MIPS: fastdata bulk write fallback
[fw/openocd] / src / target / embeddedice.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007,2008,2009 Ã˜yvind Harboe                            *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   This program is free software; you can redistribute it and/or modify  *
12  *   it under the terms of the GNU General Public License as published by  *
13  *   the Free Software Foundation; either version 2 of the License, or     *
14  *   (at your option) any later version.                                   *
15  *                                                                         *
16  *   This program is distributed in the hope that it will be useful,       *
17  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
18  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
19  *   GNU General Public License for more details.                          *
20  *                                                                         *
21  *   You should have received a copy of the GNU General Public License     *
22  *   along with this program; if not, write to the                         *
23  *   Free Software Foundation, Inc.,                                       *
24  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
25  ***************************************************************************/
26 #ifdef HAVE_CONFIG_H
27 #include "config.h"
28 #endif
29
30 #include "embeddedice.h"
31 #include "register.h"
32
33 /**
34  * @file
35  *
36  * This provides lowlevel glue to the EmbeddedICE (or EmbeddedICE-RT)
37  * module found on scan chain 2 in ARM7, ARM9, and some other families
38  * of ARM cores.  The module is called "EmbeddedICE-RT" if it has
39  * monitor mode support.
40  *
41  * EmbeddedICE provides basic watchpoint/breakpoint hardware and a Debug
42  * Communications Channel (DCC) used to read or write 32-bit words to
43  * OpenOCD-aware code running on the target CPU.
44  * Newer modules also include vector catch hardware.  Some versions
45  * support hardware single-stepping, "monitor mode" debug (which is not
46  * currently supported by OpenOCD), or extended reporting on why the
47  * core entered debug mode.
48  */
49
50 /*
51  * From:  ARM9E-S TRM, DDI 0165, table C-4 (and similar, for other cores)
52  */
53 static const struct {
54         char            *name;
55         unsigned short  addr;
56         unsigned short  width;
57 } eice_regs[] = {
58         [EICE_DBG_CTRL] = {
59                 .name =         "debug_ctrl",
60                 .addr =         0,
61                 /* width is assigned based on EICE version */
62         },
63         [EICE_DBG_STAT] = {
64                 .name =         "debug_status",
65                 .addr =         1,
66                 /* width is assigned based on EICE version */
67         },
68         [EICE_COMMS_CTRL] = {
69                 .name =         "comms_ctrl",
70                 .addr =         4,
71                 .width =        6,
72         },
73         [EICE_COMMS_DATA] = {
74                 .name =         "comms_data",
75                 .addr =         5,
76                 .width =        32,
77         },
78         [EICE_W0_ADDR_VALUE] = {
79                 .name =         "watch_0_addr_value",
80                 .addr =         8,
81                 .width =        32,
82         },
83         [EICE_W0_ADDR_MASK] = {
84                 .name =         "watch_0_addr_mask",
85                 .addr =         9,
86                 .width =        32,
87         },
88         [EICE_W0_DATA_VALUE ] = {
89                 .name =         "watch_0_data_value",
90                 .addr =         10,
91                 .width =        32,
92         },
93         [EICE_W0_DATA_MASK] = {
94                 .name =         "watch_0_data_mask",
95                 .addr =         11,
96                 .width =        32,
97         },
98         [EICE_W0_CONTROL_VALUE] = {
99                 .name =         "watch_0_control_value",
100                 .addr =         12,
101                 .width =        9,
102         },
103         [EICE_W0_CONTROL_MASK] = {
104                 .name =         "watch_0_control_mask",
105                 .addr =         13,
106                 .width =        8,
107         },
108         [EICE_W1_ADDR_VALUE] = {
109                 .name =         "watch_1_addr_value",
110                 .addr =         16,
111                 .width =        32,
112         },
113         [EICE_W1_ADDR_MASK] = {
114                 .name =         "watch_1_addr_mask",
115                 .addr =         17,
116                 .width =        32,
117         },
118         [EICE_W1_DATA_VALUE] = {
119                 .name =         "watch_1_data_value",
120                 .addr =         18,
121                 .width =        32,
122         },
123         [EICE_W1_DATA_MASK] = {
124                 .name =         "watch_1_data_mask",
125                 .addr =         19,
126                 .width =        32,
127         },
128         [EICE_W1_CONTROL_VALUE] = {
129                 .name =         "watch_1_control_value",
130                 .addr =         20,
131                 .width =        9,
132         },
133         [EICE_W1_CONTROL_MASK] = {
134                 .name =         "watch_1_control_mask",
135                 .addr =         21,
136                 .width =        8,
137         },
138         /* vector_catch isn't always present */
139         [EICE_VEC_CATCH] = {
140                 .name =         "vector_catch",
141                 .addr =         2,
142                 .width =        8,
143         },
144 };
145
146
147 static int embeddedice_get_reg(struct reg *reg)
148 {
149         int retval;
150
151         if ((retval = embeddedice_read_reg(reg)) != ERROR_OK)
152                 LOG_ERROR("error queueing EmbeddedICE register read");
153         else if ((retval = jtag_execute_queue()) != ERROR_OK)
154                 LOG_ERROR("EmbeddedICE register read failed");
155
156         return retval;
157 }
158
159 static const struct reg_arch_type eice_reg_type = {
160         .get = embeddedice_get_reg,
161         .set = embeddedice_set_reg_w_exec,
162 };
163
164 /**
165  * Probe EmbeddedICE module and set up local records of its registers.
166  * Different versions of the modules have different capabilities, such as
167  * hardware support for vector_catch, single stepping, and monitor mode.
168  */
169 struct reg_cache *
170 embeddedice_build_reg_cache(struct target *target, struct arm7_9_common *arm7_9)
171 {
172         int retval;
173         struct reg_cache *reg_cache = malloc(sizeof(struct reg_cache));
174         struct reg *reg_list = NULL;
175         struct embeddedice_reg *arch_info = NULL;
176         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
177         int num_regs = ARRAY_SIZE(eice_regs);
178         int i;
179         int eice_version = 0;
180
181         /* vector_catch isn't always present */
182         if (!arm7_9->has_vector_catch)
183                 num_regs--;
184
185         /* the actual registers are kept in two arrays */
186         reg_list = calloc(num_regs, sizeof(struct reg));
187         arch_info = calloc(num_regs, sizeof(struct embeddedice_reg));
188
189         /* fill in values for the reg cache */
190         reg_cache->name = "EmbeddedICE registers";
191         reg_cache->next = NULL;
192         reg_cache->reg_list = reg_list;
193         reg_cache->num_regs = num_regs;
194
195         /* set up registers */
196         for (i = 0; i < num_regs; i++)
197         {
198                 reg_list[i].name = eice_regs[i].name;
199                 reg_list[i].size = eice_regs[i].width;
200                 reg_list[i].dirty = 0;
201                 reg_list[i].valid = 0;
202                 reg_list[i].value = calloc(1, 4);
203                 reg_list[i].arch_info = &arch_info[i];
204                 reg_list[i].type = &eice_reg_type;
205                 arch_info[i].addr = eice_regs[i].addr;
206                 arch_info[i].jtag_info = jtag_info;
207         }
208
209         /* identify EmbeddedICE version by reading DCC control register */
210         embeddedice_read_reg(&reg_list[EICE_COMMS_CTRL]);
211         if ((retval = jtag_execute_queue()) != ERROR_OK)
212         {
213                 for (i = 0; i < num_regs; i++)
214                 {
215                         free(reg_list[i].value);
216                 }
217                 free(reg_list);
218                 free(reg_cache);
219                 free(arch_info);
220                 return NULL;
221         }
222
223         eice_version = buf_get_u32(reg_list[EICE_COMMS_CTRL].value, 28, 4);
224         LOG_INFO("Embedded ICE version %d", eice_version);
225
226         switch (eice_version)
227         {
228                 case 1:
229                         /* ARM7TDMI r3, ARM7TDMI-S r3
230                          *
231                          * REVISIT docs say ARM7TDMI-S r4 uses version 1 but
232                          * that it has 6-bit CTRL and 5-bit STAT... doc bug?
233                          * ARM7TDMI r4 docs say EICE v4.
234                          */
235                         reg_list[EICE_DBG_CTRL].size = 3;
236                         reg_list[EICE_DBG_STAT].size = 5;
237                         break;
238                 case 2:
239                         /* ARM9TDMI */
240                         reg_list[EICE_DBG_CTRL].size = 4;
241                         reg_list[EICE_DBG_STAT].size = 5;
242                         arm7_9->has_single_step = 1;
243                         break;
244                 case 3:
245                         LOG_ERROR("EmbeddedICE v%d handling might be broken",
246                                         eice_version);
247                         reg_list[EICE_DBG_CTRL].size = 6;
248                         reg_list[EICE_DBG_STAT].size = 5;
249                         arm7_9->has_single_step = 1;
250                         arm7_9->has_monitor_mode = 1;
251                         break;
252                 case 4:
253                         /* ARM7TDMI r4 */
254                         reg_list[EICE_DBG_CTRL].size = 6;
255                         reg_list[EICE_DBG_STAT].size = 5;
256                         arm7_9->has_monitor_mode = 1;
257                         break;
258                 case 5:
259                         /* ARM9E-S rev 1 */
260                         reg_list[EICE_DBG_CTRL].size = 6;
261                         reg_list[EICE_DBG_STAT].size = 5;
262                         arm7_9->has_single_step = 1;
263                         arm7_9->has_monitor_mode = 1;
264                         break;
265                 case 6:
266                         /* ARM7EJ-S, ARM9E-S rev 2, ARM9EJ-S */
267                         reg_list[EICE_DBG_CTRL].size = 6;
268                         reg_list[EICE_DBG_STAT].size = 10;
269                         /* DBG_STAT has MOE bits */
270                         arm7_9->has_monitor_mode = 1;
271                         break;
272                 case 7:
273                         LOG_ERROR("EmbeddedICE v%d handling might be broken",
274                                         eice_version);
275                         reg_list[EICE_DBG_CTRL].size = 6;
276                         reg_list[EICE_DBG_STAT].size = 5;
277                         arm7_9->has_monitor_mode = 1;
278                         break;
279                 default:
280                         /*
281                          * The Feroceon implementation has the version number
282                          * in some unusual bits.  Let feroceon.c validate it
283                          * and do the appropriate setup itself.
284                          */
285                         if (strcmp(target_type_name(target), "feroceon") == 0 ||
286                             strcmp(target_type_name(target), "dragonite") == 0)
287                                 break;
288                         LOG_ERROR("unknown EmbeddedICE version "
289                                 "(comms ctrl: 0x%8.8" PRIx32 ")",
290                                 buf_get_u32(reg_list[EICE_COMMS_CTRL].value, 0, 32));
291         }
292
293         LOG_INFO("%s: hardware has 2 breakpoints or watchpoints",
294                         target_name(target));
295
296         return reg_cache;
297 }
298
299 /**
300  * Initialize EmbeddedICE module, if needed.
301  */
302 int embeddedice_setup(struct target *target)
303 {
304         int retval;
305         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
306
307         /* Explicitly disable monitor mode.  For now we only support halting
308          * debug ... we don't know how to talk with a resident debug monitor
309          * that manages break requests.  ARM's "Angel Debug Monitor" is one
310          * common example of such code.
311          */
312         if (arm7_9->has_monitor_mode)
313         {
314                 struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
315
316                 embeddedice_read_reg(dbg_ctrl);
317                 if ((retval = jtag_execute_queue()) != ERROR_OK)
318                         return retval;
319                 buf_set_u32(dbg_ctrl->value, 4, 1, 0);
320                 embeddedice_set_reg_w_exec(dbg_ctrl, dbg_ctrl->value);
321         }
322         return jtag_execute_queue();
323 }
324
325 /**
326  * Queue a read for an EmbeddedICE register into the register cache,
327  * optionally checking the value read.
328  * Note that at this level, all registers are 32 bits wide.
329  */
330 int embeddedice_read_reg_w_check(struct reg *reg,
331                 uint8_t *check_value, uint8_t *check_mask)
332 {
333         struct embeddedice_reg *ice_reg = reg->arch_info;
334         uint8_t reg_addr = ice_reg->addr & 0x1f;
335         struct scan_field fields[3];
336         uint8_t field1_out[1];
337         uint8_t field2_out[1];
338
339         jtag_set_end_state(TAP_IDLE);
340         arm_jtag_scann(ice_reg->jtag_info, 0x2);
341
342         arm_jtag_set_instr(ice_reg->jtag_info, ice_reg->jtag_info->intest_instr, NULL);
343
344         /* bits 31:0 -- data (ignored here) */
345         fields[0].tap = ice_reg->jtag_info->tap;
346         fields[0].num_bits = 32;
347         fields[0].out_value = reg->value;
348         fields[0].in_value = NULL;
349         fields[0].check_value = NULL;
350         fields[0].check_mask = NULL;
351
352         /* bits 36:32 -- register */
353         fields[1].tap = ice_reg->jtag_info->tap;
354         fields[1].num_bits = 5;
355         fields[1].out_value = field1_out;
356         fields[1].out_value[0] = reg_addr;
357         fields[1].in_value = NULL;
358         fields[1].check_value = NULL;
359         fields[1].check_mask = NULL;
360
361         /* bit 37 -- 0/read */
362         fields[2].tap = ice_reg->jtag_info->tap;
363         fields[2].num_bits = 1;
364         fields[2].out_value = field2_out;
365         fields[2].out_value[0] = 0;
366         fields[2].in_value = NULL;
367         fields[2].check_value = NULL;
368         fields[2].check_mask = NULL;
369
370         /* traverse Update-DR, setting address for the next read */
371         jtag_add_dr_scan(3, fields, jtag_get_end_state());
372
373         /* bits 31:0 -- the data we're reading (and maybe checking) */
374         fields[0].in_value = reg->value;
375         fields[0].check_value = check_value;
376         fields[0].check_mask = check_mask;
377
378         /* when reading the DCC data register, leaving the address field set to
379          * EICE_COMMS_DATA would read the register twice
380          * reading the control register is safe
381          */
382         fields[1].out_value[0] = eice_regs[EICE_COMMS_CTRL].addr;
383
384         /* traverse Update-DR, reading but with no other side effects */
385         jtag_add_dr_scan_check(3, fields, jtag_get_end_state());
386
387         return ERROR_OK;
388 }
389
390 /**
391  * Receive a block of size 32-bit words from the DCC.
392  * We assume the target is always going to be fast enough (relative to
393  * the JTAG clock) that the debugger won't need to poll the handshake
394  * bit.  The JTAG clock is usually at least six times slower than the
395  * functional clock, so the 50+ JTAG clocks needed to receive the word
396  * allow hundreds of instruction cycles (per word) in the target.
397  */
398 int embeddedice_receive(struct arm_jtag *jtag_info, uint32_t *data, uint32_t size)
399 {
400         struct scan_field fields[3];
401         uint8_t field1_out[1];
402         uint8_t field2_out[1];
403
404         jtag_set_end_state(TAP_IDLE);
405         arm_jtag_scann(jtag_info, 0x2);
406         arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL);
407
408         fields[0].tap = jtag_info->tap;
409         fields[0].num_bits = 32;
410         fields[0].out_value = NULL;
411         fields[0].in_value = NULL;
412
413         fields[1].tap = jtag_info->tap;
414         fields[1].num_bits = 5;
415         fields[1].out_value = field1_out;
416         fields[1].out_value[0] = eice_regs[EICE_COMMS_DATA].addr;
417         fields[1].in_value = NULL;
418
419         fields[2].tap = jtag_info->tap;
420         fields[2].num_bits = 1;
421         fields[2].out_value = field2_out;
422         fields[2].out_value[0] = 0;
423         fields[2].in_value = NULL;
424
425         jtag_add_dr_scan(3, fields, jtag_get_end_state());
426
427         while (size > 0)
428         {
429                 /* when reading the last item, set the register address to the DCC control reg,
430                  * to avoid reading additional data from the DCC data reg
431                  */
432                 if (size == 1)
433                         fields[1].out_value[0] = eice_regs[EICE_COMMS_CTRL].addr;
434
435                 fields[0].in_value = (uint8_t *)data;
436                 jtag_add_dr_scan(3, fields, jtag_get_end_state());
437                 jtag_add_callback(arm_le_to_h_u32, (jtag_callback_data_t)data);
438
439                 data++;
440                 size--;
441         }
442
443         return jtag_execute_queue();
444 }
445
446 /**
447  * Queue a read for an EmbeddedICE register into the register cache,
448  * not checking the value read.
449  */
450 int embeddedice_read_reg(struct reg *reg)
451 {
452         return embeddedice_read_reg_w_check(reg, NULL, NULL);
453 }
454
455 /**
456  * Queue a write for an EmbeddedICE register, updating the register cache.
457  * Uses embeddedice_write_reg().
458  */
459 void embeddedice_set_reg(struct reg *reg, uint32_t value)
460 {
461         embeddedice_write_reg(reg, value);
462
463         buf_set_u32(reg->value, 0, reg->size, value);
464         reg->valid = 1;
465         reg->dirty = 0;
466
467 }
468
469 /**
470  * Write an EmbeddedICE register, updating the register cache.
471  * Uses embeddedice_set_reg(); not queued.
472  */
473 int embeddedice_set_reg_w_exec(struct reg *reg, uint8_t *buf)
474 {
475         int retval;
476
477         embeddedice_set_reg(reg, buf_get_u32(buf, 0, reg->size));
478         if ((retval = jtag_execute_queue()) != ERROR_OK)
479                 LOG_ERROR("register write failed");
480         return retval;
481 }
482
483 /**
484  * Queue a write for an EmbeddedICE register, bypassing the register cache.
485  */
486 void embeddedice_write_reg(struct reg *reg, uint32_t value)
487 {
488         struct embeddedice_reg *ice_reg = reg->arch_info;
489
490         LOG_DEBUG("%i: 0x%8.8" PRIx32 "", ice_reg->addr, value);
491
492         jtag_set_end_state(TAP_IDLE);
493         arm_jtag_scann(ice_reg->jtag_info, 0x2);
494
495         arm_jtag_set_instr(ice_reg->jtag_info, ice_reg->jtag_info->intest_instr, NULL);
496
497         uint8_t reg_addr = ice_reg->addr & 0x1f;
498         embeddedice_write_reg_inner(ice_reg->jtag_info->tap, reg_addr, value);
499 }
500
501 /**
502  * Queue a write for an EmbeddedICE register, using cached value.
503  * Uses embeddedice_write_reg().
504  */
505 void embeddedice_store_reg(struct reg *reg)
506 {
507         embeddedice_write_reg(reg, buf_get_u32(reg->value, 0, reg->size));
508 }
509
510 /**
511  * Send a block of size 32-bit words to the DCC.
512  * We assume the target is always going to be fast enough (relative to
513  * the JTAG clock) that the debugger won't need to poll the handshake
514  * bit.  The JTAG clock is usually at least six times slower than the
515  * functional clock, so the 50+ JTAG clocks needed to receive the word
516  * allow hundreds of instruction cycles (per word) in the target.
517  */
518 int embeddedice_send(struct arm_jtag *jtag_info, uint32_t *data, uint32_t size)
519 {
520         struct scan_field fields[3];
521         uint8_t field0_out[4];
522         uint8_t field1_out[1];
523         uint8_t field2_out[1];
524
525         jtag_set_end_state(TAP_IDLE);
526         arm_jtag_scann(jtag_info, 0x2);
527         arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL);
528
529         fields[0].tap = jtag_info->tap;
530         fields[0].num_bits = 32;
531         fields[0].out_value = field0_out;
532         fields[0].in_value = NULL;
533
534         fields[1].tap = jtag_info->tap;
535         fields[1].num_bits = 5;
536         fields[1].out_value = field1_out;
537         fields[1].out_value[0] = eice_regs[EICE_COMMS_DATA].addr;
538         fields[1].in_value = NULL;
539
540         fields[2].tap = jtag_info->tap;
541         fields[2].num_bits = 1;
542         fields[2].out_value = field2_out;
543         fields[2].out_value[0] = 1;
544
545         fields[2].in_value = NULL;
546
547         while (size > 0)
548         {
549                 buf_set_u32(fields[0].out_value, 0, 32, *data);
550                 jtag_add_dr_scan(3, fields, jtag_get_end_state());
551
552                 data++;
553                 size--;
554         }
555
556         /* call to jtag_execute_queue() intentionally omitted */
557         return ERROR_OK;
558 }
559
560 /**
561  * Poll DCC control register until read or write handshake completes.
562  */
563 int embeddedice_handshake(struct arm_jtag *jtag_info, int hsbit, uint32_t timeout)
564 {
565         struct scan_field fields[3];
566         uint8_t field0_in[4];
567         uint8_t field1_out[1];
568         uint8_t field2_out[1];
569         int retval;
570         uint32_t hsact;
571         struct timeval lap;
572         struct timeval now;
573
574         if (hsbit == EICE_COMM_CTRL_WBIT)
575                 hsact = 1;
576         else if (hsbit == EICE_COMM_CTRL_RBIT)
577                 hsact = 0;
578         else
579                 return ERROR_INVALID_ARGUMENTS;
580
581         jtag_set_end_state(TAP_IDLE);
582         arm_jtag_scann(jtag_info, 0x2);
583         arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL);
584
585         fields[0].tap = jtag_info->tap;
586         fields[0].num_bits = 32;
587         fields[0].out_value = NULL;
588         fields[0].in_value = field0_in;
589
590         fields[1].tap = jtag_info->tap;
591         fields[1].num_bits = 5;
592         fields[1].out_value = field1_out;
593         fields[1].out_value[0] = eice_regs[EICE_COMMS_DATA].addr;
594         fields[1].in_value = NULL;
595
596         fields[2].tap = jtag_info->tap;
597         fields[2].num_bits = 1;
598         fields[2].out_value = field2_out;
599         fields[2].out_value[0] = 0;
600         fields[2].in_value = NULL;
601
602         jtag_add_dr_scan(3, fields, jtag_get_end_state());
603         gettimeofday(&lap, NULL);
604         do {
605                 jtag_add_dr_scan(3, fields, jtag_get_end_state());
606                 if ((retval = jtag_execute_queue()) != ERROR_OK)
607                         return retval;
608
609                 if (buf_get_u32(field0_in, hsbit, 1) == hsact)
610                         return ERROR_OK;
611
612                 gettimeofday(&now, NULL);
613         } while ((uint32_t)((now.tv_sec - lap.tv_sec) * 1000
614                         + (now.tv_usec - lap.tv_usec) / 1000) <= timeout);
615
616         return ERROR_TARGET_TIMEOUT;
617 }
618
619 #ifndef HAVE_JTAG_MINIDRIVER_H
620 /**
621  * This is an inner loop of the open loop DCC write of data to target
622  */
623 void embeddedice_write_dcc(struct jtag_tap *tap,
624                 int reg_addr, uint8_t *buffer, int little, int count)
625 {
626         int i;
627
628         for (i = 0; i < count; i++)
629         {
630                 embeddedice_write_reg_inner(tap, reg_addr,
631                                 fast_target_buffer_get_u32(buffer, little));
632                 buffer += 4;
633         }
634 }
635 #else
636 /* provided by minidriver */
637 #endif