04d162b5c7fe23250d05a9da2ce94daa559f005d
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007,2008 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   This program is free software; you can redistribute it and/or modify  *
18  *   it under the terms of the GNU General Public License as published by  *
19  *   the Free Software Foundation; either version 2 of the License, or     *
20  *   (at your option) any later version.                                   *
21  *                                                                         *
22  *   This program is distributed in the hope that it will be useful,       *
23  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
24  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
25  *   GNU General Public License for more details.                          *
26  *                                                                         *
27  *   You should have received a copy of the GNU General Public License     *
28  *   along with this program; if not, write to the                         *
29  *   Free Software Foundation, Inc.,                                       *
30  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "target.h"
37 #include "target_request.h"
38 #include "time_support.h"
39 #include "register.h"
40 #include "trace.h"
41 #include "image.h"
42 #include "jtag.h"
43
44 #include <inttypes.h>
45
46
47 static int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
48
49 static int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
50 static int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
51 static int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
52 static int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
53 static int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
54 static int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
55 static int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
56 static int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
57 static int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
58 static int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
59 static int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
60 static int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
61 static int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
62 static int handle_test_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
63 static int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
64 static int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
65 static int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
66 static int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
67 static int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc);
68 static int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
69 static int handle_fast_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
70 static int handle_fast_load_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
71
72 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
73 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
74 static int jim_target( Jim_Interp *interp, int argc, Jim_Obj *const *argv);
75
76 static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv);
77 static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv);
78
79 /* targets */
80 extern target_type_t arm7tdmi_target;
81 extern target_type_t arm720t_target;
82 extern target_type_t arm9tdmi_target;
83 extern target_type_t arm920t_target;
84 extern target_type_t arm966e_target;
85 extern target_type_t arm926ejs_target;
86 extern target_type_t feroceon_target;
87 extern target_type_t xscale_target;
88 extern target_type_t cortexm3_target;
89 extern target_type_t cortexa8_target;
90 extern target_type_t arm11_target;
91 extern target_type_t mips_m4k_target;
92 extern target_type_t avr_target;
93
94 target_type_t *target_types[] =
95 {
96         &arm7tdmi_target,
97         &arm9tdmi_target,
98         &arm920t_target,
99         &arm720t_target,
100         &arm966e_target,
101         &arm926ejs_target,
102         &feroceon_target,
103         &xscale_target,
104         &cortexm3_target,
105         &cortexa8_target,
106         &arm11_target,
107         &mips_m4k_target,
108         &avr_target,
109         NULL,
110 };
111
112 target_t *all_targets = NULL;
113 target_event_callback_t *target_event_callbacks = NULL;
114 target_timer_callback_t *target_timer_callbacks = NULL;
115
116 const Jim_Nvp nvp_assert[] = {
117         { .name = "assert", NVP_ASSERT },
118         { .name = "deassert", NVP_DEASSERT },
119         { .name = "T", NVP_ASSERT },
120         { .name = "F", NVP_DEASSERT },
121         { .name = "t", NVP_ASSERT },
122         { .name = "f", NVP_DEASSERT },
123         { .name = NULL, .value = -1 }
124 };
125
126 const Jim_Nvp nvp_error_target[] = {
127         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
128         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
129         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
130         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
131         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
132         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
133         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
134         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
135         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
136         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
137         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
138         { .value = -1, .name = NULL }
139 };
140
141 const char *target_strerror_safe( int err )
142 {
143         const Jim_Nvp *n;
144
145         n = Jim_Nvp_value2name_simple( nvp_error_target, err );
146         if( n->name == NULL ){
147                 return "unknown";
148         } else {
149                 return n->name;
150         }
151 }
152
153 static const Jim_Nvp nvp_target_event[] = {
154         { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
155         { .value = TARGET_EVENT_OLD_pre_resume         , .name = "old-pre_resume" },
156
157         { .value = TARGET_EVENT_EARLY_HALTED, .name = "early-halted" },
158         { .value = TARGET_EVENT_HALTED, .name = "halted" },
159         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
160         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
161         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
162
163         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
164         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
165
166         /* historical name */
167
168         { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
169
170         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
171         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
172         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
173         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
174         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
175         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
176         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
177         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
178         { .value = TARGET_EVENT_RESET_INIT , .name = "reset-init" },
179         { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
180
181         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
182         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
183
184         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
185         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
186
187         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
188         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
189
190         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
191         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
192
193         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
194         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
195
196         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
197         { .value = TARGET_EVENT_RESUMED     , .name = "resume-ok" },
198         { .value = TARGET_EVENT_RESUME_END  , .name = "resume-end" },
199
200         { .name = NULL, .value = -1 }
201 };
202
203 const Jim_Nvp nvp_target_state[] = {
204         { .name = "unknown", .value = TARGET_UNKNOWN },
205         { .name = "running", .value = TARGET_RUNNING },
206         { .name = "halted",  .value = TARGET_HALTED },
207         { .name = "reset",   .value = TARGET_RESET },
208         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
209         { .name = NULL, .value = -1 },
210 };
211
212 const Jim_Nvp nvp_target_debug_reason [] = {
213         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
214         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
215         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
216         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
217         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
218         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
219         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
220         { .name = NULL, .value = -1 },
221 };
222
223 const Jim_Nvp nvp_target_endian[] = {
224         { .name = "big",    .value = TARGET_BIG_ENDIAN },
225         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
226         { .name = "be",     .value = TARGET_BIG_ENDIAN },
227         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
228         { .name = NULL,     .value = -1 },
229 };
230
231 const Jim_Nvp nvp_reset_modes[] = {
232         { .name = "unknown", .value = RESET_UNKNOWN },
233         { .name = "run"    , .value = RESET_RUN },
234         { .name = "halt"   , .value = RESET_HALT },
235         { .name = "init"   , .value = RESET_INIT },
236         { .name = NULL     , .value = -1 },
237 };
238
239 static int max_target_number(void)
240 {
241         target_t *t;
242         int x;
243
244         x = -1;
245         t = all_targets;
246         while( t ){
247                 if( x < t->target_number ){
248                         x = (t->target_number)+1;
249                 }
250                 t = t->next;
251         }
252         return x;
253 }
254
255 /* determine the number of the new target */
256 static int new_target_number(void)
257 {
258         target_t *t;
259         int x;
260
261         /* number is 0 based */
262         x = -1;
263         t = all_targets;
264         while(t){
265                 if( x < t->target_number ){
266                         x = t->target_number;
267                 }
268                 t = t->next;
269         }
270         return x+1;
271 }
272
273 static int target_continous_poll = 1;
274
275 /* read a u32 from a buffer in target memory endianness */
276 u32 target_buffer_get_u32(target_t *target, const u8 *buffer)
277 {
278         if (target->endianness == TARGET_LITTLE_ENDIAN)
279                 return le_to_h_u32(buffer);
280         else
281                 return be_to_h_u32(buffer);
282 }
283
284 /* read a u16 from a buffer in target memory endianness */
285 u16 target_buffer_get_u16(target_t *target, const u8 *buffer)
286 {
287         if (target->endianness == TARGET_LITTLE_ENDIAN)
288                 return le_to_h_u16(buffer);
289         else
290                 return be_to_h_u16(buffer);
291 }
292
293 /* read a u8 from a buffer in target memory endianness */
294 u8 target_buffer_get_u8(target_t *target, const u8 *buffer)
295 {
296         return *buffer & 0x0ff;
297 }
298
299 /* write a u32 to a buffer in target memory endianness */
300 void target_buffer_set_u32(target_t *target, u8 *buffer, u32 value)
301 {
302         if (target->endianness == TARGET_LITTLE_ENDIAN)
303                 h_u32_to_le(buffer, value);
304         else
305                 h_u32_to_be(buffer, value);
306 }
307
308 /* write a u16 to a buffer in target memory endianness */
309 void target_buffer_set_u16(target_t *target, u8 *buffer, u16 value)
310 {
311         if (target->endianness == TARGET_LITTLE_ENDIAN)
312                 h_u16_to_le(buffer, value);
313         else
314                 h_u16_to_be(buffer, value);
315 }
316
317 /* write a u8 to a buffer in target memory endianness */
318 void target_buffer_set_u8(target_t *target, u8 *buffer, u8 value)
319 {
320         *buffer = value;
321 }
322
323 /* return a pointer to a configured target; id is name or number */
324 target_t *get_target(const char *id)
325 {
326         target_t *target;
327         char *endptr;
328         int num;
329
330         /* try as tcltarget name */
331         for (target = all_targets; target; target = target->next) {
332                 if (target->cmd_name == NULL)
333                         continue;
334                 if (strcmp(id, target->cmd_name) == 0)
335                         return target;
336         }
337
338         /* no match, try as number */
339         num = strtoul(id, &endptr, 0);
340         if (*endptr != 0)
341                 return NULL;
342
343         for (target = all_targets; target; target = target->next) {
344                 if (target->target_number == num)
345                         return target;
346         }
347
348         return NULL;
349 }
350
351 /* returns a pointer to the n-th configured target */
352 static target_t *get_target_by_num(int num)
353 {
354         target_t *target = all_targets;
355
356         while (target){
357                 if( target->target_number == num ){
358                         return target;
359                 }
360                 target = target->next;
361         }
362
363         return NULL;
364 }
365
366 int get_num_by_target(target_t *query_target)
367 {
368         return query_target->target_number;
369 }
370
371 target_t* get_current_target(command_context_t *cmd_ctx)
372 {
373         target_t *target = get_target_by_num(cmd_ctx->current_target);
374
375         if (target == NULL)
376         {
377                 LOG_ERROR("BUG: current_target out of bounds");
378                 exit(-1);
379         }
380
381         return target;
382 }
383
384 int target_poll(struct target_s *target)
385 {
386         /* We can't poll until after examine */
387         if (!target_was_examined(target))
388         {
389                 /* Fail silently lest we pollute the log */
390                 return ERROR_FAIL;
391         }
392         return target->type->poll(target);
393 }
394
395 int target_halt(struct target_s *target)
396 {
397         /* We can't poll until after examine */
398         if (!target_was_examined(target))
399         {
400                 LOG_ERROR("Target not examined yet");
401                 return ERROR_FAIL;
402         }
403         return target->type->halt(target);
404 }
405
406 int target_resume(struct target_s *target, int current, u32 address, int handle_breakpoints, int debug_execution)
407 {
408         int retval;
409
410         /* We can't poll until after examine */
411         if (!target_was_examined(target))
412         {
413                 LOG_ERROR("Target not examined yet");
414                 return ERROR_FAIL;
415         }
416
417         /* note that resume *must* be asynchronous. The CPU can halt before we poll. The CPU can
418          * even halt at the current PC as a result of a software breakpoint being inserted by (a bug?)
419          * the application.
420          */
421         if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
422                 return retval;
423
424         return retval;
425 }
426
427 int target_process_reset(struct command_context_s *cmd_ctx, enum target_reset_mode reset_mode)
428 {
429         char buf[100];
430         int retval;
431         Jim_Nvp *n;
432         n = Jim_Nvp_value2name_simple( nvp_reset_modes, reset_mode );
433         if( n->name == NULL ){
434                 LOG_ERROR("invalid reset mode");
435                 return ERROR_FAIL;
436         }
437
438         sprintf( buf, "ocd_process_reset %s", n->name );
439         retval = Jim_Eval( interp, buf );
440
441         if(retval != JIM_OK) {
442                 Jim_PrintErrorMessage(interp);
443                 return ERROR_FAIL;
444         }
445
446         /* We want any events to be processed before the prompt */
447         retval = target_call_timer_callbacks_now();
448
449         return retval;
450 }
451
452 static int default_virt2phys(struct target_s *target, u32 virtual, u32 *physical)
453 {
454         *physical = virtual;
455         return ERROR_OK;
456 }
457
458 static int default_mmu(struct target_s *target, int *enabled)
459 {
460         *enabled = 0;
461         return ERROR_OK;
462 }
463
464 static int default_examine(struct target_s *target)
465 {
466         target_set_examined(target);
467         return ERROR_OK;
468 }
469
470 int target_examine_one(struct target_s *target)
471 {
472         return target->type->examine(target);
473 }
474
475 /* Targets that correctly implement init+examine, i.e.
476  * no communication with target during init:
477  *
478  * XScale
479  */
480 int target_examine(void)
481 {
482         int retval = ERROR_OK;
483         target_t *target = all_targets;
484         while (target)
485         {
486                 if ((retval = target_examine_one(target)) != ERROR_OK)
487                         return retval;
488                 target = target->next;
489         }
490         return retval;
491 }
492 const char *target_get_name(struct target_s *target)
493 {
494         return target->type->name;
495 }
496
497 static int target_write_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
498 {
499         if (!target_was_examined(target))
500         {
501                 LOG_ERROR("Target not examined yet");
502                 return ERROR_FAIL;
503         }
504         return target->type->write_memory_imp(target, address, size, count, buffer);
505 }
506
507 static int target_read_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
508 {
509         if (!target_was_examined(target))
510         {
511                 LOG_ERROR("Target not examined yet");
512                 return ERROR_FAIL;
513         }
514         return target->type->read_memory_imp(target, address, size, count, buffer);
515 }
516
517 static int target_soft_reset_halt_imp(struct target_s *target)
518 {
519         if (!target_was_examined(target))
520         {
521                 LOG_ERROR("Target not examined yet");
522                 return ERROR_FAIL;
523         }
524         return target->type->soft_reset_halt_imp(target);
525 }
526
527 static int target_run_algorithm_imp(struct target_s *target, int num_mem_params, mem_param_t *mem_params, int num_reg_params, reg_param_t *reg_param, u32 entry_point, u32 exit_point, int timeout_ms, void *arch_info)
528 {
529         if (!target_was_examined(target))
530         {
531                 LOG_ERROR("Target not examined yet");
532                 return ERROR_FAIL;
533         }
534         return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
535 }
536
537 int target_read_memory(struct target_s *target,
538                 u32 address, u32 size, u32 count, u8 *buffer)
539 {
540         return target->type->read_memory(target, address, size, count, buffer);
541 }
542
543 int target_write_memory(struct target_s *target,
544                 u32 address, u32 size, u32 count, u8 *buffer)
545 {
546         return target->type->write_memory(target, address, size, count, buffer);
547 }
548 int target_bulk_write_memory(struct target_s *target,
549                 u32 address, u32 count, u8 *buffer)
550 {
551         return target->type->bulk_write_memory(target, address, count, buffer);
552 }
553
554 int target_add_breakpoint(struct target_s *target,
555                 struct breakpoint_s *breakpoint)
556 {
557         return target->type->add_breakpoint(target, breakpoint);
558 }
559 int target_remove_breakpoint(struct target_s *target,
560                 struct breakpoint_s *breakpoint)
561 {
562         return target->type->remove_breakpoint(target, breakpoint);
563 }
564
565 int target_add_watchpoint(struct target_s *target,
566                 struct watchpoint_s *watchpoint)
567 {
568         return target->type->add_watchpoint(target, watchpoint);
569 }
570 int target_remove_watchpoint(struct target_s *target,
571                 struct watchpoint_s *watchpoint)
572 {
573         return target->type->remove_watchpoint(target, watchpoint);
574 }
575
576 int target_get_gdb_reg_list(struct target_s *target,
577                 struct reg_s **reg_list[], int *reg_list_size)
578 {
579         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
580 }
581 int target_step(struct target_s *target,
582                 int current, u32 address, int handle_breakpoints)
583 {
584         return target->type->step(target, current, address, handle_breakpoints);
585 }
586
587
588 int target_run_algorithm(struct target_s *target,
589                 int num_mem_params, mem_param_t *mem_params,
590                 int num_reg_params, reg_param_t *reg_param,
591                 u32 entry_point, u32 exit_point,
592                 int timeout_ms, void *arch_info)
593 {
594         return target->type->run_algorithm(target,
595                         num_mem_params, mem_params, num_reg_params, reg_param,
596                         entry_point, exit_point, timeout_ms, arch_info);
597 }
598
599 /// @returns @c true if the target has been examined.
600 bool target_was_examined(struct target_s *target)
601 {
602         return target->type->examined;
603 }
604 /// Sets the @c examined flag for the given target.
605 void target_set_examined(struct target_s *target)
606 {
607         target->type->examined = true;
608 }
609 // Reset the @c examined flag for the given target.
610 void target_reset_examined(struct target_s *target)
611 {
612         target->type->examined = false;
613 }
614
615
616 int target_init(struct command_context_s *cmd_ctx)
617 {
618         target_t *target = all_targets;
619         int retval;
620
621         while (target)
622         {
623                 target_reset_examined(target);
624                 if (target->type->examine == NULL)
625                 {
626                         target->type->examine = default_examine;
627                 }
628
629                 if ((retval = target->type->init_target(cmd_ctx, target)) != ERROR_OK)
630                 {
631                         LOG_ERROR("target '%s' init failed", target_get_name(target));
632                         return retval;
633                 }
634
635                 /* Set up default functions if none are provided by target */
636                 if (target->type->virt2phys == NULL)
637                 {
638                         target->type->virt2phys = default_virt2phys;
639                 }
640                 target->type->virt2phys = default_virt2phys;
641                 /* a non-invasive way(in terms of patches) to add some code that
642                  * runs before the type->write/read_memory implementation
643                  */
644                 target->type->write_memory_imp = target->type->write_memory;
645                 target->type->write_memory = target_write_memory_imp;
646                 target->type->read_memory_imp = target->type->read_memory;
647                 target->type->read_memory = target_read_memory_imp;
648                 target->type->soft_reset_halt_imp = target->type->soft_reset_halt;
649                 target->type->soft_reset_halt = target_soft_reset_halt_imp;
650                 target->type->run_algorithm_imp = target->type->run_algorithm;
651                 target->type->run_algorithm = target_run_algorithm_imp;
652
653                 if (target->type->mmu == NULL)
654                 {
655                         target->type->mmu = default_mmu;
656                 }
657                 target = target->next;
658         }
659
660         if (all_targets)
661         {
662                 if((retval = target_register_user_commands(cmd_ctx)) != ERROR_OK)
663                         return retval;
664                 if((retval = target_register_timer_callback(handle_target, 100, 1, NULL)) != ERROR_OK)
665                         return retval;
666         }
667
668         return ERROR_OK;
669 }
670
671 int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
672 {
673         target_event_callback_t **callbacks_p = &target_event_callbacks;
674
675         if (callback == NULL)
676         {
677                 return ERROR_INVALID_ARGUMENTS;
678         }
679
680         if (*callbacks_p)
681         {
682                 while ((*callbacks_p)->next)
683                         callbacks_p = &((*callbacks_p)->next);
684                 callbacks_p = &((*callbacks_p)->next);
685         }
686
687         (*callbacks_p) = malloc(sizeof(target_event_callback_t));
688         (*callbacks_p)->callback = callback;
689         (*callbacks_p)->priv = priv;
690         (*callbacks_p)->next = NULL;
691
692         return ERROR_OK;
693 }
694
695 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
696 {
697         target_timer_callback_t **callbacks_p = &target_timer_callbacks;
698         struct timeval now;
699
700         if (callback == NULL)
701         {
702                 return ERROR_INVALID_ARGUMENTS;
703         }
704
705         if (*callbacks_p)
706         {
707                 while ((*callbacks_p)->next)
708                         callbacks_p = &((*callbacks_p)->next);
709                 callbacks_p = &((*callbacks_p)->next);
710         }
711
712         (*callbacks_p) = malloc(sizeof(target_timer_callback_t));
713         (*callbacks_p)->callback = callback;
714         (*callbacks_p)->periodic = periodic;
715         (*callbacks_p)->time_ms = time_ms;
716
717         gettimeofday(&now, NULL);
718         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
719         time_ms -= (time_ms % 1000);
720         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
721         if ((*callbacks_p)->when.tv_usec > 1000000)
722         {
723                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
724                 (*callbacks_p)->when.tv_sec += 1;
725         }
726
727         (*callbacks_p)->priv = priv;
728         (*callbacks_p)->next = NULL;
729
730         return ERROR_OK;
731 }
732
733 int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
734 {
735         target_event_callback_t **p = &target_event_callbacks;
736         target_event_callback_t *c = target_event_callbacks;
737
738         if (callback == NULL)
739         {
740                 return ERROR_INVALID_ARGUMENTS;
741         }
742
743         while (c)
744         {
745                 target_event_callback_t *next = c->next;
746                 if ((c->callback == callback) && (c->priv == priv))
747                 {
748                         *p = next;
749                         free(c);
750                         return ERROR_OK;
751                 }
752                 else
753                         p = &(c->next);
754                 c = next;
755         }
756
757         return ERROR_OK;
758 }
759
760 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
761 {
762         target_timer_callback_t **p = &target_timer_callbacks;
763         target_timer_callback_t *c = target_timer_callbacks;
764
765         if (callback == NULL)
766         {
767                 return ERROR_INVALID_ARGUMENTS;
768         }
769
770         while (c)
771         {
772                 target_timer_callback_t *next = c->next;
773                 if ((c->callback == callback) && (c->priv == priv))
774                 {
775                         *p = next;
776                         free(c);
777                         return ERROR_OK;
778                 }
779                 else
780                         p = &(c->next);
781                 c = next;
782         }
783
784         return ERROR_OK;
785 }
786
787 int target_call_event_callbacks(target_t *target, enum target_event event)
788 {
789         target_event_callback_t *callback = target_event_callbacks;
790         target_event_callback_t *next_callback;
791
792         if (event == TARGET_EVENT_HALTED)
793         {
794                 /* execute early halted first */
795                 target_call_event_callbacks(target, TARGET_EVENT_EARLY_HALTED);
796         }
797
798         LOG_DEBUG("target event %i (%s)",
799                           event,
800                           Jim_Nvp_value2name_simple( nvp_target_event, event )->name );
801
802         target_handle_event( target, event );
803
804         while (callback)
805         {
806                 next_callback = callback->next;
807                 callback->callback(target, event, callback->priv);
808                 callback = next_callback;
809         }
810
811         return ERROR_OK;
812 }
813
814 static int target_call_timer_callbacks_check_time(int checktime)
815 {
816         target_timer_callback_t *callback = target_timer_callbacks;
817         target_timer_callback_t *next_callback;
818         struct timeval now;
819
820         keep_alive();
821
822         gettimeofday(&now, NULL);
823
824         while (callback)
825         {
826                 next_callback = callback->next;
827
828                 if ((!checktime&&callback->periodic)||
829                                 (((now.tv_sec >= callback->when.tv_sec) && (now.tv_usec >= callback->when.tv_usec))
830                                                 || (now.tv_sec > callback->when.tv_sec)))
831                 {
832                         if(callback->callback != NULL)
833                         {
834                                 callback->callback(callback->priv);
835                                 if (callback->periodic)
836                                 {
837                                         int time_ms = callback->time_ms;
838                                         callback->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
839                                         time_ms -= (time_ms % 1000);
840                                         callback->when.tv_sec = now.tv_sec + time_ms / 1000;
841                                         if (callback->when.tv_usec > 1000000)
842                                         {
843                                                 callback->when.tv_usec = callback->when.tv_usec - 1000000;
844                                                 callback->when.tv_sec += 1;
845                                         }
846                                 }
847                                 else
848                                 {
849                                         int retval;
850                                         if((retval = target_unregister_timer_callback(callback->callback, callback->priv)) != ERROR_OK)
851                                                 return retval;
852                                 }
853                         }
854                 }
855
856                 callback = next_callback;
857         }
858
859         return ERROR_OK;
860 }
861
862 int target_call_timer_callbacks(void)
863 {
864         return target_call_timer_callbacks_check_time(1);
865 }
866
867 /* invoke periodic callbacks immediately */
868 int target_call_timer_callbacks_now(void)
869 {
870         return target_call_timer_callbacks_check_time(0);
871 }
872
873 int target_alloc_working_area(struct target_s *target, u32 size, working_area_t **area)
874 {
875         working_area_t *c = target->working_areas;
876         working_area_t *new_wa = NULL;
877
878         /* Reevaluate working area address based on MMU state*/
879         if (target->working_areas == NULL)
880         {
881                 int retval;
882                 int enabled;
883                 retval = target->type->mmu(target, &enabled);
884                 if (retval != ERROR_OK)
885                 {
886                         return retval;
887                 }
888                 if (enabled)
889                 {
890                         target->working_area = target->working_area_virt;
891                 }
892                 else
893                 {
894                         target->working_area = target->working_area_phys;
895                 }
896         }
897
898         /* only allocate multiples of 4 byte */
899         if (size % 4)
900         {
901                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes, padding");
902                 size = CEIL(size, 4);
903         }
904
905         /* see if there's already a matching working area */
906         while (c)
907         {
908                 if ((c->free) && (c->size == size))
909                 {
910                         new_wa = c;
911                         break;
912                 }
913                 c = c->next;
914         }
915
916         /* if not, allocate a new one */
917         if (!new_wa)
918         {
919                 working_area_t **p = &target->working_areas;
920                 u32 first_free = target->working_area;
921                 u32 free_size = target->working_area_size;
922
923                 LOG_DEBUG("allocating new working area");
924
925                 c = target->working_areas;
926                 while (c)
927                 {
928                         first_free += c->size;
929                         free_size -= c->size;
930                         p = &c->next;
931                         c = c->next;
932                 }
933
934                 if (free_size < size)
935                 {
936                         LOG_WARNING("not enough working area available(requested %d, free %d)", size, free_size);
937                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
938                 }
939
940                 new_wa = malloc(sizeof(working_area_t));
941                 new_wa->next = NULL;
942                 new_wa->size = size;
943                 new_wa->address = first_free;
944
945                 if (target->backup_working_area)
946                 {
947                         int retval;
948                         new_wa->backup = malloc(new_wa->size);
949                         if((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
950                         {
951                                 free(new_wa->backup);
952                                 free(new_wa);
953                                 return retval;
954                         }
955                 }
956                 else
957                 {
958                         new_wa->backup = NULL;
959                 }
960
961                 /* put new entry in list */
962                 *p = new_wa;
963         }
964
965         /* mark as used, and return the new (reused) area */
966         new_wa->free = 0;
967         *area = new_wa;
968
969         /* user pointer */
970         new_wa->user = area;
971
972         return ERROR_OK;
973 }
974
975 int target_free_working_area_restore(struct target_s *target, working_area_t *area, int restore)
976 {
977         if (area->free)
978                 return ERROR_OK;
979
980         if (restore&&target->backup_working_area)
981         {
982                 int retval;
983                 if((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
984                         return retval;
985         }
986
987         area->free = 1;
988
989         /* mark user pointer invalid */
990         *area->user = NULL;
991         area->user = NULL;
992
993         return ERROR_OK;
994 }
995
996 int target_free_working_area(struct target_s *target, working_area_t *area)
997 {
998         return target_free_working_area_restore(target, area, 1);
999 }
1000
1001 /* free resources and restore memory, if restoring memory fails,
1002  * free up resources anyway
1003  */
1004 void target_free_all_working_areas_restore(struct target_s *target, int restore)
1005 {
1006         working_area_t *c = target->working_areas;
1007
1008         while (c)
1009         {
1010                 working_area_t *next = c->next;
1011                 target_free_working_area_restore(target, c, restore);
1012
1013                 if (c->backup)
1014                         free(c->backup);
1015
1016                 free(c);
1017
1018                 c = next;
1019         }
1020
1021         target->working_areas = NULL;
1022 }
1023
1024 void target_free_all_working_areas(struct target_s *target)
1025 {
1026         target_free_all_working_areas_restore(target, 1);
1027 }
1028
1029 int target_register_commands(struct command_context_s *cmd_ctx)
1030 {
1031
1032         register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, "change the current command line target (one parameter) or lists targets (with no parameter)");
1033
1034
1035
1036
1037         register_jim(cmd_ctx, "target", jim_target, "configure target" );
1038
1039         return ERROR_OK;
1040 }
1041
1042 int target_arch_state(struct target_s *target)
1043 {
1044         int retval;
1045         if (target==NULL)
1046         {
1047                 LOG_USER("No target has been configured");
1048                 return ERROR_OK;
1049         }
1050
1051         LOG_USER("target state: %s",
1052                  Jim_Nvp_value2name_simple(nvp_target_state,target->state)->name);
1053
1054         if (target->state!=TARGET_HALTED)
1055                 return ERROR_OK;
1056
1057         retval=target->type->arch_state(target);
1058         return retval;
1059 }
1060
1061 /* Single aligned words are guaranteed to use 16 or 32 bit access
1062  * mode respectively, otherwise data is handled as quickly as
1063  * possible
1064  */
1065 int target_write_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
1066 {
1067         int retval;
1068         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x", size, address);
1069
1070         if (!target_was_examined(target))
1071         {
1072                 LOG_ERROR("Target not examined yet");
1073                 return ERROR_FAIL;
1074         }
1075
1076         if (size == 0) {
1077                 return ERROR_OK;
1078         }
1079
1080         if ((address + size - 1) < address)
1081         {
1082                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1083                 LOG_ERROR("address+size wrapped(0x%08x, 0x%08x)", address, size);
1084                 return ERROR_FAIL;
1085         }
1086
1087         if (((address % 2) == 0) && (size == 2))
1088         {
1089                 return target_write_memory(target, address, 2, 1, buffer);
1090         }
1091
1092         /* handle unaligned head bytes */
1093         if (address % 4)
1094         {
1095                 u32 unaligned = 4 - (address % 4);
1096
1097                 if (unaligned > size)
1098                         unaligned = size;
1099
1100                 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1101                         return retval;
1102
1103                 buffer += unaligned;
1104                 address += unaligned;
1105                 size -= unaligned;
1106         }
1107
1108         /* handle aligned words */
1109         if (size >= 4)
1110         {
1111                 int aligned = size - (size % 4);
1112
1113                 /* use bulk writes above a certain limit. This may have to be changed */
1114                 if (aligned > 128)
1115                 {
1116                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1117                                 return retval;
1118                 }
1119                 else
1120                 {
1121                         if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1122                                 return retval;
1123                 }
1124
1125                 buffer += aligned;
1126                 address += aligned;
1127                 size -= aligned;
1128         }
1129
1130         /* handle tail writes of less than 4 bytes */
1131         if (size > 0)
1132         {
1133                 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1134                         return retval;
1135         }
1136
1137         return ERROR_OK;
1138 }
1139
1140 /* Single aligned words are guaranteed to use 16 or 32 bit access
1141  * mode respectively, otherwise data is handled as quickly as
1142  * possible
1143  */
1144 int target_read_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
1145 {
1146         int retval;
1147         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x", size, address);
1148
1149         if (!target_was_examined(target))
1150         {
1151                 LOG_ERROR("Target not examined yet");
1152                 return ERROR_FAIL;
1153         }
1154
1155         if (size == 0) {
1156                 return ERROR_OK;
1157         }
1158
1159         if ((address + size - 1) < address)
1160         {
1161                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1162                 LOG_ERROR("address+size wrapped(0x%08x, 0x%08x)", address, size);
1163                 return ERROR_FAIL;
1164         }
1165
1166         if (((address % 2) == 0) && (size == 2))
1167         {
1168                 return target_read_memory(target, address, 2, 1, buffer);
1169         }
1170
1171         /* handle unaligned head bytes */
1172         if (address % 4)
1173         {
1174                 u32 unaligned = 4 - (address % 4);
1175
1176                 if (unaligned > size)
1177                         unaligned = size;
1178
1179                 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1180                         return retval;
1181
1182                 buffer += unaligned;
1183                 address += unaligned;
1184                 size -= unaligned;
1185         }
1186
1187         /* handle aligned words */
1188         if (size >= 4)
1189         {
1190                 int aligned = size - (size % 4);
1191
1192                 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1193                         return retval;
1194
1195                 buffer += aligned;
1196                 address += aligned;
1197                 size -= aligned;
1198         }
1199
1200         /* handle tail writes of less than 4 bytes */
1201         if (size > 0)
1202         {
1203                 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1204                         return retval;
1205         }
1206
1207         return ERROR_OK;
1208 }
1209
1210 int target_checksum_memory(struct target_s *target, u32 address, u32 size, u32* crc)
1211 {
1212         u8 *buffer;
1213         int retval;
1214         u32 i;
1215         u32 checksum = 0;
1216         if (!target_was_examined(target))
1217         {
1218                 LOG_ERROR("Target not examined yet");
1219                 return ERROR_FAIL;
1220         }
1221
1222         if ((retval = target->type->checksum_memory(target, address,
1223                 size, &checksum)) != ERROR_OK)
1224         {
1225                 buffer = malloc(size);
1226                 if (buffer == NULL)
1227                 {
1228                         LOG_ERROR("error allocating buffer for section (%d bytes)", size);
1229                         return ERROR_INVALID_ARGUMENTS;
1230                 }
1231                 retval = target_read_buffer(target, address, size, buffer);
1232                 if (retval != ERROR_OK)
1233                 {
1234                         free(buffer);
1235                         return retval;
1236                 }
1237
1238                 /* convert to target endianess */
1239                 for (i = 0; i < (size/sizeof(u32)); i++)
1240                 {
1241                         u32 target_data;
1242                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(u32)]);
1243                         target_buffer_set_u32(target, &buffer[i*sizeof(u32)], target_data);
1244                 }
1245
1246                 retval = image_calculate_checksum( buffer, size, &checksum );
1247                 free(buffer);
1248         }
1249
1250         *crc = checksum;
1251
1252         return retval;
1253 }
1254
1255 int target_blank_check_memory(struct target_s *target, u32 address, u32 size, u32* blank)
1256 {
1257         int retval;
1258         if (!target_was_examined(target))
1259         {
1260                 LOG_ERROR("Target not examined yet");
1261                 return ERROR_FAIL;
1262         }
1263
1264         if (target->type->blank_check_memory == 0)
1265                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1266
1267         retval = target->type->blank_check_memory(target, address, size, blank);
1268
1269         return retval;
1270 }
1271
1272 int target_read_u32(struct target_s *target, u32 address, u32 *value)
1273 {
1274         u8 value_buf[4];
1275         if (!target_was_examined(target))
1276         {
1277                 LOG_ERROR("Target not examined yet");
1278                 return ERROR_FAIL;
1279         }
1280
1281         int retval = target_read_memory(target, address, 4, 1, value_buf);
1282
1283         if (retval == ERROR_OK)
1284         {
1285                 *value = target_buffer_get_u32(target, value_buf);
1286                 LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, *value);
1287         }
1288         else
1289         {
1290                 *value = 0x0;
1291                 LOG_DEBUG("address: 0x%8.8x failed", address);
1292         }
1293
1294         return retval;
1295 }
1296
1297 int target_read_u16(struct target_s *target, u32 address, u16 *value)
1298 {
1299         u8 value_buf[2];
1300         if (!target_was_examined(target))
1301         {
1302                 LOG_ERROR("Target not examined yet");
1303                 return ERROR_FAIL;
1304         }
1305
1306         int retval = target_read_memory(target, address, 2, 1, value_buf);
1307
1308         if (retval == ERROR_OK)
1309         {
1310                 *value = target_buffer_get_u16(target, value_buf);
1311                 LOG_DEBUG("address: 0x%8.8x, value: 0x%4.4x", address, *value);
1312         }
1313         else
1314         {
1315                 *value = 0x0;
1316                 LOG_DEBUG("address: 0x%8.8x failed", address);
1317         }
1318
1319         return retval;
1320 }
1321
1322 int target_read_u8(struct target_s *target, u32 address, u8 *value)
1323 {
1324         int retval = target_read_memory(target, address, 1, 1, value);
1325         if (!target_was_examined(target))
1326         {
1327                 LOG_ERROR("Target not examined yet");
1328                 return ERROR_FAIL;
1329         }
1330
1331         if (retval == ERROR_OK)
1332         {
1333                 LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, *value);
1334         }
1335         else
1336         {
1337                 *value = 0x0;
1338                 LOG_DEBUG("address: 0x%8.8x failed", address);
1339         }
1340
1341         return retval;
1342 }
1343
1344 int target_write_u32(struct target_s *target, u32 address, u32 value)
1345 {
1346         int retval;
1347         u8 value_buf[4];
1348         if (!target_was_examined(target))
1349         {
1350                 LOG_ERROR("Target not examined yet");
1351                 return ERROR_FAIL;
1352         }
1353
1354         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1355
1356         target_buffer_set_u32(target, value_buf, value);
1357         if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1358         {
1359                 LOG_DEBUG("failed: %i", retval);
1360         }
1361
1362         return retval;
1363 }
1364
1365 int target_write_u16(struct target_s *target, u32 address, u16 value)
1366 {
1367         int retval;
1368         u8 value_buf[2];
1369         if (!target_was_examined(target))
1370         {
1371                 LOG_ERROR("Target not examined yet");
1372                 return ERROR_FAIL;
1373         }
1374
1375         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1376
1377         target_buffer_set_u16(target, value_buf, value);
1378         if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1379         {
1380                 LOG_DEBUG("failed: %i", retval);
1381         }
1382
1383         return retval;
1384 }
1385
1386 int target_write_u8(struct target_s *target, u32 address, u8 value)
1387 {
1388         int retval;
1389         if (!target_was_examined(target))
1390         {
1391                 LOG_ERROR("Target not examined yet");
1392                 return ERROR_FAIL;
1393         }
1394
1395         LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, value);
1396
1397         if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1398         {
1399                 LOG_DEBUG("failed: %i", retval);
1400         }
1401
1402         return retval;
1403 }
1404
1405 int target_register_user_commands(struct command_context_s *cmd_ctx)
1406 {
1407         int retval = ERROR_OK;
1408
1409
1410         /* script procedures */
1411         register_command(cmd_ctx, NULL, "profile", handle_profile_command, COMMAND_EXEC, "profiling samples the CPU PC");
1412         register_jim(cmd_ctx, "ocd_mem2array", jim_mem2array, "read memory and return as a TCL array for script processing <ARRAYNAME> <WIDTH=32/16/8> <ADDRESS> <COUNT>");
1413         register_jim(cmd_ctx, "ocd_array2mem", jim_array2mem, "convert a TCL array to memory locations and write the values  <ARRAYNAME> <WIDTH=32/16/8> <ADDRESS> <COUNT>");
1414
1415         register_command(cmd_ctx, NULL, "fast_load_image", handle_fast_load_image_command, COMMAND_ANY,
1416                         "same args as load_image, image stored in memory - mainly for profiling purposes");
1417
1418         register_command(cmd_ctx, NULL, "fast_load", handle_fast_load_command, COMMAND_ANY,
1419                         "loads active fast load image to current target - mainly for profiling purposes");
1420
1421
1422         register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "translate a virtual address into a physical address");
1423         register_command(cmd_ctx,  NULL, "reg", handle_reg_command, COMMAND_EXEC, "display or set a register");
1424         register_command(cmd_ctx,  NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state");
1425         register_command(cmd_ctx,  NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]");
1426         register_command(cmd_ctx,  NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target");
1427         register_command(cmd_ctx,  NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]");
1428         register_command(cmd_ctx,  NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]");
1429         register_command(cmd_ctx,  NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run|halt|init] - default is run");
1430         register_command(cmd_ctx,  NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset");
1431
1432         register_command(cmd_ctx,  NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words <addr> [count]");
1433         register_command(cmd_ctx,  NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words <addr> [count]");
1434         register_command(cmd_ctx,  NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes <addr> [count]");
1435
1436         register_command(cmd_ctx,  NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word <addr> <value> [count]");
1437         register_command(cmd_ctx,  NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word <addr> <value> [count]");
1438         register_command(cmd_ctx,  NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte <addr> <value> [count]");
1439
1440         register_command(cmd_ctx,  NULL, "bp", handle_bp_command, COMMAND_EXEC, "set breakpoint <address> <length> [hw]");
1441         register_command(cmd_ctx,  NULL, "rbp", handle_rbp_command, COMMAND_EXEC, "remove breakpoint <adress>");
1442         register_command(cmd_ctx,  NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint <address> <length> <r/w/a> [value] [mask]");
1443         register_command(cmd_ctx,  NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint <adress>");
1444
1445         register_command(cmd_ctx,  NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> ['bin'|'ihex'|'elf'|'s19'] [min_address] [max_length]");
1446         register_command(cmd_ctx,  NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>");
1447         register_command(cmd_ctx,  NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image <file> [offset] [type]");
1448         register_command(cmd_ctx,  NULL, "test_image", handle_test_image_command, COMMAND_EXEC, "test_image <file> [offset] [type]");
1449
1450         if((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
1451                 return retval;
1452         if((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
1453                 return retval;
1454
1455         return retval;
1456 }
1457
1458 static int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1459 {
1460         target_t *target = all_targets;
1461
1462         if (argc == 1)
1463         {
1464                 target = get_target(args[0]);
1465                 if (target == NULL) {
1466                         command_print(cmd_ctx,"Target: %s is unknown, try one of:\n", args[0] );
1467                         goto DumpTargets;
1468                 }
1469
1470                 cmd_ctx->current_target = target->target_number;
1471                 return ERROR_OK;
1472         }
1473 DumpTargets:
1474
1475         target = all_targets;
1476         command_print(cmd_ctx, "    CmdName    Type       Endian     AbsChainPos Name          State     ");
1477         command_print(cmd_ctx, "--  ---------- ---------- ---------- ----------- ------------- ----------");
1478         while (target)
1479         {
1480                 /* XX: abcdefghij abcdefghij abcdefghij abcdefghij */
1481                 command_print(cmd_ctx, "%2d: %-10s %-10s %-10s %10d %14s %s",
1482                                           target->target_number,
1483                                           target->cmd_name,
1484                                           target_get_name(target),
1485                                           Jim_Nvp_value2name_simple( nvp_target_endian, target->endianness )->name,
1486                                           target->tap->abs_chain_position,
1487                                           target->tap->dotted_name,
1488                                           Jim_Nvp_value2name_simple( nvp_target_state, target->state )->name );
1489                 target = target->next;
1490         }
1491
1492         return ERROR_OK;
1493 }
1494
1495 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1496
1497 static int powerDropout;
1498 static int srstAsserted;
1499
1500 static int runPowerRestore;
1501 static int runPowerDropout;
1502 static int runSrstAsserted;
1503 static int runSrstDeasserted;
1504
1505 static int sense_handler(void)
1506 {
1507         static int prevSrstAsserted = 0;
1508         static int prevPowerdropout = 0;
1509
1510         int retval;
1511         if ((retval=jtag_power_dropout(&powerDropout))!=ERROR_OK)
1512                 return retval;
1513
1514         int powerRestored;
1515         powerRestored = prevPowerdropout && !powerDropout;
1516         if (powerRestored)
1517         {
1518                 runPowerRestore = 1;
1519         }
1520
1521         long long current = timeval_ms();
1522         static long long lastPower = 0;
1523         int waitMore = lastPower + 2000 > current;
1524         if (powerDropout && !waitMore)
1525         {
1526                 runPowerDropout = 1;
1527                 lastPower = current;
1528         }
1529
1530         if ((retval=jtag_srst_asserted(&srstAsserted))!=ERROR_OK)
1531                 return retval;
1532
1533         int srstDeasserted;
1534         srstDeasserted = prevSrstAsserted && !srstAsserted;
1535
1536         static long long lastSrst = 0;
1537         waitMore = lastSrst + 2000 > current;
1538         if (srstDeasserted && !waitMore)
1539         {
1540                 runSrstDeasserted = 1;
1541                 lastSrst = current;
1542         }
1543
1544         if (!prevSrstAsserted && srstAsserted)
1545         {
1546                 runSrstAsserted = 1;
1547         }
1548
1549         prevSrstAsserted = srstAsserted;
1550         prevPowerdropout = powerDropout;
1551
1552         if (srstDeasserted || powerRestored)
1553         {
1554                 /* Other than logging the event we can't do anything here.
1555                  * Issuing a reset is a particularly bad idea as we might
1556                  * be inside a reset already.
1557                  */
1558         }
1559
1560         return ERROR_OK;
1561 }
1562
1563 /* process target state changes */
1564 int handle_target(void *priv)
1565 {
1566         int retval = ERROR_OK;
1567
1568         /* we do not want to recurse here... */
1569         static int recursive = 0;
1570         if (! recursive)
1571         {
1572                 recursive = 1;
1573                 sense_handler();
1574                 /* danger! running these procedures can trigger srst assertions and power dropouts.
1575                  * We need to avoid an infinite loop/recursion here and we do that by
1576                  * clearing the flags after running these events.
1577                  */
1578                 int did_something = 0;
1579                 if (runSrstAsserted)
1580                 {
1581                         Jim_Eval( interp, "srst_asserted");
1582                         did_something = 1;
1583                 }
1584                 if (runSrstDeasserted)
1585                 {
1586                         Jim_Eval( interp, "srst_deasserted");
1587                         did_something = 1;
1588                 }
1589                 if (runPowerDropout)
1590                 {
1591                         Jim_Eval( interp, "power_dropout");
1592                         did_something = 1;
1593                 }
1594                 if (runPowerRestore)
1595                 {
1596                         Jim_Eval( interp, "power_restore");
1597                         did_something = 1;
1598                 }
1599
1600                 if (did_something)
1601                 {
1602                         /* clear detect flags */
1603                         sense_handler();
1604                 }
1605
1606                 /* clear action flags */
1607
1608                 runSrstAsserted=0;
1609                 runSrstDeasserted=0;
1610                 runPowerRestore=0;
1611                 runPowerDropout=0;
1612
1613                 recursive = 0;
1614         }
1615
1616         target_t *target = all_targets;
1617
1618         while (target)
1619         {
1620
1621                 /* only poll target if we've got power and srst isn't asserted */
1622                 if (target_continous_poll&&!powerDropout&&!srstAsserted)
1623                 {
1624                         /* polling may fail silently until the target has been examined */
1625                         if((retval = target_poll(target)) != ERROR_OK)
1626                                 return retval;
1627                 }
1628
1629                 target = target->next;
1630         }
1631
1632         return retval;
1633 }
1634
1635 static int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1636 {
1637         target_t *target;
1638         reg_t *reg = NULL;
1639         int count = 0;
1640         char *value;
1641
1642         LOG_DEBUG("-");
1643
1644         target = get_current_target(cmd_ctx);
1645
1646         /* list all available registers for the current target */
1647         if (argc == 0)
1648         {
1649                 reg_cache_t *cache = target->reg_cache;
1650
1651                 count = 0;
1652                 while(cache)
1653                 {
1654                         int i;
1655                         for (i = 0; i < cache->num_regs; i++)
1656                         {
1657                                 value = buf_to_str(cache->reg_list[i].value, cache->reg_list[i].size, 16);
1658                                 command_print(cmd_ctx, "(%i) %s (/%i): 0x%s (dirty: %i, valid: %i)", count++, cache->reg_list[i].name, cache->reg_list[i].size, value, cache->reg_list[i].dirty, cache->reg_list[i].valid);
1659                                 free(value);
1660                         }
1661                         cache = cache->next;
1662                 }
1663
1664                 return ERROR_OK;
1665         }
1666
1667         /* access a single register by its ordinal number */
1668         if ((args[0][0] >= '0') && (args[0][0] <= '9'))
1669         {
1670                 int num = strtoul(args[0], NULL, 0);
1671                 reg_cache_t *cache = target->reg_cache;
1672
1673                 count = 0;
1674                 while(cache)
1675                 {
1676                         int i;
1677                         for (i = 0; i < cache->num_regs; i++)
1678                         {
1679                                 if (count++ == num)
1680                                 {
1681                                         reg = &cache->reg_list[i];
1682                                         break;
1683                                 }
1684                         }
1685                         if (reg)
1686                                 break;
1687                         cache = cache->next;
1688                 }
1689
1690                 if (!reg)
1691                 {
1692                         command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1693                         return ERROR_OK;
1694                 }
1695         } else /* access a single register by its name */
1696         {
1697                 reg = register_get_by_name(target->reg_cache, args[0], 1);
1698
1699                 if (!reg)
1700                 {
1701                         command_print(cmd_ctx, "register %s not found in current target", args[0]);
1702                         return ERROR_OK;
1703                 }
1704         }
1705
1706         /* display a register */
1707         if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
1708         {
1709                 if ((argc == 2) && (strcmp(args[1], "force") == 0))
1710                         reg->valid = 0;
1711
1712                 if (reg->valid == 0)
1713                 {
1714                         reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1715                         arch_type->get(reg);
1716                 }
1717                 value = buf_to_str(reg->value, reg->size, 16);
1718                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1719                 free(value);
1720                 return ERROR_OK;
1721         }
1722
1723         /* set register value */
1724         if (argc == 2)
1725         {
1726                 u8 *buf = malloc(CEIL(reg->size, 8));
1727                 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
1728
1729                 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1730                 arch_type->set(reg, buf);
1731
1732                 value = buf_to_str(reg->value, reg->size, 16);
1733                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1734                 free(value);
1735
1736                 free(buf);
1737
1738                 return ERROR_OK;
1739         }
1740
1741         command_print(cmd_ctx, "usage: reg <#|name> [value]");
1742
1743         return ERROR_OK;
1744 }
1745
1746 static int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1747 {
1748         int retval = ERROR_OK;
1749         target_t *target = get_current_target(cmd_ctx);
1750
1751         if (argc == 0)
1752         {
1753                 if((retval = target_poll(target)) != ERROR_OK)
1754                         return retval;
1755                 if((retval = target_arch_state(target)) != ERROR_OK)
1756                         return retval;
1757
1758         }
1759         else if (argc==1)
1760         {
1761                 if (strcmp(args[0], "on") == 0)
1762                 {
1763                         target_continous_poll = 1;
1764                 }
1765                 else if (strcmp(args[0], "off") == 0)
1766                 {
1767                         target_continous_poll = 0;
1768                 }
1769                 else
1770                 {
1771                         command_print(cmd_ctx, "arg is \"on\" or \"off\"");
1772                 }
1773         } else
1774         {
1775                 return ERROR_COMMAND_SYNTAX_ERROR;
1776         }
1777
1778         return retval;
1779 }
1780
1781 static int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1782 {
1783         int ms = 5000;
1784
1785         if (argc > 0)
1786         {
1787                 char *end;
1788
1789                 ms = strtoul(args[0], &end, 0) * 1000;
1790                 if (*end)
1791                 {
1792                         command_print(cmd_ctx, "usage: %s [seconds]", cmd);
1793                         return ERROR_OK;
1794                 }
1795         }
1796         target_t *target = get_current_target(cmd_ctx);
1797
1798         return target_wait_state(target, TARGET_HALTED, ms);
1799 }
1800
1801 /* wait for target state to change. The trick here is to have a low
1802  * latency for short waits and not to suck up all the CPU time
1803  * on longer waits.
1804  *
1805  * After 500ms, keep_alive() is invoked
1806  */
1807 int target_wait_state(target_t *target, enum target_state state, int ms)
1808 {
1809         int retval;
1810         long long then=0, cur;
1811         int once=1;
1812
1813         for (;;)
1814         {
1815                 if ((retval=target_poll(target))!=ERROR_OK)
1816                         return retval;
1817                 if (target->state == state)
1818                 {
1819                         break;
1820                 }
1821                 cur = timeval_ms();
1822                 if (once)
1823                 {
1824                         once=0;
1825                         then = timeval_ms();
1826                         LOG_DEBUG("waiting for target %s...",
1827                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
1828                 }
1829
1830                 if (cur-then>500)
1831                 {
1832                         keep_alive();
1833                 }
1834
1835                 if ((cur-then)>ms)
1836                 {
1837                         LOG_ERROR("timed out while waiting for target %s",
1838                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
1839                         return ERROR_FAIL;
1840                 }
1841         }
1842
1843         return ERROR_OK;
1844 }
1845
1846 static int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1847 {
1848         int retval;
1849         target_t *target = get_current_target(cmd_ctx);
1850
1851         LOG_DEBUG("-");
1852
1853         if ((retval = target_halt(target)) != ERROR_OK)
1854         {
1855                 return retval;
1856         }
1857
1858         if (argc == 1)
1859         {
1860                 int wait;
1861                 char *end;
1862
1863                 wait = strtoul(args[0], &end, 0);
1864                 if (!*end && !wait)
1865                         return ERROR_OK;
1866         }
1867
1868         return handle_wait_halt_command(cmd_ctx, cmd, args, argc);
1869 }
1870
1871 static int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1872 {
1873         target_t *target = get_current_target(cmd_ctx);
1874
1875         LOG_USER("requesting target halt and executing a soft reset");
1876
1877         target->type->soft_reset_halt(target);
1878
1879         return ERROR_OK;
1880 }
1881
1882 static int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1883 {
1884         const Jim_Nvp *n;
1885         enum target_reset_mode reset_mode = RESET_RUN;
1886
1887         if (argc >= 1)
1888         {
1889                 n = Jim_Nvp_name2value_simple( nvp_reset_modes, args[0] );
1890                 if( (n->name == NULL) || (n->value == RESET_UNKNOWN) ){
1891                         return ERROR_COMMAND_SYNTAX_ERROR;
1892                 }
1893                 reset_mode = n->value;
1894         }
1895
1896         /* reset *all* targets */
1897         return target_process_reset(cmd_ctx, reset_mode);
1898 }
1899
1900
1901 static int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1902 {
1903         int retval;
1904         target_t *target = get_current_target(cmd_ctx);
1905
1906         target_handle_event( target, TARGET_EVENT_OLD_pre_resume );
1907
1908         if (argc == 0)
1909                 retval = target_resume(target, 1, 0, 1, 0); /* current pc, addr = 0, handle breakpoints, not debugging */
1910         else if (argc == 1)
1911                 retval = target_resume(target, 0, strtoul(args[0], NULL, 0), 1, 0); /* addr = args[0], handle breakpoints, not debugging */
1912         else
1913         {
1914                 retval = ERROR_COMMAND_SYNTAX_ERROR;
1915         }
1916
1917         return retval;
1918 }
1919
1920 static int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1921 {
1922         target_t *target = get_current_target(cmd_ctx);
1923
1924         LOG_DEBUG("-");
1925
1926         if (argc == 0)
1927                 return target->type->step(target, 1, 0, 1); /* current pc, addr = 0, handle breakpoints */
1928
1929         if (argc == 1)
1930                 return target->type->step(target, 0, strtoul(args[0], NULL, 0), 1); /* addr = args[0], handle breakpoints */
1931
1932         return ERROR_OK;
1933 }
1934
1935 static void handle_md_output(struct command_context_s *cmd_ctx,
1936                 struct target_s *target, u32 address, unsigned size,
1937                 unsigned count, const u8 *buffer)
1938 {
1939         const unsigned line_bytecnt = 32;
1940         unsigned line_modulo = line_bytecnt / size;
1941
1942         char output[line_bytecnt * 4 + 1];
1943         unsigned output_len = 0;
1944
1945         const char *value_fmt;
1946         switch (size) {
1947         case 4: value_fmt = "%8.8x"; break;
1948         case 2: value_fmt = "%4.2x"; break;
1949         case 1: value_fmt = "%2.2x"; break;
1950         default:
1951                 LOG_ERROR("invalid memory read size: %u", size);
1952                 exit(-1);
1953         }
1954
1955         for (unsigned i = 0; i < count; i++)
1956         {
1957                 if (i % line_modulo == 0)
1958                 {
1959                         output_len += snprintf(output + output_len,
1960                                         sizeof(output) - output_len,
1961                                         "0x%8.8x: ", address + (i*size));
1962                 }
1963
1964                 u32 value;
1965                 const u8 *value_ptr = buffer + i * size;
1966                 switch (size) {
1967                 case 4: value = target_buffer_get_u32(target, value_ptr); break;
1968                 case 2: value = target_buffer_get_u16(target, value_ptr); break;
1969                 case 1: value = *value_ptr;
1970                 }
1971                 output_len += snprintf(output + output_len,
1972                                 sizeof(output) - output_len,
1973                                 value_fmt, value);
1974
1975                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
1976                 {
1977                         command_print(cmd_ctx, "%s", output);
1978                         output_len = 0;
1979                 }
1980         }
1981 }
1982
1983 static int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1984 {
1985         if (argc < 1)
1986                 return ERROR_COMMAND_SYNTAX_ERROR;
1987
1988         unsigned size = 0;
1989         switch (cmd[2]) {
1990         case 'w': size = 4; break;
1991         case 'h': size = 2; break;
1992         case 'b': size = 1; break;
1993         default: return ERROR_COMMAND_SYNTAX_ERROR;
1994         }
1995
1996         u32 address = strtoul(args[0], NULL, 0);
1997
1998         unsigned count = 1;
1999         if (argc == 2)
2000                 count = strtoul(args[1], NULL, 0);
2001
2002         u8 *buffer = calloc(count, size);
2003
2004         target_t *target = get_current_target(cmd_ctx);
2005         int retval = target_read_memory(target,
2006                                 address, size, count, buffer);
2007         if (ERROR_OK == retval)
2008                 handle_md_output(cmd_ctx, target, address, size, count, buffer);
2009
2010         free(buffer);
2011
2012         return retval;
2013 }
2014
2015 static int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2016 {
2017         u32 address = 0;
2018         u32 value = 0;
2019         int count = 1;
2020         int i;
2021         int wordsize;
2022         target_t *target = get_current_target(cmd_ctx);
2023         u8 value_buf[4];
2024
2025          if ((argc < 2) || (argc > 3))
2026                 return ERROR_COMMAND_SYNTAX_ERROR;
2027
2028         address = strtoul(args[0], NULL, 0);
2029         value = strtoul(args[1], NULL, 0);
2030         if (argc == 3)
2031                 count = strtoul(args[2], NULL, 0);
2032
2033         switch (cmd[2])
2034         {
2035                 case 'w':
2036                         wordsize = 4;
2037                         target_buffer_set_u32(target, value_buf, value);
2038                         break;
2039                 case 'h':
2040                         wordsize = 2;
2041                         target_buffer_set_u16(target, value_buf, value);
2042                         break;
2043                 case 'b':
2044                         wordsize = 1;
2045                         value_buf[0] = value;
2046                         break;
2047                 default:
2048                         return ERROR_COMMAND_SYNTAX_ERROR;
2049         }
2050         for (i=0; i<count; i++)
2051         {
2052                 int retval = target_write_memory(target,
2053                                 address + i * wordsize, wordsize, 1, value_buf);
2054                 if (ERROR_OK != retval)
2055                         return retval;
2056                 keep_alive();
2057         }
2058
2059         return ERROR_OK;
2060
2061 }
2062
2063 static int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2064 {
2065         u8 *buffer;
2066         u32 buf_cnt;
2067         u32 image_size;
2068         u32 min_address=0;
2069         u32 max_address=0xffffffff;
2070         int i;
2071         int retval, retvaltemp;
2072
2073         image_t image;
2074
2075         duration_t duration;
2076         char *duration_text;
2077
2078         target_t *target = get_current_target(cmd_ctx);
2079
2080         if ((argc < 1)||(argc > 5))
2081         {
2082                 return ERROR_COMMAND_SYNTAX_ERROR;
2083         }
2084
2085         /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
2086         if (argc >= 2)
2087         {
2088                 image.base_address_set = 1;
2089                 image.base_address = strtoul(args[1], NULL, 0);
2090         }
2091         else
2092         {
2093                 image.base_address_set = 0;
2094         }
2095
2096
2097         image.start_address_set = 0;
2098
2099         if (argc>=4)
2100         {
2101                 min_address=strtoul(args[3], NULL, 0);
2102         }
2103         if (argc>=5)
2104         {
2105                 max_address=strtoul(args[4], NULL, 0)+min_address;
2106         }
2107
2108         if (min_address>max_address)
2109         {
2110                 return ERROR_COMMAND_SYNTAX_ERROR;
2111         }
2112
2113         duration_start_measure(&duration);
2114
2115         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
2116         {
2117                 return ERROR_OK;
2118         }
2119
2120         image_size = 0x0;
2121         retval = ERROR_OK;
2122         for (i = 0; i < image.num_sections; i++)
2123         {
2124                 buffer = malloc(image.sections[i].size);
2125                 if (buffer == NULL)
2126                 {
2127                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2128                         break;
2129                 }
2130
2131                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2132                 {
2133                         free(buffer);
2134                         break;
2135                 }
2136
2137                 u32 offset=0;
2138                 u32 length=buf_cnt;
2139
2140                 /* DANGER!!! beware of unsigned comparision here!!! */
2141
2142                 if ((image.sections[i].base_address+buf_cnt>=min_address)&&
2143                                 (image.sections[i].base_address<max_address))
2144                 {
2145                         if (image.sections[i].base_address<min_address)
2146                         {
2147                                 /* clip addresses below */
2148                                 offset+=min_address-image.sections[i].base_address;
2149                                 length-=offset;
2150                         }
2151
2152                         if (image.sections[i].base_address+buf_cnt>max_address)
2153                         {
2154                                 length-=(image.sections[i].base_address+buf_cnt)-max_address;
2155                         }
2156
2157                         if ((retval = target_write_buffer(target, image.sections[i].base_address+offset, length, buffer+offset)) != ERROR_OK)
2158                         {
2159                                 free(buffer);
2160                                 break;
2161                         }
2162                         image_size += length;
2163                         command_print(cmd_ctx, "%u byte written at address 0x%8.8x", length, image.sections[i].base_address+offset);
2164                 }
2165
2166                 free(buffer);
2167         }
2168
2169         if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2170         {
2171                 image_close(&image);
2172                 return retvaltemp;
2173         }
2174
2175         if (retval==ERROR_OK)
2176         {
2177                 command_print(cmd_ctx, "downloaded %u byte in %s", image_size, duration_text);
2178         }
2179         free(duration_text);
2180
2181         image_close(&image);
2182
2183         return retval;
2184
2185 }
2186
2187 static int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2188 {
2189         fileio_t fileio;
2190
2191         u32 address;
2192         u32 size;
2193         u8 buffer[560];
2194         int retval=ERROR_OK, retvaltemp;
2195
2196         duration_t duration;
2197         char *duration_text;
2198
2199         target_t *target = get_current_target(cmd_ctx);
2200
2201         if (argc != 3)
2202         {
2203                 command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
2204                 return ERROR_OK;
2205         }
2206
2207         address = strtoul(args[1], NULL, 0);
2208         size = strtoul(args[2], NULL, 0);
2209
2210         if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2211         {
2212                 return ERROR_OK;
2213         }
2214
2215         duration_start_measure(&duration);
2216
2217         while (size > 0)
2218         {
2219                 u32 size_written;
2220                 u32 this_run_size = (size > 560) ? 560 : size;
2221
2222                 retval = target_read_buffer(target, address, this_run_size, buffer);
2223                 if (retval != ERROR_OK)
2224                 {
2225                         break;
2226                 }
2227
2228                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2229                 if (retval != ERROR_OK)
2230                 {
2231                         break;
2232                 }
2233
2234                 size -= this_run_size;
2235                 address += this_run_size;
2236         }
2237
2238         if((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2239                 return retvaltemp;
2240
2241         if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2242                 return retvaltemp;
2243
2244         if (retval==ERROR_OK)
2245         {
2246                 command_print(cmd_ctx, "dumped %lld byte in %s",
2247                                 fileio.size, duration_text);
2248                 free(duration_text);
2249         }
2250
2251         return retval;
2252 }
2253
2254 static int handle_verify_image_command_internal(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc, int verify)
2255 {
2256         u8 *buffer;
2257         u32 buf_cnt;
2258         u32 image_size;
2259         int i;
2260         int retval, retvaltemp;
2261         u32 checksum = 0;
2262         u32 mem_checksum = 0;
2263
2264         image_t image;
2265
2266         duration_t duration;
2267         char *duration_text;
2268
2269         target_t *target = get_current_target(cmd_ctx);
2270
2271         if (argc < 1)
2272         {
2273                 return ERROR_COMMAND_SYNTAX_ERROR;
2274         }
2275
2276         if (!target)
2277         {
2278                 LOG_ERROR("no target selected");
2279                 return ERROR_FAIL;
2280         }
2281
2282         duration_start_measure(&duration);
2283
2284         if (argc >= 2)
2285         {
2286                 image.base_address_set = 1;
2287                 image.base_address = strtoul(args[1], NULL, 0);
2288         }
2289         else
2290         {
2291                 image.base_address_set = 0;
2292                 image.base_address = 0x0;
2293         }
2294
2295         image.start_address_set = 0;
2296
2297         if ((retval=image_open(&image, args[0], (argc == 3) ? args[2] : NULL)) != ERROR_OK)
2298         {
2299                 return retval;
2300         }
2301
2302         image_size = 0x0;
2303         retval=ERROR_OK;
2304         for (i = 0; i < image.num_sections; i++)
2305         {
2306                 buffer = malloc(image.sections[i].size);
2307                 if (buffer == NULL)
2308                 {
2309                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2310                         break;
2311                 }
2312                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2313                 {
2314                         free(buffer);
2315                         break;
2316                 }
2317
2318                 if (verify)
2319                 {
2320                         /* calculate checksum of image */
2321                         image_calculate_checksum( buffer, buf_cnt, &checksum );
2322
2323                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2324                         if( retval != ERROR_OK )
2325                         {
2326                                 free(buffer);
2327                                 break;
2328                         }
2329
2330                         if( checksum != mem_checksum )
2331                         {
2332                                 /* failed crc checksum, fall back to a binary compare */
2333                                 u8 *data;
2334
2335                                 command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
2336
2337                                 data = (u8*)malloc(buf_cnt);
2338
2339                                 /* Can we use 32bit word accesses? */
2340                                 int size = 1;
2341                                 int count = buf_cnt;
2342                                 if ((count % 4) == 0)
2343                                 {
2344                                         size *= 4;
2345                                         count /= 4;
2346                                 }
2347                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2348                                 if (retval == ERROR_OK)
2349                                 {
2350                                         u32 t;
2351                                         for (t = 0; t < buf_cnt; t++)
2352                                         {
2353                                                 if (data[t] != buffer[t])
2354                                                 {
2355                                                         command_print(cmd_ctx, "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n", t + image.sections[i].base_address, data[t], buffer[t]);
2356                                                         free(data);
2357                                                         free(buffer);
2358                                                         retval=ERROR_FAIL;
2359                                                         goto done;
2360                                                 }
2361                                                 if ((t%16384)==0)
2362                                                 {
2363                                                         keep_alive();
2364                                                 }
2365                                         }
2366                                 }
2367
2368                                 free(data);
2369                         }
2370                 } else
2371                 {
2372                         command_print(cmd_ctx, "address 0x%08x length 0x%08x", image.sections[i].base_address, buf_cnt);
2373                 }
2374
2375                 free(buffer);
2376                 image_size += buf_cnt;
2377         }
2378 done:
2379
2380         if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2381         {
2382                 image_close(&image);
2383                 return retvaltemp;
2384         }
2385
2386         if (retval==ERROR_OK)
2387         {
2388                 command_print(cmd_ctx, "verified %u bytes in %s", image_size, duration_text);
2389         }
2390         free(duration_text);
2391
2392         image_close(&image);
2393
2394         return retval;
2395 }
2396
2397 static int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2398 {
2399         return handle_verify_image_command_internal(cmd_ctx, cmd, args, argc, 1);
2400 }
2401
2402 static int handle_test_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2403 {
2404         return handle_verify_image_command_internal(cmd_ctx, cmd, args, argc, 0);
2405 }
2406
2407 static int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2408 {
2409         int retval;
2410         target_t *target = get_current_target(cmd_ctx);
2411
2412         if (argc == 0)
2413         {
2414                 breakpoint_t *breakpoint = target->breakpoints;
2415
2416                 while (breakpoint)
2417                 {
2418                         if (breakpoint->type == BKPT_SOFT)
2419                         {
2420                                 char* buf = buf_to_str(breakpoint->orig_instr, breakpoint->length, 16);
2421                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i, 0x%s", breakpoint->address, breakpoint->length, breakpoint->set, buf);
2422                                 free(buf);
2423                         }
2424                         else
2425                         {
2426                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i", breakpoint->address, breakpoint->length, breakpoint->set);
2427                         }
2428                         breakpoint = breakpoint->next;
2429                 }
2430         }
2431         else if (argc >= 2)
2432         {
2433                 int hw = BKPT_SOFT;
2434                 u32 length = 0;
2435
2436                 length = strtoul(args[1], NULL, 0);
2437
2438                 if (argc >= 3)
2439                         if (strcmp(args[2], "hw") == 0)
2440                                 hw = BKPT_HARD;
2441
2442                 if ((retval = breakpoint_add(target, strtoul(args[0], NULL, 0), length, hw)) != ERROR_OK)
2443                 {
2444                         LOG_ERROR("Failure setting breakpoints");
2445                 }
2446                 else
2447                 {
2448                         command_print(cmd_ctx, "breakpoint added at address 0x%8.8lx",
2449                                         strtoul(args[0], NULL, 0));
2450                 }
2451         }
2452         else
2453         {
2454                 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
2455         }
2456
2457         return ERROR_OK;
2458 }
2459
2460 static int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2461 {
2462         target_t *target = get_current_target(cmd_ctx);
2463
2464         if (argc > 0)
2465                 breakpoint_remove(target, strtoul(args[0], NULL, 0));
2466
2467         return ERROR_OK;
2468 }
2469
2470 static int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2471 {
2472         target_t *target = get_current_target(cmd_ctx);
2473         int retval;
2474
2475         if (argc == 0)
2476         {
2477                 watchpoint_t *watchpoint = target->watchpoints;
2478
2479                 while (watchpoint)
2480                 {
2481                         command_print(cmd_ctx, "address: 0x%8.8x, len: 0x%8.8x, r/w/a: %i, value: 0x%8.8x, mask: 0x%8.8x", watchpoint->address, watchpoint->length, watchpoint->rw, watchpoint->value, watchpoint->mask);
2482                         watchpoint = watchpoint->next;
2483                 }
2484         }
2485         else if (argc >= 2)
2486         {
2487                 enum watchpoint_rw type = WPT_ACCESS;
2488                 u32 data_value = 0x0;
2489                 u32 data_mask = 0xffffffff;
2490
2491                 if (argc >= 3)
2492                 {
2493                         switch(args[2][0])
2494                         {
2495                                 case 'r':
2496                                         type = WPT_READ;
2497                                         break;
2498                                 case 'w':
2499                                         type = WPT_WRITE;
2500                                         break;
2501                                 case 'a':
2502                                         type = WPT_ACCESS;
2503                                         break;
2504                                 default:
2505                                         command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2506                                         return ERROR_OK;
2507                         }
2508                 }
2509                 if (argc >= 4)
2510                 {
2511                         data_value = strtoul(args[3], NULL, 0);
2512                 }
2513                 if (argc >= 5)
2514                 {
2515                         data_mask = strtoul(args[4], NULL, 0);
2516                 }
2517
2518                 if ((retval = watchpoint_add(target, strtoul(args[0], NULL, 0),
2519                                 strtoul(args[1], NULL, 0), type, data_value, data_mask)) != ERROR_OK)
2520                 {
2521                         LOG_ERROR("Failure setting breakpoints");
2522                 }
2523         }
2524         else
2525         {
2526                 command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2527         }
2528
2529         return ERROR_OK;
2530 }
2531
2532 static int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2533 {
2534         target_t *target = get_current_target(cmd_ctx);
2535
2536         if (argc > 0)
2537                 watchpoint_remove(target, strtoul(args[0], NULL, 0));
2538
2539         return ERROR_OK;
2540 }
2541
2542 static int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc)
2543 {
2544         int retval;
2545         target_t *target = get_current_target(cmd_ctx);
2546         u32 va;
2547         u32 pa;
2548
2549         if (argc != 1)
2550         {
2551                 return ERROR_COMMAND_SYNTAX_ERROR;
2552         }
2553         va = strtoul(args[0], NULL, 0);
2554
2555         retval = target->type->virt2phys(target, va, &pa);
2556         if (retval == ERROR_OK)
2557         {
2558                 command_print(cmd_ctx, "Physical address 0x%08x", pa);
2559         }
2560         else
2561         {
2562                 /* lower levels will have logged a detailed error which is
2563                  * forwarded to telnet/GDB session.
2564                  */
2565         }
2566         return retval;
2567 }
2568
2569 static void writeData(FILE *f, const void *data, size_t len)
2570 {
2571         size_t written = fwrite(data, len, 1, f);
2572         if (written != len)
2573                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
2574 }
2575
2576 static void writeLong(FILE *f, int l)
2577 {
2578         int i;
2579         for (i=0; i<4; i++)
2580         {
2581                 char c=(l>>(i*8))&0xff;
2582                 writeData(f, &c, 1);
2583         }
2584
2585 }
2586
2587 static void writeString(FILE *f, char *s)
2588 {
2589         writeData(f, s, strlen(s));
2590 }
2591
2592 /* Dump a gmon.out histogram file. */
2593 static void writeGmon(u32 *samples, u32 sampleNum, char *filename)
2594 {
2595         u32 i;
2596         FILE *f=fopen(filename, "w");
2597         if (f==NULL)
2598                 return;
2599         writeString(f, "gmon");
2600         writeLong(f, 0x00000001); /* Version */
2601         writeLong(f, 0); /* padding */
2602         writeLong(f, 0); /* padding */
2603         writeLong(f, 0); /* padding */
2604
2605         u8 zero = 0;  /* GMON_TAG_TIME_HIST */
2606         writeData(f, &zero, 1);
2607
2608         /* figure out bucket size */
2609         u32 min=samples[0];
2610         u32 max=samples[0];
2611         for (i=0; i<sampleNum; i++)
2612         {
2613                 if (min>samples[i])
2614                 {
2615                         min=samples[i];
2616                 }
2617                 if (max<samples[i])
2618                 {
2619                         max=samples[i];
2620                 }
2621         }
2622
2623         int addressSpace=(max-min+1);
2624
2625         static const u32 maxBuckets = 256 * 1024; /* maximum buckets. */
2626         u32 length = addressSpace;
2627         if (length > maxBuckets)
2628         {
2629                 length=maxBuckets;
2630         }
2631         int *buckets=malloc(sizeof(int)*length);
2632         if (buckets==NULL)
2633         {
2634                 fclose(f);
2635                 return;
2636         }
2637         memset(buckets, 0, sizeof(int)*length);
2638         for (i=0; i<sampleNum;i++)
2639         {
2640                 u32 address=samples[i];
2641                 long long a=address-min;
2642                 long long b=length-1;
2643                 long long c=addressSpace-1;
2644                 int index=(a*b)/c; /* danger!!!! int32 overflows */
2645                 buckets[index]++;
2646         }
2647
2648         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
2649         writeLong(f, min);                      /* low_pc */
2650         writeLong(f, max);                      /* high_pc */
2651         writeLong(f, length);           /* # of samples */
2652         writeLong(f, 64000000);         /* 64MHz */
2653         writeString(f, "seconds");
2654         for (i=0; i<(15-strlen("seconds")); i++)
2655                 writeData(f, &zero, 1);
2656         writeString(f, "s");
2657
2658         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
2659
2660         char *data=malloc(2*length);
2661         if (data!=NULL)
2662         {
2663                 for (i=0; i<length;i++)
2664                 {
2665                         int val;
2666                         val=buckets[i];
2667                         if (val>65535)
2668                         {
2669                                 val=65535;
2670                         }
2671                         data[i*2]=val&0xff;
2672                         data[i*2+1]=(val>>8)&0xff;
2673                 }
2674                 free(buckets);
2675                 writeData(f, data, length * 2);
2676                 free(data);
2677         } else
2678         {
2679                 free(buckets);
2680         }
2681
2682         fclose(f);
2683 }
2684
2685 /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
2686 static int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2687 {
2688         target_t *target = get_current_target(cmd_ctx);
2689         struct timeval timeout, now;
2690
2691         gettimeofday(&timeout, NULL);
2692         if (argc!=2)
2693         {
2694                 return ERROR_COMMAND_SYNTAX_ERROR;
2695         }
2696         char *end;
2697         timeval_add_time(&timeout, strtoul(args[0], &end, 0), 0);
2698         if (*end)
2699         {
2700                 return ERROR_OK;
2701         }
2702
2703         command_print(cmd_ctx, "Starting profiling. Halting and resuming the target as often as we can...");
2704
2705         static const int maxSample=10000;
2706         u32 *samples=malloc(sizeof(u32)*maxSample);
2707         if (samples==NULL)
2708                 return ERROR_OK;
2709
2710         int numSamples=0;
2711         int retval=ERROR_OK;
2712         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2713         reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1);
2714
2715         for (;;)
2716         {
2717                 target_poll(target);
2718                 if (target->state == TARGET_HALTED)
2719                 {
2720                         u32 t=*((u32 *)reg->value);
2721                         samples[numSamples++]=t;
2722                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2723                         target_poll(target);
2724                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2725                 } else if (target->state == TARGET_RUNNING)
2726                 {
2727                         /* We want to quickly sample the PC. */
2728                         if((retval = target_halt(target)) != ERROR_OK)
2729                         {
2730                                 free(samples);
2731                                 return retval;
2732                         }
2733                 } else
2734                 {
2735                         command_print(cmd_ctx, "Target not halted or running");
2736                         retval=ERROR_OK;
2737                         break;
2738                 }
2739                 if (retval!=ERROR_OK)
2740                 {
2741                         break;
2742                 }
2743
2744                 gettimeofday(&now, NULL);
2745                 if ((numSamples>=maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
2746                 {
2747                         command_print(cmd_ctx, "Profiling completed. %d samples.", numSamples);
2748                         if((retval = target_poll(target)) != ERROR_OK)
2749                         {
2750                                 free(samples);
2751                                 return retval;
2752                         }
2753                         if (target->state == TARGET_HALTED)
2754                         {
2755                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2756                         }
2757                         if((retval = target_poll(target)) != ERROR_OK)
2758                         {
2759                                 free(samples);
2760                                 return retval;
2761                         }
2762                         writeGmon(samples, numSamples, args[1]);
2763                         command_print(cmd_ctx, "Wrote %s", args[1]);
2764                         break;
2765                 }
2766         }
2767         free(samples);
2768
2769         return ERROR_OK;
2770 }
2771
2772 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 val)
2773 {
2774         char *namebuf;
2775         Jim_Obj *nameObjPtr, *valObjPtr;
2776         int result;
2777
2778         namebuf = alloc_printf("%s(%d)", varname, idx);
2779         if (!namebuf)
2780                 return JIM_ERR;
2781
2782         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
2783         valObjPtr = Jim_NewIntObj(interp, val);
2784         if (!nameObjPtr || !valObjPtr)
2785         {
2786                 free(namebuf);
2787                 return JIM_ERR;
2788         }
2789
2790         Jim_IncrRefCount(nameObjPtr);
2791         Jim_IncrRefCount(valObjPtr);
2792         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
2793         Jim_DecrRefCount(interp, nameObjPtr);
2794         Jim_DecrRefCount(interp, valObjPtr);
2795         free(namebuf);
2796         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
2797         return result;
2798 }
2799
2800 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
2801 {
2802         command_context_t *context;
2803         target_t *target;
2804
2805         context = Jim_GetAssocData(interp, "context");
2806         if (context == NULL)
2807         {
2808                 LOG_ERROR("mem2array: no command context");
2809                 return JIM_ERR;
2810         }
2811         target = get_current_target(context);
2812         if (target == NULL)
2813         {
2814                 LOG_ERROR("mem2array: no current target");
2815                 return JIM_ERR;
2816         }
2817
2818         return  target_mem2array(interp, target, argc-1, argv+1);
2819 }
2820
2821 static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv)
2822 {
2823         long l;
2824         u32 width;
2825         int len;
2826         u32 addr;
2827         u32 count;
2828         u32 v;
2829         const char *varname;
2830         u8 buffer[4096];
2831         int  n, e, retval;
2832         u32 i;
2833
2834         /* argv[1] = name of array to receive the data
2835          * argv[2] = desired width
2836          * argv[3] = memory address
2837          * argv[4] = count of times to read
2838          */
2839         if (argc != 4) {
2840                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
2841                 return JIM_ERR;
2842         }
2843         varname = Jim_GetString(argv[0], &len);
2844         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
2845
2846         e = Jim_GetLong(interp, argv[1], &l);
2847         width = l;
2848         if (e != JIM_OK) {
2849                 return e;
2850         }
2851
2852         e = Jim_GetLong(interp, argv[2], &l);
2853         addr = l;
2854         if (e != JIM_OK) {
2855                 return e;
2856         }
2857         e = Jim_GetLong(interp, argv[3], &l);
2858         len = l;
2859         if (e != JIM_OK) {
2860                 return e;
2861         }
2862         switch (width) {
2863                 case 8:
2864                         width = 1;
2865                         break;
2866                 case 16:
2867                         width = 2;
2868                         break;
2869                 case 32:
2870                         width = 4;
2871                         break;
2872                 default:
2873                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2874                         Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
2875                         return JIM_ERR;
2876         }
2877         if (len == 0) {
2878                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2879                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
2880                 return JIM_ERR;
2881         }
2882         if ((addr + (len * width)) < addr) {
2883                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2884                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
2885                 return JIM_ERR;
2886         }
2887         /* absurd transfer size? */
2888         if (len > 65536) {
2889                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2890                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
2891                 return JIM_ERR;
2892         }
2893
2894         if ((width == 1) ||
2895                 ((width == 2) && ((addr & 1) == 0)) ||
2896                 ((width == 4) && ((addr & 3) == 0))) {
2897                 /* all is well */
2898         } else {
2899                 char buf[100];
2900                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2901                 sprintf(buf, "mem2array address: 0x%08x is not aligned for %d byte reads", addr, width);
2902                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
2903                 return JIM_ERR;
2904         }
2905
2906         /* Transfer loop */
2907
2908         /* index counter */
2909         n = 0;
2910         /* assume ok */
2911         e = JIM_OK;
2912         while (len) {
2913                 /* Slurp... in buffer size chunks */
2914
2915                 count = len; /* in objects.. */
2916                 if (count > (sizeof(buffer)/width)) {
2917                         count = (sizeof(buffer)/width);
2918                 }
2919
2920                 retval = target_read_memory( target, addr, width, count, buffer );
2921                 if (retval != ERROR_OK) {
2922                         /* BOO !*/
2923                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
2924                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2925                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
2926                         e = JIM_ERR;
2927                         len = 0;
2928                 } else {
2929                         v = 0; /* shut up gcc */
2930                         for (i = 0 ;i < count ;i++, n++) {
2931                                 switch (width) {
2932                                         case 4:
2933                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
2934                                                 break;
2935                                         case 2:
2936                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
2937                                                 break;
2938                                         case 1:
2939                                                 v = buffer[i] & 0x0ff;
2940                                                 break;
2941                                 }
2942                                 new_int_array_element(interp, varname, n, v);
2943                         }
2944                         len -= count;
2945                 }
2946         }
2947
2948         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2949
2950         return JIM_OK;
2951 }
2952
2953 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 *val)
2954 {
2955         char *namebuf;
2956         Jim_Obj *nameObjPtr, *valObjPtr;
2957         int result;
2958         long l;
2959
2960         namebuf = alloc_printf("%s(%d)", varname, idx);
2961         if (!namebuf)
2962                 return JIM_ERR;
2963
2964         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
2965         if (!nameObjPtr)
2966         {
2967                 free(namebuf);
2968                 return JIM_ERR;
2969         }
2970
2971         Jim_IncrRefCount(nameObjPtr);
2972         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
2973         Jim_DecrRefCount(interp, nameObjPtr);
2974         free(namebuf);
2975         if (valObjPtr == NULL)
2976                 return JIM_ERR;
2977
2978         result = Jim_GetLong(interp, valObjPtr, &l);
2979         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
2980         *val = l;
2981         return result;
2982 }
2983
2984 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
2985 {
2986         command_context_t *context;
2987         target_t *target;
2988
2989         context = Jim_GetAssocData(interp, "context");
2990         if (context == NULL){
2991                 LOG_ERROR("array2mem: no command context");
2992                 return JIM_ERR;
2993         }
2994         target = get_current_target(context);
2995         if (target == NULL){
2996                 LOG_ERROR("array2mem: no current target");
2997                 return JIM_ERR;
2998         }
2999
3000         return target_array2mem( interp,target, argc-1, argv+1 );
3001 }
3002
3003 static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv)
3004 {
3005         long l;
3006         u32 width;
3007         int len;
3008         u32 addr;
3009         u32 count;
3010         u32 v;
3011         const char *varname;
3012         u8 buffer[4096];
3013         int  n, e, retval;
3014         u32 i;
3015
3016         /* argv[1] = name of array to get the data
3017          * argv[2] = desired width
3018          * argv[3] = memory address
3019          * argv[4] = count to write
3020          */
3021         if (argc != 4) {
3022                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3023                 return JIM_ERR;
3024         }
3025         varname = Jim_GetString(argv[0], &len);
3026         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3027
3028         e = Jim_GetLong(interp, argv[1], &l);
3029         width = l;
3030         if (e != JIM_OK) {
3031                 return e;
3032         }
3033
3034         e = Jim_GetLong(interp, argv[2], &l);
3035         addr = l;
3036         if (e != JIM_OK) {
3037                 return e;
3038         }
3039         e = Jim_GetLong(interp, argv[3], &l);
3040         len = l;
3041         if (e != JIM_OK) {
3042                 return e;
3043         }
3044         switch (width) {
3045                 case 8:
3046                         width = 1;
3047                         break;
3048                 case 16:
3049                         width = 2;
3050                         break;
3051                 case 32:
3052                         width = 4;
3053                         break;
3054                 default:
3055                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3056                         Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
3057                         return JIM_ERR;
3058         }
3059         if (len == 0) {
3060                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3061                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
3062                 return JIM_ERR;
3063         }
3064         if ((addr + (len * width)) < addr) {
3065                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3066                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
3067                 return JIM_ERR;
3068         }
3069         /* absurd transfer size? */
3070         if (len > 65536) {
3071                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3072                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
3073                 return JIM_ERR;
3074         }
3075
3076         if ((width == 1) ||
3077                 ((width == 2) && ((addr & 1) == 0)) ||
3078                 ((width == 4) && ((addr & 3) == 0))) {
3079                 /* all is well */
3080         } else {
3081                 char buf[100];
3082                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3083                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads", addr, width);
3084                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3085                 return JIM_ERR;
3086         }
3087
3088         /* Transfer loop */
3089
3090         /* index counter */
3091         n = 0;
3092         /* assume ok */
3093         e = JIM_OK;
3094         while (len) {
3095                 /* Slurp... in buffer size chunks */
3096
3097                 count = len; /* in objects.. */
3098                 if (count > (sizeof(buffer)/width)) {
3099                         count = (sizeof(buffer)/width);
3100                 }
3101
3102                 v = 0; /* shut up gcc */
3103                 for (i = 0 ;i < count ;i++, n++) {
3104                         get_int_array_element(interp, varname, n, &v);
3105                         switch (width) {
3106                         case 4:
3107                                 target_buffer_set_u32(target, &buffer[i*width], v);
3108                                 break;
3109                         case 2:
3110                                 target_buffer_set_u16(target, &buffer[i*width], v);
3111                                 break;
3112                         case 1:
3113                                 buffer[i] = v & 0x0ff;
3114                                 break;
3115                         }
3116                 }
3117                 len -= count;
3118
3119                 retval = target_write_memory(target, addr, width, count, buffer);
3120                 if (retval != ERROR_OK) {
3121                         /* BOO !*/
3122                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
3123                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3124                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3125                         e = JIM_ERR;
3126                         len = 0;
3127                 }
3128         }
3129
3130         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3131
3132         return JIM_OK;
3133 }
3134
3135 void target_all_handle_event( enum target_event e )
3136 {
3137         target_t *target;
3138
3139         LOG_DEBUG( "**all*targets: event: %d, %s",
3140                         e,
3141                         Jim_Nvp_value2name_simple( nvp_target_event, e )->name );
3142
3143         target = all_targets;
3144         while (target){
3145                 target_handle_event( target, e );
3146                 target = target->next;
3147         }
3148 }
3149
3150 void target_handle_event( target_t *target, enum target_event e )
3151 {
3152         target_event_action_t *teap;
3153         int done;
3154
3155         teap = target->event_action;
3156
3157         done = 0;
3158         while( teap ){
3159                 if( teap->event == e ){
3160                         done = 1;
3161                         LOG_DEBUG( "target: (%d) %s (%s) event: %d (%s) action: %s\n",
3162                                            target->target_number,
3163                                            target->cmd_name,
3164                                            target_get_name(target),
3165                                            e,
3166                                            Jim_Nvp_value2name_simple( nvp_target_event, e )->name,
3167                                            Jim_GetString( teap->body, NULL ) );
3168                         if (Jim_EvalObj( interp, teap->body )!=JIM_OK)
3169                         {
3170                                 Jim_PrintErrorMessage(interp);
3171                         }
3172                 }
3173                 teap = teap->next;
3174         }
3175         if( !done ){
3176                 LOG_DEBUG( "event: %d %s - no action",
3177                                    e,
3178                                    Jim_Nvp_value2name_simple( nvp_target_event, e )->name );
3179         }
3180 }
3181
3182 enum target_cfg_param {
3183         TCFG_TYPE,
3184         TCFG_EVENT,
3185         TCFG_WORK_AREA_VIRT,
3186         TCFG_WORK_AREA_PHYS,
3187         TCFG_WORK_AREA_SIZE,
3188         TCFG_WORK_AREA_BACKUP,
3189         TCFG_ENDIAN,
3190         TCFG_VARIANT,
3191         TCFG_CHAIN_POSITION,
3192 };
3193
3194 static Jim_Nvp nvp_config_opts[] = {
3195         { .name = "-type",             .value = TCFG_TYPE },
3196         { .name = "-event",            .value = TCFG_EVENT },
3197         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
3198         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
3199         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
3200         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3201         { .name = "-endian" ,          .value = TCFG_ENDIAN },
3202         { .name = "-variant",          .value = TCFG_VARIANT },
3203         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
3204
3205         { .name = NULL, .value = -1 }
3206 };
3207
3208 static int target_configure( Jim_GetOptInfo *goi, target_t *target )
3209 {
3210         Jim_Nvp *n;
3211         Jim_Obj *o;
3212         jim_wide w;
3213         char *cp;
3214         int e;
3215
3216         /* parse config or cget options ... */
3217         while( goi->argc > 0 ){
3218                 Jim_SetEmptyResult( goi->interp );
3219                 /* Jim_GetOpt_Debug( goi ); */
3220
3221                 if( target->type->target_jim_configure ){
3222                         /* target defines a configure function */
3223                         /* target gets first dibs on parameters */
3224                         e = (*(target->type->target_jim_configure))( target, goi );
3225                         if( e == JIM_OK ){
3226                                 /* more? */
3227                                 continue;
3228                         }
3229                         if( e == JIM_ERR ){
3230                                 /* An error */
3231                                 return e;
3232                         }
3233                         /* otherwise we 'continue' below */
3234                 }
3235                 e = Jim_GetOpt_Nvp( goi, nvp_config_opts, &n );
3236                 if( e != JIM_OK ){
3237                         Jim_GetOpt_NvpUnknown( goi, nvp_config_opts, 0 );
3238                         return e;
3239                 }
3240                 switch( n->value ){
3241                 case TCFG_TYPE:
3242                         /* not setable */
3243                         if( goi->isconfigure ){
3244                                 Jim_SetResult_sprintf( goi->interp, "not setable: %s", n->name );
3245                                 return JIM_ERR;
3246                         } else {
3247                         no_params:
3248                                 if( goi->argc != 0 ){
3249                                         Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "NO PARAMS");
3250                                         return JIM_ERR;
3251                                 }
3252                         }
3253                         Jim_SetResultString( goi->interp, target_get_name(target), -1 );
3254                         /* loop for more */
3255                         break;
3256                 case TCFG_EVENT:
3257                         if( goi->argc == 0 ){
3258                                 Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
3259                                 return JIM_ERR;
3260                         }
3261
3262                         e = Jim_GetOpt_Nvp( goi, nvp_target_event, &n );
3263                         if( e != JIM_OK ){
3264                                 Jim_GetOpt_NvpUnknown( goi, nvp_target_event, 1 );
3265                                 return e;
3266                         }
3267
3268                         if( goi->isconfigure ){
3269                                 if( goi->argc != 1 ){
3270                                         Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
3271                                         return JIM_ERR;
3272                                 }
3273                         } else {
3274                                 if( goi->argc != 0 ){
3275                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
3276                                         return JIM_ERR;
3277                                 }
3278                         }
3279
3280                         {
3281                                 target_event_action_t *teap;
3282
3283                                 teap = target->event_action;
3284                                 /* replace existing? */
3285                                 while( teap ){
3286                                         if( teap->event == (enum target_event)n->value ){
3287                                                 break;
3288                                         }
3289                                         teap = teap->next;
3290                                 }
3291
3292                                 if( goi->isconfigure ){
3293                                         if( teap == NULL ){
3294                                                 /* create new */
3295                                                 teap = calloc( 1, sizeof(*teap) );
3296                                         }
3297                                         teap->event = n->value;
3298                                         Jim_GetOpt_Obj( goi, &o );
3299                                         if( teap->body ){
3300                                                 Jim_DecrRefCount( interp, teap->body );
3301                                         }
3302                                         teap->body  = Jim_DuplicateObj( goi->interp, o );
3303                                         /*
3304                                          * FIXME:
3305                                          *     Tcl/TK - "tk events" have a nice feature.
3306                                          *     See the "BIND" command.
3307                                          *    We should support that here.
3308                                          *     You can specify %X and %Y in the event code.
3309                                          *     The idea is: %T - target name.
3310                                          *     The idea is: %N - target number
3311                                          *     The idea is: %E - event name.
3312                                          */
3313                                         Jim_IncrRefCount( teap->body );
3314
3315                                         /* add to head of event list */
3316                                         teap->next = target->event_action;
3317                                         target->event_action = teap;
3318                                         Jim_SetEmptyResult(goi->interp);
3319                                 } else {
3320                                         /* get */
3321                                         if( teap == NULL ){
3322                                                 Jim_SetEmptyResult( goi->interp );
3323                                         } else {
3324                                                 Jim_SetResult( goi->interp, Jim_DuplicateObj( goi->interp, teap->body ) );
3325                                         }
3326                                 }
3327                         }
3328                         /* loop for more */
3329                         break;
3330
3331                 case TCFG_WORK_AREA_VIRT:
3332                         if( goi->isconfigure ){
3333                                 target_free_all_working_areas(target);
3334                                 e = Jim_GetOpt_Wide( goi, &w );
3335                                 if( e != JIM_OK ){
3336                                         return e;
3337                                 }
3338                                 target->working_area_virt = w;
3339                         } else {
3340                                 if( goi->argc != 0 ){
3341                                         goto no_params;
3342                                 }
3343                         }
3344                         Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_virt ) );
3345                         /* loop for more */
3346                         break;
3347
3348                 case TCFG_WORK_AREA_PHYS:
3349                         if( goi->isconfigure ){
3350                                 target_free_all_working_areas(target);
3351                                 e = Jim_GetOpt_Wide( goi, &w );
3352                                 if( e != JIM_OK ){
3353                                         return e;
3354                                 }
3355                                 target->working_area_phys = w;
3356                         } else {
3357                                 if( goi->argc != 0 ){
3358                                         goto no_params;
3359                                 }
3360                         }
3361                         Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_phys ) );
3362                         /* loop for more */
3363                         break;
3364
3365                 case TCFG_WORK_AREA_SIZE:
3366                         if( goi->isconfigure ){
3367                                 target_free_all_working_areas(target);
3368                                 e = Jim_GetOpt_Wide( goi, &w );
3369                                 if( e != JIM_OK ){
3370                                         return e;
3371                                 }
3372                                 target->working_area_size = w;
3373                         } else {
3374                                 if( goi->argc != 0 ){
3375                                         goto no_params;
3376                                 }
3377                         }
3378                         Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_size ) );
3379                         /* loop for more */
3380                         break;
3381
3382                 case TCFG_WORK_AREA_BACKUP:
3383                         if( goi->isconfigure ){
3384                                 target_free_all_working_areas(target);
3385                                 e = Jim_GetOpt_Wide( goi, &w );
3386                                 if( e != JIM_OK ){
3387                                         return e;
3388                                 }
3389                                 /* make this exactly 1 or 0 */
3390                                 target->backup_working_area = (!!w);
3391                         } else {
3392                                 if( goi->argc != 0 ){
3393                                         goto no_params;
3394                                 }
3395                         }
3396                         Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_size ) );
3397                         /* loop for more e*/
3398                         break;
3399
3400                 case TCFG_ENDIAN:
3401                         if( goi->isconfigure ){
3402                                 e = Jim_GetOpt_Nvp( goi, nvp_target_endian, &n );
3403                                 if( e != JIM_OK ){
3404                                         Jim_GetOpt_NvpUnknown( goi, nvp_target_endian, 1 );
3405                                         return e;
3406                                 }
3407                                 target->endianness = n->value;
3408                         } else {
3409                                 if( goi->argc != 0 ){
3410                                         goto no_params;
3411                                 }
3412                         }
3413                         n = Jim_Nvp_value2name_simple( nvp_target_endian, target->endianness );
3414                         if( n->name == NULL ){
3415                                 target->endianness = TARGET_LITTLE_ENDIAN;
3416                                 n = Jim_Nvp_value2name_simple( nvp_target_endian, target->endianness );
3417                         }
3418                         Jim_SetResultString( goi->interp, n->name, -1 );
3419                         /* loop for more */
3420                         break;
3421
3422                 case TCFG_VARIANT:
3423                         if( goi->isconfigure ){
3424                                 if( goi->argc < 1 ){
3425                                         Jim_SetResult_sprintf( goi->interp,
3426                                                                                    "%s ?STRING?",
3427                                                                                    n->name );
3428                                         return JIM_ERR;
3429                                 }
3430                                 if( target->variant ){
3431                                         free((void *)(target->variant));
3432                                 }
3433                                 e = Jim_GetOpt_String( goi, &cp, NULL );
3434                                 target->variant = strdup(cp);
3435                         } else {
3436                                 if( goi->argc != 0 ){
3437                                         goto no_params;
3438                                 }
3439                         }
3440                         Jim_SetResultString( goi->interp, target->variant,-1 );
3441                         /* loop for more */
3442                         break;
3443                 case TCFG_CHAIN_POSITION:
3444                         if( goi->isconfigure ){
3445                                 Jim_Obj *o;
3446                                 jtag_tap_t *tap;
3447                                 target_free_all_working_areas(target);
3448                                 e = Jim_GetOpt_Obj( goi, &o );
3449                                 if( e != JIM_OK ){
3450                                         return e;
3451                                 }
3452                                 tap = jtag_TapByJimObj( goi->interp, o );
3453                                 if( tap == NULL ){
3454                                         return JIM_ERR;
3455                                 }
3456                                 /* make this exactly 1 or 0 */
3457                                 target->tap = tap;
3458                         } else {
3459                                 if( goi->argc != 0 ){
3460                                         goto no_params;
3461                                 }
3462                         }
3463                         Jim_SetResultString( interp, target->tap->dotted_name, -1 );
3464                         /* loop for more e*/
3465                         break;
3466                 }
3467         } /* while( goi->argc ) */
3468
3469
3470                 /* done - we return */
3471         return JIM_OK;
3472 }
3473
3474 /** this is the 'tcl' handler for the target specific command */
3475 static int tcl_target_func( Jim_Interp *interp, int argc, Jim_Obj *const *argv )
3476 {
3477         Jim_GetOptInfo goi;
3478         jim_wide a,b,c;
3479         int x,y,z;
3480         u8  target_buf[32];
3481         Jim_Nvp *n;
3482         target_t *target;
3483         struct command_context_s *cmd_ctx;
3484         int e;
3485
3486         enum {
3487                 TS_CMD_CONFIGURE,
3488                 TS_CMD_CGET,
3489
3490                 TS_CMD_MWW, TS_CMD_MWH, TS_CMD_MWB,
3491                 TS_CMD_MDW, TS_CMD_MDH, TS_CMD_MDB,
3492                 TS_CMD_MRW, TS_CMD_MRH, TS_CMD_MRB,
3493                 TS_CMD_MEM2ARRAY, TS_CMD_ARRAY2MEM,
3494                 TS_CMD_EXAMINE,
3495                 TS_CMD_POLL,
3496                 TS_CMD_RESET,
3497                 TS_CMD_HALT,
3498                 TS_CMD_WAITSTATE,
3499                 TS_CMD_EVENTLIST,
3500                 TS_CMD_CURSTATE,
3501                 TS_CMD_INVOKE_EVENT,
3502         };
3503
3504         static const Jim_Nvp target_options[] = {
3505                 { .name = "configure", .value = TS_CMD_CONFIGURE },
3506                 { .name = "cget", .value = TS_CMD_CGET },
3507                 { .name = "mww", .value = TS_CMD_MWW },
3508                 { .name = "mwh", .value = TS_CMD_MWH },
3509                 { .name = "mwb", .value = TS_CMD_MWB },
3510                 { .name = "mdw", .value = TS_CMD_MDW },
3511                 { .name = "mdh", .value = TS_CMD_MDH },
3512                 { .name = "mdb", .value = TS_CMD_MDB },
3513                 { .name = "mem2array", .value = TS_CMD_MEM2ARRAY },
3514                 { .name = "array2mem", .value = TS_CMD_ARRAY2MEM },
3515                 { .name = "eventlist", .value = TS_CMD_EVENTLIST },
3516                 { .name = "curstate",  .value = TS_CMD_CURSTATE },
3517
3518                 { .name = "arp_examine", .value = TS_CMD_EXAMINE },
3519                 { .name = "arp_poll", .value = TS_CMD_POLL },
3520                 { .name = "arp_reset", .value = TS_CMD_RESET },
3521                 { .name = "arp_halt", .value = TS_CMD_HALT },
3522                 { .name = "arp_waitstate", .value = TS_CMD_WAITSTATE },
3523                 { .name = "invoke-event", .value = TS_CMD_INVOKE_EVENT },
3524
3525                 { .name = NULL, .value = -1 },
3526         };
3527
3528         /* go past the "command" */
3529         Jim_GetOpt_Setup( &goi, interp, argc-1, argv+1 );
3530
3531         target = Jim_CmdPrivData( goi.interp );
3532         cmd_ctx = Jim_GetAssocData(goi.interp, "context");
3533
3534         /* commands here are in an NVP table */
3535         e = Jim_GetOpt_Nvp( &goi, target_options, &n );
3536         if( e != JIM_OK ){
3537                 Jim_GetOpt_NvpUnknown( &goi, target_options, 0 );
3538                 return e;
3539         }
3540         /* Assume blank result */
3541         Jim_SetEmptyResult( goi.interp );
3542
3543         switch( n->value ){
3544         case TS_CMD_CONFIGURE:
3545                 if( goi.argc < 2 ){
3546                         Jim_WrongNumArgs( goi.interp, goi.argc, goi.argv, "missing: -option VALUE ...");
3547                         return JIM_ERR;
3548                 }
3549                 goi.isconfigure = 1;
3550                 return target_configure( &goi, target );
3551         case TS_CMD_CGET:
3552                 // some things take params
3553                 if( goi.argc < 1 ){
3554                         Jim_WrongNumArgs( goi.interp, 0, goi.argv, "missing: ?-option?");
3555                         return JIM_ERR;
3556                 }
3557                 goi.isconfigure = 0;
3558                 return target_configure( &goi, target );
3559                 break;
3560         case TS_CMD_MWW:
3561         case TS_CMD_MWH:
3562         case TS_CMD_MWB:
3563                 /* argv[0] = cmd
3564                  * argv[1] = address
3565                  * argv[2] = data
3566                  * argv[3] = optional count.
3567                  */
3568
3569                 if( (goi.argc == 3) || (goi.argc == 4) ){
3570                         /* all is well */
3571                 } else {
3572                 mwx_error:
3573                         Jim_SetResult_sprintf( goi.interp, "expected: %s ADDR DATA [COUNT]", n->name );
3574                         return JIM_ERR;
3575                 }
3576
3577                 e = Jim_GetOpt_Wide( &goi, &a );
3578                 if( e != JIM_OK ){
3579                         goto mwx_error;
3580                 }
3581
3582                 e = Jim_GetOpt_Wide( &goi, &b );
3583                 if( e != JIM_OK ){
3584                         goto mwx_error;
3585                 }
3586                 if( goi.argc ){
3587                         e = Jim_GetOpt_Wide( &goi, &c );
3588                         if( e != JIM_OK ){
3589                                 goto mwx_error;
3590                         }
3591                 } else {
3592                         c = 1;
3593                 }
3594
3595                 switch( n->value ){
3596                 case TS_CMD_MWW:
3597                         target_buffer_set_u32( target, target_buf, b );
3598                         b = 4;
3599                         break;
3600                 case TS_CMD_MWH:
3601                         target_buffer_set_u16( target, target_buf, b );
3602                         b = 2;
3603                         break;
3604                 case TS_CMD_MWB:
3605                         target_buffer_set_u8( target, target_buf, b );
3606                         b = 1;
3607                         break;
3608                 }
3609                 for( x = 0 ; x < c ; x++ ){
3610                         e = target_write_memory( target, a, b, 1, target_buf );
3611                         if( e != ERROR_OK ){
3612                                 Jim_SetResult_sprintf( interp, "Error writing @ 0x%08x: %d\n", (int)(a), e );
3613                                 return JIM_ERR;
3614                         }
3615                         /* b = width */
3616                         a = a + b;
3617                 }
3618                 return JIM_OK;
3619                 break;
3620
3621                 /* display */
3622         case TS_CMD_MDW:
3623         case TS_CMD_MDH:
3624         case TS_CMD_MDB:
3625                 /* argv[0] = command
3626                  * argv[1] = address
3627                  * argv[2] = optional count
3628                  */
3629                 if( (goi.argc == 2) || (goi.argc == 3) ){
3630                         Jim_SetResult_sprintf( goi.interp, "expected: %s ADDR [COUNT]", n->name );
3631                         return JIM_ERR;
3632                 }
3633                 e = Jim_GetOpt_Wide( &goi, &a );
3634                 if( e != JIM_OK ){
3635                         return JIM_ERR;
3636                 }
3637                 if( goi.argc ){
3638                         e = Jim_GetOpt_Wide( &goi, &c );
3639                         if( e != JIM_OK ){
3640                                 return JIM_ERR;
3641                         }
3642                 } else {
3643                         c = 1;
3644                 }
3645                 b = 1; /* shut up gcc */
3646                 switch( n->value ){
3647                 case TS_CMD_MDW:
3648                         b =  4;
3649                         break;
3650                 case TS_CMD_MDH:
3651                         b = 2;
3652                         break;
3653                 case TS_CMD_MDB:
3654                         b = 1;
3655                         break;
3656                 }
3657
3658                 /* convert to "bytes" */
3659                 c = c * b;
3660                 /* count is now in 'BYTES' */
3661                 while( c > 0 ){
3662                         y = c;
3663                         if( y > 16 ){
3664                                 y = 16;
3665                         }
3666                         e = target_read_memory( target, a, b, y / b, target_buf );
3667                         if( e != ERROR_OK ){
3668                                 Jim_SetResult_sprintf( interp, "error reading target @ 0x%08lx", (int)(a) );
3669                                 return JIM_ERR;
3670                         }
3671
3672                         Jim_fprintf( interp, interp->cookie_stdout, "0x%08x ", (int)(a) );
3673                         switch( b ){
3674                         case 4:
3675                                 for( x = 0 ; (x < 16) && (x < y) ; x += 4 ){
3676                                         z = target_buffer_get_u32( target, &(target_buf[ x * 4 ]) );
3677                                         Jim_fprintf( interp, interp->cookie_stdout, "%08x ", (int)(z) );
3678                                 }
3679                                 for( ; (x < 16) ; x += 4 ){
3680                                         Jim_fprintf( interp, interp->cookie_stdout, "         " );
3681                                 }
3682                                 break;
3683                         case 2:
3684                                 for( x = 0 ; (x < 16) && (x < y) ; x += 2 ){
3685                                         z = target_buffer_get_u16( target, &(target_buf[ x * 2 ]) );
3686                                         Jim_fprintf( interp, interp->cookie_stdout, "%04x ", (int)(z) );
3687                                 }
3688                                 for( ; (x < 16) ; x += 2 ){
3689                                         Jim_fprintf( interp, interp->cookie_stdout, "     " );
3690                                 }
3691                                 break;
3692                         case 1:
3693                         default:
3694                                 for( x = 0 ; (x < 16) && (x < y) ; x += 1 ){
3695                                         z = target_buffer_get_u8( target, &(target_buf[ x * 4 ]) );
3696                                         Jim_fprintf( interp, interp->cookie_stdout, "%02x ", (int)(z) );
3697                                 }
3698                                 for( ; (x < 16) ; x += 1 ){
3699                                         Jim_fprintf( interp, interp->cookie_stdout, "   " );
3700                                 }
3701                                 break;
3702                         }
3703                         /* ascii-ify the bytes */
3704                         for( x = 0 ; x < y ; x++ ){
3705                                 if( (target_buf[x] >= 0x20) &&
3706                                         (target_buf[x] <= 0x7e) ){
3707                                         /* good */
3708                                 } else {
3709                                         /* smack it */
3710                                         target_buf[x] = '.';
3711                                 }
3712                         }
3713                         /* space pad  */
3714                         while( x < 16 ){
3715                                 target_buf[x] = ' ';
3716                                 x++;
3717                         }
3718                         /* terminate */
3719                         target_buf[16] = 0;
3720                         /* print - with a newline */
3721                         Jim_fprintf( interp, interp->cookie_stdout, "%s\n", target_buf );
3722                         /* NEXT... */
3723                         c -= 16;
3724                         a += 16;
3725                 }
3726                 return JIM_OK;
3727         case TS_CMD_MEM2ARRAY:
3728                 return target_mem2array( goi.interp, target, goi.argc, goi.argv );
3729                 break;
3730         case TS_CMD_ARRAY2MEM:
3731                 return target_array2mem( goi.interp, target, goi.argc, goi.argv );
3732                 break;
3733         case TS_CMD_EXAMINE:
3734                 if( goi.argc ){
3735                         Jim_WrongNumArgs( goi.interp, 2, argv, "[no parameters]");
3736                         return JIM_ERR;
3737                 }
3738                 e = target->type->examine( target );
3739                 if( e != ERROR_OK ){
3740                         Jim_SetResult_sprintf( interp, "examine-fails: %d", e );
3741                         return JIM_ERR;
3742                 }
3743                 return JIM_OK;
3744         case TS_CMD_POLL:
3745                 if( goi.argc ){
3746                         Jim_WrongNumArgs( goi.interp, 2, argv, "[no parameters]");
3747                         return JIM_ERR;
3748                 }
3749                 if( !(target_was_examined(target)) ){
3750                         e = ERROR_TARGET_NOT_EXAMINED;
3751                 } else {
3752                         e = target->type->poll( target );
3753                 }
3754                 if( e != ERROR_OK ){
3755                         Jim_SetResult_sprintf( interp, "poll-fails: %d", e );
3756                         return JIM_ERR;
3757                 } else {
3758                         return JIM_OK;
3759                 }
3760                 break;
3761         case TS_CMD_RESET:
3762                 if( goi.argc != 2 ){
3763                         Jim_WrongNumArgs( interp, 2, argv, "t|f|assert|deassert BOOL");
3764                         return JIM_ERR;
3765                 }
3766                 e = Jim_GetOpt_Nvp( &goi, nvp_assert, &n );
3767                 if( e != JIM_OK ){
3768                         Jim_GetOpt_NvpUnknown( &goi, nvp_assert, 1 );
3769                         return e;
3770                 }
3771                 /* the halt or not param */
3772                 e = Jim_GetOpt_Wide( &goi, &a);
3773                 if( e != JIM_OK ){
3774                         return e;
3775                 }
3776                 /* determine if we should halt or not. */
3777                 target->reset_halt = !!a;
3778                 /* When this happens - all workareas are invalid. */
3779                 target_free_all_working_areas_restore(target, 0);
3780
3781                 /* do the assert */
3782                 if( n->value == NVP_ASSERT ){
3783                         target->type->assert_reset( target );
3784                 } else {
3785                         target->type->deassert_reset( target );
3786                 }
3787                 return JIM_OK;
3788         case TS_CMD_HALT:
3789                 if( goi.argc ){
3790                         Jim_WrongNumArgs( goi.interp, 0, argv, "halt [no parameters]");
3791                         return JIM_ERR;
3792                 }
3793                 target->type->halt( target );
3794                 return JIM_OK;
3795         case TS_CMD_WAITSTATE:
3796                 /* params:  <name>  statename timeoutmsecs */
3797                 if( goi.argc != 2 ){
3798                         Jim_SetResult_sprintf( goi.interp, "%s STATENAME TIMEOUTMSECS", n->name );
3799                         return JIM_ERR;
3800                 }
3801                 e = Jim_GetOpt_Nvp( &goi, nvp_target_state, &n );
3802                 if( e != JIM_OK ){
3803                         Jim_GetOpt_NvpUnknown( &goi, nvp_target_state,1 );
3804                         return e;
3805                 }
3806                 e = Jim_GetOpt_Wide( &goi, &a );
3807                 if( e != JIM_OK ){
3808                         return e;
3809                 }
3810                 e = target_wait_state( target, n->value, a );
3811                 if( e != ERROR_OK ){
3812                         Jim_SetResult_sprintf( goi.interp,
3813                                                                    "target: %s wait %s fails (%d) %s",
3814                                                                    target->cmd_name,
3815                                                                    n->name,
3816                                                                    e, target_strerror_safe(e) );
3817                         return JIM_ERR;
3818                 } else {
3819                         return JIM_OK;
3820                 }
3821         case TS_CMD_EVENTLIST:
3822                 /* List for human, Events defined for this target.
3823                  * scripts/programs should use 'name cget -event NAME'
3824                  */
3825                 {
3826                         target_event_action_t *teap;
3827                         teap = target->event_action;
3828                         command_print( cmd_ctx, "Event actions for target (%d) %s\n",
3829                                                    target->target_number,
3830                                                    target->cmd_name );
3831                         command_print( cmd_ctx, "%-25s | Body", "Event");
3832                         command_print( cmd_ctx, "------------------------- | ----------------------------------------");
3833                         while( teap ){
3834                                 command_print( cmd_ctx,
3835                                                            "%-25s | %s",
3836                                                            Jim_Nvp_value2name_simple( nvp_target_event, teap->event )->name,
3837                                                            Jim_GetString( teap->body, NULL ) );
3838                                 teap = teap->next;
3839                         }
3840                         command_print( cmd_ctx, "***END***");
3841                         return JIM_OK;
3842                 }
3843         case TS_CMD_CURSTATE:
3844                 if( goi.argc != 0 ){
3845                         Jim_WrongNumArgs( goi.interp, 0, argv, "[no parameters]");
3846                         return JIM_ERR;
3847                 }
3848                 Jim_SetResultString( goi.interp,
3849                                                          Jim_Nvp_value2name_simple(nvp_target_state,target->state)->name,-1);
3850                 return JIM_OK;
3851         case TS_CMD_INVOKE_EVENT:
3852                 if( goi.argc != 1 ){
3853                         Jim_SetResult_sprintf( goi.interp, "%s ?EVENTNAME?",n->name);
3854                         return JIM_ERR;
3855                 }
3856                 e = Jim_GetOpt_Nvp( &goi, nvp_target_event, &n );
3857                 if( e != JIM_OK ){
3858                         Jim_GetOpt_NvpUnknown( &goi, nvp_target_event, 1 );
3859                         return e;
3860                 }
3861                 target_handle_event( target, n->value );
3862                 return JIM_OK;
3863         }
3864         return JIM_ERR;
3865 }
3866
3867 static int target_create( Jim_GetOptInfo *goi )
3868 {
3869         Jim_Obj *new_cmd;
3870         Jim_Cmd *cmd;
3871         const char *cp;
3872         char *cp2;
3873         int e;
3874         int x;
3875         target_t *target;
3876         struct command_context_s *cmd_ctx;
3877
3878         cmd_ctx = Jim_GetAssocData(goi->interp, "context");
3879         if( goi->argc < 3 ){
3880                 Jim_WrongNumArgs( goi->interp, 1, goi->argv, "?name? ?type? ..options...");
3881                 return JIM_ERR;
3882         }
3883
3884         /* COMMAND */
3885         Jim_GetOpt_Obj( goi, &new_cmd );
3886         /* does this command exist? */
3887         cmd = Jim_GetCommand( goi->interp, new_cmd, JIM_ERRMSG );
3888         if( cmd ){
3889                 cp = Jim_GetString( new_cmd, NULL );
3890                 Jim_SetResult_sprintf(goi->interp, "Command/target: %s Exists", cp);
3891                 return JIM_ERR;
3892         }
3893
3894         /* TYPE */
3895         e = Jim_GetOpt_String( goi, &cp2, NULL );
3896         cp = cp2;
3897         /* now does target type exist */
3898         for( x = 0 ; target_types[x] ; x++ ){
3899                 if( 0 == strcmp( cp, target_types[x]->name ) ){
3900                         /* found */
3901                         break;
3902                 }
3903         }
3904         if( target_types[x] == NULL ){
3905                 Jim_SetResult_sprintf( goi->interp, "Unknown target type %s, try one of ", cp );
3906                 for( x = 0 ; target_types[x] ; x++ ){
3907                         if( target_types[x+1] ){
3908                                 Jim_AppendStrings( goi->interp,
3909                                                                    Jim_GetResult(goi->interp),
3910                                                                    target_types[x]->name,
3911                                                                    ", ", NULL);
3912                         } else {
3913                                 Jim_AppendStrings( goi->interp,
3914                                                                    Jim_GetResult(goi->interp),
3915                                                                    " or ",
3916                                                                    target_types[x]->name,NULL );
3917                         }
3918                 }
3919                 return JIM_ERR;
3920         }
3921
3922         /* Create it */
3923         target = calloc(1,sizeof(target_t));
3924         /* set target number */
3925         target->target_number = new_target_number();
3926
3927         /* allocate memory for each unique target type */
3928         target->type = (target_type_t*)calloc(1,sizeof(target_type_t));
3929
3930         memcpy( target->type, target_types[x], sizeof(target_type_t));
3931
3932         /* will be set by "-endian" */
3933         target->endianness = TARGET_ENDIAN_UNKNOWN;
3934
3935         target->working_area        = 0x0;
3936         target->working_area_size   = 0x0;
3937         target->working_areas       = NULL;
3938         target->backup_working_area = 0;
3939
3940         target->state               = TARGET_UNKNOWN;
3941         target->debug_reason        = DBG_REASON_UNDEFINED;
3942         target->reg_cache           = NULL;
3943         target->breakpoints         = NULL;
3944         target->watchpoints         = NULL;
3945         target->next                = NULL;
3946         target->arch_info           = NULL;
3947
3948         target->display             = 1;
3949
3950         /* initialize trace information */
3951         target->trace_info = malloc(sizeof(trace_t));
3952         target->trace_info->num_trace_points         = 0;
3953         target->trace_info->trace_points_size        = 0;
3954         target->trace_info->trace_points             = NULL;
3955         target->trace_info->trace_history_size       = 0;
3956         target->trace_info->trace_history            = NULL;
3957         target->trace_info->trace_history_pos        = 0;
3958         target->trace_info->trace_history_overflowed = 0;
3959
3960         target->dbgmsg          = NULL;
3961         target->dbg_msg_enabled = 0;
3962
3963         target->endianness = TARGET_ENDIAN_UNKNOWN;
3964
3965         /* Do the rest as "configure" options */
3966         goi->isconfigure = 1;
3967         e = target_configure( goi, target);
3968
3969         if (target->tap == NULL)
3970         {
3971                 Jim_SetResultString( interp, "-chain-position required when creating target", -1);
3972                 e=JIM_ERR;
3973         }
3974
3975         if( e != JIM_OK ){
3976                 free( target->type );
3977                 free( target );
3978                 return e;
3979         }
3980
3981         if( target->endianness == TARGET_ENDIAN_UNKNOWN ){
3982                 /* default endian to little if not specified */
3983                 target->endianness = TARGET_LITTLE_ENDIAN;
3984         }
3985
3986         /* incase variant is not set */
3987         if (!target->variant)
3988                 target->variant = strdup("");
3989
3990         /* create the target specific commands */
3991         if( target->type->register_commands ){
3992                 (*(target->type->register_commands))( cmd_ctx );
3993         }
3994         if( target->type->target_create ){
3995                 (*(target->type->target_create))( target, goi->interp );
3996         }
3997
3998         /* append to end of list */
3999         {
4000                 target_t **tpp;
4001                 tpp = &(all_targets);
4002                 while( *tpp ){
4003                         tpp = &( (*tpp)->next );
4004                 }
4005                 *tpp = target;
4006         }
4007
4008         cp = Jim_GetString( new_cmd, NULL );
4009         target->cmd_name = strdup(cp);
4010
4011         /* now - create the new target name command */
4012         e = Jim_CreateCommand( goi->interp,
4013                                                    /* name */
4014                                                    cp,
4015                                                    tcl_target_func, /* C function */
4016                                                    target, /* private data */
4017                                                    NULL ); /* no del proc */
4018
4019         return e;
4020 }
4021
4022 static int jim_target( Jim_Interp *interp, int argc, Jim_Obj *const *argv )
4023 {
4024         int x,r,e;
4025         jim_wide w;
4026         struct command_context_s *cmd_ctx;
4027         target_t *target;
4028         Jim_GetOptInfo goi;
4029         enum tcmd {
4030                 /* TG = target generic */
4031                 TG_CMD_CREATE,
4032                 TG_CMD_TYPES,
4033                 TG_CMD_NAMES,
4034                 TG_CMD_CURRENT,
4035                 TG_CMD_NUMBER,
4036                 TG_CMD_COUNT,
4037         };
4038         const char *target_cmds[] = {
4039                 "create", "types", "names", "current", "number",
4040                 "count",
4041                 NULL /* terminate */
4042         };
4043
4044         LOG_DEBUG("Target command params:");
4045         LOG_DEBUG("%s", Jim_Debug_ArgvString(interp, argc, argv));
4046
4047         cmd_ctx = Jim_GetAssocData( interp, "context" );
4048
4049         Jim_GetOpt_Setup( &goi, interp, argc-1, argv+1 );
4050
4051         if( goi.argc == 0 ){
4052                 Jim_WrongNumArgs(interp, 1, argv, "missing: command ...");
4053                 return JIM_ERR;
4054         }
4055
4056         /* Jim_GetOpt_Debug( &goi ); */
4057         r = Jim_GetOpt_Enum( &goi, target_cmds, &x   );
4058         if( r != JIM_OK ){
4059                 return r;
4060         }
4061
4062         switch(x){
4063         default:
4064                 Jim_Panic(goi.interp,"Why am I here?");
4065                 return JIM_ERR;
4066         case TG_CMD_CURRENT:
4067                 if( goi.argc != 0 ){
4068                         Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters");
4069                         return JIM_ERR;
4070                 }
4071                 Jim_SetResultString( goi.interp, get_current_target( cmd_ctx )->cmd_name, -1 );
4072                 return JIM_OK;
4073         case TG_CMD_TYPES:
4074                 if( goi.argc != 0 ){
4075                         Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters" );
4076                         return JIM_ERR;
4077                 }
4078                 Jim_SetResult( goi.interp, Jim_NewListObj( goi.interp, NULL, 0 ) );
4079                 for( x = 0 ; target_types[x] ; x++ ){
4080                         Jim_ListAppendElement( goi.interp,
4081                                                                    Jim_GetResult(goi.interp),
4082                                                                    Jim_NewStringObj( goi.interp, target_types[x]->name, -1 ) );
4083                 }
4084                 return JIM_OK;
4085         case TG_CMD_NAMES:
4086                 if( goi.argc != 0 ){
4087                         Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters" );
4088                         return JIM_ERR;
4089                 }
4090                 Jim_SetResult( goi.interp, Jim_NewListObj( goi.interp, NULL, 0 ) );
4091                 target = all_targets;
4092                 while( target ){
4093                         Jim_ListAppendElement( goi.interp,
4094                                                                    Jim_GetResult(goi.interp),
4095                                                                    Jim_NewStringObj( goi.interp, target->cmd_name, -1 ) );
4096                         target = target->next;
4097                 }
4098                 return JIM_OK;
4099         case TG_CMD_CREATE:
4100                 if( goi.argc < 3 ){
4101                         Jim_WrongNumArgs( goi.interp, goi.argc, goi.argv, "?name  ... config options ...");
4102                         return JIM_ERR;
4103                 }
4104                 return target_create( &goi );
4105                 break;
4106         case TG_CMD_NUMBER:
4107                 if( goi.argc != 1 ){
4108                         Jim_SetResult_sprintf( goi.interp, "expected: target number ?NUMBER?");
4109                         return JIM_ERR;
4110                 }
4111                 e = Jim_GetOpt_Wide( &goi, &w );
4112                 if( e != JIM_OK ){
4113                         return JIM_ERR;
4114                 }
4115                 {
4116                         target_t *t;
4117                         t = get_target_by_num(w);
4118                         if( t == NULL ){
4119                                 Jim_SetResult_sprintf( goi.interp,"Target: number %d does not exist", (int)(w));
4120                                 return JIM_ERR;
4121                         }
4122                         Jim_SetResultString( goi.interp, t->cmd_name, -1 );
4123                         return JIM_OK;
4124                 }
4125         case TG_CMD_COUNT:
4126                 if( goi.argc != 0 ){
4127                         Jim_WrongNumArgs( goi.interp, 0, goi.argv, "<no parameters>");
4128                         return JIM_ERR;
4129                 }
4130                 Jim_SetResult( goi.interp,
4131                                            Jim_NewIntObj( goi.interp, max_target_number()));
4132                 return JIM_OK;
4133         }
4134
4135         return JIM_ERR;
4136 }
4137
4138
4139 struct FastLoad
4140 {
4141         u32 address;
4142         u8 *data;
4143         int length;
4144
4145 };
4146
4147 static int fastload_num;
4148 static struct FastLoad *fastload;
4149
4150 static void free_fastload(void)
4151 {
4152         if (fastload!=NULL)
4153         {
4154                 int i;
4155                 for (i=0; i<fastload_num; i++)
4156                 {
4157                         if (fastload[i].data)
4158                                 free(fastload[i].data);
4159                 }
4160                 free(fastload);
4161                 fastload=NULL;
4162         }
4163 }
4164
4165
4166
4167
4168 static int handle_fast_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
4169 {
4170         u8 *buffer;
4171         u32 buf_cnt;
4172         u32 image_size;
4173         u32 min_address=0;
4174         u32 max_address=0xffffffff;
4175         int i;
4176         int retval;
4177
4178         image_t image;
4179
4180         duration_t duration;
4181         char *duration_text;
4182
4183         if ((argc < 1)||(argc > 5))
4184         {
4185                 return ERROR_COMMAND_SYNTAX_ERROR;
4186         }
4187
4188         /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
4189         if (argc >= 2)
4190         {
4191                 image.base_address_set = 1;
4192                 image.base_address = strtoul(args[1], NULL, 0);
4193         }
4194         else
4195         {
4196                 image.base_address_set = 0;
4197         }
4198
4199
4200         image.start_address_set = 0;
4201
4202         if (argc>=4)
4203         {
4204                 min_address=strtoul(args[3], NULL, 0);
4205         }
4206         if (argc>=5)
4207         {
4208                 max_address=strtoul(args[4], NULL, 0)+min_address;
4209         }
4210
4211         if (min_address>max_address)
4212         {
4213                 return ERROR_COMMAND_SYNTAX_ERROR;
4214         }
4215
4216         duration_start_measure(&duration);
4217
4218         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
4219         {
4220                 return ERROR_OK;
4221         }
4222
4223         image_size = 0x0;
4224         retval = ERROR_OK;
4225         fastload_num=image.num_sections;
4226         fastload=(struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
4227         if (fastload==NULL)
4228         {
4229                 image_close(&image);
4230                 return ERROR_FAIL;
4231         }
4232         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
4233         for (i = 0; i < image.num_sections; i++)
4234         {
4235                 buffer = malloc(image.sections[i].size);
4236                 if (buffer == NULL)
4237                 {
4238                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
4239                         break;
4240                 }
4241
4242                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
4243                 {
4244                         free(buffer);
4245                         break;
4246                 }
4247
4248                 u32 offset=0;
4249                 u32 length=buf_cnt;
4250
4251
4252                 /* DANGER!!! beware of unsigned comparision here!!! */
4253
4254                 if ((image.sections[i].base_address+buf_cnt>=min_address)&&
4255                                 (image.sections[i].base_address<max_address))
4256                 {
4257                         if (image.sections[i].base_address<min_address)
4258                         {
4259                                 /* clip addresses below */
4260                                 offset+=min_address-image.sections[i].base_address;
4261                                 length-=offset;
4262                         }
4263
4264                         if (image.sections[i].base_address+buf_cnt>max_address)
4265                         {
4266                                 length-=(image.sections[i].base_address+buf_cnt)-max_address;
4267                         }
4268
4269                         fastload[i].address=image.sections[i].base_address+offset;
4270                         fastload[i].data=malloc(length);
4271                         if (fastload[i].data==NULL)
4272                         {
4273                                 free(buffer);
4274                                 break;
4275                         }
4276                         memcpy(fastload[i].data, buffer+offset, length);
4277                         fastload[i].length=length;
4278
4279                         image_size += length;
4280                         command_print(cmd_ctx, "%u byte written at address 0x%8.8x", length, image.sections[i].base_address+offset);
4281                 }
4282
4283                 free(buffer);
4284         }
4285
4286         duration_stop_measure(&duration, &duration_text);
4287         if (retval==ERROR_OK)
4288         {
4289                 command_print(cmd_ctx, "Loaded %u bytes in %s", image_size, duration_text);
4290                 command_print(cmd_ctx, "NB!!! image has not been loaded to target, issue a subsequent 'fast_load' to do so.");
4291         }
4292         free(duration_text);
4293
4294         image_close(&image);
4295
4296         if (retval!=ERROR_OK)
4297         {
4298                 free_fastload();
4299         }
4300
4301         return retval;
4302 }
4303
4304 static int handle_fast_load_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
4305 {
4306         if (argc>0)
4307                 return ERROR_COMMAND_SYNTAX_ERROR;
4308         if (fastload==NULL)
4309         {
4310                 LOG_ERROR("No image in memory");
4311                 return ERROR_FAIL;
4312         }
4313         int i;
4314         int ms=timeval_ms();
4315         int size=0;
4316         int retval=ERROR_OK;
4317         for (i=0; i<fastload_num;i++)
4318         {
4319                 target_t *target = get_current_target(cmd_ctx);
4320                 command_print(cmd_ctx, "Write to 0x%08x, length 0x%08x", fastload[i].address, fastload[i].length);
4321                 if (retval==ERROR_OK)
4322                 {
4323                         retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
4324                 }
4325                 size+=fastload[i].length;
4326         }
4327         int after=timeval_ms();
4328         command_print(cmd_ctx, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
4329         return retval;
4330 }