f87c3e0b80634d4b8ab6e8008abfc14869ba4377
[fw/openocd] / src / target / cortex_m3.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   This program is free software; you can redistribute it and/or modify  *
12  *   it under the terms of the GNU General Public License as published by  *
13  *   the Free Software Foundation; either version 2 of the License, or     *
14  *   (at your option) any later version.                                   *
15  *                                                                         *
16  *   This program is distributed in the hope that it will be useful,       *
17  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
18  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
19  *   GNU General Public License for more details.                          *
20  *                                                                         *
21  *   You should have received a copy of the GNU General Public License     *
22  *   along with this program; if not, write to the                         *
23  *   Free Software Foundation, Inc.,                                       *
24  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
25  *                                                                         *
26  *                                                                         *
27  *   Cortex-M3(tm) TRM, ARM DDI 0337E (r1p1) and 0337G (r2p0)              *
28  *                                                                         *
29  ***************************************************************************/
30 #ifdef HAVE_CONFIG_H
31 #include "config.h"
32 #endif
33
34 #include "breakpoints.h"
35 #include "cortex_m3.h"
36 #include "target_request.h"
37 #include "target_type.h"
38 #include "arm_disassembler.h"
39 #include "register.h"
40 #include "arm_opcodes.h"
41 #include "arm_semihosting.h"
42
43 /* NOTE:  most of this should work fine for the Cortex-M1 and
44  * Cortex-M0 cores too, although they're ARMv6-M not ARMv7-M.
45  * Some differences:  M0/M1 doesn't have FBP remapping or the
46  * DWT tracing/profiling support.  (So the cycle counter will
47  * not be usable; the other stuff isn't currently used here.)
48  *
49  * Although there are some workarounds for errata seen only in r0p0
50  * silicon, such old parts are hard to find and thus not much tested
51  * any longer.
52  */
53
54
55 /* forward declarations */
56 static int cortex_m3_set_breakpoint(struct target *target, struct breakpoint *breakpoint);
57 static int cortex_m3_unset_breakpoint(struct target *target, struct breakpoint *breakpoint);
58 static void cortex_m3_enable_watchpoints(struct target *target);
59 static int cortex_m3_store_core_reg_u32(struct target *target,
60                 enum armv7m_regtype type, uint32_t num, uint32_t value);
61
62 static int cortexm3_dap_read_coreregister_u32(struct adiv5_dap *swjdp,
63                 uint32_t *value, int regnum)
64 {
65         int retval;
66         uint32_t dcrdr;
67
68         /* because the DCB_DCRDR is used for the emulated dcc channel
69          * we have to save/restore the DCB_DCRDR when used */
70
71         retval = mem_ap_read_u32(swjdp, DCB_DCRDR, &dcrdr);
72         if (retval != ERROR_OK)
73                 return retval;
74
75         /* mem_ap_write_u32(swjdp, DCB_DCRSR, regnum); */
76         retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRSR & 0xFFFFFFF0);
77         if (retval != ERROR_OK)
78                 return retval;
79         retval = dap_queue_ap_write(swjdp, AP_REG_BD0 | (DCB_DCRSR & 0xC), regnum);
80         if (retval != ERROR_OK)
81                 return retval;
82
83         /* mem_ap_read_u32(swjdp, DCB_DCRDR, value); */
84         retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRDR & 0xFFFFFFF0);
85         if (retval != ERROR_OK)
86                 return retval;
87         retval = dap_queue_ap_read(swjdp, AP_REG_BD0 | (DCB_DCRDR & 0xC), value);
88         if (retval != ERROR_OK)
89                 return retval;
90
91         retval = dap_run(swjdp);
92         if (retval != ERROR_OK)
93                 return retval;
94
95         /* restore DCB_DCRDR - this needs to be in a seperate
96          * transaction otherwise the emulated DCC channel breaks */
97         if (retval == ERROR_OK)
98                 retval = mem_ap_write_atomic_u32(swjdp, DCB_DCRDR, dcrdr);
99
100         return retval;
101 }
102
103 static int cortexm3_dap_write_coreregister_u32(struct adiv5_dap *swjdp,
104                 uint32_t value, int regnum)
105 {
106         int retval;
107         uint32_t dcrdr;
108
109         /* because the DCB_DCRDR is used for the emulated dcc channel
110          * we have to save/restore the DCB_DCRDR when used */
111
112         retval = mem_ap_read_u32(swjdp, DCB_DCRDR, &dcrdr);
113         if (retval != ERROR_OK)
114                 return retval;
115
116         /* mem_ap_write_u32(swjdp, DCB_DCRDR, core_regs[i]); */
117         retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRDR & 0xFFFFFFF0);
118         if (retval != ERROR_OK)
119                 return retval;
120         retval = dap_queue_ap_write(swjdp, AP_REG_BD0 | (DCB_DCRDR & 0xC), value);
121         // XXX check retval
122
123         /* mem_ap_write_u32(swjdp, DCB_DCRSR, i | DCRSR_WnR); */
124         retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRSR & 0xFFFFFFF0);
125         if (retval != ERROR_OK)
126                 return retval;
127         retval = dap_queue_ap_write(swjdp, AP_REG_BD0 | (DCB_DCRSR & 0xC), regnum | DCRSR_WnR);
128         // XXX check retval
129
130         retval = dap_run(swjdp);
131
132         /* restore DCB_DCRDR - this needs to be in a seperate
133          * transaction otherwise the emulated DCC channel breaks */
134         if (retval == ERROR_OK)
135                 retval = mem_ap_write_atomic_u32(swjdp, DCB_DCRDR, dcrdr);
136
137         return retval;
138 }
139
140 static int cortex_m3_write_debug_halt_mask(struct target *target,
141                 uint32_t mask_on, uint32_t mask_off)
142 {
143         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
144         struct adiv5_dap *swjdp = &cortex_m3->armv7m.dap;
145
146         /* mask off status bits */
147         cortex_m3->dcb_dhcsr &= ~((0xFFFF << 16) | mask_off);
148         /* create new register mask */
149         cortex_m3->dcb_dhcsr |= DBGKEY | C_DEBUGEN | mask_on;
150
151         return mem_ap_write_atomic_u32(swjdp, DCB_DHCSR, cortex_m3->dcb_dhcsr);
152 }
153
154 static int cortex_m3_clear_halt(struct target *target)
155 {
156         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
157         struct adiv5_dap *swjdp = &cortex_m3->armv7m.dap;
158         int retval;
159
160         /* clear step if any */
161         cortex_m3_write_debug_halt_mask(target, C_HALT, C_STEP);
162
163         /* Read Debug Fault Status Register */
164         retval = mem_ap_read_atomic_u32(swjdp, NVIC_DFSR, &cortex_m3->nvic_dfsr);
165         if (retval != ERROR_OK)
166                 return retval;
167
168         /* Clear Debug Fault Status */
169         retval = mem_ap_write_atomic_u32(swjdp, NVIC_DFSR, cortex_m3->nvic_dfsr);
170         if (retval != ERROR_OK)
171                 return retval;
172         LOG_DEBUG(" NVIC_DFSR 0x%" PRIx32 "", cortex_m3->nvic_dfsr);
173
174         return ERROR_OK;
175 }
176
177 static int cortex_m3_single_step_core(struct target *target)
178 {
179         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
180         struct adiv5_dap *swjdp = &cortex_m3->armv7m.dap;
181         uint32_t dhcsr_save;
182         int retval;
183
184         /* backup dhcsr reg */
185         dhcsr_save = cortex_m3->dcb_dhcsr;
186
187         /* Mask interrupts before clearing halt, if done already.  This avoids
188          * Erratum 377497 (fixed in r1p0) where setting MASKINTS while clearing
189          * HALT can put the core into an unknown state.
190          */
191         if (!(cortex_m3->dcb_dhcsr & C_MASKINTS))
192         {
193                 retval = mem_ap_write_atomic_u32(swjdp, DCB_DHCSR,
194                                 DBGKEY | C_MASKINTS | C_HALT | C_DEBUGEN);
195                 if (retval != ERROR_OK)
196                         return retval;
197         }
198         retval = mem_ap_write_atomic_u32(swjdp, DCB_DHCSR,
199                                 DBGKEY | C_MASKINTS | C_STEP | C_DEBUGEN);
200         if (retval != ERROR_OK)
201                 return retval;
202         LOG_DEBUG(" ");
203
204         /* restore dhcsr reg */
205         cortex_m3->dcb_dhcsr = dhcsr_save;
206         cortex_m3_clear_halt(target);
207
208         return ERROR_OK;
209 }
210
211 static int cortex_m3_endreset_event(struct target *target)
212 {
213         int i;
214         int retval;
215         uint32_t dcb_demcr;
216         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
217         struct armv7m_common *armv7m = &cortex_m3->armv7m;
218         struct adiv5_dap *swjdp = &cortex_m3->armv7m.dap;
219         struct cortex_m3_fp_comparator *fp_list = cortex_m3->fp_comparator_list;
220         struct cortex_m3_dwt_comparator *dwt_list = cortex_m3->dwt_comparator_list;
221
222         /* REVISIT The four debug monitor bits are currently ignored... */
223         retval = mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &dcb_demcr);
224         if (retval != ERROR_OK)
225                 return retval;
226         LOG_DEBUG("DCB_DEMCR = 0x%8.8" PRIx32 "",dcb_demcr);
227
228         /* this register is used for emulated dcc channel */
229         retval = mem_ap_write_u32(swjdp, DCB_DCRDR, 0);
230         if (retval != ERROR_OK)
231                 return retval;
232
233         /* Enable debug requests */
234         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
235         if (retval != ERROR_OK)
236                 return retval;
237         if (!(cortex_m3->dcb_dhcsr & C_DEBUGEN))
238         {
239                 retval = mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN);
240                 if (retval != ERROR_OK)
241                         return retval;
242         }
243
244         /* clear any interrupt masking */
245         cortex_m3_write_debug_halt_mask(target, 0, C_MASKINTS);
246
247         /* Enable features controlled by ITM and DWT blocks, and catch only
248          * the vectors we were told to pay attention to.
249          *
250          * Target firmware is responsible for all fault handling policy
251          * choices *EXCEPT* explicitly scripted overrides like "vector_catch"
252          * or manual updates to the NVIC SHCSR and CCR registers.
253          */
254         retval = mem_ap_write_u32(swjdp, DCB_DEMCR, TRCENA | armv7m->demcr);
255         if (retval != ERROR_OK)
256                 return retval;
257
258         /* Paranoia: evidently some (early?) chips don't preserve all the
259          * debug state (including FBP, DWT, etc) across reset...
260          */
261
262         /* Enable FPB */
263         retval = target_write_u32(target, FP_CTRL, 3);
264         if (retval != ERROR_OK)
265                 return retval;
266
267         cortex_m3->fpb_enabled = 1;
268
269         /* Restore FPB registers */
270         for (i = 0; i < cortex_m3->fp_num_code + cortex_m3->fp_num_lit; i++)
271         {
272                 retval = target_write_u32(target, fp_list[i].fpcr_address, fp_list[i].fpcr_value);
273                 if (retval != ERROR_OK)
274                         return retval;
275         }
276
277         /* Restore DWT registers */
278         for (i = 0; i < cortex_m3->dwt_num_comp; i++)
279         {
280                 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 0,
281                                 dwt_list[i].comp);
282                 if (retval != ERROR_OK)
283                         return retval;
284                 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 4,
285                                 dwt_list[i].mask);
286                 if (retval != ERROR_OK)
287                         return retval;
288                 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 8,
289                                 dwt_list[i].function);
290                 if (retval != ERROR_OK)
291                         return retval;
292         }
293         retval = dap_run(swjdp);
294         if (retval != ERROR_OK)
295                 return retval;
296
297         register_cache_invalidate(cortex_m3->armv7m.core_cache);
298
299         /* make sure we have latest dhcsr flags */
300         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
301
302         return retval;
303 }
304
305 static int cortex_m3_examine_debug_reason(struct target *target)
306 {
307         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
308
309         /* THIS IS NOT GOOD, TODO - better logic for detection of debug state reason */
310         /* only check the debug reason if we don't know it already */
311
312         if ((target->debug_reason != DBG_REASON_DBGRQ)
313                 && (target->debug_reason != DBG_REASON_SINGLESTEP))
314         {
315                 if (cortex_m3->nvic_dfsr & DFSR_BKPT)
316                 {
317                         target->debug_reason = DBG_REASON_BREAKPOINT;
318                         if (cortex_m3->nvic_dfsr & DFSR_DWTTRAP)
319                                 target->debug_reason = DBG_REASON_WPTANDBKPT;
320                 }
321                 else if (cortex_m3->nvic_dfsr & DFSR_DWTTRAP)
322                         target->debug_reason = DBG_REASON_WATCHPOINT;
323                 else if (cortex_m3->nvic_dfsr & DFSR_VCATCH)
324                         target->debug_reason = DBG_REASON_BREAKPOINT;
325                 else /* EXTERNAL, HALTED */
326                         target->debug_reason = DBG_REASON_UNDEFINED;
327         }
328
329         return ERROR_OK;
330 }
331
332 static int cortex_m3_examine_exception_reason(struct target *target)
333 {
334         uint32_t shcsr, except_sr, cfsr = -1, except_ar = -1;
335         struct armv7m_common *armv7m = target_to_armv7m(target);
336         struct adiv5_dap *swjdp = &armv7m->dap;
337         int retval;
338
339         retval = mem_ap_read_u32(swjdp, NVIC_SHCSR, &shcsr);
340         if (retval != ERROR_OK)
341                 return retval;
342         switch (armv7m->exception_number)
343         {
344                 case 2: /* NMI */
345                         break;
346                 case 3: /* Hard Fault */
347                         retval = mem_ap_read_atomic_u32(swjdp, NVIC_HFSR, &except_sr);
348                         if (retval != ERROR_OK)
349                                 return retval;
350                         if (except_sr & 0x40000000)
351                         {
352                                 retval = mem_ap_read_u32(swjdp, NVIC_CFSR, &cfsr);
353                                 if (retval != ERROR_OK)
354                                         return retval;
355                         }
356                         break;
357                 case 4: /* Memory Management */
358                         retval = mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
359                         if (retval != ERROR_OK)
360                                 return retval;
361                         retval = mem_ap_read_u32(swjdp, NVIC_MMFAR, &except_ar);
362                         if (retval != ERROR_OK)
363                                 return retval;
364                         break;
365                 case 5: /* Bus Fault */
366                         retval = mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
367                         if (retval != ERROR_OK)
368                                 return retval;
369                         retval = mem_ap_read_u32(swjdp, NVIC_BFAR, &except_ar);
370                         if (retval != ERROR_OK)
371                                 return retval;
372                         break;
373                 case 6: /* Usage Fault */
374                         retval = mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
375                         if (retval != ERROR_OK)
376                                 return retval;
377                         break;
378                 case 11:        /* SVCall */
379                         break;
380                 case 12:        /* Debug Monitor */
381                         retval = mem_ap_read_u32(swjdp, NVIC_DFSR, &except_sr);
382                         if (retval != ERROR_OK)
383                                 return retval;
384                         break;
385                 case 14:        /* PendSV */
386                         break;
387                 case 15:        /* SysTick */
388                         break;
389                 default:
390                         except_sr = 0;
391                         break;
392         }
393         retval = dap_run(swjdp);
394         if (retval == ERROR_OK)
395                 LOG_DEBUG("%s SHCSR 0x%" PRIx32 ", SR 0x%" PRIx32
396                         ", CFSR 0x%" PRIx32 ", AR 0x%" PRIx32,
397                         armv7m_exception_string(armv7m->exception_number),
398                         shcsr, except_sr, cfsr, except_ar);
399         return retval;
400 }
401
402 /* PSP is used in some thread modes */
403 static const int armv7m_psp_reg_map[17] = {
404         ARMV7M_R0, ARMV7M_R1, ARMV7M_R2, ARMV7M_R3,
405         ARMV7M_R4, ARMV7M_R5, ARMV7M_R6, ARMV7M_R7,
406         ARMV7M_R8, ARMV7M_R9, ARMV7M_R10, ARMV7M_R11,
407         ARMV7M_R12, ARMV7M_PSP, ARMV7M_R14, ARMV7M_PC,
408         ARMV7M_xPSR,
409 };
410
411 /* MSP is used in handler and some thread modes */
412 static const int armv7m_msp_reg_map[17] = {
413         ARMV7M_R0, ARMV7M_R1, ARMV7M_R2, ARMV7M_R3,
414         ARMV7M_R4, ARMV7M_R5, ARMV7M_R6, ARMV7M_R7,
415         ARMV7M_R8, ARMV7M_R9, ARMV7M_R10, ARMV7M_R11,
416         ARMV7M_R12, ARMV7M_MSP, ARMV7M_R14, ARMV7M_PC,
417         ARMV7M_xPSR,
418 };
419
420 static int cortex_m3_debug_entry(struct target *target)
421 {
422         int i;
423         uint32_t xPSR;
424         int retval;
425         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
426         struct armv7m_common *armv7m = &cortex_m3->armv7m;
427         struct arm *arm = &armv7m->arm;
428         struct adiv5_dap *swjdp = &armv7m->dap;
429         struct reg *r;
430
431         LOG_DEBUG(" ");
432
433         cortex_m3_clear_halt(target);
434         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
435         if (retval != ERROR_OK)
436                 return retval;
437
438         if ((retval = armv7m->examine_debug_reason(target)) != ERROR_OK)
439                 return retval;
440
441         /* Examine target state and mode */
442         /* First load register acessible through core debug port*/
443         int num_regs = armv7m->core_cache->num_regs;
444
445         for (i = 0; i < num_regs; i++)
446         {
447                 if (!armv7m->core_cache->reg_list[i].valid)
448                         armv7m->read_core_reg(target, i);
449         }
450
451         r = armv7m->core_cache->reg_list + ARMV7M_xPSR;
452         xPSR = buf_get_u32(r->value, 0, 32);
453
454 #ifdef ARMV7_GDB_HACKS
455         /* FIXME this breaks on scan chains with more than one Cortex-M3.
456          * Instead, each CM3 should have its own dummy value...
457          */
458         /* copy real xpsr reg for gdb, setting thumb bit */
459         buf_set_u32(armv7m_gdb_dummy_cpsr_value, 0, 32, xPSR);
460         buf_set_u32(armv7m_gdb_dummy_cpsr_value, 5, 1, 1);
461         armv7m_gdb_dummy_cpsr_reg.valid = r->valid;
462         armv7m_gdb_dummy_cpsr_reg.dirty = r->dirty;
463 #endif
464
465         /* For IT instructions xPSR must be reloaded on resume and clear on debug exec */
466         if (xPSR & 0xf00)
467         {
468                 r->dirty = r->valid;
469                 cortex_m3_store_core_reg_u32(target, ARMV7M_REGISTER_CORE_GP, 16, xPSR &~ 0xff);
470         }
471
472         /* Are we in an exception handler */
473         if (xPSR & 0x1FF)
474         {
475                 armv7m->core_mode = ARMV7M_MODE_HANDLER;
476                 armv7m->exception_number = (xPSR & 0x1FF);
477
478                 arm->core_mode = ARM_MODE_HANDLER;
479                 arm->map = armv7m_msp_reg_map;
480         }
481         else
482         {
483                 unsigned control = buf_get_u32(armv7m->core_cache
484                                 ->reg_list[ARMV7M_CONTROL].value, 0, 2);
485
486                 /* is this thread privileged? */
487                 armv7m->core_mode = control & 1;
488                 arm->core_mode = armv7m->core_mode
489                                 ? ARM_MODE_USER_THREAD
490                                 : ARM_MODE_THREAD;
491
492                 /* which stack is it using? */
493                 if (control & 2)
494                         arm->map = armv7m_psp_reg_map;
495                 else
496                         arm->map = armv7m_msp_reg_map;
497
498                 armv7m->exception_number = 0;
499         }
500
501         if (armv7m->exception_number)
502         {
503                 cortex_m3_examine_exception_reason(target);
504         }
505
506         LOG_DEBUG("entered debug state in core mode: %s at PC 0x%" PRIx32 ", target->state: %s",
507                 armv7m_mode_strings[armv7m->core_mode],
508                 *(uint32_t*)(arm->pc->value),
509                 target_state_name(target));
510
511         if (armv7m->post_debug_entry)
512         {
513                 retval = armv7m->post_debug_entry(target);
514                 if (retval != ERROR_OK)
515                         return retval;
516         }
517
518         return ERROR_OK;
519 }
520
521 static int cortex_m3_poll(struct target *target)
522 {
523         int retval;
524         enum target_state prev_target_state = target->state;
525         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
526         struct adiv5_dap *swjdp = &cortex_m3->armv7m.dap;
527
528         /* Read from Debug Halting Control and Status Register */
529         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
530         if (retval != ERROR_OK)
531         {
532                 target->state = TARGET_UNKNOWN;
533                 return retval;
534         }
535
536         /* Recover from lockup.  See ARMv7-M architecture spec,
537          * section B1.5.15 "Unrecoverable exception cases".
538          *
539          * REVISIT Is there a better way to report and handle this?
540          */
541         if (cortex_m3->dcb_dhcsr & S_LOCKUP) {
542                 LOG_WARNING("%s -- clearing lockup after double fault",
543                                 target_name(target));
544                 cortex_m3_write_debug_halt_mask(target, C_HALT, 0);
545                 target->debug_reason = DBG_REASON_DBGRQ;
546
547                 /* refresh status bits */
548                 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
549                 if (retval != ERROR_OK)
550                         return retval;
551         }
552
553         if (cortex_m3->dcb_dhcsr & S_RESET_ST)
554         {
555                 /* check if still in reset */
556                 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
557                 if (retval != ERROR_OK)
558                         return retval;
559
560                 if (cortex_m3->dcb_dhcsr & S_RESET_ST)
561                 {
562                         target->state = TARGET_RESET;
563                         return ERROR_OK;
564                 }
565         }
566
567         if (target->state == TARGET_RESET)
568         {
569                 /* Cannot switch context while running so endreset is
570                  * called with target->state == TARGET_RESET
571                  */
572                 LOG_DEBUG("Exit from reset with dcb_dhcsr 0x%" PRIx32,
573                                 cortex_m3->dcb_dhcsr);
574                 cortex_m3_endreset_event(target);
575                 target->state = TARGET_RUNNING;
576                 prev_target_state = TARGET_RUNNING;
577         }
578
579         if (cortex_m3->dcb_dhcsr & S_HALT)
580         {
581                 target->state = TARGET_HALTED;
582
583                 if ((prev_target_state == TARGET_RUNNING) || (prev_target_state == TARGET_RESET))
584                 {
585                         if ((retval = cortex_m3_debug_entry(target)) != ERROR_OK)
586                                 return retval;
587
588                         if (arm_semihosting(target, &retval) != 0)
589                                 return retval;
590
591                         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
592                 }
593                 if (prev_target_state == TARGET_DEBUG_RUNNING)
594                 {
595                         LOG_DEBUG(" ");
596                         if ((retval = cortex_m3_debug_entry(target)) != ERROR_OK)
597                                 return retval;
598
599                         target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
600                 }
601         }
602
603         /* REVISIT when S_SLEEP is set, it's in a Sleep or DeepSleep state.
604          * How best to model low power modes?
605          */
606
607         if (target->state == TARGET_UNKNOWN)
608         {
609                 /* check if processor is retiring instructions */
610                 if (cortex_m3->dcb_dhcsr & S_RETIRE_ST)
611                 {
612                         target->state = TARGET_RUNNING;
613                         return ERROR_OK;
614                 }
615         }
616
617         return ERROR_OK;
618 }
619
620 static int cortex_m3_halt(struct target *target)
621 {
622         LOG_DEBUG("target->state: %s",
623                 target_state_name(target));
624
625         if (target->state == TARGET_HALTED)
626         {
627                 LOG_DEBUG("target was already halted");
628                 return ERROR_OK;
629         }
630
631         if (target->state == TARGET_UNKNOWN)
632         {
633                 LOG_WARNING("target was in unknown state when halt was requested");
634         }
635
636         if (target->state == TARGET_RESET)
637         {
638                 if ((jtag_get_reset_config() & RESET_SRST_PULLS_TRST) && jtag_get_srst())
639                 {
640                         LOG_ERROR("can't request a halt while in reset if nSRST pulls nTRST");
641                         return ERROR_TARGET_FAILURE;
642                 }
643                 else
644                 {
645                         /* we came here in a reset_halt or reset_init sequence
646                          * debug entry was already prepared in cortex_m3_prepare_reset_halt()
647                          */
648                         target->debug_reason = DBG_REASON_DBGRQ;
649
650                         return ERROR_OK;
651                 }
652         }
653
654         /* Write to Debug Halting Control and Status Register */
655         cortex_m3_write_debug_halt_mask(target, C_HALT, 0);
656
657         target->debug_reason = DBG_REASON_DBGRQ;
658
659         return ERROR_OK;
660 }
661
662 static int cortex_m3_soft_reset_halt(struct target *target)
663 {
664         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
665         struct adiv5_dap *swjdp = &cortex_m3->armv7m.dap;
666         uint32_t dcb_dhcsr = 0;
667         int retval, timeout = 0;
668
669         /* Enter debug state on reset; restore DEMCR in endreset_event() */
670         retval = mem_ap_write_u32(swjdp, DCB_DEMCR,
671                         TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
672         if (retval != ERROR_OK)
673                 return retval;
674
675         /* Request a core-only reset */
676         retval = mem_ap_write_atomic_u32(swjdp, NVIC_AIRCR,
677                         AIRCR_VECTKEY | AIRCR_VECTRESET);
678         if (retval != ERROR_OK)
679                 return retval;
680         target->state = TARGET_RESET;
681
682         /* registers are now invalid */
683         register_cache_invalidate(cortex_m3->armv7m.core_cache);
684
685         while (timeout < 100)
686         {
687                 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &dcb_dhcsr);
688                 if (retval == ERROR_OK)
689                 {
690                         retval = mem_ap_read_atomic_u32(swjdp, NVIC_DFSR,
691                                         &cortex_m3->nvic_dfsr);
692                         if (retval != ERROR_OK)
693                                 return retval;
694                         if ((dcb_dhcsr & S_HALT)
695                                         && (cortex_m3->nvic_dfsr & DFSR_VCATCH))
696                         {
697                                 LOG_DEBUG("system reset-halted, DHCSR 0x%08x, "
698                                         "DFSR 0x%08x",
699                                         (unsigned) dcb_dhcsr,
700                                         (unsigned) cortex_m3->nvic_dfsr);
701                                 cortex_m3_poll(target);
702                                 /* FIXME restore user's vector catch config */
703                                 return ERROR_OK;
704                         }
705                         else
706                                 LOG_DEBUG("waiting for system reset-halt, "
707                                         "DHCSR 0x%08x, %d ms",
708                                         (unsigned) dcb_dhcsr, timeout);
709                 }
710                 timeout++;
711                 alive_sleep(1);
712         }
713
714         return ERROR_OK;
715 }
716
717 static void cortex_m3_enable_breakpoints(struct target *target)
718 {
719         struct breakpoint *breakpoint = target->breakpoints;
720
721         /* set any pending breakpoints */
722         while (breakpoint)
723         {
724                 if (!breakpoint->set)
725                         cortex_m3_set_breakpoint(target, breakpoint);
726                 breakpoint = breakpoint->next;
727         }
728 }
729
730 static int cortex_m3_resume(struct target *target, int current,
731                 uint32_t address, int handle_breakpoints, int debug_execution)
732 {
733         struct armv7m_common *armv7m = target_to_armv7m(target);
734         struct breakpoint *breakpoint = NULL;
735         uint32_t resume_pc;
736         struct reg *r;
737
738         if (target->state != TARGET_HALTED)
739         {
740                 LOG_WARNING("target not halted");
741                 return ERROR_TARGET_NOT_HALTED;
742         }
743
744         if (!debug_execution)
745         {
746                 target_free_all_working_areas(target);
747                 cortex_m3_enable_breakpoints(target);
748                 cortex_m3_enable_watchpoints(target);
749         }
750
751         if (debug_execution)
752         {
753                 r = armv7m->core_cache->reg_list + ARMV7M_PRIMASK;
754
755                 /* Disable interrupts */
756                 /* We disable interrupts in the PRIMASK register instead of
757                  * masking with C_MASKINTS.  This is probably the same issue
758                  * as Cortex-M3 Erratum 377493 (fixed in r1p0):  C_MASKINTS
759                  * in parallel with disabled interrupts can cause local faults
760                  * to not be taken.
761                  *
762                  * REVISIT this clearly breaks non-debug execution, since the
763                  * PRIMASK register state isn't saved/restored...  workaround
764                  * by never resuming app code after debug execution.
765                  */
766                 buf_set_u32(r->value, 0, 1, 1);
767                 r->dirty = true;
768                 r->valid = true;
769
770                 /* Make sure we are in Thumb mode */
771                 r = armv7m->core_cache->reg_list + ARMV7M_xPSR;
772                 buf_set_u32(r->value, 24, 1, 1);
773                 r->dirty = true;
774                 r->valid = true;
775         }
776
777         /* current = 1: continue on current pc, otherwise continue at <address> */
778         r = armv7m->arm.pc;
779         if (!current)
780         {
781                 buf_set_u32(r->value, 0, 32, address);
782                 r->dirty = true;
783                 r->valid = true;
784         }
785
786         /* if we halted last time due to a bkpt instruction
787          * then we have to manually step over it, otherwise
788          * the core will break again */
789
790         if (!breakpoint_find(target, buf_get_u32(r->value, 0, 32))
791                         && !debug_execution)
792         {
793                 armv7m_maybe_skip_bkpt_inst(target, NULL);
794         }
795
796         resume_pc = buf_get_u32(r->value, 0, 32);
797
798         armv7m_restore_context(target);
799
800         /* the front-end may request us not to handle breakpoints */
801         if (handle_breakpoints)
802         {
803                 /* Single step past breakpoint at current address */
804                 if ((breakpoint = breakpoint_find(target, resume_pc)))
805                 {
806                         LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32 " (ID: %d)",
807                                           breakpoint->address,
808                                           breakpoint->unique_id);
809                         cortex_m3_unset_breakpoint(target, breakpoint);
810                         cortex_m3_single_step_core(target);
811                         cortex_m3_set_breakpoint(target, breakpoint);
812                 }
813         }
814
815         /* Restart core */
816         cortex_m3_write_debug_halt_mask(target, 0, C_HALT);
817
818         target->debug_reason = DBG_REASON_NOTHALTED;
819
820         /* registers are now invalid */
821         register_cache_invalidate(armv7m->core_cache);
822
823         if (!debug_execution)
824         {
825                 target->state = TARGET_RUNNING;
826                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
827                 LOG_DEBUG("target resumed at 0x%" PRIx32 "", resume_pc);
828         }
829         else
830         {
831                 target->state = TARGET_DEBUG_RUNNING;
832                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
833                 LOG_DEBUG("target debug resumed at 0x%" PRIx32 "", resume_pc);
834         }
835
836         return ERROR_OK;
837 }
838
839 /* int irqstepcount = 0; */
840 static int cortex_m3_step(struct target *target, int current,
841                 uint32_t address, int handle_breakpoints)
842 {
843         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
844         struct armv7m_common *armv7m = &cortex_m3->armv7m;
845         struct adiv5_dap *swjdp = &armv7m->dap;
846         struct breakpoint *breakpoint = NULL;
847         struct reg *pc = armv7m->arm.pc;
848         bool bkpt_inst_found = false;
849
850         if (target->state != TARGET_HALTED)
851         {
852                 LOG_WARNING("target not halted");
853                 return ERROR_TARGET_NOT_HALTED;
854         }
855
856         /* current = 1: continue on current pc, otherwise continue at <address> */
857         if (!current)
858                 buf_set_u32(pc->value, 0, 32, address);
859
860         /* the front-end may request us not to handle breakpoints */
861         if (handle_breakpoints) {
862                 breakpoint = breakpoint_find(target,
863                                 buf_get_u32(pc->value, 0, 32));
864                 if (breakpoint)
865                         cortex_m3_unset_breakpoint(target, breakpoint);
866         }
867
868         armv7m_maybe_skip_bkpt_inst(target, &bkpt_inst_found);
869
870         target->debug_reason = DBG_REASON_SINGLESTEP;
871
872         armv7m_restore_context(target);
873
874         target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
875
876         /* if no bkpt instruction is found at pc then we can perform
877          * a normal step, otherwise we have to manually step over the bkpt
878          * instruction - as such simulate a step */
879         if (bkpt_inst_found == false)
880         {
881                 /* set step and clear halt */
882                 cortex_m3_write_debug_halt_mask(target, C_STEP, C_HALT);
883         }
884
885         int retval;
886         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
887         if (retval != ERROR_OK)
888                 return retval;
889
890         /* registers are now invalid */
891         register_cache_invalidate(cortex_m3->armv7m.core_cache);
892
893         if (breakpoint)
894                 cortex_m3_set_breakpoint(target, breakpoint);
895
896         LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
897                         " nvic_icsr = 0x%" PRIx32,
898                         cortex_m3->dcb_dhcsr, cortex_m3->nvic_icsr);
899
900         retval = cortex_m3_debug_entry(target);
901         if (retval != ERROR_OK)
902                 return retval;
903         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
904
905         LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
906                         " nvic_icsr = 0x%" PRIx32,
907                         cortex_m3->dcb_dhcsr, cortex_m3->nvic_icsr);
908
909         return ERROR_OK;
910 }
911
912 static int cortex_m3_assert_reset(struct target *target)
913 {
914         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
915         struct adiv5_dap *swjdp = &cortex_m3->armv7m.dap;
916         enum cortex_m3_soft_reset_config reset_config = cortex_m3->soft_reset_config;
917
918         LOG_DEBUG("target->state: %s",
919                 target_state_name(target));
920
921         enum reset_types jtag_reset_config = jtag_get_reset_config();
922
923         /*
924          * We can reset Cortex-M3 targets using just the NVIC without
925          * requiring SRST, getting a SoC reset (or a core-only reset)
926          * instead of a system reset.
927          */
928         if (!(jtag_reset_config & RESET_HAS_SRST) &&
929                         (cortex_m3->soft_reset_config == CORTEX_M3_RESET_SRST)) {
930                 reset_config = CORTEX_M3_RESET_VECTRESET;
931         }
932
933         /* Enable debug requests */
934         int retval;
935         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
936         if (retval != ERROR_OK)
937                 return retval;
938         if (!(cortex_m3->dcb_dhcsr & C_DEBUGEN))
939         {
940                 retval = mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN);
941                 if (retval != ERROR_OK)
942                         return retval;
943         }
944
945         retval = mem_ap_write_u32(swjdp, DCB_DCRDR, 0);
946         if (retval != ERROR_OK)
947                 return retval;
948
949         if (!target->reset_halt)
950         {
951                 /* Set/Clear C_MASKINTS in a separate operation */
952                 if (cortex_m3->dcb_dhcsr & C_MASKINTS)
953                 {
954                         retval = mem_ap_write_atomic_u32(swjdp, DCB_DHCSR,
955                                         DBGKEY | C_DEBUGEN | C_HALT);
956                         if (retval != ERROR_OK)
957                                 return retval;
958                 }
959
960                 /* clear any debug flags before resuming */
961                 cortex_m3_clear_halt(target);
962
963                 /* clear C_HALT in dhcsr reg */
964                 cortex_m3_write_debug_halt_mask(target, 0, C_HALT);
965         }
966         else
967         {
968                 /* Halt in debug on reset; endreset_event() restores DEMCR.
969                  *
970                  * REVISIT catching BUSERR presumably helps to defend against
971                  * bad vector table entries.  Should this include MMERR or
972                  * other flags too?
973                  */
974                 retval = mem_ap_write_atomic_u32(swjdp, DCB_DEMCR,
975                                 TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
976                 if (retval != ERROR_OK)
977                         return retval;
978         }
979
980         if (reset_config == CORTEX_M3_RESET_SRST)
981         {
982                 /* default to asserting srst */
983                 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
984                 {
985                         jtag_add_reset(1, 1);
986                 }
987                 else
988                 {
989                         jtag_add_reset(0, 1);
990                 }
991         }
992         else
993         {
994                 /* Use a standard Cortex-M3 software reset mechanism.
995                  * We default to using VECRESET as it is supported on all current cores.
996                  * This has the disadvantage of not resetting the peripherals, so a
997                  * reset-init event handler is needed to perform any peripheral resets.
998                  */
999                 retval = mem_ap_write_atomic_u32(swjdp, NVIC_AIRCR,
1000                                 AIRCR_VECTKEY | ((reset_config == CORTEX_M3_RESET_SYSRESETREQ)
1001                                 ? AIRCR_SYSRESETREQ : AIRCR_VECTRESET));
1002                 if (retval != ERROR_OK)
1003                         return retval;
1004
1005                 LOG_DEBUG("Using Cortex-M3 %s", (reset_config == CORTEX_M3_RESET_SYSRESETREQ)
1006                                 ? "SYSRESETREQ" : "VECTRESET");
1007
1008                 if (reset_config == CORTEX_M3_RESET_VECTRESET) {
1009                         LOG_WARNING("Only resetting the Cortex-M3 core, use a reset-init event "
1010                                         "handler to reset any peripherals");
1011                 }
1012
1013                 {
1014                         /* I do not know why this is necessary, but it
1015                          * fixes strange effects (step/resume cause NMI
1016                          * after reset) on LM3S6918 -- Michael Schwingen
1017                          */
1018                         uint32_t tmp;
1019                         retval = mem_ap_read_atomic_u32(swjdp, NVIC_AIRCR, &tmp);
1020                         if (retval != ERROR_OK)
1021                                 return retval;
1022                 }
1023         }
1024
1025         target->state = TARGET_RESET;
1026         jtag_add_sleep(50000);
1027
1028         register_cache_invalidate(cortex_m3->armv7m.core_cache);
1029
1030         if (target->reset_halt)
1031         {
1032                 if ((retval = target_halt(target)) != ERROR_OK)
1033                         return retval;
1034         }
1035
1036         return ERROR_OK;
1037 }
1038
1039 static int cortex_m3_deassert_reset(struct target *target)
1040 {
1041         LOG_DEBUG("target->state: %s",
1042                 target_state_name(target));
1043
1044         /* deassert reset lines */
1045         jtag_add_reset(0, 0);
1046
1047         return ERROR_OK;
1048 }
1049
1050 static int
1051 cortex_m3_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
1052 {
1053         int retval;
1054         int fp_num = 0;
1055         uint32_t hilo;
1056         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1057         struct cortex_m3_fp_comparator *comparator_list = cortex_m3->fp_comparator_list;
1058
1059         if (breakpoint->set)
1060         {
1061                 LOG_WARNING("breakpoint (BPID: %d) already set", breakpoint->unique_id);
1062                 return ERROR_OK;
1063         }
1064
1065         if (cortex_m3->auto_bp_type)
1066         {
1067                 breakpoint->type = (breakpoint->address < 0x20000000) ? BKPT_HARD : BKPT_SOFT;
1068         }
1069
1070         if (breakpoint->type == BKPT_HARD)
1071         {
1072                 while (comparator_list[fp_num].used && (fp_num < cortex_m3->fp_num_code))
1073                         fp_num++;
1074                 if (fp_num >= cortex_m3->fp_num_code)
1075                 {
1076                         LOG_ERROR("Can not find free FPB Comparator!");
1077                         return ERROR_FAIL;
1078                 }
1079                 breakpoint->set = fp_num + 1;
1080                 hilo = (breakpoint->address & 0x2) ? FPCR_REPLACE_BKPT_HIGH : FPCR_REPLACE_BKPT_LOW;
1081                 comparator_list[fp_num].used = 1;
1082                 comparator_list[fp_num].fpcr_value = (breakpoint->address & 0x1FFFFFFC) | hilo | 1;
1083                 target_write_u32(target, comparator_list[fp_num].fpcr_address, comparator_list[fp_num].fpcr_value);
1084                 LOG_DEBUG("fpc_num %i fpcr_value 0x%" PRIx32 "", fp_num, comparator_list[fp_num].fpcr_value);
1085                 if (!cortex_m3->fpb_enabled)
1086                 {
1087                         LOG_DEBUG("FPB wasn't enabled, do it now");
1088                         target_write_u32(target, FP_CTRL, 3);
1089                 }
1090         }
1091         else if (breakpoint->type == BKPT_SOFT)
1092         {
1093                 uint8_t code[4];
1094
1095                 /* NOTE: on ARMv6-M and ARMv7-M, BKPT(0xab) is used for
1096                  * semihosting; don't use that.  Otherwise the BKPT
1097                  * parameter is arbitrary.
1098                  */
1099                 buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1100                 retval = target_read_memory(target,
1101                                 breakpoint->address & 0xFFFFFFFE,
1102                                 breakpoint->length, 1,
1103                                 breakpoint->orig_instr);
1104                 if (retval != ERROR_OK)
1105                         return retval;
1106                 retval = target_write_memory(target,
1107                                 breakpoint->address & 0xFFFFFFFE,
1108                                 breakpoint->length, 1,
1109                                 code);
1110                 if (retval != ERROR_OK)
1111                         return retval;
1112                 breakpoint->set = true;
1113         }
1114
1115         LOG_DEBUG("BPID: %d, Type: %d, Address: 0x%08" PRIx32 " Length: %d (set=%d)",
1116                           breakpoint->unique_id,
1117                           (int)(breakpoint->type),
1118                           breakpoint->address,
1119                           breakpoint->length,
1120                           breakpoint->set);
1121
1122         return ERROR_OK;
1123 }
1124
1125 static int
1126 cortex_m3_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1127 {
1128         int retval;
1129         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1130         struct cortex_m3_fp_comparator * comparator_list = cortex_m3->fp_comparator_list;
1131
1132         if (!breakpoint->set)
1133         {
1134                 LOG_WARNING("breakpoint not set");
1135                 return ERROR_OK;
1136         }
1137
1138         LOG_DEBUG("BPID: %d, Type: %d, Address: 0x%08" PRIx32 " Length: %d (set=%d)",
1139                           breakpoint->unique_id,
1140                           (int)(breakpoint->type),
1141                           breakpoint->address,
1142                           breakpoint->length,
1143                           breakpoint->set);
1144
1145         if (breakpoint->type == BKPT_HARD)
1146         {
1147                 int fp_num = breakpoint->set - 1;
1148                 if ((fp_num < 0) || (fp_num >= cortex_m3->fp_num_code))
1149                 {
1150                         LOG_DEBUG("Invalid FP Comparator number in breakpoint");
1151                         return ERROR_OK;
1152                 }
1153                 comparator_list[fp_num].used = 0;
1154                 comparator_list[fp_num].fpcr_value = 0;
1155                 target_write_u32(target, comparator_list[fp_num].fpcr_address, comparator_list[fp_num].fpcr_value);
1156         }
1157         else
1158         {
1159                 /* restore original instruction (kept in target endianness) */
1160                 if (breakpoint->length == 4)
1161                 {
1162                         if ((retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
1163                         {
1164                                 return retval;
1165                         }
1166                 }
1167                 else
1168                 {
1169                         if ((retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
1170                         {
1171                                 return retval;
1172                         }
1173                 }
1174         }
1175         breakpoint->set = false;
1176
1177         return ERROR_OK;
1178 }
1179
1180 static int
1181 cortex_m3_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
1182 {
1183         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1184
1185         if (cortex_m3->auto_bp_type)
1186         {
1187                 breakpoint->type = (breakpoint->address < 0x20000000) ? BKPT_HARD : BKPT_SOFT;
1188 #ifdef ARMV7_GDB_HACKS
1189                 if (breakpoint->length != 2) {
1190                         /* XXX Hack: Replace all breakpoints with length != 2 with
1191                          * a hardware breakpoint. */
1192                         breakpoint->type = BKPT_HARD;
1193                         breakpoint->length = 2;
1194                 }
1195 #endif
1196         }
1197
1198         if ((breakpoint->type == BKPT_HARD) && (breakpoint->address >= 0x20000000))
1199         {
1200                 LOG_INFO("flash patch comparator requested outside code memory region");
1201                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1202         }
1203
1204         if ((breakpoint->type == BKPT_SOFT) && (breakpoint->address < 0x20000000))
1205         {
1206                 LOG_INFO("soft breakpoint requested in code (flash) memory region");
1207                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1208         }
1209
1210         if ((breakpoint->type == BKPT_HARD) && (cortex_m3->fp_code_available < 1))
1211         {
1212                 LOG_INFO("no flash patch comparator unit available for hardware breakpoint");
1213                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1214         }
1215
1216         if ((breakpoint->length != 2))
1217         {
1218                 LOG_INFO("only breakpoints of two bytes length supported");
1219                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1220         }
1221
1222         if (breakpoint->type == BKPT_HARD)
1223                 cortex_m3->fp_code_available--;
1224         cortex_m3_set_breakpoint(target, breakpoint);
1225
1226         return ERROR_OK;
1227 }
1228
1229 static int
1230 cortex_m3_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1231 {
1232         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1233
1234         /* REVISIT why check? FBP can be updated with core running ... */
1235         if (target->state != TARGET_HALTED)
1236         {
1237                 LOG_WARNING("target not halted");
1238                 return ERROR_TARGET_NOT_HALTED;
1239         }
1240
1241         if (cortex_m3->auto_bp_type)
1242         {
1243                 breakpoint->type = (breakpoint->address < 0x20000000) ? BKPT_HARD : BKPT_SOFT;
1244         }
1245
1246         if (breakpoint->set)
1247         {
1248                 cortex_m3_unset_breakpoint(target, breakpoint);
1249         }
1250
1251         if (breakpoint->type == BKPT_HARD)
1252                 cortex_m3->fp_code_available++;
1253
1254         return ERROR_OK;
1255 }
1256
1257 static int
1258 cortex_m3_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
1259 {
1260         int dwt_num = 0;
1261         uint32_t mask, temp;
1262         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1263
1264         /* watchpoint params were validated earlier */
1265         mask = 0;
1266         temp = watchpoint->length;
1267         while (temp) {
1268                 temp >>= 1;
1269                 mask++;
1270         }
1271         mask--;
1272
1273         /* REVISIT Don't fully trust these "not used" records ... users
1274          * may set up breakpoints by hand, e.g. dual-address data value
1275          * watchpoint using comparator #1; comparator #0 matching cycle
1276          * count; send data trace info through ITM and TPIU; etc
1277          */
1278         struct cortex_m3_dwt_comparator *comparator;
1279
1280         for (comparator = cortex_m3->dwt_comparator_list;
1281                         comparator->used && dwt_num < cortex_m3->dwt_num_comp;
1282                         comparator++, dwt_num++)
1283                 continue;
1284         if (dwt_num >= cortex_m3->dwt_num_comp)
1285         {
1286                 LOG_ERROR("Can not find free DWT Comparator");
1287                 return ERROR_FAIL;
1288         }
1289         comparator->used = 1;
1290         watchpoint->set = dwt_num + 1;
1291
1292         comparator->comp = watchpoint->address;
1293         target_write_u32(target, comparator->dwt_comparator_address + 0,
1294                         comparator->comp);
1295
1296         comparator->mask = mask;
1297         target_write_u32(target, comparator->dwt_comparator_address + 4,
1298                         comparator->mask);
1299
1300         switch (watchpoint->rw) {
1301         case WPT_READ:
1302                 comparator->function = 5;
1303                 break;
1304         case WPT_WRITE:
1305                 comparator->function = 6;
1306                 break;
1307         case WPT_ACCESS:
1308                 comparator->function = 7;
1309                 break;
1310         }
1311         target_write_u32(target, comparator->dwt_comparator_address + 8,
1312                         comparator->function);
1313
1314         LOG_DEBUG("Watchpoint (ID %d) DWT%d 0x%08x 0x%x 0x%05x",
1315                         watchpoint->unique_id, dwt_num,
1316                         (unsigned) comparator->comp,
1317                         (unsigned) comparator->mask,
1318                         (unsigned) comparator->function);
1319         return ERROR_OK;
1320 }
1321
1322 static int
1323 cortex_m3_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
1324 {
1325         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1326         struct cortex_m3_dwt_comparator *comparator;
1327         int dwt_num;
1328
1329         if (!watchpoint->set)
1330         {
1331                 LOG_WARNING("watchpoint (wpid: %d) not set",
1332                                 watchpoint->unique_id);
1333                 return ERROR_OK;
1334         }
1335
1336         dwt_num = watchpoint->set - 1;
1337
1338         LOG_DEBUG("Watchpoint (ID %d) DWT%d address: 0x%08x clear",
1339                         watchpoint->unique_id, dwt_num,
1340                         (unsigned) watchpoint->address);
1341
1342         if ((dwt_num < 0) || (dwt_num >= cortex_m3->dwt_num_comp))
1343         {
1344                 LOG_DEBUG("Invalid DWT Comparator number in watchpoint");
1345                 return ERROR_OK;
1346         }
1347
1348         comparator = cortex_m3->dwt_comparator_list + dwt_num;
1349         comparator->used = 0;
1350         comparator->function = 0;
1351         target_write_u32(target, comparator->dwt_comparator_address + 8,
1352                         comparator->function);
1353
1354         watchpoint->set = false;
1355
1356         return ERROR_OK;
1357 }
1358
1359 static int
1360 cortex_m3_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
1361 {
1362         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1363
1364         if (cortex_m3->dwt_comp_available < 1)
1365         {
1366                 LOG_DEBUG("no comparators?");
1367                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1368         }
1369
1370         /* hardware doesn't support data value masking */
1371         if (watchpoint->mask != ~(uint32_t)0) {
1372                 LOG_DEBUG("watchpoint value masks not supported");
1373                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1374         }
1375
1376         /* hardware allows address masks of up to 32K */
1377         unsigned mask;
1378
1379         for (mask = 0; mask < 16; mask++) {
1380                 if ((1u << mask) == watchpoint->length)
1381                         break;
1382         }
1383         if (mask == 16) {
1384                 LOG_DEBUG("unsupported watchpoint length");
1385                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1386         }
1387         if (watchpoint->address & ((1 << mask) - 1)) {
1388                 LOG_DEBUG("watchpoint address is unaligned");
1389                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1390         }
1391
1392         /* Caller doesn't seem to be able to describe watching for data
1393          * values of zero; that flags "no value".
1394          *
1395          * REVISIT This DWT may well be able to watch for specific data
1396          * values.  Requires comparator #1 to set DATAVMATCH and match
1397          * the data, and another comparator (DATAVADDR0) matching addr.
1398          */
1399         if (watchpoint->value) {
1400                 LOG_DEBUG("data value watchpoint not YET supported");
1401                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1402         }
1403
1404         cortex_m3->dwt_comp_available--;
1405         LOG_DEBUG("dwt_comp_available: %d", cortex_m3->dwt_comp_available);
1406
1407         return ERROR_OK;
1408 }
1409
1410 static int
1411 cortex_m3_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
1412 {
1413         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1414
1415         /* REVISIT why check? DWT can be updated with core running ... */
1416         if (target->state != TARGET_HALTED)
1417         {
1418                 LOG_WARNING("target not halted");
1419                 return ERROR_TARGET_NOT_HALTED;
1420         }
1421
1422         if (watchpoint->set)
1423         {
1424                 cortex_m3_unset_watchpoint(target, watchpoint);
1425         }
1426
1427         cortex_m3->dwt_comp_available++;
1428         LOG_DEBUG("dwt_comp_available: %d", cortex_m3->dwt_comp_available);
1429
1430         return ERROR_OK;
1431 }
1432
1433 static void cortex_m3_enable_watchpoints(struct target *target)
1434 {
1435         struct watchpoint *watchpoint = target->watchpoints;
1436
1437         /* set any pending watchpoints */
1438         while (watchpoint)
1439         {
1440                 if (!watchpoint->set)
1441                         cortex_m3_set_watchpoint(target, watchpoint);
1442                 watchpoint = watchpoint->next;
1443         }
1444 }
1445
1446 static int cortex_m3_load_core_reg_u32(struct target *target,
1447                 enum armv7m_regtype type, uint32_t num, uint32_t * value)
1448 {
1449         int retval;
1450         struct armv7m_common *armv7m = target_to_armv7m(target);
1451         struct adiv5_dap *swjdp = &armv7m->dap;
1452
1453         /* NOTE:  we "know" here that the register identifiers used
1454          * in the v7m header match the Cortex-M3 Debug Core Register
1455          * Selector values for R0..R15, xPSR, MSP, and PSP.
1456          */
1457         switch (num) {
1458         case 0 ... 18:
1459                 /* read a normal core register */
1460                 retval = cortexm3_dap_read_coreregister_u32(swjdp, value, num);
1461
1462                 if (retval != ERROR_OK)
1463                 {
1464                         LOG_ERROR("JTAG failure %i",retval);
1465                         return ERROR_JTAG_DEVICE_ERROR;
1466                 }
1467                 LOG_DEBUG("load from core reg %i  value 0x%" PRIx32 "",(int)num,*value);
1468                 break;
1469
1470         case ARMV7M_PRIMASK:
1471         case ARMV7M_BASEPRI:
1472         case ARMV7M_FAULTMASK:
1473         case ARMV7M_CONTROL:
1474                 /* Cortex-M3 packages these four registers as bitfields
1475                  * in one Debug Core register.  So say r0 and r2 docs;
1476                  * it was removed from r1 docs, but still works.
1477                  */
1478                 cortexm3_dap_read_coreregister_u32(swjdp, value, 20);
1479
1480                 switch (num)
1481                 {
1482                         case ARMV7M_PRIMASK:
1483                                 *value = buf_get_u32((uint8_t*)value, 0, 1);
1484                                 break;
1485
1486                         case ARMV7M_BASEPRI:
1487                                 *value = buf_get_u32((uint8_t*)value, 8, 8);
1488                                 break;
1489
1490                         case ARMV7M_FAULTMASK:
1491                                 *value = buf_get_u32((uint8_t*)value, 16, 1);
1492                                 break;
1493
1494                         case ARMV7M_CONTROL:
1495                                 *value = buf_get_u32((uint8_t*)value, 24, 2);
1496                                 break;
1497                 }
1498
1499                 LOG_DEBUG("load from special reg %i value 0x%" PRIx32 "", (int)num, *value);
1500                 break;
1501
1502         default:
1503                 return ERROR_INVALID_ARGUMENTS;
1504         }
1505
1506         return ERROR_OK;
1507 }
1508
1509 static int cortex_m3_store_core_reg_u32(struct target *target,
1510                 enum armv7m_regtype type, uint32_t num, uint32_t value)
1511 {
1512         int retval;
1513         uint32_t reg;
1514         struct armv7m_common *armv7m = target_to_armv7m(target);
1515         struct adiv5_dap *swjdp = &armv7m->dap;
1516
1517 #ifdef ARMV7_GDB_HACKS
1518         /* If the LR register is being modified, make sure it will put us
1519          * in "thumb" mode, or an INVSTATE exception will occur. This is a
1520          * hack to deal with the fact that gdb will sometimes "forge"
1521          * return addresses, and doesn't set the LSB correctly (i.e., when
1522          * printing expressions containing function calls, it sets LR = 0.)
1523          * Valid exception return codes have bit 0 set too.
1524          */
1525         if (num == ARMV7M_R14)
1526                 value |= 0x01;
1527 #endif
1528
1529         /* NOTE:  we "know" here that the register identifiers used
1530          * in the v7m header match the Cortex-M3 Debug Core Register
1531          * Selector values for R0..R15, xPSR, MSP, and PSP.
1532          */
1533         switch (num) {
1534         case 0 ... 18:
1535                 retval = cortexm3_dap_write_coreregister_u32(swjdp, value, num);
1536                 if (retval != ERROR_OK)
1537                 {
1538                         struct reg *r;
1539
1540                         LOG_ERROR("JTAG failure %i", retval);
1541                         r = armv7m->core_cache->reg_list + num;
1542                         r->dirty = r->valid;
1543                         return ERROR_JTAG_DEVICE_ERROR;
1544                 }
1545                 LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", (int)num, value);
1546                 break;
1547
1548         case ARMV7M_PRIMASK:
1549         case ARMV7M_BASEPRI:
1550         case ARMV7M_FAULTMASK:
1551         case ARMV7M_CONTROL:
1552                 /* Cortex-M3 packages these four registers as bitfields
1553                  * in one Debug Core register.  So say r0 and r2 docs;
1554                  * it was removed from r1 docs, but still works.
1555                  */
1556                 cortexm3_dap_read_coreregister_u32(swjdp, &reg, 20);
1557
1558                 switch (num)
1559                 {
1560                         case ARMV7M_PRIMASK:
1561                                 buf_set_u32((uint8_t*)&reg, 0, 1, value);
1562                                 break;
1563
1564                         case ARMV7M_BASEPRI:
1565                                 buf_set_u32((uint8_t*)&reg, 8, 8, value);
1566                                 break;
1567
1568                         case ARMV7M_FAULTMASK:
1569                                 buf_set_u32((uint8_t*)&reg, 16, 1, value);
1570                                 break;
1571
1572                         case ARMV7M_CONTROL:
1573                                 buf_set_u32((uint8_t*)&reg, 24, 2, value);
1574                                 break;
1575                 }
1576
1577                 cortexm3_dap_write_coreregister_u32(swjdp, reg, 20);
1578
1579                 LOG_DEBUG("write special reg %i value 0x%" PRIx32 " ", (int)num, value);
1580                 break;
1581
1582         default:
1583                 return ERROR_INVALID_ARGUMENTS;
1584         }
1585
1586         return ERROR_OK;
1587 }
1588
1589 static int cortex_m3_read_memory(struct target *target, uint32_t address,
1590                 uint32_t size, uint32_t count, uint8_t *buffer)
1591 {
1592         struct armv7m_common *armv7m = target_to_armv7m(target);
1593         struct adiv5_dap *swjdp = &armv7m->dap;
1594         int retval = ERROR_INVALID_ARGUMENTS;
1595
1596         /* cortex_m3 handles unaligned memory access */
1597         if (count && buffer) {
1598                 switch (size) {
1599                 case 4:
1600                         retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address);
1601                         break;
1602                 case 2:
1603                         retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
1604                         break;
1605                 case 1:
1606                         retval = mem_ap_read_buf_u8(swjdp, buffer, count, address);
1607                         break;
1608                 }
1609         }
1610
1611         return retval;
1612 }
1613
1614 static int cortex_m3_write_memory(struct target *target, uint32_t address,
1615                 uint32_t size, uint32_t count, uint8_t *buffer)
1616 {
1617         struct armv7m_common *armv7m = target_to_armv7m(target);
1618         struct adiv5_dap *swjdp = &armv7m->dap;
1619         int retval = ERROR_INVALID_ARGUMENTS;
1620
1621         if (count && buffer) {
1622                 switch (size) {
1623                 case 4:
1624                         retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address);
1625                         break;
1626                 case 2:
1627                         retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);
1628                         break;
1629                 case 1:
1630                         retval = mem_ap_write_buf_u8(swjdp, buffer, count, address);
1631                         break;
1632                 }
1633         }
1634
1635         return retval;
1636 }
1637
1638 static int cortex_m3_bulk_write_memory(struct target *target, uint32_t address,
1639                 uint32_t count, uint8_t *buffer)
1640 {
1641         return cortex_m3_write_memory(target, address, 4, count, buffer);
1642 }
1643
1644 static int cortex_m3_init_target(struct command_context *cmd_ctx,
1645                 struct target *target)
1646 {
1647         armv7m_build_reg_cache(target);
1648         return ERROR_OK;
1649 }
1650
1651 /* REVISIT cache valid/dirty bits are unmaintained.  We could set "valid"
1652  * on r/w if the core is not running, and clear on resume or reset ... or
1653  * at least, in a post_restore_context() method.
1654  */
1655
1656 struct dwt_reg_state {
1657         struct target   *target;
1658         uint32_t        addr;
1659         uint32_t        value;  /* scratch/cache */
1660 };
1661
1662 static int cortex_m3_dwt_get_reg(struct reg *reg)
1663 {
1664         struct dwt_reg_state *state = reg->arch_info;
1665
1666         return target_read_u32(state->target, state->addr, &state->value);
1667 }
1668
1669 static int cortex_m3_dwt_set_reg(struct reg *reg, uint8_t *buf)
1670 {
1671         struct dwt_reg_state *state = reg->arch_info;
1672
1673         return target_write_u32(state->target, state->addr,
1674                         buf_get_u32(buf, 0, reg->size));
1675 }
1676
1677 struct dwt_reg {
1678         uint32_t        addr;
1679         char            *name;
1680         unsigned        size;
1681 };
1682
1683 static struct dwt_reg dwt_base_regs[] = {
1684         { DWT_CTRL, "dwt_ctrl", 32, },
1685         /* NOTE that Erratum 532314 (fixed r2p0) affects CYCCNT:  it wrongly
1686          * increments while the core is asleep.
1687          */
1688         { DWT_CYCCNT, "dwt_cyccnt", 32, },
1689         /* plus some 8 bit counters, useful for profiling with TPIU */
1690 };
1691
1692 static struct dwt_reg dwt_comp[] = {
1693 #define DWT_COMPARATOR(i) \
1694                 { DWT_COMP0 + 0x10 * (i), "dwt_" #i "_comp", 32, }, \
1695                 { DWT_MASK0 + 0x10 * (i), "dwt_" #i "_mask", 4, }, \
1696                 { DWT_FUNCTION0 + 0x10 * (i), "dwt_" #i "_function", 32, }
1697         DWT_COMPARATOR(0),
1698         DWT_COMPARATOR(1),
1699         DWT_COMPARATOR(2),
1700         DWT_COMPARATOR(3),
1701 #undef DWT_COMPARATOR
1702 };
1703
1704 static const struct reg_arch_type dwt_reg_type = {
1705         .get = cortex_m3_dwt_get_reg,
1706         .set = cortex_m3_dwt_set_reg,
1707 };
1708
1709 static void
1710 cortex_m3_dwt_addreg(struct target *t, struct reg *r, struct dwt_reg *d)
1711 {
1712         struct dwt_reg_state *state;
1713
1714         state = calloc(1, sizeof *state);
1715         if (!state)
1716                 return;
1717         state->addr = d->addr;
1718         state->target = t;
1719
1720         r->name = d->name;
1721         r->size = d->size;
1722         r->value = &state->value;
1723         r->arch_info = state;
1724         r->type = &dwt_reg_type;
1725 }
1726
1727 static void
1728 cortex_m3_dwt_setup(struct cortex_m3_common *cm3, struct target *target)
1729 {
1730         uint32_t dwtcr;
1731         struct reg_cache *cache;
1732         struct cortex_m3_dwt_comparator *comparator;
1733         int reg, i;
1734
1735         target_read_u32(target, DWT_CTRL, &dwtcr);
1736         if (!dwtcr) {
1737                 LOG_DEBUG("no DWT");
1738                 return;
1739         }
1740
1741         cm3->dwt_num_comp = (dwtcr >> 28) & 0xF;
1742         cm3->dwt_comp_available = cm3->dwt_num_comp;
1743         cm3->dwt_comparator_list = calloc(cm3->dwt_num_comp,
1744                         sizeof(struct cortex_m3_dwt_comparator));
1745         if (!cm3->dwt_comparator_list) {
1746 fail0:
1747                 cm3->dwt_num_comp = 0;
1748                 LOG_ERROR("out of mem");
1749                 return;
1750         }
1751
1752         cache = calloc(1, sizeof *cache);
1753         if (!cache) {
1754 fail1:
1755                 free(cm3->dwt_comparator_list);
1756                 goto fail0;
1757         }
1758         cache->name = "cortex-m3 dwt registers";
1759         cache->num_regs = 2 + cm3->dwt_num_comp * 3;
1760         cache->reg_list = calloc(cache->num_regs, sizeof *cache->reg_list);
1761         if (!cache->reg_list) {
1762                 free(cache);
1763                 goto fail1;
1764         }
1765
1766         for (reg = 0; reg < 2; reg++)
1767                 cortex_m3_dwt_addreg(target, cache->reg_list + reg,
1768                                 dwt_base_regs + reg);
1769
1770         comparator = cm3->dwt_comparator_list;
1771         for (i = 0; i < cm3->dwt_num_comp; i++, comparator++) {
1772                 int j;
1773
1774                 comparator->dwt_comparator_address = DWT_COMP0 + 0x10 * i;
1775                 for (j = 0; j < 3; j++, reg++)
1776                         cortex_m3_dwt_addreg(target, cache->reg_list + reg,
1777                                         dwt_comp + 3 * i + j);
1778         }
1779
1780         *register_get_last_cache_p(&target->reg_cache) = cache;
1781         cm3->dwt_cache = cache;
1782
1783         LOG_DEBUG("DWT dwtcr 0x%" PRIx32 ", comp %d, watch%s",
1784                         dwtcr, cm3->dwt_num_comp,
1785                         (dwtcr & (0xf << 24)) ? " only" : "/trigger");
1786
1787         /* REVISIT:  if num_comp > 1, check whether comparator #1 can
1788          * implement single-address data value watchpoints ... so we
1789          * won't need to check it later, when asked to set one up.
1790          */
1791 }
1792
1793 static int cortex_m3_examine(struct target *target)
1794 {
1795         int retval;
1796         uint32_t cpuid, fpcr;
1797         int i;
1798         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1799         struct adiv5_dap *swjdp = &cortex_m3->armv7m.dap;
1800
1801         if ((retval = ahbap_debugport_init(swjdp)) != ERROR_OK)
1802                 return retval;
1803
1804         if (!target_was_examined(target))
1805         {
1806                 target_set_examined(target);
1807
1808                 /* Read from Device Identification Registers */
1809                 retval = target_read_u32(target, CPUID, &cpuid);
1810                 if (retval != ERROR_OK)
1811                         return retval;
1812
1813                 if (((cpuid >> 4) & 0xc3f) == 0xc23)
1814                         LOG_DEBUG("Cortex-M3 r%" PRId8 "p%" PRId8 " processor detected",
1815                                 (uint8_t)((cpuid >> 20) & 0xf), (uint8_t)((cpuid >> 0) & 0xf));
1816                 LOG_DEBUG("cpuid: 0x%8.8" PRIx32 "", cpuid);
1817
1818                 /* NOTE: FPB and DWT are both optional. */
1819
1820                 /* Setup FPB */
1821                 target_read_u32(target, FP_CTRL, &fpcr);
1822                 cortex_m3->auto_bp_type = 1;
1823                 cortex_m3->fp_num_code = ((fpcr >> 8) & 0x70) | ((fpcr >> 4) & 0xF); /* bits [14:12] and [7:4] */
1824                 cortex_m3->fp_num_lit = (fpcr >> 8) & 0xF;
1825                 cortex_m3->fp_code_available = cortex_m3->fp_num_code;
1826                 cortex_m3->fp_comparator_list = calloc(cortex_m3->fp_num_code + cortex_m3->fp_num_lit, sizeof(struct cortex_m3_fp_comparator));
1827                 cortex_m3->fpb_enabled = fpcr & 1;
1828                 for (i = 0; i < cortex_m3->fp_num_code + cortex_m3->fp_num_lit; i++)
1829                 {
1830                         cortex_m3->fp_comparator_list[i].type = (i < cortex_m3->fp_num_code) ? FPCR_CODE : FPCR_LITERAL;
1831                         cortex_m3->fp_comparator_list[i].fpcr_address = FP_COMP0 + 4 * i;
1832                 }
1833                 LOG_DEBUG("FPB fpcr 0x%" PRIx32 ", numcode %i, numlit %i", fpcr, cortex_m3->fp_num_code, cortex_m3->fp_num_lit);
1834
1835                 /* Setup DWT */
1836                 cortex_m3_dwt_setup(cortex_m3, target);
1837
1838                 /* These hardware breakpoints only work for code in flash! */
1839                 LOG_INFO("%s: hardware has %d breakpoints, %d watchpoints",
1840                                 target_name(target),
1841                                 cortex_m3->fp_num_code,
1842                                 cortex_m3->dwt_num_comp);
1843         }
1844
1845         return ERROR_OK;
1846 }
1847
1848 static int cortex_m3_dcc_read(struct adiv5_dap *swjdp, uint8_t *value, uint8_t *ctrl)
1849 {
1850         uint16_t dcrdr;
1851         int retval;
1852
1853         mem_ap_read_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1854         *ctrl = (uint8_t)dcrdr;
1855         *value = (uint8_t)(dcrdr >> 8);
1856
1857         LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1858
1859         /* write ack back to software dcc register
1860          * signify we have read data */
1861         if (dcrdr & (1 << 0))
1862         {
1863                 dcrdr = 0;
1864                 retval = mem_ap_write_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1865                 if (retval != ERROR_OK)
1866                         return retval;
1867         }
1868
1869         return ERROR_OK;
1870 }
1871
1872 static int cortex_m3_target_request_data(struct target *target,
1873                 uint32_t size, uint8_t *buffer)
1874 {
1875         struct armv7m_common *armv7m = target_to_armv7m(target);
1876         struct adiv5_dap *swjdp = &armv7m->dap;
1877         uint8_t data;
1878         uint8_t ctrl;
1879         uint32_t i;
1880
1881         for (i = 0; i < (size * 4); i++)
1882         {
1883                 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1884                 buffer[i] = data;
1885         }
1886
1887         return ERROR_OK;
1888 }
1889
1890 static int cortex_m3_handle_target_request(void *priv)
1891 {
1892         struct target *target = priv;
1893         if (!target_was_examined(target))
1894                 return ERROR_OK;
1895         struct armv7m_common *armv7m = target_to_armv7m(target);
1896         struct adiv5_dap *swjdp = &armv7m->dap;
1897
1898         if (!target->dbg_msg_enabled)
1899                 return ERROR_OK;
1900
1901         if (target->state == TARGET_RUNNING)
1902         {
1903                 uint8_t data;
1904                 uint8_t ctrl;
1905
1906                 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1907
1908                 /* check if we have data */
1909                 if (ctrl & (1 << 0))
1910                 {
1911                         uint32_t request;
1912
1913                         /* we assume target is quick enough */
1914                         request = data;
1915                         cortex_m3_dcc_read(swjdp, &data, &ctrl);
1916                         request |= (data << 8);
1917                         cortex_m3_dcc_read(swjdp, &data, &ctrl);
1918                         request |= (data << 16);
1919                         cortex_m3_dcc_read(swjdp, &data, &ctrl);
1920                         request |= (data << 24);
1921                         target_request(target, request);
1922                 }
1923         }
1924
1925         return ERROR_OK;
1926 }
1927
1928 static int cortex_m3_init_arch_info(struct target *target,
1929                 struct cortex_m3_common *cortex_m3, struct jtag_tap *tap)
1930 {
1931         int retval;
1932         struct armv7m_common *armv7m = &cortex_m3->armv7m;
1933
1934         armv7m_init_arch_info(target, armv7m);
1935
1936         /* prepare JTAG information for the new target */
1937         cortex_m3->jtag_info.tap = tap;
1938         cortex_m3->jtag_info.scann_size = 4;
1939
1940         /* default reset mode is to use srst if fitted
1941          * if not it will use CORTEX_M3_RESET_VECTRESET */
1942         cortex_m3->soft_reset_config = CORTEX_M3_RESET_SRST;
1943
1944         armv7m->arm.dap = &armv7m->dap;
1945
1946         /* Leave (only) generic DAP stuff for debugport_init(); */
1947         armv7m->dap.jtag_info = &cortex_m3->jtag_info;
1948         armv7m->dap.memaccess_tck = 8;
1949         /* Cortex-M3 has 4096 bytes autoincrement range */
1950         armv7m->dap.tar_autoincr_block = (1 << 12);
1951
1952         /* register arch-specific functions */
1953         armv7m->examine_debug_reason = cortex_m3_examine_debug_reason;
1954
1955         armv7m->post_debug_entry = NULL;
1956
1957         armv7m->pre_restore_context = NULL;
1958
1959         armv7m->load_core_reg_u32 = cortex_m3_load_core_reg_u32;
1960         armv7m->store_core_reg_u32 = cortex_m3_store_core_reg_u32;
1961
1962         target_register_timer_callback(cortex_m3_handle_target_request, 1, 1, target);
1963
1964         if ((retval = arm_jtag_setup_connection(&cortex_m3->jtag_info)) != ERROR_OK)
1965         {
1966                 return retval;
1967         }
1968
1969         return ERROR_OK;
1970 }
1971
1972 static int cortex_m3_target_create(struct target *target, Jim_Interp *interp)
1973 {
1974         struct cortex_m3_common *cortex_m3 = calloc(1,sizeof(struct cortex_m3_common));
1975
1976         cortex_m3->common_magic = CORTEX_M3_COMMON_MAGIC;
1977         cortex_m3_init_arch_info(target, cortex_m3, target->tap);
1978
1979         return ERROR_OK;
1980 }
1981
1982 /*--------------------------------------------------------------------------*/
1983
1984 static int cortex_m3_verify_pointer(struct command_context *cmd_ctx,
1985                 struct cortex_m3_common *cm3)
1986 {
1987         if (cm3->common_magic != CORTEX_M3_COMMON_MAGIC) {
1988                 command_print(cmd_ctx, "target is not a Cortex-M3");
1989                 return ERROR_TARGET_INVALID;
1990         }
1991         return ERROR_OK;
1992 }
1993
1994 /*
1995  * Only stuff below this line should need to verify that its target
1996  * is a Cortex-M3.  Everything else should have indirected through the
1997  * cortexm3_target structure, which is only used with CM3 targets.
1998  */
1999
2000 static const struct {
2001         char name[10];
2002         unsigned mask;
2003 } vec_ids[] = {
2004         { "hard_err",   VC_HARDERR, },
2005         { "int_err",    VC_INTERR, },
2006         { "bus_err",    VC_BUSERR, },
2007         { "state_err",  VC_STATERR, },
2008         { "chk_err",    VC_CHKERR, },
2009         { "nocp_err",   VC_NOCPERR, },
2010         { "mm_err",     VC_MMERR, },
2011         { "reset",      VC_CORERESET, },
2012 };
2013
2014 COMMAND_HANDLER(handle_cortex_m3_vector_catch_command)
2015 {
2016         struct target *target = get_current_target(CMD_CTX);
2017         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
2018         struct armv7m_common *armv7m = &cortex_m3->armv7m;
2019         struct adiv5_dap *swjdp = &armv7m->dap;
2020         uint32_t demcr = 0;
2021         int retval;
2022
2023         retval = cortex_m3_verify_pointer(CMD_CTX, cortex_m3);
2024         if (retval != ERROR_OK)
2025                 return retval;
2026
2027         retval = mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &demcr);
2028         if (retval != ERROR_OK)
2029                 return retval;
2030
2031         if (CMD_ARGC > 0) {
2032                 unsigned catch = 0;
2033
2034                 if (CMD_ARGC == 1) {
2035                         if (strcmp(CMD_ARGV[0], "all") == 0) {
2036                                 catch = VC_HARDERR | VC_INTERR | VC_BUSERR
2037                                         | VC_STATERR | VC_CHKERR | VC_NOCPERR
2038                                         | VC_MMERR | VC_CORERESET;
2039                                 goto write;
2040                         } else if (strcmp(CMD_ARGV[0], "none") == 0) {
2041                                 goto write;
2042                         }
2043                 }
2044                 while (CMD_ARGC-- > 0) {
2045                         unsigned i;
2046                         for (i = 0; i < ARRAY_SIZE(vec_ids); i++) {
2047                                 if (strcmp(CMD_ARGV[CMD_ARGC], vec_ids[i].name) != 0)
2048                                         continue;
2049                                 catch |= vec_ids[i].mask;
2050                                 break;
2051                         }
2052                         if (i == ARRAY_SIZE(vec_ids)) {
2053                                 LOG_ERROR("No CM3 vector '%s'", CMD_ARGV[CMD_ARGC]);
2054                                 return ERROR_INVALID_ARGUMENTS;
2055                         }
2056                 }
2057 write:
2058                 /* For now, armv7m->demcr only stores vector catch flags. */
2059                 armv7m->demcr = catch;
2060
2061                 demcr &= ~0xffff;
2062                 demcr |= catch;
2063
2064                 /* write, but don't assume it stuck (why not??) */
2065                 retval = mem_ap_write_u32(swjdp, DCB_DEMCR, demcr);
2066                 if (retval != ERROR_OK)
2067                         return retval;
2068                 retval = mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &demcr);
2069                 if (retval != ERROR_OK)
2070                         return retval;
2071
2072                 /* FIXME be sure to clear DEMCR on clean server shutdown.
2073                  * Otherwise the vector catch hardware could fire when there's
2074                  * no debugger hooked up, causing much confusion...
2075                  */
2076         }
2077
2078         for (unsigned i = 0; i < ARRAY_SIZE(vec_ids); i++)
2079         {
2080                 command_print(CMD_CTX, "%9s: %s", vec_ids[i].name,
2081                         (demcr & vec_ids[i].mask) ? "catch" : "ignore");
2082         }
2083
2084         return ERROR_OK;
2085 }
2086
2087 COMMAND_HANDLER(handle_cortex_m3_mask_interrupts_command)
2088 {
2089         struct target *target = get_current_target(CMD_CTX);
2090         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
2091         int retval;
2092
2093         retval = cortex_m3_verify_pointer(CMD_CTX, cortex_m3);
2094         if (retval != ERROR_OK)
2095                 return retval;
2096
2097         if (target->state != TARGET_HALTED)
2098         {
2099                 command_print(CMD_CTX, "target must be stopped for \"%s\" command", CMD_NAME);
2100                 return ERROR_OK;
2101         }
2102
2103         if (CMD_ARGC > 0)
2104         {
2105                 bool enable;
2106                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2107                 uint32_t mask_on = C_HALT | (enable ? C_MASKINTS : 0);
2108                 uint32_t mask_off = enable ? 0 : C_MASKINTS;
2109                 cortex_m3_write_debug_halt_mask(target, mask_on, mask_off);
2110         }
2111
2112         command_print(CMD_CTX, "cortex_m3 interrupt mask %s",
2113                         (cortex_m3->dcb_dhcsr & C_MASKINTS) ? "on" : "off");
2114
2115         return ERROR_OK;
2116 }
2117
2118 COMMAND_HANDLER(handle_cortex_m3_reset_config_command)
2119 {
2120         struct target *target = get_current_target(CMD_CTX);
2121         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
2122         int retval;
2123         char *reset_config;
2124
2125         retval = cortex_m3_verify_pointer(CMD_CTX, cortex_m3);
2126         if (retval != ERROR_OK)
2127                 return retval;
2128
2129         if (CMD_ARGC > 0)
2130         {
2131                 if (strcmp(*CMD_ARGV, "systesetreq") == 0)
2132                         cortex_m3->soft_reset_config = CORTEX_M3_RESET_SYSRESETREQ;
2133                 else if (strcmp(*CMD_ARGV, "vectreset") == 0)
2134                         cortex_m3->soft_reset_config = CORTEX_M3_RESET_VECTRESET;
2135                 else
2136                         cortex_m3->soft_reset_config = CORTEX_M3_RESET_SRST;
2137         }
2138
2139         switch (cortex_m3->soft_reset_config)
2140         {
2141                 case CORTEX_M3_RESET_SRST:
2142                         reset_config = "srst";
2143                         break;
2144
2145                 case CORTEX_M3_RESET_SYSRESETREQ:
2146                         reset_config = "sysresetreq";
2147                         break;
2148
2149                 case CORTEX_M3_RESET_VECTRESET:
2150                         reset_config = "vectreset";
2151                         break;
2152
2153                 default:
2154                         reset_config = "unknown";
2155                         break;
2156         }
2157
2158         command_print(CMD_CTX, "cortex_m3 reset_config %s", reset_config);
2159
2160         return ERROR_OK;
2161 }
2162
2163 static const struct command_registration cortex_m3_exec_command_handlers[] = {
2164         {
2165                 .name = "maskisr",
2166                 .handler = handle_cortex_m3_mask_interrupts_command,
2167                 .mode = COMMAND_EXEC,
2168                 .help = "mask cortex_m3 interrupts",
2169                 .usage = "['on'|'off']",
2170         },
2171         {
2172                 .name = "vector_catch",
2173                 .handler = handle_cortex_m3_vector_catch_command,
2174                 .mode = COMMAND_EXEC,
2175                 .help = "configure hardware vectors to trigger debug entry",
2176                 .usage = "['all'|'none'|('bus_err'|'chk_err'|...)*]",
2177         },
2178         {
2179                 .name = "reset_config",
2180                 .handler = handle_cortex_m3_reset_config_command,
2181                 .mode = COMMAND_ANY,
2182                 .help = "configure software reset handling",
2183                 .usage = "['srst'|'sysresetreq'|'vectreset']",
2184         },
2185         COMMAND_REGISTRATION_DONE
2186 };
2187 static const struct command_registration cortex_m3_command_handlers[] = {
2188         {
2189                 .chain = armv7m_command_handlers,
2190         },
2191         {
2192                 .name = "cortex_m3",
2193                 .mode = COMMAND_EXEC,
2194                 .help = "Cortex-M3 command group",
2195                 .chain = cortex_m3_exec_command_handlers,
2196         },
2197         COMMAND_REGISTRATION_DONE
2198 };
2199
2200 struct target_type cortexm3_target =
2201 {
2202         .name = "cortex_m3",
2203
2204         .poll = cortex_m3_poll,
2205         .arch_state = armv7m_arch_state,
2206
2207         .target_request_data = cortex_m3_target_request_data,
2208
2209         .halt = cortex_m3_halt,
2210         .resume = cortex_m3_resume,
2211         .step = cortex_m3_step,
2212
2213         .assert_reset = cortex_m3_assert_reset,
2214         .deassert_reset = cortex_m3_deassert_reset,
2215         .soft_reset_halt = cortex_m3_soft_reset_halt,
2216
2217         .get_gdb_reg_list = armv7m_get_gdb_reg_list,
2218
2219         .read_memory = cortex_m3_read_memory,
2220         .write_memory = cortex_m3_write_memory,
2221         .bulk_write_memory = cortex_m3_bulk_write_memory,
2222         .checksum_memory = armv7m_checksum_memory,
2223         .blank_check_memory = armv7m_blank_check_memory,
2224
2225         .run_algorithm = armv7m_run_algorithm,
2226
2227         .add_breakpoint = cortex_m3_add_breakpoint,
2228         .remove_breakpoint = cortex_m3_remove_breakpoint,
2229         .add_watchpoint = cortex_m3_add_watchpoint,
2230         .remove_watchpoint = cortex_m3_remove_watchpoint,
2231
2232         .commands = cortex_m3_command_handlers,
2233         .target_create = cortex_m3_target_create,
2234         .init_target = cortex_m3_init_target,
2235         .examine = cortex_m3_examine,
2236 };