5c85fea8bdc893fd554af690dac85baaa60194a8
[fw/openocd] / src / target / mips32.c
1 /***************************************************************************
2  *   Copyright (C) 2008 by Spencer Oliver                                  *
3  *   spen@spen-soft.co.uk                                                  *
4  *                                                                         *
5  *   Copyright (C) 2008 by David T.L. Wong                                 *
6  *                                                                         *
7  *   Copyright (C) 2007,2008 Ã˜yvind Harboe                                 *
8  *   oyvind.harboe@zylin.com                                               *
9  *                                                                         *
10  *   Copyright (C) 2011 by Drasko DRASKOVIC                                *
11  *   drasko.draskovic@gmail.com                                            *
12  *                                                                         *
13  *   This program is free software; you can redistribute it and/or modify  *
14  *   it under the terms of the GNU General Public License as published by  *
15  *   the Free Software Foundation; either version 2 of the License, or     *
16  *   (at your option) any later version.                                   *
17  *                                                                         *
18  *   This program is distributed in the hope that it will be useful,       *
19  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
20  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
21  *   GNU General Public License for more details.                          *
22  *                                                                         *
23  *   You should have received a copy of the GNU General Public License     *
24  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
25  ***************************************************************************/
26
27 #ifdef HAVE_CONFIG_H
28 #include "config.h"
29 #endif
30
31 #include "mips32.h"
32 #include "breakpoints.h"
33 #include "algorithm.h"
34 #include "register.h"
35
36 static const char *mips_isa_strings[] = {
37         "MIPS32", "MIPS16"
38 };
39
40 #define MIPS32_GDB_DUMMY_FP_REG 1
41
42 /*
43  * GDB registers
44  * based on gdb-7.6.2/gdb/features/mips-{fpu,cp0,cpu}.xml
45  */
46 static const struct {
47         unsigned id;
48         const char *name;
49         enum reg_type type;
50         const char *group;
51         const char *feature;
52         int flag;
53 } mips32_regs[] = {
54         {  0,  "r0", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
55         {  1,  "r1", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
56         {  2,  "r2", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
57         {  3,  "r3", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
58         {  4,  "r4", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
59         {  5,  "r5", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
60         {  6,  "r6", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
61         {  7,  "r7", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
62         {  8,  "r8", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
63         {  9,  "r9", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
64         { 10, "r10", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
65         { 11, "r11", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
66         { 12, "r12", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
67         { 13, "r13", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
68         { 14, "r14", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
69         { 15, "r15", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
70         { 16, "r16", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
71         { 17, "r17", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
72         { 18, "r18", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
73         { 19, "r19", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
74         { 20, "r20", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
75         { 21, "r21", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
76         { 22, "r22", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
77         { 23, "r23", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
78         { 24, "r24", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
79         { 25, "r25", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
80         { 26, "r26", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
81         { 27, "r27", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
82         { 28, "r28", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
83         { 29, "r29", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
84         { 30, "r30", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
85         { 31, "r31", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
86         { 32, "status", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cp0", 0 },
87         { 33, "lo", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
88         { 34, "hi", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
89         { 35, "badvaddr", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cp0", 0 },
90         { 36, "cause", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cp0", 0 },
91         { 37, "pc", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
92
93         { 38,  "f0", REG_TYPE_IEEE_SINGLE, NULL,
94                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
95         { 39,  "f1", REG_TYPE_IEEE_SINGLE, NULL,
96                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
97         { 40,  "f2", REG_TYPE_IEEE_SINGLE, NULL,
98                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
99         { 41,  "f3", REG_TYPE_IEEE_SINGLE, NULL,
100                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
101         { 42,  "f4", REG_TYPE_IEEE_SINGLE, NULL,
102                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
103         { 43,  "f5", REG_TYPE_IEEE_SINGLE, NULL,
104                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
105         { 44,  "f6", REG_TYPE_IEEE_SINGLE, NULL,
106                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
107         { 45,  "f7", REG_TYPE_IEEE_SINGLE, NULL,
108                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
109         { 46,  "f8", REG_TYPE_IEEE_SINGLE, NULL,
110                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
111         { 47,  "f9", REG_TYPE_IEEE_SINGLE, NULL,
112                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
113         { 48, "f10", REG_TYPE_IEEE_SINGLE, NULL,
114                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
115         { 49, "f11", REG_TYPE_IEEE_SINGLE, NULL,
116                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
117         { 50, "f12", REG_TYPE_IEEE_SINGLE, NULL,
118                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
119         { 51, "f13", REG_TYPE_IEEE_SINGLE, NULL,
120                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
121         { 52, "f14", REG_TYPE_IEEE_SINGLE, NULL,
122                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
123         { 53, "f15", REG_TYPE_IEEE_SINGLE, NULL,
124                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
125         { 54, "f16", REG_TYPE_IEEE_SINGLE, NULL,
126                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
127         { 55, "f17", REG_TYPE_IEEE_SINGLE, NULL,
128                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
129         { 56, "f18", REG_TYPE_IEEE_SINGLE, NULL,
130                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
131         { 57, "f19", REG_TYPE_IEEE_SINGLE, NULL,
132                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
133         { 58, "f20", REG_TYPE_IEEE_SINGLE, NULL,
134                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
135         { 59, "f21", REG_TYPE_IEEE_SINGLE, NULL,
136                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
137         { 60, "f22", REG_TYPE_IEEE_SINGLE, NULL,
138                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
139         { 61, "f23", REG_TYPE_IEEE_SINGLE, NULL,
140                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
141         { 62, "f24", REG_TYPE_IEEE_SINGLE, NULL,
142                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
143         { 63, "f25", REG_TYPE_IEEE_SINGLE, NULL,
144                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
145         { 64, "f26", REG_TYPE_IEEE_SINGLE, NULL,
146                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
147         { 65, "f27", REG_TYPE_IEEE_SINGLE, NULL,
148                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
149         { 66, "f28", REG_TYPE_IEEE_SINGLE, NULL,
150                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
151         { 67, "f29", REG_TYPE_IEEE_SINGLE, NULL,
152                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
153         { 68, "f30", REG_TYPE_IEEE_SINGLE, NULL,
154                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
155         { 69, "f31", REG_TYPE_IEEE_SINGLE, NULL,
156                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
157         { 70, "fcsr", REG_TYPE_INT, "float",
158                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
159         { 71, "fir", REG_TYPE_INT, "float",
160                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
161 };
162
163
164 #define MIPS32_NUM_REGS ARRAY_SIZE(mips32_regs)
165
166 static uint8_t mips32_gdb_dummy_fp_value[] = {0, 0, 0, 0};
167
168 static int mips32_get_core_reg(struct reg *reg)
169 {
170         int retval;
171         struct mips32_core_reg *mips32_reg = reg->arch_info;
172         struct target *target = mips32_reg->target;
173         struct mips32_common *mips32_target = target_to_mips32(target);
174
175         if (target->state != TARGET_HALTED)
176                 return ERROR_TARGET_NOT_HALTED;
177
178         retval = mips32_target->read_core_reg(target, mips32_reg->num);
179
180         return retval;
181 }
182
183 static int mips32_set_core_reg(struct reg *reg, uint8_t *buf)
184 {
185         struct mips32_core_reg *mips32_reg = reg->arch_info;
186         struct target *target = mips32_reg->target;
187         uint32_t value = buf_get_u32(buf, 0, 32);
188
189         if (target->state != TARGET_HALTED)
190                 return ERROR_TARGET_NOT_HALTED;
191
192         buf_set_u32(reg->value, 0, 32, value);
193         reg->dirty = 1;
194         reg->valid = 1;
195
196         return ERROR_OK;
197 }
198
199 static int mips32_read_core_reg(struct target *target, unsigned int num)
200 {
201         uint32_t reg_value;
202
203         /* get pointers to arch-specific information */
204         struct mips32_common *mips32 = target_to_mips32(target);
205
206         if (num >= MIPS32_NUM_REGS)
207                 return ERROR_COMMAND_SYNTAX_ERROR;
208
209         reg_value = mips32->core_regs[num];
210         buf_set_u32(mips32->core_cache->reg_list[num].value, 0, 32, reg_value);
211         mips32->core_cache->reg_list[num].valid = 1;
212         mips32->core_cache->reg_list[num].dirty = 0;
213
214         return ERROR_OK;
215 }
216
217 static int mips32_write_core_reg(struct target *target, unsigned int num)
218 {
219         uint32_t reg_value;
220
221         /* get pointers to arch-specific information */
222         struct mips32_common *mips32 = target_to_mips32(target);
223
224         if (num >= MIPS32_NUM_REGS)
225                 return ERROR_COMMAND_SYNTAX_ERROR;
226
227         reg_value = buf_get_u32(mips32->core_cache->reg_list[num].value, 0, 32);
228         mips32->core_regs[num] = reg_value;
229         LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", num , reg_value);
230         mips32->core_cache->reg_list[num].valid = 1;
231         mips32->core_cache->reg_list[num].dirty = 0;
232
233         return ERROR_OK;
234 }
235
236 int mips32_get_gdb_reg_list(struct target *target, struct reg **reg_list[],
237                 int *reg_list_size, enum target_register_class reg_class)
238 {
239         /* get pointers to arch-specific information */
240         struct mips32_common *mips32 = target_to_mips32(target);
241         unsigned int i;
242
243         /* include floating point registers */
244         *reg_list_size = MIPS32_NUM_REGS;
245         *reg_list = malloc(sizeof(struct reg *) * (*reg_list_size));
246
247         for (i = 0; i < MIPS32_NUM_REGS; i++)
248                 (*reg_list)[i] = &mips32->core_cache->reg_list[i];
249
250         return ERROR_OK;
251 }
252
253 int mips32_save_context(struct target *target)
254 {
255         unsigned int i;
256
257         /* get pointers to arch-specific information */
258         struct mips32_common *mips32 = target_to_mips32(target);
259         struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
260
261         /* read core registers */
262         mips32_pracc_read_regs(ejtag_info, mips32->core_regs);
263
264         for (i = 0; i < MIPS32_NUM_REGS; i++) {
265                 if (!mips32->core_cache->reg_list[i].valid)
266                         mips32->read_core_reg(target, i);
267         }
268
269         return ERROR_OK;
270 }
271
272 int mips32_restore_context(struct target *target)
273 {
274         unsigned int i;
275
276         /* get pointers to arch-specific information */
277         struct mips32_common *mips32 = target_to_mips32(target);
278         struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
279
280         for (i = 0; i < MIPS32_NUM_REGS; i++) {
281                 if (mips32->core_cache->reg_list[i].dirty)
282                         mips32->write_core_reg(target, i);
283         }
284
285         /* write core regs */
286         mips32_pracc_write_regs(ejtag_info, mips32->core_regs);
287
288         return ERROR_OK;
289 }
290
291 int mips32_arch_state(struct target *target)
292 {
293         struct mips32_common *mips32 = target_to_mips32(target);
294
295         LOG_USER("target halted in %s mode due to %s, pc: 0x%8.8" PRIx32 "",
296                 mips_isa_strings[mips32->isa_mode],
297                 debug_reason_name(target),
298                 buf_get_u32(mips32->core_cache->reg_list[MIPS32_PC].value, 0, 32));
299
300         return ERROR_OK;
301 }
302
303 static const struct reg_arch_type mips32_reg_type = {
304         .get = mips32_get_core_reg,
305         .set = mips32_set_core_reg,
306 };
307
308 struct reg_cache *mips32_build_reg_cache(struct target *target)
309 {
310         /* get pointers to arch-specific information */
311         struct mips32_common *mips32 = target_to_mips32(target);
312
313         int num_regs = MIPS32_NUM_REGS;
314         struct reg_cache **cache_p = register_get_last_cache_p(&target->reg_cache);
315         struct reg_cache *cache = malloc(sizeof(struct reg_cache));
316         struct reg *reg_list = calloc(num_regs, sizeof(struct reg));
317         struct mips32_core_reg *arch_info = malloc(sizeof(struct mips32_core_reg) * num_regs);
318         struct reg_feature *feature;
319         int i;
320
321         /* Build the process context cache */
322         cache->name = "mips32 registers";
323         cache->next = NULL;
324         cache->reg_list = reg_list;
325         cache->num_regs = num_regs;
326         (*cache_p) = cache;
327         mips32->core_cache = cache;
328
329         for (i = 0; i < num_regs; i++) {
330                 arch_info[i].num = mips32_regs[i].id;
331                 arch_info[i].target = target;
332                 arch_info[i].mips32_common = mips32;
333
334                 reg_list[i].name = mips32_regs[i].name;
335                 reg_list[i].size = 32;
336
337                 if (mips32_regs[i].flag == MIPS32_GDB_DUMMY_FP_REG) {
338                         reg_list[i].value = mips32_gdb_dummy_fp_value;
339                         reg_list[i].valid = 1;
340                         reg_list[i].arch_info = NULL;
341                         register_init_dummy(&reg_list[i]);
342                 } else {
343                         reg_list[i].value = calloc(1, 4);
344                         reg_list[i].valid = 0;
345                         reg_list[i].type = &mips32_reg_type;
346                         reg_list[i].arch_info = &arch_info[i];
347
348                         reg_list[i].reg_data_type = calloc(1, sizeof(struct reg_data_type));
349                         if (reg_list[i].reg_data_type)
350                                 reg_list[i].reg_data_type->type = mips32_regs[i].type;
351                         else
352                                 LOG_ERROR("unable to allocate reg type list");
353                 }
354
355                 reg_list[i].dirty = 0;
356
357                 reg_list[i].group = mips32_regs[i].group;
358                 reg_list[i].number = i;
359                 reg_list[i].exist = true;
360                 reg_list[i].caller_save = true; /* gdb defaults to true */
361
362                 feature = calloc(1, sizeof(struct reg_feature));
363                 if (feature) {
364                         feature->name = mips32_regs[i].feature;
365                         reg_list[i].feature = feature;
366                 } else
367                         LOG_ERROR("unable to allocate feature list");
368         }
369
370         return cache;
371 }
372
373 int mips32_init_arch_info(struct target *target, struct mips32_common *mips32, struct jtag_tap *tap)
374 {
375         target->arch_info = mips32;
376         mips32->common_magic = MIPS32_COMMON_MAGIC;
377         mips32->fast_data_area = NULL;
378
379         /* has breakpoint/watchpoint unit been scanned */
380         mips32->bp_scanned = 0;
381         mips32->data_break_list = NULL;
382
383         mips32->ejtag_info.tap = tap;
384         mips32->read_core_reg = mips32_read_core_reg;
385         mips32->write_core_reg = mips32_write_core_reg;
386         /* if unknown endianness defaults to little endian, 1 */
387         mips32->ejtag_info.endianness = target->endianness == TARGET_BIG_ENDIAN ? 0 : 1;
388         mips32->ejtag_info.scan_delay = MIPS32_SCAN_DELAY_LEGACY_MODE;
389         mips32->ejtag_info.mode = 0;                    /* Initial default value */
390         mips32->ejtag_info.isa = 0;     /* isa on debug mips32, updated by poll function */
391
392         return ERROR_OK;
393 }
394
395 /* run to exit point. return error if exit point was not reached. */
396 static int mips32_run_and_wait(struct target *target, target_addr_t entry_point,
397                 int timeout_ms, target_addr_t exit_point, struct mips32_common *mips32)
398 {
399         uint32_t pc;
400         int retval;
401         /* This code relies on the target specific  resume() and  poll()->debug_entry()
402          * sequence to write register values to the processor and the read them back */
403         retval = target_resume(target, 0, entry_point, 0, 1);
404         if (retval != ERROR_OK)
405                 return retval;
406
407         retval = target_wait_state(target, TARGET_HALTED, timeout_ms);
408         /* If the target fails to halt due to the breakpoint, force a halt */
409         if (retval != ERROR_OK || target->state != TARGET_HALTED) {
410                 retval = target_halt(target);
411                 if (retval != ERROR_OK)
412                         return retval;
413                 retval = target_wait_state(target, TARGET_HALTED, 500);
414                 if (retval != ERROR_OK)
415                         return retval;
416                 return ERROR_TARGET_TIMEOUT;
417         }
418
419         pc = buf_get_u32(mips32->core_cache->reg_list[MIPS32_PC].value, 0, 32);
420         if (exit_point && (pc != exit_point)) {
421                 LOG_DEBUG("failed algorithm halted at 0x%" PRIx32 " ", pc);
422                 return ERROR_TARGET_TIMEOUT;
423         }
424
425         return ERROR_OK;
426 }
427
428 int mips32_run_algorithm(struct target *target, int num_mem_params,
429                 struct mem_param *mem_params, int num_reg_params,
430                 struct reg_param *reg_params, target_addr_t entry_point,
431                 target_addr_t exit_point, int timeout_ms, void *arch_info)
432 {
433         struct mips32_common *mips32 = target_to_mips32(target);
434         struct mips32_algorithm *mips32_algorithm_info = arch_info;
435         enum mips32_isa_mode isa_mode = mips32->isa_mode;
436
437         uint32_t context[MIPS32_NUM_REGS];
438         int retval = ERROR_OK;
439
440         LOG_DEBUG("Running algorithm");
441
442         /* NOTE: mips32_run_algorithm requires that each algorithm uses a software breakpoint
443          * at the exit point */
444
445         if (mips32->common_magic != MIPS32_COMMON_MAGIC) {
446                 LOG_ERROR("current target isn't a MIPS32 target");
447                 return ERROR_TARGET_INVALID;
448         }
449
450         if (target->state != TARGET_HALTED) {
451                 LOG_WARNING("target not halted");
452                 return ERROR_TARGET_NOT_HALTED;
453         }
454
455         /* refresh core register cache */
456         for (unsigned int i = 0; i < MIPS32_NUM_REGS; i++) {
457                 if (!mips32->core_cache->reg_list[i].valid)
458                         mips32->read_core_reg(target, i);
459                 context[i] = buf_get_u32(mips32->core_cache->reg_list[i].value, 0, 32);
460         }
461
462         for (int i = 0; i < num_mem_params; i++) {
463                 retval = target_write_buffer(target, mem_params[i].address,
464                                 mem_params[i].size, mem_params[i].value);
465                 if (retval != ERROR_OK)
466                         return retval;
467         }
468
469         for (int i = 0; i < num_reg_params; i++) {
470                 struct reg *reg = register_get_by_name(mips32->core_cache, reg_params[i].reg_name, 0);
471
472                 if (!reg) {
473                         LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
474                         return ERROR_COMMAND_SYNTAX_ERROR;
475                 }
476
477                 if (reg->size != reg_params[i].size) {
478                         LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size",
479                                         reg_params[i].reg_name);
480                         return ERROR_COMMAND_SYNTAX_ERROR;
481                 }
482
483                 mips32_set_core_reg(reg, reg_params[i].value);
484         }
485
486         mips32->isa_mode = mips32_algorithm_info->isa_mode;
487
488         retval = mips32_run_and_wait(target, entry_point, timeout_ms, exit_point, mips32);
489
490         if (retval != ERROR_OK)
491                 return retval;
492
493         for (int i = 0; i < num_mem_params; i++) {
494                 if (mem_params[i].direction != PARAM_OUT) {
495                         retval = target_read_buffer(target, mem_params[i].address, mem_params[i].size,
496                                         mem_params[i].value);
497                         if (retval != ERROR_OK)
498                                 return retval;
499                 }
500         }
501
502         for (int i = 0; i < num_reg_params; i++) {
503                 if (reg_params[i].direction != PARAM_OUT) {
504                         struct reg *reg = register_get_by_name(mips32->core_cache, reg_params[i].reg_name, 0);
505                         if (!reg) {
506                                 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
507                                 return ERROR_COMMAND_SYNTAX_ERROR;
508                         }
509
510                         if (reg->size != reg_params[i].size) {
511                                 LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size",
512                                                 reg_params[i].reg_name);
513                                 return ERROR_COMMAND_SYNTAX_ERROR;
514                         }
515
516                         buf_set_u32(reg_params[i].value, 0, 32, buf_get_u32(reg->value, 0, 32));
517                 }
518         }
519
520         /* restore everything we saved before */
521         for (unsigned int i = 0; i < MIPS32_NUM_REGS; i++) {
522                 uint32_t regvalue;
523                 regvalue = buf_get_u32(mips32->core_cache->reg_list[i].value, 0, 32);
524                 if (regvalue != context[i]) {
525                         LOG_DEBUG("restoring register %s with value 0x%8.8" PRIx32,
526                                 mips32->core_cache->reg_list[i].name, context[i]);
527                         buf_set_u32(mips32->core_cache->reg_list[i].value,
528                                         0, 32, context[i]);
529                         mips32->core_cache->reg_list[i].valid = 1;
530                         mips32->core_cache->reg_list[i].dirty = 1;
531                 }
532         }
533
534         mips32->isa_mode = isa_mode;
535
536         return ERROR_OK;
537 }
538
539 int mips32_examine(struct target *target)
540 {
541         struct mips32_common *mips32 = target_to_mips32(target);
542
543         if (!target_was_examined(target)) {
544                 target_set_examined(target);
545
546                 /* we will configure later */
547                 mips32->bp_scanned = 0;
548                 mips32->num_inst_bpoints = 0;
549                 mips32->num_data_bpoints = 0;
550                 mips32->num_inst_bpoints_avail = 0;
551                 mips32->num_data_bpoints_avail = 0;
552         }
553
554         return ERROR_OK;
555 }
556
557 static int mips32_configure_ibs(struct target *target)
558 {
559         struct mips32_common *mips32 = target_to_mips32(target);
560         struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
561         int retval, i;
562         uint32_t bpinfo;
563
564         /* get number of inst breakpoints */
565         retval = target_read_u32(target, ejtag_info->ejtag_ibs_addr, &bpinfo);
566         if (retval != ERROR_OK)
567                 return retval;
568
569         mips32->num_inst_bpoints = (bpinfo >> 24) & 0x0F;
570         mips32->num_inst_bpoints_avail = mips32->num_inst_bpoints;
571         mips32->inst_break_list = calloc(mips32->num_inst_bpoints,
572                 sizeof(struct mips32_comparator));
573
574         for (i = 0; i < mips32->num_inst_bpoints; i++)
575                 mips32->inst_break_list[i].reg_address =
576                         ejtag_info->ejtag_iba0_addr +
577                         (ejtag_info->ejtag_iba_step_size * i);
578
579         /* clear IBIS reg */
580         retval = target_write_u32(target, ejtag_info->ejtag_ibs_addr, 0);
581         return retval;
582 }
583
584 static int mips32_configure_dbs(struct target *target)
585 {
586         struct mips32_common *mips32 = target_to_mips32(target);
587         struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
588         int retval, i;
589         uint32_t bpinfo;
590
591         /* get number of data breakpoints */
592         retval = target_read_u32(target, ejtag_info->ejtag_dbs_addr, &bpinfo);
593         if (retval != ERROR_OK)
594                 return retval;
595
596         mips32->num_data_bpoints = (bpinfo >> 24) & 0x0F;
597         mips32->num_data_bpoints_avail = mips32->num_data_bpoints;
598         mips32->data_break_list = calloc(mips32->num_data_bpoints,
599                 sizeof(struct mips32_comparator));
600
601         for (i = 0; i < mips32->num_data_bpoints; i++)
602                 mips32->data_break_list[i].reg_address =
603                         ejtag_info->ejtag_dba0_addr +
604                         (ejtag_info->ejtag_dba_step_size * i);
605
606         /* clear DBIS reg */
607         retval = target_write_u32(target, ejtag_info->ejtag_dbs_addr, 0);
608         return retval;
609 }
610
611 int mips32_configure_break_unit(struct target *target)
612 {
613         /* get pointers to arch-specific information */
614         struct mips32_common *mips32 = target_to_mips32(target);
615         struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
616         int retval;
617         uint32_t dcr;
618
619         if (mips32->bp_scanned)
620                 return ERROR_OK;
621
622         /* get info about breakpoint support */
623         retval = target_read_u32(target, EJTAG_DCR, &dcr);
624         if (retval != ERROR_OK)
625                 return retval;
626
627         /* EJTAG 2.0 defines IB and DB bits in IMP instead of DCR. */
628         if (ejtag_info->ejtag_version == EJTAG_VERSION_20) {
629                 ejtag_info->debug_caps = dcr & EJTAG_DCR_ENM;
630                 if (!(ejtag_info->impcode & EJTAG_V20_IMP_NOIB))
631                         ejtag_info->debug_caps |= EJTAG_DCR_IB;
632                 if (!(ejtag_info->impcode & EJTAG_V20_IMP_NODB))
633                         ejtag_info->debug_caps |= EJTAG_DCR_DB;
634         } else
635                 /* keep  debug caps for later use */
636                 ejtag_info->debug_caps = dcr & (EJTAG_DCR_ENM
637                                 | EJTAG_DCR_IB | EJTAG_DCR_DB);
638
639
640         if (ejtag_info->debug_caps & EJTAG_DCR_IB) {
641                 retval = mips32_configure_ibs(target);
642                 if (retval != ERROR_OK)
643                         return retval;
644         }
645
646         if (ejtag_info->debug_caps & EJTAG_DCR_DB) {
647                 retval = mips32_configure_dbs(target);
648                 if (retval != ERROR_OK)
649                         return retval;
650         }
651
652         /* check if target endianness settings matches debug control register */
653         if (((ejtag_info->debug_caps & EJTAG_DCR_ENM)
654                         && (target->endianness == TARGET_LITTLE_ENDIAN)) ||
655                         (!(ejtag_info->debug_caps & EJTAG_DCR_ENM)
656                          && (target->endianness == TARGET_BIG_ENDIAN)))
657                 LOG_WARNING("DCR endianness settings does not match target settings");
658
659         LOG_DEBUG("DCR 0x%" PRIx32 " numinst %i numdata %i", dcr, mips32->num_inst_bpoints,
660                         mips32->num_data_bpoints);
661
662         mips32->bp_scanned = 1;
663
664         return ERROR_OK;
665 }
666
667 int mips32_enable_interrupts(struct target *target, int enable)
668 {
669         int retval;
670         int update = 0;
671         uint32_t dcr;
672
673         /* read debug control register */
674         retval = target_read_u32(target, EJTAG_DCR, &dcr);
675         if (retval != ERROR_OK)
676                 return retval;
677
678         if (enable) {
679                 if (!(dcr & EJTAG_DCR_INTE)) {
680                         /* enable interrupts */
681                         dcr |= EJTAG_DCR_INTE;
682                         update = 1;
683                 }
684         } else {
685                 if (dcr & EJTAG_DCR_INTE) {
686                         /* disable interrupts */
687                         dcr &= ~EJTAG_DCR_INTE;
688                         update = 1;
689                 }
690         }
691
692         if (update) {
693                 retval = target_write_u32(target, EJTAG_DCR, dcr);
694                 if (retval != ERROR_OK)
695                         return retval;
696         }
697
698         return ERROR_OK;
699 }
700
701 int mips32_checksum_memory(struct target *target, target_addr_t address,
702                 uint32_t count, uint32_t *checksum)
703 {
704         struct working_area *crc_algorithm;
705         struct reg_param reg_params[2];
706         struct mips32_algorithm mips32_info;
707
708         /* see contrib/loaders/checksum/mips32.s for src */
709
710         static const uint32_t mips_crc_code[] = {
711                 0x248C0000,             /* addiu        $t4, $a0, 0 */
712                 0x24AA0000,             /* addiu        $t2, $a1, 0 */
713                 0x2404FFFF,             /* addiu        $a0, $zero, 0xffffffff */
714                 0x10000010,             /* beq          $zero, $zero, ncomp */
715                 0x240B0000,             /* addiu        $t3, $zero, 0 */
716                                                 /* nbyte: */
717                 0x81850000,             /* lb           $a1, ($t4) */
718                 0x218C0001,             /* addi         $t4, $t4, 1 */
719                 0x00052E00,             /* sll          $a1, $a1, 24 */
720                 0x3C0204C1,             /* lui          $v0, 0x04c1 */
721                 0x00852026,             /* xor          $a0, $a0, $a1 */
722                 0x34471DB7,             /* ori          $a3, $v0, 0x1db7 */
723                 0x00003021,             /* addu         $a2, $zero, $zero */
724                                                 /* loop: */
725                 0x00044040,             /* sll          $t0, $a0, 1 */
726                 0x24C60001,             /* addiu        $a2, $a2, 1 */
727                 0x28840000,             /* slti         $a0, $a0, 0 */
728                 0x01074826,             /* xor          $t1, $t0, $a3 */
729                 0x0124400B,             /* movn         $t0, $t1, $a0 */
730                 0x28C30008,             /* slti         $v1, $a2, 8 */
731                 0x1460FFF9,             /* bne          $v1, $zero, loop */
732                 0x01002021,             /* addu         $a0, $t0, $zero */
733                                                 /* ncomp: */
734                 0x154BFFF0,             /* bne          $t2, $t3, nbyte */
735                 0x256B0001,             /* addiu        $t3, $t3, 1 */
736                 0x7000003F,             /* sdbbp */
737         };
738
739         /* make sure we have a working area */
740         if (target_alloc_working_area(target, sizeof(mips_crc_code), &crc_algorithm) != ERROR_OK)
741                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
742
743         /* convert mips crc code into a buffer in target endianness */
744         uint8_t mips_crc_code_8[sizeof(mips_crc_code)];
745         target_buffer_set_u32_array(target, mips_crc_code_8,
746                                         ARRAY_SIZE(mips_crc_code), mips_crc_code);
747
748         target_write_buffer(target, crc_algorithm->address, sizeof(mips_crc_code), mips_crc_code_8);
749
750         mips32_info.common_magic = MIPS32_COMMON_MAGIC;
751         mips32_info.isa_mode = MIPS32_ISA_MIPS32;
752
753         init_reg_param(&reg_params[0], "r4", 32, PARAM_IN_OUT);
754         buf_set_u32(reg_params[0].value, 0, 32, address);
755
756         init_reg_param(&reg_params[1], "r5", 32, PARAM_OUT);
757         buf_set_u32(reg_params[1].value, 0, 32, count);
758
759         int timeout = 20000 * (1 + (count / (1024 * 1024)));
760
761         int retval = target_run_algorithm(target, 0, NULL, 2, reg_params,
762                         crc_algorithm->address, crc_algorithm->address + (sizeof(mips_crc_code) - 4), timeout,
763                         &mips32_info);
764
765         if (retval == ERROR_OK)
766                 *checksum = buf_get_u32(reg_params[0].value, 0, 32);
767
768         destroy_reg_param(&reg_params[0]);
769         destroy_reg_param(&reg_params[1]);
770
771         target_free_working_area(target, crc_algorithm);
772
773         return retval;
774 }
775
776 /** Checks whether a memory region is erased. */
777 int mips32_blank_check_memory(struct target *target,
778                 target_addr_t address, uint32_t count, uint32_t *blank, uint8_t erased_value)
779 {
780         struct working_area *erase_check_algorithm;
781         struct reg_param reg_params[3];
782         struct mips32_algorithm mips32_info;
783
784         static const uint32_t erase_check_code[] = {
785                                                 /* nbyte: */
786                 0x80880000,             /* lb           $t0, ($a0) */
787                 0x00C83024,             /* and          $a2, $a2, $t0 */
788                 0x24A5FFFF,             /* addiu        $a1, $a1, -1 */
789                 0x14A0FFFC,             /* bne          $a1, $zero, nbyte */
790                 0x24840001,             /* addiu        $a0, $a0, 1 */
791                 0x7000003F              /* sdbbp */
792         };
793
794         if (erased_value != 0xff) {
795                 LOG_ERROR("Erase value 0x%02" PRIx8 " not yet supported for MIPS32",
796                         erased_value);
797                 return ERROR_FAIL;
798         }
799
800         /* make sure we have a working area */
801         if (target_alloc_working_area(target, sizeof(erase_check_code), &erase_check_algorithm) != ERROR_OK)
802                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
803
804         /* convert erase check code into a buffer in target endianness */
805         uint8_t erase_check_code_8[sizeof(erase_check_code)];
806         target_buffer_set_u32_array(target, erase_check_code_8,
807                                         ARRAY_SIZE(erase_check_code), erase_check_code);
808
809         target_write_buffer(target, erase_check_algorithm->address, sizeof(erase_check_code), erase_check_code_8);
810
811         mips32_info.common_magic = MIPS32_COMMON_MAGIC;
812         mips32_info.isa_mode = MIPS32_ISA_MIPS32;
813
814         init_reg_param(&reg_params[0], "r4", 32, PARAM_OUT);
815         buf_set_u32(reg_params[0].value, 0, 32, address);
816
817         init_reg_param(&reg_params[1], "r5", 32, PARAM_OUT);
818         buf_set_u32(reg_params[1].value, 0, 32, count);
819
820         init_reg_param(&reg_params[2], "r6", 32, PARAM_IN_OUT);
821         buf_set_u32(reg_params[2].value, 0, 32, erased_value);
822
823         int retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
824                         erase_check_algorithm->address,
825                         erase_check_algorithm->address + (sizeof(erase_check_code) - 4),
826                         10000, &mips32_info);
827
828         if (retval == ERROR_OK)
829                 *blank = buf_get_u32(reg_params[2].value, 0, 32);
830
831         destroy_reg_param(&reg_params[0]);
832         destroy_reg_param(&reg_params[1]);
833         destroy_reg_param(&reg_params[2]);
834
835         target_free_working_area(target, erase_check_algorithm);
836
837         return retval;
838 }
839
840 static int mips32_verify_pointer(struct command_context *cmd_ctx,
841                 struct mips32_common *mips32)
842 {
843         if (mips32->common_magic != MIPS32_COMMON_MAGIC) {
844                 command_print(cmd_ctx, "target is not an MIPS32");
845                 return ERROR_TARGET_INVALID;
846         }
847         return ERROR_OK;
848 }
849
850 /**
851  * MIPS32 targets expose command interface
852  * to manipulate CP0 registers
853  */
854 COMMAND_HANDLER(mips32_handle_cp0_command)
855 {
856         int retval;
857         struct target *target = get_current_target(CMD_CTX);
858         struct mips32_common *mips32 = target_to_mips32(target);
859         struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
860
861
862         retval = mips32_verify_pointer(CMD_CTX, mips32);
863         if (retval != ERROR_OK)
864                 return retval;
865
866         if (target->state != TARGET_HALTED) {
867                 command_print(CMD_CTX, "target must be stopped for \"%s\" command", CMD_NAME);
868                 return ERROR_OK;
869         }
870
871         /* two or more argument, access a single register/select (write if third argument is given) */
872         if (CMD_ARGC < 2)
873                 return ERROR_COMMAND_SYNTAX_ERROR;
874         else {
875                 uint32_t cp0_reg, cp0_sel;
876                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], cp0_reg);
877                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], cp0_sel);
878
879                 if (CMD_ARGC == 2) {
880                         uint32_t value;
881
882                         retval = mips32_cp0_read(ejtag_info, &value, cp0_reg, cp0_sel);
883                         if (retval != ERROR_OK) {
884                                 command_print(CMD_CTX,
885                                                 "couldn't access reg %" PRIi32,
886                                                 cp0_reg);
887                                 return ERROR_OK;
888                         }
889                         command_print(CMD_CTX, "cp0 reg %" PRIi32 ", select %" PRIi32 ": %8.8" PRIx32,
890                                         cp0_reg, cp0_sel, value);
891
892                 } else if (CMD_ARGC == 3) {
893                         uint32_t value;
894                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], value);
895                         retval = mips32_cp0_write(ejtag_info, value, cp0_reg, cp0_sel);
896                         if (retval != ERROR_OK) {
897                                 command_print(CMD_CTX,
898                                                 "couldn't access cp0 reg %" PRIi32 ", select %" PRIi32,
899                                                 cp0_reg,  cp0_sel);
900                                 return ERROR_OK;
901                         }
902                         command_print(CMD_CTX, "cp0 reg %" PRIi32 ", select %" PRIi32 ": %8.8" PRIx32,
903                                         cp0_reg, cp0_sel, value);
904                 }
905         }
906
907         return ERROR_OK;
908 }
909
910 COMMAND_HANDLER(mips32_handle_scan_delay_command)
911 {
912         struct target *target = get_current_target(CMD_CTX);
913         struct mips32_common *mips32 = target_to_mips32(target);
914         struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
915
916         if (CMD_ARGC == 1)
917                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], ejtag_info->scan_delay);
918         else if (CMD_ARGC > 1)
919                         return ERROR_COMMAND_SYNTAX_ERROR;
920
921         command_print(CMD_CTX, "scan delay: %d nsec", ejtag_info->scan_delay);
922         if (ejtag_info->scan_delay >= MIPS32_SCAN_DELAY_LEGACY_MODE) {
923                 ejtag_info->mode = 0;
924                 command_print(CMD_CTX, "running in legacy mode");
925         } else {
926                 ejtag_info->mode = 1;
927                 command_print(CMD_CTX, "running in fast queued mode");
928         }
929
930         return ERROR_OK;
931 }
932
933 static const struct command_registration mips32_exec_command_handlers[] = {
934         {
935                 .name = "cp0",
936                 .handler = mips32_handle_cp0_command,
937                 .mode = COMMAND_EXEC,
938                 .usage = "regnum select [value]",
939                 .help = "display/modify cp0 register",
940         },
941                 {
942                 .name = "scan_delay",
943                 .handler = mips32_handle_scan_delay_command,
944                 .mode = COMMAND_ANY,
945                 .help = "display/set scan delay in nano seconds",
946                 .usage = "[value]",
947         },
948         COMMAND_REGISTRATION_DONE
949 };
950
951 const struct command_registration mips32_command_handlers[] = {
952         {
953                 .name = "mips32",
954                 .mode = COMMAND_ANY,
955                 .help = "mips32 command group",
956                 .usage = "",
957                 .chain = mips32_exec_command_handlers,
958         },
959         COMMAND_REGISTRATION_DONE
960 };