better error messages for target event scripts.
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   This program is free software; you can redistribute it and/or modify  *
6  *   it under the terms of the GNU General Public License as published by  *
7  *   the Free Software Foundation; either version 2 of the License, or     *
8  *   (at your option) any later version.                                   *
9  *                                                                         *
10  *   This program is distributed in the hope that it will be useful,       *
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
13  *   GNU General Public License for more details.                          *
14  *                                                                         *
15  *   You should have received a copy of the GNU General Public License     *
16  *   along with this program; if not, write to the                         *
17  *   Free Software Foundation, Inc.,                                       *
18  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
19  ***************************************************************************/
20 #ifdef HAVE_CONFIG_H
21 #include "config.h"
22 #endif
23
24 #include "replacements.h"
25 #include "target.h"
26 #include "target_request.h"
27
28 #include "log.h"
29 #include "configuration.h"
30 #include "binarybuffer.h"
31 #include "jtag.h"
32
33 #include <string.h>
34 #include <stdlib.h>
35 #include <inttypes.h>
36
37 #include <sys/types.h>
38 #include <sys/stat.h>
39 #include <unistd.h>
40 #include <errno.h>
41
42 #include <sys/time.h>
43 #include <time.h>
44
45 #include <time_support.h>
46
47 #include <fileio.h>
48 #include <image.h>
49
50 int cli_target_callback_event_handler(struct target_s *target, enum target_event event, void *priv);
51
52 int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
53 int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
54
55 int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
56 int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
57
58 int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
59 int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
60 int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
61 int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
62 int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
63 int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
64 int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
65 int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
66 int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
67 int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
68 int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
69 int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
70 int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
71 int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
72 int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
73 int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
74 int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
75 int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc);
76 int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
77
78 /* targets
79  */
80 extern target_type_t arm7tdmi_target;
81 extern target_type_t arm720t_target;
82 extern target_type_t arm9tdmi_target;
83 extern target_type_t arm920t_target;
84 extern target_type_t arm966e_target;
85 extern target_type_t arm926ejs_target;
86 extern target_type_t feroceon_target;
87 extern target_type_t xscale_target;
88 extern target_type_t cortexm3_target;
89 extern target_type_t arm11_target;
90
91 target_type_t *target_types[] =
92 {
93         &arm7tdmi_target,
94         &arm9tdmi_target,
95         &arm920t_target,
96         &arm720t_target,
97         &arm966e_target,
98         &arm926ejs_target,
99         &feroceon_target,
100         &xscale_target,
101         &cortexm3_target,
102         &arm11_target,
103         NULL,
104 };
105
106 target_t *targets = NULL;
107 target_event_callback_t *target_event_callbacks = NULL;
108 target_timer_callback_t *target_timer_callbacks = NULL;
109
110 char *target_state_strings[] =
111 {
112         "unknown",
113         "running",
114         "halted",
115         "reset",
116         "debug_running",
117 };
118
119 char *target_debug_reason_strings[] =
120 {
121         "debug request", "breakpoint", "watchpoint",
122         "watchpoint and breakpoint", "single step",
123         "target not halted", "undefined"
124 };
125
126 char *target_endianess_strings[] =
127 {
128         "big endian",
129         "little endian",
130 };
131
132 static int target_continous_poll = 1;
133
134 /* read a u32 from a buffer in target memory endianness */
135 u32 target_buffer_get_u32(target_t *target, u8 *buffer)
136 {
137         if (target->endianness == TARGET_LITTLE_ENDIAN)
138                 return le_to_h_u32(buffer);
139         else
140                 return be_to_h_u32(buffer);
141 }
142
143 /* read a u16 from a buffer in target memory endianness */
144 u16 target_buffer_get_u16(target_t *target, u8 *buffer)
145 {
146         if (target->endianness == TARGET_LITTLE_ENDIAN)
147                 return le_to_h_u16(buffer);
148         else
149                 return be_to_h_u16(buffer);
150 }
151
152 /* write a u32 to a buffer in target memory endianness */
153 void target_buffer_set_u32(target_t *target, u8 *buffer, u32 value)
154 {
155         if (target->endianness == TARGET_LITTLE_ENDIAN)
156                 h_u32_to_le(buffer, value);
157         else
158                 h_u32_to_be(buffer, value);
159 }
160
161 /* write a u16 to a buffer in target memory endianness */
162 void target_buffer_set_u16(target_t *target, u8 *buffer, u16 value)
163 {
164         if (target->endianness == TARGET_LITTLE_ENDIAN)
165                 h_u16_to_le(buffer, value);
166         else
167                 h_u16_to_be(buffer, value);
168 }
169
170 /* returns a pointer to the n-th configured target */
171 target_t* get_target_by_num(int num)
172 {
173         target_t *target = targets;
174         int i = 0;
175
176         while (target)
177         {
178                 if (num == i)
179                         return target;
180                 target = target->next;
181                 i++;
182         }
183
184         return NULL;
185 }
186
187 int get_num_by_target(target_t *query_target)
188 {
189         target_t *target = targets;
190         int i = 0;      
191         
192         while (target)
193         {
194                 if (target == query_target)
195                         return i;
196                 target = target->next;
197                 i++;
198         }
199         
200         return -1;
201 }
202
203 target_t* get_current_target(command_context_t *cmd_ctx)
204 {
205         target_t *target = get_target_by_num(cmd_ctx->current_target);
206         
207         if (target == NULL)
208         {
209                 LOG_ERROR("BUG: current_target out of bounds");
210                 exit(-1);
211         }
212         
213         return target;
214 }
215
216 /* Process target initialization, when target entered debug out of reset
217  * the handler is unregistered at the end of this function, so it's only called once
218  */
219 int target_init_handler(struct target_s *target, enum target_event event, void *priv)
220 {
221         struct command_context_s *cmd_ctx = priv;
222         
223         if (event == TARGET_EVENT_HALTED)
224         {
225                 target_unregister_event_callback(target_init_handler, priv);
226                 target_invoke_script(cmd_ctx, target, "post_reset");
227                 jtag_execute_queue();
228         }
229         
230         return ERROR_OK;
231 }
232
233 int target_run_and_halt_handler(void *priv)
234 {
235         target_t *target = priv;
236         
237         target_halt(target);
238         
239         return ERROR_OK;
240 }
241
242 int target_poll(struct target_s *target)
243 {
244         /* We can't poll until after examine */
245         if (!target->type->examined)
246         {
247                 /* Fail silently lest we pollute the log */
248                 return ERROR_FAIL;
249         }
250         return target->type->poll(target);
251 }
252
253 int target_halt(struct target_s *target)
254 {
255         /* We can't poll until after examine */
256         if (!target->type->examined)
257         {
258                 LOG_ERROR("Target not examined yet");
259                 return ERROR_FAIL;
260         }
261         return target->type->halt(target);
262 }
263
264 int target_resume(struct target_s *target, int current, u32 address, int handle_breakpoints, int debug_execution)
265 {
266         int retval;
267         int timeout_ms = 5000;
268         
269         /* We can't poll until after examine */
270         if (!target->type->examined)
271         {
272                 LOG_ERROR("Target not examined yet");
273                 return ERROR_FAIL;
274         }
275         
276         if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
277                 return retval;
278         
279         /* only check for resume event if normal resume */
280         if (!debug_execution)
281         {
282                 /* wait for target to exit halted mode - not debug resume*/
283                 target_poll(target);
284                 
285                 while (target->state != TARGET_RUNNING)
286                 {
287                         usleep(10000);
288                         target_poll(target);
289                         if ((timeout_ms -= 10) <= 0)
290                         {
291                                 LOG_ERROR("timeout waiting for target resume");
292                                 return ERROR_TARGET_TIMEOUT;
293                         }
294                 }
295         }
296         
297         return retval;
298 }
299
300 int target_process_reset(struct command_context_s *cmd_ctx)
301 {
302         int retval = ERROR_OK;
303         target_t *target;
304         struct timeval timeout, now;
305
306         jtag->speed(jtag_speed);
307
308         target = targets;
309         while (target)
310         {
311                 target_invoke_script(cmd_ctx, target, "pre_reset");
312                 target = target->next;
313         }
314         
315         if ((retval = jtag_init_reset(cmd_ctx)) != ERROR_OK)
316                 return retval;
317         
318         /* First time this is executed after launching OpenOCD, it will read out 
319          * the type of CPU, etc. and init Embedded ICE registers in host
320          * memory. 
321          * 
322          * It will also set up ICE registers in the target.
323          * 
324          * However, if we assert TRST later, we need to set up the registers again. 
325          * 
326          * For the "reset halt/init" case we must only set up the registers here.
327          */
328         if ((retval = target_examine(cmd_ctx)) != ERROR_OK)
329                 return retval;
330         
331         /* prepare reset_halt where necessary */
332         target = targets;
333         while (target)
334         {
335                 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
336                 {
337                         switch (target->reset_mode)
338                         {
339                                 case RESET_HALT:
340                                         command_print(cmd_ctx, "nSRST pulls nTRST, falling back to \"reset run_and_halt\"");
341                                         target->reset_mode = RESET_RUN_AND_HALT;
342                                         break;
343                                 case RESET_INIT:
344                                         command_print(cmd_ctx, "nSRST pulls nTRST, falling back to \"reset run_and_init\"");
345                                         target->reset_mode = RESET_RUN_AND_INIT;
346                                         break;
347                                 default:
348                                         break;
349                         } 
350                 }
351                 target = target->next;
352         }
353         
354         target = targets;
355         while (target)
356         {
357                 /* we have no idea what state the target is in, so we
358                  * have to drop working areas
359                  */
360                 target_free_all_working_areas_restore(target, 0);
361                 target->type->assert_reset(target);
362                 target = target->next;
363         }
364         if ((retval = jtag_execute_queue()) != ERROR_OK)
365         {
366                 LOG_WARNING("JTAG communication failed asserting reset.");
367                 retval = ERROR_OK;
368         }
369         
370         /* request target halt if necessary, and schedule further action */
371         target = targets;
372         while (target)
373         {
374                 switch (target->reset_mode)
375                 {
376                         case RESET_RUN:
377                                 /* nothing to do if target just wants to be run */
378                                 break;
379                         case RESET_RUN_AND_HALT:
380                                 /* schedule halt */
381                                 target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target);
382                                 break;
383                         case RESET_RUN_AND_INIT:
384                                 /* schedule halt */
385                                 target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target);
386                                 target_register_event_callback(target_init_handler, cmd_ctx);
387                                 break;
388                         case RESET_HALT:
389                                 target_halt(target);
390                                 break;
391                         case RESET_INIT:
392                                 target_halt(target);
393                                 target_register_event_callback(target_init_handler, cmd_ctx);
394                                 break;
395                         default:
396                                 LOG_ERROR("BUG: unknown target->reset_mode");
397                 }
398                 target = target->next;
399         }
400         
401         if ((retval = jtag_execute_queue()) != ERROR_OK)
402         {
403                 LOG_WARNING("JTAG communication failed while reset was asserted. Consider using srst_only for reset_config.");
404                 retval = ERROR_OK;              
405         }
406         
407         target = targets;
408         while (target)
409         {
410                 target->type->deassert_reset(target);
411                 target = target->next;
412         }
413         
414         if ((retval = jtag_execute_queue()) != ERROR_OK)
415         {
416                 LOG_WARNING("JTAG communication failed while deasserting reset.");
417                 retval = ERROR_OK;
418         }
419
420         if (jtag_reset_config & RESET_SRST_PULLS_TRST)
421         {
422                 /* If TRST was asserted we need to set up registers again */
423                 if ((retval = target_examine(cmd_ctx)) != ERROR_OK)
424                         return retval;
425         }               
426         
427         
428         LOG_DEBUG("Waiting for halted stated as approperiate");
429         
430         /* Wait for reset to complete, maximum 5 seconds. */    
431         gettimeofday(&timeout, NULL);
432         timeval_add_time(&timeout, 5, 0);
433         for(;;)
434         {
435                 gettimeofday(&now, NULL);
436                 
437                 target_call_timer_callbacks_now();
438                 
439                 target = targets;
440                 while (target)
441                 {
442                         LOG_DEBUG("Polling target");
443                         target_poll(target);
444                         if ((target->reset_mode == RESET_RUN_AND_INIT) || 
445                                         (target->reset_mode == RESET_RUN_AND_HALT) ||
446                                         (target->reset_mode == RESET_HALT) ||
447                                         (target->reset_mode == RESET_INIT))
448                         {
449                                 if (target->state != TARGET_HALTED)
450                                 {
451                                         if ((now.tv_sec > timeout.tv_sec) || ((now.tv_sec == timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
452                                         {
453                                                 LOG_USER("Timed out waiting for halt after reset");
454                                                 goto done;
455                                         }
456                                         /* this will send alive messages on e.g. GDB remote protocol. */
457                                         usleep(500*1000); 
458                                         LOG_USER_N("%s", ""); /* avoid warning about zero length formatting message*/ 
459                                         goto again;
460                                 }
461                         }
462                         target = target->next;
463                 }
464                 /* All targets we're waiting for are halted */
465                 break;
466                 
467                 again:;
468         }
469         done:
470         
471         
472         /* We want any events to be processed before the prompt */
473         target_call_timer_callbacks_now();
474
475         /* if we timed out we need to unregister these handlers */
476         target = targets;
477         while (target)
478         {
479                 target_unregister_timer_callback(target_run_and_halt_handler, target);
480                 target = target->next;
481         }
482         target_unregister_event_callback(target_init_handler, cmd_ctx);
483         
484         jtag->speed(jtag_speed_post_reset);
485         
486         return retval;
487 }
488
489 static int default_virt2phys(struct target_s *target, u32 virtual, u32 *physical)
490 {
491         *physical = virtual;
492         return ERROR_OK;
493 }
494
495 static int default_mmu(struct target_s *target, int *enabled)
496 {
497         *enabled = 0;
498         return ERROR_OK;
499 }
500
501 static int default_examine(struct command_context_s *cmd_ctx, struct target_s *target)
502 {
503         target->type->examined = 1;
504         return ERROR_OK;
505 }
506
507
508 /* Targets that correctly implement init+examine, i.e.
509  * no communication with target during init:
510  * 
511  * XScale 
512  */
513 int target_examine(struct command_context_s *cmd_ctx)
514 {
515         int retval = ERROR_OK;
516         target_t *target = targets;
517         while (target)
518         {
519                 if ((retval = target->type->examine(cmd_ctx, target))!=ERROR_OK)
520                         return retval;
521                 target = target->next;
522         }
523         return retval;
524 }
525
526 static int target_write_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
527 {
528         if (!target->type->examined)
529         {
530                 LOG_ERROR("Target not examined yet");
531                 return ERROR_FAIL;
532         }
533         return target->type->write_memory_imp(target, address, size, count, buffer);
534 }
535
536 static int target_read_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
537 {
538         if (!target->type->examined)
539         {
540                 LOG_ERROR("Target not examined yet");
541                 return ERROR_FAIL;
542         }
543         return target->type->read_memory_imp(target, address, size, count, buffer);
544 }
545
546 static int target_soft_reset_halt_imp(struct target_s *target)
547 {
548         if (!target->type->examined)
549         {
550                 LOG_ERROR("Target not examined yet");
551                 return ERROR_FAIL;
552         }
553         return target->type->soft_reset_halt_imp(target);
554 }
555
556 static int target_run_algorithm_imp(struct target_s *target, int num_mem_params, mem_param_t *mem_params, int num_reg_params, reg_param_t *reg_param, u32 entry_point, u32 exit_point, int timeout_ms, void *arch_info)
557 {
558         if (!target->type->examined)
559         {
560                 LOG_ERROR("Target not examined yet");
561                 return ERROR_FAIL;
562         }
563         return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
564 }
565
566 int target_init(struct command_context_s *cmd_ctx)
567 {
568         target_t *target = targets;
569         
570         while (target)
571         {
572                 target->type->examined = 0;
573                 if (target->type->examine == NULL)
574                 {
575                         target->type->examine = default_examine;
576                 }
577                 
578                 if (target->type->init_target(cmd_ctx, target) != ERROR_OK)
579                 {
580                         LOG_ERROR("target '%s' init failed", target->type->name);
581                         exit(-1);
582                 }
583                 
584                 /* Set up default functions if none are provided by target */
585                 if (target->type->virt2phys == NULL)
586                 {
587                         target->type->virt2phys = default_virt2phys;
588                 }
589                 target->type->virt2phys = default_virt2phys;
590                 /* a non-invasive way(in terms of patches) to add some code that
591                  * runs before the type->write/read_memory implementation
592                  */
593                 target->type->write_memory_imp = target->type->write_memory;
594                 target->type->write_memory = target_write_memory_imp;
595                 target->type->read_memory_imp = target->type->read_memory;
596                 target->type->read_memory = target_read_memory_imp;
597                 target->type->soft_reset_halt_imp = target->type->soft_reset_halt;
598                 target->type->soft_reset_halt = target_soft_reset_halt_imp;
599                 target->type->run_algorithm_imp = target->type->run_algorithm;
600                 target->type->run_algorithm = target_run_algorithm_imp;
601
602                 
603                 if (target->type->mmu == NULL)
604                 {
605                         target->type->mmu = default_mmu;
606                 }
607                 target = target->next;
608         }
609         
610         if (targets)
611         {
612                 target_register_user_commands(cmd_ctx);
613                 target_register_timer_callback(handle_target, 100, 1, NULL);
614         }
615                 
616         return ERROR_OK;
617 }
618
619 int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
620 {
621         target_event_callback_t **callbacks_p = &target_event_callbacks;
622         
623         if (callback == NULL)
624         {
625                 return ERROR_INVALID_ARGUMENTS;
626         }
627         
628         if (*callbacks_p)
629         {
630                 while ((*callbacks_p)->next)
631                         callbacks_p = &((*callbacks_p)->next);
632                 callbacks_p = &((*callbacks_p)->next);
633         }
634         
635         (*callbacks_p) = malloc(sizeof(target_event_callback_t));
636         (*callbacks_p)->callback = callback;
637         (*callbacks_p)->priv = priv;
638         (*callbacks_p)->next = NULL;
639         
640         return ERROR_OK;
641 }
642
643 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
644 {
645         target_timer_callback_t **callbacks_p = &target_timer_callbacks;
646         struct timeval now;
647         
648         if (callback == NULL)
649         {
650                 return ERROR_INVALID_ARGUMENTS;
651         }
652         
653         if (*callbacks_p)
654         {
655                 while ((*callbacks_p)->next)
656                         callbacks_p = &((*callbacks_p)->next);
657                 callbacks_p = &((*callbacks_p)->next);
658         }
659         
660         (*callbacks_p) = malloc(sizeof(target_timer_callback_t));
661         (*callbacks_p)->callback = callback;
662         (*callbacks_p)->periodic = periodic;
663         (*callbacks_p)->time_ms = time_ms;
664         
665         gettimeofday(&now, NULL);
666         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
667         time_ms -= (time_ms % 1000);
668         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
669         if ((*callbacks_p)->when.tv_usec > 1000000)
670         {
671                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
672                 (*callbacks_p)->when.tv_sec += 1;
673         }
674         
675         (*callbacks_p)->priv = priv;
676         (*callbacks_p)->next = NULL;
677         
678         return ERROR_OK;
679 }
680
681 int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
682 {
683         target_event_callback_t **p = &target_event_callbacks;
684         target_event_callback_t *c = target_event_callbacks;
685         
686         if (callback == NULL)
687         {
688                 return ERROR_INVALID_ARGUMENTS;
689         }
690                 
691         while (c)
692         {
693                 target_event_callback_t *next = c->next;
694                 if ((c->callback == callback) && (c->priv == priv))
695                 {
696                         *p = next;
697                         free(c);
698                         return ERROR_OK;
699                 }
700                 else
701                         p = &(c->next);
702                 c = next;
703         }
704         
705         return ERROR_OK;
706 }
707
708 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
709 {
710         target_timer_callback_t **p = &target_timer_callbacks;
711         target_timer_callback_t *c = target_timer_callbacks;
712         
713         if (callback == NULL)
714         {
715                 return ERROR_INVALID_ARGUMENTS;
716         }
717                 
718         while (c)
719         {
720                 target_timer_callback_t *next = c->next;
721                 if ((c->callback == callback) && (c->priv == priv))
722                 {
723                         *p = next;
724                         free(c);
725                         return ERROR_OK;
726                 }
727                 else
728                         p = &(c->next);
729                 c = next;
730         }
731         
732         return ERROR_OK;
733 }
734
735 int target_call_event_callbacks(target_t *target, enum target_event event)
736 {
737         target_event_callback_t *callback = target_event_callbacks;
738         target_event_callback_t *next_callback;
739         
740         LOG_DEBUG("target event %i", event);
741         
742         while (callback)
743         {
744                 next_callback = callback->next;
745                 callback->callback(target, event, callback->priv);
746                 callback = next_callback;
747         }
748         
749         return ERROR_OK;
750 }
751
752 static int target_call_timer_callbacks_check_time(int checktime)
753 {
754         target_timer_callback_t *callback = target_timer_callbacks;
755         target_timer_callback_t *next_callback;
756         struct timeval now;
757
758         gettimeofday(&now, NULL);
759         
760         while (callback)
761         {
762                 next_callback = callback->next;
763                 
764                 if ((!checktime&&callback->periodic)||
765                                 (((now.tv_sec >= callback->when.tv_sec) && (now.tv_usec >= callback->when.tv_usec))
766                                                 || (now.tv_sec > callback->when.tv_sec)))
767                 {
768                         if(callback->callback != NULL)
769                         {
770                                 callback->callback(callback->priv);
771                                 if (callback->periodic)
772                                 {
773                                         int time_ms = callback->time_ms;
774                                         callback->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
775                                         time_ms -= (time_ms % 1000);
776                                         callback->when.tv_sec = now.tv_sec + time_ms / 1000;
777                                         if (callback->when.tv_usec > 1000000)
778                                         {
779                                                 callback->when.tv_usec = callback->when.tv_usec - 1000000;
780                                                 callback->when.tv_sec += 1;
781                                         }
782                                 }
783                                 else
784                                         target_unregister_timer_callback(callback->callback, callback->priv);
785                         }
786                 }
787                         
788                 callback = next_callback;
789         }
790         
791         return ERROR_OK;
792 }
793
794 int target_call_timer_callbacks()
795 {
796         return target_call_timer_callbacks_check_time(1);
797 }
798
799 /* invoke periodic callbacks immediately */
800 int target_call_timer_callbacks_now()
801 {
802         return target_call_timer_callbacks(0);
803 }
804
805 int target_alloc_working_area(struct target_s *target, u32 size, working_area_t **area)
806 {
807         working_area_t *c = target->working_areas;
808         working_area_t *new_wa = NULL;
809         
810         /* Reevaluate working area address based on MMU state*/
811         if (target->working_areas == NULL)
812         {
813                 int retval;
814                 int enabled;
815                 retval = target->type->mmu(target, &enabled);
816                 if (retval != ERROR_OK)
817                 {
818                         return retval;
819                 }
820                 if (enabled)
821                 {
822                         target->working_area = target->working_area_virt;
823                 }
824                 else
825                 {
826                         target->working_area = target->working_area_phys;
827                 }
828         }
829         
830         /* only allocate multiples of 4 byte */
831         if (size % 4)
832         {
833                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes, padding");
834                 size = CEIL(size, 4);
835         }
836         
837         /* see if there's already a matching working area */
838         while (c)
839         {
840                 if ((c->free) && (c->size == size))
841                 {
842                         new_wa = c;
843                         break;
844                 }
845                 c = c->next;
846         }
847         
848         /* if not, allocate a new one */
849         if (!new_wa)
850         {
851                 working_area_t **p = &target->working_areas;
852                 u32 first_free = target->working_area;
853                 u32 free_size = target->working_area_size;
854                 
855                 LOG_DEBUG("allocating new working area");
856                 
857                 c = target->working_areas;
858                 while (c)
859                 {
860                         first_free += c->size;
861                         free_size -= c->size;
862                         p = &c->next;
863                         c = c->next;
864                 }
865                 
866                 if (free_size < size)
867                 {
868                         LOG_WARNING("not enough working area available(requested %d, free %d)", size, free_size);
869                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
870                 }
871                 
872                 new_wa = malloc(sizeof(working_area_t));
873                 new_wa->next = NULL;
874                 new_wa->size = size;
875                 new_wa->address = first_free;
876                 
877                 if (target->backup_working_area)
878                 {
879                         new_wa->backup = malloc(new_wa->size);
880                         target->type->read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup);
881                 }
882                 else
883                 {
884                         new_wa->backup = NULL;
885                 }
886                 
887                 /* put new entry in list */
888                 *p = new_wa;
889         }
890         
891         /* mark as used, and return the new (reused) area */
892         new_wa->free = 0;
893         *area = new_wa;
894         
895         /* user pointer */
896         new_wa->user = area;
897         
898         return ERROR_OK;
899 }
900
901 int target_free_working_area_restore(struct target_s *target, working_area_t *area, int restore)
902 {
903         if (area->free)
904                 return ERROR_OK;
905         
906         if (restore&&target->backup_working_area)
907                 target->type->write_memory(target, area->address, 4, area->size / 4, area->backup);
908         
909         area->free = 1;
910         
911         /* mark user pointer invalid */
912         *area->user = NULL;
913         area->user = NULL;
914         
915         return ERROR_OK;
916 }
917
918 int target_free_working_area(struct target_s *target, working_area_t *area)
919 {
920         return target_free_working_area_restore(target, area, 1);
921 }
922
923 int target_free_all_working_areas_restore(struct target_s *target, int restore)
924 {
925         working_area_t *c = target->working_areas;
926
927         while (c)
928         {
929                 working_area_t *next = c->next;
930                 target_free_working_area_restore(target, c, restore);
931                 
932                 if (c->backup)
933                         free(c->backup);
934                 
935                 free(c);
936                 
937                 c = next;
938         }
939         
940         target->working_areas = NULL;
941         
942         return ERROR_OK;
943 }
944
945 int target_free_all_working_areas(struct target_s *target)
946 {
947         return target_free_all_working_areas_restore(target, 1); 
948 }
949
950 int target_register_commands(struct command_context_s *cmd_ctx)
951 {
952         register_command(cmd_ctx, NULL, "target", handle_target_command, COMMAND_CONFIG, "target <cpu> [reset_init default - DEPRECATED] <chainpos> <endianness> <variant> [cpu type specifc args]");
953         register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, NULL);
954         register_command(cmd_ctx, NULL, "run_and_halt_time", handle_run_and_halt_time_command, COMMAND_CONFIG, "<target> <run time ms>");
955         register_command(cmd_ctx, NULL, "working_area", handle_working_area_command, COMMAND_ANY, "working_area <target#> <address> <size> <'backup'|'nobackup'> [virtual address]");
956         register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "virt2phys <virtual address>");
957         register_command(cmd_ctx, NULL, "profile", handle_profile_command, COMMAND_EXEC, "PRELIMINARY! - profile <seconds> <gmon.out>");
958
959         return ERROR_OK;
960 }
961
962 int target_arch_state(struct target_s *target)
963 {
964         int retval;
965         if (target==NULL)
966         {
967                 LOG_USER("No target has been configured");
968                 return ERROR_OK;
969         }
970         
971         LOG_USER("target state: %s", target_state_strings[target->state]);
972         
973         if (target->state!=TARGET_HALTED)
974                 return ERROR_OK;
975         
976         retval=target->type->arch_state(target);
977         return retval;
978 }
979
980 /* Single aligned words are guaranteed to use 16 or 32 bit access 
981  * mode respectively, otherwise data is handled as quickly as 
982  * possible
983  */
984 int target_write_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
985 {
986         int retval;
987         if (!target->type->examined)
988         {
989                 LOG_ERROR("Target not examined yet");
990                 return ERROR_FAIL;
991         }
992         
993         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x", size, address);
994         
995         if (((address % 2) == 0) && (size == 2))
996         {
997                 return target->type->write_memory(target, address, 2, 1, buffer);
998         }
999         
1000         /* handle unaligned head bytes */
1001         if (address % 4)
1002         {
1003                 int unaligned = 4 - (address % 4);
1004                 
1005                 if (unaligned > size)
1006                         unaligned = size;
1007
1008                 if ((retval = target->type->write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1009                         return retval;
1010                 
1011                 buffer += unaligned;
1012                 address += unaligned;
1013                 size -= unaligned;
1014         }
1015                 
1016         /* handle aligned words */
1017         if (size >= 4)
1018         {
1019                 int aligned = size - (size % 4);
1020         
1021                 /* use bulk writes above a certain limit. This may have to be changed */
1022                 if (aligned > 128)
1023                 {
1024                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1025                                 return retval;
1026                 }
1027                 else
1028                 {
1029                         if ((retval = target->type->write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1030                                 return retval;
1031                 }
1032                 
1033                 buffer += aligned;
1034                 address += aligned;
1035                 size -= aligned;
1036         }
1037         
1038         /* handle tail writes of less than 4 bytes */
1039         if (size > 0)
1040         {
1041                 if ((retval = target->type->write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1042                         return retval;
1043         }
1044         
1045         return ERROR_OK;
1046 }
1047
1048
1049 /* Single aligned words are guaranteed to use 16 or 32 bit access 
1050  * mode respectively, otherwise data is handled as quickly as 
1051  * possible
1052  */
1053 int target_read_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
1054 {
1055         int retval;
1056         if (!target->type->examined)
1057         {
1058                 LOG_ERROR("Target not examined yet");
1059                 return ERROR_FAIL;
1060         }
1061
1062         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x", size, address);
1063         
1064         if (((address % 2) == 0) && (size == 2))
1065         {
1066                 return target->type->read_memory(target, address, 2, 1, buffer);
1067         }
1068         
1069         /* handle unaligned head bytes */
1070         if (address % 4)
1071         {
1072                 int unaligned = 4 - (address % 4);
1073                 
1074                 if (unaligned > size)
1075                         unaligned = size;
1076
1077                 if ((retval = target->type->read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1078                         return retval;
1079                 
1080                 buffer += unaligned;
1081                 address += unaligned;
1082                 size -= unaligned;
1083         }
1084                 
1085         /* handle aligned words */
1086         if (size >= 4)
1087         {
1088                 int aligned = size - (size % 4);
1089         
1090                 if ((retval = target->type->read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1091                         return retval;
1092                 
1093                 buffer += aligned;
1094                 address += aligned;
1095                 size -= aligned;
1096         }
1097         
1098         /* handle tail writes of less than 4 bytes */
1099         if (size > 0)
1100         {
1101                 if ((retval = target->type->read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1102                         return retval;
1103         }
1104         
1105         return ERROR_OK;
1106 }
1107
1108 int target_checksum_memory(struct target_s *target, u32 address, u32 size, u32* crc)
1109 {
1110         u8 *buffer;
1111         int retval;
1112         int i;
1113         u32 checksum = 0;
1114         if (!target->type->examined)
1115         {
1116                 LOG_ERROR("Target not examined yet");
1117                 return ERROR_FAIL;
1118         }
1119         
1120         if ((retval = target->type->checksum_memory(target, address,
1121                 size, &checksum)) == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1122         {
1123                 buffer = malloc(size);
1124                 if (buffer == NULL)
1125                 {
1126                         LOG_ERROR("error allocating buffer for section (%d bytes)", size);
1127                         return ERROR_INVALID_ARGUMENTS;
1128                 }
1129                 retval = target_read_buffer(target, address, size, buffer);
1130                 if (retval != ERROR_OK)
1131                 {
1132                         free(buffer);
1133                         return retval;
1134                 }
1135
1136                 /* convert to target endianess */
1137                 for (i = 0; i < (size/sizeof(u32)); i++)
1138                 {
1139                         u32 target_data;
1140                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(u32)]);
1141                         target_buffer_set_u32(target, &buffer[i*sizeof(u32)], target_data);
1142                 }
1143
1144                 retval = image_calculate_checksum( buffer, size, &checksum );
1145                 free(buffer);
1146         }
1147         
1148         *crc = checksum;
1149         
1150         return retval;
1151 }
1152
1153 int target_blank_check_memory(struct target_s *target, u32 address, u32 size, u32* blank)
1154 {
1155         int retval;
1156         if (!target->type->examined)
1157         {
1158                 LOG_ERROR("Target not examined yet");
1159                 return ERROR_FAIL;
1160         }
1161         
1162         if (target->type->blank_check_memory == 0)
1163                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1164         
1165         retval = target->type->blank_check_memory(target, address, size, blank);
1166                         
1167         return retval;
1168 }
1169
1170 int target_read_u32(struct target_s *target, u32 address, u32 *value)
1171 {
1172         u8 value_buf[4];
1173         if (!target->type->examined)
1174         {
1175                 LOG_ERROR("Target not examined yet");
1176                 return ERROR_FAIL;
1177         }
1178
1179         int retval = target->type->read_memory(target, address, 4, 1, value_buf);
1180         
1181         if (retval == ERROR_OK)
1182         {
1183                 *value = target_buffer_get_u32(target, value_buf);
1184                 LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, *value);
1185         }
1186         else
1187         {
1188                 *value = 0x0;
1189                 LOG_DEBUG("address: 0x%8.8x failed", address);
1190         }
1191         
1192         return retval;
1193 }
1194
1195 int target_read_u16(struct target_s *target, u32 address, u16 *value)
1196 {
1197         u8 value_buf[2];
1198         if (!target->type->examined)
1199         {
1200                 LOG_ERROR("Target not examined yet");
1201                 return ERROR_FAIL;
1202         }
1203
1204         int retval = target->type->read_memory(target, address, 2, 1, value_buf);
1205         
1206         if (retval == ERROR_OK)
1207         {
1208                 *value = target_buffer_get_u16(target, value_buf);
1209                 LOG_DEBUG("address: 0x%8.8x, value: 0x%4.4x", address, *value);
1210         }
1211         else
1212         {
1213                 *value = 0x0;
1214                 LOG_DEBUG("address: 0x%8.8x failed", address);
1215         }
1216         
1217         return retval;
1218 }
1219
1220 int target_read_u8(struct target_s *target, u32 address, u8 *value)
1221 {
1222         int retval = target->type->read_memory(target, address, 1, 1, value);
1223         if (!target->type->examined)
1224         {
1225                 LOG_ERROR("Target not examined yet");
1226                 return ERROR_FAIL;
1227         }
1228
1229         if (retval == ERROR_OK)
1230         {
1231                 LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, *value);
1232         }
1233         else
1234         {
1235                 *value = 0x0;
1236                 LOG_DEBUG("address: 0x%8.8x failed", address);
1237         }
1238         
1239         return retval;
1240 }
1241
1242 int target_write_u32(struct target_s *target, u32 address, u32 value)
1243 {
1244         int retval;
1245         u8 value_buf[4];
1246         if (!target->type->examined)
1247         {
1248                 LOG_ERROR("Target not examined yet");
1249                 return ERROR_FAIL;
1250         }
1251
1252         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1253
1254         target_buffer_set_u32(target, value_buf, value);        
1255         if ((retval = target->type->write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1256         {
1257                 LOG_DEBUG("failed: %i", retval);
1258         }
1259         
1260         return retval;
1261 }
1262
1263 int target_write_u16(struct target_s *target, u32 address, u16 value)
1264 {
1265         int retval;
1266         u8 value_buf[2];
1267         if (!target->type->examined)
1268         {
1269                 LOG_ERROR("Target not examined yet");
1270                 return ERROR_FAIL;
1271         }
1272
1273         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1274
1275         target_buffer_set_u16(target, value_buf, value);        
1276         if ((retval = target->type->write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1277         {
1278                 LOG_DEBUG("failed: %i", retval);
1279         }
1280         
1281         return retval;
1282 }
1283
1284 int target_write_u8(struct target_s *target, u32 address, u8 value)
1285 {
1286         int retval;
1287         if (!target->type->examined)
1288         {
1289                 LOG_ERROR("Target not examined yet");
1290                 return ERROR_FAIL;
1291         }
1292
1293         LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, value);
1294
1295         if ((retval = target->type->read_memory(target, address, 1, 1, &value)) != ERROR_OK)
1296         {
1297                 LOG_DEBUG("failed: %i", retval);
1298         }
1299         
1300         return retval;
1301 }
1302
1303 int target_register_user_commands(struct command_context_s *cmd_ctx)
1304 {
1305         register_command(cmd_ctx,  NULL, "reg", handle_reg_command, COMMAND_EXEC, NULL);
1306         register_command(cmd_ctx,  NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state");
1307         register_command(cmd_ctx,  NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]");
1308         register_command(cmd_ctx,  NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target");
1309         register_command(cmd_ctx,  NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]");
1310         register_command(cmd_ctx,  NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]");
1311         register_command(cmd_ctx,  NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run|halt|init|run_and_halt|run_and_init]");
1312         register_command(cmd_ctx,  NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset");
1313
1314         register_command(cmd_ctx,  NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words <addr> [count]");
1315         register_command(cmd_ctx,  NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words <addr> [count]");
1316         register_command(cmd_ctx,  NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes <addr> [count]");
1317         
1318         register_command(cmd_ctx,  NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word <addr> <value> [count]");
1319         register_command(cmd_ctx,  NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word <addr> <value> [count]");
1320         register_command(cmd_ctx,  NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte <addr> <value> [count]");
1321         
1322         register_command(cmd_ctx,  NULL, "bp", handle_bp_command, COMMAND_EXEC, "set breakpoint <address> <length> [hw]");      
1323         register_command(cmd_ctx,  NULL, "rbp", handle_rbp_command, COMMAND_EXEC, "remove breakpoint <adress>");
1324         register_command(cmd_ctx,  NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint <address> <length> <r/w/a> [value] [mask]");    
1325         register_command(cmd_ctx,  NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint <adress>");
1326         
1327         register_command(cmd_ctx,  NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> ['bin'|'ihex'|'elf'|'s19']");
1328         register_command(cmd_ctx,  NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>");
1329         register_command(cmd_ctx,  NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image <file> [offset] [type]");
1330         register_command(cmd_ctx,  NULL, "load_binary", handle_load_image_command, COMMAND_EXEC, "[DEPRECATED] load_binary <file> <address>");
1331         register_command(cmd_ctx,  NULL, "dump_binary", handle_dump_image_command, COMMAND_EXEC, "[DEPRECATED] dump_binary <file> <address> <size>");
1332         
1333         target_request_register_commands(cmd_ctx);
1334         trace_register_commands(cmd_ctx);
1335         
1336         return ERROR_OK;
1337 }
1338
1339 int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1340 {
1341         target_t *target = targets;
1342         int count = 0;
1343         
1344         if (argc == 1)
1345         {
1346                 int num = strtoul(args[0], NULL, 0);
1347                 
1348                 while (target)
1349                 {
1350                         count++;
1351                         target = target->next;
1352                 }
1353                 
1354                 if (num < count)
1355                         cmd_ctx->current_target = num;
1356                 else
1357                         command_print(cmd_ctx, "%i is out of bounds, only %i targets are configured", num, count);
1358                         
1359                 return ERROR_OK;
1360         }
1361                 
1362         while (target)
1363         {
1364                 command_print(cmd_ctx, "%i: %s (%s), state: %s", count++, target->type->name, target_endianess_strings[target->endianness], target_state_strings[target->state]);
1365                 target = target->next;
1366         }
1367         
1368         return ERROR_OK;
1369 }
1370
1371 int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1372 {
1373         int i;
1374         int found = 0;
1375         
1376         if (argc < 3)
1377         {
1378                 return ERROR_COMMAND_SYNTAX_ERROR;
1379         }
1380         
1381         /* search for the specified target */
1382         if (args[0] && (args[0][0] != 0))
1383         {
1384                 for (i = 0; target_types[i]; i++)
1385                 {
1386                         if (strcmp(args[0], target_types[i]->name) == 0)
1387                         {
1388                                 target_t **last_target_p = &targets;
1389                                 
1390                                 /* register target specific commands */
1391                                 if (target_types[i]->register_commands(cmd_ctx) != ERROR_OK)
1392                                 {
1393                                         LOG_ERROR("couldn't register '%s' commands", args[0]);
1394                                         exit(-1);
1395                                 }
1396
1397                                 if (*last_target_p)
1398                                 {
1399                                         while ((*last_target_p)->next)
1400                                                 last_target_p = &((*last_target_p)->next);
1401                                         last_target_p = &((*last_target_p)->next);
1402                                 }
1403
1404                                 *last_target_p = malloc(sizeof(target_t));
1405                                 
1406                                 /* allocate memory for each unique target type */
1407                                 (*last_target_p)->type = (target_type_t*)malloc(sizeof(target_type_t));
1408                                 *((*last_target_p)->type) = *target_types[i]; 
1409                                 
1410                                 if (strcmp(args[1], "big") == 0)
1411                                         (*last_target_p)->endianness = TARGET_BIG_ENDIAN;
1412                                 else if (strcmp(args[1], "little") == 0)
1413                                         (*last_target_p)->endianness = TARGET_LITTLE_ENDIAN;
1414                                 else
1415                                 {
1416                                         LOG_ERROR("endianness must be either 'little' or 'big', not '%s'", args[1]);
1417                                         return ERROR_COMMAND_SYNTAX_ERROR;
1418                                 }
1419                                 
1420                                 /* what to do on a target reset */
1421                                 (*last_target_p)->reset_mode = RESET_INIT; /* default */
1422                                 if (strcmp(args[2], "reset_halt") == 0)
1423                                         (*last_target_p)->reset_mode = RESET_HALT;
1424                                 else if (strcmp(args[2], "reset_run") == 0)
1425                                         (*last_target_p)->reset_mode = RESET_RUN;
1426                                 else if (strcmp(args[2], "reset_init") == 0)
1427                                         (*last_target_p)->reset_mode = RESET_INIT;
1428                                 else if (strcmp(args[2], "run_and_halt") == 0)
1429                                         (*last_target_p)->reset_mode = RESET_RUN_AND_HALT;
1430                                 else if (strcmp(args[2], "run_and_init") == 0)
1431                                         (*last_target_p)->reset_mode = RESET_RUN_AND_INIT;
1432                                 else
1433                                 {
1434                                         /* Kludge! we want to make this reset arg optional while remaining compatible! */
1435                                         args--;
1436                                         argc++;
1437                                 }
1438                                 (*last_target_p)->run_and_halt_time = 1000; /* default 1s */
1439                                 
1440                                 (*last_target_p)->working_area = 0x0;
1441                                 (*last_target_p)->working_area_size = 0x0;
1442                                 (*last_target_p)->working_areas = NULL;
1443                                 (*last_target_p)->backup_working_area = 0;
1444                                 
1445                                 (*last_target_p)->state = TARGET_UNKNOWN;
1446                                 (*last_target_p)->debug_reason = DBG_REASON_UNDEFINED;
1447                                 (*last_target_p)->reg_cache = NULL;
1448                                 (*last_target_p)->breakpoints = NULL;
1449                                 (*last_target_p)->watchpoints = NULL;
1450                                 (*last_target_p)->next = NULL;
1451                                 (*last_target_p)->arch_info = NULL;
1452                                 
1453                                 /* initialize trace information */
1454                                 (*last_target_p)->trace_info = malloc(sizeof(trace_t));
1455                                 (*last_target_p)->trace_info->num_trace_points = 0;
1456                                 (*last_target_p)->trace_info->trace_points_size = 0;
1457                                 (*last_target_p)->trace_info->trace_points = NULL;
1458                                 (*last_target_p)->trace_info->trace_history_size = 0;
1459                                 (*last_target_p)->trace_info->trace_history = NULL;
1460                                 (*last_target_p)->trace_info->trace_history_pos = 0;
1461                                 (*last_target_p)->trace_info->trace_history_overflowed = 0;
1462                                 
1463                                 (*last_target_p)->dbgmsg = NULL;
1464                                 (*last_target_p)->dbg_msg_enabled = 0;
1465                                                                 
1466                                 (*last_target_p)->type->target_command(cmd_ctx, cmd, args, argc, *last_target_p);
1467                                 
1468                                 found = 1;
1469                                 break;
1470                         }
1471                 }
1472         }
1473         
1474         /* no matching target found */
1475         if (!found)
1476         {
1477                 LOG_ERROR("target '%s' not found", args[0]);
1478                 return ERROR_COMMAND_SYNTAX_ERROR;
1479         }
1480
1481         return ERROR_OK;
1482 }
1483
1484 int target_invoke_script(struct command_context_s *cmd_ctx, target_t *target, char *name)
1485 {
1486         return command_run_linef(cmd_ctx, " if {[catch {info body target_%s_%d} t]==0} {target_%s_%d}", 
1487         name, get_num_by_target(target),
1488         name, get_num_by_target(target));
1489 }
1490
1491 int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1492 {
1493         target_t *target = NULL;
1494         
1495         if (argc < 2)
1496         {
1497                 return ERROR_COMMAND_SYNTAX_ERROR;
1498         }
1499         
1500         target = get_target_by_num(strtoul(args[0], NULL, 0));
1501         if (!target)
1502         {
1503                 return ERROR_COMMAND_SYNTAX_ERROR;
1504         }
1505         
1506         target->run_and_halt_time = strtoul(args[1], NULL, 0);
1507         
1508         return ERROR_OK;
1509 }
1510
1511 int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1512 {
1513         target_t *target = NULL;
1514         
1515         if ((argc < 4) || (argc > 5))
1516         {
1517                 return ERROR_COMMAND_SYNTAX_ERROR;
1518         }
1519         
1520         target = get_target_by_num(strtoul(args[0], NULL, 0));
1521         if (!target)
1522         {
1523                 return ERROR_COMMAND_SYNTAX_ERROR;
1524         }
1525         target_free_all_working_areas(target);
1526         
1527         target->working_area_phys = target->working_area_virt = strtoul(args[1], NULL, 0);
1528         if (argc == 5)
1529         {
1530                 target->working_area_virt = strtoul(args[4], NULL, 0);
1531         }
1532         target->working_area_size = strtoul(args[2], NULL, 0);
1533         
1534         if (strcmp(args[3], "backup") == 0)
1535         {
1536                 target->backup_working_area = 1;
1537         }
1538         else if (strcmp(args[3], "nobackup") == 0)
1539         {
1540                 target->backup_working_area = 0;
1541         }
1542         else
1543         {
1544                 LOG_ERROR("unrecognized <backup|nobackup> argument (%s)", args[3]);
1545                 return ERROR_COMMAND_SYNTAX_ERROR;
1546         }
1547         
1548         return ERROR_OK;
1549 }
1550
1551
1552 /* process target state changes */
1553 int handle_target(void *priv)
1554 {
1555         target_t *target = targets;
1556         
1557         while (target)
1558         {
1559                 if (target_continous_poll)
1560                 {
1561                         /* polling may fail silently until the target has been examined */
1562                         target_poll(target);
1563                 }
1564         
1565                 target = target->next;
1566         }
1567         
1568         return ERROR_OK;
1569 }
1570
1571 int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1572 {
1573         target_t *target;
1574         reg_t *reg = NULL;
1575         int count = 0;
1576         char *value;
1577         
1578         LOG_DEBUG("-");
1579         
1580         target = get_current_target(cmd_ctx);
1581         
1582         /* list all available registers for the current target */
1583         if (argc == 0)
1584         {
1585                 reg_cache_t *cache = target->reg_cache;
1586                 
1587                 count = 0;
1588                 while(cache)
1589                 {
1590                         int i;
1591                         for (i = 0; i < cache->num_regs; i++)
1592                         {
1593                                 value = buf_to_str(cache->reg_list[i].value, cache->reg_list[i].size, 16);
1594                                 command_print(cmd_ctx, "(%i) %s (/%i): 0x%s (dirty: %i, valid: %i)", count++, cache->reg_list[i].name, cache->reg_list[i].size, value, cache->reg_list[i].dirty, cache->reg_list[i].valid);
1595                                 free(value);
1596                         }
1597                         cache = cache->next;
1598                 }
1599                 
1600                 return ERROR_OK;
1601         }
1602         
1603         /* access a single register by its ordinal number */
1604         if ((args[0][0] >= '0') && (args[0][0] <= '9'))
1605         {
1606                 int num = strtoul(args[0], NULL, 0);
1607                 reg_cache_t *cache = target->reg_cache;
1608                 
1609                 count = 0;
1610                 while(cache)
1611                 {
1612                         int i;
1613                         for (i = 0; i < cache->num_regs; i++)
1614                         {
1615                                 if (count++ == num)
1616                                 {
1617                                         reg = &cache->reg_list[i];
1618                                         break;
1619                                 }
1620                         }
1621                         if (reg)
1622                                 break;
1623                         cache = cache->next;
1624                 }
1625                 
1626                 if (!reg)
1627                 {
1628                         command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1629                         return ERROR_OK;
1630                 }
1631         } else /* access a single register by its name */
1632         {
1633                 reg = register_get_by_name(target->reg_cache, args[0], 1);
1634                 
1635                 if (!reg)
1636                 {
1637                         command_print(cmd_ctx, "register %s not found in current target", args[0]);
1638                         return ERROR_OK;
1639                 }
1640         }
1641
1642         /* display a register */
1643         if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
1644         {
1645                 if ((argc == 2) && (strcmp(args[1], "force") == 0))
1646                         reg->valid = 0;
1647                 
1648                 if (reg->valid == 0)
1649                 {
1650                         reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1651                         if (arch_type == NULL)
1652                         {
1653                                 LOG_ERROR("BUG: encountered unregistered arch type");
1654                                 return ERROR_OK;
1655                         }
1656                         arch_type->get(reg);
1657                 }
1658                 value = buf_to_str(reg->value, reg->size, 16);
1659                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1660                 free(value);
1661                 return ERROR_OK;
1662         }
1663         
1664         /* set register value */
1665         if (argc == 2)
1666         {
1667                 u8 *buf = malloc(CEIL(reg->size, 8));
1668                 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
1669
1670                 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1671                 if (arch_type == NULL)
1672                 {
1673                         LOG_ERROR("BUG: encountered unregistered arch type");
1674                         return ERROR_OK;
1675                 }
1676                 
1677                 arch_type->set(reg, buf);
1678                 
1679                 value = buf_to_str(reg->value, reg->size, 16);
1680                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1681                 free(value);
1682                 
1683                 free(buf);
1684                 
1685                 return ERROR_OK;
1686         }
1687         
1688         command_print(cmd_ctx, "usage: reg <#|name> [value]");
1689         
1690         return ERROR_OK;
1691 }
1692
1693 static int wait_state(struct command_context_s *cmd_ctx, char *cmd, enum target_state state, int ms);
1694
1695 int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1696 {
1697         target_t *target = get_current_target(cmd_ctx);
1698
1699         if (argc == 0)
1700         {
1701                 target_poll(target);
1702                 target_arch_state(target);
1703         }
1704         else
1705         {
1706                 if (strcmp(args[0], "on") == 0)
1707                 {
1708                         target_continous_poll = 1;
1709                 }
1710                 else if (strcmp(args[0], "off") == 0)
1711                 {
1712                         target_continous_poll = 0;
1713                 }
1714                 else
1715                 {
1716                         command_print(cmd_ctx, "arg is \"on\" or \"off\"");
1717                 }
1718         }
1719         
1720         
1721         return ERROR_OK;
1722 }
1723
1724 int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1725 {
1726         int ms = 5000;
1727         
1728         if (argc > 0)
1729         {
1730                 char *end;
1731
1732                 ms = strtoul(args[0], &end, 0) * 1000;
1733                 if (*end)
1734                 {
1735                         command_print(cmd_ctx, "usage: %s [seconds]", cmd);
1736                         return ERROR_OK;
1737                 }
1738         }
1739
1740         return wait_state(cmd_ctx, cmd, TARGET_HALTED, ms); 
1741 }
1742
1743 static int wait_state(struct command_context_s *cmd_ctx, char *cmd, enum target_state state, int ms)
1744 {
1745         int retval;
1746         struct timeval timeout, now;
1747         int once=1;
1748         gettimeofday(&timeout, NULL);
1749         timeval_add_time(&timeout, 0, ms * 1000);
1750         
1751         target_t *target = get_current_target(cmd_ctx);
1752         for (;;)
1753         {
1754                 if ((retval=target_poll(target))!=ERROR_OK)
1755                         return retval;
1756                 target_call_timer_callbacks_now();
1757                 if (target->state == state)
1758                 {
1759                         break;
1760                 }
1761                 if (once)
1762                 {
1763                         once=0;
1764                         command_print(cmd_ctx, "waiting for target %s...", target_state_strings[state]);
1765                 }
1766                 
1767                 gettimeofday(&now, NULL);
1768                 if ((now.tv_sec > timeout.tv_sec) || ((now.tv_sec == timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
1769                 {
1770                         LOG_ERROR("timed out while waiting for target %s", target_state_strings[state]);
1771                         break;
1772                 }
1773         }
1774         
1775         return ERROR_OK;
1776 }
1777
1778 int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1779 {
1780         int retval;
1781         target_t *target = get_current_target(cmd_ctx);
1782
1783         LOG_DEBUG("-");
1784
1785         if ((retval = target_halt(target)) != ERROR_OK)
1786         {
1787                 return retval;
1788         }
1789         
1790         return handle_wait_halt_command(cmd_ctx, cmd, args, argc);
1791 }
1792
1793 int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1794 {
1795         target_t *target = get_current_target(cmd_ctx);
1796         
1797         LOG_USER("requesting target halt and executing a soft reset");
1798         
1799         target->type->soft_reset_halt(target);
1800         
1801         return ERROR_OK;
1802 }
1803
1804 int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1805 {
1806         target_t *target = get_current_target(cmd_ctx);
1807         enum target_reset_mode reset_mode = target->reset_mode;
1808         enum target_reset_mode save = target->reset_mode;
1809         
1810         LOG_DEBUG("-");
1811         
1812         if (argc >= 1)
1813         {
1814                 if (strcmp("run", args[0]) == 0)
1815                         reset_mode = RESET_RUN;
1816                 else if (strcmp("halt", args[0]) == 0)
1817                         reset_mode = RESET_HALT;
1818                 else if (strcmp("init", args[0]) == 0)
1819                         reset_mode = RESET_INIT;
1820                 else if (strcmp("run_and_halt", args[0]) == 0)
1821                 {
1822                         reset_mode = RESET_RUN_AND_HALT;
1823                         if (argc >= 2)
1824                         {
1825                                 target->run_and_halt_time = strtoul(args[1], NULL, 0);
1826                         }
1827                 }
1828                 else if (strcmp("run_and_init", args[0]) == 0)
1829                 {
1830                         reset_mode = RESET_RUN_AND_INIT;
1831                         if (argc >= 2)
1832                         {
1833                                 target->run_and_halt_time = strtoul(args[1], NULL, 0);
1834                         }
1835                 }
1836                 else
1837                 {
1838                         command_print(cmd_ctx, "usage: reset ['run', 'halt', 'init', 'run_and_halt', 'run_and_init]");
1839                         return ERROR_OK;
1840                 }
1841         }
1842         
1843         /* temporarily modify mode of current reset target */
1844         target->reset_mode = reset_mode;
1845
1846         /* reset *all* targets */
1847         target_process_reset(cmd_ctx);
1848         
1849         /* Restore default reset mode for this target */
1850     target->reset_mode = save;
1851         
1852         return ERROR_OK;
1853 }
1854
1855 int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1856 {
1857         int retval;
1858         target_t *target = get_current_target(cmd_ctx);
1859         
1860         target_invoke_script(cmd_ctx, target, "pre_resume");
1861         
1862         if (argc == 0)
1863                 retval = target_resume(target, 1, 0, 1, 0); /* current pc, addr = 0, handle breakpoints, not debugging */
1864         else if (argc == 1)
1865                 retval = target_resume(target, 0, strtoul(args[0], NULL, 0), 1, 0); /* addr = args[0], handle breakpoints, not debugging */
1866         else
1867         {
1868                 return ERROR_COMMAND_SYNTAX_ERROR;
1869         }
1870         
1871         return retval;
1872 }
1873
1874 int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1875 {
1876         target_t *target = get_current_target(cmd_ctx);
1877         
1878         LOG_DEBUG("-");
1879         
1880         if (argc == 0)
1881                 target->type->step(target, 1, 0, 1); /* current pc, addr = 0, handle breakpoints */
1882
1883         if (argc == 1)
1884                 target->type->step(target, 0, strtoul(args[0], NULL, 0), 1); /* addr = args[0], handle breakpoints */
1885         
1886         return ERROR_OK;
1887 }
1888
1889 int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1890 {
1891         const int line_bytecnt = 32;
1892         int count = 1;
1893         int size = 4;
1894         u32 address = 0;
1895         int line_modulo;
1896         int i;
1897
1898         char output[128];
1899         int output_len;
1900
1901         int retval;
1902
1903         u8 *buffer;
1904         target_t *target = get_current_target(cmd_ctx);
1905
1906         if (argc < 1)
1907                 return ERROR_OK;
1908
1909         if (argc == 2)
1910                 count = strtoul(args[1], NULL, 0);
1911
1912         address = strtoul(args[0], NULL, 0);
1913         
1914
1915         switch (cmd[2])
1916         {
1917                 case 'w':
1918                         size = 4; line_modulo = line_bytecnt / 4;
1919                         break;
1920                 case 'h':
1921                         size = 2; line_modulo = line_bytecnt / 2;
1922                         break;
1923                 case 'b':
1924                         size = 1; line_modulo = line_bytecnt / 1;
1925                         break;
1926                 default:
1927                         return ERROR_OK;
1928         }
1929
1930         buffer = calloc(count, size);
1931         retval  = target->type->read_memory(target, address, size, count, buffer);
1932         if (retval == ERROR_OK)
1933         {
1934                 output_len = 0;
1935         
1936                 for (i = 0; i < count; i++)
1937                 {
1938                         if (i%line_modulo == 0)
1939                                 output_len += snprintf(output + output_len, 128 - output_len, "0x%8.8x: ", address + (i*size));
1940                         
1941                         switch (size)
1942                         {
1943                                 case 4:
1944                                         output_len += snprintf(output + output_len, 128 - output_len, "%8.8x ", target_buffer_get_u32(target, &buffer[i*4]));
1945                                         break;
1946                                 case 2:
1947                                         output_len += snprintf(output + output_len, 128 - output_len, "%4.4x ", target_buffer_get_u16(target, &buffer[i*2]));
1948                                         break;
1949                                 case 1:
1950                                         output_len += snprintf(output + output_len, 128 - output_len, "%2.2x ", buffer[i*1]);
1951                                         break;
1952                         }
1953         
1954                         if ((i%line_modulo == line_modulo-1) || (i == count - 1))
1955                         {
1956                                 command_print(cmd_ctx, output);
1957                                 output_len = 0;
1958                         }
1959                 }
1960         }
1961
1962         free(buffer);
1963         
1964         return retval;
1965 }
1966
1967 int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1968 {
1969         u32 address = 0;
1970         u32 value = 0;
1971         int count = 1;
1972         int i;
1973         int wordsize;
1974         target_t *target = get_current_target(cmd_ctx);
1975         u8 value_buf[4];
1976
1977          if ((argc < 2) || (argc > 3))
1978                 return ERROR_COMMAND_SYNTAX_ERROR;
1979
1980         address = strtoul(args[0], NULL, 0);
1981         value = strtoul(args[1], NULL, 0);
1982         if (argc == 3)
1983                 count = strtoul(args[2], NULL, 0);
1984         
1985         switch (cmd[2])
1986         {
1987                 case 'w':
1988                         wordsize = 4;
1989                         target_buffer_set_u32(target, value_buf, value);
1990                         break;
1991                 case 'h':
1992                         wordsize = 2;
1993                         target_buffer_set_u16(target, value_buf, value);
1994                         break;
1995                 case 'b':
1996                         wordsize = 1;
1997                         value_buf[0] = value;
1998                         break;
1999                 default:
2000                         return ERROR_COMMAND_SYNTAX_ERROR;
2001         }
2002         for (i=0; i<count; i++)
2003         {
2004                 int retval;
2005                 switch (wordsize)
2006                 {
2007                         case 4:
2008                                 retval = target->type->write_memory(target, address + i*wordsize, 4, 1, value_buf);
2009                                 break;
2010                         case 2:
2011                                 retval = target->type->write_memory(target, address + i*wordsize, 2, 1, value_buf);
2012                                 break;
2013                         case 1:
2014                                 retval = target->type->write_memory(target, address + i*wordsize, 1, 1, value_buf);
2015                         break;
2016                         default:
2017                         return ERROR_OK;
2018                 }
2019                 if (retval!=ERROR_OK)
2020                 {
2021                         return retval;
2022                 }
2023         }
2024
2025         return ERROR_OK;
2026
2027 }
2028
2029 int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2030 {
2031         u8 *buffer;
2032         u32 buf_cnt;
2033         u32 image_size;
2034         int i;
2035         int retval;
2036
2037         image_t image;  
2038         
2039         duration_t duration;
2040         char *duration_text;
2041         
2042         target_t *target = get_current_target(cmd_ctx);
2043
2044         if (argc < 1)
2045         {
2046                 command_print(cmd_ctx, "usage: load_image <filename> [address] [type]");
2047                 return ERROR_OK;
2048         }
2049         
2050         /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
2051         if (argc >= 2)
2052         {
2053                 image.base_address_set = 1;
2054                 image.base_address = strtoul(args[1], NULL, 0);
2055         }
2056         else
2057         {
2058                 image.base_address_set = 0;
2059         }
2060         
2061         image.start_address_set = 0;
2062
2063         duration_start_measure(&duration);
2064         
2065         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
2066         {
2067                 return ERROR_OK;
2068         }
2069         
2070         image_size = 0x0;
2071         retval = ERROR_OK;
2072         for (i = 0; i < image.num_sections; i++)
2073         {
2074                 buffer = malloc(image.sections[i].size);
2075                 if (buffer == NULL)
2076                 {
2077                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2078                         break;
2079                 }
2080                 
2081                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2082                 {
2083                         free(buffer);
2084                         break;
2085                 }
2086                 if ((retval = target_write_buffer(target, image.sections[i].base_address, buf_cnt, buffer)) != ERROR_OK)
2087                 {
2088                         free(buffer);
2089                         break;
2090                 }
2091                 image_size += buf_cnt;
2092                 command_print(cmd_ctx, "%u byte written at address 0x%8.8x", buf_cnt, image.sections[i].base_address);
2093                 
2094                 free(buffer);
2095         }
2096
2097         duration_stop_measure(&duration, &duration_text);
2098         if (retval==ERROR_OK)
2099         {
2100                 command_print(cmd_ctx, "downloaded %u byte in %s", image_size, duration_text);
2101         }
2102         free(duration_text);
2103         
2104         image_close(&image);
2105
2106         return retval;
2107
2108 }
2109
2110 int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2111 {
2112         fileio_t fileio;
2113         
2114         u32 address;
2115         u32 size;
2116         u8 buffer[560];
2117         int retval=ERROR_OK;
2118         
2119         duration_t duration;
2120         char *duration_text;
2121         
2122         target_t *target = get_current_target(cmd_ctx);
2123
2124         if (argc != 3)
2125         {
2126                 command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
2127                 return ERROR_OK;
2128         }
2129
2130         address = strtoul(args[1], NULL, 0);
2131         size = strtoul(args[2], NULL, 0);
2132
2133         if ((address & 3) || (size & 3))
2134         {
2135                 command_print(cmd_ctx, "only 32-bit aligned address and size are supported");
2136                 return ERROR_OK;
2137         }
2138         
2139         if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2140         {
2141                 return ERROR_OK;
2142         }
2143         
2144         duration_start_measure(&duration);
2145         
2146         while (size > 0)
2147         {
2148                 u32 size_written;
2149                 u32 this_run_size = (size > 560) ? 560 : size;
2150                 
2151                 retval = target->type->read_memory(target, address, 4, this_run_size / 4, buffer);
2152                 if (retval != ERROR_OK)
2153                 {
2154                         break;
2155                 }
2156                 
2157                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2158                 if (retval != ERROR_OK)
2159                 {
2160                         break;
2161                 }
2162                 
2163                 size -= this_run_size;
2164                 address += this_run_size;
2165         }
2166
2167         fileio_close(&fileio);
2168
2169         duration_stop_measure(&duration, &duration_text);
2170         if (retval==ERROR_OK)
2171         {
2172                 command_print(cmd_ctx, "dumped %"PRIi64" byte in %s", fileio.size, duration_text);
2173         }
2174         free(duration_text);
2175         
2176         return ERROR_OK;
2177 }
2178
2179 int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2180 {
2181         u8 *buffer;
2182         u32 buf_cnt;
2183         u32 image_size;
2184         int i;
2185         int retval;
2186         u32 checksum = 0;
2187         u32 mem_checksum = 0;
2188
2189         image_t image;  
2190         
2191         duration_t duration;
2192         char *duration_text;
2193         
2194         target_t *target = get_current_target(cmd_ctx);
2195         
2196         if (argc < 1)
2197         {
2198                 return ERROR_COMMAND_SYNTAX_ERROR;
2199         }
2200         
2201         if (!target)
2202         {
2203                 LOG_ERROR("no target selected");
2204                 return ERROR_FAIL;
2205         }
2206         
2207         duration_start_measure(&duration);
2208         
2209         if (argc >= 2)
2210         {
2211                 image.base_address_set = 1;
2212                 image.base_address = strtoul(args[1], NULL, 0);
2213         }
2214         else
2215         {
2216                 image.base_address_set = 0;
2217                 image.base_address = 0x0;
2218         }
2219
2220         image.start_address_set = 0;
2221
2222         if ((retval=image_open(&image, args[0], (argc == 3) ? args[2] : NULL)) != ERROR_OK)
2223         {
2224                 return retval;
2225         }
2226         
2227         image_size = 0x0;
2228         retval=ERROR_OK;
2229         for (i = 0; i < image.num_sections; i++)
2230         {
2231                 buffer = malloc(image.sections[i].size);
2232                 if (buffer == NULL)
2233                 {
2234                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2235                         break;
2236                 }
2237                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2238                 {
2239                         free(buffer);
2240                         break;
2241                 }
2242                 
2243                 /* calculate checksum of image */
2244                 image_calculate_checksum( buffer, buf_cnt, &checksum );
2245                 
2246                 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2247                 if( retval != ERROR_OK )
2248                 {
2249                         free(buffer);
2250                         break;
2251                 }
2252                 
2253                 if( checksum != mem_checksum )
2254                 {
2255                         /* failed crc checksum, fall back to a binary compare */
2256                         u8 *data;
2257                         
2258                         command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
2259                         
2260                         data = (u8*)malloc(buf_cnt);
2261                         
2262                         /* Can we use 32bit word accesses? */
2263                         int size = 1;
2264                         int count = buf_cnt;
2265                         if ((count % 4) == 0)
2266                         {
2267                                 size *= 4;
2268                                 count /= 4;
2269                         }
2270                         retval = target->type->read_memory(target, image.sections[i].base_address, size, count, data);
2271                         if (retval == ERROR_OK)
2272                         {
2273                                 int t;
2274                                 for (t = 0; t < buf_cnt; t++)
2275                                 {
2276                                         if (data[t] != buffer[t])
2277                                         {
2278                                                 command_print(cmd_ctx, "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n", t + image.sections[i].base_address, data[t], buffer[t]);
2279                                                 free(data);
2280                                                 free(buffer);
2281                                                 retval=ERROR_FAIL;
2282                                                 goto done;
2283                                         }
2284                                 }
2285                         }
2286                         
2287                         free(data);
2288                 }
2289                 
2290                 free(buffer);
2291                 image_size += buf_cnt;
2292         }
2293 done:   
2294         duration_stop_measure(&duration, &duration_text);
2295         if (retval==ERROR_OK)
2296         {
2297                 command_print(cmd_ctx, "verified %u bytes in %s", image_size, duration_text);
2298         }
2299         free(duration_text);
2300         
2301         image_close(&image);
2302         
2303         return retval;
2304 }
2305
2306 int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2307 {
2308         int retval;
2309         target_t *target = get_current_target(cmd_ctx);
2310
2311         if (argc == 0)
2312         {
2313                 breakpoint_t *breakpoint = target->breakpoints;
2314
2315                 while (breakpoint)
2316                 {
2317                         if (breakpoint->type == BKPT_SOFT)
2318                         {
2319                                 char* buf = buf_to_str(breakpoint->orig_instr, breakpoint->length, 16);
2320                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i, 0x%s", breakpoint->address, breakpoint->length, breakpoint->set, buf);
2321                                 free(buf);
2322                         }
2323                         else
2324                         {
2325                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i", breakpoint->address, breakpoint->length, breakpoint->set);
2326                         }
2327                         breakpoint = breakpoint->next;
2328                 }
2329         }
2330         else if (argc >= 2)
2331         {
2332                 int hw = BKPT_SOFT;
2333                 u32 length = 0;
2334
2335                 length = strtoul(args[1], NULL, 0);
2336                 
2337                 if (argc >= 3)
2338                         if (strcmp(args[2], "hw") == 0)
2339                                 hw = BKPT_HARD;
2340
2341                 if ((retval = breakpoint_add(target, strtoul(args[0], NULL, 0), length, hw)) != ERROR_OK)
2342                 {
2343                         LOG_ERROR("Failure setting breakpoints");
2344                 }
2345                 else
2346                 {
2347                         command_print(cmd_ctx, "breakpoint added at address 0x%8.8x", strtoul(args[0], NULL, 0));
2348                 }
2349         }
2350         else
2351         {
2352                 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
2353         }
2354
2355         return ERROR_OK;
2356 }
2357
2358 int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2359 {
2360         target_t *target = get_current_target(cmd_ctx);
2361
2362         if (argc > 0)
2363                 breakpoint_remove(target, strtoul(args[0], NULL, 0));
2364
2365         return ERROR_OK;
2366 }
2367
2368 int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2369 {
2370         target_t *target = get_current_target(cmd_ctx);
2371         int retval;
2372
2373         if (argc == 0)
2374         {
2375                 watchpoint_t *watchpoint = target->watchpoints;
2376
2377                 while (watchpoint)
2378                 {
2379                         command_print(cmd_ctx, "address: 0x%8.8x, len: 0x%8.8x, r/w/a: %i, value: 0x%8.8x, mask: 0x%8.8x", watchpoint->address, watchpoint->length, watchpoint->rw, watchpoint->value, watchpoint->mask);
2380                         watchpoint = watchpoint->next;
2381                 }
2382         } 
2383         else if (argc >= 2)
2384         {
2385                 enum watchpoint_rw type = WPT_ACCESS;
2386                 u32 data_value = 0x0;
2387                 u32 data_mask = 0xffffffff;
2388                 
2389                 if (argc >= 3)
2390                 {
2391                         switch(args[2][0])
2392                         {
2393                                 case 'r':
2394                                         type = WPT_READ;
2395                                         break;
2396                                 case 'w':
2397                                         type = WPT_WRITE;
2398                                         break;
2399                                 case 'a':
2400                                         type = WPT_ACCESS;
2401                                         break;
2402                                 default:
2403                                         command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2404                                         return ERROR_OK;
2405                         }
2406                 }
2407                 if (argc >= 4)
2408                 {
2409                         data_value = strtoul(args[3], NULL, 0);
2410                 }
2411                 if (argc >= 5)
2412                 {
2413                         data_mask = strtoul(args[4], NULL, 0);
2414                 }
2415                 
2416                 if ((retval = watchpoint_add(target, strtoul(args[0], NULL, 0),
2417                                 strtoul(args[1], NULL, 0), type, data_value, data_mask)) != ERROR_OK)
2418                 {
2419                         LOG_ERROR("Failure setting breakpoints");
2420                 }
2421         }
2422         else
2423         {
2424                 command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2425         }
2426                 
2427         return ERROR_OK;
2428 }
2429
2430 int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2431 {
2432         target_t *target = get_current_target(cmd_ctx);
2433
2434         if (argc > 0)
2435                 watchpoint_remove(target, strtoul(args[0], NULL, 0));
2436         
2437         return ERROR_OK;
2438 }
2439
2440 int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc)
2441 {
2442         int retval;
2443         target_t *target = get_current_target(cmd_ctx);
2444         u32 va;
2445         u32 pa;
2446
2447         if (argc != 1)
2448         {
2449                 return ERROR_COMMAND_SYNTAX_ERROR;
2450         }
2451         va = strtoul(args[0], NULL, 0);
2452
2453         retval = target->type->virt2phys(target, va, &pa);
2454         if (retval == ERROR_OK)
2455         {
2456                 command_print(cmd_ctx, "Physical address 0x%08x", pa);
2457         }
2458         else
2459         {
2460                 /* lower levels will have logged a detailed error which is 
2461                  * forwarded to telnet/GDB session.  
2462                  */
2463         }
2464         return retval;
2465 }
2466 static void writeLong(FILE *f, int l)
2467 {
2468         int i;
2469         for (i=0; i<4; i++)
2470         {
2471                 char c=(l>>(i*8))&0xff;
2472                 fwrite(&c, 1, 1, f); 
2473         }
2474         
2475 }
2476 static void writeString(FILE *f, char *s)
2477 {
2478         fwrite(s, 1, strlen(s), f); 
2479 }
2480
2481
2482
2483 // Dump a gmon.out histogram file.
2484 static void writeGmon(u32 *samples, int sampleNum, char *filename)
2485 {
2486         int i;
2487         FILE *f=fopen(filename, "w");
2488         if (f==NULL)
2489                 return;
2490         fwrite("gmon", 1, 4, f);
2491         writeLong(f, 0x00000001); // Version
2492         writeLong(f, 0); // padding
2493         writeLong(f, 0); // padding
2494         writeLong(f, 0); // padding
2495                                 
2496         fwrite("", 1, 1, f);  // GMON_TAG_TIME_HIST 
2497
2498         // figure out bucket size
2499         u32 min=samples[0];
2500         u32 max=samples[0];
2501         for (i=0; i<sampleNum; i++)
2502         {
2503                 if (min>samples[i])
2504                 {
2505                         min=samples[i];
2506                 }
2507                 if (max<samples[i])
2508                 {
2509                         max=samples[i];
2510                 }
2511         }
2512
2513         int addressSpace=(max-min+1);
2514         
2515         static int const maxBuckets=256*1024; // maximum buckets.
2516         int length=addressSpace;
2517         if (length > maxBuckets)
2518         {
2519                 length=maxBuckets; 
2520         }
2521         int *buckets=malloc(sizeof(int)*length);
2522         if (buckets==NULL)
2523         {
2524                 fclose(f);
2525                 return;
2526         }
2527         memset(buckets, 0, sizeof(int)*length);
2528         for (i=0; i<sampleNum;i++)
2529         {
2530                 u32 address=samples[i];
2531                 long long a=address-min;
2532                 long long b=length-1;
2533                 long long c=addressSpace-1;
2534                 int index=(a*b)/c; // danger!!!! int32 overflows 
2535                 buckets[index]++;
2536         }
2537         
2538         //                         append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr))
2539         writeLong(f, min);                                      // low_pc
2540         writeLong(f, max);              // high_pc
2541         writeLong(f, length);           // # of samples
2542         writeLong(f, 64000000);                         // 64MHz
2543         writeString(f, "seconds");
2544         for (i=0; i<(15-strlen("seconds")); i++)
2545         {
2546                 fwrite("", 1, 1, f);  // padding
2547         }
2548         writeString(f, "s");
2549                 
2550 //                         append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size)
2551         
2552         char *data=malloc(2*length);
2553         if (data!=NULL)
2554         {
2555                 for (i=0; i<length;i++)
2556                 {
2557                         int val;
2558                         val=buckets[i];
2559                         if (val>65535)
2560                         {
2561                                 val=65535;
2562                         }
2563                         data[i*2]=val&0xff;
2564                         data[i*2+1]=(val>>8)&0xff;
2565                 }
2566                 free(buckets);
2567                 fwrite(data, 1, length*2, f);
2568                 free(data);
2569         } else
2570         {
2571                 free(buckets);
2572         }
2573
2574         fclose(f);
2575 }
2576
2577 /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
2578 int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2579 {
2580         target_t *target = get_current_target(cmd_ctx);
2581         struct timeval timeout, now;
2582         
2583         gettimeofday(&timeout, NULL);
2584         if (argc!=2)
2585         {
2586                 return ERROR_COMMAND_SYNTAX_ERROR;
2587         }
2588         char *end;
2589         timeval_add_time(&timeout, strtoul(args[0], &end, 0), 0);
2590         if (*end) 
2591         {
2592                 return ERROR_OK;
2593         }
2594         
2595         command_print(cmd_ctx, "Starting profiling. Halting and resuming the target as often as we can...");
2596
2597         static const int maxSample=10000;
2598         u32 *samples=malloc(sizeof(u32)*maxSample);
2599         if (samples==NULL)
2600                 return ERROR_OK;
2601         
2602         int numSamples=0;
2603         int retval=ERROR_OK;
2604         // hopefully it is safe to cache! We want to stop/restart as quickly as possible.
2605         reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1);
2606         
2607         for (;;)
2608         {
2609                 target_poll(target);
2610                 if (target->state == TARGET_HALTED)
2611                 {
2612                         u32 t=*((u32 *)reg->value);
2613                         samples[numSamples++]=t;
2614                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2615                         target_poll(target);
2616                         usleep(10*1000); // sleep 10ms, i.e. <100 samples/second.
2617                 } else if (target->state == TARGET_RUNNING)
2618                 {
2619                         // We want to quickly sample the PC.
2620                         target_halt(target);
2621                 } else
2622                 {
2623                         command_print(cmd_ctx, "Target not halted or running");
2624                         retval=ERROR_OK;
2625                         break;
2626                 }
2627                 if (retval!=ERROR_OK)
2628                 {
2629                         break;
2630                 }
2631                 
2632                 gettimeofday(&now, NULL);
2633                 if ((numSamples>=maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
2634                 {
2635                         command_print(cmd_ctx, "Profiling completed. %d samples.", numSamples);
2636                         target_poll(target);
2637                         if (target->state == TARGET_HALTED)
2638                         {
2639                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2640                         }
2641                         target_poll(target);
2642                         writeGmon(samples, numSamples, args[1]);
2643                         command_print(cmd_ctx, "Wrote %s", args[1]);
2644                         break;
2645                 }
2646         }
2647         free(samples);
2648         
2649         return ERROR_OK;
2650 }