mips: m4k alternate pracc code. Patch 2
[fw/openocd] / src / target / mips32_pracc.c
1 /***************************************************************************
2  *   Copyright (C) 2008 by Spencer Oliver                                  *
3  *   spen@spen-soft.co.uk                                                  *
4  *                                                                         *
5  *   Copyright (C) 2008 by David T.L. Wong                                 *
6  *                                                                         *
7  *   Copyright (C) 2009 by David N. Claffey <dnclaffey@gmail.com>          *
8  *                                                                         *
9  *   Copyright (C) 2011 by Drasko DRASKOVIC                                *
10  *   drasko.draskovic@gmail.com                                            *
11  *                                                                         *
12  *   This program is free software; you can redistribute it and/or modify  *
13  *   it under the terms of the GNU General Public License as published by  *
14  *   the Free Software Foundation; either version 2 of the License, or     *
15  *   (at your option) any later version.                                   *
16  *                                                                         *
17  *   This program is distributed in the hope that it will be useful,       *
18  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
19  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
20  *   GNU General Public License for more details.                          *
21  *                                                                         *
22  *   You should have received a copy of the GNU General Public License     *
23  *   along with this program; if not, write to the                         *
24  *   Free Software Foundation, Inc.,                                       *
25  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
26  ***************************************************************************/
27
28 /*
29  * This version has optimized assembly routines for 32 bit operations:
30  * - read word
31  * - write word
32  * - write array of words
33  *
34  * One thing to be aware of is that the MIPS32 cpu will execute the
35  * instruction after a branch instruction (one delay slot).
36  *
37  * For example:
38  *  LW $2, ($5 +10)
39  *  B foo
40  *  LW $1, ($2 +100)
41  *
42  * The LW $1, ($2 +100) instruction is also executed. If this is
43  * not wanted a NOP can be inserted:
44  *
45  *  LW $2, ($5 +10)
46  *  B foo
47  *  NOP
48  *  LW $1, ($2 +100)
49  *
50  * or the code can be changed to:
51  *
52  *  B foo
53  *  LW $2, ($5 +10)
54  *  LW $1, ($2 +100)
55  *
56  * The original code contained NOPs. I have removed these and moved
57  * the branches.
58  *
59  * I also moved the PRACC_STACK to 0xFF204000. This allows
60  * the use of 16 bits offsets to get pointers to the input
61  * and output area relative to the stack. Note that the stack
62  * isn't really a stack (the stack pointer is not 'moving')
63  * but a FIFO simulated in software.
64  *
65  * These changes result in a 35% speed increase when programming an
66  * external flash.
67  *
68  * More improvement could be gained if the registers do no need
69  * to be preserved but in that case the routines should be aware
70  * OpenOCD is used as a flash programmer or as a debug tool.
71  *
72  * Nico Coesel
73  */
74
75 #ifdef HAVE_CONFIG_H
76 #include "config.h"
77 #endif
78
79 #include <helper/time_support.h>
80
81 #include "mips32.h"
82 #include "mips32_pracc.h"
83
84 #define PRACC_FETCH 0
85 #define PRACC_STORE 1
86
87 struct mips32_pracc_context {
88         uint32_t *local_iparam;
89         int num_iparam;
90         uint32_t *local_oparam;
91         int num_oparam;
92         const uint32_t *code;
93         int code_len;
94         uint32_t stack[32];
95         int stack_offset;
96         struct mips_ejtag *ejtag_info;
97 };
98
99 static int mips32_pracc_sync_cache(struct mips_ejtag *ejtag_info,
100                 uint32_t start_addr, uint32_t end_addr);
101 static int mips32_pracc_clean_invalidate_cache(struct mips_ejtag *ejtag_info,
102                 uint32_t start_addr, uint32_t end_addr);
103
104 static int wait_for_pracc_rw(struct mips_ejtag *ejtag_info, uint32_t *ctrl)
105 {
106         uint32_t ejtag_ctrl;
107         long long then = timeval_ms();
108         int timeout;
109         int retval;
110
111         /* wait for the PrAcc to become "1" */
112         mips_ejtag_set_instr(ejtag_info, EJTAG_INST_CONTROL);
113
114         while (1) {
115                 ejtag_ctrl = ejtag_info->ejtag_ctrl;
116                 retval = mips_ejtag_drscan_32(ejtag_info, &ejtag_ctrl);
117                 if (retval != ERROR_OK)
118                         return retval;
119
120                 if (ejtag_ctrl & EJTAG_CTRL_PRACC)
121                         break;
122
123                 timeout = timeval_ms() - then;
124                 if (timeout > 1000) {
125                         LOG_DEBUG("DEBUGMODULE: No memory access in progress!");
126                         return ERROR_JTAG_DEVICE_ERROR;
127                 }
128         }
129
130         *ctrl = ejtag_ctrl;
131         return ERROR_OK;
132 }
133
134 static int mips32_pracc_exec_read(struct mips32_pracc_context *ctx, uint32_t address)
135 {
136         struct mips_ejtag *ejtag_info = ctx->ejtag_info;
137         int offset;
138         uint32_t ejtag_ctrl, data;
139
140         if ((address >= MIPS32_PRACC_PARAM_IN)
141                 && (address < MIPS32_PRACC_PARAM_IN + ctx->num_iparam * 4)) {
142                 offset = (address - MIPS32_PRACC_PARAM_IN) / 4;
143                 data = ctx->local_iparam[offset];
144         } else if ((address >= MIPS32_PRACC_PARAM_OUT)
145                 && (address < MIPS32_PRACC_PARAM_OUT + ctx->num_oparam * 4)) {
146                 offset = (address - MIPS32_PRACC_PARAM_OUT) / 4;
147                 data = ctx->local_oparam[offset];
148         } else if ((address >= MIPS32_PRACC_TEXT)
149                 && (address < MIPS32_PRACC_TEXT + ctx->code_len * 4)) {
150                 offset = (address - MIPS32_PRACC_TEXT) / 4;
151                 data = ctx->code[offset];
152         } else if (address == MIPS32_PRACC_STACK) {
153                 if (ctx->stack_offset <= 0) {
154                         LOG_ERROR("Error: Pracc stack out of bounds");
155                         return ERROR_JTAG_DEVICE_ERROR;
156                 }
157                 /* save to our debug stack */
158                 data = ctx->stack[--ctx->stack_offset];
159         } else {
160                 /* TODO: send JMP 0xFF200000 instruction. Hopefully processor jump back
161                  * to start of debug vector */
162
163                 LOG_ERROR("Error reading unexpected address 0x%8.8" PRIx32 "", address);
164                 return ERROR_JTAG_DEVICE_ERROR;
165         }
166
167         /* Send the data out */
168         mips_ejtag_set_instr(ctx->ejtag_info, EJTAG_INST_DATA);
169         mips_ejtag_drscan_32_out(ctx->ejtag_info, data);
170
171         /* Clear the access pending bit (let the processor eat!) */
172         ejtag_ctrl = ejtag_info->ejtag_ctrl & ~EJTAG_CTRL_PRACC;
173         mips_ejtag_set_instr(ctx->ejtag_info, EJTAG_INST_CONTROL);
174         mips_ejtag_drscan_32_out(ctx->ejtag_info, ejtag_ctrl);
175
176         return jtag_execute_queue();
177 }
178
179 static int mips32_pracc_exec_write(struct mips32_pracc_context *ctx, uint32_t address)
180 {
181         uint32_t ejtag_ctrl, data;
182         int offset;
183         struct mips_ejtag *ejtag_info = ctx->ejtag_info;
184         int retval;
185
186         mips_ejtag_set_instr(ctx->ejtag_info, EJTAG_INST_DATA);
187         retval = mips_ejtag_drscan_32(ctx->ejtag_info, &data);
188         if (retval != ERROR_OK)
189                 return retval;
190
191         /* Clear access pending bit */
192         ejtag_ctrl = ejtag_info->ejtag_ctrl & ~EJTAG_CTRL_PRACC;
193         mips_ejtag_set_instr(ctx->ejtag_info, EJTAG_INST_CONTROL);
194         mips_ejtag_drscan_32_out(ctx->ejtag_info, ejtag_ctrl);
195
196         retval = jtag_execute_queue();
197         if (retval != ERROR_OK)
198                 return retval;
199
200         if ((address >= MIPS32_PRACC_PARAM_OUT)
201                 && (address < MIPS32_PRACC_PARAM_OUT + ctx->num_oparam * 4)) {
202                 offset = (address - MIPS32_PRACC_PARAM_OUT) / 4;
203                 ctx->local_oparam[offset] = data;
204         } else if (address == MIPS32_PRACC_STACK) {
205                 if (ctx->stack_offset >= 32) {
206                         LOG_ERROR("Error: Pracc stack out of bounds");
207                         return ERROR_JTAG_DEVICE_ERROR;
208                 }
209                 /* save data onto our stack */
210                 ctx->stack[ctx->stack_offset++] = data;
211         } else {
212                 LOG_ERROR("Error writing unexpected address 0x%8.8" PRIx32 "", address);
213                 return ERROR_JTAG_DEVICE_ERROR;
214         }
215
216         return ERROR_OK;
217 }
218
219 int mips32_pracc_exec(struct mips_ejtag *ejtag_info, int code_len, const uint32_t *code,
220                 int num_param_in, uint32_t *param_in, int num_param_out, uint32_t *param_out, int cycle)
221 {
222         uint32_t ejtag_ctrl;
223         uint32_t address;
224         struct mips32_pracc_context ctx;
225         int retval;
226         int pass = 0;
227
228         ctx.local_iparam = param_in;
229         ctx.local_oparam = param_out;
230         ctx.num_iparam = num_param_in;
231         ctx.num_oparam = num_param_out;
232         ctx.code = code;
233         ctx.code_len = code_len;
234         ctx.ejtag_info = ejtag_info;
235         ctx.stack_offset = 0;
236
237         while (1) {
238                 retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl);
239                 if (retval != ERROR_OK)
240                         return retval;
241
242                 address = 0;
243                 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_ADDRESS);
244                 retval = mips_ejtag_drscan_32(ejtag_info, &address);
245                 if (retval != ERROR_OK)
246                         return retval;
247
248                 /* Check for read or write */
249                 if (ejtag_ctrl & EJTAG_CTRL_PRNW) {
250                         retval = mips32_pracc_exec_write(&ctx, address);
251                         if (retval != ERROR_OK)
252                                 return retval;
253                 } else {
254                         /* Check to see if its reading at the debug vector. The first pass through
255                          * the module is always read at the vector, so the first one we allow.  When
256                          * the second read from the vector occurs we are done and just exit. */
257                         if ((address == MIPS32_PRACC_TEXT) && (pass++))
258                                 break;
259
260                         retval = mips32_pracc_exec_read(&ctx, address);
261                         if (retval != ERROR_OK)
262                                 return retval;
263                 }
264
265                 if (cycle == 0)
266                         break;
267         }
268
269         /* stack sanity check */
270         if (ctx.stack_offset != 0)
271                 LOG_DEBUG("Pracc Stack not zero");
272
273         return ERROR_OK;
274 }
275
276 inline void pracc_queue_init(struct pracc_queue_info *ctx)
277 {
278         ctx->retval = ERROR_OK;
279         ctx->code_count = 0;
280         ctx->store_count = 0;
281
282         ctx->pracc_list = malloc(2 * ctx->max_code * sizeof(uint32_t));
283         if (ctx->pracc_list == NULL) {
284                 LOG_ERROR("Out of memory");
285                 ctx->retval = ERROR_FAIL;
286         }
287 }
288
289 inline void pracc_add(struct pracc_queue_info *ctx, uint32_t addr, uint32_t instr)
290 {
291         ctx->pracc_list[ctx->max_code + ctx->code_count] = addr;
292         ctx->pracc_list[ctx->code_count++] = instr;
293         if (addr)
294                 ctx->store_count++;
295 }
296
297 inline void pracc_queue_free(struct pracc_queue_info *ctx)
298 {
299         if (ctx->code_count > ctx->max_code)    /* Only for internal check, will be erased */
300                 LOG_ERROR("Internal error, code count: %d > max code: %d", ctx->code_count, ctx->max_code);
301         if (ctx->pracc_list != NULL)
302                 free(ctx->pracc_list);
303 }
304
305 int mips32_pracc_queue_exec(struct mips_ejtag *ejtag_info, struct pracc_queue_info *ctx, uint32_t *buf)
306 {
307         if (ejtag_info->mode == 0)
308                 return mips32_pracc_exec(ejtag_info, ctx->code_count, ctx->pracc_list, 0, NULL,
309                                   ctx->store_count, buf, ctx->code_count - 1);
310
311         union scan_in {
312                 uint8_t scan_96[12];
313                 struct {
314                         uint8_t ctrl[4];
315                         uint8_t data[4];
316                         uint8_t addr[4];
317                 } scan_32;
318
319         } *scan_in = malloc(sizeof(union scan_in) * (ctx->code_count + ctx->store_count));
320         if (scan_in == NULL) {
321                 LOG_ERROR("Out of memory");
322                 return ERROR_FAIL;
323         }
324
325         unsigned num_clocks =
326                 ((uint64_t)(ejtag_info->scan_delay) * jtag_get_speed_khz() + 500000) / 1000000;
327
328         uint32_t ejtag_ctrl = ejtag_info->ejtag_ctrl & ~EJTAG_CTRL_PRACC;
329         mips_ejtag_set_instr(ejtag_info, EJTAG_INST_ALL);
330
331         int scan_count = 0;
332         for (int i = 0; i != 2 * ctx->code_count; i++) {
333                 uint32_t data = 0;
334                 if (i & 1u) {                   /* Check store address from previous instruction, if not the first */
335                         if (i < 2 || 0 == ctx->pracc_list[ctx->max_code + (i / 2) - 1])
336                                 continue;
337                 } else
338                         data = ctx->pracc_list[i / 2];
339
340                 jtag_add_clocks(num_clocks);
341                 mips_ejtag_add_scan_96(ejtag_info, ejtag_ctrl, data, scan_in[scan_count++].scan_96);
342         }
343
344         int retval = jtag_execute_queue();              /* execute queued scans */
345         if (retval != ERROR_OK)
346                 goto exit;
347
348         uint32_t fetch_addr = MIPS32_PRACC_TEXT;                /* start address */
349         scan_count = 0;
350         for (int i = 0; i != 2 * ctx->code_count; i++) {                                /* verify every pracc access */
351                 uint32_t store_addr = 0;
352                 if (i & 1u) {                   /* Read store addres from previous instruction, if not the first */
353                         store_addr = ctx->pracc_list[ctx->max_code + (i / 2) - 1];
354                         if (i < 2 || 0 == store_addr)
355                                 continue;
356                 }
357
358                 ejtag_ctrl = buf_get_u32(scan_in[scan_count].scan_32.ctrl, 0, 32);
359                 if (!(ejtag_ctrl & EJTAG_CTRL_PRACC)) {
360                         LOG_ERROR("Error: access not pending  count: %d", scan_count);
361                         retval = ERROR_FAIL;
362                         goto exit;
363                 }
364
365                 uint32_t addr = buf_get_u32(scan_in[scan_count].scan_32.addr, 0, 32);
366
367                 if (store_addr != 0) {
368                         if (!(ejtag_ctrl & EJTAG_CTRL_PRNW)) {
369                                 LOG_ERROR("Not a store/write access, count: %d", scan_count);
370                                 retval = ERROR_FAIL;
371                                 goto exit;
372                         }
373                         if (addr != store_addr) {
374                                 LOG_ERROR("Store address mismatch, read: %x expected: %x count: %d",
375                                                 addr, store_addr, scan_count);
376                                 retval = ERROR_FAIL;
377                                 goto exit;
378                         }
379                         int buf_index = (addr - MIPS32_PRACC_PARAM_OUT) / 4;
380                         buf[buf_index] = buf_get_u32(scan_in[scan_count].scan_32.data, 0, 32);
381
382                 } else {
383                         if (ejtag_ctrl & EJTAG_CTRL_PRNW) {
384                                 LOG_ERROR("Not a fetch/read access, count: %d", scan_count);
385                                 retval = ERROR_FAIL;
386                                 goto exit;
387                         }
388                         if (addr != fetch_addr) {
389                                 LOG_ERROR("Fetch addr mismatch, read: %x expected: %x count: %d", addr, fetch_addr, scan_count);
390                                 retval = ERROR_FAIL;
391                                 goto exit;
392                         }
393                         fetch_addr += 4;
394                 }
395                 scan_count++;
396         }
397 exit:
398         free(scan_in);
399         return retval;
400 }
401
402 int mips32_pracc_read_u32(struct mips_ejtag *ejtag_info, uint32_t addr, uint32_t *buf)
403 {
404         struct pracc_queue_info ctx = {.max_code = 9};
405         pracc_queue_init(&ctx);
406         if (ctx.retval != ERROR_OK)
407                 goto exit;
408
409         pracc_add(&ctx, 0, MIPS32_MTC0(15, 31, 0));                                     /* move $15 to COP0 DeSave */
410         pracc_add(&ctx, 0, MIPS32_LUI(15, PRACC_UPPER_BASE_ADDR));                      /* $15 = MIPS32_PRACC_BASE_ADDR */
411         pracc_add(&ctx, 0, MIPS32_LUI(8, UPPER16((addr + 0x8000))));            /* load  $8 with modified upper address */
412         pracc_add(&ctx, 0, MIPS32_LW(8, LOWER16(addr), 8));                             /* lw $8, LOWER16(addr)($8) */
413         pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT,
414                                 MIPS32_SW(8, PRACC_OUT_OFFSET, 15));                    /* sw $8,PRACC_OUT_OFFSET($15) */
415         pracc_add(&ctx, 0, MIPS32_LUI(8, UPPER16(ejtag_info->reg8)));           /* restore upper 16 of $8 */
416         pracc_add(&ctx, 0, MIPS32_ORI(8, 8, LOWER16(ejtag_info->reg8)));                /* restore lower 16 of $8 */
417         pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1)));                                        /* jump to start */
418         pracc_add(&ctx, 0, MIPS32_MFC0(15, 31, 0));                                     /* move COP0 DeSave to $15 */
419
420         ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, buf);
421 exit:
422         pracc_queue_free(&ctx);
423         return ctx.retval;
424 }
425
426 int mips32_pracc_read_mem(struct mips_ejtag *ejtag_info, uint32_t addr, int size, int count, void *buf)
427 {
428         if (count == 1 && size == 4)
429                 return mips32_pracc_read_u32(ejtag_info, addr, (uint32_t *)buf);
430
431         int retval = ERROR_FAIL;
432
433         uint32_t *code = NULL;
434         uint32_t *data = NULL;
435
436         code = malloc((256 * 2 + 10) * sizeof(uint32_t));
437         if (code == NULL) {
438                 LOG_ERROR("Out of memory");
439                 goto exit;
440         }
441
442         if (size != 4) {
443                 data = malloc(256 * sizeof(uint32_t));
444                 if (data == NULL) {
445                         LOG_ERROR("Out of memory");
446                         goto exit;
447                 }
448         }
449
450         uint32_t *buf32 = buf;
451         uint16_t *buf16 = buf;
452         uint8_t *buf8 = buf;
453
454         int i;
455         uint32_t upper_base_addr, last_upper_base_addr;
456         int this_round_count;
457         int code_len;
458
459         while (count) {
460                 this_round_count = (count > 256) ? 256 : count;
461                 last_upper_base_addr = UPPER16((addr + 0x8000));
462                 uint32_t *code_p = code;
463
464                 *code_p++ = MIPS32_MTC0(15, 31, 0);                                     /* save $15 in DeSave */
465                 *code_p++ = MIPS32_LUI(15, PRACC_UPPER_BASE_ADDR);                      /* $15 = MIPS32_PRACC_BASE_ADDR */
466                 *code_p++ = MIPS32_LUI(9, last_upper_base_addr);                        /* load the upper memory address in $9*/
467                 code_len = 3;
468
469                 for (i = 0; i != this_round_count; i++) {               /* Main code loop */
470                         upper_base_addr = UPPER16((addr + 0x8000));
471                         if (last_upper_base_addr != upper_base_addr) {
472                                 *code_p++ = MIPS32_LUI(9, upper_base_addr);             /* if needed, change upper address in $9*/
473                                 code_len++;
474                                 last_upper_base_addr = upper_base_addr;
475                         }
476
477                         if (size == 4)
478                                 *code_p++ = MIPS32_LW(8, LOWER16(addr), 9);             /* load from memory to $8 */
479                         else if (size == 2)
480                                 *code_p++ = MIPS32_LHU(8, LOWER16(addr), 9);
481                         else
482                                 *code_p++ = MIPS32_LBU(8, LOWER16(addr), 9);
483
484                         *code_p++ = MIPS32_SW(8, PRACC_OUT_OFFSET + i * 4, 15);         /* store $8 at param out */
485
486                         code_len += 2;
487                         addr += size;
488                 }
489
490                 *code_p++ = MIPS32_LUI(8, UPPER16(ejtag_info->reg8));                   /* restore upper 16 bits of reg 8 */
491                 *code_p++ = MIPS32_ORI(8, 8, LOWER16(ejtag_info->reg8));                /* restore lower 16 bits of reg 8 */
492                 *code_p++ = MIPS32_LUI(9, UPPER16(ejtag_info->reg8));                   /* restore upper 16 bits of reg 9 */
493                 *code_p++ = MIPS32_ORI(9, 9, LOWER16(ejtag_info->reg8));                /* restore lower 16 bits of reg 9 */
494
495                 code_len += 6;
496                 *code_p++ = MIPS32_B(NEG16(code_len - 1));                                      /* jump to start */
497                 *code_p = MIPS32_MFC0(15, 31, 0);                                       /* restore $15 from DeSave */
498
499                 if (size == 4) {
500                         retval = mips32_pracc_exec(ejtag_info, code_len, code, 0, NULL, this_round_count, buf32, 1);
501                         if (retval != ERROR_OK)
502                                 goto exit;
503                         buf32 += this_round_count;
504                 } else {
505                         retval = mips32_pracc_exec(ejtag_info, code_len, code, 0, NULL, this_round_count, data, 1);
506                         if (retval != ERROR_OK)
507                                 goto exit;
508                         uint32_t *data_p = data;
509                         for (i = 0; i != this_round_count; i++) {
510                                 if (size == 2)
511                                         *buf16++ = *data_p++;
512                                 else
513                                         *buf8++ = *data_p++;
514                         }
515                 }
516                 count -= this_round_count;
517         }
518
519 exit:
520         if (code)
521                 free(code);
522         if (data)
523                 free(data);
524         return retval;
525 }
526
527 int mips32_cp0_read(struct mips_ejtag *ejtag_info, uint32_t *val, uint32_t cp0_reg, uint32_t cp0_sel)
528 {
529         /**
530          * Do not make this code static, but regenerate it every time,
531          * as 2th element has to be changed to add parameters
532          */
533         uint32_t code[] = {
534                                                                                                                 /* start: */
535                 MIPS32_MTC0(15, 31, 0),                                                 /* move $15 to COP0 DeSave */
536                 MIPS32_LUI(15, PRACC_UPPER_BASE_ADDR),                                  /* $15 = MIPS32_PRACC_BASE_ADDR */
537
538                 /* 2 */ MIPS32_MFC0(8, 0, 0),                                           /* move COP0 [cp0_reg select] to $8 */
539                 MIPS32_SW(8, PRACC_OUT_OFFSET, 15),                                     /* sw $8,PRACC_OUT_OFFSET($15) */
540
541                 MIPS32_LUI(8, UPPER16(ejtag_info->reg8)),                               /* restore upper 16 bits of reg 8 */
542                 MIPS32_ORI(8, 8, LOWER16(ejtag_info->reg8)),                            /* restore lower 16 bits of reg 8 */
543                 MIPS32_B(NEG16(7)),                                                     /* b start */
544                 MIPS32_MFC0(15, 31, 0),                                                 /* move COP0 DeSave to $15 */
545         };
546
547         /**
548          * Note that our input parametes cp0_reg and cp0_sel
549          * are numbers (not gprs) which make part of mfc0 instruction opcode.
550          *
551          * These are not fix, but can be different for each mips32_cp0_read() function call,
552          * and that is why we must insert them directly into opcode,
553          * i.e. we can not pass it on EJTAG microprogram stack (via param_in),
554          * and put them into the gprs later from MIPS32_PRACC_STACK
555          * because mfc0 do not use gpr as a parameter for the cp0_reg and select part,
556          * but plain (immediate) number.
557          *
558          * MIPS32_MTC0 is implemented via MIPS32_R_INST macro.
559          * In order to insert our parameters, we must change rd and funct fields.
560          */
561         code[2] |= (cp0_reg << 11) | cp0_sel;  /* change rd and funct of MIPS32_R_INST macro */
562
563         return mips32_pracc_exec(ejtag_info, ARRAY_SIZE(code), code, 0, NULL, 1, val, 1);
564 }
565
566 int mips32_cp0_write(struct mips_ejtag *ejtag_info, uint32_t val, uint32_t cp0_reg, uint32_t cp0_sel)
567 {
568         uint32_t code[] = {
569                                                                                                                         /* start: */
570                 MIPS32_MTC0(15, 31, 0),                                                 /* move $15 to COP0 DeSave */
571                 MIPS32_LUI(15, UPPER16(val)),                                           /* Load val to $15 */
572                 MIPS32_ORI(15, 15, LOWER16(val)),
573
574                 /* 3 */ MIPS32_MTC0(15, 0, 0),                                          /* move $15 to COP0 [cp0_reg select] */
575
576                 MIPS32_B(NEG16(5)),                                                     /* b start */
577                 MIPS32_MFC0(15, 31, 0),                                                 /* move COP0 DeSave to $15 */
578         };
579
580         /**
581          * Note that MIPS32_MTC0 macro is implemented via MIPS32_R_INST macro.
582          * In order to insert our parameters, we must change rd and funct fields.
583          */
584         code[3] |= (cp0_reg << 11) | cp0_sel;  /* change rd and funct fields of MIPS32_R_INST macro */
585
586         return mips32_pracc_exec(ejtag_info, ARRAY_SIZE(code), code, 0, NULL, 0, NULL, 1);
587 }
588
589 /**
590  * \b mips32_pracc_sync_cache
591  *
592  * Synchronize Caches to Make Instruction Writes Effective
593  * (ref. doc. MIPS32 Architecture For Programmers Volume II: The MIPS32 Instruction Set,
594  *  Document Number: MD00086, Revision 2.00, June 9, 2003)
595  *
596  * When the instruction stream is written, the SYNCI instruction should be used
597  * in conjunction with other instructions to make the newly-written instructions effective.
598  *
599  * Explanation :
600  * A program that loads another program into memory is actually writing the D- side cache.
601  * The instructions it has loaded can't be executed until they reach the I-cache.
602  *
603  * After the instructions have been written, the loader should arrange
604  * to write back any containing D-cache line and invalidate any locations
605  * already in the I-cache.
606  *
607  * You can do that with cache instructions, but those instructions are only available in kernel mode,
608  * and a loader writing instructions for the use of its own process need not be privileged software.
609  *
610  * In the latest MIPS32/64 CPUs, MIPS provides the synci instruction,
611  * which does the whole job for a cache-line-sized chunk of the memory you just loaded:
612  * That is, it arranges a D-cache write-back and an I-cache invalidate.
613  *
614  * To employ synci at user level, you need to know the size of a cache line,
615  * and that can be obtained with a rdhwr SYNCI_Step
616  * from one of the standard “hardware registers”.
617  */
618 static int mips32_pracc_sync_cache(struct mips_ejtag *ejtag_info,
619                 uint32_t start_addr, uint32_t end_addr)
620 {
621         static const uint32_t code[] = {
622                                                                                                                         /* start: */
623                 MIPS32_MTC0(15, 31, 0),                                                         /* move $15 to COP0 DeSave */
624                 MIPS32_LUI(15, UPPER16(MIPS32_PRACC_STACK)),            /* $15 = MIPS32_PRACC_STACK */
625                 MIPS32_ORI(15, 15, LOWER16(MIPS32_PRACC_STACK)),
626                 MIPS32_SW(8, 0, 15),                                                            /* sw $8,($15) */
627                 MIPS32_SW(9, 0, 15),                                                            /* sw $9,($15) */
628                 MIPS32_SW(10, 0, 15),                                                           /* sw $10,($15) */
629                 MIPS32_SW(11, 0, 15),                                                           /* sw $11,($15) */
630
631                 MIPS32_LUI(8, UPPER16(MIPS32_PRACC_PARAM_IN)),          /* $8 = MIPS32_PRACC_PARAM_IN */
632                 MIPS32_ORI(8, 8, LOWER16(MIPS32_PRACC_PARAM_IN)),
633                 MIPS32_LW(9, 0, 8),                                                                     /* Load write start_addr to $9 */
634                 MIPS32_LW(10, 4, 8),                                                            /* Load write end_addr to $10 */
635
636                 MIPS32_RDHWR(11, MIPS32_SYNCI_STEP),                            /* $11 = MIPS32_SYNCI_STEP */
637                 MIPS32_BEQ(11, 0, 6),                                                           /* beq $11, $0, end */
638                 MIPS32_NOP,
639                                                                                                                         /* synci_loop : */
640                 MIPS32_SYNCI(0, 9),                                                                     /* synci 0($9) */
641                 MIPS32_SLTU(8, 10, 9),                                                          /* sltu $8, $10, $9  # $8 = $10 < $9 ? 1 : 0 */
642                 MIPS32_BNE(8, 0, NEG16(3)),                                                     /* bne $8, $0, synci_loop */
643                 MIPS32_ADDU(9, 9, 11),                                                          /* $9 += MIPS32_SYNCI_STEP */
644                 MIPS32_SYNC,
645                                                                                                                         /* end: */
646                 MIPS32_LW(11, 0, 15),                                                           /* lw $11,($15) */
647                 MIPS32_LW(10, 0, 15),                                                           /* lw $10,($15) */
648                 MIPS32_LW(9, 0, 15),                                                            /* lw $9,($15) */
649                 MIPS32_LW(8, 0, 15),                                                            /* lw $8,($15) */
650                 MIPS32_B(NEG16(24)),                                                            /* b start */
651                 MIPS32_MFC0(15, 31, 0),                                                         /* move COP0 DeSave to $15 */
652         };
653
654         /* TODO remove array */
655         uint32_t *param_in = malloc(2 * sizeof(uint32_t));
656         int retval;
657         param_in[0] = start_addr;
658         param_in[1] = end_addr;
659
660         retval = mips32_pracc_exec(ejtag_info, ARRAY_SIZE(code), code, 2, param_in, 0, NULL, 1);
661
662         free(param_in);
663
664         return retval;
665 }
666
667 /**
668  * \b mips32_pracc_clean_invalidate_cache
669  *
670  * Writeback D$ and Invalidate I$
671  * so that the instructions written can be visible to CPU
672  */
673 static int mips32_pracc_clean_invalidate_cache(struct mips_ejtag *ejtag_info,
674                                                                                                         uint32_t start_addr, uint32_t end_addr)
675 {
676         static const uint32_t code[] = {
677                                                                                                                         /* start: */
678                 MIPS32_MTC0(15, 31, 0),                                                         /* move $15 to COP0 DeSave */
679                 MIPS32_LUI(15, UPPER16(MIPS32_PRACC_STACK)),            /* $15 = MIPS32_PRACC_STACK */
680                 MIPS32_ORI(15, 15, LOWER16(MIPS32_PRACC_STACK)),
681                 MIPS32_SW(8, 0, 15),                                                            /* sw $8,($15) */
682                 MIPS32_SW(9, 0, 15),                                                            /* sw $9,($15) */
683                 MIPS32_SW(10, 0, 15),                                                           /* sw $10,($15) */
684                 MIPS32_SW(11, 0, 15),                                                           /* sw $11,($15) */
685
686                 MIPS32_LUI(8, UPPER16(MIPS32_PRACC_PARAM_IN)),          /* $8 = MIPS32_PRACC_PARAM_IN */
687                 MIPS32_ORI(8, 8, LOWER16(MIPS32_PRACC_PARAM_IN)),
688                 MIPS32_LW(9, 0, 8),                                                                     /* Load write start_addr to $9 */
689                 MIPS32_LW(10, 4, 8),                                                            /* Load write end_addr to $10 */
690                 MIPS32_LW(11, 8, 8),                                                            /* Load write clsiz to $11 */
691
692                                                                                                                         /* cache_loop: */
693                 MIPS32_SLTU(8, 10, 9),                                                          /* sltu $8, $10, $9  :  $8 <- $10 < $9 ? */
694                 MIPS32_BGTZ(8, 6),                                                                      /* bgtz $8, end */
695                 MIPS32_NOP,
696
697                 MIPS32_CACHE(MIPS32_CACHE_D_HIT_WRITEBACK, 0, 9),               /* cache Hit_Writeback_D, 0($9) */
698                 MIPS32_CACHE(MIPS32_CACHE_I_HIT_INVALIDATE, 0, 9),      /* cache Hit_Invalidate_I, 0($9) */
699
700                 MIPS32_ADDU(9, 9, 11),                                                          /* $9 += $11 */
701
702                 MIPS32_B(NEG16(7)),                                                                     /* b cache_loop */
703                 MIPS32_NOP,
704                                                                                                                         /* end: */
705                 MIPS32_LW(11, 0, 15),                                                           /* lw $11,($15) */
706                 MIPS32_LW(10, 0, 15),                                                           /* lw $10,($15) */
707                 MIPS32_LW(9, 0, 15),                                                            /* lw $9,($15) */
708                 MIPS32_LW(8, 0, 15),                                                            /* lw $8,($15) */
709                 MIPS32_B(NEG16(25)),                                                            /* b start */
710                 MIPS32_MFC0(15, 31, 0),                                                         /* move COP0 DeSave to $15 */
711         };
712
713         /**
714          * Find cache line size in bytes
715          */
716         uint32_t conf;
717         uint32_t dl, clsiz;
718
719         mips32_cp0_read(ejtag_info, &conf, 16, 1);
720         dl = (conf & MIPS32_CONFIG1_DL_MASK) >> MIPS32_CONFIG1_DL_SHIFT;
721
722         /* dl encoding : dl=1 => 4 bytes, dl=2 => 8 bytes, etc... */
723         clsiz = 0x2 << dl;
724
725         /* TODO remove array */
726         uint32_t *param_in = malloc(3 * sizeof(uint32_t));
727         int retval;
728         param_in[0] = start_addr;
729         param_in[1] = end_addr;
730         param_in[2] = clsiz;
731
732         retval = mips32_pracc_exec(ejtag_info, ARRAY_SIZE(code), code, 3, param_in, 0, NULL, 1);
733
734         free(param_in);
735
736         return retval;
737 }
738
739 static int mips32_pracc_write_mem_generic(struct mips_ejtag *ejtag_info, uint32_t addr, int size, int count, void *buf)
740 {
741         uint32_t *code;
742         code = malloc((128 * 3 + 9) * sizeof(uint32_t));        /* alloc memory for the worst case */
743         if (code == NULL) {
744                 LOG_ERROR("Out of memory");
745                 return ERROR_FAIL;
746         }
747
748         uint32_t *buf32 = buf;
749         uint16_t *buf16 = buf;
750         uint8_t *buf8 = buf;
751
752         int i;
753         int retval = ERROR_FAIL;
754         uint32_t *code_p;
755         uint32_t upper_base_addr, last_upper_base_addr;
756         int this_round_count;
757         int code_len;
758
759         while (count) {
760                 this_round_count = (count > 128) ? 128 : count;
761                 last_upper_base_addr = UPPER16((addr + 0x8000));
762                 code_p = code;
763
764                 *code_p++ = MIPS32_MTC0(15, 31, 0);                                     /* save $15 in DeSave */
765                 *code_p++ = MIPS32_LUI(15, last_upper_base_addr);                       /* load $15 with memory base address */
766                 code_len = 2;
767
768                 for (i = 0; i != this_round_count; i++) {
769                         upper_base_addr = UPPER16((addr + 0x8000));
770                         if (last_upper_base_addr != upper_base_addr) {
771                                 *code_p++ = MIPS32_LUI(15, upper_base_addr);            /* if needed, change upper address in $15*/
772                                 code_len++;
773                                 last_upper_base_addr = upper_base_addr;
774                         }
775
776                         if (size == 4) {        /* for word write check if one half word is 0 and load it accordingly */
777                                 if (LOWER16(*buf32) == 0) {
778                                         *code_p++ = MIPS32_LUI(8, UPPER16(*buf32));             /* load only upper value */
779                                         code_len++;
780                                 } else if (UPPER16(*buf32) == 0) {
781                                         *code_p++ = MIPS32_ORI(8, 0, LOWER16(*buf32));          /* load only lower value */
782                                         code_len++;
783                                 } else {
784                                         *code_p++ = MIPS32_LUI(8, UPPER16(*buf32));             /* load upper and lower */
785                                         *code_p++ = MIPS32_ORI(8, 8, LOWER16(*buf32));
786                                         code_len += 2;
787                                 }
788                                 *code_p++ = MIPS32_SW(8, LOWER16(addr), 15);                    /* store word to memory */
789                                 code_len++;
790                                 buf32++;
791
792                         } else if (size == 2) {
793                                 *code_p++ = MIPS32_ORI(8, 0, *buf16);                           /* load lower value */
794                                 *code_p++ = MIPS32_SH(8, LOWER16(addr), 15);            /* store half word to memory */
795                                 code_len += 2;
796                                 buf16++;
797
798                         } else {
799                                 *code_p++ = MIPS32_ORI(8, 0, *buf8);                            /* load lower value */
800                                 *code_p++ = MIPS32_SB(8, LOWER16(addr), 15);                    /* store byte to memory */
801                                 code_len += 2;
802                                 buf8++;
803                         }
804
805                         addr += size;
806                 }
807
808                 *code_p++ = MIPS32_LUI(8, UPPER16(ejtag_info->reg8)),                   /* restore upper 16 bits of reg 8 */
809                 *code_p++ = MIPS32_ORI(8, 8, LOWER16(ejtag_info->reg8)),                /* restore lower 16 bits of reg 8 */
810
811                 code_len += 4;
812                 *code_p++ = MIPS32_B(NEG16(code_len - 1));                                      /* jump to start */
813                 *code_p = MIPS32_MFC0(15, 31, 0);                                       /* restore $15 from DeSave */
814
815                 retval = mips32_pracc_exec(ejtag_info, code_len, code, 0, NULL, 0, NULL, 1);
816                 if (retval != ERROR_OK)
817                         goto exit;
818
819                 count -= this_round_count;
820         }
821
822 exit:
823         free(code);
824         return retval;
825 }
826
827 int mips32_pracc_write_mem(struct mips_ejtag *ejtag_info, uint32_t addr, int size, int count, void *buf)
828 {
829         int retval = mips32_pracc_write_mem_generic(ejtag_info, addr, size, count, buf);
830         if (retval != ERROR_OK)
831                 return retval;
832
833         /**
834          * If we are in the cachable regoion and cache is activated,
835          * we must clean D$ + invalidate I$ after we did the write,
836          * so that changes do not continue to live only in D$, but to be
837          * replicated in I$ also (maybe we wrote the istructions)
838          */
839         uint32_t conf = 0;
840         int cached = 0;
841
842         if ((KSEGX(addr) == KSEG1) || ((addr >= 0xff200000) && (addr <= 0xff3fffff)))
843                 return retval; /*Nothing to do*/
844
845         mips32_cp0_read(ejtag_info, &conf, 16, 0);
846
847         switch (KSEGX(addr)) {
848                 case KUSEG:
849                         cached = (conf & MIPS32_CONFIG0_KU_MASK) >> MIPS32_CONFIG0_KU_SHIFT;
850                         break;
851                 case KSEG0:
852                         cached = (conf & MIPS32_CONFIG0_K0_MASK) >> MIPS32_CONFIG0_K0_SHIFT;
853                         break;
854                 case KSEG2:
855                 case KSEG3:
856                         cached = (conf & MIPS32_CONFIG0_K23_MASK) >> MIPS32_CONFIG0_K23_SHIFT;
857                         break;
858                 default:
859                         /* what ? */
860                         break;
861         }
862
863         /**
864          * Check cachablitiy bits coherency algorithm -
865          * is the region cacheable or uncached.
866          * If cacheable we have to synchronize the cache
867          */
868         if (cached == 0x3) {
869                 uint32_t start_addr, end_addr;
870                 uint32_t rel;
871
872                 start_addr = addr;
873                 end_addr = addr + count * size;
874
875                 /** select cache synchronisation mechanism based on Architecture Release */
876                 rel = (conf & MIPS32_CONFIG0_AR_MASK) >> MIPS32_CONFIG0_AR_SHIFT;
877                 switch (rel) {
878                         case MIPS32_ARCH_REL1:
879                                 /* MIPS32/64 Release 1 - we must use cache instruction */
880                                 mips32_pracc_clean_invalidate_cache(ejtag_info, start_addr, end_addr);
881                                 break;
882                         case MIPS32_ARCH_REL2:
883                                 /* MIPS32/64 Release 2 - we can use synci instruction */
884                                 mips32_pracc_sync_cache(ejtag_info, start_addr, end_addr);
885                                 break;
886                         default:
887                                 /* what ? */
888                                 break;
889                 }
890         }
891
892         return retval;
893 }
894
895 int mips32_pracc_write_regs(struct mips_ejtag *ejtag_info, uint32_t *regs)
896 {
897         static const uint32_t cp0_write_code[] = {
898                 MIPS32_MTC0(1, 12, 0),                                                  /* move $1 to status */
899                 MIPS32_MTLO(1),                                                                 /* move $1 to lo */
900                 MIPS32_MTHI(1),                                                                 /* move $1 to hi */
901                 MIPS32_MTC0(1, 8, 0),                                                   /* move $1 to badvaddr */
902                 MIPS32_MTC0(1, 13, 0),                                                  /* move $1 to cause*/
903                 MIPS32_MTC0(1, 24, 0),                                                  /* move $1 to depc (pc) */
904         };
905
906         uint32_t *code;
907         code = malloc((37 * 2 + 6 + 1) * sizeof(uint32_t));     /* alloc memory for the worst case */
908         if (code == NULL) {
909                 LOG_ERROR("Out of memory");
910                 return ERROR_FAIL;
911         }
912
913         uint32_t *code_p = code;
914         int code_len = 0;
915         /* load registers 2 to 31 with lui an ori instructions, check if same instructions can be saved */
916         for (int i = 2; i < 32; i++) {
917                 if (LOWER16((regs[i])) == 0) {
918                         *code_p++ = MIPS32_LUI(i, UPPER16((regs[i])));          /* if lower half word is 0, lui instruction only */
919                         code_len++;
920                 } else if (UPPER16((regs[i])) == 0) {
921                         *code_p++ = MIPS32_ORI(i, 0, LOWER16((regs[i])));       /* if upper half word is 0, ori with $0 only*/
922                         code_len++;
923                 } else {
924                         *code_p++ = MIPS32_LUI(i, UPPER16((regs[i])));          /* default, load with lui and ori instructions */
925                         *code_p++ = MIPS32_ORI(i, i, LOWER16((regs[i])));
926                         code_len += 2;
927                 }
928         }
929
930         for (int i = 0; i != 6; i++) {
931                 *code_p++ = MIPS32_LUI(1, UPPER16((regs[i + 32])));             /* load CPO value in $1, with lui and ori */
932                 *code_p++ = MIPS32_ORI(1, 1, LOWER16((regs[i + 32])));
933                 *code_p++ = cp0_write_code[i];                                  /* write value from $1 to CPO register */
934                 code_len += 3;
935         }
936
937         *code_p++ = MIPS32_LUI(1, UPPER16((regs[1])));                          /* load upper half word in $1 */
938         code_len += 3;
939         *code_p++ = MIPS32_B(NEG16(code_len - 1)),                                                      /* b start */
940         *code_p = MIPS32_ORI(1, 1, LOWER16((regs[1])));                         /* load lower half word in $1 */
941
942         int retval = mips32_pracc_exec(ejtag_info, code_len, code, 0, NULL, 0, NULL, 1);
943         free(code);
944
945         ejtag_info->reg8 = regs[8];
946         ejtag_info->reg9 = regs[9];
947         return retval;
948 }
949
950 int mips32_pracc_read_regs(struct mips_ejtag *ejtag_info, uint32_t *regs)
951 {
952         static int cp0_read_code[] = {
953                 MIPS32_MFC0(2, 12, 0),                                                  /* move status to $2 */
954                 MIPS32_MFLO(2),                                                                 /* move lo to $2 */
955                 MIPS32_MFHI(2),                                                                 /* move hi to $2 */
956                 MIPS32_MFC0(2, 8, 0),                                                   /* move badvaddr to $2 */
957                 MIPS32_MFC0(2, 13, 0),                                                  /* move cause to $2 */
958                 MIPS32_MFC0(2, 24, 0),                                                  /* move depc (pc) to $2 */
959         };
960
961         uint32_t *code;
962         code = malloc(49 * sizeof(uint32_t));
963         if (code == NULL) {
964                 LOG_ERROR("Out of memory");
965                 return ERROR_FAIL;
966         }
967
968         uint32_t *code_p = code;
969
970         *code_p++ = MIPS32_MTC0(1, 31, 0),                                              /* move $1 to COP0 DeSave */
971         *code_p++ = MIPS32_LUI(1, PRACC_UPPER_BASE_ADDR);                               /* $1 = MIP32_PRACC_BASE_ADDR */
972
973         for (int i = 2; i != 32; i++)
974                 *code_p++ = MIPS32_SW(i, PRACC_OUT_OFFSET + (i * 4), 1);                /* store GPR's 2 to 31 */
975
976         for (int i = 0; i != 6; i++) {
977                 *code_p++ = cp0_read_code[i];                                           /* load COP0 needed registers to $2 */
978                 *code_p++ = MIPS32_SW(2, PRACC_OUT_OFFSET + (i + 32) * 4, 1);   /* store COP0 registers from $2 to param out */
979         }
980
981         *code_p++ = MIPS32_MFC0(2, 31, 0),                                              /* move DeSave to $2, reg1 value */
982         *code_p++ = MIPS32_SW(2, PRACC_OUT_OFFSET + 4, 1);                              /* store reg1 value from $2 to param out */
983
984         *code_p++ = MIPS32_LW(2, PRACC_OUT_OFFSET + 8, 1);                              /* restore $2 from param out (singularity) */
985         *code_p++ = MIPS32_B(NEG16(48));                                                /* b start */
986         *code_p = MIPS32_MFC0(1, 31, 0);                                                /* move COP0 DeSave to $1 */
987
988         int retval = mips32_pracc_exec(ejtag_info, 49, code, 0, NULL, MIPS32NUMCOREREGS, regs, 1);
989         free(code);
990
991         ejtag_info->reg8 = regs[8];
992         ejtag_info->reg9 = regs[9];
993         return retval;
994 }
995
996 /* fastdata upload/download requires an initialized working area
997  * to load the download code; it should not be called otherwise
998  * fetch order from the fastdata area
999  * 1. start addr
1000  * 2. end addr
1001  * 3. data ...
1002  */
1003 int mips32_pracc_fastdata_xfer(struct mips_ejtag *ejtag_info, struct working_area *source,
1004                 int write_t, uint32_t addr, int count, uint32_t *buf)
1005 {
1006         uint32_t handler_code[] = {
1007                 /* caution when editing, table is modified below */
1008                 /* r15 points to the start of this code */
1009                 MIPS32_SW(8, MIPS32_FASTDATA_HANDLER_SIZE - 4, 15),
1010                 MIPS32_SW(9, MIPS32_FASTDATA_HANDLER_SIZE - 8, 15),
1011                 MIPS32_SW(10, MIPS32_FASTDATA_HANDLER_SIZE - 12, 15),
1012                 MIPS32_SW(11, MIPS32_FASTDATA_HANDLER_SIZE - 16, 15),
1013                 /* start of fastdata area in t0 */
1014                 MIPS32_LUI(8, UPPER16(MIPS32_PRACC_FASTDATA_AREA)),
1015                 MIPS32_ORI(8, 8, LOWER16(MIPS32_PRACC_FASTDATA_AREA)),
1016                 MIPS32_LW(9, 0, 8),                                                             /* start addr in t1 */
1017                 MIPS32_LW(10, 0, 8),                                                    /* end addr to t2 */
1018                                                                                                                 /* loop: */
1019                 /* 8 */ MIPS32_LW(11, 0, 0),                                    /* lw t3,[t8 | r9] */
1020                 /* 9 */ MIPS32_SW(11, 0, 0),                                    /* sw t3,[r9 | r8] */
1021                 MIPS32_BNE(10, 9, NEG16(3)),                                    /* bne $t2,t1,loop */
1022                 MIPS32_ADDI(9, 9, 4),                                                   /* addi t1,t1,4 */
1023
1024                 MIPS32_LW(8, MIPS32_FASTDATA_HANDLER_SIZE - 4, 15),
1025                 MIPS32_LW(9, MIPS32_FASTDATA_HANDLER_SIZE - 8, 15),
1026                 MIPS32_LW(10, MIPS32_FASTDATA_HANDLER_SIZE - 12, 15),
1027                 MIPS32_LW(11, MIPS32_FASTDATA_HANDLER_SIZE - 16, 15),
1028
1029                 MIPS32_LUI(15, UPPER16(MIPS32_PRACC_TEXT)),
1030                 MIPS32_ORI(15, 15, LOWER16(MIPS32_PRACC_TEXT)),
1031                 MIPS32_JR(15),                                                          /* jr start */
1032                 MIPS32_MFC0(15, 31, 0),                                         /* move COP0 DeSave to $15 */
1033         };
1034
1035         uint32_t jmp_code[] = {
1036                 MIPS32_MTC0(15, 31, 0),                 /* move $15 to COP0 DeSave */
1037                 /* 1 */ MIPS32_LUI(15, 0),              /* addr of working area added below */
1038                 /* 2 */ MIPS32_ORI(15, 15, 0),  /* addr of working area added below */
1039                 MIPS32_JR(15),                                  /* jump to ram program */
1040                 MIPS32_NOP,
1041         };
1042
1043         int retval, i;
1044         uint32_t val, ejtag_ctrl, address;
1045
1046         if (source->size < MIPS32_FASTDATA_HANDLER_SIZE)
1047                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1048
1049         if (write_t) {
1050                 handler_code[8] = MIPS32_LW(11, 0, 8);  /* load data from probe at fastdata area */
1051                 handler_code[9] = MIPS32_SW(11, 0, 9);  /* store data to RAM @ r9 */
1052         } else {
1053                 handler_code[8] = MIPS32_LW(11, 0, 9);  /* load data from RAM @ r9 */
1054                 handler_code[9] = MIPS32_SW(11, 0, 8);  /* store data to probe at fastdata area */
1055         }
1056
1057         /* write program into RAM */
1058         if (write_t != ejtag_info->fast_access_save) {
1059                 mips32_pracc_write_mem_generic(ejtag_info, source->address, 4, ARRAY_SIZE(handler_code), handler_code);
1060                 /* save previous operation to speed to any consecutive read/writes */
1061                 ejtag_info->fast_access_save = write_t;
1062         }
1063
1064         LOG_DEBUG("%s using 0x%.8" PRIx32 " for write handler", __func__, source->address);
1065
1066         jmp_code[1] |= UPPER16(source->address);
1067         jmp_code[2] |= LOWER16(source->address);
1068
1069         for (i = 0; i < (int) ARRAY_SIZE(jmp_code); i++) {
1070                 retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl);
1071                 if (retval != ERROR_OK)
1072                         return retval;
1073
1074                 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_DATA);
1075                 mips_ejtag_drscan_32_out(ejtag_info, jmp_code[i]);
1076
1077                 /* Clear the access pending bit (let the processor eat!) */
1078                 ejtag_ctrl = ejtag_info->ejtag_ctrl & ~EJTAG_CTRL_PRACC;
1079                 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_CONTROL);
1080                 mips_ejtag_drscan_32_out(ejtag_info, ejtag_ctrl);
1081         }
1082
1083         /* wait PrAcc pending bit for FASTDATA write */
1084         retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl);
1085         if (retval != ERROR_OK)
1086                 return retval;
1087
1088         /* next fetch to dmseg should be in FASTDATA_AREA, check */
1089         address = 0;
1090         mips_ejtag_set_instr(ejtag_info, EJTAG_INST_ADDRESS);
1091         retval = mips_ejtag_drscan_32(ejtag_info, &address);
1092         if (retval != ERROR_OK)
1093                 return retval;
1094
1095         if (address != MIPS32_PRACC_FASTDATA_AREA)
1096                 return ERROR_FAIL;
1097
1098         /* Send the load start address */
1099         val = addr;
1100         mips_ejtag_set_instr(ejtag_info, EJTAG_INST_FASTDATA);
1101         mips_ejtag_fastdata_scan(ejtag_info, 1, &val);
1102
1103         retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl);
1104         if (retval != ERROR_OK)
1105                 return retval;
1106
1107         /* Send the load end address */
1108         val = addr + (count - 1) * 4;
1109         mips_ejtag_set_instr(ejtag_info, EJTAG_INST_FASTDATA);
1110         mips_ejtag_fastdata_scan(ejtag_info, 1, &val);
1111
1112         for (i = 0; i < count; i++) {
1113                 retval = mips_ejtag_fastdata_scan(ejtag_info, write_t, buf++);
1114                 if (retval != ERROR_OK)
1115                         return retval;
1116         }
1117
1118         retval = jtag_execute_queue();
1119         if (retval != ERROR_OK) {
1120                 LOG_ERROR("fastdata load failed");
1121                 return retval;
1122         }
1123
1124         retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl);
1125         if (retval != ERROR_OK)
1126                 return retval;
1127
1128         address = 0;
1129         mips_ejtag_set_instr(ejtag_info, EJTAG_INST_ADDRESS);
1130         retval = mips_ejtag_drscan_32(ejtag_info, &address);
1131         if (retval != ERROR_OK)
1132                 return retval;
1133
1134         if (address != MIPS32_PRACC_TEXT)
1135                 LOG_ERROR("mini program did not return to start");
1136
1137         return retval;
1138 }