mips32: use 'unsigned int' for CPU register indices
[fw/openocd] / src / target / mips32.c
1 /***************************************************************************
2  *   Copyright (C) 2008 by Spencer Oliver                                  *
3  *   spen@spen-soft.co.uk                                                  *
4  *                                                                         *
5  *   Copyright (C) 2008 by David T.L. Wong                                 *
6  *                                                                         *
7  *   Copyright (C) 2007,2008 Ã˜yvind Harboe                                 *
8  *   oyvind.harboe@zylin.com                                               *
9  *                                                                         *
10  *   Copyright (C) 2011 by Drasko DRASKOVIC                                *
11  *   drasko.draskovic@gmail.com                                            *
12  *                                                                         *
13  *   This program is free software; you can redistribute it and/or modify  *
14  *   it under the terms of the GNU General Public License as published by  *
15  *   the Free Software Foundation; either version 2 of the License, or     *
16  *   (at your option) any later version.                                   *
17  *                                                                         *
18  *   This program is distributed in the hope that it will be useful,       *
19  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
20  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
21  *   GNU General Public License for more details.                          *
22  *                                                                         *
23  *   You should have received a copy of the GNU General Public License     *
24  *   along with this program; if not, write to the                         *
25  *   Free Software Foundation, Inc.,                                       *
26  *   51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.           *
27  ***************************************************************************/
28
29 #ifdef HAVE_CONFIG_H
30 #include "config.h"
31 #endif
32
33 #include "mips32.h"
34 #include "breakpoints.h"
35 #include "algorithm.h"
36 #include "register.h"
37
38 static const char *mips_isa_strings[] = {
39         "MIPS32", "MIPS16e"
40 };
41
42 static const struct {
43         unsigned id;
44         const char *name;
45 } mips32_regs[MIPS32NUMCOREREGS] = {
46         { 0, "zero", },
47         { 1, "at", },
48         { 2, "v0", },
49         { 3, "v1", },
50         { 4, "a0", },
51         { 5, "a1", },
52         { 6, "a2", },
53         { 7, "a3", },
54         { 8, "t0", },
55         { 9, "t1", },
56         { 10, "t2", },
57         { 11, "t3", },
58         { 12, "t4", },
59         { 13, "t5", },
60         { 14, "t6", },
61         { 15, "t7", },
62         { 16, "s0", },
63         { 17, "s1", },
64         { 18, "s2", },
65         { 19, "s3", },
66         { 20, "s4", },
67         { 21, "s5", },
68         { 22, "s6", },
69         { 23, "s7", },
70         { 24, "t8", },
71         { 25, "t9", },
72         { 26, "k0", },
73         { 27, "k1", },
74         { 28, "gp", },
75         { 29, "sp", },
76         { 30, "fp", },
77         { 31, "ra", },
78
79         { 32, "status", },
80         { 33, "lo", },
81         { 34, "hi", },
82         { 35, "badvaddr", },
83         { 36, "cause", },
84         { 37, "pc" },
85 };
86
87 /* number of mips dummy fp regs fp0 - fp31 + fsr and fir
88  * we also add 18 unknown registers to handle gdb requests */
89
90 #define MIPS32NUMFPREGS (34 + 18)
91
92 static uint8_t mips32_gdb_dummy_fp_value[] = {0, 0, 0, 0};
93
94 static struct reg mips32_gdb_dummy_fp_reg = {
95         .name = "GDB dummy floating-point register",
96         .value = mips32_gdb_dummy_fp_value,
97         .dirty = 0,
98         .valid = 1,
99         .size = 32,
100         .arch_info = NULL,
101 };
102
103 static int mips32_get_core_reg(struct reg *reg)
104 {
105         int retval;
106         struct mips32_core_reg *mips32_reg = reg->arch_info;
107         struct target *target = mips32_reg->target;
108         struct mips32_common *mips32_target = target_to_mips32(target);
109
110         if (target->state != TARGET_HALTED)
111                 return ERROR_TARGET_NOT_HALTED;
112
113         retval = mips32_target->read_core_reg(target, mips32_reg->num);
114
115         return retval;
116 }
117
118 static int mips32_set_core_reg(struct reg *reg, uint8_t *buf)
119 {
120         struct mips32_core_reg *mips32_reg = reg->arch_info;
121         struct target *target = mips32_reg->target;
122         uint32_t value = buf_get_u32(buf, 0, 32);
123
124         if (target->state != TARGET_HALTED)
125                 return ERROR_TARGET_NOT_HALTED;
126
127         buf_set_u32(reg->value, 0, 32, value);
128         reg->dirty = 1;
129         reg->valid = 1;
130
131         return ERROR_OK;
132 }
133
134 static int mips32_read_core_reg(struct target *target, unsigned int num)
135 {
136         uint32_t reg_value;
137
138         /* get pointers to arch-specific information */
139         struct mips32_common *mips32 = target_to_mips32(target);
140
141         if (num >= MIPS32NUMCOREREGS)
142                 return ERROR_COMMAND_SYNTAX_ERROR;
143
144         reg_value = mips32->core_regs[num];
145         buf_set_u32(mips32->core_cache->reg_list[num].value, 0, 32, reg_value);
146         mips32->core_cache->reg_list[num].valid = 1;
147         mips32->core_cache->reg_list[num].dirty = 0;
148
149         return ERROR_OK;
150 }
151
152 static int mips32_write_core_reg(struct target *target, unsigned int num)
153 {
154         uint32_t reg_value;
155
156         /* get pointers to arch-specific information */
157         struct mips32_common *mips32 = target_to_mips32(target);
158
159         if (num >= MIPS32NUMCOREREGS)
160                 return ERROR_COMMAND_SYNTAX_ERROR;
161
162         reg_value = buf_get_u32(mips32->core_cache->reg_list[num].value, 0, 32);
163         mips32->core_regs[num] = reg_value;
164         LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", num , reg_value);
165         mips32->core_cache->reg_list[num].valid = 1;
166         mips32->core_cache->reg_list[num].dirty = 0;
167
168         return ERROR_OK;
169 }
170
171 int mips32_get_gdb_reg_list(struct target *target, struct reg **reg_list[],
172                 int *reg_list_size, enum target_register_class reg_class)
173 {
174         /* get pointers to arch-specific information */
175         struct mips32_common *mips32 = target_to_mips32(target);
176         unsigned int i;
177
178         /* include floating point registers */
179         *reg_list_size = MIPS32NUMCOREREGS + MIPS32NUMFPREGS;
180         *reg_list = malloc(sizeof(struct reg *) * (*reg_list_size));
181
182         for (i = 0; i < MIPS32NUMCOREREGS; i++)
183                 (*reg_list)[i] = &mips32->core_cache->reg_list[i];
184
185         /* add dummy floating points regs */
186         for (i = MIPS32NUMCOREREGS; i < (MIPS32NUMCOREREGS + MIPS32NUMFPREGS); i++)
187                 (*reg_list)[i] = &mips32_gdb_dummy_fp_reg;
188
189         return ERROR_OK;
190 }
191
192 int mips32_save_context(struct target *target)
193 {
194         unsigned int i;
195
196         /* get pointers to arch-specific information */
197         struct mips32_common *mips32 = target_to_mips32(target);
198         struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
199
200         /* read core registers */
201         mips32_pracc_read_regs(ejtag_info, mips32->core_regs);
202
203         for (i = 0; i < MIPS32NUMCOREREGS; i++) {
204                 if (!mips32->core_cache->reg_list[i].valid)
205                         mips32->read_core_reg(target, i);
206         }
207
208         return ERROR_OK;
209 }
210
211 int mips32_restore_context(struct target *target)
212 {
213         unsigned int i;
214
215         /* get pointers to arch-specific information */
216         struct mips32_common *mips32 = target_to_mips32(target);
217         struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
218
219         for (i = 0; i < MIPS32NUMCOREREGS; i++) {
220                 if (mips32->core_cache->reg_list[i].dirty)
221                         mips32->write_core_reg(target, i);
222         }
223
224         /* write core regs */
225         mips32_pracc_write_regs(ejtag_info, mips32->core_regs);
226
227         return ERROR_OK;
228 }
229
230 int mips32_arch_state(struct target *target)
231 {
232         struct mips32_common *mips32 = target_to_mips32(target);
233
234         LOG_USER("target halted in %s mode due to %s, pc: 0x%8.8" PRIx32 "",
235                 mips_isa_strings[mips32->isa_mode],
236                 debug_reason_name(target),
237                 buf_get_u32(mips32->core_cache->reg_list[MIPS32_PC].value, 0, 32));
238
239         return ERROR_OK;
240 }
241
242 static const struct reg_arch_type mips32_reg_type = {
243         .get = mips32_get_core_reg,
244         .set = mips32_set_core_reg,
245 };
246
247 struct reg_cache *mips32_build_reg_cache(struct target *target)
248 {
249         /* get pointers to arch-specific information */
250         struct mips32_common *mips32 = target_to_mips32(target);
251
252         int num_regs = MIPS32NUMCOREREGS;
253         struct reg_cache **cache_p = register_get_last_cache_p(&target->reg_cache);
254         struct reg_cache *cache = malloc(sizeof(struct reg_cache));
255         struct reg *reg_list = calloc(num_regs, sizeof(struct reg));
256         struct mips32_core_reg *arch_info = malloc(sizeof(struct mips32_core_reg) * num_regs);
257         int i;
258
259         register_init_dummy(&mips32_gdb_dummy_fp_reg);
260
261         /* Build the process context cache */
262         cache->name = "mips32 registers";
263         cache->next = NULL;
264         cache->reg_list = reg_list;
265         cache->num_regs = num_regs;
266         (*cache_p) = cache;
267         mips32->core_cache = cache;
268
269         for (i = 0; i < num_regs; i++) {
270                 arch_info[i].num = mips32_regs[i].id;
271                 arch_info[i].target = target;
272                 arch_info[i].mips32_common = mips32;
273
274                 reg_list[i].name = mips32_regs[i].name;
275                 reg_list[i].size = 32;
276                 reg_list[i].value = calloc(1, 4);
277                 reg_list[i].dirty = 0;
278                 reg_list[i].valid = 0;
279                 reg_list[i].type = &mips32_reg_type;
280                 reg_list[i].arch_info = &arch_info[i];
281         }
282
283         return cache;
284 }
285
286 int mips32_init_arch_info(struct target *target, struct mips32_common *mips32, struct jtag_tap *tap)
287 {
288         target->arch_info = mips32;
289         mips32->common_magic = MIPS32_COMMON_MAGIC;
290         mips32->fast_data_area = NULL;
291
292         /* has breakpoint/watchpoint unit been scanned */
293         mips32->bp_scanned = 0;
294         mips32->data_break_list = NULL;
295
296         mips32->ejtag_info.tap = tap;
297         mips32->read_core_reg = mips32_read_core_reg;
298         mips32->write_core_reg = mips32_write_core_reg;
299
300         mips32->ejtag_info.scan_delay = 2000000;        /* Initial default value */
301         mips32->ejtag_info.mode = 0;                    /* Initial default value */
302
303         return ERROR_OK;
304 }
305
306 /* run to exit point. return error if exit point was not reached. */
307 static int mips32_run_and_wait(struct target *target, uint32_t entry_point,
308                 int timeout_ms, uint32_t exit_point, struct mips32_common *mips32)
309 {
310         uint32_t pc;
311         int retval;
312         /* This code relies on the target specific  resume() and  poll()->debug_entry()
313          * sequence to write register values to the processor and the read them back */
314         retval = target_resume(target, 0, entry_point, 0, 1);
315         if (retval != ERROR_OK)
316                 return retval;
317
318         retval = target_wait_state(target, TARGET_HALTED, timeout_ms);
319         /* If the target fails to halt due to the breakpoint, force a halt */
320         if (retval != ERROR_OK || target->state != TARGET_HALTED) {
321                 retval = target_halt(target);
322                 if (retval != ERROR_OK)
323                         return retval;
324                 retval = target_wait_state(target, TARGET_HALTED, 500);
325                 if (retval != ERROR_OK)
326                         return retval;
327                 return ERROR_TARGET_TIMEOUT;
328         }
329
330         pc = buf_get_u32(mips32->core_cache->reg_list[MIPS32_PC].value, 0, 32);
331         if (exit_point && (pc != exit_point)) {
332                 LOG_DEBUG("failed algorithm halted at 0x%" PRIx32 " ", pc);
333                 return ERROR_TARGET_TIMEOUT;
334         }
335
336         return ERROR_OK;
337 }
338
339 int mips32_run_algorithm(struct target *target, int num_mem_params,
340                 struct mem_param *mem_params, int num_reg_params,
341                 struct reg_param *reg_params, uint32_t entry_point,
342                 uint32_t exit_point, int timeout_ms, void *arch_info)
343 {
344         struct mips32_common *mips32 = target_to_mips32(target);
345         struct mips32_algorithm *mips32_algorithm_info = arch_info;
346         enum mips32_isa_mode isa_mode = mips32->isa_mode;
347
348         uint32_t context[MIPS32NUMCOREREGS];
349         int retval = ERROR_OK;
350
351         LOG_DEBUG("Running algorithm");
352
353         /* NOTE: mips32_run_algorithm requires that each algorithm uses a software breakpoint
354          * at the exit point */
355
356         if (mips32->common_magic != MIPS32_COMMON_MAGIC) {
357                 LOG_ERROR("current target isn't a MIPS32 target");
358                 return ERROR_TARGET_INVALID;
359         }
360
361         if (target->state != TARGET_HALTED) {
362                 LOG_WARNING("target not halted");
363                 return ERROR_TARGET_NOT_HALTED;
364         }
365
366         /* refresh core register cache */
367         for (unsigned int i = 0; i < MIPS32NUMCOREREGS; i++) {
368                 if (!mips32->core_cache->reg_list[i].valid)
369                         mips32->read_core_reg(target, i);
370                 context[i] = buf_get_u32(mips32->core_cache->reg_list[i].value, 0, 32);
371         }
372
373         for (int i = 0; i < num_mem_params; i++) {
374                 retval = target_write_buffer(target, mem_params[i].address,
375                                 mem_params[i].size, mem_params[i].value);
376                 if (retval != ERROR_OK)
377                         return retval;
378         }
379
380         for (int i = 0; i < num_reg_params; i++) {
381                 struct reg *reg = register_get_by_name(mips32->core_cache, reg_params[i].reg_name, 0);
382
383                 if (!reg) {
384                         LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
385                         return ERROR_COMMAND_SYNTAX_ERROR;
386                 }
387
388                 if (reg->size != reg_params[i].size) {
389                         LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size",
390                                         reg_params[i].reg_name);
391                         return ERROR_COMMAND_SYNTAX_ERROR;
392                 }
393
394                 mips32_set_core_reg(reg, reg_params[i].value);
395         }
396
397         mips32->isa_mode = mips32_algorithm_info->isa_mode;
398
399         retval = mips32_run_and_wait(target, entry_point, timeout_ms, exit_point, mips32);
400
401         if (retval != ERROR_OK)
402                 return retval;
403
404         for (int i = 0; i < num_mem_params; i++) {
405                 if (mem_params[i].direction != PARAM_OUT) {
406                         retval = target_read_buffer(target, mem_params[i].address, mem_params[i].size,
407                                         mem_params[i].value);
408                         if (retval != ERROR_OK)
409                                 return retval;
410                 }
411         }
412
413         for (int i = 0; i < num_reg_params; i++) {
414                 if (reg_params[i].direction != PARAM_OUT) {
415                         struct reg *reg = register_get_by_name(mips32->core_cache, reg_params[i].reg_name, 0);
416                         if (!reg) {
417                                 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
418                                 return ERROR_COMMAND_SYNTAX_ERROR;
419                         }
420
421                         if (reg->size != reg_params[i].size) {
422                                 LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size",
423                                                 reg_params[i].reg_name);
424                                 return ERROR_COMMAND_SYNTAX_ERROR;
425                         }
426
427                         buf_set_u32(reg_params[i].value, 0, 32, buf_get_u32(reg->value, 0, 32));
428                 }
429         }
430
431         /* restore everything we saved before */
432         for (unsigned int i = 0; i < MIPS32NUMCOREREGS; i++) {
433                 uint32_t regvalue;
434                 regvalue = buf_get_u32(mips32->core_cache->reg_list[i].value, 0, 32);
435                 if (regvalue != context[i]) {
436                         LOG_DEBUG("restoring register %s with value 0x%8.8" PRIx32,
437                                 mips32->core_cache->reg_list[i].name, context[i]);
438                         buf_set_u32(mips32->core_cache->reg_list[i].value,
439                                         0, 32, context[i]);
440                         mips32->core_cache->reg_list[i].valid = 1;
441                         mips32->core_cache->reg_list[i].dirty = 1;
442                 }
443         }
444
445         mips32->isa_mode = isa_mode;
446
447         return ERROR_OK;
448 }
449
450 int mips32_examine(struct target *target)
451 {
452         struct mips32_common *mips32 = target_to_mips32(target);
453
454         if (!target_was_examined(target)) {
455                 target_set_examined(target);
456
457                 /* we will configure later */
458                 mips32->bp_scanned = 0;
459                 mips32->num_inst_bpoints = 0;
460                 mips32->num_data_bpoints = 0;
461                 mips32->num_inst_bpoints_avail = 0;
462                 mips32->num_data_bpoints_avail = 0;
463         }
464
465         return ERROR_OK;
466 }
467
468 static int mips32_configure_ibs(struct target *target)
469 {
470         struct mips32_common *mips32 = target_to_mips32(target);
471         struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
472         int retval, i;
473         uint32_t bpinfo;
474
475         /* get number of inst breakpoints */
476         retval = target_read_u32(target, ejtag_info->ejtag_ibs_addr, &bpinfo);
477         if (retval != ERROR_OK)
478                 return retval;
479
480         mips32->num_inst_bpoints = (bpinfo >> 24) & 0x0F;
481         mips32->num_inst_bpoints_avail = mips32->num_inst_bpoints;
482         mips32->inst_break_list = calloc(mips32->num_inst_bpoints,
483                 sizeof(struct mips32_comparator));
484
485         for (i = 0; i < mips32->num_inst_bpoints; i++)
486                 mips32->inst_break_list[i].reg_address =
487                         ejtag_info->ejtag_iba0_addr +
488                         (ejtag_info->ejtag_iba_step_size * i);
489
490         /* clear IBIS reg */
491         retval = target_write_u32(target, ejtag_info->ejtag_ibs_addr, 0);
492         return retval;
493 }
494
495 static int mips32_configure_dbs(struct target *target)
496 {
497         struct mips32_common *mips32 = target_to_mips32(target);
498         struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
499         int retval, i;
500         uint32_t bpinfo;
501
502         /* get number of data breakpoints */
503         retval = target_read_u32(target, ejtag_info->ejtag_dbs_addr, &bpinfo);
504         if (retval != ERROR_OK)
505                 return retval;
506
507         mips32->num_data_bpoints = (bpinfo >> 24) & 0x0F;
508         mips32->num_data_bpoints_avail = mips32->num_data_bpoints;
509         mips32->data_break_list = calloc(mips32->num_data_bpoints,
510                 sizeof(struct mips32_comparator));
511
512         for (i = 0; i < mips32->num_data_bpoints; i++)
513                 mips32->data_break_list[i].reg_address =
514                         ejtag_info->ejtag_dba0_addr +
515                         (ejtag_info->ejtag_dba_step_size * i);
516
517         /* clear DBIS reg */
518         retval = target_write_u32(target, ejtag_info->ejtag_dbs_addr, 0);
519         return retval;
520 }
521
522 int mips32_configure_break_unit(struct target *target)
523 {
524         /* get pointers to arch-specific information */
525         struct mips32_common *mips32 = target_to_mips32(target);
526         struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
527         int retval;
528         uint32_t dcr;
529
530         if (mips32->bp_scanned)
531                 return ERROR_OK;
532
533         /* get info about breakpoint support */
534         retval = target_read_u32(target, EJTAG_DCR, &dcr);
535         if (retval != ERROR_OK)
536                 return retval;
537
538         /* EJTAG 2.0 defines IB and DB bits in IMP instead of DCR. */
539         if (ejtag_info->ejtag_version == EJTAG_VERSION_20) {
540                 ejtag_info->debug_caps = dcr & EJTAG_DCR_ENM;
541                 if (!(ejtag_info->impcode & EJTAG_V20_IMP_NOIB))
542                         ejtag_info->debug_caps |= EJTAG_DCR_IB;
543                 if (!(ejtag_info->impcode & EJTAG_V20_IMP_NODB))
544                         ejtag_info->debug_caps |= EJTAG_DCR_DB;
545         } else
546                 /* keep  debug caps for later use */
547                 ejtag_info->debug_caps = dcr & (EJTAG_DCR_ENM
548                                 | EJTAG_DCR_IB | EJTAG_DCR_DB);
549
550
551         if (ejtag_info->debug_caps & EJTAG_DCR_IB) {
552                 retval = mips32_configure_ibs(target);
553                 if (retval != ERROR_OK)
554                         return retval;
555         }
556
557         if (ejtag_info->debug_caps & EJTAG_DCR_DB) {
558                 retval = mips32_configure_dbs(target);
559                 if (retval != ERROR_OK)
560                         return retval;
561         }
562
563         /* check if target endianness settings matches debug control register */
564         if (((ejtag_info->debug_caps & EJTAG_DCR_ENM)
565                         && (target->endianness == TARGET_LITTLE_ENDIAN)) ||
566                         (!(ejtag_info->debug_caps & EJTAG_DCR_ENM)
567                          && (target->endianness == TARGET_BIG_ENDIAN)))
568                 LOG_WARNING("DCR endianness settings does not match target settings");
569
570         LOG_DEBUG("DCR 0x%" PRIx32 " numinst %i numdata %i", dcr, mips32->num_inst_bpoints,
571                         mips32->num_data_bpoints);
572
573         mips32->bp_scanned = 1;
574
575         return ERROR_OK;
576 }
577
578 int mips32_enable_interrupts(struct target *target, int enable)
579 {
580         int retval;
581         int update = 0;
582         uint32_t dcr;
583
584         /* read debug control register */
585         retval = target_read_u32(target, EJTAG_DCR, &dcr);
586         if (retval != ERROR_OK)
587                 return retval;
588
589         if (enable) {
590                 if (!(dcr & EJTAG_DCR_INTE)) {
591                         /* enable interrupts */
592                         dcr |= EJTAG_DCR_INTE;
593                         update = 1;
594                 }
595         } else {
596                 if (dcr & EJTAG_DCR_INTE) {
597                         /* disable interrupts */
598                         dcr &= ~EJTAG_DCR_INTE;
599                         update = 1;
600                 }
601         }
602
603         if (update) {
604                 retval = target_write_u32(target, EJTAG_DCR, dcr);
605                 if (retval != ERROR_OK)
606                         return retval;
607         }
608
609         return ERROR_OK;
610 }
611
612 int mips32_checksum_memory(struct target *target, uint32_t address,
613                 uint32_t count, uint32_t *checksum)
614 {
615         struct working_area *crc_algorithm;
616         struct reg_param reg_params[2];
617         struct mips32_algorithm mips32_info;
618
619         /* see contrib/loaders/checksum/mips32.s for src */
620
621         static const uint32_t mips_crc_code[] = {
622                 0x248C0000,             /* addiu        $t4, $a0, 0 */
623                 0x24AA0000,             /* addiu        $t2, $a1, 0 */
624                 0x2404FFFF,             /* addiu        $a0, $zero, 0xffffffff */
625                 0x10000010,             /* beq          $zero, $zero, ncomp */
626                 0x240B0000,             /* addiu        $t3, $zero, 0 */
627                                                 /* nbyte: */
628                 0x81850000,             /* lb           $a1, ($t4) */
629                 0x218C0001,             /* addi         $t4, $t4, 1 */
630                 0x00052E00,             /* sll          $a1, $a1, 24 */
631                 0x3C0204C1,             /* lui          $v0, 0x04c1 */
632                 0x00852026,             /* xor          $a0, $a0, $a1 */
633                 0x34471DB7,             /* ori          $a3, $v0, 0x1db7 */
634                 0x00003021,             /* addu         $a2, $zero, $zero */
635                                                 /* loop: */
636                 0x00044040,             /* sll          $t0, $a0, 1 */
637                 0x24C60001,             /* addiu        $a2, $a2, 1 */
638                 0x28840000,             /* slti         $a0, $a0, 0 */
639                 0x01074826,             /* xor          $t1, $t0, $a3 */
640                 0x0124400B,             /* movn         $t0, $t1, $a0 */
641                 0x28C30008,             /* slti         $v1, $a2, 8 */
642                 0x1460FFF9,             /* bne          $v1, $zero, loop */
643                 0x01002021,             /* addu         $a0, $t0, $zero */
644                                                 /* ncomp: */
645                 0x154BFFF0,             /* bne          $t2, $t3, nbyte */
646                 0x256B0001,             /* addiu        $t3, $t3, 1 */
647                 0x7000003F,             /* sdbbp */
648         };
649
650         /* make sure we have a working area */
651         if (target_alloc_working_area(target, sizeof(mips_crc_code), &crc_algorithm) != ERROR_OK)
652                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
653
654         /* convert mips crc code into a buffer in target endianness */
655         uint8_t mips_crc_code_8[sizeof(mips_crc_code)];
656         target_buffer_set_u32_array(target, mips_crc_code_8,
657                                         ARRAY_SIZE(mips_crc_code), mips_crc_code);
658
659         target_write_buffer(target, crc_algorithm->address, sizeof(mips_crc_code), mips_crc_code_8);
660
661         mips32_info.common_magic = MIPS32_COMMON_MAGIC;
662         mips32_info.isa_mode = MIPS32_ISA_MIPS32;
663
664         init_reg_param(&reg_params[0], "a0", 32, PARAM_IN_OUT);
665         buf_set_u32(reg_params[0].value, 0, 32, address);
666
667         init_reg_param(&reg_params[1], "a1", 32, PARAM_OUT);
668         buf_set_u32(reg_params[1].value, 0, 32, count);
669
670         int timeout = 20000 * (1 + (count / (1024 * 1024)));
671
672         int retval = target_run_algorithm(target, 0, NULL, 2, reg_params,
673                         crc_algorithm->address, crc_algorithm->address + (sizeof(mips_crc_code) - 4), timeout,
674                         &mips32_info);
675
676         if (retval == ERROR_OK)
677                 *checksum = buf_get_u32(reg_params[0].value, 0, 32);
678
679         destroy_reg_param(&reg_params[0]);
680         destroy_reg_param(&reg_params[1]);
681
682         target_free_working_area(target, crc_algorithm);
683
684         return retval;
685 }
686
687 /** Checks whether a memory region is zeroed. */
688 int mips32_blank_check_memory(struct target *target,
689                 uint32_t address, uint32_t count, uint32_t *blank)
690 {
691         struct working_area *erase_check_algorithm;
692         struct reg_param reg_params[3];
693         struct mips32_algorithm mips32_info;
694
695         static const uint32_t erase_check_code[] = {
696                                                 /* nbyte: */
697                 0x80880000,             /* lb           $t0, ($a0) */
698                 0x00C83024,             /* and          $a2, $a2, $t0 */
699                 0x24A5FFFF,             /* addiu        $a1, $a1, -1 */
700                 0x14A0FFFC,             /* bne          $a1, $zero, nbyte */
701                 0x24840001,             /* addiu        $a0, $a0, 1 */
702                 0x7000003F              /* sdbbp */
703         };
704
705         /* make sure we have a working area */
706         if (target_alloc_working_area(target, sizeof(erase_check_code), &erase_check_algorithm) != ERROR_OK)
707                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
708
709         /* convert erase check code into a buffer in target endianness */
710         uint8_t erase_check_code_8[sizeof(erase_check_code)];
711         target_buffer_set_u32_array(target, erase_check_code_8,
712                                         ARRAY_SIZE(erase_check_code), erase_check_code);
713
714         target_write_buffer(target, erase_check_algorithm->address, sizeof(erase_check_code), erase_check_code_8);
715
716         mips32_info.common_magic = MIPS32_COMMON_MAGIC;
717         mips32_info.isa_mode = MIPS32_ISA_MIPS32;
718
719         init_reg_param(&reg_params[0], "a0", 32, PARAM_OUT);
720         buf_set_u32(reg_params[0].value, 0, 32, address);
721
722         init_reg_param(&reg_params[1], "a1", 32, PARAM_OUT);
723         buf_set_u32(reg_params[1].value, 0, 32, count);
724
725         init_reg_param(&reg_params[2], "a2", 32, PARAM_IN_OUT);
726         buf_set_u32(reg_params[2].value, 0, 32, 0xff);
727
728         int retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
729                         erase_check_algorithm->address,
730                         erase_check_algorithm->address + (sizeof(erase_check_code) - 4),
731                         10000, &mips32_info);
732
733         if (retval == ERROR_OK)
734                 *blank = buf_get_u32(reg_params[2].value, 0, 32);
735
736         destroy_reg_param(&reg_params[0]);
737         destroy_reg_param(&reg_params[1]);
738         destroy_reg_param(&reg_params[2]);
739
740         target_free_working_area(target, erase_check_algorithm);
741
742         return retval;
743 }
744
745 static int mips32_verify_pointer(struct command_context *cmd_ctx,
746                 struct mips32_common *mips32)
747 {
748         if (mips32->common_magic != MIPS32_COMMON_MAGIC) {
749                 command_print(cmd_ctx, "target is not an MIPS32");
750                 return ERROR_TARGET_INVALID;
751         }
752         return ERROR_OK;
753 }
754
755 /**
756  * MIPS32 targets expose command interface
757  * to manipulate CP0 registers
758  */
759 COMMAND_HANDLER(mips32_handle_cp0_command)
760 {
761         int retval;
762         struct target *target = get_current_target(CMD_CTX);
763         struct mips32_common *mips32 = target_to_mips32(target);
764         struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
765
766
767         retval = mips32_verify_pointer(CMD_CTX, mips32);
768         if (retval != ERROR_OK)
769                 return retval;
770
771         if (target->state != TARGET_HALTED) {
772                 command_print(CMD_CTX, "target must be stopped for \"%s\" command", CMD_NAME);
773                 return ERROR_OK;
774         }
775
776         /* two or more argument, access a single register/select (write if third argument is given) */
777         if (CMD_ARGC < 2)
778                 return ERROR_COMMAND_SYNTAX_ERROR;
779         else {
780                 uint32_t cp0_reg, cp0_sel;
781                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], cp0_reg);
782                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], cp0_sel);
783
784                 if (CMD_ARGC == 2) {
785                         uint32_t value;
786
787                         retval = mips32_cp0_read(ejtag_info, &value, cp0_reg, cp0_sel);
788                         if (retval != ERROR_OK) {
789                                 command_print(CMD_CTX,
790                                                 "couldn't access reg %" PRIi32,
791                                                 cp0_reg);
792                                 return ERROR_OK;
793                         }
794                         command_print(CMD_CTX, "cp0 reg %" PRIi32 ", select %" PRIi32 ": %8.8" PRIx32,
795                                         cp0_reg, cp0_sel, value);
796
797                 } else if (CMD_ARGC == 3) {
798                         uint32_t value;
799                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], value);
800                         retval = mips32_cp0_write(ejtag_info, value, cp0_reg, cp0_sel);
801                         if (retval != ERROR_OK) {
802                                 command_print(CMD_CTX,
803                                                 "couldn't access cp0 reg %" PRIi32 ", select %" PRIi32,
804                                                 cp0_reg,  cp0_sel);
805                                 return ERROR_OK;
806                         }
807                         command_print(CMD_CTX, "cp0 reg %" PRIi32 ", select %" PRIi32 ": %8.8" PRIx32,
808                                         cp0_reg, cp0_sel, value);
809                 }
810         }
811
812         return ERROR_OK;
813 }
814
815 COMMAND_HANDLER(mips32_handle_scan_delay_command)
816 {
817         struct target *target = get_current_target(CMD_CTX);
818         struct mips32_common *mips32 = target_to_mips32(target);
819         struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
820
821         if (CMD_ARGC == 1)
822                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], ejtag_info->scan_delay);
823         else if (CMD_ARGC > 1)
824                         return ERROR_COMMAND_SYNTAX_ERROR;
825
826         command_print(CMD_CTX, "scan delay: %d nsec", ejtag_info->scan_delay);
827         if (ejtag_info->scan_delay >= 2000000) {
828                 ejtag_info->mode = 0;
829                 command_print(CMD_CTX, "running in legacy mode");
830         } else {
831                 ejtag_info->mode = 1;
832                 command_print(CMD_CTX, "running in fast queued mode");
833         }
834
835         return ERROR_OK;
836 }
837
838 static const struct command_registration mips32_exec_command_handlers[] = {
839         {
840                 .name = "cp0",
841                 .handler = mips32_handle_cp0_command,
842                 .mode = COMMAND_EXEC,
843                 .usage = "regnum select [value]",
844                 .help = "display/modify cp0 register",
845         },
846                 {
847                 .name = "scan_delay",
848                 .handler = mips32_handle_scan_delay_command,
849                 .mode = COMMAND_ANY,
850                 .help = "display/set scan delay in nano seconds",
851                 .usage = "[value]",
852         },
853         COMMAND_REGISTRATION_DONE
854 };
855
856 const struct command_registration mips32_command_handlers[] = {
857         {
858                 .name = "mips32",
859                 .mode = COMMAND_ANY,
860                 .help = "mips32 command group",
861                 .usage = "",
862                 .chain = mips32_exec_command_handlers,
863         },
864         COMMAND_REGISTRATION_DONE
865 };