target: no implicit #includes of "register.h"
[fw/openocd] / src / target / cortex_m3.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   This program is free software; you can redistribute it and/or modify  *
12  *   it under the terms of the GNU General Public License as published by  *
13  *   the Free Software Foundation; either version 2 of the License, or     *
14  *   (at your option) any later version.                                   *
15  *                                                                         *
16  *   This program is distributed in the hope that it will be useful,       *
17  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
18  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
19  *   GNU General Public License for more details.                          *
20  *                                                                         *
21  *   You should have received a copy of the GNU General Public License     *
22  *   along with this program; if not, write to the                         *
23  *   Free Software Foundation, Inc.,                                       *
24  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
25  *                                                                         *
26  *                                                                         *
27  *   Cortex-M3(tm) TRM, ARM DDI 0337E (r1p1) and 0337G (r2p0)              *
28  *                                                                         *
29  ***************************************************************************/
30 #ifdef HAVE_CONFIG_H
31 #include "config.h"
32 #endif
33
34 #include "breakpoints.h"
35 #include "cortex_m3.h"
36 #include "target_request.h"
37 #include "target_type.h"
38 #include "arm_disassembler.h"
39 #include "register.h"
40
41
42 /* NOTE:  most of this should work fine for the Cortex-M1 and
43  * Cortex-M0 cores too, although they're ARMv6-M not ARMv7-M.
44  */
45
46 #define ARRAY_SIZE(x)   ((int)(sizeof(x)/sizeof((x)[0])))
47
48
49 /* forward declarations */
50 static int cortex_m3_set_breakpoint(struct target *target, struct breakpoint *breakpoint);
51 static int cortex_m3_unset_breakpoint(struct target *target, struct breakpoint *breakpoint);
52 static void cortex_m3_enable_watchpoints(struct target *target);
53 static int cortex_m3_store_core_reg_u32(struct target *target,
54                 enum armv7m_regtype type, uint32_t num, uint32_t value);
55
56 #ifdef ARMV7_GDB_HACKS
57 extern uint8_t armv7m_gdb_dummy_cpsr_value[];
58 extern struct reg armv7m_gdb_dummy_cpsr_reg;
59 #endif
60
61 static int cortexm3_dap_read_coreregister_u32(struct swjdp_common *swjdp,
62                 uint32_t *value, int regnum)
63 {
64         int retval;
65         uint32_t dcrdr;
66
67         /* because the DCB_DCRDR is used for the emulated dcc channel
68          * we have to save/restore the DCB_DCRDR when used */
69
70         mem_ap_read_u32(swjdp, DCB_DCRDR, &dcrdr);
71
72         swjdp->trans_mode = TRANS_MODE_COMPOSITE;
73
74         /* mem_ap_write_u32(swjdp, DCB_DCRSR, regnum); */
75         dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRSR & 0xFFFFFFF0);
76         dap_ap_write_reg_u32(swjdp, AP_REG_BD0 | (DCB_DCRSR & 0xC), regnum);
77
78         /* mem_ap_read_u32(swjdp, DCB_DCRDR, value); */
79         dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRDR & 0xFFFFFFF0);
80         dap_ap_read_reg_u32(swjdp, AP_REG_BD0 | (DCB_DCRDR & 0xC), value);
81
82         retval = swjdp_transaction_endcheck(swjdp);
83
84         /* restore DCB_DCRDR - this needs to be in a seperate
85          * transaction otherwise the emulated DCC channel breaks */
86         if (retval == ERROR_OK)
87                 retval = mem_ap_write_atomic_u32(swjdp, DCB_DCRDR, dcrdr);
88
89         return retval;
90 }
91
92 static int cortexm3_dap_write_coreregister_u32(struct swjdp_common *swjdp,
93                 uint32_t value, int regnum)
94 {
95         int retval;
96         uint32_t dcrdr;
97
98         /* because the DCB_DCRDR is used for the emulated dcc channel
99          * we have to save/restore the DCB_DCRDR when used */
100
101         mem_ap_read_u32(swjdp, DCB_DCRDR, &dcrdr);
102
103         swjdp->trans_mode = TRANS_MODE_COMPOSITE;
104
105         /* mem_ap_write_u32(swjdp, DCB_DCRDR, core_regs[i]); */
106         dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRDR & 0xFFFFFFF0);
107         dap_ap_write_reg_u32(swjdp, AP_REG_BD0 | (DCB_DCRDR & 0xC), value);
108
109         /* mem_ap_write_u32(swjdp, DCB_DCRSR, i | DCRSR_WnR); */
110         dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRSR & 0xFFFFFFF0);
111         dap_ap_write_reg_u32(swjdp, AP_REG_BD0 | (DCB_DCRSR & 0xC), regnum | DCRSR_WnR);
112
113         retval = swjdp_transaction_endcheck(swjdp);
114
115         /* restore DCB_DCRDR - this needs to be in a seperate
116          * transaction otherwise the emulated DCC channel breaks */
117         if (retval == ERROR_OK)
118                 retval = mem_ap_write_atomic_u32(swjdp, DCB_DCRDR, dcrdr);
119
120         return retval;
121 }
122
123 static int cortex_m3_write_debug_halt_mask(struct target *target,
124                 uint32_t mask_on, uint32_t mask_off)
125 {
126         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
127         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
128
129         /* mask off status bits */
130         cortex_m3->dcb_dhcsr &= ~((0xFFFF << 16) | mask_off);
131         /* create new register mask */
132         cortex_m3->dcb_dhcsr |= DBGKEY | C_DEBUGEN | mask_on;
133
134         return mem_ap_write_atomic_u32(swjdp, DCB_DHCSR, cortex_m3->dcb_dhcsr);
135 }
136
137 static int cortex_m3_clear_halt(struct target *target)
138 {
139         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
140         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
141
142         /* clear step if any */
143         cortex_m3_write_debug_halt_mask(target, C_HALT, C_STEP);
144
145         /* Read Debug Fault Status Register */
146         mem_ap_read_atomic_u32(swjdp, NVIC_DFSR, &cortex_m3->nvic_dfsr);
147         /* Clear Debug Fault Status */
148         mem_ap_write_atomic_u32(swjdp, NVIC_DFSR, cortex_m3->nvic_dfsr);
149         LOG_DEBUG(" NVIC_DFSR 0x%" PRIx32 "", cortex_m3->nvic_dfsr);
150
151         return ERROR_OK;
152 }
153
154 static int cortex_m3_single_step_core(struct target *target)
155 {
156         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
157         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
158         uint32_t dhcsr_save;
159
160         /* backup dhcsr reg */
161         dhcsr_save = cortex_m3->dcb_dhcsr;
162
163         /* mask interrupts if not done already */
164         if (!(cortex_m3->dcb_dhcsr & C_MASKINTS))
165                 mem_ap_write_atomic_u32(swjdp, DCB_DHCSR, DBGKEY | C_MASKINTS | C_HALT | C_DEBUGEN);
166         mem_ap_write_atomic_u32(swjdp, DCB_DHCSR, DBGKEY | C_MASKINTS | C_STEP | C_DEBUGEN);
167         LOG_DEBUG(" ");
168
169         /* restore dhcsr reg */
170         cortex_m3->dcb_dhcsr = dhcsr_save;
171         cortex_m3_clear_halt(target);
172
173         return ERROR_OK;
174 }
175
176 static int cortex_m3_endreset_event(struct target *target)
177 {
178         int i;
179         uint32_t dcb_demcr;
180         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
181         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
182         struct cortex_m3_fp_comparator *fp_list = cortex_m3->fp_comparator_list;
183         struct cortex_m3_dwt_comparator *dwt_list = cortex_m3->dwt_comparator_list;
184
185         mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &dcb_demcr);
186         LOG_DEBUG("DCB_DEMCR = 0x%8.8" PRIx32 "",dcb_demcr);
187
188         /* this regsiter is used for emulated dcc channel */
189         mem_ap_write_u32(swjdp, DCB_DCRDR, 0);
190
191         /* Enable debug requests */
192         mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
193         if (!(cortex_m3->dcb_dhcsr & C_DEBUGEN))
194                 mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN);
195
196         /* clear any interrupt masking */
197         cortex_m3_write_debug_halt_mask(target, 0, C_MASKINTS);
198
199         /* Enable trace and dwt */
200         mem_ap_write_u32(swjdp, DCB_DEMCR, TRCENA | VC_HARDERR | VC_BUSERR);
201         /* Monitor bus faults */
202         mem_ap_write_u32(swjdp, NVIC_SHCSR, SHCSR_BUSFAULTENA);
203
204         /* Enable FPB */
205         target_write_u32(target, FP_CTRL, 3);
206         cortex_m3->fpb_enabled = 1;
207
208         /* Restore FPB registers */
209         for (i = 0; i < cortex_m3->fp_num_code + cortex_m3->fp_num_lit; i++)
210         {
211                 target_write_u32(target, fp_list[i].fpcr_address, fp_list[i].fpcr_value);
212         }
213
214         /* Restore DWT registers */
215         for (i = 0; i < cortex_m3->dwt_num_comp; i++)
216         {
217                 target_write_u32(target, dwt_list[i].dwt_comparator_address + 0,
218                                 dwt_list[i].comp);
219                 target_write_u32(target, dwt_list[i].dwt_comparator_address + 4,
220                                 dwt_list[i].mask);
221                 target_write_u32(target, dwt_list[i].dwt_comparator_address + 8,
222                                 dwt_list[i].function);
223         }
224         swjdp_transaction_endcheck(swjdp);
225
226         armv7m_invalidate_core_regs(target);
227
228         /* make sure we have latest dhcsr flags */
229         mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
230
231         return ERROR_OK;
232 }
233
234 static int cortex_m3_examine_debug_reason(struct target *target)
235 {
236         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
237
238         /* THIS IS NOT GOOD, TODO - better logic for detection of debug state reason */
239         /* only check the debug reason if we don't know it already */
240
241         if ((target->debug_reason != DBG_REASON_DBGRQ)
242                 && (target->debug_reason != DBG_REASON_SINGLESTEP))
243         {
244                 if (cortex_m3->nvic_dfsr & DFSR_BKPT)
245                 {
246                         target->debug_reason = DBG_REASON_BREAKPOINT;
247                         if (cortex_m3->nvic_dfsr & DFSR_DWTTRAP)
248                                 target->debug_reason = DBG_REASON_WPTANDBKPT;
249                 }
250                 else if (cortex_m3->nvic_dfsr & DFSR_DWTTRAP)
251                         target->debug_reason = DBG_REASON_WATCHPOINT;
252                 else if (cortex_m3->nvic_dfsr & DFSR_VCATCH)
253                         target->debug_reason = DBG_REASON_BREAKPOINT;
254                 else /* EXTERNAL, HALTED */
255                         target->debug_reason = DBG_REASON_UNDEFINED;
256         }
257
258         return ERROR_OK;
259 }
260
261 static int cortex_m3_examine_exception_reason(struct target *target)
262 {
263         uint32_t shcsr, except_sr, cfsr = -1, except_ar = -1;
264         struct armv7m_common *armv7m = target_to_armv7m(target);
265         struct swjdp_common *swjdp = &armv7m->swjdp_info;
266
267         mem_ap_read_u32(swjdp, NVIC_SHCSR, &shcsr);
268         switch (armv7m->exception_number)
269         {
270                 case 2: /* NMI */
271                         break;
272                 case 3: /* Hard Fault */
273                         mem_ap_read_atomic_u32(swjdp, NVIC_HFSR, &except_sr);
274                         if (except_sr & 0x40000000)
275                         {
276                                 mem_ap_read_u32(swjdp, NVIC_CFSR, &cfsr);
277                         }
278                         break;
279                 case 4: /* Memory Management */
280                         mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
281                         mem_ap_read_u32(swjdp, NVIC_MMFAR, &except_ar);
282                         break;
283                 case 5: /* Bus Fault */
284                         mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
285                         mem_ap_read_u32(swjdp, NVIC_BFAR, &except_ar);
286                         break;
287                 case 6: /* Usage Fault */
288                         mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
289                         break;
290                 case 11:        /* SVCall */
291                         break;
292                 case 12:        /* Debug Monitor */
293                         mem_ap_read_u32(swjdp, NVIC_DFSR, &except_sr);
294                         break;
295                 case 14:        /* PendSV */
296                         break;
297                 case 15:        /* SysTick */
298                         break;
299                 default:
300                         except_sr = 0;
301                         break;
302         }
303         swjdp_transaction_endcheck(swjdp);
304         LOG_DEBUG("%s SHCSR 0x%" PRIx32 ", SR 0x%" PRIx32 ", CFSR 0x%" PRIx32 ", AR 0x%" PRIx32 "", armv7m_exception_string(armv7m->exception_number), \
305                 shcsr, except_sr, cfsr, except_ar);
306         return ERROR_OK;
307 }
308
309 static int cortex_m3_debug_entry(struct target *target)
310 {
311         int i;
312         uint32_t xPSR;
313         int retval;
314         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
315         struct armv7m_common *armv7m = &cortex_m3->armv7m;
316         struct swjdp_common *swjdp = &armv7m->swjdp_info;
317
318         LOG_DEBUG(" ");
319
320         cortex_m3_clear_halt(target);
321         mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
322
323         if ((retval = armv7m->examine_debug_reason(target)) != ERROR_OK)
324                 return retval;
325
326         /* Examine target state and mode */
327         /* First load register acessible through core debug port*/
328         int num_regs = armv7m->core_cache->num_regs;
329
330         for (i = 0; i < num_regs; i++)
331         {
332                 if (!armv7m->core_cache->reg_list[i].valid)
333                         armv7m->read_core_reg(target, i);
334         }
335
336         xPSR = buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32);
337
338 #ifdef ARMV7_GDB_HACKS
339         /* copy real xpsr reg for gdb, setting thumb bit */
340         buf_set_u32(armv7m_gdb_dummy_cpsr_value, 0, 32, xPSR);
341         buf_set_u32(armv7m_gdb_dummy_cpsr_value, 5, 1, 1);
342         armv7m_gdb_dummy_cpsr_reg.valid = armv7m->core_cache->reg_list[ARMV7M_xPSR].valid;
343         armv7m_gdb_dummy_cpsr_reg.dirty = armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty;
344 #endif
345
346         /* For IT instructions xPSR must be reloaded on resume and clear on debug exec */
347         if (xPSR & 0xf00)
348         {
349                 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = armv7m->core_cache->reg_list[ARMV7M_xPSR].valid;
350                 cortex_m3_store_core_reg_u32(target, ARMV7M_REGISTER_CORE_GP, 16, xPSR &~ 0xff);
351         }
352
353         /* Are we in an exception handler */
354         if (xPSR & 0x1FF)
355         {
356                 armv7m->core_mode = ARMV7M_MODE_HANDLER;
357                 armv7m->exception_number = (xPSR & 0x1FF);
358         }
359         else
360         {
361                 armv7m->core_mode = buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_CONTROL].value, 0, 1);
362                 armv7m->exception_number = 0;
363         }
364
365         if (armv7m->exception_number)
366         {
367                 cortex_m3_examine_exception_reason(target);
368         }
369
370         LOG_DEBUG("entered debug state in core mode: %s at PC 0x%" PRIx32 ", target->state: %s",
371                 armv7m_mode_strings[armv7m->core_mode],
372                 *(uint32_t*)(armv7m->core_cache->reg_list[15].value),
373                 target_state_name(target));
374
375         if (armv7m->post_debug_entry)
376                 armv7m->post_debug_entry(target);
377
378         return ERROR_OK;
379 }
380
381 static int cortex_m3_poll(struct target *target)
382 {
383         int retval;
384         enum target_state prev_target_state = target->state;
385         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
386         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
387
388         /* Read from Debug Halting Control and Status Register */
389         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
390         if (retval != ERROR_OK)
391         {
392                 target->state = TARGET_UNKNOWN;
393                 return retval;
394         }
395
396         if (cortex_m3->dcb_dhcsr & S_RESET_ST)
397         {
398                 /* check if still in reset */
399                 mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
400
401                 if (cortex_m3->dcb_dhcsr & S_RESET_ST)
402                 {
403                         target->state = TARGET_RESET;
404                         return ERROR_OK;
405                 }
406         }
407
408         if (target->state == TARGET_RESET)
409         {
410                 /* Cannot switch context while running so endreset is called with target->state == TARGET_RESET */
411                 LOG_DEBUG("Exit from reset with dcb_dhcsr 0x%" PRIx32 "", cortex_m3->dcb_dhcsr);
412                 cortex_m3_endreset_event(target);
413                 target->state = TARGET_RUNNING;
414                 prev_target_state = TARGET_RUNNING;
415         }
416
417         if (cortex_m3->dcb_dhcsr & S_HALT)
418         {
419                 target->state = TARGET_HALTED;
420
421                 if ((prev_target_state == TARGET_RUNNING) || (prev_target_state == TARGET_RESET))
422                 {
423                         if ((retval = cortex_m3_debug_entry(target)) != ERROR_OK)
424                                 return retval;
425
426                         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
427                 }
428                 if (prev_target_state == TARGET_DEBUG_RUNNING)
429                 {
430                         LOG_DEBUG(" ");
431                         if ((retval = cortex_m3_debug_entry(target)) != ERROR_OK)
432                                 return retval;
433
434                         target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
435                 }
436         }
437
438         /* REVISIT when S_SLEEP is set, it's in a Sleep or DeepSleep state.
439          * How best to model low power modes?
440          */
441
442         if (target->state == TARGET_UNKNOWN)
443         {
444                 /* check if processor is retiring instructions */
445                 if (cortex_m3->dcb_dhcsr & S_RETIRE_ST)
446                 {
447                         target->state = TARGET_RUNNING;
448                         return ERROR_OK;
449                 }
450         }
451
452         return ERROR_OK;
453 }
454
455 static int cortex_m3_halt(struct target *target)
456 {
457         LOG_DEBUG("target->state: %s",
458                 target_state_name(target));
459
460         if (target->state == TARGET_HALTED)
461         {
462                 LOG_DEBUG("target was already halted");
463                 return ERROR_OK;
464         }
465
466         if (target->state == TARGET_UNKNOWN)
467         {
468                 LOG_WARNING("target was in unknown state when halt was requested");
469         }
470
471         if (target->state == TARGET_RESET)
472         {
473                 if ((jtag_get_reset_config() & RESET_SRST_PULLS_TRST) && jtag_get_srst())
474                 {
475                         LOG_ERROR("can't request a halt while in reset if nSRST pulls nTRST");
476                         return ERROR_TARGET_FAILURE;
477                 }
478                 else
479                 {
480                         /* we came here in a reset_halt or reset_init sequence
481                          * debug entry was already prepared in cortex_m3_prepare_reset_halt()
482                          */
483                         target->debug_reason = DBG_REASON_DBGRQ;
484
485                         return ERROR_OK;
486                 }
487         }
488
489         /* Write to Debug Halting Control and Status Register */
490         cortex_m3_write_debug_halt_mask(target, C_HALT, 0);
491
492         target->debug_reason = DBG_REASON_DBGRQ;
493
494         return ERROR_OK;
495 }
496
497 static int cortex_m3_soft_reset_halt(struct target *target)
498 {
499         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
500         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
501         uint32_t dcb_dhcsr = 0;
502         int retval, timeout = 0;
503
504         /* Enter debug state on reset, cf. end_reset_event() */
505         mem_ap_write_u32(swjdp, DCB_DEMCR, TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
506
507         /* Request a reset */
508         mem_ap_write_atomic_u32(swjdp, NVIC_AIRCR, AIRCR_VECTKEY | AIRCR_VECTRESET);
509         target->state = TARGET_RESET;
510
511         /* registers are now invalid */
512         armv7m_invalidate_core_regs(target);
513
514         while (timeout < 100)
515         {
516                 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &dcb_dhcsr);
517                 if (retval == ERROR_OK)
518                 {
519                         mem_ap_read_atomic_u32(swjdp, NVIC_DFSR, &cortex_m3->nvic_dfsr);
520                         if ((dcb_dhcsr & S_HALT) && (cortex_m3->nvic_dfsr & DFSR_VCATCH))
521                         {
522                                 LOG_DEBUG("system reset-halted, dcb_dhcsr 0x%" PRIx32 ", nvic_dfsr 0x%" PRIx32 "", dcb_dhcsr, cortex_m3->nvic_dfsr);
523                                 cortex_m3_poll(target);
524                                 return ERROR_OK;
525                         }
526                         else
527                                 LOG_DEBUG("waiting for system reset-halt, dcb_dhcsr 0x%" PRIx32 ", %i ms", dcb_dhcsr, timeout);
528                 }
529                 timeout++;
530                 alive_sleep(1);
531         }
532
533         return ERROR_OK;
534 }
535
536 static void cortex_m3_enable_breakpoints(struct target *target)
537 {
538         struct breakpoint *breakpoint = target->breakpoints;
539
540         /* set any pending breakpoints */
541         while (breakpoint)
542         {
543                 if (breakpoint->set == 0)
544                         cortex_m3_set_breakpoint(target, breakpoint);
545                 breakpoint = breakpoint->next;
546         }
547 }
548
549 static int cortex_m3_resume(struct target *target, int current,
550                 uint32_t address, int handle_breakpoints, int debug_execution)
551 {
552         struct armv7m_common *armv7m = target_to_armv7m(target);
553         struct breakpoint *breakpoint = NULL;
554         uint32_t resume_pc;
555
556         if (target->state != TARGET_HALTED)
557         {
558                 LOG_WARNING("target not halted");
559                 return ERROR_TARGET_NOT_HALTED;
560         }
561
562         if (!debug_execution)
563         {
564                 target_free_all_working_areas(target);
565                 cortex_m3_enable_breakpoints(target);
566                 cortex_m3_enable_watchpoints(target);
567         }
568
569         if (debug_execution)
570         {
571                 /* Disable interrupts */
572                 /* We disable interrupts in the PRIMASK register instead of masking with C_MASKINTS,
573                  * This is probably the same issue as Cortex-M3 Errata  377493:
574                  * C_MASKINTS in parallel with disabled interrupts can cause local faults to not be taken. */
575                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
576                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
577                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
578
579                 /* Make sure we are in Thumb mode */
580                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
581                         buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32) | (1 << 24));
582                 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
583                 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
584         }
585
586         /* current = 1: continue on current pc, otherwise continue at <address> */
587         if (!current)
588         {
589                 buf_set_u32(armv7m->core_cache->reg_list[15].value, 0, 32, address);
590                 armv7m->core_cache->reg_list[15].dirty = 1;
591                 armv7m->core_cache->reg_list[15].valid = 1;
592         }
593
594         resume_pc = buf_get_u32(armv7m->core_cache->reg_list[15].value, 0, 32);
595
596         armv7m_restore_context(target);
597
598         /* the front-end may request us not to handle breakpoints */
599         if (handle_breakpoints)
600         {
601                 /* Single step past breakpoint at current address */
602                 if ((breakpoint = breakpoint_find(target, resume_pc)))
603                 {
604                         LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32 " (ID: %d)",
605                                           breakpoint->address,
606                                           breakpoint->unique_id);
607                         cortex_m3_unset_breakpoint(target, breakpoint);
608                         cortex_m3_single_step_core(target);
609                         cortex_m3_set_breakpoint(target, breakpoint);
610                 }
611         }
612
613         /* Restart core */
614         cortex_m3_write_debug_halt_mask(target, 0, C_HALT);
615
616         target->debug_reason = DBG_REASON_NOTHALTED;
617
618         /* registers are now invalid */
619         armv7m_invalidate_core_regs(target);
620         if (!debug_execution)
621         {
622                 target->state = TARGET_RUNNING;
623                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
624                 LOG_DEBUG("target resumed at 0x%" PRIx32 "", resume_pc);
625         }
626         else
627         {
628                 target->state = TARGET_DEBUG_RUNNING;
629                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
630                 LOG_DEBUG("target debug resumed at 0x%" PRIx32 "", resume_pc);
631         }
632
633         return ERROR_OK;
634 }
635
636 /* int irqstepcount = 0; */
637 static int cortex_m3_step(struct target *target, int current,
638                 uint32_t address, int handle_breakpoints)
639 {
640         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
641         struct armv7m_common *armv7m = &cortex_m3->armv7m;
642         struct swjdp_common *swjdp = &armv7m->swjdp_info;
643         struct breakpoint *breakpoint = NULL;
644
645         if (target->state != TARGET_HALTED)
646         {
647                 LOG_WARNING("target not halted");
648                 return ERROR_TARGET_NOT_HALTED;
649         }
650
651         /* current = 1: continue on current pc, otherwise continue at <address> */
652         if (!current)
653                 buf_set_u32(cortex_m3->armv7m.core_cache->reg_list[15].value,
654                                 0, 32, address);
655
656         /* the front-end may request us not to handle breakpoints */
657         if (handle_breakpoints) {
658                 breakpoint = breakpoint_find(target, buf_get_u32(armv7m
659                                 ->core_cache->reg_list[15].value, 0, 32));
660                 if (breakpoint)
661                         cortex_m3_unset_breakpoint(target, breakpoint);
662         }
663
664         target->debug_reason = DBG_REASON_SINGLESTEP;
665
666         armv7m_restore_context(target);
667
668         target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
669
670         /* set step and clear halt */
671         cortex_m3_write_debug_halt_mask(target, C_STEP, C_HALT);
672         mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
673
674         /* registers are now invalid */
675         armv7m_invalidate_core_regs(target);
676
677         if (breakpoint)
678                 cortex_m3_set_breakpoint(target, breakpoint);
679
680         LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32 " nvic_icsr = 0x%" PRIx32 "", cortex_m3->dcb_dhcsr, cortex_m3->nvic_icsr);
681
682         cortex_m3_debug_entry(target);
683         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
684
685         LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32 " nvic_icsr = 0x%" PRIx32 "", cortex_m3->dcb_dhcsr, cortex_m3->nvic_icsr);
686         return ERROR_OK;
687 }
688
689 static int cortex_m3_assert_reset(struct target *target)
690 {
691         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
692         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
693         int assert_srst = 1;
694
695         LOG_DEBUG("target->state: %s",
696                 target_state_name(target));
697
698         enum reset_types jtag_reset_config = jtag_get_reset_config();
699
700         /*
701          * We can reset Cortex-M3 targets using just the NVIC without
702          * requiring SRST, getting a SoC reset (or a core-only reset)
703          * instead of a system reset.
704          */
705         if (!(jtag_reset_config & RESET_HAS_SRST))
706                 assert_srst = 0;
707
708         /* Enable debug requests */
709         mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
710         if (!(cortex_m3->dcb_dhcsr & C_DEBUGEN))
711                 mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN);
712
713         mem_ap_write_u32(swjdp, DCB_DCRDR, 0);
714
715         if (!target->reset_halt)
716         {
717                 /* Set/Clear C_MASKINTS in a separate operation */
718                 if (cortex_m3->dcb_dhcsr & C_MASKINTS)
719                         mem_ap_write_atomic_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN | C_HALT);
720
721                 /* clear any debug flags before resuming */
722                 cortex_m3_clear_halt(target);
723
724                 /* clear C_HALT in dhcsr reg */
725                 cortex_m3_write_debug_halt_mask(target, 0, C_HALT);
726
727                 /* Enter debug state on reset, cf. end_reset_event() */
728                 mem_ap_write_u32(swjdp, DCB_DEMCR, TRCENA | VC_HARDERR | VC_BUSERR);
729         }
730         else
731         {
732                 /* Enter debug state on reset, cf. end_reset_event() */
733                 mem_ap_write_atomic_u32(swjdp, DCB_DEMCR, TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
734         }
735
736         /*
737          * When nRST is asserted on most Stellaris devices, it clears some of
738          * the debug state.  The ARMv7M and Cortex-M3 TRMs say that's wrong;
739          * and OpenOCD depends on those TRMs.  So we won't use SRST on those
740          * chips.  (Only power-on reset should affect debug state, beyond a
741          * few specified bits; not the chip's nRST input, wired to SRST.)
742          *
743          * REVISIT current errata specs don't seem to cover this issue.
744          * Do we have more details than this email?
745          *   https://lists.berlios.de/pipermail
746          *      /openocd-development/2008-August/003065.html
747          */
748         if (strcmp(target->variant, "lm3s") == 0)
749         {
750                 /* Check for silicon revisions with the issue. */
751                 uint32_t did0;
752
753                 if (target_read_u32(target, 0x400fe000, &did0) == ERROR_OK)
754                 {
755                         switch ((did0 >> 16) & 0xff)
756                         {
757                                 case 0:
758                                         /* all Sandstorm suffer issue */
759                                         assert_srst = 0;
760                                         break;
761
762                                 case 1:
763                                 case 3:
764                                         /* Fury and DustDevil rev A have
765                                          * this nRST problem.  It should
766                                          * be fixed in rev B silicon.
767                                          */
768                                         if (((did0 >> 8) & 0xff) == 0)
769                                                 assert_srst = 0;
770                                         break;
771                                 case 4:
772                                         /* Tempest should be fine. */
773                                         break;
774                         }
775                 }
776         }
777
778         if (assert_srst)
779         {
780                 /* default to asserting srst */
781                 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
782                 {
783                         jtag_add_reset(1, 1);
784                 }
785                 else
786                 {
787                         jtag_add_reset(0, 1);
788                 }
789         }
790         else
791         {
792                 /* Use a standard Cortex-M3 software reset mechanism.
793                  * SYSRESETREQ will reset SoC peripherals outside the
794                  * core, like watchdog timers, if the SoC wires it up
795                  * correctly.  Else VECRESET can reset just the core.
796                  */
797                 mem_ap_write_atomic_u32(swjdp, NVIC_AIRCR,
798                                 AIRCR_VECTKEY | AIRCR_SYSRESETREQ);
799                 LOG_DEBUG("Using Cortex-M3 SYSRESETREQ");
800
801                 {
802                         /* I do not know why this is necessary, but it
803                          * fixes strange effects (step/resume cause NMI
804                          * after reset) on LM3S6918 -- Michael Schwingen
805                          */
806                         uint32_t tmp;
807                         mem_ap_read_atomic_u32(swjdp, NVIC_AIRCR, &tmp);
808                 }
809         }
810
811         target->state = TARGET_RESET;
812         jtag_add_sleep(50000);
813
814         armv7m_invalidate_core_regs(target);
815
816         if (target->reset_halt)
817         {
818                 int retval;
819                 if ((retval = target_halt(target)) != ERROR_OK)
820                         return retval;
821         }
822
823         return ERROR_OK;
824 }
825
826 static int cortex_m3_deassert_reset(struct target *target)
827 {
828         LOG_DEBUG("target->state: %s",
829                 target_state_name(target));
830
831         /* deassert reset lines */
832         jtag_add_reset(0, 0);
833
834         return ERROR_OK;
835 }
836
837 static int
838 cortex_m3_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
839 {
840         int retval;
841         int fp_num = 0;
842         uint32_t hilo;
843         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
844         struct cortex_m3_fp_comparator *comparator_list = cortex_m3->fp_comparator_list;
845
846         if (breakpoint->set)
847         {
848                 LOG_WARNING("breakpoint (BPID: %d) already set", breakpoint->unique_id);
849                 return ERROR_OK;
850         }
851
852         if (cortex_m3->auto_bp_type)
853         {
854                 breakpoint->type = (breakpoint->address < 0x20000000) ? BKPT_HARD : BKPT_SOFT;
855         }
856
857         if (breakpoint->type == BKPT_HARD)
858         {
859                 while (comparator_list[fp_num].used && (fp_num < cortex_m3->fp_num_code))
860                         fp_num++;
861                 if (fp_num >= cortex_m3->fp_num_code)
862                 {
863                         LOG_DEBUG("ERROR Can not find free FP Comparator");
864                         LOG_WARNING("ERROR Can not find free FP Comparator");
865                         exit(-1);
866                 }
867                 breakpoint->set = fp_num + 1;
868                 hilo = (breakpoint->address & 0x2) ? FPCR_REPLACE_BKPT_HIGH : FPCR_REPLACE_BKPT_LOW;
869                 comparator_list[fp_num].used = 1;
870                 comparator_list[fp_num].fpcr_value = (breakpoint->address & 0x1FFFFFFC) | hilo | 1;
871                 target_write_u32(target, comparator_list[fp_num].fpcr_address, comparator_list[fp_num].fpcr_value);
872                 LOG_DEBUG("fpc_num %i fpcr_value 0x%" PRIx32 "", fp_num, comparator_list[fp_num].fpcr_value);
873                 if (!cortex_m3->fpb_enabled)
874                 {
875                         LOG_DEBUG("FPB wasn't enabled, do it now");
876                         target_write_u32(target, FP_CTRL, 3);
877                 }
878         }
879         else if (breakpoint->type == BKPT_SOFT)
880         {
881                 uint8_t code[4];
882                 buf_set_u32(code, 0, 32, ARMV7M_T_BKPT(0x11));
883                 if ((retval = target_read_memory(target, breakpoint->address & 0xFFFFFFFE, breakpoint->length, 1, breakpoint->orig_instr)) != ERROR_OK)
884                 {
885                         return retval;
886                 }
887                 if ((retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, breakpoint->length, 1, code)) != ERROR_OK)
888                 {
889                         return retval;
890                 }
891                 breakpoint->set = 0x11; /* Any nice value but 0 */
892         }
893
894         LOG_DEBUG("BPID: %d, Type: %d, Address: 0x%08" PRIx32 " Length: %d (set=%d)",
895                           breakpoint->unique_id,
896                           (int)(breakpoint->type),
897                           breakpoint->address,
898                           breakpoint->length,
899                           breakpoint->set);
900
901         return ERROR_OK;
902 }
903
904 static int
905 cortex_m3_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
906 {
907         int retval;
908         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
909         struct cortex_m3_fp_comparator * comparator_list = cortex_m3->fp_comparator_list;
910
911         if (!breakpoint->set)
912         {
913                 LOG_WARNING("breakpoint not set");
914                 return ERROR_OK;
915         }
916
917         LOG_DEBUG("BPID: %d, Type: %d, Address: 0x%08" PRIx32 " Length: %d (set=%d)",
918                           breakpoint->unique_id,
919                           (int)(breakpoint->type),
920                           breakpoint->address,
921                           breakpoint->length,
922                           breakpoint->set);
923
924         if (breakpoint->type == BKPT_HARD)
925         {
926                 int fp_num = breakpoint->set - 1;
927                 if ((fp_num < 0) || (fp_num >= cortex_m3->fp_num_code))
928                 {
929                         LOG_DEBUG("Invalid FP Comparator number in breakpoint");
930                         return ERROR_OK;
931                 }
932                 comparator_list[fp_num].used = 0;
933                 comparator_list[fp_num].fpcr_value = 0;
934                 target_write_u32(target, comparator_list[fp_num].fpcr_address, comparator_list[fp_num].fpcr_value);
935         }
936         else
937         {
938                 /* restore original instruction (kept in target endianness) */
939                 if (breakpoint->length == 4)
940                 {
941                         if ((retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
942                         {
943                                 return retval;
944                         }
945                 }
946                 else
947                 {
948                         if ((retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
949                         {
950                                 return retval;
951                         }
952                 }
953         }
954         breakpoint->set = 0;
955
956         return ERROR_OK;
957 }
958
959 static int
960 cortex_m3_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
961 {
962         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
963
964         if (cortex_m3->auto_bp_type)
965         {
966                 breakpoint->type = (breakpoint->address < 0x20000000) ? BKPT_HARD : BKPT_SOFT;
967 #ifdef ARMV7_GDB_HACKS
968                 if (breakpoint->length != 2) {
969                         /* XXX Hack: Replace all breakpoints with length != 2 with
970                          * a hardware breakpoint. */
971                         breakpoint->type = BKPT_HARD;
972                         breakpoint->length = 2;
973                 }
974 #endif
975         }
976
977         if ((breakpoint->type == BKPT_HARD) && (breakpoint->address >= 0x20000000))
978         {
979                 LOG_INFO("flash patch comparator requested outside code memory region");
980                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
981         }
982
983         if ((breakpoint->type == BKPT_SOFT) && (breakpoint->address < 0x20000000))
984         {
985                 LOG_INFO("soft breakpoint requested in code (flash) memory region");
986                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
987         }
988
989         if ((breakpoint->type == BKPT_HARD) && (cortex_m3->fp_code_available < 1))
990         {
991                 LOG_INFO("no flash patch comparator unit available for hardware breakpoint");
992                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
993         }
994
995         if ((breakpoint->length != 2))
996         {
997                 LOG_INFO("only breakpoints of two bytes length supported");
998                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
999         }
1000
1001         if (breakpoint->type == BKPT_HARD)
1002                 cortex_m3->fp_code_available--;
1003         cortex_m3_set_breakpoint(target, breakpoint);
1004
1005         return ERROR_OK;
1006 }
1007
1008 static int
1009 cortex_m3_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1010 {
1011         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1012
1013         /* REVISIT why check? FBP can be updated with core running ... */
1014         if (target->state != TARGET_HALTED)
1015         {
1016                 LOG_WARNING("target not halted");
1017                 return ERROR_TARGET_NOT_HALTED;
1018         }
1019
1020         if (cortex_m3->auto_bp_type)
1021         {
1022                 breakpoint->type = (breakpoint->address < 0x20000000) ? BKPT_HARD : BKPT_SOFT;
1023         }
1024
1025         if (breakpoint->set)
1026         {
1027                 cortex_m3_unset_breakpoint(target, breakpoint);
1028         }
1029
1030         if (breakpoint->type == BKPT_HARD)
1031                 cortex_m3->fp_code_available++;
1032
1033         return ERROR_OK;
1034 }
1035
1036 static int
1037 cortex_m3_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
1038 {
1039         int dwt_num = 0;
1040         uint32_t mask, temp;
1041         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1042
1043         /* watchpoint params were validated earlier */
1044         mask = 0;
1045         temp = watchpoint->length;
1046         while (temp) {
1047                 temp >>= 1;
1048                 mask++;
1049         }
1050         mask--;
1051
1052         /* REVISIT Don't fully trust these "not used" records ... users
1053          * may set up breakpoints by hand, e.g. dual-address data value
1054          * watchpoint using comparator #1; comparator #0 matching cycle
1055          * count; send data trace info through ITM and TPIU; etc
1056          */
1057         struct cortex_m3_dwt_comparator *comparator;
1058
1059         for (comparator = cortex_m3->dwt_comparator_list;
1060                         comparator->used && dwt_num < cortex_m3->dwt_num_comp;
1061                         comparator++, dwt_num++)
1062                 continue;
1063         if (dwt_num >= cortex_m3->dwt_num_comp)
1064         {
1065                 LOG_ERROR("Can not find free DWT Comparator");
1066                 return ERROR_FAIL;
1067         }
1068         comparator->used = 1;
1069         watchpoint->set = dwt_num + 1;
1070
1071         comparator->comp = watchpoint->address;
1072         target_write_u32(target, comparator->dwt_comparator_address + 0,
1073                         comparator->comp);
1074
1075         comparator->mask = mask;
1076         target_write_u32(target, comparator->dwt_comparator_address + 4,
1077                         comparator->mask);
1078
1079         switch (watchpoint->rw) {
1080         case WPT_READ:
1081                 comparator->function = 5;
1082                 break;
1083         case WPT_WRITE:
1084                 comparator->function = 6;
1085                 break;
1086         case WPT_ACCESS:
1087                 comparator->function = 7;
1088                 break;
1089         }
1090         target_write_u32(target, comparator->dwt_comparator_address + 8,
1091                         comparator->function);
1092
1093         LOG_DEBUG("Watchpoint (ID %d) DWT%d 0x%08x 0x%x 0x%05x",
1094                         watchpoint->unique_id, dwt_num,
1095                         (unsigned) comparator->comp,
1096                         (unsigned) comparator->mask,
1097                         (unsigned) comparator->function);
1098         return ERROR_OK;
1099 }
1100
1101 static int
1102 cortex_m3_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
1103 {
1104         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1105         struct cortex_m3_dwt_comparator *comparator;
1106         int dwt_num;
1107
1108         if (!watchpoint->set)
1109         {
1110                 LOG_WARNING("watchpoint (wpid: %d) not set",
1111                                 watchpoint->unique_id);
1112                 return ERROR_OK;
1113         }
1114
1115         dwt_num = watchpoint->set - 1;
1116
1117         LOG_DEBUG("Watchpoint (ID %d) DWT%d address: 0x%08x clear",
1118                         watchpoint->unique_id, dwt_num,
1119                         (unsigned) watchpoint->address);
1120
1121         if ((dwt_num < 0) || (dwt_num >= cortex_m3->dwt_num_comp))
1122         {
1123                 LOG_DEBUG("Invalid DWT Comparator number in watchpoint");
1124                 return ERROR_OK;
1125         }
1126
1127         comparator = cortex_m3->dwt_comparator_list + dwt_num;
1128         comparator->used = 0;
1129         comparator->function = 0;
1130         target_write_u32(target, comparator->dwt_comparator_address + 8,
1131                         comparator->function);
1132
1133         watchpoint->set = 0;
1134
1135         return ERROR_OK;
1136 }
1137
1138 static int
1139 cortex_m3_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
1140 {
1141         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1142
1143         /* REVISIT why check? DWT can be updated with core running ... */
1144         if (target->state != TARGET_HALTED)
1145         {
1146                 LOG_WARNING("target not halted");
1147                 return ERROR_TARGET_NOT_HALTED;
1148         }
1149
1150         if (cortex_m3->dwt_comp_available < 1)
1151         {
1152                 LOG_DEBUG("no comparators?");
1153                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1154         }
1155
1156         /* hardware doesn't support data value masking */
1157         if (watchpoint->mask != ~(uint32_t)0) {
1158                 LOG_DEBUG("watchpoint value masks not supported");
1159                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1160         }
1161
1162         /* hardware allows address masks of up to 32K */
1163         unsigned mask;
1164
1165         for (mask = 0; mask < 16; mask++) {
1166                 if ((1u << mask) == watchpoint->length)
1167                         break;
1168         }
1169         if (mask == 16) {
1170                 LOG_DEBUG("unsupported watchpoint length");
1171                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1172         }
1173         if (watchpoint->address & ((1 << mask) - 1)) {
1174                 LOG_DEBUG("watchpoint address is unaligned");
1175                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1176         }
1177
1178         /* Caller doesn't seem to be able to describe watching for data
1179          * values of zero; that flags "no value".
1180          *
1181          * REVISIT This DWT may well be able to watch for specific data
1182          * values.  Requires comparator #1 to set DATAVMATCH and match
1183          * the data, and another comparator (DATAVADDR0) matching addr.
1184          */
1185         if (watchpoint->value) {
1186                 LOG_DEBUG("data value watchpoint not YET supported");
1187                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1188         }
1189
1190         cortex_m3->dwt_comp_available--;
1191         LOG_DEBUG("dwt_comp_available: %d", cortex_m3->dwt_comp_available);
1192
1193         return ERROR_OK;
1194 }
1195
1196 static int
1197 cortex_m3_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
1198 {
1199         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1200
1201         /* REVISIT why check? DWT can be updated with core running ... */
1202         if (target->state != TARGET_HALTED)
1203         {
1204                 LOG_WARNING("target not halted");
1205                 return ERROR_TARGET_NOT_HALTED;
1206         }
1207
1208         if (watchpoint->set)
1209         {
1210                 cortex_m3_unset_watchpoint(target, watchpoint);
1211         }
1212
1213         cortex_m3->dwt_comp_available++;
1214         LOG_DEBUG("dwt_comp_available: %d", cortex_m3->dwt_comp_available);
1215
1216         return ERROR_OK;
1217 }
1218
1219 static void cortex_m3_enable_watchpoints(struct target *target)
1220 {
1221         struct watchpoint *watchpoint = target->watchpoints;
1222
1223         /* set any pending watchpoints */
1224         while (watchpoint)
1225         {
1226                 if (watchpoint->set == 0)
1227                         cortex_m3_set_watchpoint(target, watchpoint);
1228                 watchpoint = watchpoint->next;
1229         }
1230 }
1231
1232 static int cortex_m3_load_core_reg_u32(struct target *target,
1233                 enum armv7m_regtype type, uint32_t num, uint32_t * value)
1234 {
1235         int retval;
1236         struct armv7m_common *armv7m = target_to_armv7m(target);
1237         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1238
1239         /* NOTE:  we "know" here that the register identifiers used
1240          * in the v7m header match the Cortex-M3 Debug Core Register
1241          * Selector values for R0..R15, xPSR, MSP, and PSP.
1242          */
1243         switch (num) {
1244         case 0 ... 18:
1245                 /* read a normal core register */
1246                 retval = cortexm3_dap_read_coreregister_u32(swjdp, value, num);
1247
1248                 if (retval != ERROR_OK)
1249                 {
1250                         LOG_ERROR("JTAG failure %i",retval);
1251                         return ERROR_JTAG_DEVICE_ERROR;
1252                 }
1253                 LOG_DEBUG("load from core reg %i  value 0x%" PRIx32 "",(int)num,*value);
1254                 break;
1255
1256         case ARMV7M_PRIMASK:
1257         case ARMV7M_BASEPRI:
1258         case ARMV7M_FAULTMASK:
1259         case ARMV7M_CONTROL:
1260                 /* Cortex-M3 packages these four registers as bitfields
1261                  * in one Debug Core register.  So say r0 and r2 docs;
1262                  * it was removed from r1 docs, but still works.
1263                  */
1264                 cortexm3_dap_read_coreregister_u32(swjdp, value, 20);
1265
1266                 switch (num)
1267                 {
1268                         case ARMV7M_PRIMASK:
1269                                 *value = buf_get_u32((uint8_t*)value, 0, 1);
1270                                 break;
1271
1272                         case ARMV7M_BASEPRI:
1273                                 *value = buf_get_u32((uint8_t*)value, 8, 8);
1274                                 break;
1275
1276                         case ARMV7M_FAULTMASK:
1277                                 *value = buf_get_u32((uint8_t*)value, 16, 1);
1278                                 break;
1279
1280                         case ARMV7M_CONTROL:
1281                                 *value = buf_get_u32((uint8_t*)value, 24, 2);
1282                                 break;
1283                 }
1284
1285                 LOG_DEBUG("load from special reg %i value 0x%" PRIx32 "", (int)num, *value);
1286                 break;
1287
1288         default:
1289                 return ERROR_INVALID_ARGUMENTS;
1290         }
1291
1292         return ERROR_OK;
1293 }
1294
1295 static int cortex_m3_store_core_reg_u32(struct target *target,
1296                 enum armv7m_regtype type, uint32_t num, uint32_t value)
1297 {
1298         int retval;
1299         uint32_t reg;
1300         struct armv7m_common *armv7m = target_to_armv7m(target);
1301         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1302
1303 #ifdef ARMV7_GDB_HACKS
1304         /* If the LR register is being modified, make sure it will put us
1305          * in "thumb" mode, or an INVSTATE exception will occur. This is a
1306          * hack to deal with the fact that gdb will sometimes "forge"
1307          * return addresses, and doesn't set the LSB correctly (i.e., when
1308          * printing expressions containing function calls, it sets LR = 0.)
1309          * Valid exception return codes have bit 0 set too.
1310          */
1311         if (num == ARMV7M_R14)
1312                 value |= 0x01;
1313 #endif
1314
1315         /* NOTE:  we "know" here that the register identifiers used
1316          * in the v7m header match the Cortex-M3 Debug Core Register
1317          * Selector values for R0..R15, xPSR, MSP, and PSP.
1318          */
1319         switch (num) {
1320         case 0 ... 18:
1321                 retval = cortexm3_dap_write_coreregister_u32(swjdp, value, num);
1322                 if (retval != ERROR_OK)
1323                 {
1324                         LOG_ERROR("JTAG failure %i", retval);
1325                         armv7m->core_cache->reg_list[num].dirty = armv7m->core_cache->reg_list[num].valid;
1326                         return ERROR_JTAG_DEVICE_ERROR;
1327                 }
1328                 LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", (int)num, value);
1329                 break;
1330
1331         case ARMV7M_PRIMASK:
1332         case ARMV7M_BASEPRI:
1333         case ARMV7M_FAULTMASK:
1334         case ARMV7M_CONTROL:
1335                 /* Cortex-M3 packages these four registers as bitfields
1336                  * in one Debug Core register.  So say r0 and r2 docs;
1337                  * it was removed from r1 docs, but still works.
1338                  */
1339                 cortexm3_dap_read_coreregister_u32(swjdp, &reg, 20);
1340
1341                 switch (num)
1342                 {
1343                         case ARMV7M_PRIMASK:
1344                                 buf_set_u32((uint8_t*)&reg, 0, 1, value);
1345                                 break;
1346
1347                         case ARMV7M_BASEPRI:
1348                                 buf_set_u32((uint8_t*)&reg, 8, 8, value);
1349                                 break;
1350
1351                         case ARMV7M_FAULTMASK:
1352                                 buf_set_u32((uint8_t*)&reg, 16, 1, value);
1353                                 break;
1354
1355                         case ARMV7M_CONTROL:
1356                                 buf_set_u32((uint8_t*)&reg, 24, 2, value);
1357                                 break;
1358                 }
1359
1360                 cortexm3_dap_write_coreregister_u32(swjdp, reg, 20);
1361
1362                 LOG_DEBUG("write special reg %i value 0x%" PRIx32 " ", (int)num, value);
1363                 break;
1364
1365         default:
1366                 return ERROR_INVALID_ARGUMENTS;
1367         }
1368
1369         return ERROR_OK;
1370 }
1371
1372 static int cortex_m3_read_memory(struct target *target, uint32_t address,
1373                 uint32_t size, uint32_t count, uint8_t *buffer)
1374 {
1375         struct armv7m_common *armv7m = target_to_armv7m(target);
1376         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1377         int retval;
1378
1379         /* sanitize arguments */
1380         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
1381                 return ERROR_INVALID_ARGUMENTS;
1382
1383         /* cortex_m3 handles unaligned memory access */
1384
1385         switch (size)
1386         {
1387                 case 4:
1388                         retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address);
1389                         break;
1390                 case 2:
1391                         retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
1392                         break;
1393                 case 1:
1394                         retval = mem_ap_read_buf_u8(swjdp, buffer, count, address);
1395                         break;
1396                 default:
1397                         LOG_ERROR("BUG: we shouldn't get here");
1398                         exit(-1);
1399         }
1400
1401         return retval;
1402 }
1403
1404 static int cortex_m3_write_memory(struct target *target, uint32_t address,
1405                 uint32_t size, uint32_t count, uint8_t *buffer)
1406 {
1407         struct armv7m_common *armv7m = target_to_armv7m(target);
1408         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1409         int retval;
1410
1411         /* sanitize arguments */
1412         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
1413                 return ERROR_INVALID_ARGUMENTS;
1414
1415         switch (size)
1416         {
1417                 case 4:
1418                         retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address);
1419                         break;
1420                 case 2:
1421                         retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);
1422                         break;
1423                 case 1:
1424                         retval = mem_ap_write_buf_u8(swjdp, buffer, count, address);
1425                         break;
1426                 default:
1427                         LOG_ERROR("BUG: we shouldn't get here");
1428                         exit(-1);
1429         }
1430
1431         return retval;
1432 }
1433
1434 static int cortex_m3_bulk_write_memory(struct target *target, uint32_t address,
1435                 uint32_t count, uint8_t *buffer)
1436 {
1437         return cortex_m3_write_memory(target, address, 4, count, buffer);
1438 }
1439
1440 static int cortex_m3_init_target(struct command_context *cmd_ctx,
1441                 struct target *target)
1442 {
1443         armv7m_build_reg_cache(target);
1444         return ERROR_OK;
1445 }
1446
1447 /* REVISIT cache valid/dirty bits are unmaintained.  We could set "valid"
1448  * on r/w if the core is not running, and clear on resume or reset ... or
1449  * at least, in a post_restore_context() method.
1450  */
1451
1452 struct dwt_reg_state {
1453         struct target   *target;
1454         uint32_t        addr;
1455         uint32_t        value;  /* scratch/cache */
1456 };
1457
1458 static int cortex_m3_dwt_get_reg(struct reg *reg)
1459 {
1460         struct dwt_reg_state *state = reg->arch_info;
1461
1462         return target_read_u32(state->target, state->addr, &state->value);
1463 }
1464
1465 static int cortex_m3_dwt_set_reg(struct reg *reg, uint8_t *buf)
1466 {
1467         struct dwt_reg_state *state = reg->arch_info;
1468
1469         return target_write_u32(state->target, state->addr,
1470                         buf_get_u32(buf, 0, reg->size));
1471 }
1472
1473 struct dwt_reg {
1474         uint32_t        addr;
1475         char            *name;
1476         unsigned        size;
1477 };
1478
1479 static struct dwt_reg dwt_base_regs[] = {
1480         { DWT_CTRL, "dwt_ctrl", 32, },
1481         { DWT_CYCCNT, "dwt_cyccnt", 32, },
1482         /* plus some 8 bit counters, useful for profiling with TPIU */
1483 };
1484
1485 static struct dwt_reg dwt_comp[] = {
1486 #define DWT_COMPARATOR(i) \
1487                 { DWT_COMP0 + 0x10 * (i), "dwt_" #i "_comp", 32, }, \
1488                 { DWT_MASK0 + 0x10 * (i), "dwt_" #i "_mask", 4, }, \
1489                 { DWT_FUNCTION0 + 0x10 * (i), "dwt_" #i "_function", 32, }
1490         DWT_COMPARATOR(0),
1491         DWT_COMPARATOR(1),
1492         DWT_COMPARATOR(2),
1493         DWT_COMPARATOR(3),
1494 #undef DWT_COMPARATOR
1495 };
1496
1497 static int dwt_reg_type = -1;
1498
1499 static void
1500 cortex_m3_dwt_addreg(struct target *t, struct reg *r, struct dwt_reg *d)
1501 {
1502         struct dwt_reg_state *state;
1503
1504         state = calloc(1, sizeof *state);
1505         if (!state)
1506                 return;
1507         state->addr = d->addr;
1508         state->target = t;
1509
1510         r->name = d->name;
1511         r->size = d->size;
1512         r->value = &state->value;
1513         r->arch_info = state;
1514         r->arch_type = dwt_reg_type;
1515 }
1516
1517 static void
1518 cortex_m3_dwt_setup(struct cortex_m3_common *cm3, struct target *target)
1519 {
1520         uint32_t dwtcr;
1521         struct reg_cache *cache;
1522         struct cortex_m3_dwt_comparator *comparator;
1523         int reg, i;
1524
1525         target_read_u32(target, DWT_CTRL, &dwtcr);
1526         if (!dwtcr) {
1527                 LOG_DEBUG("no DWT");
1528                 return;
1529         }
1530
1531         if (dwt_reg_type < 0)
1532                 dwt_reg_type = register_reg_arch_type(cortex_m3_dwt_get_reg,
1533                                 cortex_m3_dwt_set_reg);
1534
1535         cm3->dwt_num_comp = (dwtcr >> 28) & 0xF;
1536         cm3->dwt_comp_available = cm3->dwt_num_comp;
1537         cm3->dwt_comparator_list = calloc(cm3->dwt_num_comp,
1538                         sizeof(struct cortex_m3_dwt_comparator));
1539         if (!cm3->dwt_comparator_list) {
1540 fail0:
1541                 cm3->dwt_num_comp = 0;
1542                 LOG_ERROR("out of mem");
1543                 return;
1544         }
1545
1546         cache = calloc(1, sizeof *cache);
1547         if (!cache) {
1548 fail1:
1549                 free(cm3->dwt_comparator_list);
1550                 goto fail0;
1551         }
1552         cache->name = "cortex-m3 dwt registers";
1553         cache->num_regs = 2 + cm3->dwt_num_comp * 3;
1554         cache->reg_list = calloc(cache->num_regs, sizeof *cache->reg_list);
1555         if (!cache->reg_list) {
1556                 free(cache);
1557                 goto fail1;
1558         }
1559
1560         for (reg = 0; reg < 2; reg++)
1561                 cortex_m3_dwt_addreg(target, cache->reg_list + reg,
1562                                 dwt_base_regs + reg);
1563
1564         comparator = cm3->dwt_comparator_list;
1565         for (i = 0; i < cm3->dwt_num_comp; i++, comparator++) {
1566                 int j;
1567
1568                 comparator->dwt_comparator_address = DWT_COMP0 + 0x10 * i;
1569                 for (j = 0; j < 3; j++, reg++)
1570                         cortex_m3_dwt_addreg(target, cache->reg_list + reg,
1571                                         dwt_comp + 3 * i + j);
1572         }
1573
1574         *register_get_last_cache_p(&target->reg_cache) = cache;
1575         cm3->dwt_cache = cache;
1576
1577         LOG_DEBUG("DWT dwtcr 0x%" PRIx32 ", comp %d, watch%s",
1578                         dwtcr, cm3->dwt_num_comp,
1579                         (dwtcr & (0xf << 24)) ? " only" : "/trigger");
1580
1581         /* REVISIT:  if num_comp > 1, check whether comparator #1 can
1582          * implement single-address data value watchpoints ... so we
1583          * won't need to check it later, when asked to set one up.
1584          */
1585 }
1586
1587 static int cortex_m3_examine(struct target *target)
1588 {
1589         int retval;
1590         uint32_t cpuid, fpcr;
1591         int i;
1592         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1593         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
1594
1595         if ((retval = ahbap_debugport_init(swjdp)) != ERROR_OK)
1596                 return retval;
1597
1598         if (!target_was_examined(target))
1599         {
1600                 target_set_examined(target);
1601
1602                 /* Read from Device Identification Registers */
1603                 retval = target_read_u32(target, CPUID, &cpuid);
1604                 if (retval != ERROR_OK)
1605                         return retval;
1606
1607                 if (((cpuid >> 4) & 0xc3f) == 0xc23)
1608                         LOG_DEBUG("CORTEX-M3 processor detected");
1609                 LOG_DEBUG("cpuid: 0x%8.8" PRIx32 "", cpuid);
1610
1611                 /* NOTE: FPB and DWT are both optional. */
1612
1613                 /* Setup FPB */
1614                 target_read_u32(target, FP_CTRL, &fpcr);
1615                 cortex_m3->auto_bp_type = 1;
1616                 cortex_m3->fp_num_code = ((fpcr >> 8) & 0x70) | ((fpcr >> 4) & 0xF); /* bits [14:12] and [7:4] */
1617                 cortex_m3->fp_num_lit = (fpcr >> 8) & 0xF;
1618                 cortex_m3->fp_code_available = cortex_m3->fp_num_code;
1619                 cortex_m3->fp_comparator_list = calloc(cortex_m3->fp_num_code + cortex_m3->fp_num_lit, sizeof(struct cortex_m3_fp_comparator));
1620                 cortex_m3->fpb_enabled = fpcr & 1;
1621                 for (i = 0; i < cortex_m3->fp_num_code + cortex_m3->fp_num_lit; i++)
1622                 {
1623                         cortex_m3->fp_comparator_list[i].type = (i < cortex_m3->fp_num_code) ? FPCR_CODE : FPCR_LITERAL;
1624                         cortex_m3->fp_comparator_list[i].fpcr_address = FP_COMP0 + 4 * i;
1625                 }
1626                 LOG_DEBUG("FPB fpcr 0x%" PRIx32 ", numcode %i, numlit %i", fpcr, cortex_m3->fp_num_code, cortex_m3->fp_num_lit);
1627
1628                 /* Setup DWT */
1629                 cortex_m3_dwt_setup(cortex_m3, target);
1630         }
1631
1632         return ERROR_OK;
1633 }
1634
1635 static int cortex_m3_dcc_read(struct swjdp_common *swjdp, uint8_t *value, uint8_t *ctrl)
1636 {
1637         uint16_t dcrdr;
1638
1639         mem_ap_read_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1640         *ctrl = (uint8_t)dcrdr;
1641         *value = (uint8_t)(dcrdr >> 8);
1642
1643         LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1644
1645         /* write ack back to software dcc register
1646          * signify we have read data */
1647         if (dcrdr & (1 << 0))
1648         {
1649                 dcrdr = 0;
1650                 mem_ap_write_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1651         }
1652
1653         return ERROR_OK;
1654 }
1655
1656 static int cortex_m3_target_request_data(struct target *target,
1657                 uint32_t size, uint8_t *buffer)
1658 {
1659         struct armv7m_common *armv7m = target_to_armv7m(target);
1660         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1661         uint8_t data;
1662         uint8_t ctrl;
1663         uint32_t i;
1664
1665         for (i = 0; i < (size * 4); i++)
1666         {
1667                 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1668                 buffer[i] = data;
1669         }
1670
1671         return ERROR_OK;
1672 }
1673
1674 static int cortex_m3_handle_target_request(void *priv)
1675 {
1676         struct target *target = priv;
1677         if (!target_was_examined(target))
1678                 return ERROR_OK;
1679         struct armv7m_common *armv7m = target_to_armv7m(target);
1680         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1681
1682         if (!target->dbg_msg_enabled)
1683                 return ERROR_OK;
1684
1685         if (target->state == TARGET_RUNNING)
1686         {
1687                 uint8_t data;
1688                 uint8_t ctrl;
1689
1690                 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1691
1692                 /* check if we have data */
1693                 if (ctrl & (1 << 0))
1694                 {
1695                         uint32_t request;
1696
1697                         /* we assume target is quick enough */
1698                         request = data;
1699                         cortex_m3_dcc_read(swjdp, &data, &ctrl);
1700                         request |= (data << 8);
1701                         cortex_m3_dcc_read(swjdp, &data, &ctrl);
1702                         request |= (data << 16);
1703                         cortex_m3_dcc_read(swjdp, &data, &ctrl);
1704                         request |= (data << 24);
1705                         target_request(target, request);
1706                 }
1707         }
1708
1709         return ERROR_OK;
1710 }
1711
1712 static int cortex_m3_init_arch_info(struct target *target,
1713                 struct cortex_m3_common *cortex_m3, struct jtag_tap *tap)
1714 {
1715         int retval;
1716         struct armv7m_common *armv7m = &cortex_m3->armv7m;
1717
1718         armv7m_init_arch_info(target, armv7m);
1719
1720         /* prepare JTAG information for the new target */
1721         cortex_m3->jtag_info.tap = tap;
1722         cortex_m3->jtag_info.scann_size = 4;
1723
1724         armv7m->swjdp_info.dp_select_value = -1;
1725         armv7m->swjdp_info.ap_csw_value = -1;
1726         armv7m->swjdp_info.ap_tar_value = -1;
1727         armv7m->swjdp_info.jtag_info = &cortex_m3->jtag_info;
1728         armv7m->swjdp_info.memaccess_tck = 8;
1729         armv7m->swjdp_info.tar_autoincr_block = (1 << 12);      /* Cortex-M3 has 4096 bytes autoincrement range */
1730
1731         /* register arch-specific functions */
1732         armv7m->examine_debug_reason = cortex_m3_examine_debug_reason;
1733
1734         armv7m->post_debug_entry = NULL;
1735
1736         armv7m->pre_restore_context = NULL;
1737         armv7m->post_restore_context = NULL;
1738
1739         armv7m->load_core_reg_u32 = cortex_m3_load_core_reg_u32;
1740         armv7m->store_core_reg_u32 = cortex_m3_store_core_reg_u32;
1741
1742         target_register_timer_callback(cortex_m3_handle_target_request, 1, 1, target);
1743
1744         if ((retval = arm_jtag_setup_connection(&cortex_m3->jtag_info)) != ERROR_OK)
1745         {
1746                 return retval;
1747         }
1748
1749         return ERROR_OK;
1750 }
1751
1752 static int cortex_m3_target_create(struct target *target, Jim_Interp *interp)
1753 {
1754         struct cortex_m3_common *cortex_m3 = calloc(1,sizeof(struct cortex_m3_common));
1755
1756         cortex_m3->common_magic = CORTEX_M3_COMMON_MAGIC;
1757         cortex_m3_init_arch_info(target, cortex_m3, target->tap);
1758
1759         return ERROR_OK;
1760 }
1761
1762 /*--------------------------------------------------------------------------*/
1763
1764 static int cortex_m3_verify_pointer(struct command_context *cmd_ctx,
1765                 struct cortex_m3_common *cm3)
1766 {
1767         if (cm3->common_magic != CORTEX_M3_COMMON_MAGIC) {
1768                 command_print(cmd_ctx, "target is not a Cortex-M3");
1769                 return ERROR_TARGET_INVALID;
1770         }
1771         return ERROR_OK;
1772 }
1773
1774 /*
1775  * Only stuff below this line should need to verify that its target
1776  * is a Cortex-M3.  Everything else should have indirected through the
1777  * cortexm3_target structure, which is only used with CM3 targets.
1778  */
1779
1780 /*
1781  * REVISIT Thumb2 disassembly should work for all ARMv7 cores, as well
1782  * as at least ARM-1156T2.  The interesting thing about Cortex-M is
1783  * that *only* Thumb2 disassembly matters.  There are also some small
1784  * additions to Thumb2 that are specific to ARMv7-M.
1785  */
1786 COMMAND_HANDLER(handle_cortex_m3_disassemble_command)
1787 {
1788         int retval;
1789         struct target *target = get_current_target(cmd_ctx);
1790         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1791         uint32_t address;
1792         unsigned long count = 1;
1793         struct arm_instruction cur_instruction;
1794
1795         retval = cortex_m3_verify_pointer(cmd_ctx, cortex_m3);
1796         if (retval != ERROR_OK)
1797                 return retval;
1798
1799         errno = 0;
1800         switch (argc) {
1801         case 2:
1802                 COMMAND_PARSE_NUMBER(ulong, args[1], count);
1803                 /* FALL THROUGH */
1804         case 1:
1805                 COMMAND_PARSE_NUMBER(u32, args[0], address);
1806                 break;
1807         default:
1808                 command_print(cmd_ctx,
1809                         "usage: cortex_m3 disassemble <address> [<count>]");
1810                 return ERROR_OK;
1811         }
1812
1813         while (count--) {
1814                 retval = thumb2_opcode(target, address, &cur_instruction);
1815                 if (retval != ERROR_OK)
1816                         return retval;
1817                 command_print(cmd_ctx, "%s", cur_instruction.text);
1818                 address += cur_instruction.instruction_size;
1819         }
1820
1821         return ERROR_OK;
1822 }
1823
1824 static const struct {
1825         char name[10];
1826         unsigned mask;
1827 } vec_ids[] = {
1828         { "hard_err",   VC_HARDERR, },
1829         { "int_err",    VC_INTERR, },
1830         { "bus_err",    VC_BUSERR, },
1831         { "state_err",  VC_STATERR, },
1832         { "chk_err",    VC_CHKERR, },
1833         { "nocp_err",   VC_NOCPERR, },
1834         { "mm_err",     VC_MMERR, },
1835         { "reset",      VC_CORERESET, },
1836 };
1837
1838 COMMAND_HANDLER(handle_cortex_m3_vector_catch_command)
1839 {
1840         struct target *target = get_current_target(cmd_ctx);
1841         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1842         struct armv7m_common *armv7m = &cortex_m3->armv7m;
1843         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1844         uint32_t demcr = 0;
1845         int retval;
1846         int i;
1847
1848         retval = cortex_m3_verify_pointer(cmd_ctx, cortex_m3);
1849         if (retval != ERROR_OK)
1850                 return retval;
1851
1852         mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &demcr);
1853
1854         if (argc > 0) {
1855                 unsigned catch = 0;
1856
1857                 if (argc == 1) {
1858                         if (strcmp(args[0], "all") == 0) {
1859                                 catch = VC_HARDERR | VC_INTERR | VC_BUSERR
1860                                         | VC_STATERR | VC_CHKERR | VC_NOCPERR
1861                                         | VC_MMERR | VC_CORERESET;
1862                                 goto write;
1863                         } else if (strcmp(args[0], "none") == 0) {
1864                                 goto write;
1865                         }
1866                 }
1867                 while (argc-- > 0) {
1868                         for (i = 0; i < ARRAY_SIZE(vec_ids); i++) {
1869                                 if (strcmp(args[argc], vec_ids[i].name) != 0)
1870                                         continue;
1871                                 catch |= vec_ids[i].mask;
1872                                 break;
1873                         }
1874                         if (i == ARRAY_SIZE(vec_ids)) {
1875                                 LOG_ERROR("No CM3 vector '%s'", args[argc]);
1876                                 return ERROR_INVALID_ARGUMENTS;
1877                         }
1878                 }
1879 write:
1880                 demcr &= ~0xffff;
1881                 demcr |= catch;
1882
1883                 /* write, but don't assume it stuck */
1884                 mem_ap_write_u32(swjdp, DCB_DEMCR, demcr);
1885                 mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &demcr);
1886         }
1887
1888         for (i = 0; i < ARRAY_SIZE(vec_ids); i++)
1889                 command_print(cmd_ctx, "%9s: %s", vec_ids[i].name,
1890                         (demcr & vec_ids[i].mask) ? "catch" : "ignore");
1891
1892         return ERROR_OK;
1893 }
1894
1895 COMMAND_HANDLER(handle_cortex_m3_mask_interrupts_command)
1896 {
1897         struct target *target = get_current_target(cmd_ctx);
1898         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1899         int retval;
1900
1901         retval = cortex_m3_verify_pointer(cmd_ctx, cortex_m3);
1902         if (retval != ERROR_OK)
1903                 return retval;
1904
1905         if (target->state != TARGET_HALTED)
1906         {
1907                 command_print(cmd_ctx, "target must be stopped for \"%s\" command", CMD_NAME);
1908                 return ERROR_OK;
1909         }
1910
1911         if (argc > 0)
1912         {
1913                 if (!strcmp(args[0], "on"))
1914                 {
1915                         cortex_m3_write_debug_halt_mask(target, C_HALT | C_MASKINTS, 0);
1916                 }
1917                 else if (!strcmp(args[0], "off"))
1918                 {
1919                         cortex_m3_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
1920                 }
1921                 else
1922                 {
1923                         command_print(cmd_ctx, "usage: cortex_m3 maskisr ['on'|'off']");
1924                 }
1925         }
1926
1927         command_print(cmd_ctx, "cortex_m3 interrupt mask %s",
1928                         (cortex_m3->dcb_dhcsr & C_MASKINTS) ? "on" : "off");
1929
1930         return ERROR_OK;
1931 }
1932
1933 static int cortex_m3_register_commands(struct command_context *cmd_ctx)
1934 {
1935         int retval;
1936         struct command *cortex_m3_cmd;
1937
1938         retval = armv7m_register_commands(cmd_ctx);
1939
1940         cortex_m3_cmd = register_command(cmd_ctx, NULL, "cortex_m3",
1941                         NULL, COMMAND_ANY, "cortex_m3 specific commands");
1942
1943         register_command(cmd_ctx, cortex_m3_cmd, "disassemble",
1944                         handle_cortex_m3_disassemble_command, COMMAND_EXEC,
1945                         "disassemble Thumb2 instructions <address> [<count>]");
1946         register_command(cmd_ctx, cortex_m3_cmd, "maskisr",
1947                         handle_cortex_m3_mask_interrupts_command, COMMAND_EXEC,
1948                         "mask cortex_m3 interrupts ['on'|'off']");
1949         register_command(cmd_ctx, cortex_m3_cmd, "vector_catch",
1950                         handle_cortex_m3_vector_catch_command, COMMAND_EXEC,
1951                         "catch hardware vectors ['all'|'none'|<list>]");
1952
1953         return retval;
1954 }
1955
1956 struct target_type cortexm3_target =
1957 {
1958         .name = "cortex_m3",
1959
1960         .poll = cortex_m3_poll,
1961         .arch_state = armv7m_arch_state,
1962
1963         .target_request_data = cortex_m3_target_request_data,
1964
1965         .halt = cortex_m3_halt,
1966         .resume = cortex_m3_resume,
1967         .step = cortex_m3_step,
1968
1969         .assert_reset = cortex_m3_assert_reset,
1970         .deassert_reset = cortex_m3_deassert_reset,
1971         .soft_reset_halt = cortex_m3_soft_reset_halt,
1972
1973         .get_gdb_reg_list = armv7m_get_gdb_reg_list,
1974
1975         .read_memory = cortex_m3_read_memory,
1976         .write_memory = cortex_m3_write_memory,
1977         .bulk_write_memory = cortex_m3_bulk_write_memory,
1978         .checksum_memory = armv7m_checksum_memory,
1979         .blank_check_memory = armv7m_blank_check_memory,
1980
1981         .run_algorithm = armv7m_run_algorithm,
1982
1983         .add_breakpoint = cortex_m3_add_breakpoint,
1984         .remove_breakpoint = cortex_m3_remove_breakpoint,
1985         .add_watchpoint = cortex_m3_add_watchpoint,
1986         .remove_watchpoint = cortex_m3_remove_watchpoint,
1987
1988         .register_commands = cortex_m3_register_commands,
1989         .target_create = cortex_m3_target_create,
1990         .init_target = cortex_m3_init_target,
1991         .examine = cortex_m3_examine,
1992 };