target_t -> struct target
[fw/openocd] / src / target / cortex_m3.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   This program is free software; you can redistribute it and/or modify  *
12  *   it under the terms of the GNU General Public License as published by  *
13  *   the Free Software Foundation; either version 2 of the License, or     *
14  *   (at your option) any later version.                                   *
15  *                                                                         *
16  *   This program is distributed in the hope that it will be useful,       *
17  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
18  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
19  *   GNU General Public License for more details.                          *
20  *                                                                         *
21  *   You should have received a copy of the GNU General Public License     *
22  *   along with this program; if not, write to the                         *
23  *   Free Software Foundation, Inc.,                                       *
24  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
25  *                                                                         *
26  *                                                                         *
27  *   Cortex-M3(tm) TRM, ARM DDI 0337E (r1p1) and 0337G (r2p0)              *
28  *                                                                         *
29  ***************************************************************************/
30 #ifdef HAVE_CONFIG_H
31 #include "config.h"
32 #endif
33
34 #include "cortex_m3.h"
35 #include "target_request.h"
36 #include "target_type.h"
37 #include "arm_disassembler.h"
38
39
40 /* NOTE:  most of this should work fine for the Cortex-M1 and
41  * Cortex-M0 cores too, although they're ARMv6-M not ARMv7-M.
42  */
43
44 #define ARRAY_SIZE(x)   ((int)(sizeof(x)/sizeof((x)[0])))
45
46
47 /* forward declarations */
48 static int cortex_m3_set_breakpoint(struct target *target, struct breakpoint *breakpoint);
49 static int cortex_m3_unset_breakpoint(struct target *target, struct breakpoint *breakpoint);
50 static void cortex_m3_enable_watchpoints(struct target *target);
51 static int cortex_m3_store_core_reg_u32(struct target *target,
52                 enum armv7m_regtype type, uint32_t num, uint32_t value);
53
54 #ifdef ARMV7_GDB_HACKS
55 extern uint8_t armv7m_gdb_dummy_cpsr_value[];
56 extern struct reg armv7m_gdb_dummy_cpsr_reg;
57 #endif
58
59 static int cortexm3_dap_read_coreregister_u32(struct swjdp_common *swjdp,
60                 uint32_t *value, int regnum)
61 {
62         int retval;
63         uint32_t dcrdr;
64
65         /* because the DCB_DCRDR is used for the emulated dcc channel
66          * we have to save/restore the DCB_DCRDR when used */
67
68         mem_ap_read_u32(swjdp, DCB_DCRDR, &dcrdr);
69
70         swjdp->trans_mode = TRANS_MODE_COMPOSITE;
71
72         /* mem_ap_write_u32(swjdp, DCB_DCRSR, regnum); */
73         dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRSR & 0xFFFFFFF0);
74         dap_ap_write_reg_u32(swjdp, AP_REG_BD0 | (DCB_DCRSR & 0xC), regnum);
75
76         /* mem_ap_read_u32(swjdp, DCB_DCRDR, value); */
77         dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRDR & 0xFFFFFFF0);
78         dap_ap_read_reg_u32(swjdp, AP_REG_BD0 | (DCB_DCRDR & 0xC), value);
79
80         retval = swjdp_transaction_endcheck(swjdp);
81
82         /* restore DCB_DCRDR - this needs to be in a seperate
83          * transaction otherwise the emulated DCC channel breaks */
84         if (retval == ERROR_OK)
85                 retval = mem_ap_write_atomic_u32(swjdp, DCB_DCRDR, dcrdr);
86
87         return retval;
88 }
89
90 static int cortexm3_dap_write_coreregister_u32(struct swjdp_common *swjdp,
91                 uint32_t value, int regnum)
92 {
93         int retval;
94         uint32_t dcrdr;
95
96         /* because the DCB_DCRDR is used for the emulated dcc channel
97          * we have to save/restore the DCB_DCRDR when used */
98
99         mem_ap_read_u32(swjdp, DCB_DCRDR, &dcrdr);
100
101         swjdp->trans_mode = TRANS_MODE_COMPOSITE;
102
103         /* mem_ap_write_u32(swjdp, DCB_DCRDR, core_regs[i]); */
104         dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRDR & 0xFFFFFFF0);
105         dap_ap_write_reg_u32(swjdp, AP_REG_BD0 | (DCB_DCRDR & 0xC), value);
106
107         /* mem_ap_write_u32(swjdp, DCB_DCRSR, i | DCRSR_WnR); */
108         dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRSR & 0xFFFFFFF0);
109         dap_ap_write_reg_u32(swjdp, AP_REG_BD0 | (DCB_DCRSR & 0xC), regnum | DCRSR_WnR);
110
111         retval = swjdp_transaction_endcheck(swjdp);
112
113         /* restore DCB_DCRDR - this needs to be in a seperate
114          * transaction otherwise the emulated DCC channel breaks */
115         if (retval == ERROR_OK)
116                 retval = mem_ap_write_atomic_u32(swjdp, DCB_DCRDR, dcrdr);
117
118         return retval;
119 }
120
121 static int cortex_m3_write_debug_halt_mask(struct target *target,
122                 uint32_t mask_on, uint32_t mask_off)
123 {
124         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
125         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
126
127         /* mask off status bits */
128         cortex_m3->dcb_dhcsr &= ~((0xFFFF << 16) | mask_off);
129         /* create new register mask */
130         cortex_m3->dcb_dhcsr |= DBGKEY | C_DEBUGEN | mask_on;
131
132         return mem_ap_write_atomic_u32(swjdp, DCB_DHCSR, cortex_m3->dcb_dhcsr);
133 }
134
135 static int cortex_m3_clear_halt(struct target *target)
136 {
137         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
138         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
139
140         /* clear step if any */
141         cortex_m3_write_debug_halt_mask(target, C_HALT, C_STEP);
142
143         /* Read Debug Fault Status Register */
144         mem_ap_read_atomic_u32(swjdp, NVIC_DFSR, &cortex_m3->nvic_dfsr);
145         /* Clear Debug Fault Status */
146         mem_ap_write_atomic_u32(swjdp, NVIC_DFSR, cortex_m3->nvic_dfsr);
147         LOG_DEBUG(" NVIC_DFSR 0x%" PRIx32 "", cortex_m3->nvic_dfsr);
148
149         return ERROR_OK;
150 }
151
152 static int cortex_m3_single_step_core(struct target *target)
153 {
154         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
155         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
156         uint32_t dhcsr_save;
157
158         /* backup dhcsr reg */
159         dhcsr_save = cortex_m3->dcb_dhcsr;
160
161         /* mask interrupts if not done already */
162         if (!(cortex_m3->dcb_dhcsr & C_MASKINTS))
163                 mem_ap_write_atomic_u32(swjdp, DCB_DHCSR, DBGKEY | C_MASKINTS | C_HALT | C_DEBUGEN);
164         mem_ap_write_atomic_u32(swjdp, DCB_DHCSR, DBGKEY | C_MASKINTS | C_STEP | C_DEBUGEN);
165         LOG_DEBUG(" ");
166
167         /* restore dhcsr reg */
168         cortex_m3->dcb_dhcsr = dhcsr_save;
169         cortex_m3_clear_halt(target);
170
171         return ERROR_OK;
172 }
173
174 static int cortex_m3_endreset_event(struct target *target)
175 {
176         int i;
177         uint32_t dcb_demcr;
178         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
179         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
180         struct cortex_m3_fp_comparator *fp_list = cortex_m3->fp_comparator_list;
181         struct cortex_m3_dwt_comparator *dwt_list = cortex_m3->dwt_comparator_list;
182
183         mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &dcb_demcr);
184         LOG_DEBUG("DCB_DEMCR = 0x%8.8" PRIx32 "",dcb_demcr);
185
186         /* this regsiter is used for emulated dcc channel */
187         mem_ap_write_u32(swjdp, DCB_DCRDR, 0);
188
189         /* Enable debug requests */
190         mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
191         if (!(cortex_m3->dcb_dhcsr & C_DEBUGEN))
192                 mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN);
193
194         /* clear any interrupt masking */
195         cortex_m3_write_debug_halt_mask(target, 0, C_MASKINTS);
196
197         /* Enable trace and dwt */
198         mem_ap_write_u32(swjdp, DCB_DEMCR, TRCENA | VC_HARDERR | VC_BUSERR);
199         /* Monitor bus faults */
200         mem_ap_write_u32(swjdp, NVIC_SHCSR, SHCSR_BUSFAULTENA);
201
202         /* Enable FPB */
203         target_write_u32(target, FP_CTRL, 3);
204         cortex_m3->fpb_enabled = 1;
205
206         /* Restore FPB registers */
207         for (i = 0; i < cortex_m3->fp_num_code + cortex_m3->fp_num_lit; i++)
208         {
209                 target_write_u32(target, fp_list[i].fpcr_address, fp_list[i].fpcr_value);
210         }
211
212         /* Restore DWT registers */
213         for (i = 0; i < cortex_m3->dwt_num_comp; i++)
214         {
215                 target_write_u32(target, dwt_list[i].dwt_comparator_address + 0,
216                                 dwt_list[i].comp);
217                 target_write_u32(target, dwt_list[i].dwt_comparator_address + 4,
218                                 dwt_list[i].mask);
219                 target_write_u32(target, dwt_list[i].dwt_comparator_address + 8,
220                                 dwt_list[i].function);
221         }
222         swjdp_transaction_endcheck(swjdp);
223
224         armv7m_invalidate_core_regs(target);
225
226         /* make sure we have latest dhcsr flags */
227         mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
228
229         return ERROR_OK;
230 }
231
232 static int cortex_m3_examine_debug_reason(struct target *target)
233 {
234         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
235
236         /* THIS IS NOT GOOD, TODO - better logic for detection of debug state reason */
237         /* only check the debug reason if we don't know it already */
238
239         if ((target->debug_reason != DBG_REASON_DBGRQ)
240                 && (target->debug_reason != DBG_REASON_SINGLESTEP))
241         {
242                 if (cortex_m3->nvic_dfsr & DFSR_BKPT)
243                 {
244                         target->debug_reason = DBG_REASON_BREAKPOINT;
245                         if (cortex_m3->nvic_dfsr & DFSR_DWTTRAP)
246                                 target->debug_reason = DBG_REASON_WPTANDBKPT;
247                 }
248                 else if (cortex_m3->nvic_dfsr & DFSR_DWTTRAP)
249                         target->debug_reason = DBG_REASON_WATCHPOINT;
250                 else if (cortex_m3->nvic_dfsr & DFSR_VCATCH)
251                         target->debug_reason = DBG_REASON_BREAKPOINT;
252                 else /* EXTERNAL, HALTED */
253                         target->debug_reason = DBG_REASON_UNDEFINED;
254         }
255
256         return ERROR_OK;
257 }
258
259 static int cortex_m3_examine_exception_reason(struct target *target)
260 {
261         uint32_t shcsr, except_sr, cfsr = -1, except_ar = -1;
262         struct armv7m_common *armv7m = target_to_armv7m(target);
263         struct swjdp_common *swjdp = &armv7m->swjdp_info;
264
265         mem_ap_read_u32(swjdp, NVIC_SHCSR, &shcsr);
266         switch (armv7m->exception_number)
267         {
268                 case 2: /* NMI */
269                         break;
270                 case 3: /* Hard Fault */
271                         mem_ap_read_atomic_u32(swjdp, NVIC_HFSR, &except_sr);
272                         if (except_sr & 0x40000000)
273                         {
274                                 mem_ap_read_u32(swjdp, NVIC_CFSR, &cfsr);
275                         }
276                         break;
277                 case 4: /* Memory Management */
278                         mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
279                         mem_ap_read_u32(swjdp, NVIC_MMFAR, &except_ar);
280                         break;
281                 case 5: /* Bus Fault */
282                         mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
283                         mem_ap_read_u32(swjdp, NVIC_BFAR, &except_ar);
284                         break;
285                 case 6: /* Usage Fault */
286                         mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
287                         break;
288                 case 11:        /* SVCall */
289                         break;
290                 case 12:        /* Debug Monitor */
291                         mem_ap_read_u32(swjdp, NVIC_DFSR, &except_sr);
292                         break;
293                 case 14:        /* PendSV */
294                         break;
295                 case 15:        /* SysTick */
296                         break;
297                 default:
298                         except_sr = 0;
299                         break;
300         }
301         swjdp_transaction_endcheck(swjdp);
302         LOG_DEBUG("%s SHCSR 0x%" PRIx32 ", SR 0x%" PRIx32 ", CFSR 0x%" PRIx32 ", AR 0x%" PRIx32 "", armv7m_exception_string(armv7m->exception_number), \
303                 shcsr, except_sr, cfsr, except_ar);
304         return ERROR_OK;
305 }
306
307 static int cortex_m3_debug_entry(struct target *target)
308 {
309         int i;
310         uint32_t xPSR;
311         int retval;
312         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
313         struct armv7m_common *armv7m = &cortex_m3->armv7m;
314         struct swjdp_common *swjdp = &armv7m->swjdp_info;
315
316         LOG_DEBUG(" ");
317
318         cortex_m3_clear_halt(target);
319         mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
320
321         if ((retval = armv7m->examine_debug_reason(target)) != ERROR_OK)
322                 return retval;
323
324         /* Examine target state and mode */
325         /* First load register acessible through core debug port*/
326         int num_regs = armv7m->core_cache->num_regs;
327
328         for (i = 0; i < num_regs; i++)
329         {
330                 if (!armv7m->core_cache->reg_list[i].valid)
331                         armv7m->read_core_reg(target, i);
332         }
333
334         xPSR = buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32);
335
336 #ifdef ARMV7_GDB_HACKS
337         /* copy real xpsr reg for gdb, setting thumb bit */
338         buf_set_u32(armv7m_gdb_dummy_cpsr_value, 0, 32, xPSR);
339         buf_set_u32(armv7m_gdb_dummy_cpsr_value, 5, 1, 1);
340         armv7m_gdb_dummy_cpsr_reg.valid = armv7m->core_cache->reg_list[ARMV7M_xPSR].valid;
341         armv7m_gdb_dummy_cpsr_reg.dirty = armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty;
342 #endif
343
344         /* For IT instructions xPSR must be reloaded on resume and clear on debug exec */
345         if (xPSR & 0xf00)
346         {
347                 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = armv7m->core_cache->reg_list[ARMV7M_xPSR].valid;
348                 cortex_m3_store_core_reg_u32(target, ARMV7M_REGISTER_CORE_GP, 16, xPSR &~ 0xff);
349         }
350
351         /* Are we in an exception handler */
352         if (xPSR & 0x1FF)
353         {
354                 armv7m->core_mode = ARMV7M_MODE_HANDLER;
355                 armv7m->exception_number = (xPSR & 0x1FF);
356         }
357         else
358         {
359                 armv7m->core_mode = buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_CONTROL].value, 0, 1);
360                 armv7m->exception_number = 0;
361         }
362
363         if (armv7m->exception_number)
364         {
365                 cortex_m3_examine_exception_reason(target);
366         }
367
368         LOG_DEBUG("entered debug state in core mode: %s at PC 0x%" PRIx32 ", target->state: %s",
369                 armv7m_mode_strings[armv7m->core_mode],
370                 *(uint32_t*)(armv7m->core_cache->reg_list[15].value),
371                 target_state_name(target));
372
373         if (armv7m->post_debug_entry)
374                 armv7m->post_debug_entry(target);
375
376         return ERROR_OK;
377 }
378
379 static int cortex_m3_poll(struct target *target)
380 {
381         int retval;
382         enum target_state prev_target_state = target->state;
383         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
384         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
385
386         /* Read from Debug Halting Control and Status Register */
387         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
388         if (retval != ERROR_OK)
389         {
390                 target->state = TARGET_UNKNOWN;
391                 return retval;
392         }
393
394         if (cortex_m3->dcb_dhcsr & S_RESET_ST)
395         {
396                 /* check if still in reset */
397                 mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
398
399                 if (cortex_m3->dcb_dhcsr & S_RESET_ST)
400                 {
401                         target->state = TARGET_RESET;
402                         return ERROR_OK;
403                 }
404         }
405
406         if (target->state == TARGET_RESET)
407         {
408                 /* Cannot switch context while running so endreset is called with target->state == TARGET_RESET */
409                 LOG_DEBUG("Exit from reset with dcb_dhcsr 0x%" PRIx32 "", cortex_m3->dcb_dhcsr);
410                 cortex_m3_endreset_event(target);
411                 target->state = TARGET_RUNNING;
412                 prev_target_state = TARGET_RUNNING;
413         }
414
415         if (cortex_m3->dcb_dhcsr & S_HALT)
416         {
417                 target->state = TARGET_HALTED;
418
419                 if ((prev_target_state == TARGET_RUNNING) || (prev_target_state == TARGET_RESET))
420                 {
421                         if ((retval = cortex_m3_debug_entry(target)) != ERROR_OK)
422                                 return retval;
423
424                         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
425                 }
426                 if (prev_target_state == TARGET_DEBUG_RUNNING)
427                 {
428                         LOG_DEBUG(" ");
429                         if ((retval = cortex_m3_debug_entry(target)) != ERROR_OK)
430                                 return retval;
431
432                         target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
433                 }
434         }
435
436         /* REVISIT when S_SLEEP is set, it's in a Sleep or DeepSleep state.
437          * How best to model low power modes?
438          */
439
440         if (target->state == TARGET_UNKNOWN)
441         {
442                 /* check if processor is retiring instructions */
443                 if (cortex_m3->dcb_dhcsr & S_RETIRE_ST)
444                 {
445                         target->state = TARGET_RUNNING;
446                         return ERROR_OK;
447                 }
448         }
449
450         return ERROR_OK;
451 }
452
453 static int cortex_m3_halt(struct target *target)
454 {
455         LOG_DEBUG("target->state: %s",
456                 target_state_name(target));
457
458         if (target->state == TARGET_HALTED)
459         {
460                 LOG_DEBUG("target was already halted");
461                 return ERROR_OK;
462         }
463
464         if (target->state == TARGET_UNKNOWN)
465         {
466                 LOG_WARNING("target was in unknown state when halt was requested");
467         }
468
469         if (target->state == TARGET_RESET)
470         {
471                 if ((jtag_get_reset_config() & RESET_SRST_PULLS_TRST) && jtag_get_srst())
472                 {
473                         LOG_ERROR("can't request a halt while in reset if nSRST pulls nTRST");
474                         return ERROR_TARGET_FAILURE;
475                 }
476                 else
477                 {
478                         /* we came here in a reset_halt or reset_init sequence
479                          * debug entry was already prepared in cortex_m3_prepare_reset_halt()
480                          */
481                         target->debug_reason = DBG_REASON_DBGRQ;
482
483                         return ERROR_OK;
484                 }
485         }
486
487         /* Write to Debug Halting Control and Status Register */
488         cortex_m3_write_debug_halt_mask(target, C_HALT, 0);
489
490         target->debug_reason = DBG_REASON_DBGRQ;
491
492         return ERROR_OK;
493 }
494
495 static int cortex_m3_soft_reset_halt(struct target *target)
496 {
497         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
498         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
499         uint32_t dcb_dhcsr = 0;
500         int retval, timeout = 0;
501
502         /* Enter debug state on reset, cf. end_reset_event() */
503         mem_ap_write_u32(swjdp, DCB_DEMCR, TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
504
505         /* Request a reset */
506         mem_ap_write_atomic_u32(swjdp, NVIC_AIRCR, AIRCR_VECTKEY | AIRCR_VECTRESET);
507         target->state = TARGET_RESET;
508
509         /* registers are now invalid */
510         armv7m_invalidate_core_regs(target);
511
512         while (timeout < 100)
513         {
514                 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &dcb_dhcsr);
515                 if (retval == ERROR_OK)
516                 {
517                         mem_ap_read_atomic_u32(swjdp, NVIC_DFSR, &cortex_m3->nvic_dfsr);
518                         if ((dcb_dhcsr & S_HALT) && (cortex_m3->nvic_dfsr & DFSR_VCATCH))
519                         {
520                                 LOG_DEBUG("system reset-halted, dcb_dhcsr 0x%" PRIx32 ", nvic_dfsr 0x%" PRIx32 "", dcb_dhcsr, cortex_m3->nvic_dfsr);
521                                 cortex_m3_poll(target);
522                                 return ERROR_OK;
523                         }
524                         else
525                                 LOG_DEBUG("waiting for system reset-halt, dcb_dhcsr 0x%" PRIx32 ", %i ms", dcb_dhcsr, timeout);
526                 }
527                 timeout++;
528                 alive_sleep(1);
529         }
530
531         return ERROR_OK;
532 }
533
534 static void cortex_m3_enable_breakpoints(struct target *target)
535 {
536         struct breakpoint *breakpoint = target->breakpoints;
537
538         /* set any pending breakpoints */
539         while (breakpoint)
540         {
541                 if (breakpoint->set == 0)
542                         cortex_m3_set_breakpoint(target, breakpoint);
543                 breakpoint = breakpoint->next;
544         }
545 }
546
547 static int cortex_m3_resume(struct target *target, int current,
548                 uint32_t address, int handle_breakpoints, int debug_execution)
549 {
550         struct armv7m_common *armv7m = target_to_armv7m(target);
551         struct breakpoint *breakpoint = NULL;
552         uint32_t resume_pc;
553
554         if (target->state != TARGET_HALTED)
555         {
556                 LOG_WARNING("target not halted");
557                 return ERROR_TARGET_NOT_HALTED;
558         }
559
560         if (!debug_execution)
561         {
562                 target_free_all_working_areas(target);
563                 cortex_m3_enable_breakpoints(target);
564                 cortex_m3_enable_watchpoints(target);
565         }
566
567         if (debug_execution)
568         {
569                 /* Disable interrupts */
570                 /* We disable interrupts in the PRIMASK register instead of masking with C_MASKINTS,
571                  * This is probably the same issue as Cortex-M3 Errata  377493:
572                  * C_MASKINTS in parallel with disabled interrupts can cause local faults to not be taken. */
573                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
574                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
575                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
576
577                 /* Make sure we are in Thumb mode */
578                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
579                         buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32) | (1 << 24));
580                 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
581                 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
582         }
583
584         /* current = 1: continue on current pc, otherwise continue at <address> */
585         if (!current)
586         {
587                 buf_set_u32(armv7m->core_cache->reg_list[15].value, 0, 32, address);
588                 armv7m->core_cache->reg_list[15].dirty = 1;
589                 armv7m->core_cache->reg_list[15].valid = 1;
590         }
591
592         resume_pc = buf_get_u32(armv7m->core_cache->reg_list[15].value, 0, 32);
593
594         armv7m_restore_context(target);
595
596         /* the front-end may request us not to handle breakpoints */
597         if (handle_breakpoints)
598         {
599                 /* Single step past breakpoint at current address */
600                 if ((breakpoint = breakpoint_find(target, resume_pc)))
601                 {
602                         LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32 " (ID: %d)",
603                                           breakpoint->address,
604                                           breakpoint->unique_id);
605                         cortex_m3_unset_breakpoint(target, breakpoint);
606                         cortex_m3_single_step_core(target);
607                         cortex_m3_set_breakpoint(target, breakpoint);
608                 }
609         }
610
611         /* Restart core */
612         cortex_m3_write_debug_halt_mask(target, 0, C_HALT);
613
614         target->debug_reason = DBG_REASON_NOTHALTED;
615
616         /* registers are now invalid */
617         armv7m_invalidate_core_regs(target);
618         if (!debug_execution)
619         {
620                 target->state = TARGET_RUNNING;
621                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
622                 LOG_DEBUG("target resumed at 0x%" PRIx32 "", resume_pc);
623         }
624         else
625         {
626                 target->state = TARGET_DEBUG_RUNNING;
627                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
628                 LOG_DEBUG("target debug resumed at 0x%" PRIx32 "", resume_pc);
629         }
630
631         return ERROR_OK;
632 }
633
634 /* int irqstepcount = 0; */
635 static int cortex_m3_step(struct target *target, int current,
636                 uint32_t address, int handle_breakpoints)
637 {
638         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
639         struct armv7m_common *armv7m = &cortex_m3->armv7m;
640         struct swjdp_common *swjdp = &armv7m->swjdp_info;
641         struct breakpoint *breakpoint = NULL;
642
643         if (target->state != TARGET_HALTED)
644         {
645                 LOG_WARNING("target not halted");
646                 return ERROR_TARGET_NOT_HALTED;
647         }
648
649         /* current = 1: continue on current pc, otherwise continue at <address> */
650         if (!current)
651                 buf_set_u32(cortex_m3->armv7m.core_cache->reg_list[15].value,
652                                 0, 32, address);
653
654         /* the front-end may request us not to handle breakpoints */
655         if (handle_breakpoints) {
656                 breakpoint = breakpoint_find(target, buf_get_u32(armv7m
657                                 ->core_cache->reg_list[15].value, 0, 32));
658                 if (breakpoint)
659                         cortex_m3_unset_breakpoint(target, breakpoint);
660         }
661
662         target->debug_reason = DBG_REASON_SINGLESTEP;
663
664         armv7m_restore_context(target);
665
666         target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
667
668         /* set step and clear halt */
669         cortex_m3_write_debug_halt_mask(target, C_STEP, C_HALT);
670         mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
671
672         /* registers are now invalid */
673         armv7m_invalidate_core_regs(target);
674
675         if (breakpoint)
676                 cortex_m3_set_breakpoint(target, breakpoint);
677
678         LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32 " nvic_icsr = 0x%" PRIx32 "", cortex_m3->dcb_dhcsr, cortex_m3->nvic_icsr);
679
680         cortex_m3_debug_entry(target);
681         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
682
683         LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32 " nvic_icsr = 0x%" PRIx32 "", cortex_m3->dcb_dhcsr, cortex_m3->nvic_icsr);
684         return ERROR_OK;
685 }
686
687 static int cortex_m3_assert_reset(struct target *target)
688 {
689         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
690         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
691         int assert_srst = 1;
692
693         LOG_DEBUG("target->state: %s",
694                 target_state_name(target));
695
696         enum reset_types jtag_reset_config = jtag_get_reset_config();
697
698         /*
699          * We can reset Cortex-M3 targets using just the NVIC without
700          * requiring SRST, getting a SoC reset (or a core-only reset)
701          * instead of a system reset.
702          */
703         if (!(jtag_reset_config & RESET_HAS_SRST))
704                 assert_srst = 0;
705
706         /* Enable debug requests */
707         mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
708         if (!(cortex_m3->dcb_dhcsr & C_DEBUGEN))
709                 mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN);
710
711         mem_ap_write_u32(swjdp, DCB_DCRDR, 0);
712
713         if (!target->reset_halt)
714         {
715                 /* Set/Clear C_MASKINTS in a separate operation */
716                 if (cortex_m3->dcb_dhcsr & C_MASKINTS)
717                         mem_ap_write_atomic_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN | C_HALT);
718
719                 /* clear any debug flags before resuming */
720                 cortex_m3_clear_halt(target);
721
722                 /* clear C_HALT in dhcsr reg */
723                 cortex_m3_write_debug_halt_mask(target, 0, C_HALT);
724
725                 /* Enter debug state on reset, cf. end_reset_event() */
726                 mem_ap_write_u32(swjdp, DCB_DEMCR, TRCENA | VC_HARDERR | VC_BUSERR);
727         }
728         else
729         {
730                 /* Enter debug state on reset, cf. end_reset_event() */
731                 mem_ap_write_atomic_u32(swjdp, DCB_DEMCR, TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
732         }
733
734         /*
735          * When nRST is asserted on most Stellaris devices, it clears some of
736          * the debug state.  The ARMv7M and Cortex-M3 TRMs say that's wrong;
737          * and OpenOCD depends on those TRMs.  So we won't use SRST on those
738          * chips.  (Only power-on reset should affect debug state, beyond a
739          * few specified bits; not the chip's nRST input, wired to SRST.)
740          *
741          * REVISIT current errata specs don't seem to cover this issue.
742          * Do we have more details than this email?
743          *   https://lists.berlios.de/pipermail
744          *      /openocd-development/2008-August/003065.html
745          */
746         if (strcmp(target->variant, "lm3s") == 0)
747         {
748                 /* Check for silicon revisions with the issue. */
749                 uint32_t did0;
750
751                 if (target_read_u32(target, 0x400fe000, &did0) == ERROR_OK)
752                 {
753                         switch ((did0 >> 16) & 0xff)
754                         {
755                                 case 0:
756                                         /* all Sandstorm suffer issue */
757                                         assert_srst = 0;
758                                         break;
759
760                                 case 1:
761                                 case 3:
762                                         /* Fury and DustDevil rev A have
763                                          * this nRST problem.  It should
764                                          * be fixed in rev B silicon.
765                                          */
766                                         if (((did0 >> 8) & 0xff) == 0)
767                                                 assert_srst = 0;
768                                         break;
769                                 case 4:
770                                         /* Tempest should be fine. */
771                                         break;
772                         }
773                 }
774         }
775
776         if (assert_srst)
777         {
778                 /* default to asserting srst */
779                 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
780                 {
781                         jtag_add_reset(1, 1);
782                 }
783                 else
784                 {
785                         jtag_add_reset(0, 1);
786                 }
787         }
788         else
789         {
790                 /* Use a standard Cortex-M3 software reset mechanism.
791                  * SYSRESETREQ will reset SoC peripherals outside the
792                  * core, like watchdog timers, if the SoC wires it up
793                  * correctly.  Else VECRESET can reset just the core.
794                  */
795                 mem_ap_write_atomic_u32(swjdp, NVIC_AIRCR,
796                                 AIRCR_VECTKEY | AIRCR_SYSRESETREQ);
797                 LOG_DEBUG("Using Cortex-M3 SYSRESETREQ");
798
799                 {
800                         /* I do not know why this is necessary, but it
801                          * fixes strange effects (step/resume cause NMI
802                          * after reset) on LM3S6918 -- Michael Schwingen
803                          */
804                         uint32_t tmp;
805                         mem_ap_read_atomic_u32(swjdp, NVIC_AIRCR, &tmp);
806                 }
807         }
808
809         target->state = TARGET_RESET;
810         jtag_add_sleep(50000);
811
812         armv7m_invalidate_core_regs(target);
813
814         if (target->reset_halt)
815         {
816                 int retval;
817                 if ((retval = target_halt(target)) != ERROR_OK)
818                         return retval;
819         }
820
821         return ERROR_OK;
822 }
823
824 static int cortex_m3_deassert_reset(struct target *target)
825 {
826         LOG_DEBUG("target->state: %s",
827                 target_state_name(target));
828
829         /* deassert reset lines */
830         jtag_add_reset(0, 0);
831
832         return ERROR_OK;
833 }
834
835 static int
836 cortex_m3_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
837 {
838         int retval;
839         int fp_num = 0;
840         uint32_t hilo;
841         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
842         struct cortex_m3_fp_comparator *comparator_list = cortex_m3->fp_comparator_list;
843
844         if (breakpoint->set)
845         {
846                 LOG_WARNING("breakpoint (BPID: %d) already set", breakpoint->unique_id);
847                 return ERROR_OK;
848         }
849
850         if (cortex_m3->auto_bp_type)
851         {
852                 breakpoint->type = (breakpoint->address < 0x20000000) ? BKPT_HARD : BKPT_SOFT;
853         }
854
855         if (breakpoint->type == BKPT_HARD)
856         {
857                 while (comparator_list[fp_num].used && (fp_num < cortex_m3->fp_num_code))
858                         fp_num++;
859                 if (fp_num >= cortex_m3->fp_num_code)
860                 {
861                         LOG_DEBUG("ERROR Can not find free FP Comparator");
862                         LOG_WARNING("ERROR Can not find free FP Comparator");
863                         exit(-1);
864                 }
865                 breakpoint->set = fp_num + 1;
866                 hilo = (breakpoint->address & 0x2) ? FPCR_REPLACE_BKPT_HIGH : FPCR_REPLACE_BKPT_LOW;
867                 comparator_list[fp_num].used = 1;
868                 comparator_list[fp_num].fpcr_value = (breakpoint->address & 0x1FFFFFFC) | hilo | 1;
869                 target_write_u32(target, comparator_list[fp_num].fpcr_address, comparator_list[fp_num].fpcr_value);
870                 LOG_DEBUG("fpc_num %i fpcr_value 0x%" PRIx32 "", fp_num, comparator_list[fp_num].fpcr_value);
871                 if (!cortex_m3->fpb_enabled)
872                 {
873                         LOG_DEBUG("FPB wasn't enabled, do it now");
874                         target_write_u32(target, FP_CTRL, 3);
875                 }
876         }
877         else if (breakpoint->type == BKPT_SOFT)
878         {
879                 uint8_t code[4];
880                 buf_set_u32(code, 0, 32, ARMV7M_T_BKPT(0x11));
881                 if ((retval = target_read_memory(target, breakpoint->address & 0xFFFFFFFE, breakpoint->length, 1, breakpoint->orig_instr)) != ERROR_OK)
882                 {
883                         return retval;
884                 }
885                 if ((retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, breakpoint->length, 1, code)) != ERROR_OK)
886                 {
887                         return retval;
888                 }
889                 breakpoint->set = 0x11; /* Any nice value but 0 */
890         }
891
892         LOG_DEBUG("BPID: %d, Type: %d, Address: 0x%08" PRIx32 " Length: %d (set=%d)",
893                           breakpoint->unique_id,
894                           (int)(breakpoint->type),
895                           breakpoint->address,
896                           breakpoint->length,
897                           breakpoint->set);
898
899         return ERROR_OK;
900 }
901
902 static int
903 cortex_m3_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
904 {
905         int retval;
906         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
907         struct cortex_m3_fp_comparator * comparator_list = cortex_m3->fp_comparator_list;
908
909         if (!breakpoint->set)
910         {
911                 LOG_WARNING("breakpoint not set");
912                 return ERROR_OK;
913         }
914
915         LOG_DEBUG("BPID: %d, Type: %d, Address: 0x%08" PRIx32 " Length: %d (set=%d)",
916                           breakpoint->unique_id,
917                           (int)(breakpoint->type),
918                           breakpoint->address,
919                           breakpoint->length,
920                           breakpoint->set);
921
922         if (breakpoint->type == BKPT_HARD)
923         {
924                 int fp_num = breakpoint->set - 1;
925                 if ((fp_num < 0) || (fp_num >= cortex_m3->fp_num_code))
926                 {
927                         LOG_DEBUG("Invalid FP Comparator number in breakpoint");
928                         return ERROR_OK;
929                 }
930                 comparator_list[fp_num].used = 0;
931                 comparator_list[fp_num].fpcr_value = 0;
932                 target_write_u32(target, comparator_list[fp_num].fpcr_address, comparator_list[fp_num].fpcr_value);
933         }
934         else
935         {
936                 /* restore original instruction (kept in target endianness) */
937                 if (breakpoint->length == 4)
938                 {
939                         if ((retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
940                         {
941                                 return retval;
942                         }
943                 }
944                 else
945                 {
946                         if ((retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
947                         {
948                                 return retval;
949                         }
950                 }
951         }
952         breakpoint->set = 0;
953
954         return ERROR_OK;
955 }
956
957 static int
958 cortex_m3_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
959 {
960         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
961
962         if (cortex_m3->auto_bp_type)
963         {
964                 breakpoint->type = (breakpoint->address < 0x20000000) ? BKPT_HARD : BKPT_SOFT;
965 #ifdef ARMV7_GDB_HACKS
966                 if (breakpoint->length != 2) {
967                         /* XXX Hack: Replace all breakpoints with length != 2 with
968                          * a hardware breakpoint. */
969                         breakpoint->type = BKPT_HARD;
970                         breakpoint->length = 2;
971                 }
972 #endif
973         }
974
975         if ((breakpoint->type == BKPT_HARD) && (breakpoint->address >= 0x20000000))
976         {
977                 LOG_INFO("flash patch comparator requested outside code memory region");
978                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
979         }
980
981         if ((breakpoint->type == BKPT_SOFT) && (breakpoint->address < 0x20000000))
982         {
983                 LOG_INFO("soft breakpoint requested in code (flash) memory region");
984                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
985         }
986
987         if ((breakpoint->type == BKPT_HARD) && (cortex_m3->fp_code_available < 1))
988         {
989                 LOG_INFO("no flash patch comparator unit available for hardware breakpoint");
990                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
991         }
992
993         if ((breakpoint->length != 2))
994         {
995                 LOG_INFO("only breakpoints of two bytes length supported");
996                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
997         }
998
999         if (breakpoint->type == BKPT_HARD)
1000                 cortex_m3->fp_code_available--;
1001         cortex_m3_set_breakpoint(target, breakpoint);
1002
1003         return ERROR_OK;
1004 }
1005
1006 static int
1007 cortex_m3_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1008 {
1009         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1010
1011         /* REVISIT why check? FBP can be updated with core running ... */
1012         if (target->state != TARGET_HALTED)
1013         {
1014                 LOG_WARNING("target not halted");
1015                 return ERROR_TARGET_NOT_HALTED;
1016         }
1017
1018         if (cortex_m3->auto_bp_type)
1019         {
1020                 breakpoint->type = (breakpoint->address < 0x20000000) ? BKPT_HARD : BKPT_SOFT;
1021         }
1022
1023         if (breakpoint->set)
1024         {
1025                 cortex_m3_unset_breakpoint(target, breakpoint);
1026         }
1027
1028         if (breakpoint->type == BKPT_HARD)
1029                 cortex_m3->fp_code_available++;
1030
1031         return ERROR_OK;
1032 }
1033
1034 static int
1035 cortex_m3_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
1036 {
1037         int dwt_num = 0;
1038         uint32_t mask, temp;
1039         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1040
1041         /* watchpoint params were validated earlier */
1042         mask = 0;
1043         temp = watchpoint->length;
1044         while (temp) {
1045                 temp >>= 1;
1046                 mask++;
1047         }
1048         mask--;
1049
1050         /* REVISIT Don't fully trust these "not used" records ... users
1051          * may set up breakpoints by hand, e.g. dual-address data value
1052          * watchpoint using comparator #1; comparator #0 matching cycle
1053          * count; send data trace info through ITM and TPIU; etc
1054          */
1055         struct cortex_m3_dwt_comparator *comparator;
1056
1057         for (comparator = cortex_m3->dwt_comparator_list;
1058                         comparator->used && dwt_num < cortex_m3->dwt_num_comp;
1059                         comparator++, dwt_num++)
1060                 continue;
1061         if (dwt_num >= cortex_m3->dwt_num_comp)
1062         {
1063                 LOG_ERROR("Can not find free DWT Comparator");
1064                 return ERROR_FAIL;
1065         }
1066         comparator->used = 1;
1067         watchpoint->set = dwt_num + 1;
1068
1069         comparator->comp = watchpoint->address;
1070         target_write_u32(target, comparator->dwt_comparator_address + 0,
1071                         comparator->comp);
1072
1073         comparator->mask = mask;
1074         target_write_u32(target, comparator->dwt_comparator_address + 4,
1075                         comparator->mask);
1076
1077         switch (watchpoint->rw) {
1078         case WPT_READ:
1079                 comparator->function = 5;
1080                 break;
1081         case WPT_WRITE:
1082                 comparator->function = 6;
1083                 break;
1084         case WPT_ACCESS:
1085                 comparator->function = 7;
1086                 break;
1087         }
1088         target_write_u32(target, comparator->dwt_comparator_address + 8,
1089                         comparator->function);
1090
1091         LOG_DEBUG("Watchpoint (ID %d) DWT%d 0x%08x 0x%x 0x%05x",
1092                         watchpoint->unique_id, dwt_num,
1093                         (unsigned) comparator->comp,
1094                         (unsigned) comparator->mask,
1095                         (unsigned) comparator->function);
1096         return ERROR_OK;
1097 }
1098
1099 static int
1100 cortex_m3_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
1101 {
1102         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1103         struct cortex_m3_dwt_comparator *comparator;
1104         int dwt_num;
1105
1106         if (!watchpoint->set)
1107         {
1108                 LOG_WARNING("watchpoint (wpid: %d) not set",
1109                                 watchpoint->unique_id);
1110                 return ERROR_OK;
1111         }
1112
1113         dwt_num = watchpoint->set - 1;
1114
1115         LOG_DEBUG("Watchpoint (ID %d) DWT%d address: 0x%08x clear",
1116                         watchpoint->unique_id, dwt_num,
1117                         (unsigned) watchpoint->address);
1118
1119         if ((dwt_num < 0) || (dwt_num >= cortex_m3->dwt_num_comp))
1120         {
1121                 LOG_DEBUG("Invalid DWT Comparator number in watchpoint");
1122                 return ERROR_OK;
1123         }
1124
1125         comparator = cortex_m3->dwt_comparator_list + dwt_num;
1126         comparator->used = 0;
1127         comparator->function = 0;
1128         target_write_u32(target, comparator->dwt_comparator_address + 8,
1129                         comparator->function);
1130
1131         watchpoint->set = 0;
1132
1133         return ERROR_OK;
1134 }
1135
1136 static int
1137 cortex_m3_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
1138 {
1139         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1140
1141         /* REVISIT why check? DWT can be updated with core running ... */
1142         if (target->state != TARGET_HALTED)
1143         {
1144                 LOG_WARNING("target not halted");
1145                 return ERROR_TARGET_NOT_HALTED;
1146         }
1147
1148         if (cortex_m3->dwt_comp_available < 1)
1149         {
1150                 LOG_DEBUG("no comparators?");
1151                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1152         }
1153
1154         /* hardware doesn't support data value masking */
1155         if (watchpoint->mask != ~(uint32_t)0) {
1156                 LOG_DEBUG("watchpoint value masks not supported");
1157                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1158         }
1159
1160         /* hardware allows address masks of up to 32K */
1161         unsigned mask;
1162
1163         for (mask = 0; mask < 16; mask++) {
1164                 if ((1u << mask) == watchpoint->length)
1165                         break;
1166         }
1167         if (mask == 16) {
1168                 LOG_DEBUG("unsupported watchpoint length");
1169                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1170         }
1171         if (watchpoint->address & ((1 << mask) - 1)) {
1172                 LOG_DEBUG("watchpoint address is unaligned");
1173                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1174         }
1175
1176         /* Caller doesn't seem to be able to describe watching for data
1177          * values of zero; that flags "no value".
1178          *
1179          * REVISIT This DWT may well be able to watch for specific data
1180          * values.  Requires comparator #1 to set DATAVMATCH and match
1181          * the data, and another comparator (DATAVADDR0) matching addr.
1182          */
1183         if (watchpoint->value) {
1184                 LOG_DEBUG("data value watchpoint not YET supported");
1185                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1186         }
1187
1188         cortex_m3->dwt_comp_available--;
1189         LOG_DEBUG("dwt_comp_available: %d", cortex_m3->dwt_comp_available);
1190
1191         return ERROR_OK;
1192 }
1193
1194 static int
1195 cortex_m3_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
1196 {
1197         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1198
1199         /* REVISIT why check? DWT can be updated with core running ... */
1200         if (target->state != TARGET_HALTED)
1201         {
1202                 LOG_WARNING("target not halted");
1203                 return ERROR_TARGET_NOT_HALTED;
1204         }
1205
1206         if (watchpoint->set)
1207         {
1208                 cortex_m3_unset_watchpoint(target, watchpoint);
1209         }
1210
1211         cortex_m3->dwt_comp_available++;
1212         LOG_DEBUG("dwt_comp_available: %d", cortex_m3->dwt_comp_available);
1213
1214         return ERROR_OK;
1215 }
1216
1217 static void cortex_m3_enable_watchpoints(struct target *target)
1218 {
1219         struct watchpoint *watchpoint = target->watchpoints;
1220
1221         /* set any pending watchpoints */
1222         while (watchpoint)
1223         {
1224                 if (watchpoint->set == 0)
1225                         cortex_m3_set_watchpoint(target, watchpoint);
1226                 watchpoint = watchpoint->next;
1227         }
1228 }
1229
1230 static int cortex_m3_load_core_reg_u32(struct target *target,
1231                 enum armv7m_regtype type, uint32_t num, uint32_t * value)
1232 {
1233         int retval;
1234         struct armv7m_common *armv7m = target_to_armv7m(target);
1235         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1236
1237         /* NOTE:  we "know" here that the register identifiers used
1238          * in the v7m header match the Cortex-M3 Debug Core Register
1239          * Selector values for R0..R15, xPSR, MSP, and PSP.
1240          */
1241         switch (num) {
1242         case 0 ... 18:
1243                 /* read a normal core register */
1244                 retval = cortexm3_dap_read_coreregister_u32(swjdp, value, num);
1245
1246                 if (retval != ERROR_OK)
1247                 {
1248                         LOG_ERROR("JTAG failure %i",retval);
1249                         return ERROR_JTAG_DEVICE_ERROR;
1250                 }
1251                 LOG_DEBUG("load from core reg %i  value 0x%" PRIx32 "",(int)num,*value);
1252                 break;
1253
1254         case ARMV7M_PRIMASK:
1255         case ARMV7M_BASEPRI:
1256         case ARMV7M_FAULTMASK:
1257         case ARMV7M_CONTROL:
1258                 /* Cortex-M3 packages these four registers as bitfields
1259                  * in one Debug Core register.  So say r0 and r2 docs;
1260                  * it was removed from r1 docs, but still works.
1261                  */
1262                 cortexm3_dap_read_coreregister_u32(swjdp, value, 20);
1263
1264                 switch (num)
1265                 {
1266                         case ARMV7M_PRIMASK:
1267                                 *value = buf_get_u32((uint8_t*)value, 0, 1);
1268                                 break;
1269
1270                         case ARMV7M_BASEPRI:
1271                                 *value = buf_get_u32((uint8_t*)value, 8, 8);
1272                                 break;
1273
1274                         case ARMV7M_FAULTMASK:
1275                                 *value = buf_get_u32((uint8_t*)value, 16, 1);
1276                                 break;
1277
1278                         case ARMV7M_CONTROL:
1279                                 *value = buf_get_u32((uint8_t*)value, 24, 2);
1280                                 break;
1281                 }
1282
1283                 LOG_DEBUG("load from special reg %i value 0x%" PRIx32 "", (int)num, *value);
1284                 break;
1285
1286         default:
1287                 return ERROR_INVALID_ARGUMENTS;
1288         }
1289
1290         return ERROR_OK;
1291 }
1292
1293 static int cortex_m3_store_core_reg_u32(struct target *target,
1294                 enum armv7m_regtype type, uint32_t num, uint32_t value)
1295 {
1296         int retval;
1297         uint32_t reg;
1298         struct armv7m_common *armv7m = target_to_armv7m(target);
1299         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1300
1301 #ifdef ARMV7_GDB_HACKS
1302         /* If the LR register is being modified, make sure it will put us
1303          * in "thumb" mode, or an INVSTATE exception will occur. This is a
1304          * hack to deal with the fact that gdb will sometimes "forge"
1305          * return addresses, and doesn't set the LSB correctly (i.e., when
1306          * printing expressions containing function calls, it sets LR = 0.)
1307          * Valid exception return codes have bit 0 set too.
1308          */
1309         if (num == ARMV7M_R14)
1310                 value |= 0x01;
1311 #endif
1312
1313         /* NOTE:  we "know" here that the register identifiers used
1314          * in the v7m header match the Cortex-M3 Debug Core Register
1315          * Selector values for R0..R15, xPSR, MSP, and PSP.
1316          */
1317         switch (num) {
1318         case 0 ... 18:
1319                 retval = cortexm3_dap_write_coreregister_u32(swjdp, value, num);
1320                 if (retval != ERROR_OK)
1321                 {
1322                         LOG_ERROR("JTAG failure %i", retval);
1323                         armv7m->core_cache->reg_list[num].dirty = armv7m->core_cache->reg_list[num].valid;
1324                         return ERROR_JTAG_DEVICE_ERROR;
1325                 }
1326                 LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", (int)num, value);
1327                 break;
1328
1329         case ARMV7M_PRIMASK:
1330         case ARMV7M_BASEPRI:
1331         case ARMV7M_FAULTMASK:
1332         case ARMV7M_CONTROL:
1333                 /* Cortex-M3 packages these four registers as bitfields
1334                  * in one Debug Core register.  So say r0 and r2 docs;
1335                  * it was removed from r1 docs, but still works.
1336                  */
1337                 cortexm3_dap_read_coreregister_u32(swjdp, &reg, 20);
1338
1339                 switch (num)
1340                 {
1341                         case ARMV7M_PRIMASK:
1342                                 buf_set_u32((uint8_t*)&reg, 0, 1, value);
1343                                 break;
1344
1345                         case ARMV7M_BASEPRI:
1346                                 buf_set_u32((uint8_t*)&reg, 8, 8, value);
1347                                 break;
1348
1349                         case ARMV7M_FAULTMASK:
1350                                 buf_set_u32((uint8_t*)&reg, 16, 1, value);
1351                                 break;
1352
1353                         case ARMV7M_CONTROL:
1354                                 buf_set_u32((uint8_t*)&reg, 24, 2, value);
1355                                 break;
1356                 }
1357
1358                 cortexm3_dap_write_coreregister_u32(swjdp, reg, 20);
1359
1360                 LOG_DEBUG("write special reg %i value 0x%" PRIx32 " ", (int)num, value);
1361                 break;
1362
1363         default:
1364                 return ERROR_INVALID_ARGUMENTS;
1365         }
1366
1367         return ERROR_OK;
1368 }
1369
1370 static int cortex_m3_read_memory(struct target *target, uint32_t address,
1371                 uint32_t size, uint32_t count, uint8_t *buffer)
1372 {
1373         struct armv7m_common *armv7m = target_to_armv7m(target);
1374         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1375         int retval;
1376
1377         /* sanitize arguments */
1378         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
1379                 return ERROR_INVALID_ARGUMENTS;
1380
1381         /* cortex_m3 handles unaligned memory access */
1382
1383         switch (size)
1384         {
1385                 case 4:
1386                         retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address);
1387                         break;
1388                 case 2:
1389                         retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
1390                         break;
1391                 case 1:
1392                         retval = mem_ap_read_buf_u8(swjdp, buffer, count, address);
1393                         break;
1394                 default:
1395                         LOG_ERROR("BUG: we shouldn't get here");
1396                         exit(-1);
1397         }
1398
1399         return retval;
1400 }
1401
1402 static int cortex_m3_write_memory(struct target *target, uint32_t address,
1403                 uint32_t size, uint32_t count, uint8_t *buffer)
1404 {
1405         struct armv7m_common *armv7m = target_to_armv7m(target);
1406         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1407         int retval;
1408
1409         /* sanitize arguments */
1410         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
1411                 return ERROR_INVALID_ARGUMENTS;
1412
1413         switch (size)
1414         {
1415                 case 4:
1416                         retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address);
1417                         break;
1418                 case 2:
1419                         retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);
1420                         break;
1421                 case 1:
1422                         retval = mem_ap_write_buf_u8(swjdp, buffer, count, address);
1423                         break;
1424                 default:
1425                         LOG_ERROR("BUG: we shouldn't get here");
1426                         exit(-1);
1427         }
1428
1429         return retval;
1430 }
1431
1432 static int cortex_m3_bulk_write_memory(struct target *target, uint32_t address,
1433                 uint32_t count, uint8_t *buffer)
1434 {
1435         return cortex_m3_write_memory(target, address, 4, count, buffer);
1436 }
1437
1438 static int cortex_m3_init_target(struct command_context_s *cmd_ctx,
1439                 struct target *target)
1440 {
1441         armv7m_build_reg_cache(target);
1442         return ERROR_OK;
1443 }
1444
1445 /* REVISIT cache valid/dirty bits are unmaintained.  We could set "valid"
1446  * on r/w if the core is not running, and clear on resume or reset ... or
1447  * at least, in a post_restore_context() method.
1448  */
1449
1450 struct dwt_reg_state {
1451         struct target   *target;
1452         uint32_t        addr;
1453         uint32_t        value;  /* scratch/cache */
1454 };
1455
1456 static int cortex_m3_dwt_get_reg(struct reg *reg)
1457 {
1458         struct dwt_reg_state *state = reg->arch_info;
1459
1460         return target_read_u32(state->target, state->addr, &state->value);
1461 }
1462
1463 static int cortex_m3_dwt_set_reg(struct reg *reg, uint8_t *buf)
1464 {
1465         struct dwt_reg_state *state = reg->arch_info;
1466
1467         return target_write_u32(state->target, state->addr,
1468                         buf_get_u32(buf, 0, reg->size));
1469 }
1470
1471 struct dwt_reg {
1472         uint32_t        addr;
1473         char            *name;
1474         unsigned        size;
1475 };
1476
1477 static struct dwt_reg dwt_base_regs[] = {
1478         { DWT_CTRL, "dwt_ctrl", 32, },
1479         { DWT_CYCCNT, "dwt_cyccnt", 32, },
1480         /* plus some 8 bit counters, useful for profiling with TPIU */
1481 };
1482
1483 static struct dwt_reg dwt_comp[] = {
1484 #define DWT_COMPARATOR(i) \
1485                 { DWT_COMP0 + 0x10 * (i), "dwt_" #i "_comp", 32, }, \
1486                 { DWT_MASK0 + 0x10 * (i), "dwt_" #i "_mask", 4, }, \
1487                 { DWT_FUNCTION0 + 0x10 * (i), "dwt_" #i "_function", 32, }
1488         DWT_COMPARATOR(0),
1489         DWT_COMPARATOR(1),
1490         DWT_COMPARATOR(2),
1491         DWT_COMPARATOR(3),
1492 #undef DWT_COMPARATOR
1493 };
1494
1495 static int dwt_reg_type = -1;
1496
1497 static void
1498 cortex_m3_dwt_addreg(struct target *t, struct reg *r, struct dwt_reg *d)
1499 {
1500         struct dwt_reg_state *state;
1501
1502         state = calloc(1, sizeof *state);
1503         if (!state)
1504                 return;
1505         state->addr = d->addr;
1506         state->target = t;
1507
1508         r->name = d->name;
1509         r->size = d->size;
1510         r->value = &state->value;
1511         r->arch_info = state;
1512         r->arch_type = dwt_reg_type;
1513 }
1514
1515 static void
1516 cortex_m3_dwt_setup(struct cortex_m3_common *cm3, struct target *target)
1517 {
1518         uint32_t dwtcr;
1519         struct reg_cache *cache;
1520         struct cortex_m3_dwt_comparator *comparator;
1521         int reg, i;
1522
1523         target_read_u32(target, DWT_CTRL, &dwtcr);
1524         if (!dwtcr) {
1525                 LOG_DEBUG("no DWT");
1526                 return;
1527         }
1528
1529         if (dwt_reg_type < 0)
1530                 dwt_reg_type = register_reg_arch_type(cortex_m3_dwt_get_reg,
1531                                 cortex_m3_dwt_set_reg);
1532
1533         cm3->dwt_num_comp = (dwtcr >> 28) & 0xF;
1534         cm3->dwt_comp_available = cm3->dwt_num_comp;
1535         cm3->dwt_comparator_list = calloc(cm3->dwt_num_comp,
1536                         sizeof(struct cortex_m3_dwt_comparator));
1537         if (!cm3->dwt_comparator_list) {
1538 fail0:
1539                 cm3->dwt_num_comp = 0;
1540                 LOG_ERROR("out of mem");
1541                 return;
1542         }
1543
1544         cache = calloc(1, sizeof *cache);
1545         if (!cache) {
1546 fail1:
1547                 free(cm3->dwt_comparator_list);
1548                 goto fail0;
1549         }
1550         cache->name = "cortex-m3 dwt registers";
1551         cache->num_regs = 2 + cm3->dwt_num_comp * 3;
1552         cache->reg_list = calloc(cache->num_regs, sizeof *cache->reg_list);
1553         if (!cache->reg_list) {
1554                 free(cache);
1555                 goto fail1;
1556         }
1557
1558         for (reg = 0; reg < 2; reg++)
1559                 cortex_m3_dwt_addreg(target, cache->reg_list + reg,
1560                                 dwt_base_regs + reg);
1561
1562         comparator = cm3->dwt_comparator_list;
1563         for (i = 0; i < cm3->dwt_num_comp; i++, comparator++) {
1564                 int j;
1565
1566                 comparator->dwt_comparator_address = DWT_COMP0 + 0x10 * i;
1567                 for (j = 0; j < 3; j++, reg++)
1568                         cortex_m3_dwt_addreg(target, cache->reg_list + reg,
1569                                         dwt_comp + 3 * i + j);
1570         }
1571
1572         *register_get_last_cache_p(&target->reg_cache) = cache;
1573         cm3->dwt_cache = cache;
1574
1575         LOG_DEBUG("DWT dwtcr 0x%" PRIx32 ", comp %d, watch%s",
1576                         dwtcr, cm3->dwt_num_comp,
1577                         (dwtcr & (0xf << 24)) ? " only" : "/trigger");
1578
1579         /* REVISIT:  if num_comp > 1, check whether comparator #1 can
1580          * implement single-address data value watchpoints ... so we
1581          * won't need to check it later, when asked to set one up.
1582          */
1583 }
1584
1585 static int cortex_m3_examine(struct target *target)
1586 {
1587         int retval;
1588         uint32_t cpuid, fpcr;
1589         int i;
1590         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1591         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
1592
1593         if ((retval = ahbap_debugport_init(swjdp)) != ERROR_OK)
1594                 return retval;
1595
1596         if (!target_was_examined(target))
1597         {
1598                 target_set_examined(target);
1599
1600                 /* Read from Device Identification Registers */
1601                 retval = target_read_u32(target, CPUID, &cpuid);
1602                 if (retval != ERROR_OK)
1603                         return retval;
1604
1605                 if (((cpuid >> 4) & 0xc3f) == 0xc23)
1606                         LOG_DEBUG("CORTEX-M3 processor detected");
1607                 LOG_DEBUG("cpuid: 0x%8.8" PRIx32 "", cpuid);
1608
1609                 /* NOTE: FPB and DWT are both optional. */
1610
1611                 /* Setup FPB */
1612                 target_read_u32(target, FP_CTRL, &fpcr);
1613                 cortex_m3->auto_bp_type = 1;
1614                 cortex_m3->fp_num_code = ((fpcr >> 8) & 0x70) | ((fpcr >> 4) & 0xF); /* bits [14:12] and [7:4] */
1615                 cortex_m3->fp_num_lit = (fpcr >> 8) & 0xF;
1616                 cortex_m3->fp_code_available = cortex_m3->fp_num_code;
1617                 cortex_m3->fp_comparator_list = calloc(cortex_m3->fp_num_code + cortex_m3->fp_num_lit, sizeof(struct cortex_m3_fp_comparator));
1618                 cortex_m3->fpb_enabled = fpcr & 1;
1619                 for (i = 0; i < cortex_m3->fp_num_code + cortex_m3->fp_num_lit; i++)
1620                 {
1621                         cortex_m3->fp_comparator_list[i].type = (i < cortex_m3->fp_num_code) ? FPCR_CODE : FPCR_LITERAL;
1622                         cortex_m3->fp_comparator_list[i].fpcr_address = FP_COMP0 + 4 * i;
1623                 }
1624                 LOG_DEBUG("FPB fpcr 0x%" PRIx32 ", numcode %i, numlit %i", fpcr, cortex_m3->fp_num_code, cortex_m3->fp_num_lit);
1625
1626                 /* Setup DWT */
1627                 cortex_m3_dwt_setup(cortex_m3, target);
1628         }
1629
1630         return ERROR_OK;
1631 }
1632
1633 static int cortex_m3_dcc_read(struct swjdp_common *swjdp, uint8_t *value, uint8_t *ctrl)
1634 {
1635         uint16_t dcrdr;
1636
1637         mem_ap_read_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1638         *ctrl = (uint8_t)dcrdr;
1639         *value = (uint8_t)(dcrdr >> 8);
1640
1641         LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1642
1643         /* write ack back to software dcc register
1644          * signify we have read data */
1645         if (dcrdr & (1 << 0))
1646         {
1647                 dcrdr = 0;
1648                 mem_ap_write_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1649         }
1650
1651         return ERROR_OK;
1652 }
1653
1654 static int cortex_m3_target_request_data(struct target *target,
1655                 uint32_t size, uint8_t *buffer)
1656 {
1657         struct armv7m_common *armv7m = target_to_armv7m(target);
1658         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1659         uint8_t data;
1660         uint8_t ctrl;
1661         uint32_t i;
1662
1663         for (i = 0; i < (size * 4); i++)
1664         {
1665                 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1666                 buffer[i] = data;
1667         }
1668
1669         return ERROR_OK;
1670 }
1671
1672 static int cortex_m3_handle_target_request(void *priv)
1673 {
1674         struct target *target = priv;
1675         if (!target_was_examined(target))
1676                 return ERROR_OK;
1677         struct armv7m_common *armv7m = target_to_armv7m(target);
1678         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1679
1680         if (!target->dbg_msg_enabled)
1681                 return ERROR_OK;
1682
1683         if (target->state == TARGET_RUNNING)
1684         {
1685                 uint8_t data;
1686                 uint8_t ctrl;
1687
1688                 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1689
1690                 /* check if we have data */
1691                 if (ctrl & (1 << 0))
1692                 {
1693                         uint32_t request;
1694
1695                         /* we assume target is quick enough */
1696                         request = data;
1697                         cortex_m3_dcc_read(swjdp, &data, &ctrl);
1698                         request |= (data << 8);
1699                         cortex_m3_dcc_read(swjdp, &data, &ctrl);
1700                         request |= (data << 16);
1701                         cortex_m3_dcc_read(swjdp, &data, &ctrl);
1702                         request |= (data << 24);
1703                         target_request(target, request);
1704                 }
1705         }
1706
1707         return ERROR_OK;
1708 }
1709
1710 static int cortex_m3_init_arch_info(struct target *target,
1711                 struct cortex_m3_common *cortex_m3, struct jtag_tap *tap)
1712 {
1713         int retval;
1714         struct armv7m_common *armv7m = &cortex_m3->armv7m;
1715
1716         armv7m_init_arch_info(target, armv7m);
1717
1718         /* prepare JTAG information for the new target */
1719         cortex_m3->jtag_info.tap = tap;
1720         cortex_m3->jtag_info.scann_size = 4;
1721
1722         armv7m->swjdp_info.dp_select_value = -1;
1723         armv7m->swjdp_info.ap_csw_value = -1;
1724         armv7m->swjdp_info.ap_tar_value = -1;
1725         armv7m->swjdp_info.jtag_info = &cortex_m3->jtag_info;
1726         armv7m->swjdp_info.memaccess_tck = 8;
1727         armv7m->swjdp_info.tar_autoincr_block = (1 << 12);      /* Cortex-M3 has 4096 bytes autoincrement range */
1728
1729         /* register arch-specific functions */
1730         armv7m->examine_debug_reason = cortex_m3_examine_debug_reason;
1731
1732         armv7m->post_debug_entry = NULL;
1733
1734         armv7m->pre_restore_context = NULL;
1735         armv7m->post_restore_context = NULL;
1736
1737         armv7m->load_core_reg_u32 = cortex_m3_load_core_reg_u32;
1738         armv7m->store_core_reg_u32 = cortex_m3_store_core_reg_u32;
1739
1740         target_register_timer_callback(cortex_m3_handle_target_request, 1, 1, target);
1741
1742         if ((retval = arm_jtag_setup_connection(&cortex_m3->jtag_info)) != ERROR_OK)
1743         {
1744                 return retval;
1745         }
1746
1747         return ERROR_OK;
1748 }
1749
1750 static int cortex_m3_target_create(struct target *target, Jim_Interp *interp)
1751 {
1752         struct cortex_m3_common *cortex_m3 = calloc(1,sizeof(struct cortex_m3_common));
1753
1754         cortex_m3->common_magic = CORTEX_M3_COMMON_MAGIC;
1755         cortex_m3_init_arch_info(target, cortex_m3, target->tap);
1756
1757         return ERROR_OK;
1758 }
1759
1760 /*--------------------------------------------------------------------------*/
1761
1762 static int cortex_m3_verify_pointer(struct command_context_s *cmd_ctx,
1763                 struct cortex_m3_common *cm3)
1764 {
1765         if (cm3->common_magic != CORTEX_M3_COMMON_MAGIC) {
1766                 command_print(cmd_ctx, "target is not a Cortex-M3");
1767                 return ERROR_TARGET_INVALID;
1768         }
1769         return ERROR_OK;
1770 }
1771
1772 /*
1773  * Only stuff below this line should need to verify that its target
1774  * is a Cortex-M3.  Everything else should have indirected through the
1775  * cortexm3_target structure, which is only used with CM3 targets.
1776  */
1777
1778 /*
1779  * REVISIT Thumb2 disassembly should work for all ARMv7 cores, as well
1780  * as at least ARM-1156T2.  The interesting thing about Cortex-M is
1781  * that *only* Thumb2 disassembly matters.  There are also some small
1782  * additions to Thumb2 that are specific to ARMv7-M.
1783  */
1784 COMMAND_HANDLER(handle_cortex_m3_disassemble_command)
1785 {
1786         int retval;
1787         struct target *target = get_current_target(cmd_ctx);
1788         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1789         uint32_t address;
1790         unsigned long count = 1;
1791         struct arm_instruction cur_instruction;
1792
1793         retval = cortex_m3_verify_pointer(cmd_ctx, cortex_m3);
1794         if (retval != ERROR_OK)
1795                 return retval;
1796
1797         errno = 0;
1798         switch (argc) {
1799         case 2:
1800                 COMMAND_PARSE_NUMBER(ulong, args[1], count);
1801                 /* FALL THROUGH */
1802         case 1:
1803                 COMMAND_PARSE_NUMBER(u32, args[0], address);
1804                 break;
1805         default:
1806                 command_print(cmd_ctx,
1807                         "usage: cortex_m3 disassemble <address> [<count>]");
1808                 return ERROR_OK;
1809         }
1810
1811         while (count--) {
1812                 retval = thumb2_opcode(target, address, &cur_instruction);
1813                 if (retval != ERROR_OK)
1814                         return retval;
1815                 command_print(cmd_ctx, "%s", cur_instruction.text);
1816                 address += cur_instruction.instruction_size;
1817         }
1818
1819         return ERROR_OK;
1820 }
1821
1822 static const struct {
1823         char name[10];
1824         unsigned mask;
1825 } vec_ids[] = {
1826         { "hard_err",   VC_HARDERR, },
1827         { "int_err",    VC_INTERR, },
1828         { "bus_err",    VC_BUSERR, },
1829         { "state_err",  VC_STATERR, },
1830         { "chk_err",    VC_CHKERR, },
1831         { "nocp_err",   VC_NOCPERR, },
1832         { "mm_err",     VC_MMERR, },
1833         { "reset",      VC_CORERESET, },
1834 };
1835
1836 COMMAND_HANDLER(handle_cortex_m3_vector_catch_command)
1837 {
1838         struct target *target = get_current_target(cmd_ctx);
1839         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1840         struct armv7m_common *armv7m = &cortex_m3->armv7m;
1841         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1842         uint32_t demcr = 0;
1843         int retval;
1844         int i;
1845
1846         retval = cortex_m3_verify_pointer(cmd_ctx, cortex_m3);
1847         if (retval != ERROR_OK)
1848                 return retval;
1849
1850         mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &demcr);
1851
1852         if (argc > 0) {
1853                 unsigned catch = 0;
1854
1855                 if (argc == 1) {
1856                         if (strcmp(args[0], "all") == 0) {
1857                                 catch = VC_HARDERR | VC_INTERR | VC_BUSERR
1858                                         | VC_STATERR | VC_CHKERR | VC_NOCPERR
1859                                         | VC_MMERR | VC_CORERESET;
1860                                 goto write;
1861                         } else if (strcmp(args[0], "none") == 0) {
1862                                 goto write;
1863                         }
1864                 }
1865                 while (argc-- > 0) {
1866                         for (i = 0; i < ARRAY_SIZE(vec_ids); i++) {
1867                                 if (strcmp(args[argc], vec_ids[i].name) != 0)
1868                                         continue;
1869                                 catch |= vec_ids[i].mask;
1870                                 break;
1871                         }
1872                         if (i == ARRAY_SIZE(vec_ids)) {
1873                                 LOG_ERROR("No CM3 vector '%s'", args[argc]);
1874                                 return ERROR_INVALID_ARGUMENTS;
1875                         }
1876                 }
1877 write:
1878                 demcr &= ~0xffff;
1879                 demcr |= catch;
1880
1881                 /* write, but don't assume it stuck */
1882                 mem_ap_write_u32(swjdp, DCB_DEMCR, demcr);
1883                 mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &demcr);
1884         }
1885
1886         for (i = 0; i < ARRAY_SIZE(vec_ids); i++)
1887                 command_print(cmd_ctx, "%9s: %s", vec_ids[i].name,
1888                         (demcr & vec_ids[i].mask) ? "catch" : "ignore");
1889
1890         return ERROR_OK;
1891 }
1892
1893 COMMAND_HANDLER(handle_cortex_m3_mask_interrupts_command)
1894 {
1895         struct target *target = get_current_target(cmd_ctx);
1896         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1897         int retval;
1898
1899         retval = cortex_m3_verify_pointer(cmd_ctx, cortex_m3);
1900         if (retval != ERROR_OK)
1901                 return retval;
1902
1903         if (target->state != TARGET_HALTED)
1904         {
1905                 command_print(cmd_ctx, "target must be stopped for \"%s\" command", CMD_NAME);
1906                 return ERROR_OK;
1907         }
1908
1909         if (argc > 0)
1910         {
1911                 if (!strcmp(args[0], "on"))
1912                 {
1913                         cortex_m3_write_debug_halt_mask(target, C_HALT | C_MASKINTS, 0);
1914                 }
1915                 else if (!strcmp(args[0], "off"))
1916                 {
1917                         cortex_m3_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
1918                 }
1919                 else
1920                 {
1921                         command_print(cmd_ctx, "usage: cortex_m3 maskisr ['on'|'off']");
1922                 }
1923         }
1924
1925         command_print(cmd_ctx, "cortex_m3 interrupt mask %s",
1926                         (cortex_m3->dcb_dhcsr & C_MASKINTS) ? "on" : "off");
1927
1928         return ERROR_OK;
1929 }
1930
1931 static int cortex_m3_register_commands(struct command_context_s *cmd_ctx)
1932 {
1933         int retval;
1934         command_t *cortex_m3_cmd;
1935
1936         retval = armv7m_register_commands(cmd_ctx);
1937
1938         cortex_m3_cmd = register_command(cmd_ctx, NULL, "cortex_m3",
1939                         NULL, COMMAND_ANY, "cortex_m3 specific commands");
1940
1941         register_command(cmd_ctx, cortex_m3_cmd, "disassemble",
1942                         handle_cortex_m3_disassemble_command, COMMAND_EXEC,
1943                         "disassemble Thumb2 instructions <address> [<count>]");
1944         register_command(cmd_ctx, cortex_m3_cmd, "maskisr",
1945                         handle_cortex_m3_mask_interrupts_command, COMMAND_EXEC,
1946                         "mask cortex_m3 interrupts ['on'|'off']");
1947         register_command(cmd_ctx, cortex_m3_cmd, "vector_catch",
1948                         handle_cortex_m3_vector_catch_command, COMMAND_EXEC,
1949                         "catch hardware vectors ['all'|'none'|<list>]");
1950
1951         return retval;
1952 }
1953
1954 struct target_type cortexm3_target =
1955 {
1956         .name = "cortex_m3",
1957
1958         .poll = cortex_m3_poll,
1959         .arch_state = armv7m_arch_state,
1960
1961         .target_request_data = cortex_m3_target_request_data,
1962
1963         .halt = cortex_m3_halt,
1964         .resume = cortex_m3_resume,
1965         .step = cortex_m3_step,
1966
1967         .assert_reset = cortex_m3_assert_reset,
1968         .deassert_reset = cortex_m3_deassert_reset,
1969         .soft_reset_halt = cortex_m3_soft_reset_halt,
1970
1971         .get_gdb_reg_list = armv7m_get_gdb_reg_list,
1972
1973         .read_memory = cortex_m3_read_memory,
1974         .write_memory = cortex_m3_write_memory,
1975         .bulk_write_memory = cortex_m3_bulk_write_memory,
1976         .checksum_memory = armv7m_checksum_memory,
1977         .blank_check_memory = armv7m_blank_check_memory,
1978
1979         .run_algorithm = armv7m_run_algorithm,
1980
1981         .add_breakpoint = cortex_m3_add_breakpoint,
1982         .remove_breakpoint = cortex_m3_remove_breakpoint,
1983         .add_watchpoint = cortex_m3_add_watchpoint,
1984         .remove_watchpoint = cortex_m3_remove_watchpoint,
1985
1986         .register_commands = cortex_m3_register_commands,
1987         .target_create = cortex_m3_target_create,
1988         .init_target = cortex_m3_init_target,
1989         .examine = cortex_m3_examine,
1990 };