static int prevPowerdropout = 0;
1461
1462         int retval;
1463         if ((retval=jtag_power_dropout(&powerDropout))!=ERROR_OK)
1464                 return retval;
1465
1466         int powerRestored;
1467         powerRestored = prevPowerdropout && !powerDropout;
1468         if (powerRestored)
1469         {
1470                 runPowerRestore = 1;
1471         }
1472
1473         long long current = timeval_ms();
1474         static long long lastPower = 0;
1475         int waitMore = lastPower + 2000 > current;
1476         if (powerDropout && !waitMore)
1477         {
1478                 runPowerDropout = 1;
1479                 lastPower = current;
1480         }
1481
1482         if ((retval=jtag_srst_asserted(&srstAsserted))!=ERROR_OK)
1483                 return retval;
1484
1485         int srstDeasserted;
1486         srstDeasserted = prevSrstAsserted && !srstAsserted;
1487
1488         static long long lastSrst = 0;
1489         waitMore = lastSrst + 2000 > current;
1490         if (srstDeasserted && !waitMore)
1491         {
1492                 runSrstDeasserted = 1;
1493                 lastSrst = current;
1494         }
1495
1496         if (!prevSrstAsserted && srstAsserted)
1497         {
1498                 runSrstAsserted = 1;
1499         }
1500
1501         prevSrstAsserted = srstAsserted;
1502         prevPowerdropout = powerDropout;
1503
1504         if (srstDeasserted || powerRestored)
1505         {
1506                 /* Other than logging the event we can't do anything here.
1507                  * Issuing a reset is a particularly bad idea as we might
1508                  * be inside a reset already.
1509                  */
1510         }
1511
1512         return ERROR_OK;
1513 }
1514
1515 /* process target state changes */
1516 int handle_target(void *priv)
1517 {
1518         int retval = ERROR_OK;
1519
1520         /* we do not want to recurse here... */
1521         static int recursive = 0;
1522         if (! recursive)
1523         {
1524                 recursive = 1;
1525                 sense_handler();
1526                 /* danger! running these procedures can trigger srst assertions and power dropouts.
1527                  * We need to avoid an infinite loop/recursion here and we do that by
1528                  * clearing the flags after running these events.
1529                  */
1530                 int did_something = 0;
1531                 if (runSrstAsserted)
1532                 {
1533                         Jim_Eval( interp, "srst_asserted");
1534                         did_something = 1;
1535                 }
1536                 if (runSrstDeasserted)
1537                 {
1538                         Jim_Eval( interp, "srst_deasserted");
1539                         did_something = 1;
1540                 }
1541                 if (runPowerDropout)
1542                 {
1543                         Jim_Eval( interp, "power_dropout");
1544                         did_something = 1;
1545                 }
1546                 if (runPowerRestore)
1547                 {
1548                         Jim_Eval( interp, "power_restore");
1549                         did_something = 1;
1550                 }
1551
1552                 if (did_something)
1553                 {
1554                         /* clear detect flags */
1555                         sense_handler();
1556                 }
1557
1558                 /* clear action flags */
1559
1560                 runSrstAsserted=0;
1561                 runSrstDeasserted=0;
1562                 runPowerRestore=0;
1563                 runPowerDropout=0;
1564
1565                 recursive = 0;
1566         }
1567
1568         target_t *target = all_targets;
1569
1570         while (target)
1571         {
1572
1573                 /* only poll target if we've got power and srst isn't asserted */
1574                 if (target_continous_poll&&!powerDropout&&!srstAsserted)
1575                 {
1576                         /* polling may fail silently until the target has been examined */
1577                         if((retval = target_poll(target)) != ERROR_OK)
1578                                 return retval;
1579                 }
1580
1581                 target = target->next;
1582         }
1583
1584         return retval;
1585 }
1586
1587 static int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1588 {
1589         target_t *target;
1590         reg_t *reg = NULL;
1591         int count = 0;
1592         char *value;
1593
1594         LOG_DEBUG("-");
1595
1596         target = get_current_target(cmd_ctx);
1597
1598         /* list all available registers for the current target */
1599         if (argc == 0)
1600         {
1601                 reg_cache_t *cache = target->reg_cache;
1602
1603                 count = 0;
1604                 while(cache)
1605                 {
1606                         int i;
1607                         for (i = 0; i < cache->num_regs; i++)
1608                         {
1609                                 value = buf_to_str(cache->reg_list[i].value, cache->reg_list[i].size, 16);
1610                                 command_print(cmd_ctx, "(%i) %s (/%i): 0x%s (dirty: %i, valid: %i)", count++, cache->reg_list[i].name, cache->reg_list[i].size, value, cache->reg_list[i].dirty, cache->reg_list[i].valid);
1611                                 free(value);
1612                         }
1613                         cache = cache->next;
1614                 }
1615
1616                 return ERROR_OK;
1617         }
1618
1619         /* access a single register by its ordinal number */
1620         if ((args[0][0] >= '0') && (args[0][0] <= '9'))
1621         {
1622                 int num = strtoul(args[0], NULL, 0);
1623                 reg_cache_t *cache = target->reg_cache;
1624
1625                 count = 0;
1626                 while(cache)
1627                 {
1628                         int i;
1629                         for (i = 0; i < cache->num_regs; i++)
1630                         {
1631                                 if (count++ == num)
1632                                 {
1633                                         reg = &cache->reg_list[i];
1634                                         break;
1635                                 }
1636                         }
1637                         if (reg)
1638                                 break;
1639                         cache = cache->next;
1640                 }
1641
1642                 if (!reg)
1643                 {
1644                         command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1645                         return ERROR_OK;
1646                 }
1647         } else /* access a single register by its name */
1648         {
1649                 reg = register_get_by_name(target->reg_cache, args[0], 1);
1650
1651                 if (!reg)
1652                 {
1653                         command_print(cmd_ctx, "register %s not found in current target", args[0]);
1654                         return ERROR_OK;
1655                 }
1656         }
1657
1658         /* display a register */
1659         if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
1660         {
1661                 if ((argc == 2) && (strcmp(args[1], "force") == 0))
1662                         reg->valid = 0;
1663
1664                 if (reg->valid == 0)
1665                 {
1666                         reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1667                         arch_type->get(reg);
1668                 }
1669                 value = buf_to_str(reg->value, reg->size, 16);
1670                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1671                 free(value);
1672                 return ERROR_OK;
1673         }
1674
1675         /* set register value */
1676         if (argc == 2)
1677         {
1678                 u8 *buf = malloc(CEIL(reg->size, 8));
1679                 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
1680
1681                 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1682                 arch_type->set(reg, buf);
1683
1684                 value = buf_to_str(reg->value, reg->size, 16);
1685                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1686                 free(value);
1687
1688                 free(buf);
1689
1690                 return ERROR_OK;
1691         }
1692
1693         command_print(cmd_ctx, "usage: reg <#|name> [value]");
1694
1695         return ERROR_OK;
1696 }
1697
1698 static int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1699 {
1700         int retval = ERROR_OK;
1701         target_t *target = get_current_target(cmd_ctx);
1702
1703         if (argc == 0)
1704         {
1705                 if((retval = target_poll(target)) != ERROR_OK)
1706                         return retval;
1707                 if((retval = target_arch_state(target)) != ERROR_OK)
1708                         return retval;
1709
1710         }
1711         else if (argc==1)
1712         {
1713                 if (strcmp(args[0], "on") == 0)
1714                 {
1715                         target_continous_poll = 1;
1716                 }
1717                 else if (strcmp(args[0], "off") == 0)
1718                 {
1719                         target_continous_poll = 0;
1720                 }
1721                 else
1722                 {
1723                         command_print(cmd_ctx, "arg is \"on\" or \"off\"");
1724                 }
1725         } else
1726         {
1727                 return ERROR_COMMAND_SYNTAX_ERROR;
1728         }
1729
1730         return retval;
1731 }
1732
1733 static int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1734 {
1735         int ms = 5000;
1736
1737         if (argc > 0)
1738         {
1739                 char *end;
1740
1741                 ms = strtoul(args[0], &end, 0) * 1000;
1742                 if (*end)
1743                 {
1744                         command_print(cmd_ctx, "usage: %s [seconds]", cmd);
1745                         return ERROR_OK;
1746                 }
1747         }
1748         target_t *target = get_current_target(cmd_ctx);
1749
1750         return target_wait_state(target, TARGET_HALTED, ms);
1751 }
1752
1753 /* wait for target state to change. The trick here is to have a low
1754  * latency for short waits and not to suck up all the CPU time
1755  * on longer waits.
1756  *
1757  * After 500ms, keep_alive() is invoked
1758  */
1759 int target_wait_state(target_t *target, enum target_state state, int ms)
1760 {
1761         int retval;
1762         long long then=0, cur;
1763         int once=1;
1764
1765         for (;;)
1766         {
1767                 if ((retval=target_poll(target))!=ERROR_OK)
1768                         return retval;
1769                 if (target->state == state)
1770                 {
1771                         break;
1772                 }
1773                 cur = timeval_ms();
1774                 if (once)
1775                 {
1776                         once=0;
1777                         then = timeval_ms();
1778                         LOG_DEBUG("waiting for target %s...",
1779                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
1780                 }
1781
1782                 if (cur-then>500)
1783                 {
1784                         keep_alive();
1785                 }
1786
1787                 if ((cur-then)>ms)
1788                 {
1789                         LOG_ERROR("timed out while waiting for target %s",
1790                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
1791                         return ERROR_FAIL;
1792                 }
1793         }
1794
1795         return ERROR_OK;
1796 }
1797
1798 static int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1799 {
1800         int retval;
1801         target_t *target = get_current_target(cmd_ctx);
1802
1803         LOG_DEBUG("-");
1804
1805         if ((retval = target_halt(target)) != ERROR_OK)
1806         {
1807                 return retval;
1808         }
1809
1810         if (argc == 1)
1811         {
1812                 int wait;
1813                 char *end;
1814
1815                 wait = strtoul(args[0], &end, 0);
1816                 if (!*end && !wait)
1817                         return ERROR_OK;
1818         }
1819
1820         return handle_wait_halt_command(cmd_ctx, cmd, args, argc);
1821 }
1822
1823 static int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1824 {
1825         target_t *target = get_current_target(cmd_ctx);
1826
1827         LOG_USER("requesting target halt and executing a soft reset");
1828
1829         target->type->soft_reset_halt(target);
1830
1831         return ERROR_OK;
1832 }
1833
1834 static int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1835 {
1836         const Jim_Nvp *n;
1837         enum target_reset_mode reset_mode = RESET_RUN;
1838
1839         if (argc >= 1)
1840         {
1841                 n = Jim_Nvp_name2value_simple( nvp_reset_modes, args[0] );
1842                 if( (n->name == NULL) || (n->value == RESET_UNKNOWN) ){
1843                         return ERROR_COMMAND_SYNTAX_ERROR;
1844                 }
1845                 reset_mode = n->value;
1846         }
1847
1848         /* reset *all* targets */
1849         return target_process_reset(cmd_ctx, reset_mode);
1850 }
1851
1852
1853 static int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1854 {
1855         int retval;
1856         target_t *target = get_current_target(cmd_ctx);
1857
1858         target_handle_event( target, TARGET_EVENT_OLD_pre_resume );
1859
1860         if (argc == 0)
1861                 retval = target_resume(target, 1, 0, 1, 0); /* current pc, addr = 0, handle breakpoints, not debugging */
1862         else if (argc == 1)
1863                 retval = target_resume(target, 0, strtoul(args[0], NULL, 0), 1, 0); /* addr = args[0], handle breakpoints, not debugging */
1864         else
1865         {
1866                 retval = ERROR_COMMAND_SYNTAX_ERROR;
1867         }
1868
1869         return retval;
1870 }
1871
1872 static int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1873 {
1874         target_t *target = get_current_target(cmd_ctx);
1875
1876         LOG_DEBUG("-");
1877
1878         if (argc == 0)
1879                 return target->type->step(target, 1, 0, 1); /* current pc, addr = 0, handle breakpoints */
1880
1881         if (argc == 1)
1882                 return target->type->step(target, 0, strtoul(args[0], NULL, 0), 1); /* addr = args[0], handle breakpoints */
1883
1884         return ERROR_OK;
1885 }
1886
1887 static void handle_md_output(struct command_context_s *cmd_ctx,
1888                 struct target_s *target, u32 address, unsigned size,
1889                 unsigned count, const u8 *buffer)
1890 {
1891         const unsigned line_bytecnt = 32;
1892         unsigned line_modulo = line_bytecnt / size;
1893
1894         char output[line_bytecnt * 4 + 1];
1895         unsigned output_len = 0;
1896
1897         const char *value_fmt;
1898         switch (size) {
1899         case 4: value_fmt = "%8.8x"; break;
1900         case 2: value_fmt = "%4.2x"; break;
1901         case 1: value_fmt = "%2.2x"; break;
1902         default:
1903                 LOG_ERROR("invalid memory read size: %u", size);
1904                 exit(-1);
1905         }
1906
1907         for (unsigned i = 0; i < count; i++)
1908         {
1909                 if (i % line_modulo == 0)
1910                 {
1911                         output_len += snprintf(output + output_len,
1912                                         sizeof(output) - output_len,
1913                                         "0x%8.8x: ", address + (i*size));
1914                 }
1915
1916                 u32 value;
1917                 const u8 *value_ptr = buffer + i * size;
1918                 switch (size) {
1919                 case 4: value = target_buffer_get_u32(target, value_ptr); break;
1920                 case 2: value = target_buffer_get_u16(target, value_ptr); break;
1921                 case 1: value = *value_ptr;
1922                 }
1923                 output_len += snprintf(output + output_len,
1924                                 sizeof(output) - output_len,
1925                                 value_fmt, value);
1926
1927                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
1928                 {
1929                         command_print(cmd_ctx, "%s", output);
1930                         output_len = 0;
1931                 }
1932         }
1933 }
1934
1935 static int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1936 {
1937         if (argc < 1)
1938                 return ERROR_COMMAND_SYNTAX_ERROR;
1939
1940         unsigned size = 0;
1941         switch (cmd[2]) {
1942         case 'w': size = 4; break;
1943         case 'h': size = 2; break;
1944         case 'b': size = 1; break;
1945         default: return ERROR_COMMAND_SYNTAX_ERROR;
1946         }
1947
1948         u32 address = strtoul(args[0], NULL, 0);
1949
1950         unsigned count = 1;
1951         if (argc == 2)
1952                 count = strtoul(args[1], NULL, 0);
1953
1954         u8 *buffer = calloc(count, size);
1955
1956         target_t *target = get_current_target(cmd_ctx);
1957         int retval = target_read_memory(target,
1958                                 address, size, count, buffer);
1959         if (ERROR_OK == retval)
1960                 handle_md_output(cmd_ctx, target, address, size, count, buffer);
1961
1962         free(buffer);
1963
1964         return retval;
1965 }
1966
1967 static int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1968 {
1969         u32 address = 0;
1970         u32 value = 0;
1971         int count = 1;
1972         int i;
1973         int wordsize;
1974         target_t *target = get_current_target(cmd_ctx);
1975         u8 value_buf[4];
1976
1977          if ((argc < 2) || (argc > 3))
1978                 return ERROR_COMMAND_SYNTAX_ERROR;
1979
1980         address = strtoul(args[0], NULL, 0);
1981         value = strtoul(args[1], NULL, 0);
1982         if (argc == 3)
1983                 count = strtoul(args[2], NULL, 0);
1984
1985         switch (cmd[2])
1986         {
1987                 case 'w':
1988                         wordsize = 4;
1989                         target_buffer_set_u32(target, value_buf, value);
1990                         break;
1991                 case 'h':
1992                         wordsize = 2;
1993                         target_buffer_set_u16(target, value_buf, value);
1994                         break;
1995                 case 'b':
1996                         wordsize = 1;
1997                         value_buf[0] = value;
1998                         break;
1999                 default:
2000                         return ERROR_COMMAND_SYNTAX_ERROR;
2001         }
2002         for (i=0; i<count; i++)
2003         {
2004                 int retval = target_write_memory(target,
2005                                 address + i * wordsize, wordsize, 1, value_buf);
2006                 if (ERROR_OK != retval)
2007                         return retval;
2008                 keep_alive();
2009         }
2010
2011         return ERROR_OK;
2012
2013 }
2014
2015 static int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2016 {
2017         u8 *buffer;
2018         u32 buf_cnt;
2019         u32 image_size;
2020         u32 min_address=0;
2021         u32 max_address=0xffffffff;
2022         int i;
2023         int retval, retvaltemp;
2024
2025         image_t image;
2026
2027         duration_t duration;
2028         char *duration_text;
2029
2030         target_t *target = get_current_target(cmd_ctx);
2031
2032         if ((argc < 1)||(argc > 5))
2033         {
2034                 return ERROR_COMMAND_SYNTAX_ERROR;
2035         }
2036
2037         /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
2038         if (argc >= 2)
2039         {
2040                 image.base_address_set = 1;
2041                 image.base_address = strtoul(args[1], NULL, 0);
2042         }
2043         else
2044         {
2045                 image.base_address_set = 0;
2046         }
2047
2048
2049         image.start_address_set = 0;
2050
2051         if (argc>=4)
2052         {
2053                 min_address=strtoul(args[3], NULL, 0);
2054         }
2055         if (argc>=5)
2056         {
2057                 max_address=strtoul(args[4], NULL, 0)+min_address;
2058         }
2059
2060         if (min_address>max_address)
2061         {
2062                 return ERROR_COMMAND_SYNTAX_ERROR;
2063         }
2064
2065         duration_start_measure(&duration);
2066
2067         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
2068         {
2069                 return ERROR_OK;
2070         }
2071
2072         image_size = 0x0;
2073         retval = ERROR_OK;
2074         for (i = 0; i < image.num_sections; i++)
2075         {
2076                 buffer = malloc(image.sections[i].size);
2077                 if (buffer == NULL)
2078                 {
2079                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2080                         break;
2081                 }
2082
2083                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2084                 {
2085                         free(buffer);
2086                         break;
2087                 }
2088
2089                 u32 offset=0;
2090                 u32 length=buf_cnt;
2091
2092                 /* DANGER!!! beware of unsigned comparision here!!! */
2093
2094                 if ((image.sections[i].base_address+buf_cnt>=min_address)&&
2095                                 (image.sections[i].base_address<max_address))
2096                 {
2097                         if (image.sections[i].base_address<min_address)
2098                         {
2099                                 /* clip addresses below */
2100                                 offset+=min_address-image.sections[i].base_address;
2101                                 length-=offset;
2102                         }
2103
2104                         if (image.sections[i].base_address+buf_cnt>max_address)
2105                         {
2106                                 length-=(image.sections[i].base_address+buf_cnt)-max_address;
2107                         }
2108
2109                         if ((retval = target_write_buffer(target, image.sections[i].base_address+offset, length, buffer+offset)) != ERROR_OK)
2110                         {
2111                                 free(buffer);
2112                                 break;
2113                         }
2114                         image_size += length;
2115                         command_print(cmd_ctx, "%u byte written at address 0x%8.8x", length, image.sections[i].base_address+offset);
2116                 }
2117
2118                 free(buffer);
2119         }
2120
2121         if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2122         {
2123                 image_close(&image);
2124                 return retvaltemp;
2125         }
2126
2127         if (retval==ERROR_OK)
2128         {
2129                 command_print(cmd_ctx, "downloaded %u byte in %s", image_size, duration_text);
2130         }
2131         free(duration_text);
2132
2133         image_close(&image);
2134
2135         return retval;
2136
2137 }
2138
2139 static int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2140 {
2141         fileio_t fileio;
2142
2143         u32 address;
2144         u32 size;
2145         u8 buffer[560];
2146         int retval=ERROR_OK, retvaltemp;
2147
2148         duration_t duration;
2149         char *duration_text;
2150
2151         target_t *target = get_current_target(cmd_ctx);
2152
2153         if (argc != 3)
2154         {
2155                 command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
2156                 return ERROR_OK;
2157         }
2158
2159         address = strtoul(args[1], NULL, 0);
2160         size = strtoul(args[2], NULL, 0);
2161
2162         if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2163         {
2164                 return ERROR_OK;
2165         }
2166
2167         duration_start_measure(&duration);
2168
2169         while (size > 0)
2170         {
2171                 u32 size_written;
2172                 u32 this_run_size = (size > 560) ? 560 : size;
2173
2174                 retval = target_read_buffer(target, address, this_run_size, buffer);
2175                 if (retval != ERROR_OK)
2176                 {
2177                         break;
2178                 }
2179
2180                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2181                 if (retval != ERROR_OK)
2182                 {
2183                         break;
2184                 }
2185
2186                 size -= this_run_size;
2187                 address += this_run_size;
2188         }
2189
2190         if((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2191                 return retvaltemp;
2192
2193         if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2194                 return retvaltemp;
2195
2196         if (retval==ERROR_OK)
2197         {
2198                 command_print(cmd_ctx, "dumped %lld byte in %s",
2199                                 fileio.size, duration_text);
2200                 free(duration_text);
2201         }
2202
2203         return retval;
2204 }
2205
2206 static int handle_verify_image_command_internal(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc, int verify)
2207 {
2208         u8 *buffer;
2209         u32 buf_cnt;
2210         u32 image_size;
2211         int i;
2212         int retval, retvaltemp;
2213         u32 checksum = 0;
2214         u32 mem_checksum = 0;
2215
2216         image_t image;
2217
2218         duration_t duration;
2219         char *duration_text;
2220
2221         target_t *target = get_current_target(cmd_ctx);
2222
2223         if (argc < 1)
2224         {
2225                 return ERROR_COMMAND_SYNTAX_ERROR;
2226         }
2227
2228         if (!target)
2229         {
2230                 LOG_ERROR("no target selected");
2231                 return ERROR_FAIL;
2232         }
2233
2234         duration_start_measure(&duration);
2235
2236         if (argc >= 2)
2237         {
2238                 image.base_address_set = 1;
2239                 image.base_address = strtoul(args[1], NULL, 0);
2240         }
2241         else
2242         {
2243                 image.base_address_set = 0;
2244                 image.base_address = 0x0;
2245         }
2246
2247         image.start_address_set = 0;
2248
2249         if ((retval=image_open(&image, args[0], (argc == 3) ? args[2] : NULL)) != ERROR_OK)
2250         {
2251                 return retval;
2252         }
2253
2254         image_size = 0x0;
2255         retval=ERROR_OK;
2256         for (i = 0; i < image.num_sections; i++)
2257         {
2258                 buffer = malloc(image.sections[i].size);
2259                 if (buffer == NULL)
2260                 {
2261                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2262                         break;
2263                 }
2264                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2265                 {
2266                         free(buffer);
2267                         break;
2268                 }
2269
2270                 if (verify)
2271                 {
2272                         /* calculate checksum of image */
2273                         image_calculate_checksum( buffer, buf_cnt, &checksum );
2274
2275                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2276                         if( retval != ERROR_OK )
2277                         {
2278                                 free(buffer);
2279                                 break;
2280                         }
2281
2282                         if( checksum != mem_checksum )
2283                         {
2284                                 /* failed crc checksum, fall back to a binary compare */
2285                                 u8 *data;
2286
2287                                 command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
2288
2289                                 data = (u8*)malloc(buf_cnt);
2290
2291                                 /* Can we use 32bit word accesses? */
2292                                 int size = 1;
2293                                 int count = buf_cnt;
2294                                 if ((count % 4) == 0)
2295                                 {
2296                                         size *= 4;
2297                                         count /= 4;
2298                                 }
2299                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2300                                 if (retval == ERROR_OK)
2301                                 {
2302                                         u32 t;
2303                                         for (t = 0; t < buf_cnt; t++)
2304                                         {
2305                                                 if (data[t] != buffer[t])
2306                                                 {
2307                                                         command_print(cmd_ctx, "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n", t + image.sections[i].base_address, data[t], buffer[t]);
2308                                                         free(data);
2309                                                         free(buffer);
2310                                                         retval=ERROR_FAIL;
2311                                                         goto done;
2312                                                 }
2313                                                 if ((t%16384)==0)
2314                                                 {
2315                                                         keep_alive();
2316                                                 }
2317                                         }
2318                                 }
2319
2320                                 free(data);
2321                         }
2322                 } else
2323                 {
2324                         command_print(cmd_ctx, "address 0x%08x length 0x%08x", image.sections[i].base_address, buf_cnt);
2325                 }
2326
2327                 free(buffer);
2328                 image_size += buf_cnt;
2329         }
2330 done:
2331
2332         if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2333         {
2334                 image_close(&image);
2335                 return retvaltemp;
2336         }
2337
2338         if (retval==ERROR_OK)
2339         {
2340                 command_print(cmd_ctx, "verified %u bytes in %s", image_size, duration_text);
2341         }
2342         free(duration_text);
2343
2344         image_close(&image);
2345
2346         return retval;
2347 }
2348
2349 static int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2350 {
2351         return handle_verify_image_command_internal(cmd_ctx, cmd, args, argc, 1);
2352 }
2353
2354 static int handle_test_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2355 {
2356         return handle_verify_image_command_internal(cmd_ctx, cmd, args, argc, 0);
2357 }
2358
2359 static int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2360 {
2361         int retval;
2362         target_t *target = get_current_target(cmd_ctx);
2363
2364         if (argc == 0)
2365         {
2366                 breakpoint_t *breakpoint = target->breakpoints;
2367
2368                 while (breakpoint)
2369                 {
2370                         if (breakpoint->type == BKPT_SOFT)
2371                         {
2372                                 char* buf = buf_to_str(breakpoint->orig_instr, breakpoint->length, 16);
2373                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i, 0x%s", breakpoint->address, breakpoint->length, breakpoint->set, buf);
2374                                 free(buf);
2375                         }
2376                         else
2377                         {
2378                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i", breakpoint->address, breakpoint->length, breakpoint->set);
2379                         }
2380                         breakpoint = breakpoint->next;
2381                 }
2382         }
2383         else if (argc >= 2)
2384         {
2385                 int hw = BKPT_SOFT;
2386                 u32 length = 0;
2387
2388                 length = strtoul(args[1], NULL, 0);
2389
2390                 if (argc >= 3)
2391                         if (strcmp(args[2], "hw") == 0)
2392                                 hw = BKPT_HARD;
2393
2394                 if ((retval = breakpoint_add(target, strtoul(args[0], NULL, 0), length, hw)) != ERROR_OK)
2395                 {
2396                         LOG_ERROR("Failure setting breakpoints");
2397                 }
2398                 else
2399                 {
2400                         command_print(cmd_ctx, "breakpoint added at address 0x%8.8lx",
2401                                         strtoul(args[0], NULL, 0));
2402                 }
2403         }
2404         else
2405         {
2406                 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
2407         }
2408
2409         return ERROR_OK;
2410 }
2411
2412 static int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2413 {
2414         target_t *target = get_current_target(cmd_ctx);
2415
2416         if (argc > 0)
2417                 breakpoint_remove(target, strtoul(args[0], NULL, 0));
2418
2419         return ERROR_OK;
2420 }
2421
2422 static int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2423 {
2424         target_t *target = get_current_target(cmd_ctx);
2425         int retval;
2426
2427         if (argc == 0)
2428         {
2429                 watchpoint_t *watchpoint = target->watchpoints;
2430
2431                 while (watchpoint)
2432                 {
2433                         command_print(cmd_ctx, "address: 0x%8.8x, len: 0x%8.8x, r/w/a: %i, value: 0x%8.8x, mask: 0x%8.8x", watchpoint->address, watchpoint->length, watchpoint->rw, watchpoint->value, watchpoint->mask);
2434                         watchpoint = watchpoint->next;
2435                 }
2436         }
2437         else if (argc >= 2)
2438         {
2439                 enum watchpoint_rw type = WPT_ACCESS;
2440                 u32 data_value = 0x0;
2441                 u32 data_mask = 0xffffffff;
2442
2443                 if (argc >= 3)
2444                 {
2445                         switch(args[2][0])
2446                         {
2447                                 case 'r':
2448                                         type = WPT_READ;
2449                                         break;
2450                                 case 'w':
2451                                         type = WPT_WRITE;
2452                                         break;
2453                                 case 'a':
2454                                         type = WPT_ACCESS;
2455                                         break;
2456                                 default:
2457                                         command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2458                                         return ERROR_OK;
2459                         }
2460                 }
2461                 if (argc >= 4)
2462                 {
2463                         data_value = strtoul(args[3], NULL, 0);
2464                 }
2465                 if (argc >= 5)
2466                 {
2467                         data_mask = strtoul(args[4], NULL, 0);
2468                 }
2469
2470                 if ((retval = watchpoint_add(target, strtoul(args[0], NULL, 0),
2471                                 strtoul(args[1], NULL, 0), type, data_value, data_mask)) != ERROR_OK)
2472                 {
2473                         LOG_ERROR("Failure setting breakpoints");
2474                 }
2475         }
2476         else
2477         {
2478                 command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2479         }
2480
2481         return ERROR_OK;
2482 }
2483
2484 static int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2485 {
2486         target_t *target = get_current_target(cmd_ctx);
2487
2488         if (argc > 0)
2489                 watchpoint_remove(target, strtoul(args[0], NULL, 0));
2490
2491         return ERROR_OK;
2492 }
2493
2494 static int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc)
2495 {
2496         int retval;
2497         target_t *target = get_current_target(cmd_ctx);
2498         u32 va;
2499         u32 pa;
2500
2501         if (argc != 1)
2502         {
2503                 return ERROR_COMMAND_SYNTAX_ERROR;
2504         }
2505         va = strtoul(args[0], NULL, 0);
2506
2507         retval = target->type->virt2phys(target, va, &pa);
2508         if (retval == ERROR_OK)
2509         {
2510                 command_print(cmd_ctx, "Physical address 0x%08x", pa);
2511         }
2512         else
2513         {
2514                 /* lower levels will have logged a detailed error which is
2515                  * forwarded to telnet/GDB session.
2516                  */
2517         }
2518         return retval;
2519 }
2520
2521 static void writeData(FILE *f, const void *data, size_t len)
2522 {
2523         size_t written = fwrite(data, len, 1, f);
2524         if (written != len)
2525                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
2526 }
2527
2528 static void writeLong(FILE *f, int l)
2529 {
2530         int i;
2531         for (i=0; i<4; i++)
2532         {
2533                 char c=(l>>(i*8))&0xff;
2534                 writeData(f, &c, 1);
2535         }
2536
2537 }
2538
2539 static void writeString(FILE *f, char *s)
2540 {
2541         writeData(f, s, strlen(s));
2542 }
2543
2544 /* Dump a gmon.out histogram file. */
2545 static void writeGmon(u32 *samples, u32 sampleNum, char *filename)
2546 {
2547         u32 i;
2548         FILE *f=fopen(filename, "w");
2549         if (f==NULL)
2550                 return;
2551         writeString(f, "gmon");
2552         writeLong(f, 0x00000001); /* Version */
2553         writeLong(f, 0); /* padding */
2554         writeLong(f, 0); /* padding */
2555         writeLong(f, 0); /* padding */
2556
2557         u8 zero = 0;  /* GMON_TAG_TIME_HIST */
2558         writeData(f, &zero, 1);
2559
2560         /* figure out bucket size */
2561         u32 min=samples[0];
2562         u32 max=samples[0];
2563         for (i=0; i<sampleNum; i++)
2564         {
2565                 if (min>samples[i])
2566                 {
2567                         min=samples[i];
2568                 }
2569                 if (max<samples[i])
2570                 {
2571                         max=samples[i];
2572                 }
2573         }
2574
2575         int addressSpace=(max-min+1);
2576
2577         static const u32 maxBuckets = 256 * 1024; /* maximum buckets. */
2578         u32 length = addressSpace;
2579         if (length > maxBuckets)
2580         {
2581                 length=maxBuckets;
2582         }
2583         int *buckets=malloc(sizeof(int)*length);
2584         if (buckets==NULL)
2585         {
2586                 fclose(f);
2587                 return;
2588         }
2589         memset(buckets, 0, sizeof(int)*length);
2590         for (i=0; i<sampleNum;i++)
2591         {
2592                 u32 address=samples[i];
2593                 long long a=address-min;
2594                 long long b=length-1;
2595                 long long c=addressSpace-1;
2596                 int index=(a*b)/c; /* danger!!!! int32 overflows */
2597                 buckets[index]++;
2598         }
2599
2600         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
2601         writeLong(f, min);                      /* low_pc */
2602         writeLong(f, max);                      /* high_pc */
2603         writeLong(f, length);           /* # of samples */
2604         writeLong(f, 64000000);         /* 64MHz */
2605         writeString(f, "seconds");
2606         for (i=0; i<(15-strlen("seconds")); i++)
2607                 writeData(f, &zero, 1);
2608         writeString(f, "s");
2609
2610         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
2611
2612         char *data=malloc(2*length);
2613         if (data!=NULL)
2614         {
2615                 for (i=0; i<length;i++)
2616                 {
2617                         int val;
2618                         val=buckets[i];
2619                         if (val>65535)
2620                         {
2621                                 val=65535;
2622                         }
2623                         data[i*2]=val&0xff;
2624                         data[i*2+1]=(val>>8)&0xff;
2625                 }
2626                 free(buckets);
2627                 writeData(f, data, length * 2);
2628                 free(data);
2629         } else
2630         {
2631                 free(buckets);
2632         }
2633
2634         fclose(f);
2635 }
2636
2637 /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
2638 static int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2639 {
2640         target_t *target = get_current_target(cmd_ctx);
2641         struct timeval timeout, now;
2642
2643         gettimeofday(&timeout, NULL);
2644         if (argc!=2)
2645         {
2646                 return ERROR_COMMAND_SYNTAX_ERROR;
2647         }
2648         char *end;
2649         timeval_add_time(&timeout, strtoul(args[0], &end, 0), 0);
2650         if (*end)
2651         {
2652                 return ERROR_OK;
2653         }
2654
2655         command_print(cmd_ctx, "Starting profiling. Halting and resuming the target as often as we can...");
2656
2657         static const int maxSample=10000;
2658         u32 *samples=malloc(sizeof(u32)*maxSample);
2659         if (samples==NULL)
2660                 return ERROR_OK;
2661
2662         int numSamples=0;
2663         int retval=ERROR_OK;
2664         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2665         reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1);
2666
2667         for (;;)
2668         {
2669                 target_poll(target);
2670                 if (target->state == TARGET_HALTED)
2671                 {
2672                         u32 t=*((u32 *)reg->value);
2673                         samples[numSamples++]=t;
2674                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2675                         target_poll(target);
2676                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2677                 } else if (target->state == TARGET_RUNNING)
2678                 {
2679                         /* We want to quickly sample the PC. */
2680                         if((retval = target_halt(target)) != ERROR_OK)
2681                         {
2682                                 free(samples);
2683                                 return retval;
2684                         }
2685                 } else
2686                 {
2687                         command_print(cmd_ctx, "Target not halted or running");
2688                         retval=ERROR_OK;
2689                         break;
2690                 }
2691                 if (retval!=ERROR_OK)
2692                 {
2693                         break;
2694                 }
2695
2696                 gettimeofday(&now, NULL);
2697                 if ((numSamples>=maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
2698                 {
2699                         command_print(cmd_ctx, "Profiling completed. %d samples.", numSamples);
2700                         if((retval = target_poll(target)) != ERROR_OK)
2701                         {
2702                                 free(samples);
2703                                 return retval;
2704                         }
2705                         if (target->state == TARGET_HALTED)
2706                         {
2707                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2708                         }
2709                         if((retval = target_poll(target)) != ERROR_OK)
2710                         {
2711                                 free(samples);
2712                                 return retval;
2713                         }
2714                         writeGmon(samples, numSamples, args[1]);
2715                         command_print(cmd_ctx, "Wrote %s", args[1]);
2716                         break;
2717                 }
2718         }
2719         free(samples);
2720
2721         return ERROR_OK;
2722 }
2723
2724 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 val)
2725 {
2726         char *namebuf;
2727         Jim_Obj *nameObjPtr, *valObjPtr;
2728         int result;
2729
2730         namebuf = alloc_printf("%s(%d)", varname, idx);
2731         if (!namebuf)
2732                 return JIM_ERR;
2733
2734         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
2735         valObjPtr = Jim_NewIntObj(interp, val);
2736         if (!nameObjPtr || !valObjPtr)
2737         {
2738                 free(namebuf);
2739                 return JIM_ERR;
2740         }
2741
2742         Jim_IncrRefCount(nameObjPtr);
2743         Jim_IncrRefCount(valObjPtr);
2744         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
2745         Jim_DecrRefCount(interp, nameObjPtr);
2746         Jim_DecrRefCount(interp, valObjPtr);
2747         free(namebuf);
2748         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
2749         return result;
2750 }
2751
2752 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
2753 {
2754         command_context_t *context;
2755         target_t *target;
2756
2757         context = Jim_GetAssocData(interp, "context");
2758         if (context == NULL)
2759         {
2760                 LOG_ERROR("mem2array: no command context");
2761                 return JIM_ERR;
2762         }
2763         target = get_current_target(context);
2764         if (target == NULL)
2765         {
2766                 LOG_ERROR("mem2array: no current target");
2767                 return JIM_ERR;
2768         }
2769
2770         return  target_mem2array(interp, target, argc-1, argv+1);
2771 }
2772
2773 static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv)
2774 {
2775         long l;
2776         u32 width;
2777         int len;
2778         u32 addr;
2779         u32 count;
2780         u32 v;
2781         const char *varname;
2782         u8 buffer[4096];
2783         int  n, e, retval;
2784         u32 i;
2785
2786         /* argv[1] = name of array to receive the data
2787          * argv[2] = desired width
2788          * argv[3] = memory address
2789          * argv[4] = count of times to read
2790          */
2791         if (argc != 4) {
2792                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
2793                 return JIM_ERR;
2794         }
2795         varname = Jim_GetString(argv[0], &len);
2796         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
2797
2798         e = Jim_GetLong(interp, argv[1], &l);
2799         width = l;
2800         if (e != JIM_OK) {
2801                 return e;
2802         }
2803
2804         e = Jim_GetLong(interp, argv[2], &l);
2805         addr = l;
2806         if (e != JIM_OK) {
2807                 return e;
2808         }
2809         e = Jim_GetLong(interp, argv[3], &l);
2810         len = l;
2811         if (e != JIM_OK) {
2812                 return e;
2813         }
2814         switch (width) {
2815                 case 8:
2816                         width = 1;
2817                         break;
2818                 case 16:
2819                         width = 2;
2820                         break;
2821                 case 32:
2822                         width = 4;
2823                         break;
2824                 default:
2825                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2826                         Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
2827                         return JIM_ERR;
2828         }
2829         if (len == 0) {
2830                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2831                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
2832                 return JIM_ERR;
2833         }
2834         if ((addr + (len * width)) < addr) {
2835                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2836                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
2837                 return JIM_ERR;
2838         }
2839         /* absurd transfer size? */
2840         if (len > 65536) {
2841                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2842                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
2843                 return JIM_ERR;
2844         }
2845
2846         if ((width == 1) ||
2847                 ((width == 2) && ((addr & 1) == 0)) ||
2848                 ((width == 4) && ((addr & 3) == 0))) {
2849                 /* all is well */
2850         } else {
2851                 char buf[100];
2852                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2853                 sprintf(buf, "mem2array address: 0x%08x is not aligned for %d byte reads", addr, width);
2854                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
2855                 return JIM_ERR;
2856         }
2857
2858         /* Transfer loop */
2859
2860         /* index counter */
2861         n = 0;
2862         /* assume ok */
2863         e = JIM_OK;
2864         while (len) {
2865                 /* Slurp... in buffer size chunks */
2866
2867                 count = len; /* in objects.. */
2868                 if (count > (sizeof(buffer)/width)) {
2869                         count = (sizeof(buffer)/width);
2870                 }
2871
2872                 retval = target_read_memory( target, addr, width, count, buffer );
2873                 if (retval != ERROR_OK) {
2874                         /* BOO !*/
2875                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
2876                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2877                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
2878                         e = JIM_ERR;
2879                         len = 0;
2880                 } else {
2881                         v = 0; /* shut up gcc */
2882                         for (i = 0 ;i < count ;i++, n++) {
2883                                 switch (width) {
2884                                         case 4:
2885                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
2886                                                 break;
2887                                         case 2:
2888                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
2889                                                 break;
2890                                         case 1:
2891                                                 v = buffer[i] & 0x0ff;
2892                                                 break;
2893                                 }
2894                                 new_int_array_element(interp, varname, n, v);
2895                         }
2896                         len -= count;
2897                 }
2898         }
2899
2900         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2901
2902         return JIM_OK;
2903 }
2904
2905 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 *val)
2906 {
2907         char *namebuf;
2908         Jim_Obj *nameObjPtr, *valObjPtr;
2909         int result;
2910         long l;
2911
2912         namebuf = alloc_printf("%s(%d)", varname, idx);
2913         if (!namebuf)
2914                 return JIM_ERR;
2915
2916         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
2917         if (!nameObjPtr)
2918         {
2919                 free(namebuf);
2920                 return JIM_ERR;
2921         }
2922
2923         Jim_IncrRefCount(nameObjPtr);
2924         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
2925         Jim_DecrRefCount(interp, nameObjPtr);
2926         free(namebuf);
2927         if (valObjPtr == NULL)
2928                 return JIM_ERR;
2929
2930         result = Jim_GetLong(interp, valObjPtr, &l);
2931         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
2932         *val = l;
2933         return result;
2934 }
2935
2936 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
2937 {
2938         command_context_t *context;
2939         target_t *target;
2940
2941         context = Jim_GetAssocData(interp, "context");
2942         if (context == NULL){
2943                 LOG_ERROR("array2mem: no command context");
2944                 return JIM_ERR;
2945         }
2946         target = get_current_target(context);
2947         if (target == NULL){
2948                 LOG_ERROR("array2mem: no current target");
2949                 return JIM_ERR;
2950         }
2951
2952         return target_array2mem( interp,target, argc-1, argv+1 );
2953 }
2954
2955 static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv)
2956 {
2957         long l;
2958         u32 width;
2959         int len;
2960         u32 addr;
2961         u32 count;
2962         u32 v;
2963         const char *varname;
2964         u8 buffer[4096];
2965         int  n, e, retval;
2966         u32 i;
2967
2968         /* argv[1] = name of array to get the data
2969          * argv[2] = desired width
2970          * argv[3] = memory address
2971          * argv[4] = count to write
2972          */
2973         if (argc != 4) {
2974                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
2975                 return JIM_ERR;
2976         }
2977         varname = Jim_GetString(argv[0], &len);
2978         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
2979
2980         e = Jim_GetLong(interp, argv[1], &l);
2981         width = l;
2982         if (e != JIM_OK) {
2983                 return e;
2984         }
2985
2986         e = Jim_GetLong(interp, argv[2], &l);
2987         addr = l;
2988         if (e != JIM_OK) {
2989                 return e;
2990         }
2991         e = Jim_GetLong(interp, argv[3], &l);
2992         len = l;
2993         if (e != JIM_OK) {
2994                 return e;
2995         }
2996         switch (width) {
2997                 case 8:
2998                         width = 1;
2999                         break;
3000                 case 16:
3001                         width = 2;
3002                         break;
3003                 case 32:
3004                         width = 4;
3005                         break;
3006                 default:
3007                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3008                         Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
3009                         return JIM_ERR;
3010         }
3011         if (len == 0) {
3012                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3013                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
3014                 return JIM_ERR;
3015         }
3016         if ((addr + (len * width)) < addr) {
3017                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3018                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
3019                 return JIM_ERR;
3020         }
3021         /* absurd transfer size? */
3022         if (len > 65536) {
3023                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3024                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
3025                 return JIM_ERR;
3026         }
3027
3028         if ((width == 1) ||
3029                 ((width == 2) && ((addr & 1) == 0)) ||
3030                 ((width == 4) && ((addr & 3) == 0))) {
3031                 /* all is well */
3032         } else {
3033                 char buf[100];
3034                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3035                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads", addr, width);
3036                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3037                 return JIM_ERR;
3038         }
3039
3040         /* Transfer loop */
3041
3042         /* index counter */
3043         n = 0;
3044         /* assume ok */
3045         e = JIM_OK;
3046         while (len) {
3047                 /* Slurp... in buffer size chunks */
3048
3049                 count = len; /* in objects.. */
3050                 if (count > (sizeof(buffer)/width)) {
3051                         count = (sizeof(buffer)/width);
3052                 }
3053
3054                 v = 0; /* shut up gcc */
3055                 for (i = 0 ;i < count ;i++, n++) {
3056                         get_int_array_element(interp, varname, n, &v);
3057                         switch (width) {
3058                         case 4:
3059                                 target_buffer_set_u32(target, &buffer[i*width], v);
3060                                 break;
3061                         case 2:
3062                                 target_buffer_set_u16(target, &buffer[i*width], v);
3063                                 break;
3064                         case 1:
3065                                 buffer[i] = v & 0x0ff;
3066                                 break;
3067                         }
3068                 }
3069                 len -= count;
3070
3071                 retval = target_write_memory(target, addr, width, count, buffer);
3072                 if (retval != ERROR_OK) {
3073                         /* BOO !*/
3074                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
3075                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3076                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3077                         e = JIM_ERR;
3078                         len = 0;
3079                 }
3080         }
3081
3082         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3083
3084         return JIM_OK;
3085 }
3086
3087 void target_all_handle_event( enum target_event e )
3088 {
3089         target_t *target;
3090
3091         LOG_DEBUG( "**all*targets: event: %d, %s",
3092                         e,
3093                         Jim_Nvp_value2name_simple( nvp_target_event, e )->name );
3094
3095         target = all_targets;
3096         while (target){
3097                 target_handle_event( target, e );
3098                 target = target->next;
3099         }
3100 }
3101
3102 void target_handle_event( target_t *target, enum target_event e )
3103 {
3104         target_event_action_t *teap;
3105         int done;
3106
3107         teap = target->event_action;
3108
3109         done = 0;
3110         while( teap ){
3111                 if( teap->event == e ){
3112                         done = 1;
3113                         LOG_DEBUG( "target: (%d) %s (%s) event: %d (%s) action: %s\n",
3114                                            target->target_number,
3115                                            target->cmd_name,
3116                                            target->type->name,
3117                                            e,
3118                                            Jim_Nvp_value2name_simple( nvp_target_event, e )->name,
3119                                            Jim_GetString( teap->body, NULL ) );
3120                         if (Jim_EvalObj( interp, teap->body )!=JIM_OK)
3121                         {
3122                                 Jim_PrintErrorMessage(interp);
3123                         }
3124                 }
3125                 teap = teap->next;
3126         }
3127         if( !done ){
3128                 LOG_DEBUG( "event: %d %s - no action",
3129                                    e,
3130                                    Jim_Nvp_value2name_simple( nvp_target_event, e )->name );
3131         }
3132 }
3133
3134 enum target_cfg_param {
3135         TCFG_TYPE,
3136         TCFG_EVENT,
3137         TCFG_WORK_AREA_VIRT,
3138         TCFG_WORK_AREA_PHYS,
3139         TCFG_WORK_AREA_SIZE,
3140         TCFG_WORK_AREA_BACKUP,
3141         TCFG_ENDIAN,
3142         TCFG_VARIANT,
3143         TCFG_CHAIN_POSITION,
3144 };
3145
3146 static Jim_Nvp nvp_config_opts[] = {
3147         { .name = "-type",             .value = TCFG_TYPE },
3148         { .name = "-event",            .value = TCFG_EVENT },
3149         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
3150         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
3151         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
3152         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3153         { .name = "-endian" ,          .value = TCFG_ENDIAN },
3154         { .name = "-variant",          .value = TCFG_VARIANT },
3155         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
3156
3157         { .name = NULL, .value = -1 }
3158 };
3159
3160 static int target_configure( Jim_GetOptInfo *goi, target_t *target )
3161 {
3162         Jim_Nvp *n;
3163         Jim_Obj *o;
3164         jim_wide w;
3165         char *cp;
3166         int e;
3167
3168         /* parse config or cget options ... */
3169         while( goi->argc > 0 ){
3170                 Jim_SetEmptyResult( goi->interp );
3171                 /* Jim_GetOpt_Debug( goi ); */
3172
3173                 if( target->type->target_jim_configure ){
3174                         /* target defines a configure function */
3175                         /* target gets first dibs on parameters */
3176                         e = (*(target->type->target_jim_configure))( target, goi );
3177                         if( e == JIM_OK ){
3178                                 /* more? */
3179                                 continue;
3180                         }
3181                         if( e == JIM_ERR ){
3182                                 /* An error */
3183                                 return e;
3184                         }
3185                         /* otherwise we 'continue' below */
3186                 }
3187                 e = Jim_GetOpt_Nvp( goi, nvp_config_opts, &n );
3188                 if( e != JIM_OK ){
3189                         Jim_GetOpt_NvpUnknown( goi, nvp_config_opts, 0 );
3190                         return e;
3191                 }
3192                 switch( n->value ){
3193                 case TCFG_TYPE:
3194                         /* not setable */
3195                         if( goi->isconfigure ){
3196                                 Jim_SetResult_sprintf( goi->interp, "not setable: %s", n->name );
3197                                 return JIM_ERR;
3198                         } else {
3199                         no_params:
3200                                 if( goi->argc != 0 ){
3201                                         Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "NO PARAMS");
3202                                         return JIM_ERR;
3203                                 }
3204                         }
3205                         Jim_SetResultString( goi->interp, target->type->name, -1 );
3206                         /* loop for more */
3207                         break;
3208                 case TCFG_EVENT:
3209                         if( goi->argc == 0 ){
3210                                 Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
3211                                 return JIM_ERR;
3212                         }
3213
3214                         e = Jim_GetOpt_Nvp( goi, nvp_target_event, &n );
3215                         if( e != JIM_OK ){
3216                                 Jim_GetOpt_NvpUnknown( goi, nvp_target_event, 1 );
3217                                 return e;
3218                         }
3219
3220                         if( goi->isconfigure ){
3221                                 if( goi->argc != 1 ){
3222                                         Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
3223                                         return JIM_ERR;
3224                                 }
3225                         } else {
3226                                 if( goi->argc != 0 ){
3227                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
3228                                         return JIM_ERR;
3229                                 }
3230                         }
3231
3232                         {
3233                                 target_event_action_t *teap;
3234
3235                                 teap = target->event_action;
3236                                 /* replace existing? */
3237                                 while( teap ){
3238                                         if( teap->event == (enum target_event)n->value ){
3239                                                 break;
3240                                         }
3241                                         teap = teap->next;
3242                                 }
3243
3244                                 if( goi->isconfigure ){
3245                                         if( teap == NULL ){
3246                                                 /* create new */
3247                                                 teap = calloc( 1, sizeof(*teap) );
3248                                         }
3249                                         teap->event = n->value;
3250                                         Jim_GetOpt_Obj( goi, &o );
3251                                         if( teap->body ){
3252                                                 Jim_DecrRefCount( interp, teap->body );
3253                                         }
3254                                         teap->body  = Jim_DuplicateObj( goi->interp, o );
3255                                         /*
3256                                          * FIXME:
3257                                          *     Tcl/TK - "tk events" have a nice feature.
3258                                          *     See the "BIND" command.
3259                                          *    We should support that here.
3260                                          *     You can specify %X and %Y in the event code.
3261                                          *     The idea is: %T - target name.
3262                                          *     The idea is: %N - target number
3263                                          *     The idea is: %E - event name.
3264                                          */
3265                                         Jim_IncrRefCount( teap->body );
3266
3267                                         /* add to head of event list */
3268                                         teap->next = target->event_action;
3269                                         target->event_action = teap;
3270                                         Jim_SetEmptyResult(goi->interp);
3271                                 } else {
3272                                         /* get */
3273                                         if( teap == NULL ){
3274                                                 Jim_SetEmptyResult( goi->interp );
3275                                         } else {
3276                                                 Jim_SetResult( goi->interp, Jim_DuplicateObj( goi->interp, teap->body ) );
3277                                         }
3278                                 }
3279                         }
3280                         /* loop for more */
3281                         break;
3282
3283                 case TCFG_WORK_AREA_VIRT:
3284                         if( goi->isconfigure ){
3285                                 target_free_all_working_areas(target);
3286                                 e = Jim_GetOpt_Wide( goi, &w );
3287                                 if( e != JIM_OK ){
3288                                         return e;
3289                                 }
3290                                 target->working_area_virt = w;
3291                         } else {
3292                                 if( goi->argc != 0 ){
3293                                         goto no_params;
3294                                 }
3295                         }
3296                         Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_virt ) );
3297                         /* loop for more */
3298                         break;
3299
3300                 case TCFG_WORK_AREA_PHYS:
3301                         if( goi->isconfigure ){
3302                                 target_free_all_working_areas(target);
3303                                 e = Jim_GetOpt_Wide( goi, &w );
3304                                 if( e != JIM_OK ){
3305                                         return e;
3306                                 }
3307                                 target->working_area_phys = w;
3308                         } else {
3309                                 if( goi->argc != 0 ){
3310                                         goto no_params;
3311                                 }
3312                         }
3313                         Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_phys ) );
3314                         /* loop for more */
3315                         break;
3316
3317                 case TCFG_WORK_AREA_SIZE:
3318                         if( goi->isconfigure ){
3319                                 target_free_all_working_areas(target);
3320                                 e = Jim_GetOpt_Wide( goi, &w );
3321                                 if( e != JIM_OK ){
3322                                         return e;
3323                                 }
3324                                 target->working_area_size = w;
3325                         } else {
3326                                 if( goi->argc != 0 ){
3327                                         goto no_params;
3328                                 }
3329                         }
3330                         Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_size ) );
3331                         /* loop for more */
3332                         break;
3333
3334                 case TCFG_WORK_AREA_BACKUP:
3335                         if( goi->isconfigure ){
3336                                 target_free_all_working_areas(target);
3337                                 e = Jim_GetOpt_Wide( goi, &w );
3338                                 if( e != JIM_OK ){
3339                                         return e;
3340                                 }
3341                                 /* make this exactly 1 or 0 */
3342                                 target->backup_working_area = (!!w);
3343                         } else {
3344                                 if( goi->argc != 0 ){
3345                                         goto no_params;
3346                                 }
3347                         }
3348                         Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_size ) );
3349                         /* loop for more e*/
3350                         break;
3351
3352                 case TCFG_ENDIAN:
3353                         if( goi->isconfigure ){
3354                                 e = Jim_GetOpt_Nvp( goi, nvp_target_endian, &n );
3355                                 if( e != JIM_OK ){
3356                                         Jim_GetOpt_NvpUnknown( goi, nvp_target_endian, 1 );
3357                                         return e;
3358                                 }
3359                                 target->endianness = n->value;
3360                         } else {
3361                                 if( goi->argc != 0 ){
3362                                         goto no_params;
3363                                 }
3364                         }
3365                         n = Jim_Nvp_value2name_simple( nvp_target_endian, target->endianness );
3366                         if( n->name == NULL ){
3367                                 target->endianness = TARGET_LITTLE_ENDIAN;
3368                                 n = Jim_Nvp_value2name_simple( nvp_target_endian, target->endianness );
3369                         }
3370                         Jim_SetResultString( goi->interp, n->name, -1 );
3371                         /* loop for more */
3372                         break;
3373
3374                 case TCFG_VARIANT:
3375                         if( goi->isconfigure ){
3376                                 if( goi->argc < 1 ){
3377                                         Jim_SetResult_sprintf( goi->interp,
3378                                                                                    "%s ?STRING?",
3379                                                                                    n->name );
3380                                         return JIM_ERR;
3381                                 }
3382                                 if( target->variant ){
3383                                         free((void *)(target->variant));
3384                                 }
3385                                 e = Jim_GetOpt_String( goi, &cp, NULL );
3386                                 target->variant = strdup(cp);
3387                         } else {
3388                                 if( goi->argc != 0 ){
3389                                         goto no_params;
3390                                 }
3391                         }
3392                         Jim_SetResultString( goi->interp, target->variant,-1 );
3393                         /* loop for more */
3394                         break;
3395                 case TCFG_CHAIN_POSITION:
3396                         if( goi->isconfigure ){
3397                                 Jim_Obj *o;
3398                                 jtag_tap_t *tap;
3399                                 target_free_all_working_areas(target);
3400                                 e = Jim_GetOpt_Obj( goi, &o );
3401                                 if( e != JIM_OK ){
3402                                         return e;
3403                                 }
3404                                 tap = jtag_TapByJimObj( goi->interp, o );
3405                                 if( tap == NULL ){
3406                                         return JIM_ERR;
3407                                 }
3408                                 /* make this exactly 1 or 0 */
3409                                 target->tap = tap;
3410                         } else {
3411                                 if( goi->argc != 0 ){
3412                                         goto no_params;
3413                                 }
3414                         }
3415                         Jim_SetResultString( interp, target->tap->dotted_name, -1 );
3416                         /* loop for more e*/
3417                         break;
3418                 }
3419         } /* while( goi->argc ) */
3420
3421
3422                 /* done - we return */
3423         return JIM_OK;
3424 }
3425
3426 /** this is the 'tcl' handler for the target specific command */
3427 static int tcl_target_func( Jim_Interp *interp, int argc, Jim_Obj *const *argv )
3428 {
3429         Jim_GetOptInfo goi;
3430         jim_wide a,b,c;
3431         int x,y,z;
3432         u8  target_buf[32];
3433         Jim_Nvp *n;
3434         target_t *target;
3435         struct command_context_s *cmd_ctx;
3436         int e;
3437
3438         enum {
3439                 TS_CMD_CONFIGURE,
3440                 TS_CMD_CGET,
3441
3442                 TS_CMD_MWW, TS_CMD_MWH, TS_CMD_MWB,
3443                 TS_CMD_MDW, TS_CMD_MDH, TS_CMD_MDB,
3444                 TS_CMD_MRW, TS_CMD_MRH, TS_CMD_MRB,
3445                 TS_CMD_MEM2ARRAY, TS_CMD_ARRAY2MEM,
3446                 TS_CMD_EXAMINE,
3447                 TS_CMD_POLL,
3448                 TS_CMD_RESET,
3449                 TS_CMD_HALT,
3450                 TS_CMD_WAITSTATE,
3451                 TS_CMD_EVENTLIST,
3452                 TS_CMD_CURSTATE,
3453                 TS_CMD_INVOKE_EVENT,
3454         };
3455
3456         static const Jim_Nvp target_options[] = {
3457                 { .name = "configure", .value = TS_CMD_CONFIGURE },
3458                 { .name = "cget", .value = TS_CMD_CGET },
3459                 { .name = "mww", .value = TS_CMD_MWW },
3460                 { .name = "mwh", .value = TS_CMD_MWH },
3461                 { .name = "mwb", .value = TS_CMD_MWB },
3462                 { .name = "mdw", .value = TS_CMD_MDW },
3463                 { .name = "mdh", .value = TS_CMD_MDH },
3464                 { .name = "mdb", .value = TS_CMD_MDB },
3465                 { .name = "mem2array", .value = TS_CMD_MEM2ARRAY },
3466                 { .name = "array2mem", .value = TS_CMD_ARRAY2MEM },
3467                 { .name = "eventlist", .value = TS_CMD_EVENTLIST },
3468                 { .name = "curstate",  .value = TS_CMD_CURSTATE },
3469
3470                 { .name = "arp_examine", .value = TS_CMD_EXAMINE },
3471                 { .name = "arp_poll", .value = TS_CMD_POLL },
3472                 { .name = "arp_reset", .value = TS_CMD_RESET },
3473                 { .name = "arp_halt", .value = TS_CMD_HALT },
3474                 { .name = "arp_waitstate", .value = TS_CMD_WAITSTATE },
3475                 { .name = "invoke-event", .value = TS_CMD_INVOKE_EVENT },
3476
3477                 { .name = NULL, .value = -1 },
3478         };
3479
3480         /* go past the "command" */
3481         Jim_GetOpt_Setup( &goi, interp, argc-1, argv+1 );
3482
3483         target = Jim_CmdPrivData( goi.interp );
3484         cmd_ctx = Jim_GetAssocData(goi.interp, "context");
3485
3486         /* commands here are in an NVP table */
3487         e = Jim_GetOpt_Nvp( &goi, target_options, &n );
3488         if( e != JIM_OK ){
3489                 Jim_GetOpt_NvpUnknown( &goi, target_options, 0 );
3490                 return e;
3491         }
3492         /* Assume blank result */
3493         Jim_SetEmptyResult( goi.interp );
3494
3495         switch( n->value ){
3496         case TS_CMD_CONFIGURE:
3497                 if( goi.argc < 2 ){
3498                         Jim_WrongNumArgs( goi.interp, goi.argc, goi.argv, "missing: -option VALUE ...");
3499                         return JIM_ERR;
3500                 }
3501                 goi.isconfigure = 1;
3502                 return target_configure( &goi, target );
3503         case TS_CMD_CGET:
3504                 // some things take params
3505                 if( goi.argc < 1 ){
3506                         Jim_WrongNumArgs( goi.interp, 0, goi.argv, "missing: ?-option?");
3507                         return JIM_ERR;
3508                 }
3509                 goi.isconfigure = 0;
3510                 return target_configure( &goi, target );
3511                 break;
3512         case TS_CMD_MWW:
3513         case TS_CMD_MWH:
3514         case TS_CMD_MWB:
3515                 /* argv[0] = cmd
3516                  * argv[1] = address
3517                  * argv[2] = data
3518                  * argv[3] = optional count.
3519                  */
3520
3521                 if( (goi.argc == 3) || (goi.argc == 4) ){
3522                         /* all is well */
3523                 } else {
3524                 mwx_error:
3525                         Jim_SetResult_sprintf( goi.interp, "expected: %s ADDR DATA [COUNT]", n->name );
3526                         return JIM_ERR;
3527                 }
3528
3529                 e = Jim_GetOpt_Wide( &goi, &a );
3530                 if( e != JIM_OK ){
3531                         goto mwx_error;
3532                 }
3533
3534                 e = Jim_GetOpt_Wide( &goi, &b );
3535                 if( e != JIM_OK ){
3536                         goto mwx_error;
3537                 }
3538                 if( goi.argc ){
3539                         e = Jim_GetOpt_Wide( &goi, &c );
3540                         if( e != JIM_OK ){
3541                                 goto mwx_error;
3542                         }
3543                 } else {
3544                         c = 1;
3545                 }
3546
3547                 switch( n->value ){
3548                 case TS_CMD_MWW:
3549                         target_buffer_set_u32( target, target_buf, b );
3550                         b = 4;
3551                         break;
3552                 case TS_CMD_MWH:
3553                         target_buffer_set_u16( target, target_buf, b );
3554                         b = 2;
3555                         break;
3556                 case TS_CMD_MWB:
3557                         target_buffer_set_u8( target, target_buf, b );
3558                         b = 1;
3559                         break;
3560                 }
3561                 for( x = 0 ; x < c ; x++ ){
3562                         e = target_write_memory( target, a, b, 1, target_buf );
3563                         if( e != ERROR_OK ){
3564                                 Jim_SetResult_sprintf( interp, "Error writing @ 0x%08x: %d\n", (int)(a), e );
3565                                 return JIM_ERR;
3566                         }
3567                         /* b = width */
3568                         a = a + b;
3569                 }
3570                 return JIM_OK;
3571                 break;
3572
3573                 /* display */
3574         case TS_CMD_MDW:
3575         case TS_CMD_MDH:
3576         case TS_CMD_MDB:
3577                 /* argv[0] = command
3578                  * argv[1] = address
3579                  * argv[2] = optional count
3580                  */
3581                 if( (goi.argc == 2) || (goi.argc == 3) ){
3582                         Jim_SetResult_sprintf( goi.interp, "expected: %s ADDR [COUNT]", n->name );
3583                         return JIM_ERR;
3584                 }
3585                 e = Jim_GetOpt_Wide( &goi, &a );
3586                 if( e != JIM_OK ){
3587                         return JIM_ERR;
3588                 }
3589                 if( goi.argc ){
3590                         e = Jim_GetOpt_Wide( &goi, &c );
3591                         if( e != JIM_OK ){
3592                                 return JIM_ERR;
3593                         }
3594                 } else {
3595                         c = 1;
3596                 }
3597                 b = 1; /* shut up gcc */
3598                 switch( n->value ){
3599                 case TS_CMD_MDW:
3600                         b =  4;
3601                         break;
3602                 case TS_CMD_MDH:
3603                         b = 2;
3604                         break;
3605                 case TS_CMD_MDB:
3606                         b = 1;
3607                         break;
3608                 }
3609
3610                 /* convert to "bytes" */
3611                 c = c * b;
3612                 /* count is now in 'BYTES' */
3613                 while( c > 0 ){
3614                         y = c;
3615                         if( y > 16 ){
3616                                 y = 16;
3617                         }
3618                         e = target_read_memory( target, a, b, y / b, target_buf );
3619                         if( e != ERROR_OK ){
3620                                 Jim_SetResult_sprintf( interp, "error reading target @ 0x%08lx", (int)(a) );
3621                                 return JIM_ERR;
3622                         }
3623
3624                         Jim_fprintf( interp, interp->cookie_stdout, "0x%08x ", (int)(a) );
3625                         switch( b ){
3626                         case 4:
3627                                 for( x = 0 ; (x < 16) && (x < y) ; x += 4 ){
3628                                         z = target_buffer_get_u32( target, &(target_buf[ x * 4 ]) );
3629                                         Jim_fprintf( interp, interp->cookie_stdout, "%08x ", (int)(z) );
3630                                 }
3631                                 for( ; (x < 16) ; x += 4 ){
3632                                         Jim_fprintf( interp, interp->cookie_stdout, "         " );
3633                                 }
3634                                 break;
3635                         case 2:
3636                                 for( x = 0 ; (x < 16) && (x < y) ; x += 2 ){
3637                                         z = target_buffer_get_u16( target, &(target_buf[ x * 2 ]) );
3638                                         Jim_fprintf( interp, interp->cookie_stdout, "%04x ", (int)(z) );
3639                                 }
3640                                 for( ; (x < 16) ; x += 2 ){
3641                                         Jim_fprintf( interp, interp->cookie_stdout, "     " );
3642                                 }
3643                                 break;
3644                         case 1:
3645                         default:
3646                                 for( x = 0 ; (x < 16) && (x < y) ; x += 1 ){
3647                                         z = target_buffer_get_u8( target, &(target_buf[ x * 4 ]) );
3648                                         Jim_fprintf( interp, interp->cookie_stdout, "%02x ", (int)(z) );
3649                                 }
3650                                 for( ; (x < 16) ; x += 1 ){
3651                                         Jim_fprintf( interp, interp->cookie_stdout, "   " );
3652                                 }
3653                                 break;
3654                         }
3655                         /* ascii-ify the bytes */
3656                         for( x = 0 ; x < y ; x++ ){
3657                                 if( (target_buf[x] >= 0x20) &&
3658                                         (target_buf[x] <= 0x7e) ){
3659                                         /* good */
3660                                 } else {
3661                                         /* smack it */
3662                                         target_buf[x] = '.';
3663                                 }
3664                         }
3665                         /* space pad  */
3666                         while( x < 16 ){
3667                                 target_buf[x] = ' ';
3668                                 x++;
3669                         }
3670                         /* terminate */
3671                         target_buf[16] = 0;
3672                         /* print - with a newline */
3673                         Jim_fprintf( interp, interp->cookie_stdout, "%s\n", target_buf );
3674                         /* NEXT... */
3675                         c -= 16;
3676                         a += 16;
3677                 }
3678                 return JIM_OK;
3679         case TS_CMD_MEM2ARRAY:
3680                 return target_mem2array( goi.interp, target, goi.argc, goi.argv );
3681                 break;
3682         case TS_CMD_ARRAY2MEM:
3683                 return target_array2mem( goi.interp, target, goi.argc, goi.argv );
3684                 break;
3685         case TS_CMD_EXAMINE:
3686                 if( goi.argc ){
3687                         Jim_WrongNumArgs( goi.interp, 2, argv, "[no parameters]");
3688                         return JIM_ERR;
3689                 }
3690                 e = target->type->examine( target );
3691                 if( e != ERROR_OK ){
3692                         Jim_SetResult_sprintf( interp, "examine-fails: %d", e );
3693                         return JIM_ERR;
3694                 }
3695                 return JIM_OK;
3696         case TS_CMD_POLL:
3697                 if( goi.argc ){
3698                         Jim_WrongNumArgs( goi.interp, 2, argv, "[no parameters]");
3699                         return JIM_ERR;
3700                 }
3701                 if( !(target_was_examined(target)) ){
3702                         e = ERROR_TARGET_NOT_EXAMINED;
3703                 } else {
3704                         e = target->type->poll( target );
3705                 }
3706                 if( e != ERROR_OK ){
3707                         Jim_SetResult_sprintf( interp, "poll-fails: %d", e );
3708                         return JIM_ERR;
3709                 } else {
3710                         return JIM_OK;
3711                 }
3712                 break;
3713         case TS_CMD_RESET:
3714                 if( goi.argc != 2 ){
3715                         Jim_WrongNumArgs( interp, 2, argv, "t|f|assert|deassert BOOL");
3716                         return JIM_ERR;
3717                 }
3718                 e = Jim_GetOpt_Nvp( &goi, nvp_assert, &n );
3719                 if( e != JIM_OK ){
3720                         Jim_GetOpt_NvpUnknown( &goi, nvp_assert, 1 );
3721                         return e;
3722                 }
3723                 /* the halt or not param */
3724                 e = Jim_GetOpt_Wide( &goi, &a);
3725                 if( e != JIM_OK ){
3726                         return e;
3727                 }
3728                 /* determine if we should halt or not. */
3729                 target->reset_halt = !!a;
3730                 /* When this happens - all workareas are invalid. */
3731                 target_free_all_working_areas_restore(target, 0);
3732
3733                 /* do the assert */
3734                 if( n->value == NVP_ASSERT ){
3735                         target->type->assert_reset( target );
3736                 } else {
3737                         target->type->deassert_reset( target );
3738                 }
3739                 return JIM_OK;
3740         case TS_CMD_HALT:
3741                 if( goi.argc ){
3742                         Jim_WrongNumArgs( goi.interp, 0, argv, "halt [no parameters]");
3743                         return JIM_ERR;
3744                 }
3745                 target->type->halt( target );
3746                 return JIM_OK;
3747         case TS_CMD_WAITSTATE:
3748                 /* params:  <name>  statename timeoutmsecs */
3749                 if( goi.argc != 2 ){
3750                         Jim_SetResult_sprintf( goi.interp, "%s STATENAME TIMEOUTMSECS", n->name );
3751                         return JIM_ERR;
3752                 }
3753                 e = Jim_GetOpt_Nvp( &goi, nvp_target_state, &n );
3754                 if( e != JIM_OK ){
3755                         Jim_GetOpt_NvpUnknown( &goi, nvp_target_state,1 );
3756                         return e;
3757                 }
3758                 e = Jim_GetOpt_Wide( &goi, &a );
3759                 if( e != JIM_OK ){
3760                         return e;
3761                 }
3762                 e = target_wait_state( target, n->value, a );
3763                 if( e != ERROR_OK ){
3764                         Jim_SetResult_sprintf( goi.interp,
3765                                                                    "target: %s wait %s fails (%d) %s",
3766                                                                    target->cmd_name,
3767                                                                    n->name,
3768                                                                    e, target_strerror_safe(e) );
3769                         return JIM_ERR;
3770                 } else {
3771                         return JIM_OK;
3772                 }
3773         case TS_CMD_EVENTLIST:
3774                 /* List for human, Events defined for this target.
3775                  * scripts/programs should use 'name cget -event NAME'
3776                  */
3777                 {
3778                         target_event_action_t *teap;
3779                         teap = target->event_action;
3780                         command_print( cmd_ctx, "Event actions for target (%d) %s\n",
3781                                                    target->target_number,
3782                                                    target->cmd_name );
3783                         command_print( cmd_ctx, "%-25s | Body", "Event");
3784                         command_print( cmd_ctx, "------------------------- | ----------------------------------------");
3785                         while( teap ){
3786                                 command_print( cmd_ctx,
3787                                                            "%-25s | %s",
3788                                                            Jim_Nvp_value2name_simple( nvp_target_event, teap->event )->name,
3789                                                            Jim_GetString( teap->body, NULL ) );
3790                                 teap = teap->next;
3791                         }
3792                         command_print( cmd_ctx, "***END***");
3793                         return JIM_OK;
3794                 }
3795         case TS_CMD_CURSTATE:
3796                 if( goi.argc != 0 ){
3797                         Jim_WrongNumArgs( goi.interp, 0, argv, "[no parameters]");
3798                         return JIM_ERR;
3799                 }
3800                 Jim_SetResultString( goi.interp,
3801                                                          Jim_Nvp_value2name_simple(nvp_target_state,target->state)->name,-1);
3802                 return JIM_OK;
3803         case TS_CMD_INVOKE_EVENT:
3804                 if( goi.argc != 1 ){
3805                         Jim_SetResult_sprintf( goi.interp, "%s ?EVENTNAME?",n->name);
3806                         return JIM_ERR;
3807                 }
3808                 e = Jim_GetOpt_Nvp( &goi, nvp_target_event, &n );
3809                 if( e != JIM_OK ){
3810                         Jim_GetOpt_NvpUnknown( &goi, nvp_target_event, 1 );
3811                         return e;
3812                 }
3813                 target_handle_event( target, n->value );
3814                 return JIM_OK;
3815         }
3816         return JIM_ERR;
3817 }
3818
3819 static int target_create( Jim_GetOptInfo *goi )
3820 {
3821         Jim_Obj *new_cmd;
3822         Jim_Cmd *cmd;
3823         const char *cp;
3824         char *cp2;
3825         int e;
3826         int x;
3827         target_t *target;
3828         struct command_context_s *cmd_ctx;
3829
3830         cmd_ctx = Jim_GetAssocData(goi->interp, "context");
3831         if( goi->argc < 3 ){
3832                 Jim_WrongNumArgs( goi->interp, 1, goi->argv, "?name? ?type? ..options...");
3833                 return JIM_ERR;
3834         }
3835
3836         /* COMMAND */
3837         Jim_GetOpt_Obj( goi, &new_cmd );
3838         /* does this command exist? */
3839         cmd = Jim_GetCommand( goi->interp, new_cmd, JIM_ERRMSG );
3840         if( cmd ){
3841                 cp = Jim_GetString( new_cmd, NULL );
3842                 Jim_SetResult_sprintf(goi->interp, "Command/target: %s Exists", cp);
3843                 return JIM_ERR;
3844         }
3845
3846         /* TYPE */
3847         e = Jim_GetOpt_String( goi, &cp2, NULL );
3848         cp = cp2;
3849         /* now does target type exist */
3850         for( x = 0 ; target_types[x] ; x++ ){
3851                 if( 0 == strcmp( cp, target_types[x]->name ) ){
3852                         /* found */
3853                         break;
3854                 }
3855         }
3856         if( target_types[x] == NULL ){
3857                 Jim_SetResult_sprintf( goi->interp, "Unknown target type %s, try one of ", cp );
3858                 for( x = 0 ; target_types[x] ; x++ ){
3859                         if( target_types[x+1] ){
3860                                 Jim_AppendStrings( goi->interp,
3861                                                                    Jim_GetResult(goi->interp),
3862                                                                    target_types[x]->name,
3863                                                                    ", ", NULL);
3864                         } else {
3865                                 Jim_AppendStrings( goi->interp,
3866                                                                    Jim_GetResult(goi->interp),
3867                                                                    " or ",
3868                                                                    target_types[x]->name,NULL );
3869                         }
3870                 }
3871                 return JIM_ERR;
3872         }
3873
3874         /* Create it */
3875         target = calloc(1,sizeof(target_t));
3876         /* set target number */
3877         target->target_number = new_target_number();
3878
3879         /* allocate memory for each unique target type */
3880         target->type = (target_type_t*)calloc(1,sizeof(target_type_t));
3881
3882         memcpy( target->type, target_types[x], sizeof(target_type_t));
3883
3884         /* will be set by "-endian" */
3885         target->endianness = TARGET_ENDIAN_UNKNOWN;
3886
3887         target->working_area        = 0x0;
3888         target->working_area_size   = 0x0;
3889         target->working_areas       = NULL;
3890         target->backup_working_area = 0;
3891
3892         target->state               = TARGET_UNKNOWN;
3893         target->debug_reason        = DBG_REASON_UNDEFINED;
3894         target->reg_cache           = NULL;
3895         target->breakpoints         = NULL;
3896         target->watchpoints         = NULL;
3897         target->next                = NULL;
3898         target->arch_info           = NULL;
3899
3900         target->display             = 1;
3901
3902         /* initialize trace information */
3903         target->trace_info = malloc(sizeof(trace_t));
3904         target->trace_info->num_trace_points         = 0;
3905         target->trace_info->trace_points_size        = 0;
3906         target->trace_info->trace_points             = NULL;
3907         target->trace_info->trace_history_size       = 0;
3908         target->trace_info->trace_history            = NULL;
3909         target->trace_info->trace_history_pos        = 0;
3910         target->trace_info->trace_history_overflowed = 0;
3911
3912         target->dbgmsg          = NULL;
3913         target->dbg_msg_enabled = 0;
3914
3915         target->endianness = TARGET_ENDIAN_UNKNOWN;
3916
3917         /* Do the rest as "configure" options */
3918         goi->isconfigure = 1;
3919         e = target_configure( goi, target);
3920
3921         if (target->tap == NULL)
3922         {
3923                 Jim_SetResultString( interp, "-chain-position required when creating target", -1);
3924                 e=JIM_ERR;
3925         }
3926
3927         if( e != JIM_OK ){
3928                 free( target->type );
3929                 free( target );
3930                 return e;
3931         }
3932
3933         if( target->endianness == TARGET_ENDIAN_UNKNOWN ){
3934                 /* default endian to little if not specified */
3935                 target->endianness = TARGET_LITTLE_ENDIAN;
3936         }
3937
3938         /* incase variant is not set */
3939         if (!target->variant)
3940                 target->variant = strdup("");
3941
3942         /* create the target specific commands */
3943         if( target->type->register_commands ){
3944                 (*(target->type->register_commands))( cmd_ctx );
3945         }
3946         if( target->type->target_create ){
3947                 (*(target->type->target_create))( target, goi->interp );
3948         }
3949
3950         /* append to end of list */
3951         {
3952                 target_t **tpp;
3953                 tpp = &(all_targets);
3954                 while( *tpp ){
3955                         tpp = &( (*tpp)->next );
3956                 }
3957                 *tpp = target;
3958         }
3959
3960         cp = Jim_GetString( new_cmd, NULL );
3961         target->cmd_name = strdup(cp);
3962
3963         /* now - create the new target name command */
3964         e = Jim_CreateCommand( goi->interp,
3965                                                    /* name */
3966                                                    cp,
3967                                                    tcl_target_func, /* C function */
3968                                                    target, /* private data */
3969                                                    NULL ); /* no del proc */
3970
3971         return e;
3972 }
3973
3974 static int jim_target( Jim_Interp *interp, int argc, Jim_Obj *const *argv )
3975 {
3976         int x,r,e;
3977         jim_wide w;
3978         struct command_context_s *cmd_ctx;
3979         target_t *target;
3980         Jim_GetOptInfo goi;
3981         enum tcmd {
3982                 /* TG = target generic */
3983                 TG_CMD_CREATE,
3984                 TG_CMD_TYPES,
3985                 TG_CMD_NAMES,
3986                 TG_CMD_CURRENT,
3987                 TG_CMD_NUMBER,
3988                 TG_CMD_COUNT,
3989         };
3990         const char *target_cmds[] = {
3991                 "create", "types", "names", "current", "number",
3992                 "count",
3993                 NULL /* terminate */
3994         };
3995
3996         LOG_DEBUG("Target command params:");
3997         LOG_DEBUG("%s", Jim_Debug_ArgvString(interp, argc, argv));
3998
3999         cmd_ctx = Jim_GetAssocData( interp, "context" );
4000
4001         Jim_GetOpt_Setup( &goi, interp, argc-1, argv+1 );
4002
4003         if( goi.argc == 0 ){
4004                 Jim_WrongNumArgs(interp, 1, argv, "missing: command ...");
4005                 return JIM_ERR;
4006         }
4007
4008         /* Jim_GetOpt_Debug( &goi ); */
4009         r = Jim_GetOpt_Enum( &goi, target_cmds, &x   );
4010         if( r != JIM_OK ){
4011                 return r;
4012         }
4013
4014         switch(x){
4015         default:
4016                 Jim_Panic(goi.interp,"Why am I here?");
4017                 return JIM_ERR;
4018         case TG_CMD_CURRENT:
4019                 if( goi.argc != 0 ){
4020                         Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters");
4021                         return JIM_ERR;
4022                 }
4023                 Jim_SetResultString( goi.interp, get_current_target( cmd_ctx )->cmd_name, -1 );
4024                 return JIM_OK;
4025         case TG_CMD_TYPES:
4026                 if( goi.argc != 0 ){
4027                         Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters" );
4028                         return JIM_ERR;
4029                 }
4030                 Jim_SetResult( goi.interp, Jim_NewListObj( goi.interp, NULL, 0 ) );
4031                 for( x = 0 ; target_types[x] ; x++ ){
4032                         Jim_ListAppendElement( goi.interp,
4033                                                                    Jim_GetResult(goi.interp),
4034                                                                    Jim_NewStringObj( goi.interp, target_types[x]->name, -1 ) );
4035                 }
4036                 return JIM_OK;
4037         case TG_CMD_NAMES:
4038                 if( goi.argc != 0 ){
4039                         Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters" );
4040                         return JIM_ERR;
4041                 }
4042                 Jim_SetResult( goi.interp, Jim_NewListObj( goi.interp, NULL, 0 ) );
4043                 target = all_targets;
4044                 while( target ){
4045                         Jim_ListAppendElement( goi.interp,
4046                                                                    Jim_GetResult(goi.interp),
4047                                                                    Jim_NewStringObj( goi.interp, target->cmd_name, -1 ) );
4048                         target = target->next;
4049                 }
4050                 return JIM_OK;
4051         case TG_CMD_CREATE:
4052                 if( goi.argc < 3 ){
4053                         Jim_WrongNumArgs( goi.interp, goi.argc, goi.argv, "?name  ... config options ...");
4054                         return JIM_ERR;
4055                 }
4056                 return target_create( &goi );
4057                 break;
4058         case TG_CMD_NUMBER:
4059                 if( goi.argc != 1 ){
4060                         Jim_SetResult_sprintf( goi.interp, "expected: target number ?NUMBER?");
4061                         return JIM_ERR;
4062                 }
4063                 e = Jim_GetOpt_Wide( &goi, &w );
4064                 if( e != JIM_OK ){
4065                         return JIM_ERR;
4066                 }
4067                 {
4068                         target_t *t;
4069                         t = get_target_by_num(w);
4070                         if( t == NULL ){
4071                                 Jim_SetResult_sprintf( goi.interp,"Target: number %d does not exist", (int)(w));
4072                                 return JIM_ERR;
4073                         }
4074                         Jim_SetResultString( goi.interp, t->cmd_name, -1 );
4075                         return JIM_OK;
4076                 }
4077         case TG_CMD_COUNT:
4078                 if( goi.argc != 0 ){
4079                         Jim_WrongNumArgs( goi.interp, 0, goi.argv, "<no parameters>");
4080                         return JIM_ERR;
4081                 }
4082                 Jim_SetResult( goi.interp,
4083                                            Jim_NewIntObj( goi.interp, max_target_number()));
4084                 return JIM_OK;
4085         }
4086
4087         return JIM_ERR;
4088 }
4089
4090
4091 struct FastLoad
4092 {
4093         u32 address;
4094         u8 *data;
4095         int length;
4096
4097 };
4098
4099 static int fastload_num;
4100 static struct FastLoad *fastload;
4101
4102 static void free_fastload(void)
4103 {
4104         if (fastload!=NULL)
4105         {
4106                 int i;
4107                 for (i=0; i<fastload_num; i++)
4108                 {
4109                         if (fastload[i].data)
4110                                 free(fastload[i].data);
4111                 }
4112                 free(fastload);
4113                 fastload=NULL;
4114         }
4115 }
4116
4117
4118
4119
4120 static int handle_fast_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
4121 {
4122         u8 *buffer;
4123         u32 buf_cnt;
4124         u32 image_size;
4125         u32 min_address=0;
4126         u32 max_address=0xffffffff;
4127         int i;
4128         int retval;
4129
4130         image_t image;
4131
4132         duration_t duration;
4133         char *duration_text;
4134
4135         if ((argc < 1)||(argc > 5))
4136         {
4137                 return ERROR_COMMAND_SYNTAX_ERROR;
4138         }
4139
4140         /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
4141         if (argc >= 2)
4142         {
4143                 image.base_address_set = 1;
4144                 image.base_address = strtoul(args[1], NULL, 0);
4145         }
4146         else
4147         {
4148                 image.base_address_set = 0;
4149         }
4150
4151
4152         image.start_address_set = 0;
4153
4154         if (argc>=4)
4155         {
4156                 min_address=strtoul(args[3], NULL, 0);
4157         }
4158         if (argc>=5)
4159         {
4160                 max_address=strtoul(args[4], NULL, 0)+min_address;
4161         }
4162
4163         if (min_address>max_address)
4164         {
4165                 return ERROR_COMMAND_SYNTAX_ERROR;
4166         }
4167
4168         duration_start_measure(&duration);
4169
4170         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
4171         {
4172                 return ERROR_OK;
4173         }
4174
4175         image_size = 0x0;
4176         retval = ERROR_OK;
4177         fastload_num=image.num_sections;
4178         fastload=(struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
4179         if (fastload==NULL)
4180         {
4181                 image_close(&image);
4182                 return ERROR_FAIL;
4183         }
4184         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
4185         for (i = 0; i < image.num_sections; i++)
4186         {
4187                 buffer = malloc(image.sections[i].size);
4188                 if (buffer == NULL)
4189                 {
4190                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
4191                         break;
4192                 }
4193
4194                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
4195                 {
4196                         free(buffer);
4197                         break;
4198                 }
4199
4200                 u32 offset=0;
4201                 u32 length=buf_cnt;
4202
4203
4204                 /* DANGER!!! beware of unsigned comparision here!!! */
4205
4206                 if ((image.sections[i].base_address+buf_cnt>=min_address)&&
4207                                 (image.sections[i].base_address<max_address))
4208                 {
4209                         if (image.sections[i].base_address<min_address)
4210                         {
4211                                 /* clip addresses below */
4212                                 offset+=min_address-image.sections[i].base_address;
4213                                 length-=offset;
4214                         }
4215
4216                         if (image.sections[i].base_address+buf_cnt>max_address)
4217                         {
4218                                 length-=(image.sections[i].base_address+buf_cnt)-max_address;
4219                         }
4220
4221                         fastload[i].address=image.sections[i].base_address+offset;
4222                         fastload[i].data=malloc(length);
4223                         if (fastload[i].data==NULL)
4224                         {
4225                                 free(buffer);
4226                                 break;
4227                         }
4228                         memcpy(fastload[i].data, buffer+offset, length);
4229                         fastload[i].length=length;
4230
4231                         image_size += length;
4232                         command_print(cmd_ctx, "%u byte written at address 0x%8.8x", length, image.sections[i].base_address+offset);
4233                 }
4234
4235                 free(buffer);
4236         }
4237
4238         duration_stop_measure(&duration, &duration_text);
4239         if (retval==ERROR_OK)
4240         {
4241                 command_print(cmd_ctx, "Loaded %u bytes in %s", image_size, duration_text);
4242                 command_print(cmd_ctx, "NB!!! image has not been loaded to target, issue a subsequent 'fast_load' to do so.");
4243         }
4244         free(duration_text);
4245
4246         image_close(&image);
4247
4248         if (retval!=ERROR_OK)
4249         {
4250                 free_fastload();
4251         }
4252
4253         return retval;
4254 }
4255
4256 static int handle_fast_load_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
4257 {
4258         if (argc>0)
4259                 return ERROR_COMMAND_SYNTAX_ERROR;
4260         if (fastload==NULL)
4261         {
4262                 LOG_ERROR("No image in memory");
4263                 return ERROR_FAIL;
4264         }
4265         int i;
4266         int ms=timeval_ms();
4267         int size=0;
4268         int retval=ERROR_OK;
4269         for (i=0; i<fastload_num;i++)
4270         {
4271                 target_t *target = get_current_target(cmd_ctx);
4272                 command_print(cmd_ctx, "Write to 0x%08x, length 0x%08x", fastload[i].address, fastload[i].length);
4273                 if (retval==ERROR_OK)
4274                 {
4275                         retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
4276                 }
4277                 size+=fastload[i].length;
4278         }
4279         int after=timeval_ms();
4280         command_print(cmd_ctx, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
4281         return retval;
4282 }